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Abstract

The goal of this thesis is to improve current state-of-the-art techniques in speaker verification

(SV), typically based on “identity-vectors” (i-vectors) and deep neural network (DNN), by ex-

ploiting diverse (phonetic) information extracted using various techniques such as automatic

speech recognition (ASR). Different speakers span different subspaces within a universal acous-

tic space, usually modelled by “universal background model”. The speaker-specific subspace

depends on the speaker’s voice characteristics, but also on the verbalised text of a speaker.

In current state-of-the-art SV systems, i-vectors are extracted by applying a factor analysis

technique to obtain low dimensional speaker-specific representation. Furthermore, DNN

output is also employed in a conventional i-vector framework to model phonetic information

embedded in the speech signal. This thesis proposes various techniques to exploit phonetic

knowledge of speech to further enrich speaker characteristics.

More specifically, the techniques proposed in this thesis are applied to various SV tasks,

namely, text-independent and text-dependent SV. For text-independent SV task, several ASR

systems are developed and applied to compute phonetic posterior probabilities, subsequently

exploited to enhance the speaker-specific information included in i-vectors. These approaches

are then extended for text-dependent SV task, exploiting temporal information in a principled

way, i.e., by using dynamic time warping applied on speaker informative vectors.

Finally, as opposed to training DNN with phonetic information, DNN is trained in an end-to-

end fashion to directly discriminate speakers. The baseline end-to-end SV approach consists of

mapping a variable length speech segment to a fixed dimensional speaker vector by estimating

the mean of hidden representations in DNN structure. We improve upon this technique by

computing a distance function between two utterances which takes into account common

phonetic units. The whole network is optimized by employing a triplet-loss objective function.

The proposed approaches are evaluated on commonly used datasets such as NIST SRE 2010

and RSR2015. Significant improvements are observed over the baseline systems on both the

text-dependent and text- independent SV tasks by applying phonetic knowledge.

Keywords: speaker verification, text-dependent speaker verification, i-vector, PLDA, deep

neural network, phonetic information, speaker embedding, end-to-end, distance metric.
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Résumé

L’objectif de cette thèse est d’améliorer les techniques actuelles en vérification du locu-

teur (Speaker Verification, SV), généralement basées sur l’utilisation de "identity-vectors"

(i-vectors) et de réseaux de neurones profonds (Deep Neural Network, DNN), en exploitant

plusieurs informations (phonétiques) issues d’un système de reconnaissance automatique de

la parole (Automatic Speech Recognition, ASR). Des locuteurs différents couvrent différents

sous-espaces à l’intérieur d’un espace acoustique universel, communément appelé "Universal

Background Model". Le sous-espace propre à chaque locuteur dépend des caractéristiques

vocales de celui-ci, ainsi que du texte énoncé par le locuteur. Dans l’état de l’art actuel, les

systèmes de SV extraient les i-vectors en appliquant une technique d’analyse factorielle per-

mettant d’obtenir une représentation à faible dimension spécifique au locuteur. De plus, les

DNN sont aussi utilisés dans le cadre conventionnel des i-vectors, pour modéliser les carac-

téristiques phonétiques présentes dans le signal de parole. Dans cette thèse, nous proposons

d’utiliser plusieurs techniques exploitant les connaissances phonétiques du signal de parole

afin d’obtenir une représentation augmentée du locuteur.

Les techniques développées dans cette thèse sont appliquées à plusieurs tâches de SV, no-

tamment dépendantes et indépendantes du texte. Pour la SV indépendante du texte, un

système de reconnaissance vocale basé sur les DNN est utilisé pour estimer les probabilités

phonétiques a posteriori, qui sont ensuite exploitées pour améliorer les informations propres

au locuteur inclues dans les i-vectors. Pour la SV dépendant du texte, cette approche est

étendue pour exploiter principalement l’information temporelle, c’est-à-dire en utilisant la

déformation temporelle dynamique (dynamic time warping) sur les vecteurs d’informations

des locuteurs.

Finalement, au lieu d’utiliser un DNN pour déduire les caractéristiques phonétiques, celui-ci

est entraîné de bout-en-bout pour distinguer les locuteurs. La méthode de référence consiste

à relier un segment de parole de longueur variable à un vecteur-locuteur de dimension fixe en

estimant la moyenne des représentations internes au DNN. Nous améliorons cette technique

en calculant la distance entre deux échantillons en utilisant leurs caractéristiques phonétiques

communes. L’entièreté du réseau est optimisée grâce à une fonction objectif "triplet-loss".

Les approches proposées sont évaluées sur les bases de données RSR2015 et NIST SRE 2010.

Une amélioration significative par rapport au système de référence a été mesurée en exploitant
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les caractéristiques phonétiques, à la fois pour les tâches dépendantes et indépendantes du

texte.

Mots clefs: vérification du locuteur, vérification du locuteur dépendant du texte, i-vector,

PLDA, deep neural network, information phonétique, speaker embedding, end-to-end, dis-

tance metric.
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Chapter 1. Introduction

Due to widespread use of mobile phones, the speech processing applications are rising day-

by-day. Speaker verification (SV) is a related speech processing technology that aims to

authenticate the identity of a user from voice samples. SV systems are usually deployed in real-

time scenarios such as for banking, etc. SV can be broadly categorized into text-dependent

and text-independent tasks. In text-dependent SV, the user is constrained to utter a specific

lexical content while no such constraints are applied for text-independent SV. Commercial

companies like Apple, Google, Microsoft have released their text-dependent SV products

with the lexical content of the voice sample to be “Hey Siri”, “Ok Google” and “Hey Cortana”

respectively. Figure 1.1 shows a typical SV scenario in which a user gets authenticated to the

system via voice. Building a SV system for these applications poses real challenges, as a process

of user-authentication usually requires to operate over a few seconds of audio recordings. To

achieve this, novel SV approaches are required, which extract speaker characteristics not only

from acoustics of a speech signal but also other characteristics.

Typical SV approaches are built around a Gaussian mixture model (GMM) to cluster the

acoustic space of the speaker feature vectors. The state-of-the-art SV technique employs factor

analysis model on the GMM representation of the speakers in order to obtain a low dimension

vector, referred to as i-vector. The i-vector approach consists of first computing the sufficient

statistics (SS) and then obtaining the low dimensional speaker representation. SS extraction

of an utterance aims to map a varying length speech utterance to a high dimensional vector.

Typically, these SS are computed by scoring each frame of an utterance against a GMM. Recent

research reveals that replacing GMM by deep neural network (DNN) outputs for extraction

of SS results in significant improvement of SV performance (Lei et al., 2014). Unlike GMM

employed to unsupervisely cluster the acoustic space, the DNN is usually trained to classify

speech into phonetic classes in a supervised manner using text-transcripts. These findings

suggest that the spoken text of the user is useful for SV in addition to acoustic (speaker-specific)

characteristics.

In this thesis, we propose new approaches that exploit phonetic and speaker information

for text-independent and text-dependent SV scenarios. For text-independent SV, we aim to

incorporate phonetic information via automatic speech recognition (ASR) to compute SS as

opposed to using directly DNN outputs. For text-dependent task, we present approaches

exploiting context of phonetic units for building an SV system.

The rest of the chapter is organized as follows. Section 1.1 presents the motivation of the

works presented in this thesis. In Section 1.2, we describe SV scenarios considered in this

thesis to evaluate the developed techniques while in Section 1.3, we describe the different

contributions made towards advancing the state-of-the-art SV techniques. Section 1.4 presents

a chapter-wise outline that summarizes the contributions of the thesis.
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1.1. Motivations

Figure 1.1: Typical example of a speaker verification system that is deployed for practical
scenarios.

1.1 Motivations

In the past, it has been shown that certain sound units contain more speaker discriminating

characteristics than others (Amino et al., 2006; Moez et al., 2016; Besacier et al., 2000). For

example, Amino et al. (2006) have found that nasals and vowels are more effective in discrimi-

nating speakers than other phonemes. Furthermore, speakers are distinguishable in terms of

the choice of the usage of words or the combination of words. This hypothesis was examined

through the use of sequence of phone units by Campbell et al. (2003). Motivated by these

evidences and the fact that the information carried in the sequence of phonetic units has not

been studied after the emergence of the i-vector framework, we aim to employ the sequence

information automatically extracted from voice recordings to improve SV.

The i-vector framework provides reasonable accuracies for various SV conditions, including

short duration utterances. This approach usually employs a GMM that is trained in an unsu-

pervised manner. This implies that the content information of the speech signal is ignored.

Recent work suggests that phonetic information can be incorporated in the i-vector framework

by the application of an ASR extracting complementary information. In Lei et al. (2014), this

is achieved by first training DNN in an ASR fashion with outputs as the context-dependent

phones (senones). The trained DNN produces senone posterior probabilities which can be

directly used in extracting SS for i-vector framework, or the DNN outputs are further processed

by an ASR decoder constrained by a lexicon and language model. Figure 1.2 shows the SV

performance when different acoustic models are applied (Su and Wegmann, 2016). The results

are presented in terms of equal error rate (EER), which correspond to the operating point at

which the probability of false acceptance (i.e. impostor falsely authenticated) is equal to the

probability of miss detection rate (i.e. correct speaker is rejected). The speaker dependent

ASR system as shown in Figure 1.2 is trained by adapting the DNN acoustic model to each of

the speakers. It can be observed from the figure that the EER of the SV decreases considerably

when ASR is used in SV task. In other words, this result reveals that phonetic information of

speech signal is useful for building an SV system. This thesis focuses on the application of
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GMM-UBM DNN-outputs ASR SD ASR
0

2

4

6

8

E
E

R
(%

)

Figure 1.2: Error rates on applying ASR outputs for speaker verification. SD refers to speaker
dependent system. The SS from various ASR based systems are incorporated in the i-vector frame-
work. The performances of these systems are evaluated on NIST SRE 2010 (Su and Wegmann,
2016).

phonetic information to model the speaker representations.

1.2 Scenarios in the thesis

In this thesis, the application of phonetic information is investigated for two SV tasks, partic-

ularly, (i) text-dependent, and (ii) text-independent. For text-dependent SV, we are mainly

interested in following two scenarios:

• Fixed-phrase: the speaker is constrained to utter a specific phrase for authentication.

In this case, all speakers repeat the same phrases in different sessions.

• Random-digit strings: the user has to utter a prompted random permutation of digits

for verification.

The error rates for fixed-phrase based SV is lower than for random-digit strings scenario.

However, an disadvantage of fixed-phrase is that it is more susceptible to spoofing attacks

than random-digit strings. We also evaluate our systems for text-independent scenario in

which the user is not constrained to utter any specific phrase during enrollment and testing

phase.

1.3 Summary of contributions

In this thesis, we aim at improving the state-of-the-art approaches to SV by exploiting phonetic

information of the speech signal. As shown in Figure 1.3, we hypothesize that the knowledge

from speech recognition system can be applied in order to better model the speaker char-

acteristics. To confirm this hypothesis, we design techniques to tackle text-dependent and

text-independent SV tasks. The contributions of the thesis are the following:
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1.4. Thesis outline

• The baseline i-vector based SV is implemented and evaluated on standard text-

independent dataset. We provide an alternative approach to i-vector framework which

applies subspace GMM (SGMM). The SGMM is typically trained in a supervised man-

ner to capture phonetic and speaker variabilities. Similar to i-vector extraction, the

SGMM framework is used to estimate low-dimensional speaker vectors and then used

for training the back-end classifier.

• For text-independent scenario, we employ various ASR systems to compute SS which

are subsequently applied for i-vector extraction. We then show that there is a direct

correlation between the accuracy of the ASR system and the performance of SV systems

built upon these models.

• The techniques developed for text-independent SV are further extended for

fixed-phrase based SV. We experiment with exploiting context-dependent phone poste-

rior probabilities applied in i-vector framework. The limitation of the baseline system

is analyzed and we propose template matching approaches using speaker informative

features (referred to as online i-vectors).

• The baseline i-vector framework is analyzed for operating on random-digit strings

task. In contrast to phrase based SV, it is not straight-forward to incorporate content

information. We propose to use SS computed from the ASR output, subsequently

applied in i-vector extraction. Furthermore, we apply content matching to normalize

the lexical-content of the enrollment to the test data using online i-vectors as features.

• Finally, unlike training SV components independently, we incorporate phonetic in-

formation in the DNN framework directly for text-dependent SV (fixed-phrase and

random-digit strings). The DNN is trained to discriminate speakers in an end-to-end

fashion. The conventional SV approach involves mapping a variable length speech

segment to a fixed dimensional speaker vector by estimating the mean of hidden repre-

sentations in DNN structure. This strategy may not use content information of speech

signal efficiently which is essential for this task. We exploit phonetic information by

computing a distance function with linguistic units common to both enrollment and

test data. The whole network is optimized by employing a triplet-loss objective function

in an end-to-end fashion to produce SV scores.

1.4 Thesis outline

This thesis is organized as follows.

Chapter 2 presents the relevant background literature on SV, as these approaches will be

considered as baseline system in this thesis.

Chapter 3 explores various approaches developed for incorporating phonetic information of

the speech signal for text-independent SV. In this context, we also explore the use of SGMMs

5



Chapter 1. Introduction

Figure 1.3: Applying knowledge from speech recognition to improve speaker verification.

Table 1.1: Notations

k thousand
R The set of real numbers
R

D The set of D dimensional vectors over R
1condition is equal to 1 if the condition is true, 0 otherwise
Non bold capital letters indicate size or functions
Non-bold small letters indicate scalars or functions
Bold capital letters indicate matrices
Bold small letters indicate column vectors

and the application of acoustic model applied in ASR framework.

In Chapter 4, fixed-phrase based text-dependent SV task is explored. We carefully analyze

the performance of the baseline system and highlight the limitation of these approaches.

We propose new methods to incorporate of phonetic units sequence by applying template

matching techniques.

In Chapter 5, we explore random-digit strings based text-dependent SV. We explore a new

approach to use common set of phones or subword units to obtain SV scores.

Chapter 6 explores various DNN based speaker embedding approaches developed for text-

dependent SV. We explore end-to-end approaches in this context. We propose a specific

objective function in a DNN based framework that exploits phonetic information in an implicit

manner.

1.5 Notations

Table 1.1 summarizes the general notations that are used in this thesis. This notation is

consistent across chapters and when needed, a chapter specific notation is provided.
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In this chapter we present background work on speaker verification. We also present datasets

and system configurations for speaker verification that are used in this thesis.
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2.1 Introduction

Automatically recognizing speakers is useful for various practical applications, such as in voice-

based forensics, banking systems, etc. Speaker recognition tasks (i.e. diarisation) are often

used to extract valuable input information to improve the accuracies of automatic speech

recognition. In text-dependent SV, the user is constrained to utter a specific lexical content.

Such systems are usually implemented using fixed-phrases or sequences of words/digits. In

case of text-independent SV, no such constrain is imposed on the spoken-content of the

client. Unconstrained spoken input makes it more challenging than the text-dependent

task (Campbell Jr, 1997).

Building a SV for detecting speakers attempts to find distinguishing traits of the person from

the voice samples. Past research shows that speakers sound differently due to the physical

difference in the speech production mechanism, like vocal tract shape, larynx, etc (Kinnunen

and Li, 2010). The language of the person and external environment also plays an important

role in characterizing the voice characteristics. Conventional SV approaches rely on applying

signal processing techniques to extract speaker invariant characteristics, which are followed

by acoustic modelling, usually employing probabilistic models. The traditional SV approaches

have shown to provide state-of-the-art performance in a variety of conditions, like telephone

or microphone recordings, various-languages. However, they usually require a large collection

of labelled speaker data in order to deliver good performance (Garcia-Romero, 2012).

This chapter aims at giving a concise introduction to SV. First, we describe an overview of

speaker recognition. Then, we present the description of features that are applied for building

a SV system. This is followed by a description of the state-of-the-art system for SV. Finally, the

dataset and evaluation metrics are discussed.

2.2 Speaker Recognition

The speaker recognition task aims to infer the identity of the talker in an audio recording. The

term speaker-recognition in itself can refer to speaker identification, verification or diarization.

Speaker identification involves choosing the closest class of an input test utterance. This

process involves comparing a test voice sample against ‘N’ speaker templates and assigning

the label of the closest speaker. SV refers to the case in which two utterances are provided

as input to the algorithm in order to decide whether the utterances share the same class

identity or not. Speaker diarization is the task of partioning an audio recording into segments

belonging to different speakers. We are primarily interested in SV task as, the goal of this

thesis is closely aligned with the objective of the speaker identification integrated project

(SIIP)1. The goal of the SIIP project is to identify unknown speakers from intercepted audio

recordings. Since there is a strong correlation between speaker identification and SV, in this

thesis, techniques to address SV task are explored.

1http://www.siip.eu/SIIP-Project
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2.3. Feature Extraction

Table 2.1: A valid enrollment-test phrase pair for text-dependent speaker verification systems
for different tasks. The phrases in Fixed-phrase and Seen tasks are phonetically balanced.

Tasks Enrollment phrase Test phrase

Fixed-phrase “the redcoats “the redcoats
ran like rabbits" ran like rabbits"

{ “the redcoats any of the
Seen ran like rabbits", “only enrollment

lawyers love phrases
millionaires", · · · }

Random-digit strings { “five", “four", · · · , { “two",
“ten" } “five", · · · }

There are various strategies to develop a text-dependent SV system (Larcher et al., 2014b). In

fixed-phrase based text-dependent SV, the phrase of the test data is expected to be identical

to the enrollment (as shown in line 1 of Table 2.1). In case it is not, the system is trained to

detect the mismatch and reject the claim. In many text-dependent applications, we would

like to impose lesser constraint on the speaker while maintaining the same level of accuracy

of the fixed-phrase based systems (Larcher et al., 2014b, 2008; Stafylakis et al., 2016). In one

of the scenarios, the words of the test phrase are subset of the content of the enrollment. A

potential example is when speaker models are created by pooling all N phrases uttered by

the speaker during enrollment, while during test phase, the speaker utters only one of the

N phrases (Scheffer and Lei, 2014). We are also interested in these two text-dependent SV

scenarios to better understand the effect of content information:

• Seen: The enrollment data is created by pooling all the phrases spoken by the speaker.

The test data consists of a single phrase, as illustrated in Table 2.1 (Line 2), and

• Random-digit strings: the enrollment data consists of the speaker uttering permuta-

tions of ten digits. During testing, the speaker is prompted to utter five digits only as

shown in Table 2.1 (Line 3).

For implementing text-independent SV, the user is not constrained to utter any system-defined

lexical content. Thus, it makes the process less restrictive and more challenging to handle

this task. For addressing SV, it involves extraction of speaker informative features and a

classification algorithm. The feature extraction process is also referred to as the front-end

while classification process is called as the back-end.

2.3 Feature Extraction

Figure 2.1 shows the pipeline for extracting feature vectors from the speech signal. The

speech signal is first pre-processed by applying pre-emphasis. This step is done to remove

constant shifts to the signal. Suppose the nth speech sample is represented by s(n), then the

9



Chapter 2. Background, Datasets and System Configurations for Speaker Verification

Figure 2.1: Steps to extract features from speech signal.

pre-emphasis is done by:

s(n) = s(n)−as(n −1),

where a is a pre-emphasis constant which is set to value of 0.97. This is then followed by a

feature extraction module.

An ideal feature extractor aims to obtain a representation that captures speaker characteristics

while filtering other variabilities of speech signal (Kinnunen and Li, 2010). These features

should:

• be easy to compute,

• be robust to noise, and other environment conditions,

• be robust to spoofing attack,

• have large inter-speaker and less intra-speaker variability.

In literature, linear predictive cepstral coefficient (LPCC) and mel frequency cepstral coef-

ficient (MFCC) have mostly been explored as features for SV (Kinnunen and Li, 2010). We

describe MFCC feature extraction procedure as it is commonly applied in speech processing

applications. MFCC features are computed by applying a sliding window of approximately

25 ms along the speech signal with a shift of 10 ms. This short segment of speech signal is

assumed to be stationary and is referred to as a frame. Thus, an utterance is converted to

a sequence of frames. The spectrogram of each speech frame is computed by applying fast

Fourier transform (FFT). For a telephone speech with a sampling frequency of 8 kHz, the

maximum frequency of the speech-frame in the spectral domain representation is expected to

be 4 kHz. This is then followed by a filterbank analysis and a final compression. The MFCC

computation applies a series of non evenly spaced triangular filters (usually 40). The centre fre-

quencies of the filters are linearly spread in the mel domain. The mel-scale is chosen to mimic

the human auditory perception. The filters are applied to accumulate frequency domain

representation of the speech frame. A discrete cosine transform (DCT) is subsequently applied

on the accumulated-outputs to obtain MFCC features. DCT is used to decorrelate the feature

dimensions. It has been observed that a few co-efficients of MFCCs are sufficient for repre-

senting the short-time speech spectra. In particular, for speech processing application, only

13 coefficients are used, while 20 coefficients are usually used for speaker recognition (Povey

et al., 2011b; Kinnunen and Li, 2010; Motlicek et al., 2015).

The state-of-the-art approaches append delta (referred to as Δ) and double-delta (referred to

as ΔΔ) features to the MFCCs which aim to incorporate trajectory information (Dehak et al.,

10



2.4. Gaussian Mixture Model - Universal Background Model

2011; Kinnunen and Li, 2010). For an utterance with sequence of MFCCs represented by X =

{x1, x2, · · · , xT }, the delta-features are computed as the linear regression over a window of ‘W ’

MFCCs as given by:

dt =
∑W

ρ=1ρ(xt+ρ−xt−ρ)

2
∑W

ρ=1ρ
2

, (2.1)

where dt are the delta features of an utterance for t th frame. The double-delta is obtained by

successive application of Equation 2.1 on the delta features. A short term Gaussianization

(STG) is usually applied on MFCCs to remove unwanted variabilities, such as distortions due

to channel, language, content, etc (Xiang et al., 2002; Pelecanos and Sridharan, 2001; Motlicek

et al., 2015). STG aims to map feature components to a standard Gaussian distribution. STG

can also be viewed as an approach to perform non-linear transformation of original features

to warped features by using cumulative distribution function (CDF). STG is performed by

using a sliding window of length L on each feature-dimension. The feature-values under the

window are first sorted in ascending order and the rank of the current-frame (r , such that N ≥
r ≥ 1) is determined. Its corresponding CDF (c) will be given by:

c = r −1/2

L
. (2.2)

Then the warped features (x̂) should satisfy:

c =
∫x̂

−∞
1�
2π

exp(− y2

2
)d y. (2.3)

The value of x̂ can be obtained from the standard normal CDF. In most of the successful

SV systems, the feature extraction is followed by probabilistic modelling. Typically in a SV

framework, the verification process is divided into three phases: training, enrollment and

the testing phase. During training, the parameters of the model are estimated from data

of a large corpora, the enrollment and the test phases involve predicting the speaker label.

We describe two successful statistical approaches to SV, namely, Gaussian mixture model-

universal background model (GMM-UBM), and i-vector.

2.4 Gaussian Mixture Model - Universal Background Model

The GMM-UBM formulates the SV as a statistical hypothesis testing problem (Lee and Gauvain,

1993; Reynolds et al., 2000; Sturim et al., 2002). Mathematically, GMM-UBM seeks to obtain a

ratio of two competing hypotheses (sc ) as given by:

sc = (
p(X|H0)

p(X|H1)
) ≥ θt (accept/r e j ect ), (2.4)

11
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Figure 2.2: Depiction of GMM-UBM approach to speaker verification. The mean vectors of the
UBM are represented by {μ1, μ2, μ3, μ4} while the means of the speaker model are represented by
{m1, m2, m3, m4}.

where X is a speech utterance, H0 is the hypothesis that the utterance belongs to the claimed

model (also referred to as null hypothesis) while H1 is the alternate hypothesis that the

utterance is not spoken by the speaker. If the ratio (sc ) is greater than a threshold (θt), the

claim is accepted otherwise, it is rejected. These two hypotheses are computed by applying a

probability distribution function on the input speech features.

The GMM-UBM framework assumes the data to be generated from a GMM (Lee and Gauvain,

1993; Reynolds et al., 2000). Typically, thousands of hours of speaker data are used for building

a large GMM (with 1 k mixture components) in the training phase, also referred to as UBM (De-

hak et al., 2011). The training data is chosen so that it matches the evaluation condition. The

probability density of a feature vector (x) is given by:

p(x|λU B M ) =∑
c
πcN (x|μc ,Σc ), (2.5)

where πc is the weight of cth Gaussian with mean μc and covariance matrix Σc , N is a multi-

variate normal distribution and λU B M refers to the parameters of the model (λU B M = {πc , μc ,

Σc }K
c=1), such that

∑
c πc = 1 assuming K is the mixture components of Gaussians. Assuming

that an utterance is represented by X = {x1, x2, x3, · · · , xT } (as in Section 2.3), the likelihood (�) is

computed by assuming that each feature vector (xi ) is independent and identically distributed

(i.i.d.), as given by:

�(X|λU B M ) =
T∑

i=1
log p(xi |λU B M ). (2.6)
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2.4. Gaussian Mixture Model - Universal Background Model

Figure 2.3: Speaker verification system for obtaining likelihood of a test utterance.

The total-data likelihood is computed by accumulating the likelihood of Equation 2.6 for each

utterance. The parameters of the GMM model can be estimated by expectation maximization

(EM) algorithm (Reynolds et al., 2000; Lee and Gauvain, 1993). EM involves the successive

application of two steps, namely, E-step and M-step in an iterative manner in order to max-

imize the data-likelihood. In the E-step, the posterior probabilities of mixture components

of Gaussians are computed with respect to the parameters of the model, while the M-step

consists of re-estimating the parameters of the GMM. Diagonal covariance matrix of the GMM

has shown to provide good results for SV.

The GMM-UBM approach is illustrated graphically by Figure 2.2. For creating the speaker

model, the data of i th speaker is taken to adapt the parameters of the GMM-UBM using

maximum-a-posterior (MAP) principle (Reynolds et al., 2000; Lee and Gauvain, 1993). Thus,

the new parameters of speaker model are given as follows:

μ̂i =αm
i E(xi )+ (1−αm

i )μi , (2.7)

σ̂2
i =αv

i E(x2
i )+ (1−αv

i )(σ2
i +μ2

i )− μ̂2
i . (2.8)

where αv
i , αm

i are the weights that balance the parameters of the GMM-UBM and new esti-

mates, μi and σ2
i are the means and variances of i th mixture of UBM. The factors E(xi ) and

E(x2
i ) are defined as the first and second order statistics of the data as defined by:

Ei (x) = 1

ηc

∑
t

p(i |xt )xt , (2.9)

Ei (x2) = 1

ηc

∑
t

p(i |xt )x2
t , (2.10)

where ηc is the zeroth order statistics of the data. In practice, only the means of the GMM are

adapted for obtaining the speaker models.

During evaluation, SV scores of an utterance are obtained by assuming that each of the

observation is i.i.d. as given by Equation 2.6. The evaluation phase for GMM-UBM system is

illustrated in Figure 2.3 which consists of obtaining likelihood score (�∗) with respect to the
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speaker model (M) and GMM-UBM as given by:

�∗(X,λU B M ,λM ) = �(X|λM)−�(X|λU B M ).

Furthermore, score normalization is applied on these GMM-UBM scores to compensate for

mismatch in the enrollment and test data. We describe one of the successful score normal-

ization techniques, referred to as T-norm (Auckenthaler et al., 2000; Hébert and Boies, 2005;

Reynolds et al., 2000). It involves scoring of the test utterance against L impostor adapted

models to obtain L likelihood scores. The mean (μX)and standard deviation (σX) of the L

scores are computed and used to obtain normalized scores as follows:

�∗(X,λU B M ,λM ) = s(X,λU B M ,λM )−μX

σX
.

2.5 i-vector extraction

A GMM-UBM SV can be applied to compute zeroth-, first- and second-order statistics. These

three statistics are also referred to as sufficient statistics (SS). Given an GMM with ‘K ’ mixture

components, the zeroth-order statistics (also referred to as soft-count) for cth mixture (ηc ) is

computed as follows:

ηc =
∑

t
p(c|xt ,λU B M ). (2.11)

The zeroth-order statistics of the utterance is obtained by concatenating the soft-counts of

all mixtures of GMM, i.e. η = [η1, η2,η3, · · · , ηK ]T . The first order statistics of cth mixture is

computed as the weighted average of the features, as given by:

Fc =
∑

t
p(c|xt ,λU B M )xt . (2.12)

The first-order statistics are obtained by the concatenating first order statistics of various

clusters, F = [FT
1 , FT

2 , FT
3 , · · · , FT

K ]T . The first-order statistics normalized by the soft-count per

cluster are referred to as mean super-vector. Similarly, the second-order statistics are obtained

by the concatenation of covariances of all mixtures of GMM, where the cth cluster covariance

is defined by:

Sc =
∑

t
p(c|xt ,λU B M )xt xT

t . (2.13)

The matrix Sc is full covariance matrix. These SS are subsequently applied in the state-of-the-

art i-vector technique (Garcia-Romero, 2012; Dehak et al., 2011). This approach is illustrated

in Figure 2.4 and we describe it in this section. The i-vector framework aims to map variable

length speech utterance into low-dimension vector, referred to as identity vector or i-vector.

This representation comprises all the variabilities of speech signal, like language, content,

14



2.5. i-vector extraction

Figure 2.4: The baseline i-vector system.

speaker, etc. The state-of-the-art SV usually uses 1 k mixture components of GMM-UBM

and 60 dimensional features, leading to 60 k dimensional first-order statistics, while the i-

vector is chosen to be usually 400 dimensional. In the i-vector approach, the adapted mean

super-vector (m) of an utterance can be decomposed as:

m =μ+Γw+eu , (2.14)

where μ is the mean super-vector of GMM-UBM, w is a random variable (also referred to

as i-vector), which is assumed to have Gaussian distribution with zero mean and identity

covariance matrix I, i.e. w ∼N (0, I) and Γ is referred to as the total variability matrix. The

term eu is the residual error. The parameters of the model are estimated by EM algorithm.

In the E-step, the posterior distribution of latent variable (w) is obtained using the sufficient

statistics from the GMM-UBM. Considering an utterance represented by X = {x1, x2, x3, · · · ,
xT }, the SS as defined by Equations 2.11, 2.12 and 2.13, are first computed. The i-vector of an

utterance is obtained by:

w =Ω−1ΓT ψ−1ΓFw, (2.15)

Ω= (I+ΓT ψ−1ηΓ), (2.16)

where ψ is the covariance matrix of the error term, eu . Furthermore, these following accumu-

lators are collected during the E-step:

C =∑
i

Fi wi , (2.17)

Ac =∑
i
ηi

c (Ω−1 +wi wT
i ). (2.18)

In the M-step, the parameter of the model is updated as given by:

Γc = C(Ac )−1, (2.19)

where Γc is the cth component of the total variability matrix (Γ). The state-of-the-art system

optionally applies linear discriminant analysis (LDA) on top of i-vectors to capture speaker

variabilities (Dehak et al., 2011). In our experiments, we found that LDA benefits performance
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of text-independent SV while it degrades the performance of text-dependent SV.

2.6 Linear Discriminant Analysis

The LDA is widely applied in many pattern recognition task, such as image, speech, speaker

recognition, etc (Dehak et al., 2011). As shown in Figure 2.5, LDA aims to find orthogonal basis

vectors that can discriminate two or more classes. Furthermore, the vectors or axes are chosen

in such a way that it maximizes inter-class variability and minimizes intra-class variance. The

LDA optimization problem can be formulated by:

Jb(v) = vT Sbv

vT Sw v
,

where v is defined as the weight vector, Jb(v) is referred to as Rayleigh coefficient. The quanti-

ties Sb and Sw are referred to as inter-class and intra-class variance as defined by:

Sb =
S∑

s=1
(ws −w)(ws −w)T ,

Sb =
i=S∑
i=1

1

ni

j=ni∑
j=1

(wi
j −wi )(wi

j −wi )T ,

where wi is the mean of the i-vectors for i th class, Wi = {wi
1, wi

2, · · · , wi
ni

}, w is the average of

wi and ni is the number of i-vectors of i th class. The LDA formulation consists of maximizing

the Rayleigh coefficient to obtain the following eigen-value equation:

Sbv =λSw v,

where λ is the diagonal matrix of eigen-vectors.

In the state-of-the-art SV approaches, the i-vectors are first length normalized before applying

LDA algorithm (Garcia-Romero, 2012; Garcia-Romero and Espy-Wilson, 2011). The LDA matrix

is applied on i-vectors to obtain speaker discriminating vectors, referred to as LDA-projected

features. probabilistic linear discriminative analysis (PLDA) model is further applied on these

features to produce SV scores.

2.7 Probabilistic Linear Discriminative Analysis

The PLDA is applied with either i-vectors or LDA-projected i-vectors as input to the algo-

rithm. (Prince and Elder, 2007). For convenience, we describe PLDA in this section assuming

i-vector input-representation. In PLDA formulation, an i-vector (w) can be decomposed into
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2.7. Probabilistic Linear Discriminative Analysis

Figure 2.5: Depiction of LDA for pattern recognition task.

speaker factor as given by:

w =μw +Πυ+εu , (2.20)

where μw is the mean of i-vectors, Π is the speaker-variability matrix, υ is the speaker-latent

factor while εu is the error term. Furthermore, it is assumed that the factor υ is Gaussian

distributed with zero mean and identity covariance matrix and the error term follows a Gaus-

sian distribution with zero mean and full covariance matrix, A. Intuitively, the parameter A

represents the intra-speaker covariance matrix while the quantity ΠΠT denotes the inter-class

covariance. The parameters of the PLDA model (θPLD A = {μw, Π, A}) are estimated from a

large speaker labelled corpora in a maximum-likelihood fashion using EM algorithm.

The PLDA model can be applied to obtain log-likelihood scores. Assuming the i-vectors of the

enrollment and test data represented by we and wt respectively, the likelihood is defined as the

ratio of the hypothesis that the vectors belong to the same class and the alternate hypothesis

that the vectors do not share the same class identity. This is mathematically represented by:

s(we ,wt ) = log
p(we ,wt |H0)

p(we ,wt |H1)
. (2.21)

For the PLDA model, assuming the probability of vectors (we and wt ) are statistically indepen-

dent, the above equation can be simplified to obtain:

s(we ,wt ) = log
p(we ,wt |θPLD A)

p(we |θPLD A)p(wt |θPLD A)
. (2.22)

The log-likelihood ratio can be simplified to obtain:
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Table 2.2: Classification of errors in statistical decision theory. Type I and II errors are of interest
for SV task.

Types of Errors
Null hypothesis (H0) is

True False

Decision about H0
Fail to reject True positive Type II error (False Negative)

Reject Type I error (False positive) True negative

s(we ,wt ) = log N
([

we

wt

]
;

[
μw

μw

]
,

[
Υ B

B Υ

])
− log N

([
we

wt

]
;

[
μw

μw

]
,

[
Υ 0

0 Υ

])
, (2.23)

where B= ΠΠT , Υ = B + A. By setting μν = 0, we obtain:

s(we ,wt ) = wT
e Qwe +wT

t Qwt −2wT
e Pwt +const ant s, (2.24)

where the matrices P and Q are defined by:

P =Υ−1 − (Υ−BΥ−1B)−1, (2.25)

Q =Υ−1B(Υ−BΥ−1B)−1. (2.26)

2.8 Joint Factor Analysis

Joint factor analysis (JFA) can be used as an alternative to the i-vector PLDA approach men-

tioned earlier for SV (Kenny et al., 2007). JFA has been successfully applied for text-dependent

task in which the phonetic variability is explicitly modelled as a separate latent variable. In the

JFA model, the mean super-vector of an utterance (m
′
) is factorized as follows:

m
′ =μ+Dz+Uy, (2.27)

where D is a diagonal matrix capturing the speaker variabilities, μ is the mean supervector of

the UBM; z , y denote the speaker and channel factors respectively while U is the Eigenchannel

matrix. The EM algorithm for i-vector approach is applied twice to obtain the parameters of

the JFA model. In the first step, the parameter D is obtained from the equation m
′

= μ + Dz,

while in the second step, the U is estimated by re-normalizing the first order statistics. Given

the parameters of JFA, we apply the Gauss-Seidel approach to obtain estimates of z and y for

a speech recording. During evaluation, cosine distance between speaker factors (z) of the

enrollment and test data are used to obtain SV scores.
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2.9. Evaluation metrics

2.9 Evaluation metrics

The performance of a SV system is usually measured using statistical classification the-

ory (Bishop, 2016; Duda and Hart, 1973). For any classification task, four types of scenarios

are encountered while analyzing the errors, as depicted in Table 2.2. The performance of a SV

system is evaluated on these following two errors:

• Type I error: A type I error occurs when the null hypothesis (H0) is wrongly rejected.

This is also referred to as miss detection, or false negative (PMi ss).

• Type II error: Type II errors occur when the null hypothesis (H0) is erroneously accepted.

This error is also referred to as false alarm, or false positive (PF A).

The Type I and II errors are computed based on decision-threshold (of Equation 2.4). Thus, if

the threshold is set to a higher value, the system is expected to have less false positive errors

while the lower threshold would lead to more false negative errors.

Detection error tradeoff (DET) curve is introduced to evaluate the SV on various detection

thresholds (of Equation 2.4) (Martin et al., 1997). In the DET curve, the two errors are plotted

on both axes, giving uniform treatment to both the errors. The Miss-detection rate is plotted

along the Y-axis while the false positive rate is plotted along X-axis. It is to be noted that

the scales along the X axis is a non-linear function of false positive rate (Martin et al., 1997).

Figure 2.6 shows a typical DET curve of two systems for a SV task. From Figure 2.6, it can be

observed that ‘method 1’ outperforms ‘method 2’ since the DET curve of the former approach

is closer to the origin.

The NIST holds speaker recognition evaluations2 on a regular basis and they define two metrics

for evaluating the performance of the SV algorithms, namely, (i) equal error rate (EER), and

(ii) decision cost function (DCF) (Martin et al., 1997; Doddington et al., 2000; Brümmer, 2007;

Brümmer and de Villiers, 2013). EER is defined as the operating point of a system at which the

miss-detection is equal to false-alarm rate. For example, the EER of method 1 of Figure 2.6 is

approximately equal to 7%. In this thesis, the performance of all the systems is reported in

terms of EER. DCF is defined as the weighted sum of false-alarm and miss-detection rates.

These weights are obtained by using a cost function CF A and CMi ss and prior probability of

same-speaker (Ps) and different-speaker (Pd ). The DCF can be expressed by:

DC F = PdCF APF A +PsCMi ssPMi ss . (2.28)

The DCF is computed for all possible detection-thresholds (of Equation 2.4) to obtain the

minimum value, referred to as min-DCF. In this thesis, performance of selected systems is

reported in minDCF in addition to EER and DET curve. The values of the costs (CF A and CMi ss)

depends on the particular applications. Typically for a text-independent system the CF A is

2https://www.nist.gov/multimodal-information-group/speaker-recognition-evaluation-2012

19



Chapter 2. Background, Datasets and System Configurations for Speaker Verification

Figure 2.6: The DET curves for two systems.

set to 0.0001 while CMi ss is set to 0.01 (Martin and Greenberg, 2010; Greenberg et al., 2013;

Brümmer, 2007; Brümmer and de Villiers, 2013).

2.10 Datasets

In this thesis, the experiments are performed for text-dependent and text-independent SV

tasks. We evaluated the SV techniques primarily on female subsets since the results on female-

evaluation data are usually significantly worse than for the male (Stafylakis et al., 2016). Below,

we describe the datasets used in this thesis.

2.10.1 Text-independent SV

The Fisher (8 kHz) dataset is used as the training corpora (female)3. It consists of 13 k utter-

ances with an average duration of an utterance of around 5 mins. The total duration of the

training data is 1 k hours. A development data of about 100 utterances is used for evaluating

the ASR performance (does not overlap with the training data). In all the experiments, the

i-vectors are typically 400 dimensional (if not mentioned otherwise). The back-end classifier

is trained using the NIST SRE 2004-2008 data (i.e. development data)4,5,6. It consists of 2.5 k

speakers uttering 27 k audio recordings. LDA and PLDA models are trained on the develop-

ment data using the speaker labels. The various SV systems are evaluated on NIST SRE 2010

evaluation set from conditions 1 to 5 (Cond1 to Cond5) (Martin and Greenberg, 2010), where

the evalution conditions are:

3https://catalog.ldc.upenn.edu/LDC2004S13
4https://catalog.ldc.upenn.edu/LDC2006S44
5https://www.nist.gov/itl/iad/mig/2008-nist-speaker-recognition-evaluation-results
6https://catalog.ldc.upenn.edu/LDC2011S10
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• Cond1: Trials involving utterances from interview speech with matched microphones

for enrollment and test. It contains a total of 33 k trials.

• Cond2: Trials that involve interview speech from different microphones for enrollment

and test. It contains 118 k trials.

• Cond3: This condition involves trials that contain interview speech for enrollment and

normal vocal effort conversational telephone test speech. It contains 31 k trials.

• Cond4: Trials involving interview speech as enrollment and normal vocal effort conver-

sational telephone test speech recorded over a room microphone channel. It contains

45 k trials.

• Cond5: Trials involving normal vocal effort conversational telephone speech in enroll-

ment and test speech. It contains 16 k trials.

2.10.2 Text-dependent SV

The SV are evaluated on these text-dependent SV tasks,

1. Fixed-phrase: The training data is drawn from Fisher English corpora (∼120 h sub-

set of female speakers). We used a subset of the Fisher data since we obtain similar

performance regardless of training on whole dataset or subset. This subset of data

contains 1.2 k utterances with an average duration of 5 mins per utterance. The choice

of Fisher database as a training set was primarily motivated by the requirement of a

well-transcribed and standardized data. The PLDA and JFA models are trained on a

development set of RSR2015 (female).

The Part1 (female) part of RSR2015 data contains 143 female speakers pronouncing

30 fixed passphrases spreading over nine sessions (Larcher et al., 2014b). Speakers

are divided into three parts, background, development and evaluation portions. Data

is collected from six different mobile devices with an average duration of 3 s. The

development data contains 49 speakers with 12 k utterances. Evaluation data contains

enrollment utterances which are recorded from a fixed mobile device while the test data

comes from other devices. The number of speakers in the evaluation part is 47 with 8 k

test utterances. All speech files are downsampled to 8 kHz for compatibility with other

datasets used for system development.

We also experimented with RedDots dataset on the fixed-phrase based text-dependent

SV setup (Lee et al., 2015). The number of female speaker for RedDots is only 6 and the

number of trials for female subset is very limited. The results of SV systems on female

subset would not be statistically relevant due to the small number of trials, thus we

perform experiments on the male subset only. The RedDots is more challenging than

RSR2015 since it does not provide any development data from the same corpora. For
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the RedDots, the training data is drawn from the Fisher male (∼120 h), similar to the

above experimental setup. Since no development data was available for the experiments

on RedDots, we choose the RSR2015, male data from Part1. The Part1 portion (male

subset) of the RSR2015 dataset is used as the development data with 42 k utterances

from 157 speakers. We evaluated our systems on the Part4 portion of RedDots database.

The evaluation data of this dataset was distributed during the Interspeech 2016 Special

session7. Compared to RSR2015, the RedDots contains more sessions of recording of

speech data from each speaker. The dataset contains 52 sessions per speaker, with one

session per week. Thus the challenge of the systems is to compensate for the long term

intra-speaker variability (in addition to inter-speaker variability). We evaluated our

system only on the male set of the database (Part4 text-dependent task only) (Lee et al.,

2015). The Part 4 consists of 35 speakers pronouncing fixed-phrases (which are different

from the phrases of the RSR2015 dataset). Similar to previous experimental setup, the

speech files are downsampled to 8 kHz for compatibility with other datasets. It contains

a total of 5 k target trials and 5229 k impostor trials.

2. Seen: We created the test set by following the protocol presented in Scheffer and Lei

(2014) to evaluate our techniques. The data of each of the speakers involves 15 phrases

with three sessions for each phrase, with a total of 45 utterances. The total duration of

the enrollment of a speaker is 90 s. Test utterances consist of a speaker uttering phrases

with a duration of 2 s. For this task, the evaluation trials consist of 4 k target and 211 k

impostor trials. The Fisher female subset English is used as the training data since the

evaluation is done on female data-set (as used for the fixed-phrase task). The Part1 of

RSR2015 is used as the development data.

3. Random-digit strings: This subset contains 49 speakers pronouncing random sequence

of digits. The standard protocol is adopted to perform text-dependent SV (Stafylakis

et al., 2016; Larcher et al., 2014b). Three utterances (with an average duration of 12 s)

are used for creating the enrollment model. The enrollment utterance consists of the

speaker uttering a random sequence sequence of 10 digits. The test utterance consists

of 5 digits with an average duration of 2 s. For this task, the evaluation trials consist of

5 k target and 253 k impostor trials. The Part 3 of RSR2015 dev portion was used as the

development data. We used 3 k utterances consisting of 47 speakers pronouncing 10

digits.

The text-dependent SV systems are evaluated in three conditions (Cond1 to Cond3). The

conditions are:

• Cond1: The target speaker utters the wrong content,

• Cond2: The impostor utters the correct content, and

7https://sites.google.com/site/thereddotsproject/
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• Cond3: The impostor pronounces the wrong content.

Finally, Cond-all combines the three text-dependent SV evaluation conditions. For

fixed-phrase scenario, we evaluate the SV approaches in all the conditions. For Seen and

random-digit strings, the techniques are evaluated only for Cond2 since the other condi-

tions require the system to perform utterance verification (which can only be done by an

ASR) (Scheffer and Lei, 2014; Stafylakis et al., 2016).

2.11 System configuration

In this section, we describe the standard configurations of the features and various systems

used in this thesis.

2.11.1 MFCC

MFCC features of 20 dimensions are extracted from 25 ms of frame of speech signal with

10 ms sliding window, appended with the delta and double delta features. STG is applied to

the features using a 3 s sliding window (Motlicek et al., 2015). The VAD is based on a phone

classifier (i.e. comparing the sum of posteriors over phone classes with the posterior of silence

class to classify each frame as speech or non-speech). This is used to mark the start and end

points of the speech region in the utterance.

2.11.2 i-vector and JFA configurations

Here, we describe the configuration of the baseline systems for text-independent and text-

dependent SV. We use these configurations in all the chapters unless mentioned otherwise.

• Text-independent SV: A GMM-UBM with 2 k mixture components is trained on the

Fisher data and i-vector extractor of 400 dimension is also trained on the same data.

The i-vector dimension was reduced to 350 after LDA, followed by length normalization

before being scored using PLDA.

• Text-dependent SV: For the fixed-phrase SV, we implemented gender-dependent

GMM-UBMs (one male and one female) comprising 1 k mixture components trained

using the Fisher subset (as described in Section 2.10.2). The parameters of i-vector

extractors are estimated using the same training data as used for GMM-UBMs. The

dimension of extractors is fixed to 400. The parameters of the JFA systems are estimated

with speaker-phrase labels using the development data. The rank of the eigenchannel

matrix U is fixed to 50. For the random-digit strings and seen tasks, the i-vector system

on female data is used as the baseline.
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3.1. Introduction

3.1 Introduction

In the past, various approaches to incorporate phonetic information for SV have shown to

improve the performance (Matsui and Furui, 1993, 1994; Ferras et al., 2007; Stolcke et al.,

2005). In Matsui and Furui (1993, 1994), speaker-specific phoneme models are employed

to authenticate the spoken text and speaker. In this approach, a hidden Markov model

(HMM) based universal phoneme model is first trained by pooling data of all speakers. The

parameters of the speaker-specific HMM models are re-estimated from the data of the class.

During evaluation, the utterance is first decoded to obtain sequence of phonetic units. The

speaker-specific models corresponding to the decoded-phonetic units are used to obtain SV

scores. A similar approach is explored for GMM-UBM framework by Gutman and Bistritz

(2002). In this approach, speaker-specific phonetic units are modelled by a GMM. Thus, each

speaker model consists of a set of GMMs as opposed to a GMM. During evaluation, the test

utterance is scored against all the phomene models to produce SV scores.

As opposed to using GMM-UBM, speech recognition based speaker adaptation techniques

have been explored by Stolcke et al. (2005). In particular, they investigated the application

of maximum likelihood linear regression (MLLR) transform as features for discriminating

speakers. The MLLR transforms are estimated for the Gaussian mean vectors of the acoustic

models using EM algorithm. The transformation matrix is converted to a high dimensional

vector which is then used as input for the back-end for producing SV scores. The final classifier

is a support vector machine (SVM), that aims to discriminate speakers using maximum-margin

criteria.

The most successful application of phonetic information for SV is obtained in the i-vector

framework (Lei et al., 2014). In the conventional i-vector approach, computing an i-vector

for a given speech recording requires the sequence of short-term acoustic feature vectors,

to be aligned with the Gaussian mixture components of a GMM-UBM. From the frame-to-

mixture alignment, zeroth-, first- and second-order statistics are computed. The zero-th order

statistics represent the effective number of feature vectors attributed to a particular mixture in

the GMM-UBM. The first order statistics measure their deviation from the mixture mean while

the second order statistics measure their variance around the mean. These statistics (so called

sufficient statistics (SS)) are used to project the utterance onto a low dimensional subspace

to obtain i-vector of an utterance. In Lei et al. (2014), the SS are computed using a DNN

acoustic model that is trained in an ASR fashion. The results indicate that phonetic knowledge

can be beneficial for performing SV. Motivated by the results, in this chapter we explore the

application of ASR for SV. To this end, we investigate new approaches to compute SS directly

from word-recognition lattices (used later for i-vector extraction). The application of SS from

various ASR models, such as HMM/GMM, HMM/DNN, are investigated in this context as

well. Furthermore, we investigate the use of subspace Gaussian mixture model (SGMM)

employed to obtain speaker representations as opposed to using i-vectors (Motlicek et al.,

2015). SGMM has been proposed in the context of ASR acoustic modeling approach based on

GMM, where the parameters of the phonetic units are represented by a more compact set than
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HMM/GMM (Povey et al., 2010). The speaker vectors computed from the SGMM framework

can be applied directly as an input for subsequent PLDA modelling.

This chapter is organized as follows. In Section 3.2, the HMM/GMM based ASR is presented.

This is then followed by a description of HMM/SGMM in Section 3.3. Section 3.5 describes the

HMM/DNN framework. Section 3.6 describes the SV approaches built on top of ASR models.

The experimental setup and results are presented in Sections 3.8 and 3.9 respectively. Finally,

the chapter is concluded in Section 3.10.

3.2 HMM/GMM based ASR

Figure 3.1 shows the basic components of a typical ASR system. The task of an ASR is to

produce a sequence of words (ω̂) corresponding to an utterance (X). We describe the basic

elements of an ASR which are the following:

• Acoustic model (AM): Each of the spoken words can be decomposed into smaller set

of sound units, also known as phones. Each of the phone unit can be represented

by a continuous density HMM. Typically, left and right context of every phone (tri-

phone) units are employed as the basic unit of speech signal. The states of the tri-phone

based HMMs are assumed to have Gaussian distribution and the states are tied to

reduce the number of parameters. The context-dependent tied states (also referred to

as senones) (Povey et al., 2011b) are obtained using a decision tree based on contextual

and data-driven criteria.

• Language model (LM): The language model is applied in an ASR system to generate a

list of hypothesized words. Usually, a N-gram language model is used with the parame-

ters are of the model are estimated on a large text-corpora.

• Decoder: The ASR decoder as shown in Figure 3.1 considers both AM and LM to generate

most likely word sequence corresponding for each frame of the utterance. Mathemati-

cally, for an utterance with feature vectors X, the decoder aims to produce a sequence of

words ω1:L = ω1, ω2, ω3, · · · , ωL as given by:

ω̂= argmax
ω

{p(X|ω)p(ω)}. (3.1)

The quantity p(X|ω) is referred to as likelihood and is computed using the AM, while

p(ω) is referred to as prior probability of words and is computed using the LM. After

decoding the utterance, usually word-recognition lattices are generated that compactly

represent the most likely hypotheses of word sequences (Povey et al., 2011b).
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Figure 3.1: Basic components of an ASR.

3.3 Subspace Gaussian Mixture Model

In a different direction, SGMM has shown to achieve good ASR performance (Povey et al., 2010,

2011a; Povey, 2009). Figure 3.2 illustrates the SGMM technique for ASR. The SGMM method

is an acoustic modeling approach in which a common GMM structure is shared across all

the phonetic states. In this technique, the GMM mean supervector space is factorized into

phonetic and speaker subspaces. While for ASR, the speaker subspace is constrained to have

low dimensionality, the speaker vectors are set to have as many dimensions as used in the

i-vector model. Each state is represented by a state vector that defines a mapping to the means

and weights of the state’s GMM. Let x be a F -dimensional feature vector, j represent a model

state, v j the S-dimensional state vector. The model of a state is defined by:

p
(
x| j )= i=I∑

i=1
w j iN

(
x;μ j i ,Σi

)
, (3.2)

μ j i = Mi v j +Ni vs , (3.3)

w j i =
expwt

i v j∑I
i expwt

i v j
, (3.4)

where I is the number of Gaussians in the state, Mi and wi are globally shared parameters.

Typically, S is much less than I (F +1) and hence the model is called “subspace” GMM. Each

state j has M j substates. The substates have their own mixture weights c j m and vector v j m .

The SGMM equations can be re-written as:
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Figure 3.2: SGMM – the emission probabilities of each context-dependent HMM-state q j are
modelled by GMM (where j is an index of HMM state) . Each HMM-state is parametrised by a
vector v j . The parameters M and W are globally shared. The image has been taken from Imseng
et al. (2014).

p
(
x| j )= M j∑

m=1
c j m

I∑
i=1

w j miN
(
x;μ j mi ,Σi

)
, (3.5)

μ j mi = Mi v j m +Ni vs , (3.6)

w j mi =
expwt

i v j m∑I
i expwt

i v j m
. (3.7)

We refer to the speaker factor (vs) as sgmm-vector. In this chapter, we propose to apply

sgmm-vectors to replace i-vectors in the i-vector PLDA framework.
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Figure 3.3: DNN/HMM based ASR.

3.4 HMM/SGMM based ASR

HMM/SGMM based ASR employs SGMM for acoustic modelling. Similar to HMM/GMM

based ASR, HMM/SGMM modelling requires annotated data for training. Large amounts of

annotated data help the underlying models to capture the phonetic and speaker variabilities

in the data. To train the HMM/SGMM system for speaker recognition, the dimensionality of

the speaker subspace is increased with respect to that of the phonetic subspace.

3.5 HMM/DNN based ASR

Acoustic models based on DNN have shown to significantly improved the ASR performance

compared to the conventional HMM/GMM (Hinton et al., 2012). Figure 3.3 shows the training

procedure of HMM/DNN based ASR. As implemented in the Kaldi recipe, the DNN training

is usually done on top of the HMM/GMM, i.e. the decision tree and the senone alignments

are obtained from the HMM/GMM based ASR (Povey et al., 2011b). The DNN is trained with

senone units as target classes. The DNN takes a context of features as input and generate

the senone posterior probabilities. We refer to this process as DNN forward pass (DNN

FWD) (Povey et al., 2011b). For decoding an utterance, Equation 3.1 is applied, where the

likelihood is obtained from the DNN FWD. The senone posteriors (or DNN outputs) are

divided by the prior probabilities of senone units to compute likelihood. After decoding,

word-recognition lattices are generated (similar to HMM/GMM) containing different word-

hypotheses.

3.6 Senone posteriors for speaker verification

In Lei et al. (2014), it was shown that a DNN trained for ASR can replace the traditional

GMM-UBM to estimate SS for i-vector extraction. The application of DNN FWD resulted

in large performance gains for SV as better alignment is obtained with respect to the GMM-

UBM components. The results showed that replacing unsupervised training of the GMM-
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UBM components with well-defined acoustic classes can have a significant impact on SV

performance.

3.6.1 Integration into i-vector framework

To integrate an ASR information into the i-vector framework, the parameters of the GMM-UBM

are estimated from frame-level senone posterior probabilities (obtained by DNN FWD) (Lei

et al., 2014). The parameters of the GMM-UBM are obtained as follows:

πc =
∑

n γn,c∑
c
∑

n γn,c
(3.8)

μc =
∑

n γn,c xn∑
n γn,c

(3.9)

Σc =
∑

n γn,c
(
xn −μc

)(
xn −μc

)′∑
n γn,c

, (3.10)

where {πc , μc and Σc }c=K
c=1 are the parameters of the GMM-UBM, γn,c is the posterior prob-

ability of the cth senone unit generated by the DNN and xn is the nth feature vector. This

GMM-UBM is then used to extract i-vectors.

3.7 Proposed analysis using ASR

The likelihoods converted from the senone posterior probabilities (of HMM/GMM, HMM/S-

GMM and HMM/DNN models), along with word sequence probabilities from the LM, are

passed to the decoder to obtain the ASR output. In Scheffer and Lei (2014), it was shown

that a DNN trained for ASR can replace the traditional GMM-UBM to estimate SS for i-vector

extraction. The posteriors obtained by DNN FWD process are directly used to compute SS.

This technique resulted in large performance gains for SV systems, as better alignments are

obtained with respect to the GMM-UBM components. The results showed that replacing

unsupervised training of the GMM-UBM components with well-defined acoustic classes can

have a significant impact on verification performance.

Although there has been sufficient evidence that phone-level classes possess speaker-

discriminative information (Motlicek et al., 2015), successful integration into the state-of-the-

art framework such as i-vector PLDA was not achieved until recently. The effectiveness of

senone posteriors for i-vector extraction provides new research directions for SV.

Particularly, we seek to investigate whether we can take advantage of accurate senone align-
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ments obtained by using the LM and the ASR decoder (Richardson et al., 2015; Su and Weg-

mann, 2016). The LM (together with a lexicon) not only offers more accurate alignments but

may also help capture speaker-dependent characteristics closely related to the speech content,

which we hypothesize is useful for better speaker discrimination.

We propose to study the estimation of SS from senone posteriors obtained at the output of the

ASR decoder to take advantage of better senone alignments. Posterior vectors to estimate SS

are obtained from the word recognition lattices (i.e., word LM is used in ASR engine to generate

word recognition lattices). Eventually senone-level posteriors are extracted from these lattices

similar to posterior vectors extracted with only acoustic models (e.g. DNN FWD). Even though

the senone alignments are more accurate, they may need not result in better SV performance,

because of their inherent sparsity. Such high sparsity arises as a result of smoothing the

posterior vectors obtained from the DNN and smoothed by the ASR decoder based on word

sequence probabilities from the LM. We show, through senone recognition rates, that this may

not be favorable for SV systems given the nature of SS estimation. The contribution of senones

is directly determined by not only their presence in the lattice generated by the ASR decoder,

but also by the posterior values themselves. Extremely low values contribute little to the SS

and may prove detrimental to the speaker recognition performance as they tend to have an

effect similar to missing the senones altogether.

More specifically, although it can be expected that the SV should improve with better align-

ments, the posterior values per frame obtained from the lattices with the optimal AM and LM

scaling parameters are extremely sparse. For instance, we observed that when the posteriors

are thresholded, that is, posteriors less than a certain value (e.g. 10−5) are floored to 0.0, the

speech frame is no longer aligned to the true senone in ≈ 17% of the frames (measured on

Fisher dataset). Thus, even though the alignment obtained after decoding of HMM/DNN

is more accurate compared to using only the posteriors after DNN FWD, such low scoring

posteriors do not contribute to the SS. To deal with this problem, the likelihoods stored in

word recognition lattices are first re-scaled prior to the forward-backward algorithm (Povey

et al., 2011b). The best scaling was obtained when the AM was ∼0.01 and the LM scale was

0.0. Other values for LM scale were also explored, but it proved beneficial to ignore the LM

likelihoods once the recognition lattices are generated. The LM contribution is still available in

the refined alignments provided by word recognition lattices. The proposed SV analysis using

various ASR approaches (such as HMM/GMM, HMM/SGMM and HMM/DNN) is described in

Figure 3.4.

3.8 Experimental Setup

SV experiments are conducted on the female data of NIST 2010 SRE in conditions 1 to 5. The

Fisher corpora (female) is used as the training data while NIST SRE 2004 to 2008 are used as

the development data. The details of the data are described in Section 2.10.1.
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Figure 3.4: Block diagram showing proposed SV techniques that use senone posteriors obtained
from different ASR.

3.8.1 Feature configuration and training data

The front-end uses 60 dimensional MFCC features along with delta and delta delta parameters

as described in Section 2.11. All the ASRs employ a CMU dictionary with 42 k words and

a 3 gram LM for decoding. The LM is trained on the Fisher data (female) with 1 k hours

(Section 2.10.1).

3.8.2 HMM/GMM configuration

The HMM/GMM uses context-dependent triphone states with GMM observation probability

density functions, and a total of 1’530 senones and 300 k Gaussians Gales and Young (2008).

The number of senone units is automatically derived by the tree-clustering algorithm that is

constrained to have around 2 k states in order to be comparable with the number of mixture

components in GMM-UBM model. The HMM/GMM is used to generate senone posterior

probabilities (as described in Section 3.5), which are then applied for i-vector extraction.

3.8.3 HMM/SGMM configurations

SGMM is trained with the same number of HMM states as HMM/GMM. Number of sub-states

is roughly equal to the number of Gaussians in the HMM/GMM model. The phonetic subspace

is constrained to a dimension of 40 (i.e. S = 40) while the speaker dimension is set to 400.

3.8.4 HMM/DNN configuration

The input to the DNN is 540 dimensional vector which is obtained by stacking 9 MFCC features.

The DNN is trained to predict senone posterior probabilities. As mentioned in Section 3.5,

HMM/DNN is usually trained with alignments from the HMM/GMM. We used the Kaldi toolkit

to train a DNN, employing 6 hidden layers with 2 k sigmoid units per layer and softmax units

at the output. The DNN parameters are initialized with stacked restricted Boltzmann machine

that are pretrained in a greedy layer-wise fashion (Dahl et al., 2012). The baseline i-vector

extractor is trained by extracting SS using DNN FWD (Lei et al., 2014).
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Table 3.1: ASR results on Fisher development set in WER (%) .

System WER (%)
HMM/GMM 42.3
HMM/DNN 26.0
HMM/SGMM 31.1

Table 3.2: Frame based senone accuracies on Fisher development set for different acoustic
models.

ASR SRA (%)
HMM/GMM 55.2
DNN forward pass 53.5
HMM/DNN (decoder) 73.4

3.8.5 i-vector approach

In this chapter, the i-vectors are computed by exploiting senone posteriors from HMM/GMM,

HMM/SGMM, and HMM/DNN models (in addition to GMM-UBM and DNN FWD). The

i-vector dimension is set to 400 in all the approaches. LDA and PLDA are applied on top of

i-vectors as described in Section 2.11.

3.8.6 ASR results

The performances of the ASR approaches, namely the HMM/GMM, HMM/SGMM and the

HMM/DNN, are compared in Table 3.1 in terms of word error rate (WER). The ASR systems

are evaluated on a subset of the Fisher dataset (as described in Section 2.10.1). As expected,

the WER is lower for the HMM/DNN.

3.8.7 Senone recognition accuracies

In this section, the frame based senone recognition accuracies (SRA) of various ASR ap-

proaches are analyzed. The performances are presented in Table 3.2. The SRA is the per-

centage of senones correctly identified according to the groundtruth (which is obtained by

forced aligning the reference transcription using HMM/GMM). Typically Viterbi algorithm is

applied for obtaining forced-alignment of an utterance Povey et al. (2011b). A speech frame is

considered correctly identified if the highest senone posterior probability matches with the

groundtruth. As expected, the SRA improves with better acoustic modelling and is the best

when an ASR decoder is used with the word LM.
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Table 3.3: Comparison of speaker recognition performance in terms of EER (%) when using
different senone posterior probabilities, namely UBM-GMM, DNN and SGMM.

Systems Cond1 Cond2 Cond3 Cond4 Cond5
IvecGMM

PLDA 1.4 2.4 1.6 1.3 2.2
IvecHMM-dec

PLDA 0.8 1.7 1.3 0.7 1.3
IvecDNN

PLDA 0.6 1.1 0.7 0.5 1.0
IvecDNN-dec

PLDA 0.8 1.4 0.7 0.5 0.9
SGMMPLDA 1.3 2.4 2.1 1.2 2.0
IvecSGMM-dec

PLDA 1.2 2.3 1.6 1.2 1.6

3.9 Results

The following SV approaches are explored in this section:

• IvecPLDA: The i-vector PLDA as described in Section 2.5. The i-vector techniques that use

SS from GMM-UBM or DNN FWD are referred to as IvecGMM
PLDA and IvecDNN

PLDA respectively.

The i-vector PLDA that employ SS from HMM/GMM, HMM/DNN or HMM/SGMM are

referred to as IvecHMM-dec
PLDA , IvecDNN-dec

PLDA and IvecSGMM-dec
PLDA , respectively.

• SGMMPLDA: SGMM is developed to obtain speaker vectors (sgmm-vectors) as opposed

to using i-vectors. A PLDA is trained on these vectors.

The results on five conditions (Cond1 through Cond5) of NIST SRE 2010 dataset are presented

in Table 3.3. Both EER and minDCF values are reported. The baseline approach is the con-

ventional i-vector PLDA as described in Section 2.5. For matching microphone condition

(Cond1), the EER of IvecGMM
PLDA is already as low as 1.4%. For mismatched condition that have a

large number of trials, such as Cond2, the EER is 2.4%.

It can be observed from Table 3.3 that the senone posteriors obtained from the HMM/GMM

word-recognition lattices benefit the SV. Although the framework for integrating acoustic

class-based posteriors from ASR already exist, these results have seldom been reported. For

IvecHMM-dec
PLDA , significant improvements are observed for all conditions compared to IvecGMM

PLDA.

Absolute improvements in EER for Cond5 of up to ∼0.9% are obtained by IvecHMM-dec
PLDA compared

to IvecGMM
PLDA. This translates into an improvement of relative EER of ∼41% (from 2.2% to 1.3%

absolute). Thus, even with a less powerful ASR, it is possible to achieve considerable SV

improvements. The results clearly demonstrate the significance of constraining the acoustic

space using additional knowledge (provided by LM) through ASR although the availability of

large amounts of manual annotated data has its cost.

The IvecDNN
PLDA presented in Table 3.3 is, in principle, similar to the system presented in Lei et al.

(2014). Compared to IvecGMM
PLDA, relative EER improvement of ≈57% (from 1.4% to 0.6% absolute)

for Cond1. IvecDNN-dec
PLDA provides the best performance in Cond5 where the EER is as low as

0.9%. A comparison between IvecDNN
PLDA and IvecDNN-dec

PLDA reveals that significant performance gain
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Table 3.4: Performance of the best performing SV techniques (from Table 3.3) in terms of EER
(%)/minDCF (×100) for Cond5 of NIST SRE 2010.

Systems Cond5
IvecGMM

PLDA 2.2/0.28
IvecDNN

PLDA 1.0/0.16
IvecDNN-dec

PLDA 0.9/0.12

can be achieved by exploiting the ASR decoder output. IvecDNN-dec
PLDA improved over IvecDNN

PLDA by

relative EER of 10% for Cond5 (from 1.0% to 0.9% absolute). IvecDNN-dec
PLDA clearly improved over

IvecGMM
PLDA with relative EER of 43% (from 1.4% to 0.8% absolute) for Cond1 and 56% (from 1.6%

to 0.7%) for Cond3.

In the results discussed so far, a strong correlation between the SRA as presented in Table 3.2

and the EER, especially for the telephone condition (Cond5), can be seen. The EER decreases

with the increase in SRA suggesting that better initial alignment can lead to better speaker

modelling.

Next, the performances of IvecSGMM-dec
PLDA and SGMMPLDA are presented. The performance of

IvecSGMM-dec
PLDA is consistently better than IvecGMM

PLDA for all conditions except Cond3. In particu-

lar, absolute improvement in EER of 0.6% is obtained on Cond5 by IvecSGMM-dec
PLDA over IvecGMM

PLDA.

The SGMMPLDA outperforms the IvecGMM
PLDAwith absolute EER of 0.1% and 0.2% for Cond1 and

Cond5 respectively.

3.9.1 Summary of experiments on NIST SRE 2010

The minDCF and DET curve for three best performing SV approaches are presented in Table 3.4

and Figure 3.5 for Cond5. The systems include, (i) IvecGMM
PLDA, (ii) IvecDNN

PLDA, and (iii) IvecDNN-dec
PLDA .

It can be observed from Table 3.4 that IvecDNN-dec
PLDA is the best performing system in terms of

minDCF on Cond5 with relative improvement of 57% over IvecGMM
PLDA .

3.10 Conclusions

In this chapter, we explore the application of phonetic information in the i-vector framework.

We improved on the existing technique that uses DNN FWD by applying word-recognition

lattices from ASR to compute SS. The SS is eventually used for extracting i-vectors. Our

results indicate that computing SS from lattices can benefit the SV. We also showed that

the performance gains are positively correlated to the senone recognition accuracy of the

models. In particular, the IvecDNN-dec
PLDA outperforms the IvecDNN

PLDA in Condition 5 of NIST SRE 2010

by absolute EER of 10%.
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Figure 3.5: DET curve of the systems presented in Table 3.4 for Cond5 of NIST SRE 2010.
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4.1. Fundamental tasks

Table 4.1: Types of trials in phrase based text-dependent speaker verification.

Correct Phrase Wrong Phrase
Target Speaker Target-Correct Content-mismatch

Impostor Speaker Speaker-mismatch Content and speaker mismatch

4.1 Fundamental tasks

In the past few years, the state-of-the-art SV systems have shown to provide high performance

for long duration speech recordings (Dehak et al., 2011; Garcia-Romero, 2012). In practical

applications (forensics, biometrics, etc.), SV is often applied on short duration test utterances.

However, results of the SV systems on short duration test set are yet to reach acceptable

range of performance of any deployable system (Motlicek et al., 2015). Unlike unconstrained

scenarios, application of SV systems on constrained content of the test utterances can bring

reasonable performance. This is referred to as text-dependent task. Real applications have

usually employed phrases, digits and short commands to constrain the content (Larcher et al.,

2014b,a). In this chapter, we focus on text-dependent SV with phrases being shared across

speakers. For example, in a text-dependent application, the user is expected to utter the

phrase "My voice is my password" for authentication.

Phrase-based text-dependent SV involves the authentication of a claimed identity against

a speaker speaking a known phrase. This phrase can be speaker-specific or common to all

speakers and the phrase spoken by the speaker during enrollment phase may be different

from the test phrase (Larcher et al., 2014b). In this thesis, we consider the scenario where the

phrases chosen by the system during testing have already been uttered by the speaker during

enrollment. As shown in Table 4.1, the system accepts a claim by recognizing both the speaker

(based on its acoustic characteristics) and the phrase content of a speech utterance. In other

words, impostor trials can be divided into three categories: (i) the content (phrase) does not

match, (ii) the speaker does not match, and (iii) neither the speaker nor content matches.

State-of-the-art text-dependent SV systems are able to exploit text constraints to obtain high

recognition accuracy (Kenny et al., 2014b,a). These systems are inspired by text-independent

techniques such as i-vector and JFA being tailored to the text-dependent SV task. Besides

intra-speaker and inter-session variabilities, text-dependent SV systems also need to deal with

content variability.

Content or linguistic information is relevant to text-dependent SV based baseline systems as

accept/reject decisions are directly linked to it. Content information has been introduced into

conventional SV systems by computing SS from the DNN to obtain latent-vectors (Scheffer

and Lei, 2014; Lei et al., 2014). Experiments on the standard database indicate superior

performance of the baseline systems (Chen et al., 2015b; Larcher et al., 2014a, 2013). Even

though conventional approaches explicitly model phonetic variability of content for text-
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dependent task, sequence information for the content variability is still ignored. Considering

that content information can be decomposed into phonetic units (PU) and its sequence, i.e.

the phone sequence information (PSI), standard i-vector and JFA systems obtain the same

verification score for any permutation of the PSI. For the phrase “OK Google”, which comprises

the sequence of phones /@U"keI’gu:g@l/, the permutation /"gu:g@l@U"keI/, in principle, would

be expected to obtain the same score. This is due to the fact that SS depend only on the

average feature characteristics in the i-vector and JFA frameworks. In this chapter, we present

techniques that exploit both PU and PSI. To this end, we apply template matching technique,

i.e. dynamic time warping (DTW), which has shown to perform well for text-dependent SV (Jelil

et al., 2015). Compared to applying conventional spectral features in the DTW algorithm,

posteriors extracted from DNN and GMM-UBM have been successfully used. It has been

observed that DTW using DNN posterior features provides good performance in the content-

mismatch conditions probably due to DNN posteriors are better at predicting phones (Dey

et al., 2016a). However, this system performed poorly in the speaker-mismatch condition,

probably due to content-discriminative features being computed using a DNN. In this chapter,

we propose to incorporate speaker-informative features generated by an i-vector system to

DTW algorithm.

This chapter is organized as follows. We first describe the baseline systems for phrase based

text-dependent task in Section 4.2. The proposed template matching technique is described

in Section 4.3. In Sections 4.4 and 4.5 describe the experimental setup and results respectively.

Finally, the chapter is concluded in Section 4.6.

4.2 Baseline system

The GMM-UBM system as described in Chapter 2 has shown to be effective for phrase based

text-dependent SV (Kenny et al., 2014a; Bhattacharya et al., 2016). The MAP technique

on HMM-GMM system has also been shown to be powerful modelling technique for this

task (Wang et al., 2016; Zeinali et al., 2017). We refer to this approach as MAP-GMM-HMM

and it is decribed in this section. As shown in Figure 4.1, the MAP-GMM-HMM consists of

creating a background model by a set of HMMs, where each HMM models a tri-phone units of

the speech. The background HMM-GMM models is obtained by pooling data of all speakers

in a supervised manner. Each of the HMM state represents context-dependent tied state (or

senones), which are obtained by a data-driven process and a decision tree. This HMM-GMM

system can be applied to obtain alignment of the training data. This model is also referred to

as speaker independent (SI) model.

In literature, various speaker adaptation techniques have been investigated for ASR applica-

tions. The most common adaptation scheme, referred to as MAP adaptation of HMM-GMM, is

considered in this chapter. In MAP adaptation, the background HMM-GMM is used to obtain

adapted model as given by:
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Figure 4.1: Speaker adaptation in a HMM-GMM using MAP criteria.

λM AP = argmax
λ

log(p(λ|X)) ∝ log p(X|λ)+ log(p(λ)),

where λ, X refer to the parameters of the HMM-GMM models and the feature vectors respec-

tively. In practice, the means of the HMM-GMM models are only adapted as given by:

μH M M
j ,m =

τμH M M ,0
j ,m +∑T

t=1γ j ,t xt

τ+∑
t γ j ,t

,

where μH M M
j ,m is the adapted mean of the mth Gaussian of the j th tri-phonetic unit, μH M M ,0

j ,m is

the corresponding mean vector of the background model, τ is a constant factor and γ j ,t is the

posterior probability of mixture m of j th HMM state.

During evaluation, the likelihood (�M )of the test utterance (X) is computed against the speaker

model (λM ) and the background model as follows:

�M (X) = log(p(X|λM ))− log(p(X|λU B M )). (4.1)

Assuming text-transcript of the test data is available to us during evaluation, the likelihoods

of Equation 4.1 (log(p(X|λM )) and log(p(X|λU B M ))) can be computed against the acoustic

models (λM and λU B M ).

In addition to MAP-GMM-HMM, the i-vector and JFA have been shown to provide good

performance for this task (Kenny et al., 2014b,a; Chen et al., 2015b). In the previous chapter,

we described an approach to incorporate phonetic information in the i-vector framework

by replacing the GMM-UBM by a DNN. This same technique can be extended for JFA model

by computing posteriors of phonetic units to obtain the speaker factors. In this chapter, we
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w3

o1 . . .o5 o2 . . .o6 oT−4 . . .oT

w4 wT−2

Figure 4.2: Extraction of online i-vectors.

consider the model-based approaches, such as i-vector, GMM-UBM, JFA and MAP-GMM-

HMM, as the baseline systems.

4.3 Template matching

DNN-based approaches to i-vector/JFA modeling use PU information as target classes. How-

ever, the PSI of the phrase is ignored. We believe that exploiting the PSI in addition to PU will

further improve performance, as text constraints for the task are being considered (Larcher

et al., 2008). One approach to implicitly use PSI in i-vector system is by estimating senone

posteriors obtained from after ASR decoding. These posteriors capture the long term context

of speech signal as it is computed from decoded output (using LM and lexical model) (Su and

Wegmann, 2016).

An alternative method to use the PSI is to model the idiosyncrasies of the speaker. A speaker

not only has distinctive acoustic features but uses language in a characteristic manner, also

called idiosyncrasies (Amino et al., 2006). These distinctive patterns of the speaker are usually

expressed in terms of usage of words, phonemes (Shriberg, 2007; Campbell et al., 2003).

In Campbell et al. (2003), PSI was used to estimate phone N-gram frequency. However, these

approaches are mainly used as a source of high-level speaker-dependent features. As such,

they have been used to enhance the performance of acoustic-based SV systems.

In a different direction, the spectral vectors of the speech signal, consisting of a specific phone

sequence, have been used with DTW algorithm (Jelil et al., 2015; Dey et al., 2016a). This

approach was shown to be effective for matching sequence of features and outperforms the

model-based SV systems in content-mismatch conditions (Dey et al., 2016a), while in speaker

mismatch condition, it provides reasonable accuracy. Motivated by the achieved results and

the fact that DTW has not been investigated well enough after the emergence of subspace

based techniques, we intend to further explore the DTW technique to address text-dependent

SV problem.
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4.3.1 Dynamic Time Warping

The DTW algorithm is a dynamic programming technique to compute the distance between

two sequences of spectral vectors of arbitary length, and is commonly applied in query-by-

example spoken term detection and other data mining tasks (Chen et al., 2015a; Keogh and

Ratanamahatana, 2005). Being a non-parametric approach, it is well-suited for limited- or

zero-resource tasks (Versteegh et al., 2015). The algorithm takes two sequences of features as

input and finds the minimum cost mapping between them. The procedure involves computing

all possible local distances between the two sequences (within a given range) and then back-

tracking along the optimal path in terms of minimum distance (Brown and Rabiner, 1982). The

DTW system performs well for the text-dependent SV task, especially for content-mismatch

trials, due to the constraint in the spoken phrase.

In a conventional DTW system, MFCCs are used as input features to the DTW algorithm

for performing text-dependent SV (Das et al., 2006; Bonastre et al., 2003). Besides MFCCs,

senone posteriors have also been used as features to the algorithm (Dey et al., 2016a) by

replacing Euclidean distance by the Kullback-Leibler (KL) divergence measure. Impressive

gains were obtained with respect to a state-of-the-art i-vector system on content-mismatch

conditions, while on speaker-mismatch trials, the system performs reasonably well (Dey et al.,

2016a). As expected, the results indicate that these features might not contain enough speaker

information to address a speaker recognition task. In the speaker-mismatch condition, the

i-vector and JFA approaches performed considerably better than the DTW system. In view of

these results, we propose to introduce speaker-informative features in the DTW algorithm. An

i-vector system is used to extract these features. As opposed to the conventional approach

of estimating i-vector for a whole utterance (2.5 mins for text-independent and 3 s for text-

dependent systems), we propose to compute i-vectors on short segments of speech around

200ms. These features have also been referred to as online i-vectors (Peddinti et al., 2015;

Madikeri et al., 2015).

4.3.2 Online i-vector features

The online i-vector features have been recently used for speech recognition and speaker

diarization tasks, where they have shown promising results (Peddinti et al., 2015; Madikeri

et al., 2015). In ASR, online i-vectors have been used for the purpose of adapting neural

networks to speakers (Peddinti et al., 2015). In this case, online i-vectors are used as an

input to the neural network, in addition to spectral features, to enhance speaker-specific

information. The results obtained by this approach indicate that online i-vectors contain

sufficient speaker information to improve ASR performance.

Online i-vectors have also been applied for the speaker diarization task within the Information

Bottleneck (IB) framework for speaker clustering (Madikeri et al., 2015; Vijayasenan et al.,

2011; Tishby et al., 2000). In this work, online i-vectors were appended to MFCC features to be

fed into the speaker clustering algorithm. The additional gain in performance obtained by
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this approach compared to using only the spectral features suggests that the online i-vector

representation carries speaker information as well. Motivated by the progress in content and

speaker oriented tasks, we propose using online i-vectors as features for DTW systems. We

now proceed to describe the method to apply online i-vectors.

Figure 4.2 illustrates the process of extracting online i-vectors from the speech signal. Let

the speech utterance contains ‘T’ frames of speech given by X = {x1, · · · , xT}, where xt is the

t th speech frame. The online i-vector corresponding to t th speech frame of an utterance is

computed with a context size of L frames. The SS are computed on the sequence of speech

frames, starting from t - L to t + L, for obtaining t th feature vector. For a context size L = 10

frames, a sliding window of 21 frames is used with a shift step of 1 frame. Windows are

centered at each frame in the utterance, which results in fewer frames being considered at

the utterance boundaries. The corresponding sequence of online i-vectors is represented by

W = {w1,w2, · · · ,wT} for an utterance. To compare two sequences of online i-vectors, the DTW

algorithm is used with the cosine distance metric as given by:

d(wi ,w j ) = 1− w′
i w j

||wi || ||w j ||
,

where wi and w j are two i-vectors, d(wi , w j ) is the cosine distance between them and ||.||
represents the vector norm.

DTW scores computed on online i-vectors are expected to reflect both content and speaker

similarities between enrollment and test templates. A window length of 200 ms, corresponding

to average syllable duration, is able to capture both types of information.

4.3.3 PLDA projection features

A channel compensation model, such as PLDA, is usually applied on top of i-vectors in text-

independent SV systems. The PLDA model produces verification scores by comparing two

i-vectors. We apply the PLDA model on top of online i-vectors as we believe that it will help

to factor out unnecessary channel information from the features. Training a PLDA model for

the SV task uses speaker labels to define a set of classes to be discriminated. It is common

to have multiple instances of speaker labelled i-vectors available for large text-independent

datasets (Garcia-Romero and McCree, 2014; Lei et al., 2014). For a text-dependent scenario,

the outcome of the task is linked to identifying content and speaker. This motivates the use

of speaker-content classes for PLDA training (Dey et al., 2016a; Larcher et al., 2014a, 2013).

Besides labelling content as whole phrases, phone classes can be obtained from a forced

alignment of the data against given transcripts as well. Speaker labels are typically available

as meta-data provided as part of the dataset. In this work, we experiment with both speaker-

phrase and speaker-phone labels for training the PLDA hyperparameters on online i-vectors.

PLDA is usually trained with speaker-phrase labels for text-dependent SV task (Dey et al.,
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4.3. Template matching

Figure 4.3: The proposed system for fixed-phrase based text-dependent SV.

2016a; Larcher et al., 2014a, 2013). We now describe the training procedure for PLDA with

speaker-phone labels only.

The sequence of online i-vector features is extracted for q th utterance of speaker sk , which

is represented by Wsk
q = {wsk

1,q ,wsk
2,q , · · · ,wsk

M,q }. The HMM/DNN based ASR system is used to

align the speech signal with respect to the senone classes, which are then mapped to obtain

the phone labels. We create a set of P phone classes for the speaker (sk ) ({Dsk
1 , Dsk

2 , Dsk
3 , · · ·

, Dsk
P }) for training the PLDA model, with the online i-vector wsk

t ∈ Dsk
r if t th MFCC feature

of the utterance is aligned to r th monophone. In a database with S speakers, we have S ×
P classes for training the PLDA model. In a phrase based SV, speaker-phonetic variability is

useful for exploiting the text constraints of the task.

DTW uses online i-vectors after projection onto the inter-class PLDA subspace, also called

PLDA projections. The cosine distance between enrollment and test templates is used for this

purpose. In this process, PLDA compensates for variabilities other than speaker-content, such

as channel variability.

The PLDA projections have been successfully used in related speech processing tasks such as

speaker diarization and domain adaptation (Dey et al., 2016b; Madikeri et al., 2015). A reason-

able gain in performance for speaker diarization is observed as compared to the system using

only i-vector, which suggests that the PLDA model has enhanced the speaker representation

of i-vectors (Madikeri et al., 2015).

The PLDA projection features are obtained as follows. From the PLDA model of Equation 2.20,

the probability distribution of the speaker-phonetic factor is given by:

p(υ|w) =N (μυ,Συ), (4.2)

where the μυ is the mean and Συ is the covariance matrix of the Gaussian distribution. The

mean is given by
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Table 4.2: Performance of the DNN and adapted-DNN (female) based ASR on RSR2015 and
Fisher subset in terms of WER (%).

Systems/Conditions Fisher RSR2015
DNN 24.5 85.0

adapted-DNN 28.2 17.1

μυ =ΣυΠA−1(w−μw), (4.3)

where A is the covariance matrix of the error term of Equation 2.20 and I is the identity matrix.

The covariance matrix (Συ) is given by

Συ = (I+ΠT A−1Π)−1.

In this chapter, we refer the mean of the Gaussian distribution (μυ) as the PLDA projection

feature or plda-vectors of Figure 4.3 (the point estimate of the posterior distribution of the

speaker-phonetic factor), which is subsequently applied in the DTW framework. The PLDA

projection vector of a frame of speech is obtained by first computing the online i-vector and

then projecting in the PLDA subspace as given by the Equation 4.3. Thus for an utterance, the

number of PLDA-projection features is same as the speech frames. The proposed system is

illustrated in Figure 4.3 where the final DTW score is applied for evaluating system.

4.4 Experimental Setup

Experiments are conducted on the RSR2015 (Part1, female) and RedDots (Part4, male) as

described in Section 2.10.2. The details of the features, i-vector and GMM-UBM system are

described in Section 2.11. The SV approaches are evaluated in three conditions, namely, (i)

Cond1: content mismatch, (ii) Cond2: speaker mismatch, (iii) Cond3: speaker and content

mismatch, and (iv) Cond-all: combining all conditions (Cond1 to 3), following the protocol

in Larcher et al. (2014b).

4.4.1 HMM/GMM based MAP system configurations

Two separate phone based HMM/GMM acoustic models (male and female) are trained in a

supervised manner with Fisher subset (∼ 120 hours) as described in Section 2.10.2. Both the

systems use 43 phones with a total of 2 k Gaussians.

4.4.2 HMM/DNN system configurations

The DNN, usually trained in ASR fashion, is employed to compute the posteriors of the senone

units, which is then used in the DNN-based i-vector and JFA systems parameters estimation
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process. These posteriors are also used as feature streams in DTW systems. Two gender

dependent ASR systems are trained for experiments, one male and another female, with their

respective training data (as mentioned in the Section 2.10.2.

We now proceed to describe the ASR setup as used in Motlicek et al. (2015). Since the parame-

ters of the two ASR systems are the same, we describe the configuration of one system (female)

only. The HMM/GMM system (female) uses context-dependent tri-phone states and a total of

1.5 k senone states and 12 k Gaussians. This system is used to obtain senone alignments to

train the DNN model. The DNN is trained with MFCC input features and a context size of 5

frames. It comprises 4 hidden layers with 1.2 k sigmoid units per layer. The output of the DNN

is represented by softmax function. It is trained with stochastic gradient descent algorithm

to minimize the cross-entropy function between the class labels (senone alignments) and

the network output. After the convergence of the algorithm, the posterior probabilities of the

senone units corresponding to an input speech frame are obtained at the output of the DNN.

4.4.3 ASR performance

The conventional hybrid ASR system uses DNN to estimate acoustic posterior probabilities

plugged into the ASR decoder by employing LM. The performance of the female ASR system is

evaluated on two batches of data, namely, (i) Fisher female subset with 200 utterances and, (ii)

Part1, RSR2015 female subset consisting of 1 k utterances. The ASR system employs a CMU

dictionary with 42 k words and a tri-gram LM for decoding with word LMs (Motlicek et al.,

2015). The LM is trained on the transcript of Fisher subset (∼ 120 hours). The WER on both

the set are presented in Table 4.2. The WER of the female DNN is 24.5% on the Fisher subset.

Poor performance on the RSR2015 subset is possibly due to acoustic mismatch between the

RSR2015 and the training dataset (channel, accent mismatch).

In order to cope with large differences in performance of WER, we adapt the DNN with a small

amount of data (∼1 h) from RSR2015 database. In a DNN framework, it is usually done by

adapting the weights of one of the layer keeping others layers fixed. The weights of the last

layer of the DNN are adapted using a limited amount of transcribed in-domain data with the

senone-discriminative backpropagation algorithm. The adapted-DNN provides better ASR

results on the evaluation data than the DNN trained in resource rich domain. Thus we believe

that the better ASR system will help in SV process. From Table 4.2, it can be observed that the

adapted-DNN performs roughly equally well in both the databases (row 2 of Table 4.2) with

absolute improvement of ∼68% in terms of WER on the RSR2015 dataset. The DNN and the

adapted-DNN (trained on the female portions) are then used for SV experiments on RSR2015

Part1, female evaluation set only.

The performance of the male-DNN is evaluated only on a Fisher male subset (200 utterances).

The WER of this DNN is 30.5%. Since no development data is available from RedDots dataset,

the adaptation of DNN could not be done.
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4.4.4 Online i-vector configurations

Two online i-vector systems are developed (for male and female) using the training data as

described in Section 2.10.2. Since the parameters of both the systems are similar, we describe

the configurations of the female system only. The SS, required to estimate online i-vectors, are

computed from short segments of speech signal of duration 200 ms. The i-vector extractor

is 400 dimensional. To train the speaker-phone PLDA model, the ASR system developed in

the previous subsection is used to obtain senone alignments. The senones are then mapped

to one of 43 monophones to get the phone alignment. The PLDA is trained on the online

i-vectors by assigning speaker-phone pair labels to each of the speech frames. The Part1 of

RSR2015 dataset is used to train the PLDA. There are a total of 2 k classes (speaker-phone

pairs) in the development set.

4.5 Results

In this section, we describe the results obtained with various systems described in Sections 4.2

and 4.3. We refer to the MAPGMM, IvecPLDA and JFA as the model-based systems. We first present

the results on the RSR2015 dataset (Part1, female) and then proceed to RedDots (Part1, male).

The conventional approaches include the DTW and model-based SV systems (MAP, i-vector

and JFA) both employing GMM posteriors. Since it has been consistently reported in literature

that MAP technique outperforms other approaches for text-dependent SV task (Kenny et al.,

2014a,b), we consider the MAP system to act as the baseline system in both the experiments on

RSR2015 and RedDots. In all the experiments involving PLDA, the input vectors to the model

are length normalized. For the MAP, JFA and DTW systems, T-norm score normalization is

applied (Barras and Gauvain, 2003; Dey et al., 2016a; Kenny et al., 2014b,a). In our experiments

involving i-vectors, we observed that dimensionality reduction technique, like LDA, degraded

the performance of the speaker recognition system. Thus, we do not report the performance

of the systems using LDA transform. In all the experiments, the senone posterior probabilities

are obtained using forward pass of DNN.

The various systems considered in this chapter are as follows:

• MAPGMM: the speaker models are obtained from GMM-UBM by MAP adaptation.

• MAPHMM: the speaker-models are obtained from HMM/GMM model as described in

Section 4.2.

• IvecPLDA: the conventional i-vector system for speaker recognition obtained using GMM

or DNN SS, which are referred to as IvecGMM
PLDA or IvecDNN

PLDA respectively. The system with

adapted-DNN SS is labelled as IvecDNN-adp
PLDA .

• JFA: this system represents Joint Factor Analysis model. The JFA using GMM SS is

referred to as JFAGMM while the system using DNN and adapted-DNN SS are referred to

as JFADNN and JFADNN-adp respectively.
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Table 4.3: Performance of the various GMM based baseline systems on RSR dataset in terms of
EER (%). The MAPGMM outperforms other baseline systems in Cond-all.

No. Systems/Conditions Cond1 Cond2 Cond3 Cond-all
1 MAPGMM 0.83 2.15 0.21 0.69
2 MAPHMM 0.71 4.42 0.42 1.32
3 IvecGMM

PLDA 1.24 2.82 0.32 0.91
4 JFAGMM 1.42 2.34 0.41 0.71

• DTW: raw speech features (MFCCs) and posteriograms obtained from the GMM or

DNN are compared using the DTW algorithm in this system. The systems with MFCCs,

GMM posteriors, DNN and adapted-DNN posteriors are referred to as DTW-MFCC,

DTW-postGMM, DTW-postDNN and DTW-postDNN-adp respectively.

• DTW-onIvec: this system uses i-vector (estimated over short segments) as input to DTW

algorithm. The i-vectors are computed using SS either from GMM or DNN, which are

referred to as DTW-onIvecGMM and DTW-onIvec DNN respectively.

• DTW-onIvecPLDA: this system uses PLDA projection (as explained in Section 4.3.3) as

input to the DTW algorithm. PLDA is trained either with speaker-phone or speaker-

phrase as class definition. DTW system with PLDA (trained with speaker-phone labels)

projection obtained using GMM posteriors (for online i-vector extraction) is referred to

as DTW-onIvecGMM
PLDA, phn while with DNN is referred to as DTW-onIvecDNN

PLDA, phn. The systems,

with PLDA trained using speaker-phrase classes are referred to as DTW-onIvecGMM
PLDA, phr

and DTW-onIvecDNN
PLDA, phr.

4.5.1 Experiments on the RSR data (female)

The experiments are conducted with the training and evaluation data as detailed in Sec-

tion 2.10.2. We first describe the model-based SV systems using GMM and DNN posteriors

and then describe DTW systems.

Model-based SV systems with GMM posteriors

Table 4.3 compares the performance of various model-based SV systems exploiting GMM

posteriors. It is to be noted that the results presented here are comparable or better than those

published in Larcher et al. (2014b); Kenny et al. (2014b). The simple MAP technique, MAPGMM

(row 1) achieves the best results among the model-based SV systems, which is consistent with

the results published in the literature. T-norm is applied on MAPGMM scores with improvement

of 24% relative EER (from 2.85% to 2.15% absolute) for condition 2. The MAPHMM performs

worse than the MAPGMM in Cond-all, however in Cond1, the former system performs better

than the latter system due to the ability of the HMM to capture sequential information.
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Table 4.4: Performance of the various DNN-based SV systems on RSR2015 dataset in terms of
EER(%). The JFA system is the best performing system.

No. Systems/Conditions Cond1 Cond2 Cond3 Cond-all
1 IvecDNN

PLDA 0.71 2.52 0.21 0.73
2 JFADNN 0.12 0.84 0.02 0.21

In text-independent SV scenario, the IvecGMM
PLDA system outperforms MAPGMM as evident by the

success of the technique in past SV evaluations. However, in text-dependent scenario, the

IvecGMM
PLDA system performs worse, which may be due to the duration of the test utterances.

We explored JFA as well, as it has shown to be a dominating modeling technique for text-

dependent SV scenario. The latent factor (z) of the JFA model (Equation 2.27), which charac-

terizes the speaker-phrase, is used to compute the cosine distance between the enrollment

and test utterances. T-norm is applied to the scores produced by the JFA model. This system

(JFAGMM) performs better than the IvecGMM
PLDA in condition 2, thus showing that the matrix D is

able to model the speaker-phrase characteristics better than the matrix Π of the PLDA model

as given by Equation 2.20. The JFA can be built with only the development data of RSR2015

dataset without the need of any Fisher database.

Model-based SV systems with DNN posteriors

As explained in Section 4.2, the IvecPLDA and JFA systems benefit by incorporating linguistic

information from HMM/DNN. The DNN acoustic model is employed to estimate the senone

posteriors, which is then subsequently fed to i-vector extraction process. The 10 top scoring

DNN posteriors are used to estimate the parameters of the i-vector and JFA models. The back-

end classifier of the i-vector model (PLDA) is trained with multiple instances of speaker-phrase

classes (from development data).

Table 4.4 shows the performance of the model-based SV systems with DNN posteriors. We

observe that integrating DNN posteriors in the IvecPLDA and JFA systems consistently improves

the performance. In particular, IvecDNN
PLDA improves upon IvecGMM

PLDA by 22% relative EER (from

0.91% to 0.73% absolute) for Cond-all condition. The JFADNN achieves good results and clearly

outperforms the JFAGMM, this system performs better than the MAPGMM across all conditions by

66% relative EER (from 0.69% vs 0.21% absolute) for Cond-all. This validates the hypothesis

that linguistic units of the speech signal are important for the i-vector and JFA based SV

approaches.
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Table 4.5: Performance of the various DTW systems on RSR dataset in terms of EER(%). The
DTW system using DNN posterior features performs better in content-mismatch conditions.

No. Systems/Conditions Cond1 Cond2 Cond3 Cond-all
1 DTW-MFCC 0.38 4.52 0.11 1.23
2 DTW-postGMM 0.13 4.51 0.11 1.22
3 DTW-postDNN 0.04 4.61 0.02 1.05

Table 4.6: Performance of the various adapted-DNN based systems on RSR dataset in terms of
EER (%). The JFA is the best performing system.

No. Systems/Conditions Cond1 Cond2 Cond3 Cond-all
1 IvecDNN-adp

PLDA 0.15 2.17 0.02 0.52
2 JFADNN-adp 0.11 0.71 0.02 0.21
3 DTW-postDNN-adp 0.02 14.52 0.01 2.61

DTW based SV

The DTW-MFCC technique has been explored for text-dependent SV task in the past. It

assumes that MFCCs contain speaker and content discriminating information, to be exploited

by DTW algorithm. Furthermore, we experimented with GMM and (DTW-postGMM), DNN

posteriors (DTW-postDNN) constituting input to DTW. It can be observed from Table 4.5 that

all the DTW techniques achieve better results than the baseline model-based SV systems

(MAPGMM, IvecGMM
PLDA and JFAGMM of Table 4.3) for content-mismatch conditions. However, for

condition 2, the performance is significantly worse than the model-based SV systems with

GMM posteriors (Table 4.3). It can be observed from Table 4.5 that DTW-postDNN (row 3)

outperforms the MAPGMM for conditions 1 and 3 by 95% relative EER (from 0.83% vs 0.04%

absolute) and 90% relative EER (from 0.21% vs 0.02% absolute) respectively.

SV using Adapted-DNN

Table 4.6 shows the performance of various systems (i-vector, JFA and DTW) exploiting poste-

riors obtained at the output of adapted-DNN. The main motivation of adaptation is to obtain

better alignment of the evaluation data. The IvecDNN-adp
PLDA performs better than IvecDNN

PLDA across all

conditions. This system performs better than the MAPGMM by 26% relative EER (from 0.69% to

0.52% absolute) for Cond-all.

The senone posteriors of the adapted-DNN are used to estimate the parameters of the JFA

model as given by Equation 2.27 (matrices D and U) and subsequently the latent variable

z (during enrollment and testing phase). From Table 4.6 we observe that JFADNN-adp further

improves upon JFADNN, particularly for Cond2, indicating that the DNN adaptation is useful in

the i-vector and JFA.
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Table 4.7: Performance of the various DTW systems using online i-vector features on RSR
database in terms of EER(%). The DTW-onIvecDNN

PLDA, phn is the best performing system.

No. Systems/Conditions Cond1 Cond2 Cond3 Cond-all

1 DTW-onIvecGMM 0.21 1.52 0.05 0.45
2 DTW-onIvecDNN 0.03 0.75 0.02 0.23
3 onIvecGMM

PLDA 4.41 6.49 1.03 1.93
4 onIvecDNN

PLDA 1.62 4.42 0.39 1.06
5 DTW-onIvecGMM

PLDA, phn 0.15 1.21 0.02 0.35
6 DTW-onIvecDNN

PLDA, phn 0.02 0.65 0.01 0.18
7 DTW-onIvecDNN

PLDA, phr 0.05 0.86 0.03 0.24

The senone posteriors from the adapted-DNN are used as features for the DTW algorithm.

We observe that DTW-postDNN-adp performs better than IvecDNN-adp
PLDA and JFADNN-adp for content-

mismatch conditions while significantly degrading performance for condition 2. This degra-

dation in performance is due to the content-discriminating features. We attempt to solve this

problem by extracting speaker-discriminating features for DTW algorithm.

DTW based SV with online i-vectors

The DTW-onIvec extracts i-vectors on short segments (online i-vectors), which are then

used as input features to DTW algorithm. It can be observed from Table 4.7 that the DTW-

onIvecGMM and DTW-onIvecDNN outperform the baseline MAPGMM by about 35% relative EER

(from 0.69% to 0.45% absolute) and 67% relative EER (from 0.69% to 0.23% absolute) for Cond-

all condition. This indicates that online i-vectors represent speakers sufficiently well. The

DTW algorithm plays an important role in achieving good performance by the DTW-onIvec

system. Therefore, without the sequence matching capability (of the DTW algorithm), the

online i-vector system performing an averaging operation instead of preserving the sequential

information is expected to provide worse results than DTW-onIvec. To test this hypothesis,

we conducted an experiment by building a system (similar to IvecPLDA) as follows. A sequence

of online i-vectors is extracted which is then averaged to obtain a representative i-vector of

the utterance. The PLDA is trained using these averaged online i-vectors as features assuming

speaker-phrase as classes. The distance between the enrollment and test speech signal is

computed using the PLDA model with the averaged online i-vectors. We built two systems

applying this strategy, one with GMM posteriors and another with DNN posteriors, which are

referred to as onIvecGMM
PLDA and onIvecDNN

PLDA respectively in Table 4.7. We observe that onIvecGMM
PLDA

and onIvecDNN
PLDA perform worse than DTW-onIvec. This result highlights the significance of

DTW algorithm, in addition to the online i-vectors, in obtaining low error rates.

From Table 4.7, it can be observed that applying PLDA on top of the online i-vector fea-
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Table 4.8: Performance of the various systems on RSR2015 database in terms of
EER(%)/minDCF(×100) in Cond-all condition.

No. Systems/Conditions Posteriors Cond-all
1 MAPGMM (Table 4.3) GMM 0.69/0.329
2 JFADNN-adp (Table 4.6) DNN 0.21/0.129
3 IvecDNN-adp

PLDA (Table 4.6) DNN 0.51/0.339
4 DTW-onIvecDNN

PLDA, phn (Table 4.7) DNN 0.18/0.094
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Figure 4.4: DET curve of the systems presented in Table 4.8 on RSR2015 database.

tures further improves the performance. The DTW-onIvecDNN
PLDA, phn improves over the MAPGMM

baseline system by 74% relative EER for Cond-all. In Section 4.3.3, we discussed the two

possible methods of defining classes in the PLDA model with online i-vector features, which

are speaker-phrase and speaker-phone. We observe that both the systems, DTW-onIvecDNN
PLDA, phn

and DTW-onIvecDNN
PLDA, phr, perform similar for all conditions. We did not obtain better results of

DTW-onIvec using adapted-DNN than DNN and thus we are not presenting the results.

Summary of experiments on RSR2015 database

The minDCF and DET plot of some of the best performing systems are presented in Table 4.8

and Figure 4.4 respectively for Cond-all condition only. These systems include, (i) the MAPGMM

baseline, (ii) IvecDNN-adp
PLDA, (iii) JFADNN-adp and, (iv) DTW-onIvecDNN

PLDA, phn. It is to be noted that DTW-

onIvecDNN
PLDA, phn improves by 71% relative minDCF (from 0.329% to 0.094% absolute) compared

to the baseline MAPGMM.
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4.5.2 Experiments on the RedDots database (male)

Table 4.9 compares the performance of all systems on RedDots dataset across all the conditions.

We consider the MAP system (MAPGMM) using GMM posterior as the baseline since it has shown

to provide good performance in Zeinali et al. (2016). The model-based SV systems perform

worse on the RedDots database compared to RSR2015 database (Dey et al., 2016a). As it has

been observed from the experiments on RSR2015 database, the model-based SV approaches

with DNN acoustic model outperform those employing GMM. Thus, only the results of DNN

based i-vector and JFA systems are reported on the RedDots database.

From Table 4.9, it can be observed that MAPGMM provides EER of 1.23% for Cond-all. The

performance of the MAP system is worse on the RedDots than on the RSR2015 database across

all conditions, possibly due to long-term intra-speaker variability. The MAPHMM outperforms

MAPGMM on this part of the database by 26% relative EER (from 1.23% to 0.94% absolute) on

Cond-all.

The IvecDNN
PLDA and JFADNN systems do not achieve good results as compared to MAPGMM. The poor

performance of i-vector and JFA systems can be possibly attributed to the fact that factoring

out the content-variability with speaker-phrase data from RSR2015 is not a good choice.

The DTW-postDNN (row 5 of Table 4.9) performs better than model-based SV systems in content-

mismatch trials (conditions 1 and 3) as it explicitly matches the content. In speaker-mismatch

trials, even the DTW-postGMM (row 6) performs better than DTW-postDNN.

The DTW-onIvecDNN performs better than MAPGMM by 55% relative EER (from 1.23% to 0.55%

absolute) for Cond-all. Thus, on this database as well, the online i-vector representation with

DTW algorithm achieves better results than IvecDNN
PLDA, JFADNN and MAPGMM. We experimented

with using PLDA on top of online i-vectors. We observe that DTW-onIvecDNN
PLDA, phn further

improves upon DTW-onIvecDNN with improvement of 3% relative EER (from 2.69% to 2.61%

absolute) for Cond2. However, it can also be observed from Table 4.9 that training the PLDA

with speaker-phrase labels degrades the performance. An explanation of the performance

degradation is possibly due to training PLDA with speaker-phrase classes from RSR dataset

(which do not match the evaluation phrases of RedDots).

4.6 Conclusions

In this chapter, we presented model- (MAP, i-vector and JFA) and DTW-based techniques

for performing text-dependent SV with fixed phrases. We validated the techniques on two

databases, female part of RSR and male part of RedDots. We experimented with model-based

SV systems using GMM and DNN posteriors. From results, we observed that MAP technique

performs the best among the model-based SV approaches exploiting GMM posteriors. Inte-

grating DNN posteriors in the i-vector and JFA systems achieves good results across all the

conditions, with JFA improves upon the MAP technique by 66% relative EER for Cond-all
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4.6. Conclusions

Table 4.9: Performance of all the systems on RedDots (Part4) database in terms of EER(%). The Cond-all
refers to the system performance across all the 3 conditions.

No. Systems/Conditions Cond1 Cond2 Cond3 Cond-all
1 MAPGMM 5.62 4.04 0.90 1.23
2 MAPHMM 2.63 3.72 0.73 0.94
3 IvecDNN

PLDA 6.10 3.03 0.97 1.29
4 JFADNN 7.21 4.43 1.34 1.85
5 DTW-postDNN 0.62 7.62 0.54 1.13
6 DTW-postGMM 0.89 4.92 0.76 0.96
7 DTW-onIvecDNN 0.99 2.69 0.44 0.55
8 DTW-onIvecDNN

PLDA, phn 0.81 2.61 0.38 0.55
9 DTW-onIvecDNN

PLDA, phr 1.24 2.85 0.51 0.62

in RSR dataset. This gain in performance is consistent with the results published for text-

dependent and text-independent SV scenarios. Additional gain in performance is obtained

with adapted-DNN, more particularly by the JFA technique. It clearly shows that obtaining

better alignment for the evaluation data results in better performance.

The DTW algorithm offers an easy method to match the sequential patterns of the train and

test templates. Being a non-parametric method, it does not require any training data for the

development. We experimented with different input features for the DTW algorithm, namely

MFCCs, GMM and DNN posteriors. In content-mismatch conditions, the DTW systems

provide better results than the model-based SV systems. In particular, the DTW algorithm

using DNN posteriors outperforms the MAP system in condition 1 by 95% relative EER in RSR

dataset.

However, DTW system using DNN posteriors performs worse than MAP technique in speaker-

mismatch condition. This degradation in performance is due to content-discriminating

features. In this chapter, we address this problem by extracting speaker specific information by

employing i-vector system. We extract online i-vectors (for short segments) using the i-vector

extractor of the speech utterance resulting in sequences of online i-vectors extracted from

enrollment and test utterances. The DTW algorithm is then used to match the train and test

templates of online i-vectors. We found that this approach outperforms the MAP based system

by 67% relative EER for Over-all condition in RSR database.

The PLDA is usually applied in state-of-the-art SV systems as a channel compensation model.

In this chapter, we experimented with two different definition of class labels, namely, (i)

speaker-phrase, and (ii) speaker-phone for training the PLDA. Although on RSR database, we

obtained similar performance with both the strategies for defining classes, but on RedDots we

obtained considerable performance benefit with speaker-phone labels.
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In the last chapter, text-dependent SV using fixed-phrases has been explored where the user

is constrained to utter a specific phrase. However in many practical applications, we would

like to impose lesser constraint on the lexical content of the speaker. To this end, we are

interested in employing random sequence of words or digits for implementing text-dependent

SV (Larcher et al., 2014b). We refer to this task as content mismatch text-dependent SV. In this

scenario, the spoken content of the enrollment utterance is not identical to the test data.

In this chapter, we are interested in two text-dependent scenarios, namely,

random-digit strings and seen tasks as described in Section 2 (Larcher et al., 2014b;

Scheffer and Lei, 2014). For random-digit strings, the enrollment data consist of a user

uttering prompted digits randomly while in the test phase, the speaker pronounces a

prompted random combination of a few unique digits. This leads to the creation of different

co-articulation effects between the enrollment and test data. For the seen task, all the phrases

spoken by the speaker are collected to obtain enrollment data while the test data consists

of the speaker uttering one of the enrollment-phrases. In this chapter, we are interested in

speaker mismatch condition only in these scenarios as it evaluates the system for SV. The

content mismatch conditions in these scenarios have to be handled by an ASR. Evaluation of

the baseline SV system on these tasks reveals severe degradation of performance as compared

to the fixed-phrase case. However, an advantage of these scenarios is that they are more

robust to replay attack (Stafylakis et al., 2016, 2015) than fixed-phrase.

The standard techniques, such as i-vector, JFA, have shown to provide reasonable SV perfor-

mances for random-digit strings and seen tasks (Stafylakis et al., 2016, 2015; Scheffer and Lei,

2014). In literature, approaches that aim to match the lexical content (or phonetic units) of the

enrollment and test data have shown to provide good results in these tasks (Chen et al., 2015b;

Wang et al., 2016). Motivated by these results, we explore techniques to exploit the common

phonetic units between enrollment and test data to provide SV scores in an unsupervised

manner (i.e. without using text-transcript).

This chapter is organized as follows. Section 5.1 describes the baseline SV approaches consid-

ered in this chapter, while in Section 5.2, the proposed technique is presented. The experi-

mental setup and results are described in Sections 5.3 and 5.4, and the chapter is concluded in

Section 5.5.

5.1 Baseline Systems

The DNN based i-vector system (as described in the last chapter) is considered as one of

the baseline systems. In Scheffer and Lei (2014), a posterior normalization technique (on

top of DNN based i-vector approach) is proposed to scale the sufficient statistics (SS) of the

enrollment data to match those of the test data. The posterior normalization technique is

shown in Figure 5.1 and it aims to normalize the count of the senone units (of the enrollment

data) before computing i-vectors. The technique is described as follows. Let Ne and Nt be the

zero-th order statistics (as defined by Equation 2.11) of the enrollment and test utterances
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5.1. Baseline Systems

Figure 5.1: Posterior normalization technique for text-dependent SV. The image has been taken
from Scheffer and Lei (2014)

Table 5.1: Interpreting sufficient statistics for the posterior normalization approach. The Ne

and Nt refer to the zero-th order statistics of the enrollment and test data.

Conditions Posterior normalization Interpretation
Ne ≥ Nt From Eqn. 5.1, β ≤ 1 Data selection
Ne ≤ Nt From Eqn. 5.1, β ≥ 1 Reusing speech frames
Ne ≥ 0, Nt = 0 From Eqn. 5.1, β = 0 Discard senone units
Ne = 0, Nt ≥ 0 From Eqn. 5.1, β = 0 Data synthesis

respectively, and Fe and Ft be the first order statistics (as defined by Equation 2.12) of the

enrollment and test utterances respectively. The new statistics for the enrollment are obtained

as

N
′
e =βNe

F
′
e =βFe ,

β= Nt

Ne
, (5.1)

where β is a normalization constant. When Ne or Nt is 0, β is set to zero as well. The details
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of the technique can be found in Scheffer and Lei (2014). The different scenarios for the

normalization factor (β) are illustrated in Table 5.1. In addition to this posterior normalization

technique, we consider GMM-UBM as the baseline system.

5.2 Posteriors and Content Matching

The techniques developed in the previous chapter (for fixed-phrase) cannot be applied for

seen and random-digit strings tasks since the lexical content of the enrollment is not identical

to that of the test data. We developed techniques that address the mismatch in the spoken

content for both the tasks, by (a) one based on DNN posterior estimation, and (b) using online

i-vectors. Both are described in the following section.

5.2.1 Senone posteriors from ASR decoder

The DNN based i-vector system involves computation of SS from DNN outputs. We propose

to apply senone posteriors obtained from word-recognition lattices (from ASR) for the i-vector

extraction since accurate estimation of phonetic units (compared to DNN outputs) can help

to factor out the content variability (in the i-vector extraction). These lattices are obtained

by decoding an utterance using acoustic, language and lexical models (of ASR) (Povey et al.,

2011b). Furthermore, we use posterior normalization technique as proposed for the baseline

system (Scheffer and Lei, 2014) on these senone posteriors.

5.2.2 Online i-vectors

In the past, strategies to exploit phonetic information have been successful for seen and

random-digit strings (Wang et al., 2016). In Chen et al. (2015b), i-vectors are extracted for

each of the senone units, which are then clustered to obtain speaker representation. In Schef-

fer and Lei (2014), they analyze the performance of i-vector system for seen task. Experiments

using state-of-the-art techniques show that content mismatch has a strong impact on the SV

performance (Scheffer and Lei, 2014) and normalizing posteriors reduces the error rate consid-

erably. Past research shows that matching common linguistic units between enrollment and

test data produces low error rate (Stolcke et al., 2007; Baker et al., 2005) for text-independent SV.

We refer to the process of transforming the enrollment utterance to match the lexical content

of test data as content matching. We present an approach to perform content matching by

selecting regions explicitly in the enrollment data to match the test data.

In the last chapter, we used online i-vectors as features to DTW algorithm for fixed phrase

based text-dependent SV. The achieved results indicate that online i-vectors contain speaker

and content information. We use online i-vectors as features for performing content matching

as well.

The strategy to perform content matching is as follows. Online i-vectors are estimated for each
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speech frame with a context of 10 frames (i.e. sufficient statistics are estimated with a window

size of 21 frames). This leads to a sequence of online i-vectors corresponding to an utterance.

Enrollment and test content are matched by computing the maximum similarity scores from

each online i-vector in test to all instances in enrollment. As many scores as the number of

speech frames in test utterance are obtained. Finally, these scores are averaged to obtain a

global similarity score. The rationale behind this approach is to choose the closest frame in

the enrollment data. The accumulated global score is obtained as follows

s(We ,Wt ) = 1

C

∑
j

mi n{d(we
i ,wt

j ),∀i = {1,2, · · · ,R}}, (5.2)

where We = {we
1, we

2, · · · , we
R } and Wt = {wt

1, wt
2, · · · , wt

C } represent set of i-vectors for the

enrollment and test data, the function d(we
i , wt

j ) computes the distance between the i-vectors

we
i and wt

j . The score s(We ,Wt ) represents the accumulated distance between the closest

speech frames. We used cosine distance metric to compute the dissimilarity between two

online i-vectors. A threshold on the cosine distance can be applied to detect if a test frame is

not present in the enrollment data.

The content matching technique described above does not assume phonetic label of the

speech frame. In a scenario, when phonetic alignments are obtained using the text-transcripts,

the minimization of Equation 5.2 could be performed by iterating over the same phonetic

category of the enrollment data.

5.2.3 PLDA as a feature extractor

The online i-vector representation contains other information in addition to the speaker

content. In order to factor out the channel effects, a PLDA model is trained as the back-end

classifier with online i-vectors as features. In the last chapter, PLDA trained with speaker-

phone pairs is used for fixed phrase based text-dependent SV task. In this chapter, we explore

speaker-word combination as classes definition for the training the PLDA. A speech recognizer

is employed to align the development data with the word labels. Online i-vectors correspond-

ing to within word boundaries are subsequently used as features for the PLDA model. The

PLDA model is then used to project the online i-vectors using the parameters of the model

to obtain channel compensated vectors as done in Section 4.3.3 (plda-vectors). The content

matching algorithm can be applied on plda-vectors as well.

5.3 Experimental Setup

We used the same MFCC features as used in Chapter 2 (Section 2.11.1). The dimensionality of

i-vector (also online i-vector) extractor is set to 400. For evaluation data, the Part 1 and 3 are

used (as described in Section 2.10.2) for the seen and random-digit strings. The Fisher data

is used as the training data (as described in Section 2.10.2). The performance of DNN based
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Table 5.2: Performance of the different baseline systems in terms of EER (%). The MAPGMM

provides the best performance among the baseline systems in both tasks.

Systems/Tasks seen random-digit strings
IvecGMM

PLDA 16.5 17.3
IvecDNN

PLDA 11.6 15.2
PN-IvecGMM

PLDA 12.3 15.8
PN-IvecDNN

PLDA 8.6 14.4
MAPGMM 4.5 8.6

ASR is described in Section 4.4. We used the conventional ASR decoder parameters to obtain

word recognition lattices (Povey et al., 2011b) (beam width of 13). The same type of lattices has

been used previously for various tasks (Motlicek et al., 2012, 2013; Imseng et al., 2013). From

these lattices, we obtain the senone posteriors. We observed that by fixing the acoustic scale

parameter to 0.01, i-vectors are obtained that follow a Gaussian distribution. Furthermore,

we observed that higher acoustic scale (> 0.01) leads to i-vectors with high kurtosis and thus

making the PLDA model ineffective.

5.4 Experimental Results and Discussions

In this section, we describe the results obtained with the baseline and the proposed SV

approaches. The various systems considered in this chapter are the following:

• PN-IvecPLDA: it uses posterior normalization technique as explained in Section 5.1. The

SV approaches using GMM, DNN and decoded ASR lattice posteriors for i-vector extrac-

tion are referred to as PN-IvecGMM
PLDA , PN-IvecDNN

PLDA and PN-IvecDNN-dec
PLDA respectively.

• CN-onIvec: the SV techniques applying content matching technique using online i-

vectors as explained in Section 5.2.2. The systems using GMM, DNN and decoded

ASR lattice posteriors for online i-vector extraction are referred to as CN-onIvecGMM ,

CN-onIvecDNN and CN-onIvecDNN-dec respectively.

• CN-onIvecDNN
PLDA: a PLDA model is trained on top of the online i-vectors as the channel

compensation model. We explore the use of speaker-phone and speaker-word pairs

to train the PLDA. The SV approaches trained on plda-vectors (estimated using online

i-vectors with DNN and decoded ASR posteriors) with speaker-phone pairs are referred

to as CN-onIvecDNN
PLDA,p and CN-onIvecDNN-dec

PLDA,p , while the systems trained on plda-vectors

with speaker-word labels are referred to as CN-onIvecDNN
PLDA,w and CN-onIvecDNN-dec

PLDA,w .
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Table 5.3: Performance of the different SV approaches (using senone posteriors extracted from
decoded ASR lattices) in terms of EER (%). The PN-IvecDNN-dec

PLDA performs the best among the other
techniques for seen task.

Systems/Tasks seen random-digit strings
IvecDNN-dec

PLDA 10.9 18.9
PN-IvecDNN-dec

PLDA 5.6 15.7

5.4.1 Baseline SV

Table 5.2 shows the performance of various i-vector and MAPGMM based SV for seen and

random-digits strings. We observe that performance of the approaches on seen is signifi-

cantly worse than the fixed phrase based text-dependent system (as described in previous

chapter). Lower bound for seen task is 2.3% EER for the case when the phrases of the enroll-

ment are identical to the test.

The posterior normalization technique is used to exploit the content of the enrollment data.

We observe that this approach reduces the error rates by 26% relative EER (from 11.6%

to 8.6% absolute) and 5% relative EER (from 15.2% to 14.4% absolute) for the seen and

random-digit strings. Furthermore, we observe that incorporating the phonetic informa-

tion (with DNN and decoded ASR posteriors) helps the SV. The MAPGMM provides the best

performance among the baseline techniques considered in this chapter. The EER for this

system is comparable to the results published in literature Stafylakis et al. (2015); Chen et al.

(2015b). We applied T-norm on the scores produced by the MAPGMM. T-norm improves MAPGMM

by 2% absolute EER for the random-digit strings.

5.4.2 SV using ASR lattice posteriors

We explore the application of senone posteriors estimated from word recognition ASR lattices

in an i-vector framework. Table 5.3 shows the performance of i-vector based SV using these

posteriors. We observe that IvecDNN-dec
PLDA outperforms IvecDNN

PLDA for seen task by 0.7% absolute EER.

Significant gain in performance is achieved by the PN-IvecDNN-dec
PLDA compared to PN-IvecDNN

PLDA,

with 35% relative EER (from 8.6% to 5.6% absolute) for seen. This indicates the importance of

more accurate senone alignments in obtaining better SV performance for this task. However,

performances of IvecDNN-dec
PLDA and PN-IvecDNN-dec

PLDA degrade for the random-digit strings compared

to the IvecDNN
PLDA. One of the reasons could be that the performance of the ASR (unconstrained

LM) is poor on the RSR2015 dataset (∼ 80% WER).

5.4.3 SV using content matching

As opposed to using posterior normalization, we also explore content matching using online

i-vectors, as described in Section 5.2.2. Table 5.4 shows the performance of the proposed SV
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verification

Table 5.4: Performance of the different SV systems (using content matching technique)
in terms of EER (%). The CN-onIvecDNN

PLDA,w performs the best among the other systems in
random-digit strings task. The * indicates the system using text-transcript.

Systems/Tasks seen random-digits strings
CN-onIvecGMM 4.1 13.4
CN-onIvecDNN 2.8 12.2
CN-onIvecDNN-dec 4.3 15.5
CN-onIvecDNN

PLDA,p 2.7 7.7
CN-onIvecDNN

PLDA,w 2.7 7.5
CN*-onIvecDNN

PLDA,w 2.5 7.6

using content matching. We observe that the proposed approaches outperform the poste-

rior normalization based SV techniques for seen. In particular, the CN-onIvecDNN performs

better than PN-IvecDNN
PLDA by relative EER of 67% (from 8.6% to 2.8% absolute) and 15% (from

14.4% to 12.2% absolute) for the seen and random-digit strings respectively. This indicates

the importance of the content matching technique using online i-vectors. We observe that

CN-IvecDNN
PLDA,p performs better than the MAPGMM by relative EER of 10% (8.6% to 7.7% abso-

lute). The CN-onIvecDNN
PLDA,w further improves upon CN-onIvecDNN

PLDA,p by 0.2% absolute EER in

random-digit strings. Thus, training the PLDA using speaker-word labels is more effective in

the random digits strings.

We explore the scenario in which text-transcript of the utterance is provided to us (cheat-

ing experiment). In this case, the content-matching technique is used by performing the

minimization operation of Equation 5.2 over the same phonetic units between enrollment

and test data. An ASR is used to align the enrollment and test data with the ground truth.

Scores from the closest frames between the enrollment and test data are accumulated by

iterating over same phonetic classes. The EER for the seen task reduces by 0.2% absolute for

the CN-onIvecDNN
PLDA,w. However, for the random-digit strings, we did not get any improvement

compared to 7.5% EER.

5.4.4 Summary of experiments for seen and random-digit strings

The minDCF and DET plots of two best performing SV approaches are presented in Table 5.5

and Figures 5.2. The systems include, (i) MAPGMM, and (ii) CN-IvecDNN
PLDA,w. It can be observed

from the Table 5.5 that CN-onIvecDNN
PLDA,w outperforms MAPGMM (Table 5.2) by relative minDCF

48% (from 2.2 to 1.14) for seen task.

5.5 Conclusions

In this chapter, we address seen and random-digit strings based text-dependent SV. The

posterior normalization technique shows significant gain in performance as compared to
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5.5. Conclusions

Table 5.5: Performance of the best performing SV techniques in terms of EER (%)/minDCF
(×100) for seen and random-digit strings.

Systems seen random-digit strings
MAPGMM (Table 5.2) 4.4/2.2 8.6/4.16
CN-IvecDNN

PLDA,w (Table 6.4) 2.7/1.14 7.6/3.71
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Figure 5.2: DET curve of the SV approaches presented in Table 5.5 for seen task.

conventional i-vector technique for seen. We proposed to further improve upon the posterior

normalization by, (a) enhancing the senone prediction accuracy of the DNN posteriors, and

(b) matching the lexical content of the enrollment to that of the test using online i-vectors. We

explore the use of speaker-word pair to train the PLDA model on top of online i-vectors. The

PLDA is used to obtain channel compensated vectors (plda-vectors). We observe that content

matching using plda-vectors achieves the best results for seen and random-digit strings with

40% and 12% relative EER over MAPGMM.
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This chapter presents DNN based speaker embedding exploiting phonetic information for

text-dependent speaker verification. This chapter is based on the following publications:

Subhadeep Dey, Takafumi Koshinaka, Petr Motlicek, and Srikanth Madikeri. DNN

based speaker embedding using content information for text-dependent speaker
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verification. In Proceedings of International Conference on Acoustics, Speech and

Signal Processing (ICASSP). IEEE, 2018a

Subhadeep Dey, Srikanth Madikeri, and Petr Motlicek. End-to-end text-dependent

speaker verification using novel distance measures. In Proceedings of Interspeech,

2018b
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In the last few chapters, i-vector framework has been explored for fixed-phrase and

random-digit strings based text-dependent SV. The i-vector approach assumes the data of

the speaker to be generated by a GMM (Garcia-Romero and Espy-Wilson, 2011). In another

direction, techniques that employ DNN for speaker discrimination are found to be benefi-

cial for text-dependent SV (Variani et al., 2014; Heigold et al., 2016). In this approach, the

activations of the last hidden layer of DNN capture the distinguishing characteristics of the

speaker. However, phonetic knowledge of the speech signal is not used. In this chapter, we

aim to exploit phonetic information for training speaker discriminative DNN as past research

shows that lexical content of an utterance is beneficial for SV (Zeinali et al., 2016; Campbell

et al., 2003). In the previous chapters, DNN is employed to predict phonetic labels to be

subsequently applied for i-vector extraction, while in this chapter, the DNN is used for speaker

classification.

Various approaches to DNN based speaker classification have been proposed in literature.

In Variani et al. (2014), a DNN is employed to map feature vectors to speaker targets. The

final layer of the DNN applies a soft-max function and the network is optimized using cross

entropy as objective function. The outputs of last hidden layer are used to extract speaker rep-

resentation (also referred to as speaker embedding) during evaluation phase. This approach is

referred to as DNN based speaker embedding. A back-end classifier, such as PLDA, is applied

on top of speaker embeddings to obtain SV scores.

As an alternative to DNN based speaker embedding approach, several studies have explored

end-to-end SV (Heigold et al., 2016; Snyder et al., 2016; Chowdhury et al., 2017). End-to-end

techniques involve directly optimizing SV based losses to train a neural network. The loss

function is usually based on distance measure between a pair of audio recordings such that

recordings from the same speaker will have a low distance-measure (Heigold et al., 2016;

Nagrani et al., 2017). The baseline end-to-end approach consists of mapping a variable

length speech segment to a fixed dimensional speaker vector by estimating the mean of

hidden representations in DNN structure (Nagrani et al., 2017; Bredin, 2017). The distance

between two utterances is obtained by computing Euclidean norm between the vectors.

This approach performs worse than the conventional GMM-UBM based SV on a publicly

available corpora (Bhattacharya et al., 2016; Snyder et al., 2016). We believe that the degraded

performance is due to the employed averaging operation, which may not capture the phonetic

information of an utterance. Recent studies indicate that techniques exploiting phonetic

information in addition to speaker is beneficial for text-dependent SV (Chen et al., 2015b;

Zeinali et al., 2016). In this chapter, we propose to incorporate phonetic information in the

end-to-end SV by computing distance function with linguistic units co-occurring between

enrollment and test data. The whole network is optimized in an end-to-end fashion to estimate

SV scores.

The chapter is organized as follows. The DNN based speaker embedding approach is described

in Section 6.1. This is then followed by description of end-to-end SV in Section 6.2. The

proposed approaches are described in Sections 6.3 and 6.4. Experimental setup and results
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Figure 6.1: The d-Vector approach for text-dependent SV.

are described in Sections 6.5 and 6.6. Finally, the chapter is concluded in Section 6.7.

6.1 DNN based speaker embedding

In literature, DNN based speaker embedding approaches have shown to provide promising

SV results (Variani et al., 2014; Heigold et al., 2016). In this section, we describe the following

DNN based speaker embedding approaches, namely (i) d-Vector, (ii) utterance embedding,

and (iii) speaker-phonetic embedding. The first two techniques use speaker labels for training

the DNN, while the third approach requires phonetic information as well.

6.1.1 d-Vector

The d-Vector technique is proposed in Variani et al. (2014) for phrase based text-dependent

SV. In this approach, a DNN is trained to predict speakers for each input speech frame (with

context of frames appended to it). The network architecture, as shown in Figure 6.1, consists

of a few fully connected (FC) layers and a final soft-max layer. The hidden layers of the DNN

employ rectified linear unit (ReLU) activation function. The whole network is trained to

minimize cross entropy objective function. During evaluation for an utterance, the final soft-

max layer is discarded and the activations per frame of the last hidden layer are accumulated

to obtain a speaker template (h
′
) as follows:

h
′ = 1

T

∑
t

ht , (6.1)

where ht is the hidden representation of the DNN for t th frame of speech and T is the total

number of speech frames. This representation (h
′
) is referred to as d-vector. The d-vectors of

enrollment and test data are compared to obtain SV scores. It has been shown that training a

PLDA (using d-vectors as features) is found to be helpful for SV.
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6.2. End-to-end SV

Figure 6.2: Utterance embedding approach for text-dependent SV.

6.1.2 Utterance Embedding

For the utterance embedding approach, a DNN is employed to map an utterance to a speaker

label (Snyder et al., 2018). The network architecture for performing utterance embedding

is shown in Figure 6.2. The network takes context-appended frames as input, which is then

forwarded to a few FC layers. The output of the previous step is then passed to a statistics

pooling layer. This layer computes the mean and standard deviation on the outputs of previous

layer over entire audio recording. A FC layer is applied on the output of statistics pooling

to obtain speaker embedding of an utterance (Snyder et al., 2017). A final soft-max layer is

applied to compute posterior probability of speakers. During evaluation, the last layer is

ignored and the speaker embedding of an utterance is employed. A PLDA is applied on top of

the embeddings to provide SV scores.

6.1.3 Speaker-phonetic Embedding

The previous approaches to DNN based speaker embedding require speaker labels for training.

However in literature, it has been found that training the DNN with phonetic information, in

addition to speaker, is beneficial for text-dependent SV (Chen et al., 2015c). In this approach,

the DNN is trained to optimize speaker and phonetic loss (cross entropy objective function).

The activations from the last hidden layer of Figure 6.3 are used to represent speaker-phonetic

embedding. Figure 6.3 illustrates the process of training a DNN to obtain speaker-phonetic

embedding. A back-end classifier, such as PLDA is trained on these embeddings to obtain SV

scores.

6.2 End-to-end SV

In the approaches described in the last section, the DNN is trained to classify speakers. During

evaluation, the final layer is discarded and additional post-processing steps are required in

order to perform SV. Recently Bredin (2017) introduced a end-to-end framework for training a

DNN to output SV scores directly without the need of extra steps. The end-to-end network is
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Figure 6.3: Speaker-phonetic embedding approach for text-dependent SV.

trained with Euclidean distance based loss function.

6.2.1 Triplet-loss

In this section, we describe a successful end-to-end approach, referred to as triplet-loss,

which has shown to provide state-of-the-art results in object recognition applications (Schroff

et al., 2015) and is described in the following section. Triplet-loss technique has shown to

provide encouraging results in SV as well (Li et al., 2017). The triplet-loss approach comprises

presenting three utterances (also referred to as the triplet, τ), as represented by the set {Xa , Xp ,

Xn}, as input for training the network. In literature, these examples are popularly referred to as

the anchor, positive and negative instances (Bredin, 2017; Li et al., 2017). These utterances of

the triplet are selected in such a way that the anchor and positive utterances belong to the

same class while the anchor and negative examples do not share the same speaker identity.

Assuming the hidden representation of the utterance (X) is represented by the function f(X),

the triplet loss (Etr i p ) is given by

Etr i p (τ) = d(f(Xa), f(Xp ))−d(f(Xa), f(Xn))+α, (6.2)

where d(.) is the function that computes the distance between two vectors, and α is a pre-

defined constant (0.1 is used in our experiments). The threshold (α) represents the margin

between the positive and negative examples. The most commonly used distance functions

are Euclidean and cosine similarity. In this chapter, experiments are performed using the

Euclidean distance. The network employing triplet-loss objective function is trained with

triplets (τ) for which Etr i p (τ) ≥ 0. In literature (Bredin, 2017; Li et al., 2017), a triplet (τ) can be

categorized as:

• Easy: the network can classify the triplet correctly, i.e., for which Etr i p - α ≤ 0,

• Hard: the network can not classify the triplet correctly with a margin α, i.e. Etr i p ≥ 0,

and
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6.2. End-to-end SV

Figure 6.4: The neural network architecture of triplet-loss approach for text-dependent SV.

• Semi-hard: the network misclassifies the triplet, i.e., Etr i p - α ≥ 0

In training a network using triplet-loss objective function, hard or semi-hard triplets are se-

lected for each mini-batch. We apply the same network topology as used in speaker diarization

and SV (Bredin, 2017) (as shown in Figure 6.4). The input is fed to a bi-directional Long Short

Term Memory (bi-LSTM) or a FC layer with tanh activation function to produce speaker repre-

sentation of a speech frame (Bredin, 2017; Heigold et al., 2016). This output is fed to Average

Pooling layer that computes the mean of the activations to produce a vector. This vector is

then forwarded to a FC layer to obtain speaker representation.

Let us assume that d+
τ = d(f(Xa), f(Xp )) and d−

τ = d(f(Xa), f(Xn)) refer to the positive and negative

distances respectively, then the triplet-loss for a mini-batch is defined by:

Emi ni batch =μ+−μ−+α, (6.3)

where μ+ and μ− are the averages of the positive (d+
τ ) and negative (d+

τ ) triplet distances in a

mini-batch.

6.2.2 Triplet-loss with attention

In this chapter, we also explore an extension of the triplet-loss network by applying attention

mechanism. This technique has also been used in the work to train a Siamese network (Chowd-

hury et al., 2017). The network architecture is shown in Figure 6.5. Unlike the conventional

triplet network (as described above), the Average Pooling layer (in Figure 6.5) obtains speaker

representation (h
′
) by linearly combining the hidden activations (denoted by {h1, h2, · · · , hM })

after the first layer (bi-LSTM) with a weight vector, as given by:

h
′ =

M∑
i=0

wihi ,
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Figure 6.5: The neural network architecture of triplet-loss approach with attention mechanism
for text-dependent SV.

where wi is the weight of i th speech frame. The weights are computed by using a FC (denoted

by the function g, the first FC layer of Figure 6.5) and a tanh activation function as follows

wi = tanh(g(hi )), (6.4)

and finally the weights are normalized over an utterance to obtain the attention vector as

follows

wi = wi∑
j wj

. (6.5)

The attention based speaker representation (h
′
) is then used for training the triplet-loss as

given by Equation 6.2.

6.3 Distance function for DNN

In the end-to-end approaches described in the last section, speaker representation is obtained

by computing the mean or weighted mean of the hidden activations in DNN. The distance

between two utterances is computed as the Euclidean distance between their respective

speaker vectors. However, this approach has not shown to outperform the state-of-the-art

i-vector system on a publicly available dataset (Bhattacharya et al., 2016). We hypothesize

that the degraded performance is due to the averaging operation which may ignore the

content information of the speech signal. In the past, it has been shown that performance

of text-dependent SV can be substantially improved by exploiting phonetic information of

an utterance (Chen et al., 2015b). In this section, we explore distance function that exploits

phonetic information of the speech signal implicitly (i.e. without using text-transcript).

For the proposed loss function, the network architecture is similar to that of the triplet loss
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network (Figure 6.4). The main difference is that the Average Pooling layer has been removed

from the network. Thus, an utterance produces as many hidden speaker representations as

the number of speech frames. Let us assume the two utterances (He and Ht ) produce the

following hidden representations {he,1, he,2, he,3, · · · , he,i , · · · , he,R } and {ht ,1, ht ,2, ht ,3, · · · ,
ht , j , · · · , ht ,C }. We explore three distance functions as described below.

• Average distance: The average distance (Dav g ) between two utterances He and Ht is

given by:

Dav g (He ,Ht ) = 1

RC

∑
i , j

d(he,i ,ht , j ),

where d is Euclidean distance between two vectors (he,i and ht , j ). It is to be noted that

if cosine-distance is used as d(.), then with some algebraic manipulation it can be seen

that the average distance (Dav g ) is same as the conventional triplet loss function of

Equation 6.2.

• Minimum distance: The next loss function that we consider is based on scoring using

the common set of phones between two utterances. Assuming that the hidden represen-

tation of frame of speech contains phonetic information as well, the minimum distance

(Dmi n) is obtained as follows:

Dmi n(He ,Ht ) = 1

C

∑
j

mi ni d(he,i ,ht , j ). (6.6)

This type of distance function has been used in the previous chapter (in the i-vector

framework) but mainly as a post-processing step. It is to be noted that this proposed

distance is not symmetric since Dmi n(He ,Ht ) =Dmi n(Ht ,He ). The minimum function in

Equation 6.6 aims to find the closest match of an utterance with hidden representation

ht , j against other features in He . The minimum distance function assumes that the

lexical content of Ht occurs in He . Thus, the triplet-mining is performed in such a

manner so as to preserve this condition during training.

• Attention based distance function: The previous loss function (minimum distance)

does not take into account that some of the hidden representations in Ht contain

more speaker discriminating information than the others. In order to incorporate this

information in the loss function, we propose to apply the following attention based

distance function (Dat tn):

Dat tn(He,Ht) =∑
j

w j mi ni d(he,i ,ht , j ), (6.7)

where w j is the weight of the j th hidden representation and can be computed by using a

FC layer as given by Equations 6.4 and 6.5. The network for performing this optimization
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is similar to one described in Section 6.2.2, the difference being in the distance function.

We train the network using Equation 6.2 by replacing d(.) with the respective proposed

distance functions Dav g , Dmi n and Dat tn .

The triplet-networks described earlier can be used in an end-to-end training to produce SV

scores directly by applying the appropriate distance function. It has been shown in literature,

that applying a PLDA is beneficial for SV (Snyder et al., 2018). In this chapter, we apply a

PLDA to compute the distance function d(.) as well. The PLDA is trained on these hidden

representations He and Ht by using the speaker labels for training.

6.4 Triplet-loss using first order statistics

In this section, we describe an approach to use text-transcript for training triplet-loss networks.

In literature, network such as Siamese network (similar to triplet-loss), is trained using pho-

netic information by employing first-order statistics of hidden representations (Zhang et al.,

2016). Intuitively, first order statistics summarize the contribution of speakers per phonetic

unit. First order statistics (mc ) of an utterance with hidden representations, H = {h1,h2, · · · ,hT }

is computed as follows:

mc =
∑

i
hi1i,

where 1i is an indicator function that outputs one if i th frame is assigned to cth phonetic

unit. We apply the same process for training the triplet-network and the technique for using

first-order statistics is shown in Figure 6.6. To obtain the first order statistics, a state-of-the-art

automatic speech recognizer is applied to align the development data with mono-phone units.

The modified triplet loss function minimizes the hidden representation of anchor, positive

and negative utterances based on the first order statistics as shown in Figure 6.6, (similar to

the loss function in Zhang et al. (2016)) and is given by:

Etr i p, f os(τ) =∑
c

d(ma
c ,mp

c )−d(ma
c ,mn

c )+α,

where ma
c , mp

c and mn
c are the first-order statistics of cth cluster of the anchor, positive and

negative instances respectively. The loss function (Etr i p, f os) is fully differentiable and the

gradients can be estimated efficiently with back propagation algorithm. Once the network has

been trained, the outputs after the first layer (bi-LSTM) of Figure 6.6 are collected to obtain

speaker vector. A PLDA is further trained on these vectors to produce SV scores.
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Figure 6.6: First order statistics for training triplet-loss network.

6.5 Experimental Setup

In this section, experimental setup of the baseline and the proposed systems are described.

6.5.1 Evaluation and Training Data

Experiments are performed on Part 1 and 3 portion of the RSR2015 dataset as described in

Section 2.10.2. In this chapter, we are interested in evaluating the proposed techniques for

speaker-mismatch trials only, for both the tasks. We used RSR2015 data (development and

background) since using additional out-of-domain data (Fisher corpora) has not been found

to be helpful for DNN based speaker embeddings. In-order to be consistent with the amount

of training data, we used RSR2015 as the training data for the baseline and the proposed

systems. Thus no out-of-domain data is used. The training data consists of 61 k utterances

spoken by 94 speakers.

6.5.2 i-vector

We applied the standard MFCC features (with STG) as used in all the chapters. Due to the

limited training data, we trained a smaller dimensional i-vector extractor. A 512 mixture

GMM-UBM is trained on the training data and 200 dimensional i-vector extractor is trained

subsequently. Finally, a PLDA is trained as part of the standard recipe of text-independent

system with speaker labels of training data.

6.5.3 Speaker embeddings and end-to-end SV

For the d-Vector, we trained a single layer FC based system with the training data of RSR2015.

We used only 940 utterances as the cross-validation data from the 94 speakers. We obtained

100% accuracy on the training and development data using the cross entropy loss function.

For the triplet-loss network, we use hard-triplets for training the network (Schroff et al.,

2015). At any epoch, we generate triplets (Xa , Xp , Xn) such that the phonetic content of these
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utterances (Xa , Xp , Xn) has maximal overlap. This leads to creating a total of 200 k triplets

per epoch. We randomly choose a subset of these triplets to train the triplet-loss network. A

learning rate of 0.001 was used throughout the experiments. A 1 k dimensional hidden layer is

used in all the experiments. Pytorch was used for performing the experiments (Pytorch, 2017).

6.6 Experimental Results and Discussions

In this section, we describe the results obtained with the baseline and the proposed

systems. We evaluated the performance of the following systems on fixed-phrase and

random-digit strings tasks:

• MAPGMM: This the baseline GMM-UBM as described in Section 2.4.

• i-vector: This is the conventional i-vector PLDA employing GMM-UBM. A PLDA is

trained as the backend classifier.

• d-Vector: For d-Vector, a FC hidden layer is used as the network architecture for obtain-

ing speaker representation. Section 6.1.1 describes the conventional technique to apply

d-Vector. The d-Vector employs a PLDA model for scoring.

• Spk-Phn: This approach involves minimizing the speaker and phonetic losses as de-

scribed in Section 6.1.3. We used only one hidden FC layer with ReLU activation function.

The hidden activations from last layer of DNN are averaged to obtain speaker represen-

tation. A PLDA is further trained on these representations for obtaining SV scores.

• Uttr-Embed: This approach is described in Section 6.1.2 and consists of obtaining

speaker embedding for an utterance. A back-end classifier, such as PLDA, is trained on

top of speaker embeddings to produce SV scores.

• Triplet: This system optimizes the triplet-loss function on three utterances. The triplet-

loss network is described in Section 6.2. This technique uses a bi-LSTM and a FC layer.

Speaker representation of an utterance is obtained by collecting the activations after

the Average Pooling layer (See Figure 6.4). Furthermore, a PLDA model is trained on

these representations. The proposed triplet-loss network applying first order statistics

(as described in Section 6.4) is referred to as Triplet-Stats. For this approach, the output

activations after the bi-LSTM layer of Figure 6.6 are collected to obtain speaker vector.

A PLDA is trained on these vectors for producing SV score. The approach applying

attention based mechanism (as described in Section 6.2.2) is referred to as Triplet-Attn

and described in Section 6.2.2.

• Proposed systems: The triplet-loss network applying the average, minimum and

attention-based distance are referred to as Avg-Dist, Min-Dist and Attn-Dist (as de-

scribed in Section 6.3) respectively. The proposed techniques are evaluated using
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Table 6.1: Performance of the various systems in terms of EER (%) on RSR2015 fixed-phrase
and random-digit strings. The MAPGMM performs the best.

Systems fixed-phrase (%) random-digit strings (%)
MAPGMM 2.3 7.8
IvecGMM

PLDA 4.3 11.8
d-Vector 4.5 12.3
Uttr-Embed 4.5 12.4
Spk-Phn 4.3 12.7

Table 6.2: Performance of the various triplet-loss network in terms of EER (%) on RSR2015
fixed-phrase and random-digit strings. The Triplet-Attn performs the best.

Systems fixed-phrase (%) random-digit strings
Triplet 6.9 15.2
Triplet-Attn 4.4 11.7
Triplet-Stats - 12.4

end-to-end objective function. We also evaluate the performance of the proposed

approaches on applying a PLDA as a post-processing step.

6.6.1 Baseline

We first describe the i-vector, GMM-UBM based SV. From Table 6.1, it can be observed that

the MAPGMM significantly outperforms the IvecGMM
PLDA for both the tasks. The peformance of

IvecGMM
PLDA is worse than the result reported in Chapter 4 for fixed-phrase task. This difference

in performance could be due to that the IvecGMM
PLDA in Chapter 4 is trained using Fisher data.

However, the performance of MAPGMM is significantly better than the result of GMM-UBM in

the last chapter for random-digit strings. We consider the MAPGMM as the baseline system for

fixed-phrase and random-digit strings.

6.6.2 DNN based speaker embedding

Table 6.1 shows the performance of d-Vector, Uttr-Embed, Spk-Phn for SV. The SV results

of these DNN based speaker embedding approaches are obtained by a PLDA model. From

Table 6.1, it can be observed that SV performances of these approaches are very close to each

other. The Spk-Phn provides good performance for the fixed-phrase task, while d-Vector

provides good result for the random-digit strings. However, the performances of these ap-

proaches (d-Vector, Uttr-Embed, Spk-Phn) are worse than the MAPGMM.
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Table 6.3: Performance of the various proposed systems in terms of EER (%) on RSR2015 for
fixed-phrase and random-digit strings. The systems are evaluated using end-to-end objective
function.

Systems fixed-phrase (%) random-digit strings (%)
Avg-Dist 11.2 29.7
Min-Dist 1.8 7.6
Attn-Dist 9.4 29.1

6.6.3 Triplet-loss

From Table 6.2, we observe that the performance of Triplet is worse than d-Vector and MAPGMM.

It is to be noted that Triplet provides an EER of 23.2% using end-to-end loss (PLDA was not

applied in this system) for random-digit strings task. An explanation of the poor perfor-

mance of the triplet-loss approach could be that it requires large speaker population to

provide results comparable to GMM-UBM. The Triplet-Stats performs better than Triplet for

random-digit strings which indicate that text-transcription is beneficial for SV. The network

employing Triplet-Stats could not be trained for the fixed-phrase task as we observed that

the objective function did not converge during training.

We now describe the triplet-loss approach using attention mechanism as described in Sec-

tion 6.2.2. The Triplet-Attn performs better than Triplet for both the tasks. Thus show-

ing the importance of attention weights in producing speaker representation of an utter-

ance. Furthermore, Triplet-Attn outperforms the baseline IvecGMM
PLDA by 0.1% absolute EER for

random-digit strings. However, Triplet-Attn perform worse than MAPGMM.

6.6.4 Proposed distance based approaches

Table 6.3 shows the performance of the proposed SV approaches evaluated against their

respective end-to-end objective function as described in Section 6.3. The results show that

the Min-Dist performs the best among the proposed approaches and outperforms MAPGMM

by relative EER of 21.7% (from 2.3% to 1.8% absolute) and 2.6% (from 7.8% to 7.6% absolute)

for fixed-phrase and random-digit strings respectively. The performances of Avg-Dist and

Attn-Dist are worse than the Min-Dist. Thus, showing the importance of selecting common

phonetic regions between utterances for producing SV scores.

We also investigate the use of PLDA to compute end-to-end scores instead of Euclidean dis-

tance. Table 6.4 shows the performance of the proposed system on applying PLDA model.

We observe that SV performances of all the systems improve on using the back-end classifier

on top of the hidden DNN representations. The Attn-Dist benefits the most from applying

PLDA with absolute improvement in EER of 23.7% (from 29.1% to 5.4%) and it outperforms

the MAPGMM by 31% relative EER (from 7.8% to 5.4% absolute). The Min-Dist provides the
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Table 6.4: Performance of the various systems in terms of EER (%) on RSR2015 fixed-phrase and
random-digit strings. The systems are evaluated using end-to-end objective function using a
back-end PLDA classifier.

Systems fixed-phrase (%) random-digit strings (%)
Avg-Dist 3.4 15.7
Min-Dist 1.2 5.0
Attn-Dist 1.4 5.4

Table 6.5: Performance of the best performing systems in terms of EER (%)/minDCF (×100) for
fixed-phrase and random-digit strings.

Systems fixed-phrase random-digit strings
MAPGMM (Table 6.1) 2.3/1.03 7.8/3.71
Min-Dist (Table 6.4) 1.2/0.63 5.0/2.56
Attn-Dist (Table 6.4) 1.4/0.68 5.4/2.75

best performance with 1.2% and 5.0% for fixed-phrase and random-digit strings respectively.

Furthermore, we investigated whether the attention weights in Equation 6.7 put more empha-

size to vowels and nasals compared to other phoneme units. However, we did not find any

correlation between the attention weights and phoneme units.

6.6.5 Summary of experiments on the RSR part 1 and 3

The minDCF and DET plots of some of the best performing systems on fixed-phrase and

random-digit strings are presented in Table 6.5 and Figures 6.7 and 6.8 respectively. The

systems include, (i) MAPGMM, (ii) Min-Dist, and (ii) Attn-Dist. It can be observed from Table 6.5

that Min-Dist performs better than the baseline MAPGMM by 41% relative minDCF (from 1.03

to 0.63 absolute) and 31% relative minDCF (from 3.71 to 2.56 absolute) for fixed-phrase and

random-digit strings.

6.7 Conclusions

This chapter explores novel ideas in building end-to-end DNN based text-dependent SV

system. The baseline approach consists of mapping a variable length speech segment to a

fixed dimensional speaker vector by estimating the mean of hidden representations in DNN

structure. The distance between two utterances is obtained by computing L2 norm between

the vectors. This approach performs worse than the conventional GMM-UBM based SV on a

publicly available corpora. We believe that a degraded performance is due to the employed

averaging operation, which may not capture the phonetic information of an utterance. We
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Figure 6.7: DET curve of the systems presented in Table 6.5 for fixed-phrase task.
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Figure 6.8: DET curve of the systems presented in Table 6.5 for random-digit strings.

propose to incorporate content information of the speech signal by computing distance func-

tion with linguistic units co-occurring between enrollment and test data. The whole network

is optimized by employing a triplet-loss objective in an end-to-end fashion to estimate SV

scores. Experiments on the RSR2015 dataset indicate that the proposed approach outper-

forms MAPGMM by 48% and 36% relative EER for fixed-phrase and random-digit conditions

respectively.
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7 Conclusions and future work

7.1 Conclusions

In this thesis, we explored the application of phonetic knowledge (in addition to speaker char-

acteristics) to address text-independent and text-dependent SV tasks. The phonetic knowledge

is used in the i-vector PLDA framework by computing sufficient statistics computed from the

senone posterior probabilities obtained at the output of DNN acoustic model. This technique

was extended in several ways to address various text-independent and text-dependent SV

scenarios.

For text-independent SV, SGMM model was proposed and employed to extract low dimen-

sional speaker vectors that capture speaker characteristics in addition to phonetic knowledge.

The performance was further improved, replacing SGMM by HMM/DNN allowing to extract

complementary linguistic information using DNN based ASR. In addition to senone posterior

probabilities estimated directly from the DNN output, the posteriors were also extracted

from ASR word recognition lattices (i.e. smoothed by lexicon and language model), to be

subsequently applied for i-vector extraction. The proposed approach performs better than

the baseline i-vector system by 10% relative EER on Condition 5 of SRE10. We found a positive

correlation between the phone and speaker recognition accuracies.

In this thesis, we explored two text-dependent SV scenarios, namely, (i) fixed-phrase and (ii)

random-digit strings. For fixed-phrase case, the technique developed for text-independent

SV was applied to extract i-vectors. Since this approach ignores information captured by a

sequence of acoustic units, we developed new techniques to incorporate this information by

using dynamic time warping combined with online i-vectors. The proposed approach outper-

forms the baseline approach by 95% and 70% relative EER on content and speaker mismatch

conditions respectively. This result shows the importance of online i-vectors and DTW algo-

rithm to capture the sequence and speaker information effectively. For random digit strings,

we explored a technique that aims to match the lexical-content of the enrollment to the test

data using online i-vectors as features. In particular, the proposed approach performs bet-

ter than the baseline system by 12% relative EER which shows the importance of matching
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phonetic units between utterances.

We also explored the application of DNN based speaker embedding for text-dependent SV. Un-

like building DNN to classify acoustic units, the DNN was trained (in an end-to-end fashion) to

directly discriminate speakers. As opposed to training several SV components independently,

we incorporated both speaker and phonetic information in the neural network framework

for text-dependent SV (fixed-phrase and random-digit strings). We exploited phonetic infor-

mation by computing a distance function with linguistic units common to both enrollment

and test data. The whole network was then optimized by employing a triplet-loss objective

function to produce SV scores. Experiments on the fixed-phrase and random-digit strings

showed that the proposed approach improved upon the baseline system by 36% and 48% rela-

tive EER. This result indicate the importance of applying phonetic information for end-to-end

SV.

7.2 Future work

In this work, the text-independent SVs were evaluated on NIST SRE 2010, which has En-

glish speakers only (Chapter 3) (Martin and Greenberg, 2010). Unfortunately, the dataset

lacks linguistic variability as compared to more recent NIST evaluations (SRE 2012 and SRE

2016) (Sadjadi et al., 2017; Greenberg et al., 2013). These more recent NIST challenges eval-

uates SV approaches across multiple languages and acoustic conditions. Therefore, the

techniques proposed in Chapter 3 need to be evaluated under the conditions available in

these benchmark datasets. In this context, multi-lingual ASR might offer a good solution to

replace mono-lingual engines in the DNN i-vector framework (Lei et al., 2014) to deal with

under-resources languages.

The end-to-end approach (as proposed and explored in Chapter 6) can be extended for text-

independent SV. In this case, the spoken content in the test data is not necessarily present in

the enrollment utterance. Thus, the loss function for training the neural network (as presented

in Chapter 6) can be modified to reflect this case. Therefore, exploring the loss function

for triplet-loss approach in text-independent SV could be a potential research direction.

Furthermore, the triplet-loss approach as presented in Chapter 6, requires selecting triplet

instances for training. We choose triplets by exploiting phonetic information of utterances. In

text-independent SV, efficient strategies for obtaining triplets need to be investigated that do

not require task-related knowledge.
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