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Abstract
This thesis aims at demonstrating a novel technique for the characterization of interfaces

obtained by a CMOS-compatible Surface Activated Bonding (SAB) process between silicon

wafers. This enables the optimization of the two main components of monolithic silicon

detectors, the CMOS circuitry for the read-out and the sensing layer, by fabricating them in

different substrates and then by bonding them together. Therefore, to be collected by the

read-out circuitry, charges generated by radiation in the bulk have to traverse the bonding

interface, whose electrical properties need to be characterized.

The first part of this thesis is focused on the evaluation of Transient Current Technique (TCT)

for this purpose. TCT is largely used for the study of radiation damage in silicon detectors, and

consists in the injection of a localized cloud of electrons inside a detector based on a reverse-

biased diode, that is drifted by the electric field. A transient current signal is generated, whose

shape is related to the electric field profile that may be affected by lattice defects generated

by radiation. In this context, the bonding process is expected to generate a thin amorphous

silicon interface between the two bonded substrates. This layer can be seen as full of defects

and therefore it is expected to influence the electric field, and the TCT current signal. This is

demonstrated by means of Sentaurus TCAD numerical simulations and an analytical model,

using a diode with the bonding interface in the middle of the bulk as test structure.

The second part of the thesis describes the characterization of the interface, generated by

bonding high resistivity wafers at CEA-Leti in Grenoble. For this purpose, Schottky diodes are

fabricated on these stacks at EPFL, and then characterized with CV, IV and TCT techniques.

The results obtained are compared to simulation data, to show that the electric field did not

extend to the bulk, preventing charges to be collected. This is an issue for the fabrication of

radiation detectors, since there would not be collection of charges generated at the sensing

bulk. Following these conclusions, two solutions are proposed. First, the optimization of the

bonding process to reduce the number of traps. Second, a modification of the detector design

in such a way that the bonding interface is located at the PN junction, since the electric field is

maximum at this position, and therefore the influence of traps is less important.

The last part of this thesis is devoted to the description of a new charge injection technique for

TCT measurements. Instead of using a laser, charges are injected by means of nanosecond

voltage pulses, applied to dedicated wells fabricated on the PN junction contact. Injection

occurs by thermionic emission, while the charges drift, as in standard TCT measurements.

This novel method of charge injection is called electrical injection TCT (el-TCT). It could allow

to perform on-line TCT measurements during experiments.
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Sintesi
L’obiettivo di questa tesi è presentare un lavoro di caratterizzazione dell’interfaccia prodotta da

un processo di bonding SAB (Surface Activated Bonding) compatibile con la tecnologia CMOS.

Questo processo permetterebbe l’ottimizzazione delle due principali componenti dei sensori

monolitici, attraverso la loro fabbricazione su due differenti tipi di wafer, poi fusi insieme: il

circuito di read-out e il volume sensibile alle radiazioni. Le cariche, che normalmente vengono

generate nel volume sensibile alla radiazione, devono essere raccolte dal circuito di read-out,

e quindi passare attraverso l’interfaccia di bonding, ragione per cui la caratterizzazione delle

sue proprietà elettriche è di fondamentale importanza.

La prima parte di questa tesi sarà dedicata alla valutazione della Transient Current Technique

(TCT) a questo scopo. La TCT è largamente utilizzata per lo studio del danno da radiazione

in sensori di silicio, e consiste nell’iniezione di una nuvola di cariche localizzata in un diodo

in polarizzazione inversa, che viene trasportata dal campo elettrico. Ne risulta un segnale

di corrente transitoria, la cui forma è legata a quella del profilo del campo elettrico, che puó

essere influenzato dalla presenza di difetti nel reticolo cristallino. In studi precedenti è stato

evidenziato il fatto che il processo di bonding genera una sottile interfaccia di silicio amorfo,

che puó essere considerato come uno strato pieno di difetti nel reticolo cristallino, che puó

quindi influenzare il campo elettrico e in ultima analisi il segnale TCT. Questo fenomeno

viene dimostrato attraverso simulazioni di un diodo con l’interfaccia situata nel mezzo del

suo volume, utilizzando il software Sentaurus TCAD e un modello analitico.

La seconda parte di questa tesi riguarda il metodo di caratterizzazione dell’interfaccia, gen-

erata in wafer di silicio ad alta resistività, fusi da CEA-Leti a Grenoble. Il metodo consiste

nella fabbricazione di diodi Schottky sui wafer, e nello studio delle loro caratteristiche CV, IV

e TCT, che combinato a simulazioni, dimostra che il campo elettrico non si estende al di là

dell’interfaccia, bloccando di fatto la raccolta di cariche. Questo rappresenta un importante

problema per i sensori di radiazione, dato che nel caso di una fabbricazione tramite il processo

di bonding, questi non potrebbero raccogliere la carica generata. Per questo motivo vengono

proposte due soluzioni: la prima consiste nell’ottimizzazione del processo di bonding, per

ridurre il numero di difetti all’interfaccia, la seconda nella modifica del design del sensore in

modo tale che la giunzione PN si trovi alla stessa posizione dell’interfaccia, avendo quindi il

massimo del campo elettrico in quel punto, rendendo l’influenza dei difetti meno importante.

L’ultima parte di questa tesi riguarderà la descrizione di una nuova tecnica di iniezione di

carica per misure TCT. In questo caso, al posto di un’iniezione di carica basata sull’utilizzo di

un laser pulsato (tecnica standard), essa sarà basata sull’utilizzo di un impulso di tensione
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lungo un nanosecondo, applicato a particolari contatti fabbricati sulla giunzione PN. Questa

tecnica viene chiamata electrical injection TCT (el-TCT), e permetterebbe di effettuare misure

TCT durante gli esperimenti.

Parole chiave: Caratterizzazione di dispositivi in silicio, CERN, Compatibilità CMOS, Fisica dei

semiconduttori, Microfabbricazione di silicio, Modello analitico e TCAD, Sensori di radiazione

monolitici, SAB (Surface Activated Bonding), Transient Current Technique, Wafer bonding.
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Résumé
Cette thèse présente une étude portant sur la caractérisation électrique de l’interface qui

est générée par un processus de collage SAB (Surface Activated Bonding) de wafers en sili-

cium compatible avec la technologie CMOS. Celui-ci permettrait l’optimisation des deux

composants du capteur monolithique de radiation réalisés sur deux substrats différents qui

seront collés: un abritant le circuit CMOS pour la détection du signal, l’autre pour la zone

de d’interaction avec les particules . Cependant, les charges générées par radiation dans le

substrat doivent être collectées par le circuit CMOS, et donc passer à travers l’interface de

collage. Il est donc essentiel que ses propriétés électriques de cet interface soient évaluées.

La première partie de ce travail sera dédiée à l’étude de la Transient Current Technique (TCT)

en tant qu’outil de caractérisation. La TCT est largement utilisée pour évaluer les dommages

de radiation dans les capteurs en silicium. Celle-ci est basée sur l’injection d’un nuage de

charges localisé dans la zone de déplétion étendue d’une diode PIN polarisée en inverse. Ces

charges sont ensuite transportées par le champ électrique créant un courant électrique. La

forme de ce courant transitoire est liée au profil du champ électrique, lui-même influencé

par la présence de défauts dans le réseau cristallin du silicium. Dans des études antérieures,

il a été démontré que le collage covalent introduit une interface de silicium amorphe, qui

peut être vue comme une couche ayant une forte concentration de défauts, et donc de pièges

pour les porteurs de charge, ce qui peut influencer le champ électrique et donc le signal TCT.

Cette hypothèse est démontrée en utilisant des simulations numériques réalisées avec l’outil

Sentaurus TCAD, puis avec un modèle analytique, pour une diode où l’interface de collage est

située dans le volume.

La deuxième partie de cette thèse est dédiée à la description de la méthode de caractérisation

de l’interface généré par un collage réalisé par le CEA-Leti à Grenoble. Après la fabrication

de diodes Schottky sur ces plaques, leurs caractéristiques CV, IV et TCT sont mesurées. Cette

analyse conclue que le champ électrique est écranté par l’interface, et que les charges qui

sont générées au delà ne peuvent plus être collectées. Ceci pourrait s’avérer être un problème

majeur pour les capteurs de radiation qui ne pourront plus collecter les charges induites. Dans

ce cas, deux solutions sont proposées. La première est l’optimisation du processus de collage

pour réduire la présence de pièges à l’interface. La deuxième est le design du capteur de sorte

que l’interface se situe au niveau de la jonction PN, là où le champ électrique est maximum et

donc où l’influence des pièges est plus faible.

La troisième et dernière partie de cette thèse se consacre à la description d’une nouvelle

technique pour réaliser l’injection des charges pour les mesures TCT. Au lieu d’utiliser une
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lumière laser pulsée, comme dans les mesures standard, l’injection se base sur l’application

de pulses de tension d’une durée d’une nanoseconde. Cette technique est appelée electrical

injection TCT (el-TCT), et pourrait aider à réaliser des analyses TCT des capteurs pendant les

expériences.

Mots-clés: Capteurs de radiation monolithiques, Caractérisation de dispositifs en silicium,

CERN, Collage de plaques en silicium, Compatibilité CMOS, Microfabrication en silicium,

Modèle analytique et TCAD, Physique des semiconducteurs, SAB (Surface Activated Bonding),

Transient Current Technique.
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1 Introduction

The work presented in this thesis concerns two main topics. The first one deals with the

characterization of electrical properties of thin interfaces inside silicon bulk, generated by a

CMOS-compatible, low temperature silicon covalent bonding process, to study the feasibility

of using this process for the fabrication of silicon pixel detectors for CERN experiments. For

this purpose, the Transient Current Technique (TCT) , largely used for the assessment of

radiation damage in silicon detectors, is selected. The work on TCT led to the realization of

a new device to perform measurements with this technique, that is the second topic of this

thesis. The chapters structure is the following:

Chapter 1: This is the introduction chapter. It summarizes the history of CERN and then

introduces silicon radiation detectors, with a focus on pixel detectors. After this, an

analysis of low temperature silicon bonding processes and a description of different

kinds of TCT measurements are proposed.

Chapter 2: In this chapter, the study of TCT measurements applied to the characterization

of bonding interfaces is described with the aid of Technology Computer-Aided Design

(TCAD) analysis and the development of an analytical model to study the physics behind

TCT in this particular case.

Chapter 3: In this chapter, measurements and characterization of thin bonding interfaces

by means of TCT on Schottky diodes are performed, introducing a method that can be

used for any case in which characterization of thin interfaces in bulk silicon need to be

performed.

Chapter 4: In this chapter, the development of a new TCT method, to perform measurements

with a setup simpler than the standard one, and to implement in-situ characterization

of detectors during their use in experiments, is described.

Chapter 5: In this last chapter, conclusions about this thesis are drawn, and outlooks for

future developments are listed.
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Chapter 1. Introduction

1.1 CERN and HEP experiments
The first idea of a european atomic laboratory in which scientists from different countries could

work together was conceived in 1949. The location for this laboratory was chosen to be the

Meyrin site in Switzerland, where construction started in 1954. The European Organization

for Nuclear Research (CERN, from the french name Conseil Européen pour la Recherche

Nucléaire), was born in the same year, for the study of particle physics with high energy

physics (HEP) experiments [1]. An HEP experiment consists in the collision of particles that

have been previously accelerated, that generate radiation [2]. Tracking its position and energy

using radiation detectors, that will be introduced in the next section, allows the study of the

composition and nature of matter, and the origins of universe. The start-up of the first CERN

accelerator, the synchrocyclotron, that provided the beams for the CERN first experiments,

was in 1964. After this, the number of CERN accelerators started to increase, leading to the

important discoveries carried on in this research center (the first observation of antinuclei

in 1965, the discovery of particles related to weak interaction in 1983, the production of the

first antiatom, the antihydrogen, in 1995). Following these results, in 1994 the construction

of the biggest accelerator, the Large Hadron Collider (LHC), was approved, to reveal the

physics beyond the Standard Model with center of mass collision energies of up to 14 TeV [3].

HEP experiments using this machine started to be designed. In 1997, two important general

purpose experiments, designed to explore the fundamental nature of matter, were approved,

CMS (Compact Muon Solenoid) [4] and ATLAS (A Toroidal LHC ApparatuS) [5]. Two other

experiments were approved in 1997 and 1998, respectively the ALICE (A Large Ion Collider

Eperiment) experiment, for the study of physics of strongly interacting matter at extreme

energy densities [6][7], and the LHCb (Large Hadron Collider beauty experiment), to explore

the universe evolution in the instants after the Big Bang occurred [8][9]. The construction of

LHC, in figure 1.1, started in 2000 [10].

Figure 1.1 – View of the accelerators complex at CERN [11].

From a technological point of view, this is a very challenging machine. Indeed, the highest
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luminosity (ratio of the number of events detected per second versus the interaction cross

section) required for experiments is 1034 cm-2s-1, and to achieve these values, the needed

magnetic field (to allow the circular path of charged particles inside the accelerator ring) is

8.33 T. Moreover, an enormous amount of energy (more than 1 GJ) is stored inside the machine

(energy that needs to be dissipated at the end of each run) [10]. Data analysis in HEP physics

is also a challenge, considering that experiments have a very high data rate generated by the

detectors during runs. In HEP experiments, radiation detectors apparatus are disposed around

the collision point. Figure 1.2 shows the composition of the ALICE experiment, where it is

possible to observe examples of radiation detectors: the Inner Tracking System (ITS, made of

silicon detectors, for particle tracking), the Time Projection Chamber (TPC, a gaseous detector

for particle tracking and identification) [13], and the ElectroMagnetic Calorimeter (EMCal,

a scintillation detector to study the physics fo jet quenching) [7]. The biggest achievement

obtained thanks to LHC, has been the discovery of a new particle in 2012, the Higgs boson

[1]. This was the confirmation of the theory of Robert Brout, Francois Englert and Peter Higgs,

that explains the origin of the mass of subatomic particles as the result of the interaction with

the Higgs field, whose visible manifestation is therefore the Higgs boson [14].

Figure 1.2 – Scheme of the ALICE experiment apparatus, with different types of radiation
detectors: silicon detectors (ITS), gas detectors (TPC), scintillation detectors (EMCal) [7].

1.2 Radiation detectors
Radiation detectors are devices that convert the energy of a particle (whose passage is called

event) into an electrical signal [15]. Radiation particles are divided in two main categories:

charged (fast electrons, heavy charged particles) and uncharged (Neutrons and electromag-

netic radiation). Radiation detectors can operate in three different modes: the pulse mode,

the current mode and the mean square voltage mode. In pulse mode, each event is detected,
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generating a current pulse. At high event rates, this mode becomes impractical. The current

mode is based on recording the current from events in a fixed integration time. The mean

square voltage mode is based on filtering the average integrated current and detecting only the

fluctuating signal [15]. Pulses amplitude is realted to the energy and the type of particle that

causes the event. Therefore, one of the outputs from this kind of detectors is the amplitude

distribution of pulses. Important properties of radiation detectors are the threshold level for

detection (a property of the counter circuit, that is the minimum pulse amplitude for the event

to be detected), energy resolution (that is how much the output energy distribution from a

monoenergetic radiation source is wide), detection efficiency (that is the numebr of recorded

pulses versus the number of impinging particles) and the dead time (that is the minimum

time needed between two subsequent events to be detected)[15]. Different radiation detectors

are available for HEP experiments:

• Ionization chambers: detectors filled of gas (as the TPC in figure 1.2), that is ionized by

the passage of a particle. The resulting charge is collected using an electric field.

• Scintillation detectors: based on the use of materials that generate light once traversed

by a radiation particle. Light is then collected by photodetection devices [15]. An

example is the EMCAL in figure 1.2.

• Semiconductor radiation detectors: based on the use of devices fabricated with semi-

conductors as silicon, that is the most used (as the ITS in figure 1.2). They present

important advantage with respect to the other types: they are much more compact

than gas filled detectors, and they present better energy resolution than scintillation

detectors [15].

Since the topic of this thesis is related to silicon pixel detectors, the following sections will be

focused in the introduction of this particular kind of radiation detectors.

1.2.1 Silicon radiation detectors
Silicon radiation detectors have been studied since the early 1960s, due to their high energy and

spatial resolution, linearity of characteristics over a wide range of particles energy, possibility

of realizing experiments geometries, insensitivity to magnetic fields, working capacity at low

temperatures, compact design, mechanical strength, etc. [16][17]. The possibility of using

silicon detectors for HEP experiments has been demonstrated since 1965, and then studied

for many particle accelerators since 1970s. Advancements in development of fabrication

processes and electronics design led to the possibility of implementing silicon in position-

sensitive detectors [16].

Particles interaction with silicon detectors

To understand the behavior of a silicon detector, it is necessary to know how the energy is

transferred from the impinging particle. Particles traveling inside a material lose energy along

their path due to interactions with atoms, that depend on the particle type.
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• In case of neutrons, it is possible to observe interactions only with atomic nuclei, and not

with orbital electrons. Two different interactions are possible: elastic scattering (where

the neutron is scattered by a nucleus, whose structure is not modified and could be left

in an excited state due to recoil velocity, leading to the release of gamma radiation) and

inelsastic scattering (where the neutron is captured by the nucleus, leading to radiation

generation or fission).

• In case of heavy charged particles, interactions are mostly with electrons surrounding

the nucleus. This leads to excitation of electrons, or ionization, in case the electron gains

enough energy to escape from the atom. These interactions cause energy loss of the

particle traveling inside silicon. Once the majority of the energy is lost, elastic collision

with nuclei could occurs [18]. For heavy charged particles, the energy loss (or stopping

power) along the track is described by the Bethe equation (1.1) [19].

−
〈

dE

d x

〉
= K z2 Z

A

1

β2

[
1

2
ln

2me c2β2γ2Tmax

I 2 −β2 − δ(βγ)

2

]
(1.1)

Where
〈

dE
d x

〉
is the mean rate of energy loss, z is the charge of the incident particle, Z is

the atomic number of absorber material, A is the atomic mass, β is the particle velocity

expressed as multiple of light velocity c, me is the electron mass at rest, c is the light

velocity, γ is the Lorentz factor, γ= 1/
√

1−β2, δ(βγ) is the density effect correction to

ionization energy loss. An example of the behavior of stopping power with the particle

momentum (or kinetic energy) in case of a positive muon in copper is shown in figure

1.3.

• In case of fast electrons, the Bethe formula should be modified, since they could lose

energy also by radiative processes (bremsstrahlung or electromagnetic radiation) [15].

• In case of electromagnetic radiation (X-rays and gamma rays), they are completely

absorbed by the material, exciting electrons.

Electrons excitation results in the generation of electrons holes pairs. Radiation detectors are

designed in such a way that these pairs are generated in a region where an electric field is

present, or close to it. Therefore, they are drifted by the field, generating a current that is then

detected by read-out electronics [15].
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Figure 1.3 – Stopping power of positive muons in copper. The Bethe function predict the
stopping power for a range between 10 MeV/c and 10 GeV/c.

Radiation damage in silicon

The energy transferred to the silicon substrate of a detector generates the electrons holes pairs

needed for the detection, but also damages the material. Two type of radiation damages are

possible: atomic displacement (where silicon atoms are displaced from their position inside

the cystalline lattice) and ionization. Common defects caused by atomic displacement in

silicon are the Frenkel pairs, consisting in a couple of so-called intrinsic defects, a vacancy

(the absence of a silicon atom in the crystalline lattice) and an interstitial (the presence of

an atom, in this case silicon, in normally unoccupied positions of the lattice) [20]. Defects

could aggregate, generating groups that behaves in a different way compared to the single

defect, such as dual vacancies [21] and dual interstitials [22]. Moreover, they can aggregate

with impurities inside silicon, such as oxygen, phosphorus, boron. Many of these defects

are electrically active, introducing energy level inside the silicon forbidden energy band.

These levels are responsible for recombination processes, trapping, change of effective doping

concentration in silicon bulk, and therefore also of the electric field profile [23]. Ionization

consists in the generation of electron hole pairs [20]. In silicon detectors, this is not a problem

since it is the mechanism through which particle detection occurs, while this could be a

problem for dielectrics, since charges generated in these materials could be trapped [24],

generating a fixed charge that influences the properties of electronics devices [20]. A category

of silicon detectors used for particle tracking are the pixel detectors, whose fabrication is of

interest in this thesis.
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1.2.2 Pixel detectors
Silicon pixel detectors are commonly used for the detection of radiation in particle physics

and imaging applications [25], as well as in the biomedical field [26]. They are fast (able to

take millions of picture per second), allowing to detect short-lived particles, matching the

requirements for HEP experiments at CERN [27]. The operation of a pixel detector is based on

the reverse bias configuration of a PiN (or NiP) diode, composed of an high doped P-type (or

N-type) implant, and a low doped N-type (or P-type) bulk, also called high resistivity bulk, that

is the sensor part of the detector. In reverse bias configuration, it is depleted up to a depth W

that depends on the applied voltage following equation (1.2).

W =
√

2ε0εSi

(
V

eN

)
(1.2)

Where ε0 is the vacuum permittivity, εSi is the silicon relative permittivity, V is the applied

voltage, e is the electron charge and N is the doping concentration in the high resistivity bulk.

Particles crossing the detector will generate charge carriers, that themselves generate a current

pulse, detected by the read-out electronics, in case they are collected by the electrode of the

diode. Collection can occur in two ways: by drift, if charges are generated inside the depletion

region (short collection time), or by diffusion, if they are generated outside the depletion

region (long collection time, and therefore they are more subjected to recombination). Figure

1.4 shows the cross section of a pixel detector and the two collection mechanisms [27]. As

explained in section 1.2.1, radiation damages increase recombination rate in silicon [28], and a

slow charge collection leads to charge, and therefore signal, loss. A detector based on diffusion

collection is therefore less radiation hard than drift [29]. Two main approaches can be followed

when manufacturing pixel detectors, the hybrid approach and the monolithic approach [27].

Hybrid pixel detector

Hybrid pixel detectors (in figure 1.4) consist in devices where the sensor matrix and the read-

out electronics are fabricated on two different substrates and then matched, typically by bump

bonding [27]. The reverse bias is usually applied on the back side of the detector, while the

front side is connected to ground. Hybrid pixel detectors are radiation hard, with an high

signal to noise ratio close to 100, and provide high space resolution in three dimensions and

high time resolution [27]. This has been shown to work in HEP experiments [31]. Examples of

hybrid pixel detectors are the MEDIPIX chip (for X-ray radiography) [34] and the Medipix 2

SINGLE chip [35], in which a CdTe sensor is used [26]. Capacitive coupled hybrid detectors

have been also proposed. In this case, the signal can be transmitted from the sensor to the

read-out electronics through capacitive coupling, avoiding expensive bump bonding [33].

Monolithic pixel detector

Monolithic pixel detectors integrate the detection sensor and the read-out electronics on the

same substrate and technological process (see figure 1.5) [27]. This avoids the high density

of interconnections, allows to lower the noise and it is a more robust solution. Since both

parts share the same bulk, two different cases are possible: one in which the sensor drives
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Figure 1.4 – Cross section of an hybrid pixel sensor. The read-out electronics is connected
through a bump bonding to the sensor. Charge generated by the passage of a particle is
collected by drift inside the depletion region, in green inside the sensor. Diffusing charges
follow a random path, and they are collected only when they reach the depletion region
(adapted from Petra Riedler [30]).

the development, and one in which the read-out electronics drives the development [27]. An

example of a monolithic detector is the DEPFET (DEPleted Field Effect Transistor) design

[36]. In this case, the bulk is chosen to be of high resistivity type. Therefore, the width of

the depletion region is large, and drift collection occurs. However, since the existing read-

out electronics device has been developed for low resistivity silicon bulks, it is necessary to

perform a considerably design effort for this part of the detector [27]. Another is the Monolithic

Active Pixel Sensor (MAPS) [37]. The first prototype was fabricated on a low resistivity silicon,

and therefore the depletion region width was smaller than in the previous case [27]. The

charge collection relied therefore on diffusion (low radiation tolerance). A MAPS design that

results into an higher radiation tolerance is composed by a high resistivity epitaxial silicon

layer deposited on a low resistivity silicon wafer. Even if in this case the detector is not fully

depleted, and charge collection by diffusion is higher than in other cases [29]. However, the

depletion region is larger, leading to a higher radiation tolerance [38]. This design has been

proposed for the ALICE ITS upgrade [39]. Another CERN experiment for which monolithic

pixel detectors have been chosen for future applications is ATLAS. The HVCMOS (High Voltage

CMOS) represents a possibility for the ATLAS Phase-II upgrade [33]. The term high voltage

refers to the fact that for this particular design, the working voltage for transistors is higher than

the standard voltage applied in CMOS applications. The substrate is a P-type doped silicon,

and transistors are fabricated on a deep N-type doped well, to which high voltage is applied
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Figure 1.5 – Cross section of a monolithic pixel sensor. The read-out electronics is integrated
inside the same bulk of the sensor. Collection by drift occurs inside the depletion region, in
green, while collection by diffusion occurs outside this region (adapted from Petra Riedler
[30]).

(50 V). PMOS are fabricated directly inside the deep N-type doped well, while NMOS are

fabricated on a P-type doped well implanted in the deep well. Charge collection occurs at the

junction between the deep N-well and the P-type substrate [32]. Another monolithic design

investigated by ALICE and then by ATLAS for the outer layer of the Inner Tracker is a modified

version of the MAPS, where a N-type doped layer is added under the CMOS electronics and the

N-type collection electrode. In this way, depletion of the P-type silicon immediately start along

the entire width of the pixel [40, 41]. After all these considerations, it is possible to conclude

that an important issue related to monolithic pixel detectors is the choice of the silicon type

for the their fabrication. In order to have the same flexibility of hybrid detectors, and therefore

to have low resistivity silicon wafers for read-out electronics and high resistivity silicon for the

sensor, one alternative process flow is to fabricate separately the two components on different

silicon wafers, and then bonding them to obtain a monolithic-like device. The next section

will analyze some silicon bonding technique for this purpose.

1.3 Silicon wafer bonding
The bonding process for the fabrication of pixel detectors includes a wafer with CMOS electron-

ics, therefore bonding temperatures should not exceed the melting temperature of aluminium

(660.32◦C [42]), since it is one of the most used metals in CMOS technology. Temperatures be-

low 450◦C can be considered safe for this purpose [43]. In the next sections, various techniques

for silicon bonding are summarized, focusing on safe process temperatures.

1.3.1 Fusion silicon bonding

Fusion silicon bonding is the most diffused technique to perform direct bonding between two

different silicon wafers. Surfaces to be bonded need to be clean (free of organic or metallic

particles that affect the mechanical and electrical properties of the resulting substrate), flat,

parallel and smooth. During the bonding process, surfaces are subjected to processing such as
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dip into acid solutions or exposed to plasma [44], that influence the adherence of wafers [43],

and then placed in contact. Wafers are annealed at temperatures up to 1100◦C. Two standard

surface treatment are possible: the hydrophobic and the hydrophilic treatments (that gives

the name to the corrensponding bonding processes).

Hydrophobic bonding

Hydrophobic treatment consists in deeping wafers into a HF (hydrofluoric acid) solution, to

eliminate any presence of silicon dioxide. After this treatment, silicon atoms at the surfaces are

connected to hydrogen atoms, constituting electric dipoles [45]. Once in contact, a pressure is

applied [46], and wafers adhesion is mainly due to dipole-dipole van der Waals forces [45]. To

increase the bonding strength, it is necessary to anneal the bonded wafers at temperatures

higher than the room temperature. The effect of annealing is the conversion of weaker bonds

between the two silicon surfaces into covalent bonds [47]. After annealing, dislocations are

generated at the bonding interface due to matching of differences between the crystalline

lattices of the two wafers. The value of bonding strength increases from 0.03 J/m2 without

annealing to 3 J/m2 with annealing at 900◦C, that however cannot be used for the fabrication

of pixel detectors. Annealing at temperatures lower than 400◦C does not change the bonding

strength from the value obtained at room temperature [45]. This is not optimal for the purpose

of monolithic detectors fabrication.

Hydrophilic bonding

Bonding with hydrophilic surface treatment is easier than the hydrophobic bonding [46]. The

bonding occurs between two hydrophilic (with silicon oxide) silicon surfaces, that are placed

in contact without pressure applied. At room temperature, the bonding strength reaches

values higher than 0.13 J/m2, much stronger than in the case of hydrophobic bonding. To

reach higher bonding strength, higher annealing temperatures are needed [48]. Another

possibility is to activate the surface with a chemical solution or a plasma [44]. Wafers bonded

with oxygen plasma activation and not subjected to annealing reached bonding strength up

to 0.85 J/m2 [49]. The issue related to the use of this technique for the fabrication of pixel

detectors is that a silicon oxide layer is present at the bonding interface. This would impede

the electrical connection between the two components of the detector.

1.3.2 Intermediate layer silicon bonding

A different strategy to bond silicon at low temperature is the use of intermediate layers.

Sodium silicate bonding

Sodium silicate bonding interests two oxidized wafers, that are first subjected to a hot nitric

acid treatment, to generate an hydrophilic surface. Then wafers are spin coated with a sodium

silicate water solution, placed in contact and finally annealed at temperatures above 200◦C.

This process allows to obtain a high bonding strength at temperatures that are compatible with

CMOS circuitry (for annealing at 400◦C, bonding strength of 3 J/m2 is reached) [50]. However,

the presence of an interface layer could affect the electrical behavior of a silicon detector
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fabricated with this technique.

Glue and glass bonding

Another strategy for a low temperature bonding is to use a glue. Glue bonding consists in

spinning a polymeric material on the wafers surface and then, while wafers are in contact,

curing it to obtain the bond. This technique is poor in reproducibility, and outgassing products

could cause corrosion. Moreover, the glue layer thermal instability and moisture penetration

represent an issue for the process. Another possibility is the use of glasses with low softening

temperatures (such as glass number 7570). Also in this case, the poor control of the thickness

of the glass layer is a problem for this technique [51]. Both the techniques cannot be used if

electrical connection between the bonded components is needed.

Eutectic silicon bonding

Eutectic bonding is used to bond dies to packaging. A silicon die is placed on the package that

has been coated with a gold layer. By applying a contact force and increasing the temperature

over 363◦C (gold-silicon eutectic temperature), the gold-silicon eutectic compound is formed,

from the diffusion of silicon into the gold layer, generating a bond between the die and the

package. A similar process can be performed to achieve wafer bonding. In this case, gold

is deposited on silicon wafers that are subsequentely placed in contact and heated up to a

temperature higher than the eutectic temperature [52]. In this case, the presence of gold could

affect the electrical properties of the detector, since gold is a dopant for silicon [53].

1.3.3 Low temperature Surface Activated Bonding (SAB)

To obtain a low temperature silicon bonding, another possibility, that would not require

additional intermediate layers, and would lead to reconstruct covalent bonding between

silicon atoms at the interface, is to use an ultra high vacuum (UHV) apparatus during the

bonding process[47]. First tests on germanium [54] showed that it is possible to obtain

covalent bonds with UHV setups [47]. Hydrophobic silicon surface reconstruction has also

been demonstrated at room temperature. In this case, wafers surfaces were first dipped into

HF to eliminate oxide, then annealed with temperatures cycles between 600 and 800◦C to

eliminate hydrogen. Since they were in UHV environment, surfaces were not oxidized, with

dangling bonds, and therefore they could be bonded by simply placing them in contact at room

temperature, under pressure. The bonding process was therefore propagating along the wafer

surface, obtaining a pure silicon interface, with crystalline defects due to lattice mismatch

between the two substrates [55]. A room temperature bonding process was demonstrated

by Suga et al. [56], based on surface activation by plasma etching (SAB). Takagi et al. [57]

demonstrated a SAB with argon plasma at room temperature for silicon, resulting into a

strength higher than in case of standard bonding. A CMOS-compatible conductive SAB has

been demonstrated by Flötgen et al.[58], using a EVG® 580 ComBond® machine with different

annealing temperatures between 100◦C and 300◦C were tested. Wafer were first placed into

a surface treatment module to remove native oxide and minimize the damage to the bulk

silicon. Then bonding was performed by pressing at 0.06 MPa and annealing at the same time
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the samples, for 60 minutes. For annealing temperatures higher than 200◦C, the bulk fracture

strength of silicon was reached (5 J/m2). Moreover, after a first bonding inside the EVG® 580

ComBond®, annealing of the samples could be performed inside or outside the machine

without any observed difference. Energy dispersive X-ray spectroscopy (EDXS) was performed

at the bonding interface, and no trace of silicon oxide was observed. Therefore the interaface

was oxide-free, and conductive. HR-TEM (High Resolution Trasmission Electron Microscopy)

showed an amorphous silicon layer at the bonding interface, with a thickness of 2.6 nm [58].

Stacking of thin silicon wafers by fusion bonding at low temperature was demonstrated by

Burggraf et al. [59], following the process shown in figure 1.6.

Figure 1.6 – Process flow for thin wafers stacking [59].

The silicon wafer to be thinned was first bonded using a glue (deposited by spin coating)

to a carrier wafer. Then, a first rough step of grinding and a subsequent CMP (Chemical

Mechanical Polishing) step were preformed to thin down the wafer to a thickness of about 10

μm. After this process, the thinned wafer (still bonded to the carrier wafer) was bonded to

a full thickness (775 μm) target wafer, after a plasma activation of the surface with N2. After

annealing, performed at 250◦C for 2 hours, the carrier wafer was separated from the bonded

wafers.

1.3.4 CMOS-compatible SAB for pixel detectors fabrication
The two works from Flötgen et al. and Burggraf et al. show that a silicon conductive covalent

bonding at CMOS-compatible annealing temperatures is possible. This would allow to have

a monolithic-like silicon bulk starting from different substrates. Moreover, given that thin

wafers stacking for CMOS integration has been demonstrated, this would also enable the

development of monolithic pixel detectors, by starting from two different substrates, one with

CMOS circuitry fabricated on low resistivity silicon substrate, and one with high resistivity
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silicon for the sensor part of the detector, following a process similar to the one proposed by

Burggraf et al. [59], with the thinning of the CMOS wafer, to eliminate the low resistivity silicon

under the collection well, that would reduce the depth of the depleted silicon (see section

1.2.2) and then the bonding to the high resistivity wafer, as shown in figure 1.7, to obtain a

monolithic detector with the properties of an hybrid detector (low resistivity silicon for the

reaad-out and high resistivity silicon for the sensor).

Figure 1.7 – Fabrication of monolithic pixel detector by CMOS-compatible SAB. The two
components of the detector (CMOS read-out and sensor) are separately fabricated. The CMOS
wafer is thinned to eliminate the low resistivity silicon, and bonded to the high resistivity
sensor, to obtain a hybrid-like monolithic detector.

Since the charge generated by the radiation would need to pass through the bonding in-

terface, its electrical properties are a key factor for the development of this process. Their

characterization can be performed using the TCT.

1.4 Transient Current Technique
TCT is a technique generally used for the characterization of silicon radiation detectors. It can

be used for the measurement of effective doping concentration in silicon, for the evaluation of

radiation damage [60], the analysis of charge collection, drift velocity and electric field [61],

over the entire volume of the detector [62]. TCT consists in the injection of charges inside

the detector and in the analysis of a resulting transient current pulse. It is divided into two

categories: surface illumination TCT and edge illumination TCT.

1.4.1 Surface illumination TCT

One way to perform charge injection for TCT measurements is to illuminate the surface of a

semiconductor radiation detector with alpha particles. Quaranta et al. performed a transient

signal analysis with alpha particles in 1965 inside a solid state radiation detector. Its working

principle is based on the charge collection thanks to an electric field inside the semiconductor,

as in silicon pixel detectors described in section 1.2.2. Thanks to this analysis, the charge
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collection time and information about the angle of incidence of the particle on the detector

surface were analyzed [63]. A study of the current pulse shape to extract the electric field

profile of a surface barrier detector was performed by Cohen et al. in 1967 [64]. Other authors

measured alpha particles TCT on semiconductor materials different from silicon such as

cadmium telluride [65] for the study of transport properties and trapping parameters. TCT

was used for the characterization of radiation damage in silicon detectors by Kraner et al. [66],

especially type inversion of N-type doped silicon after neutron irradiation. In this case, a

reverse biased diode was subjected to alpha particles irradiation, from a 244Cm source, with

an energy at the surface of 5.5 MeV, that reached a depth in the silicon bulk of 20 μm. The

drifting charges generated in this thickness caused a transient current related to the electric

field through the equation (1.3).

i (t ) = qεw v(t ) (1.3)

Where q is the drifting charge, i (t) is the generated current pulse, εw is the weighting field,

that in this case is equal to 1/W , and v(t ) is the velocity of charges, related to the electric field

value at their position through equation (1.4).

v(t ) =με(x(t )) (1.4)

Where μ is the charges drift mobility, ε is the electric field and x(t ) is the position of injected

charges at time t. Therefore, the field was probed by charges for the entire depth of the

depletion region [66]. In figure 1.8 the principle of TCT is shown, where the detector is

represented as a simple PiN diode. The type of charge carriers that are drifted along the

detector changes according to the side that is illuminated. Indeed, if charge injection occurs

on the side where positive sign of voltage is applied, electrons will be immediately collected by

the electrode, holes will drift along the detector thickness, and the TCT signal will be generated

by them. On the other hand, electrons will drift if injection occurs at the side where negative

voltage is applied. Eremin et al. described a method for the analysis of TCT signal to study

radiation damage from neutrons [60]. In this case, charge injection was obtained by applying

a laser pulse (with an absorption length smaller than 30 μm) on the surface of the detector.

The TCT signal was analyzed to extract the effective doping concentration in silicon bulk with

4 different methods:

• Analysis of the decay time constant of the current pulse, that is related to the electric

field and therefore to the effective doping concentration with the relation in equation

(1.5).

τ= d

μ

√
ε0εSi

2eNe f f

1�
V

(1.5)

Where τ is the decay time and Ne f f is the effective doping concentration.

• Determination of the full depletion voltage Vf d (by looking at the applied voltage at

which appearance of a step in the pulse decay occurs), and then evaluation of Ne f f
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Figure 1.8 – Working principle of TCT. The silicon detector is presented as a PiN junction,
in reverse bias configuration. Charges are injected on one side of the junction, and drifted
along the thickness of the detector by the electric field. Points in the transient current pulse
correspond to the electric field at positions reached by charges: at time t2 charges are at
position d2, at time t3 charges are at position d3 and at time t4 charges are at position d4.

using equation (1.2), considering that at Vf d the depth of the depletion region is equal

to the thickness of the detector dtot .

• Determination of Vf d with the analysis of the charge variation with time when injection

is performed on the high field side of the detector, and then evaluation of Ne f f following

the same method of the previous point.

• Determination of Vf d by analyzing the charge shapes but with illumination on the other

side of the detector.

Analysis of the current pulse shape allows to study particular effects related to high radiation

damage such as the double peak of electric field due to the occurring of a double junction,

where trapping of charges due to radiation induced energy levels generates junctions on each

side of the detector [23]. TCT was also used for purposes different from the characterization

of radiation damage, such as the study of the influence of process temperature on effective

doping concentration [67] and oxide traps in MOS (Metal Oxide Semiconductor) transistors

[68].
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1.4.2 Edge illumination TCT

Another method to perform TCT analysis is to generate charges by illuminating the side of the

detector. To perform these measurements, an infrared laser is used, to generate electron hole

pairs along the entire length of the detector since light penetration length with wavelengths

used for this purpose (1060 nm) is around 912 μm in silicon [69]. The focus point of the

laser is located inside the silicon bulk, as shown in figure 1.9. Therefore, electrons and holes

are mainly generated around this point, and then separated by the electric field inside the

detector, drifting in opposite directions. The transient current signal is generated with the

same mechanism explained for surface illumination TCT. This technique is called edge TCT

(eTCT) [61]. The signal is composed by two current peaks generated by charge carriers, and

Figure 1.9 – Working principle of eTCT. In this case, charges are generated along the width of
the detector, and drift in opposite directions.

can be separated since the signal from electrons is faster and higher in amplitude than the one

from holes (holes mobility is 1/3 of the electrons mobility). The current signals for electrons

and holes at a given position are therefore related to the electric field by equation (1.6).

Ie,h(t ) = BeNe,h exp

(
− t

τe f f ,e,h

)
ve,h(t )εw (1.6)

Where B is the amplification constant from the amplifier, Ne,h is the number of generated

electrons and holes, τe f f ,e,h is the effective trapping time for electrons and holes, ve,h(t) is

the drift velocity for electrons and holes (that is related to the electric field by equation (1.4)).

The total current Itot (t ) is therefore the sum of the two contributions Itot (t ) = Ie (t )+ Ih(t ). By

considering the current amplitudes at small times, such as 300 ps (for which the drift length is

around 30 μm, considering that the applied voltage causes the velocity saturation, comparable
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with the laser beam diameter), it is possible to extract the effective doping concentration and

electric field profiles. Moreover, by looking at the change of current peak time with the laser

position in the depth direction, it is also possible to measure the drift velocity of electrons.

Another information that can be extracted from the eTCT signal is the charge collection

efficiency along the depth of the detector, for a given position in the width direction [61]. A

more recent analysis of silicon strips detectors with eTCT was performed by Mandic et al. [70].

Charge injection for eTCT can be performed also with a collimated high energy hadron beam.

In this case, electrons and holes are uniformly generated along the path of the beam, reaching

the entire depleted volume. Measurements with this kind of setup were performed on a MAPS

[71]. A recently developed method for charge injection in eTCT is based on the two photon

absorption process. It consists in the generation of an electron hole pair by the absorption of

two photons with an energy that is smaller than the direct energy gap of silicon (λ≥ 1150 nm

[62]), but higher than the half of this value [72], process that was predicted by Maria Göppert-

Mayer in 1931 [73]. García et al. [62] performed Two Photons Absorption eTCT (TPA-eTCT)

with a femtosecond pulse laser (pulses every 243 fs, necessary to obtain absorption) with a

wavelength equal to 1300 nm. Laser was focused in 1 μm (another important condition to

perform ). Due to the non linearity of two photons absorption, generation of electrons and

holes occurred only in a volume with a length equal to 13 μm and a radius equal to 0.8 μm,

allowing high resolution scans of the collected charge along the transversal cross section of

an HVCMOS pixel detector cell [62]. The same method of charge injection was used also for

single-event effects study in microelectronic circuitry [74].

In the previous sections, TCT has been selected as the measurement technique for the charac-

terization of bonding interfaces from CMOS-compatible silicon direct bonding. In the next

chapter, a TCAD and an analytical model will be developed to study this kind of measurements,

and its results.
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2 Modeling of TCT for the characteriza-
tion of thin interfaces in bulk silicon
This chapter is based on the paper "Principle and modelling of Transient Current Tech-

nique for interface traps characterization in monolithic pixel detectors obtained by CMOS-

compatible wafer bonding", edited by JINST, volume 11, August 2016, doi: 10.1088/1748-

0221/11/08/P08016, by J. Bronuzzi, A. Mapelli, M. Moll and J.M. Sallese, and on the pa-

per "Analytical model for Transient Current Technique (TCT) signal prediction and anal-

ysis for thin interface characterization", edited by JINST, volume 11, December 2016, doi:

10.1088/1748-0221/11/12/C12080, by J. Bronuzzi, A. Mapelli and J.M. Sallese. Both the papers

are original works performed by me, with the supervision of the other authors.

In this chapter, TCT will be investigated through TCAD (using the Sentaurus TCAD software

package by Synopsys [75]) and analytical modeling to demonstrate the possibility of traps

detection in thin layers inside diodes, such as the ones obtained by CMOS-compatible SAB

process similar to the one performed by Flötgen et al., where the interface is 3 nm thick [58].

TCAD simulations allow to predict the behavior of TCT signals, as shown in figure 2.1, where

measurements of a non-irradiated diode are compared with simulations.

Figure 2.1 – Example of TCAD modeling of TCT signal, where the two curves, from measure-
ments and TCAD simualtions, are of the same shape.
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2.1 Assessment of TCT applied to thin interfaces characterization

2.1.1 Test structure, modeling of bonding interface

The simulated diode structure is shown in figure 2.2. For didactic purposes a PiN structure

with a low doped N-type bulk has been chosen. The bonding interface is located inside the

diode at the depth of 50 μm. As for the bulk characterization, the diode is reverse biased so

that the low-doped silicon layer becomes depleted and carriers injection is performed by

illuminating the P-doped side of the diode with a laser pulse in the ps range. Electrons that are

generated inside the space charge region of the diode (near the surface) will be transported

by the electric field towards the N+ contact. Holes moving in the opposite direction will be

collected instantaneously. As predicted by the Ramo’s theorem (see section 1.4.1), the current

transient signal will be controlled by the motion of electrons in the depleted region. This

is a displacement current, i.e. charges generate a current during their displacement even

though they are not yet collected by the electrodes. In this example, the bonding interface

Figure 2.2 – Test diode structure. Doping of the P+ region is 2×1016 cm-3. Doping of the N-
region is 1012 cm-3.

(red line inside the diode) is located 48 μm away from the PiN junction (it is generated by low

temperature bonding between the wafer A, that hosts the diode, and the wafer B). Following

the characterization done by Flötgen et al. [58], at the bonding interface an amorphous silicon

layer of 3 nm thickness is expected, without evidence for an oxide layer. In this case, it will be

modeled as a 3 nm thick silicon layer with a traps concentration in line with data reported for

a-Si. According to Fahrner et al. [76], trap energies are essentially distributed in the mid-gap

of the amorphous silicon. Therefore, the same energy range will be mainly considered, which

is also what is reported by other authors [23]. In addition, the concentration of traps inside

the amorphous layer will be set to 1016 cm-3 with cross sections of 10−14 cm2, identical for

electrons and holes. These values have been considered based on previous works on traps

modelling for radiation damaged silicon devices [77]. In literature, traps cross sections range

from 10−14 cm2 and 10−16 cm2 [23] but no significant differences have been observed for the

induced space charge in TCAD simulations using equal cross sections for electrons and holes

equal to 10−15 cm2.
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2.1.2 TCAD simulations of TCT on bonded devices
TCAD simulations of transient currents with picosecond light pulses are first run to estimate

the relevance of the technique for interface traps characterization. To this purpose, the

dependence of TCT on physical parameters such as the nature of the traps, their concentration

and energy level is analyzed. Typical values for TCT parameters are listed in table 2.1. TCAD

Parameter name Value

Temperature 253 K
Light wavelength 680 nm
Penetration depth (depth at which intensity is 13% of the surface value) 9.23 μm
Light intensity 0.06 W/cm2

Light pulse time width (Gaussian pulse) 50 ps

Table 2.1 – TCT parameters used for simulations.

simulation results with these parameters are shown in figure 2.3. The TCT response subsequent

to a light excitation is plotted for a mid-gap acceptor trap Et −Ev = 0.55 eV (where Ev is

the valence band energy level) with a concentration of 3×109 cm-2 (that is the equivalent

concentration of traps per unit surface inside the thin layer, given by computing the traps

volume concentration times the thickness of the traps layer). In addition, since the TCT signal

is also sensitive to the reverse voltage on the PN junction, this variable was also modified.

For a low reverse bias, the current decreases monotonically with time without showing any

particular feature. Conversely, when increasing the reverse voltage, a non-monotonic behavior

is observed, which finally turns into a clearly visible peak. This is the signature of an abrupt

change of the free carrier velocity inside the depletion region, indicating that the electric field

is affected by the space charge in the interface layer. Such a dependence will be explained

in more details in the section dealing with the analytical model, but it is possible to safely

assert that this supports that the TCT is able to reveal the existence of an anomalous charge

density in a very localized region, a premise which was not anticipated before. Increasing

further the reverse voltage moves the peak towards shorter times, which is consistent since

the time carriers will spend to reach the counter electrode decreases while increasing their

velocity. However, there is an optimum to get the highest peak-to-valley signal in the double

peak shape. For instance, when the voltage goes higher than 4 V, this double peak starts to be

less visible (see for an applied bias of 6 V in figure 2.3).

The influence of the main trap parameters on the TCT signal is now analyzed in order to

estimate the limits of this technique. These are the concentration and the energy level of

traps. Changing the traps concentration while keeping the bias voltage to 4 V (close to the

optimum value for the present case) and the energy level of the acceptor traps to Ev +0.55

eV, the TCT shows a double peak for concentrations higher than 3×109 cm-2 (see figure 2.4).

However, it is possible to expect that when the trap density is below 3×109 cm-2, interface

traps characterization might be hardly accessible by TCT. Interestingly such a concentration

is in line with typical densities reported by Fahrner et al. [76] in amorphous silicon layers.

Concerning the nature of traps, i.e. donors or acceptors, simulations were run still choosing
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Figure 2.3 – Dependence of the TCT signal on the applied voltage. Acceptor traps level Ev +0.55
eV, concentration 3×109 cm-2.

the optimum 4 V bias together with a trap energy level and a trap concentration of Ev +0.55

eV and 3×109 cm-2 respectively. Figure 2.5 reveals that the presence of charged donors only

does not give rise to a double current peak and thus cannot give a precise signature (even if

the shape is different from the case without traps). This suggests that in the case of low doped

N-type silicon bulk, only acceptor traps can be clearly identified through the double peaked

current. The presence of both acceptor and donor traps (with a concentration equal to 3×109

cm-2) will still cause a double peak, but this is less pronounced than for acceptor traps alone.

Conversely, in low doped P-type silicon, donors would be more visible. The reason for this

behavior will be explained in section 2.2.4. The last parameter to be investigated is the energy

level of traps. Indeed, TCT is sensitive to the electric field distorted by the presence of charged

defects. Acceptors could modify substantially the TCT signal because these are charged

negatively. However, depending on the energy level, traps can have different ionization states.

Figure 2.6 displays the simulated TCT signal for different traps energies (referenced with

respect to the valence band) at a bias voltage of 4 V and with a concentration of 3×109 cm-2.

As expected, when the energy level is higher than mid-gap, acceptor traps do not influence

the TCT shape, i.e. there is no occurrence of any double peak, the reason being that the level

gets less and less occupied with electrons as being shifted towards the conduction band (see

section 2.2.2). Finally, based on numerical simulations, it is possible to already conclude that

the TCT technique can probably be used to estimate the density of mid-gap acceptor traps at

a bonding interface of a monolithic detector provided the concentration is higher than 3×109

cm-2 in an N-type doped silicon bulk. Considering donors in the same concentration range,

these are still ‘transparent’ (exhibit a weak signature) and can be better characterized in a

P-type doped layer (with symmetric configuration with respect to what used, see section 2.2.4).

An additional information can be extracted from TCT signal shape. Integrating the current

over time gives the total collected charge. Comparing this parameter with (Nt = 3×109 cm-2,
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2.1. Assessment of TCT applied to thin interfaces characterization

Figure 2.4 – Dependence of the TCT signal on the traps concentration inside the interface
layer. Acceptor traps level Ev +0.55 eV, bias voltage 4 V.

Figure 2.5 – Dependence of the TCT signal on the type of traps. Traps level Ev + 0.55 eV,
concentration 3×109 cm-2, bias voltage 4 V.

Et = Ev +0.55 eV) and without traps it is possible to observe that with an applied reverse bias

of 4 V, the collected charge is the same and equals to 2.48×10−14 C. Therefore, traps present in

the interface layer, in the investigated parameter range, do not cause detectable trapping of

charges that travel through it as far as a high electric field sweeps then out. In the following,

an analytical model for TCT characterization of embedded interface traps is proposed.
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Chapter 2. Modeling of TCT for the characterization of thin interfaces in bulk silicon

Figure 2.6 – Dependence of the TCT signal on the traps energy level. Acceptor traps, concen-
tration 3×109 cm-2, bias voltage 4 V.

2.2 Analytical modeling of TCT with interface traps
As already explained, the transient current signal is generated from the displacement of electric

charges moving inside the space charge region following Ramo’s theorem [78]. In this way,

the time dependence of the current and the electric field profile are interrelated. After having

validated the principle of the technique for interface characterization by means of numerical

simulations, the aim of this section is to develop a full analytical model of TCT to get a detailed

understanding of the physical process of it and provide a simple tool that can be used to

optimize experimental conditions and estimate relevant physical parameters without being

forced to perform complex TCAD simulations.

2.2.1 Modeling of the electric field profile

In a first step, the electric field across the whole structure is calculated. This is obtained by

solving the Poisson equation inside and across the different layers of the diode shown in figure

2.2, using the same structure as in section 2.1. To avoid excessive complexity, the depletion

approximation is assumed. This restriction is well supported by TCAD numerical simulations.

Traps are considered to be located at the interface xt in figure 2.7. Two different cases have to

be analyzed whether the space charge region generated by the junction under reverse bias

includes or not the interface layer (figures 2.7a and 2.7b). The different depletion regions

where the Poisson equation has to be solved are identified by the black lines in figure 2.7. The

depletion regions edges in the P and N type semiconductor are labeled xp and xn respectively,

Wt is the total depletion width induced by the traps at thermal equilibrium, xt is the position

of the trap layer, xL is the front side contact of the diode and xR is the back side contact of

the diode. The bias voltage is defined as V =VxR −V−xL (where V−xL is the voltage applied to

the P+ side and VxR is the voltage applied to the N+ side). The boundary conditions used to

calculate the electric field in the whole structure are listed hereafter:
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2.2. Analytical modeling of TCT with interface traps

(a) (b)

(c)

Figure 2.7 – Two possible configurations of the space charge region shape (green area) inside
the diode: (a) the case where it does not reach the interface layer located at xt , and (b) the
case where it includes the layer. (c) The electric field profile is also sketched.

• At −xL , the electrostatic potential is equal to −V and the electric field is set to 0.

• The electrostatic potential Ψ(x) must satisfy the semiconductor statistics:

Vbi =
kbT

e
ln

(
NA ND

n2
i

)
= Ψ(xn)−Ψ(−xp )

e
(2.1)

where Vbi is the built in potential, kb is the Boltzmann constant, T is the temperature, NA

is the concentration of acceptors, ND is the concentration of donors, ni is the intrinsic

carriers concentration, Ψ(x) is the potential.

• In the case of two separated space charge regions (Figure 2.7a), the electrostatic potential

is assumed to be symmetric to the interface layer: Ψ(xt −Wt /2) =Ψ(xt +Wt /2).

• The charge density generated by ionized traps inside the interface layer introduces a

discontinuity of the electric field:

ε(x−
t )−ε(x+

t ) = (ND +Nt )e

εSi
dt (2.2)

where ε(x−
t ) and ε(x+

t ) are respectively the electric fields evaluated at the left and at

the right of the traps layer, Nt is the volume concentration of charged traps, dt is the

thickness of the traps layer.
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Chapter 2. Modeling of TCT for the characterization of thin interfaces in bulk silicon

In addition, charge conservation, continuity of the displacement vector (except at the trap

interface) and electrostatic potentials are implicitly satisfied.

The derivation of equations for electric field and potential is considered for the two cases:

double space charge region and single space charge region (respectively shown in figure 2.7a

and 2.7b). The diode is divided in different regions, and for each region, positions referred to

figure 2.7 and equations are listed.

Double charge regions case

• Region P+,n, position −xL < x <−xp : in this region, silicon is not depleted, and there-

fore the equations will be:

– εP+, n (x) = 0;

– ΨP+, n (x) =−V .

• Region P+, position −xp < x < 0: in this region, silicon is depleted, and therefore, by

solving the Poisson equations:

– εP+ (x) =−NAe
ε (x +xp );

– ΨP+ (x) = NAe
2ε

(
x +xp

)2 −V .

• Region 1, position 0 < x < xn : also in this region silicon is depleted, and therefore:

– ε1 (x) = ND e
ε x − NAe

ε xp ;

– Ψ1 (x) =−ND e
2ε x2 + NAe

ε xp x + NAe
2ε x2

p −V .

• Region 2, position xn < x < xt − Wt
2 : Si is not depleted:

– ε2 (x) = 0;

– Ψ2 (x) =−ND e
2ε x2

n + NA e
ε xp xn + NAe

2ε x2
p −V .

• Region t,1, position xt − Wt
2 < x < xt : Si is depleted, in this case by the charge generated

by traps:

– εt,1 (x) = ND e
ε

(
x −xt + Wt

2

)
;

– Ψt,1 (x) =−ND e
2ε

[
x2 +x2

n +
(
xt − Wt

2

)2
]
+ ND e

ε

(
xt − Wt

2

)
x + NAe

ε xp xn + NAe
2ε x2

p −V .

• Region t,2, position xt < x < xt + Wt
2 :

– εt,2 (x) = ND e
ε

(
x + Wt

2 −xt

)
− (ND+Nt )dt

ε e;

– Ψt,2 (x) =−ND e
2ε

(
x + Wt

2 −xt

)2+ (ND+Nt )dt
ε e (x −xt )+ND e

2ε

(
Wt
2

)2−ND e
2ε

[
x2

t +x2
n +

(
xt − Wt

2

)2
]
+

ND e
ε

(
xt − Wt

2

)
xt + NAe

ε xp xn + NAe
2ε x2

p −V .

• Region N-, position xt + Wt
2 < x < xR : Silicon is not depleted:
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– εN− (x) = 0;

– ΨN− (x) =−ND e
2ε W 2

t + (ND+Nt )dt
ε e Wt

2 +ND e
2ε

(
Wt
2

)2−ND e
2ε

[
x2

t +x2
n +

(
xt − Wt

2

)2
]
+ND e

ε

(
xt − Wt

2

)
xt+

NA e
ε xp xn + NAe

2ε x2
p −V .

To complete the set of equations, it is needed to determine the values of xp , xn and Wt .

xp =
(

ND

ND +NA

)
W (2.3)

xn =
(

NA

ND +NA

)
W (2.4)

W =
√

2ε

e

(
NA +ND

NA ND

)
(Vbi +V −2kbT ) (2.5)

Wt = (ND +Nt )dt

ND
(2.6)

Single space charge region case

• Region P+,n, position −xL < x < −xp : in this region, silicon is not depleted, and

therefore the equations will be:

– εP+, n (x) = 0;

– ΨP+, n (x) =−V .

• Region P+, position −xp < x < 0 : in this region, silicon is depleted, and therefore, by

solving the Poisson equations:

– εP+ (x) =−NAe
ε (x +xp );

– ΨP+ (x) = NA e
2ε

(
x +xp

)2 −V .

• Region 1, position 0 < x < xt : also in this region silicon is depleted, and therefore:

– ε1 (x) = ND e
ε x − NAe

ε xp ;

– Ψ1 (x) =−ND e
2ε x2 + NA e

ε xp x + NAe
2ε x2

p −V .

• Region 2, position xt < x < xn : silicon is not depleted:

– ε2 (x) = ND e
ε x − NAe

ε xp − (ND+Nt )e
ε dt ;

– Ψ2 (x) =−ND e
2ε x2 +

(
NA e
ε xp + (ND+Nt )e

ε dt

)
x +

{
(ND+Nt )e

ε dt xt + NAe
2ε x2

p −V
}

.

• Region N-, position xn < x < xR : silicon is not depleted:
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– εN− (x) = 0;

– ΨN− (x) =−ND e
2ε x2

n +
(

NAe
ε xp + (ND+Nt )e

ε dt

)
xn +

{
(ND+Nt )e

ε dt xt + NAe
2ε x2

p −V
}

.

To complete the set of equations, it is needed to determine the values of xp and xn .

xn = NA

ND
xp + (ND +Nt )

ND
dt (2.7)

xp =
−

(
e
ε

NA (ND+Nt )
ND

dt

)
+

√(
e
ε

NA(ND+Nt )
ND

dt

)2 −4 eNA
2ε

(
NA
ND

+1
)[

(ND+Nt )e
ε dt

(
1
2

ND+Nt
ND

dt −xt

)
−Vbi −V

]
eNA
ε

(
NA
ND

+1
)

(2.8)

From equations ( A.5 ) and ( A.6 ), knowing the full depletion voltage Vf d and the length of the

bulk xR , and that at full depletion xn = xR , it is possible to extract the charged traps volume

density Nt . The set of equations A.7, A.8, A.9 and A.10 shows the relations that link Nt to Vf d .

aNt =
(

eND

ε

)2 (
1+ NA

ND

)
(2.9)

bNt =
(

eND

ε

)2 (
NA

ND
+1

)
xR + e2NA

ε2 xt (NA +ND ) (2.10)

cNt =
(

xR
eND

ε

(
NA

ND
+1

))2

−2
(
Vbi +Vf d

) eNA

ε

(
NA

ND
+1

)
(2.11)

Nt = ND

⎛
⎜⎝bNt −

√
b2

Nt
−aNt cNt

dt aNt

−1

⎞
⎟⎠∼= ND

bNt −
√

b2
Nt

−aNt cNt

dt aNt

(2.12)

Figure 2.8 shows some cases of electric fields calculated with the analytical model and TCAD

simulations for different reverse bias voltages. It is possible to see that the overall profiles

obtained by analytical calculations match fairly well those obtained by TCAD simulations.

2.2.2 Modeling of traps occupancy
To evaluate the electric field, the charge generated by the traps must be calculated, but their

state depends on the relative position of the energy level with respect to the Fermi level.

Basically, traps can be acceptors (positively charged when they capture holes) or donors

(negatively charged when they capture electrons) [79]. The general analysis relies on capture

and emission rates but this can be quite complex to handle in the dynamic analysis of the
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2.2. Analytical modeling of TCT with interface traps

Figure 2.8 – Electric field comparison between TCAD simulations and the analytical model.
Acceptor traps level Ev +0.55 eV, concentration 3×109 cm-2.

structure considered. However, depending on the energy configuration, two asymptotic

expressions can be used instead. One applies for traps at equilibrium and the other for traps

out of equilibrium, keeping in mind that the status depends on how the diode is operating.

Traps at equilibrium

In the case of two separated space charge regions as shown on figure 2.7a, traps are not

subjected to the potential applied to the junction as they are somehow isolated from the

applied voltages by adjacent neutral regions. This situation happens when the voltage remains

relatively low so that only the depletion region generated by traps surrounds the layer at

xt . Since traps are in thermal equilibrium, it is possible to use the common relationship for

acceptor and donor traps [79] given by:

Nat ,e = Nat ,0

⎛
⎝ 1

1+ g exp
(

Eat−EF
kb T

)
⎞
⎠ Nd t ,e = Nd t ,0

⎛
⎝ 1

1+ g exp
(−Ed t+EF

kb T

)
⎞
⎠ (2.13)

where Nat ,0 and Nd t ,0 are the acceptor and donor traps volume concentrations, Nat ,e and

Nd t ,e are the charged acceptor and donor traps volume concentrations at equilibrium, g

is the degeneracy factor (assumed to be equal 1), Eat and Ed t are the acceptor and donor

traps energy levels, EF is the Fermi level. Importantly, once traps are ionized, they modify

the potential locally and bend the bands as shown on figure 2.9. The trap energy level must

then include the energy shift self consistently. This is obtained by computing the difference

Ψt ,1(xt )−Ψt ,1(xt −Wt/2) with Wt obtained from equation (2.6). Adding the bending of the

electrostatic potential at the position of the traps xt to the traps energy level gives finally:

Eat = Eat ,0 + eND

8εSi

(
ND +Nt ,e

ND
dt

)2

Ed t = Ed t ,0 +
eND

8εSi

(
ND +Nt ,e

ND
dt

)2

(2.14)
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where Eat ,0 and Ed t ,0 are the acceptor and donor traps energy levels referred to valence band.

To conclude, equation (2.15) allows to compute the total volume concentration of charge at

equilibrium.

Nt ,e = Nat ,e −Nd t ,e (2.15)

Figure 2.9 – Energy band diagram at equilibrium. The band bending affects the traps energy
levels reference with respect to the Fermi Level. Acceptor traps level Ev +0.6 eV, concentration
3×109 cm-2.

Traps out of equilibrium

When the reverse bias potential increases so that the depletion regions limits xn and xt −Wt /2

start to overlap, a single depletion region is created such as shown in figure 2.7b, meaning that

traps are out of equilibrium. In this case, instead of relations (2.13), one should consider the

competition between emission and capture processes to get the ratio between ionized and

neutral states, as explained in [80]. Unfortunately, these expressions are not tractable with the

analytical model at aim in this work. Then, in order to simplify the analysis, two cases will be

identified. The first case assumes that the depletion region xn goes well beyond xt +Wt /2,

which happens for large reverse voltages. Then, it is possible to use the out of equilibrium

equations for the traps charge density as given for example from Lutz et. al. [81]. In this work,

the fraction of charged traps is evaluated assuming a fully depleted semiconductor, which

gives:

Nat ,oe = Nat ,0

⎛
⎝ 1

1+ cn,a

cp,a
exp

(
2 Eat ,0−Ei

kb T

)
⎞
⎠ Nd t ,oe = Nd t ,0

⎛
⎝ 1

1+ cp,d

cn,d
exp

(
−2 Ed t ,0−Ei

kb T

)
⎞
⎠ (2.16)
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where Nat ,oe and Nd t ,oe are the charged acceptor and donor traps volume concentrations out

of equilibrium, Ei is the intrinsic Fermi level, cn,a and cp,a are the electrons and holes capture

coefficient for acceptors traps, cn,d and cp,d are the electrons and holes capture coefficient

for donors traps. In order to match the occupied fraction of the defects between the TCAD

and the analytical model equation (2.16) was used in the following way. It is assumed that the

intrinsic level Ei is Ev +0.55 eV. Then the ratio cn,i /cp,i was determined to be 0.52 to match

TCAD results. For all further analytical calculations with different defect energy levels the ratio

was fixed to this value. The total volume concentration of charged traps out of equilibrium is

then Nt ,oe = Nat ,oe −Nd t ,oe .

Traps at semi-equilibrium

The third case is the semi-equilibrium condition. This happens for voltages where the de-

pletion regions are still competing against one another in a sense that satisfies the following

inequality:

xt − Wt

2
< xn < xt + Wt

2
(2.17)

Considering equations (2.4), (2.5) and (2.6) and substituting them in (2.17), the corresponding

voltage range for the semi-equilibrium condition can be derived:

e

2ε

(
ND+NA

NA ND

)(
ND xt−

(
ND+Nt ,e

)
dt

2

)2

+2kbT

e
−Vbi<−V <

e

2ε

(
ND+NA

NA ND

)(
ND xt+

(
ND+Nt ,e

)
dt

2

)2

+2kbT

e
−Vbi

(2.18)

In this case, there is a competition between equilibrium and out of equilibrium models. To

avoid introducing excessive complexity, an empirical definition of a weighting parameter

ω is introduced, to give an estimation of the ratio between the equilibrium and the out of

equilibrium areas of the traps depletion region:

ω= 1

Wt

(
xn −

(
xt − Wt

2

))
(2.19)

Relation (2.19) represents the fraction of the depletion region generated by traps calculated

when equilibrium is satisfied (region between
(
xt − Wt

2

)
and

(
xt + Wt

2

)
in figure 2.7a, with W t

given in equation (2.6)) which intersects the depletion region that is generated by the voltage

applied to the junction, evaluated when there are two depletion regions (whose edge in the

n-type silicon bulk is xn , evaluated following equations (2.4) and (2.5)). Once ω is computed,

the volume concentration of charged traps Nt is evaluated from equation (2.20).

Nt =ωNt ,oe + [1−ω] Nt ,e (2.20)

Obviously, Nt reverts to Nt ,oe for a full out of equilibrium condition, i.e. when xn > xt +
Wt
2 . Considering different traps concentrations, energy levels and types, there is a good
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matching between the charged traps concentrations obtained from the model and from TCAD

simulations (see tables 2.2 and 2.3, where evaluations are done for two different applied

voltages, 1 V and 4 V, and traps concentrations are considered as surface concentration,

equal to dt Nt ). Moreover, in Figure 2.8 it is possible to observe the matching in the three

different regimes, i.e. equilibrium (at 0 V), partially out of equilibrium (at 1 V) and fully out of

equilibrium (at 4 V). In all these situations, the model agrees pretty well with a full numerical

treatment.

Traps type Traps energy level
with respect to the
valence band (eV)

Charged traps con-
centration from
TCAD (cm-2)

Charged traps con-
centration from
analytical model
(cm-2)

Acceptor 0.5 3.0×109 3.0×109

Acceptor 0.55 2.0×109 2.0×109

Acceptor 0.6 5.8×107 5.8×107

Donor 0.55 1.0×109 1.0×109

Table 2.2 – Charged traps concentration from TCAD simulations and analytical model with a
bias voltage equal to 4 V.

Traps type Traps energy level
with respect to the
valence band (eV)

Charged traps con-
centration from
TCAD (cm-2)

Charged traps con-
centration from
analytical model
(cm-2)

Acceptor 0.5 3.0×109 2.8×109

Acceptor 0.55 2.5×109 2.1×109

Acceptor 0.6 1.6×108 1.8×108

Donor 0.55 ∼ 0 3×105

Table 2.3 – Charged traps concentration from TCAD simulation and analytical model, with a
bias voltage equal to 1 V.

2.2.3 Modeling of transient current
The link between the transient current and the electric field profile is provided by the Ramo’s

theorem which states that the current generated by a traveling charge inside a parallel plate

capacitor is given by:

i (t ) = qv

L
(2.21)

Where q is the charge moving at speed v , and L is the distance between the capacitor electrodes.

In the case of our diode, electrodes are substituted by the edges of the space charge region.

Therefore, since the electron velocity depends on the electric field following the law v =μeε,
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for each moving electron, the related transient current will be proportional to the electric field

evaluated where the electron is at time t , i.e. r (t ). In addition, the field mobility dependence

based on the extended Canali model is introduced [82]:

μe =
μe,0

1+μe,0|ε(r )|
vsat

(2.22)

Where ε (r ) is the electric field, μe,0is the low field electron mobility (1417 cm2/Vs for silicon),

and vsat = vsat ,0
(300 K

T

)0.87
is the saturation velocity (vsat ,0 = 1.07×107 cm/s). Considering

that v =μeε, a differential equation in terms of position r (t ) and time can be derived:

dr

d t
=μeε (r ) (2.23)

Equation (2.23) is then evaluated in each region of figures 2.7a or 2.7b using the correct

expression for the electric field, and results are shown in the following paragraph.

Equations of motion of electrons

Solutions of the differential equation (2.23) are shown, for each region of the diode, in the one

space charge region case (in the case with two space charge regions, it is possible to consider

equations until Region 1, until time tn , that is the time for which r (tn) = xn).

The notation LW (x) refers to the Lambert W function of x.

• Region P+, position −xp<x<0

r =−xp +ELW

(
1

F
exp

(
vsat t +K0b

F

))
+K0,a (2.24)

Where:

K0,b = F ln
(−K0,a

) −K0,a (2.25)

K0,a =−1 (2.26)

F = ε

μe 0NAe
vsat (2.27)

• Region 1, position 0 < x<xt . At time t1, the middle of the electrons cloud will reach the

position 0.

t1 =
xp +E ln

(
K0,a−xp

K0,a

)
vsat

(2.28)
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K1 = NA

ND
xp +F1ln

(
NA

ND
xp

)
+ vsat t1 (2.29)

r = NA

ND
xp −F1LW

(
1

F1
exp

(−vsat t +K1

F1

))
(2.30)

Where

F1 = vsatε

ND qμe 0
(2.31)

And ND is the doping concentration of the N- region. The middle of the electrons cloud

will reach the position xn , in case of two separated depletion regions, at time tn .

tn =
−xn + NA

ND
xp +F1ln

(
−xn + NA

ND
xp

)
−K1

−vsat
(2.32)

Since in the case of two separated depletion regions the electric fields vanishes at xn ,

tn =+∞.

• Region 2, position xt<x<xn . At time t2, the middle of the electrons clouds will reach

the position xn .

t2 =
−xt + NA

ND
xp +F1ln

(
−xt + NA

ND
xp

)
−K1

−vsat
(2.33)

K2 =−xt + NA

ND
xp + (ND +Nt )

ND
d +F1ln

(
−xt + NA

ND
xp + (ND +Nt )

ND
d

)
+vsat t2 (2.34)

r = NA

ND
xp + (ND +Nt )

ND
d −F1LW

(
1

F1
exp

(−vsat t +K2

F1

))
(2.35)

The single charge picture

The TCT signal of a localized charge traveling across the structure choosing a trap energy level

of Ev +0.5 eV with a concentration 3×109 cm-2 and at a bias of 4 V is analyzed first and shown

in figure 2.10.

The time dependence of the overall TCT signal is reasonably well reproduced between the

analytical model and TCAD simulations, meaning that in essence the modeling approach and

the principle behind it is correct. However, looking into the details reveals a quite different

shape. This is attributed to the self diffusion of the initial bunch of carriers as time passes.

Indeed, a rough estimation of the diffusion length gives about 5 μm after 10 ns (in line with
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Figure 2.10 – TCT signal prediction between TCAD and analytical model simulations. Here a
localized charge traveling across the structure is considered. Acceptor traps level Ev +0.5 eV,
concentration 3×109 cm-2, bias voltage 4 V.

traveling times) considering an average mobility of 0.1 m2/Vs, thus revealing that during their

motion, the initial shape will extend over a non-negligible region in regard to the dimensions

of the depletion region. Without entering into the details, it is possible to obtain the exact

solution of the continuity equation with a linearly dependent electric field. However this

requires numerical computations, and therefore an explicit analytical solution cannot be

obtained.

The Gaussian approximation of the travelling carrier density

The sharp signal predicted by the model is still quite crude and cannot reproduce precisely

the shape of numerical simulations. To this purpose, a diffusion process by introducing a

Gaussian function whose center moves according to the mean value of the electric field is

introduced:

n (x, t ) = ni n j�
4πDn t

exp

(
− (x − r (t ))2

4Dn t

)
(2.36)

It is worth noticing that relation (2.36) still represents the solution of the continuity equation

in a uniform electric field [83]. However, in our case, the electric field is non uniform and

therefore relation (2.36) is merely an approximate solution. The Gaussian has the following

features: the maximum equals the number of photo generated electrons ni n j , the center is

still given by r (t ) that satisfies relation (2.23), and the variance changes with time following

the diffusion law with Dn being the diffusion constant. The transient current density can
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therefore be defined by the following equation:

i (t ) =Ξ

Depl eti on∫
Reg i on

n (x, t ) v (x)d x =Ξ

Depl eti on∫
Reg i on

n (x, t )ε (x)μe (ε (x))d x (2.37)

Where Ξ is a scaling geometrical parameter defined to match the TCAD current density

absolute value. Next, integrals needs to be solved for each region of the diode, in case of

two separated space charge regions or a single space charge region, as already done to get

the solutions of equation (2.23). Figure 2.11a illustrates the new TCT prediction given by

the analytical model with the diffusion process included. It comes out that the approximate

(a) (b)

Figure 2.11 – TCAD and analytical model simulations of (a) TCT signal and (b) electric field
shape under different biases. Acceptor traps level Ev +0.5 eV, concentration 3×109 cm-2.

analytical model is able to reproduce in many details the dependence of the TCT signal on

traps characteristics and applied voltages. For instance, from the evaluation of xp (equation

(2.8)), it is possible to predict that the higher the applied voltage, the larger will be the absolute

value of xp and xn (equation (2.7)). At some point the electric field will be high enough to

drag carriers across the interface that generate a current that will mimic the electric field

discontinuity. The dependence of the TCT signal on the trap density is also included since

the discontinuity of the electric field at xt is also related to traps density through equation

(2.2). Another interesting information can be obtained from the analytical solution with the

diffusion included. Indeed, it is possible to see that, after a certain voltage, the tail of the

current is no more visible. This is due to the fact that, when the diode is fully depleted, the

electric field is never negligible inside the diode. Therefore, electrons will be rapidly collected

by drift, and diffusion will not affect the signal shape. For lower voltages, there exists a region

beyond which the electric field is almost zero. Therefore, once the electron cloud reaches this

position, carriers will be collected mainly by diffusion, thus increasing the collection time.

In figure 2.11, it is possible to observe the current shape at 10 V (fully depleted diode, figure

2.11a), and the electric field shapes at 4 V and 10 V (figure 2.11b).
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2.2.4 Dependence on the nature of the traps

A comment on the influence of the type of traps on the TCT signal is needed. In case of

N-type doped silicon bulk, the sign of the discontinuity at the interface needs to be positive

(considering the notation in equation (2.2)) in order to have a double peak in the electric

field profile (that will cause a double peak in the TCT signal). This happens when charged

acceptors are present in higher concentration than charged donors, as they introduce a net

negative charge at the interface layer (that in the notation used in this work corresponds to

a positive value of Nt ). Conversely, the presence of donors causes a double peak shape of

the transient current when the bulk is lightly P-type doped (and therefore, the doping profile

of the testing diode is opposite with respect to the one presented in figure 2.2). This is due

to the fact that they will introduce a positive charge inside a bulk where, when depleted, is

negative, resulting in a discontinuity of the electric field. This will give rise to a double peak

shape of the electric field, and then of the transient current. By looking at equations (2.13)

for traps at equilibrium and (2.16) for traps out of equilibrium, it is possible to deduce that,

generally speaking, when acceptor traps have an energy level below the band mid gap, they

will be charged, while donors will behave in the opposite way. Therefore, double peak will be

observed in cases where acceptors energy levels are below mid gap when the diode doping

profile is as in figure 2.2, and donors energy levels are above mid gap when the diode doping

profile is opposite to the one presented in figure 2.2.

2.3 Extraction of charged traps concentration inside the interface

layer
Once the transient current signals are obtained for several voltages, the voltage corresponding

to the full depletion of the diode can be extracted. From figure 2.11a it is possible to observe

that the higher the voltage, the shorter (in time) the transient current due to the increase

in the electric field and thus in carrier velocity. For voltages greater than the full depletion

value, the diffusion process will become less relevant since the electric field spreads over the

whole diode (see the difference between 4 V and 10 V in figure 2.11b). At this particular voltage

(which can be estimated from the electric field distribution inside the diode using the model),

we can evaluate the time needed by the center of the electrons cloud to reach the end of the

diode (tend ) using equation (2.38). This condition is recovered from equation (2.33), where xt

is replaced with xend , that is the value of the thickness of the n-type doped bulk.

tend =
−xend + NA

ND
xp +E1ln

(
−xend + NA

ND
xp

)
−K1

−vsat
(2.38)

When evaluating for example tend at 4 V (according to the model, this is close to the full

depletion of 4.8 V for acceptor traps concentration equal to 3×109 cm-2 and an energy level

equal to Ev + 0.5 eV), its value is 11.3 ns. For voltages higher than this value, the current

becomes negligible when t > tend , while this will not happen for lower voltages since the

diffusion current is still important for non fully depleted diodes. Then, integrating the signal

up to tend , the integral will remain constant above a certain voltage as the current will be
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negligible for t > tend (all carriers will have been collected). However, when performing

experiments, the integration time discussed above is an indication, but its value should be

fine tuned according to the measurements. In our case this would be about 10 ns. Results

of the integral are shown in figure 2.12. It is visible that above depletion the current integral

Figure 2.12 – TCAD and analytical model simulations of the normalized integral of the TCT
current signals at different voltages. Acceptor traps level Ev +0.5 eV, concentration 3×109

cm-2.

starts to exhibit a plateau, same result obtained by Bates and Moll [84]. In an experiment, one

could try to extract the voltage at which the plateau is reached as indicated by the lines in

Figure 13. While the saturation value (horizontal line) is clearly defined, the second tangent

is difficult to determine due to the shape of the curve. We have extracted a range of possible

voltages for the intercept between Vf d = 4.75 V and Vf d = 5.85 V (the range is showed in figure

2.12, with the two relative tangents). From these voltages, the total charge density inside the

volume can be calculated by using equation (2.12). Indeed, considering xn = xR and V =Vf d

at full depletion, the only unknown is the volume concentration of the traps Nt (or the surface

concentration Nt dt with dt = 3 nm). From these calculations, it is obtained Nt dt = 2.78×109

cm-2 (for Vf d = 4.75 V) and Nt dt = 1.30×109 cm-2 (for Vf d = 5.85 V), while the charged traps

surface concentration is 3× 109 cm-2 (since acceptor traps with the energy level equal to

Ev +0.5 eV are fully ionized).Therefore, using TCT data, the method allows estimating the

charged traps concentration, while fitting the TCAD model results to the obtained transient

data will give a much more precise answer.

2.4 Validation with a non irradiated diode
2.4.1 Comparison between TCAD, analytical model and measurements
To validate the analytical model of TCT, a diode structure has been measured and compared to

TCAD and analytical model simulation, where the bulk is lightly N-type doped (around 7×1011

cm-3). The doping profile (PiN structure, as in figure 2.2) is the following: the P-type doped
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Temperature 293 K
μe,0 900 cm2/Vs
Doping concentration in the bulk 1.3×1012 cm-3

P-type doping concentration 4×1018 cm-3

Voltage (reverse bias) 100 V

Table 2.4 – Set of simulation parameters for analytical model validation.

contact is obtained by ion implantation with the doping peak around 4×1018 cm-3, the N-type

doped contact is realized with diffusion of phosphorus. The total thickness of the diode is 320

μm, and the surface is 4.41 mm2. Fabrication has been performed at the clean room facility of

the Center of Micronanotechnology (CMi) at the École Polytechnique Fédérale de Lausanne

(EPFL), in the process that will be described in details in section 4.3.1. The measurements

setup includes:

• a pulsed laser for the injection of carriers inside the diode, with a wavelength equal to

660 nm and a pulse length of the order of 100 ps long, applied to the P-type doped side

of the diode;

• a voltage generator Keithley 2410, connected to the N-type contact, with the P-type

contact connected to 0 V.

• an amplifier CIVIDEC C2HV Broadband Amplifier (gain 40 dB, bandwidth 2 GHz),

connected to the N-type contact, to be used as a bias-tee and to amplify the TCT signal;

• an oscilloscope Agilent DSO9254A, to measure the hyperlinkabbrTCT signal.

All the experimental setup is provided by the CERN Solid State Detectors (SSD) group.

Simulations have been performed with parameters listed in table 2.4. In figure 2.13, the

comparison between the TCAD and analytical model simulation results and the measurement

data is shown. By looking at the plot, some differences are observed between the different

curves. Just after the light pulse, holes generated are immediately collected by the P+ contact

and create the initial fast current pulse. Since the analytical model does not include this hole

contribution, the first initial peak is absent from the analytical simulation, but this does not

affect the TCT signal which originates from electrons displacement. In addition, parasite

components during measurements (i.e. capacitances and inductances) are not accounted

in the simulations (TCAD and analytical model) which could explain the slight mismatch

with the measurements. To conclude, despite the differences analyzed above, the shapes of

different signals are similar, and therefore it is possible to assess that the analytical model is

validated for the purpose of predicting the TCT signal.

2.4.2 Parameters extraction
The analytical model can be used to extract important physical parameters: maximum elec-

tron mobility (or mobility at low electric field) and doping concentration in the bulk. However,

there could be various set of parameters that could fit the experimental data. Basically, the

39



Chapter 2. Modeling of TCT for the characterization of thin interfaces in bulk silicon

Figure 2.13 – Comparison between analytical model, TCAD simulations and measurement
data.

Test μe,0 (cm2/Vs) Doping concentration in the bulk (cm-3)

1 600 1.3×1012

2 900 1.3×1012

3 1200 1.3×1012

4 900 7×1011

5 900 2×1012

Table 2.5 – Parameters for extraction of mobility and doping concentration.

simulation parameters that can affect the shape of the transient current are the maximum elec-

tron mobility μe,0, the doping concentration in the bulk and the temperature. The temperature

and μe,0 affect the mobility, and therefore the travel time of the electron cloud inside the diode

(see equation 2.22). A higher μe,0 leads to a higher electron mobility, i.e. a shorter current

signal, while an higher temperature leads to a lower mobility. The doping concentration in

the bulk also affects the electric field inside the diode. This happens in two different ways.

First, it affects the depletion region width. Indeed, the lower the doping concentration in the

bulk, the larger the depletion region. If the depletion region is large enough, the bulk will be

totally depleted, and no current diffusion tail will be observed (that is the slower part of the

signal). Secondly, the doping concentration affects the electric field intensity, and therefore

the electron cloud velocity (v =με). In table 2.5 it is possible to see the various tests performed

in order to find the parameters combination that allows to have the simulated current shape

the most similar to the measured one. Figure 2.14 shows simulations and measurement where

the combination of μe,0 allows the best matching. Similarly, figure illustrates the impact of

the doping. Evaluation of these graphs reveal that the best agreement is obtained for a μe,0

of 900 cm2/Vs, and a doping concentration of 1.3×1012 cm-3. Figure 2.15 corresponds to the

parameters in test 2. Note that the value of μe,0 which better fits the data is below the one
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expected for the low doped crystalline silicon substrate used in this work, since the maximum

value of electron mobility in crystalline silicon is 1500 cm2/Vs [83], much higher than the value

reported in this paper. This difference could be due to presence of contaminants inside the

silicon bulk.

Figure 2.14 – Influence of maximum electron mobility on the transient current shape.

Figure 2.15 – Influence of the doping concentration in the bulk on the transient current shape.

2.5 Conclusions
In this chapter, a new characterization method for bonded interfaces with deep traps is

investigated by means of numerical and analytical simulations of photo generated transient

currents, the so-called TCT. It comes out that this technique is likely to be used to analyze

the presence of traps inside ultra-thin interface layers in wafer bonded monolithic detectors,
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and possibly in a variety of semiconductor heterostructures that can be fabricated with the

promising low temperature wafer bonding technology. The physics based analytical model

derived allows to extract physical parameters such as charge concentration in traps layers,

and to easily analyze TCT signal without the need of complex TCAD simulations. The next

chapter will be focused on measurements, and analysis, of diodes fabricated on silicon wafers

bonded with a process similar to CMOS-compatible SAB of Flötgen et al. [58].
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3 Schottky diodes for bonding inter-
faces characterization
This chapter is based on the paper "Transient Current Technique for Electrical Characteriza-

tion of Bonded Interfaces in Bulk Silicon", submitted to the Journal of Applied Physics, by J.

Bronuzzi, D. Bouvet, C. Charrier, F. Fournel, M.F. Garcia, A. Mapelli, M. Moll, E. Rouchouze

and J.M. Sallese. Sections 3.1, 3.3, 3.4 and 3.5 are an original work performed by me, with the

supervision of the other authors. Section 3.2 has been integrated with the description of the

bonding process by the team at CEA-Leti.

In this chapter, the analysis of bonding interfaces for CMOS-compatible SAB using TCT is

described, with a method based on the study presented in chapter 2.

3.1 Introduction
For the analysis of the bonding interface by means of TCT it is necessary to have a diode whose

role is to create an electric field inside the silicon. In chapter 2, simulations of the analysis

were performed using a PiN diode. In the case of this study, however, it was not possible to

bond a top wafer with diodes already fabricated, and therefore this step had to be performed

after the bonding process. Doping is not compatible with the low temperature process since

annealing or diffusion ask for high temperature steps that would affect the interface state.

To circumvent this limitation, Schottky diodes were used instead of PN junctions since the

processing temperatures did not exceed 160◦C (for less than 2 min). In this chapter, a first

section will contain the description the technology used for the low temperature silicon

bonding. Then, a second section will deal with the integration of the Schottky diodes. Finally,

the last section will present the TCT measurements and data analysis.

3.2 CMOS-compatible SAB
In this section, bonding of unprocessed wafers, performed by CEA-Leti in Grenoble, will be

described. Twenty highly resistive (HR) P-type doped Czochralski wafers (ρ > 5000 Ωcm, 200

mm diameter) were used. A sketch of the process flow is summarized in figure 3.2. Wafers

were first oxidized based on a wet thermal oxidation process to obtain a 1 μm thick silicon

oxide layer. After this process, 18 wafers were divided into two groups depending on their

role: top wafers and bottom wafers, sparing 2 of them that were kept as reference. Different

bonding parameters were chosen (see table 3.1). Top wafers were first bonded to bulk silicon
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(a) (b) (c)

Figure 3.1 – SP2 particle characterization on 200mm silicon wafer with a threshold at 90 nm:
a) before entering into EVG580CB and b) after the surface activation. c) Scanning Acoustic
Microscopy of SAB Si/Si bonding after 400°C annealing.

carrier wafers with a direct hydrophilic bonding process before being thinned to the target

thicknesses. These were determined through simulations to optimize the sensitivity of TCT to

the traps concentration following the analytical model presented in chapter 2 (see table 3.1).

After polishing and conditioning (for hydrophobic or hydrophilic processing) the bondable

surfaces, top and bottom wafers were bonded using the EVG® 580 ComBond® machine using

Ar sputtering and a bonding pressure of 0.95 MPa. The particle neutrality of the tool has been

check with a Surfscan SP2 as shown on figure 3.1a and 3.1b in order to present any bonding

defect or uncontrolled interface states. Only 33 adders with a threshold of 90 nm could be

detected. Annealing of bonded substrates (called stacks) was performed at 400°C or at room

temperature, as reported in table 3.1. An example of the bonding quality is checked by acoustic

scanning microscopy as shown on figure 3.1c. The last step of the process was the release of

the carrier wafer by grinding followed by complete etching of silicon using the 1 μm buried

oxide as a convenient etch stop layer. The different batches of bonded wafers are listed in

table 3.1.

Figure 3.2 – Scheme of the process flow for CMOS-compatible SAB.
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Stack
name

Top wafer Bottom wafer Annealing

Name Th
(μm)

Surface
preparation

Name Th
(μm)

Surface
preparation

W1 P1 20 Hydrophobic P10 725 Hydrophobic 400◦C
W2 P2 20 Hydrophilic P11 725 Hydrophilic 400◦C
W3 P3 50 Hydrophobic P12 725 Hydrophobic 400◦C
W4 P4 50 Hydrophobic P13 725 Hydrophobic 400◦C
W5 P5 50 Hydrophobic P14 725 Hydrophobic Room T
W6 P6 50 Hydrophobic P15 725 Hydrophobic Room T
W7 P7 50 Hydrophilic P16 725 Hydrophilic 400◦C
W8 P8 50 Hydrophilic P17 725 Hydrophilic 400◦C
W9 P9 50 Hydrophilic P18 725 Hydrophilic Room T
W19 P19 Reference
W20 P20 Reference

Table 3.1 – List of wafers and bonding parameters for the different bonding tests performed.

3.3 Fabrication and characterization of Schottky diodes
3.3.1 Process flow
Fabrication of Schottky diodes on bonded (and reference) wafers was performed at CMi. In

these laboratories, diameter of wafers are limited to 100 mm, and therefore a downsizing

from 200 mm is needed. For this purpose, the top wafer surface was covered with 5 μm of

photoresist, and laser cutting was performed at Sil’tronix, following the scheme in figure 3.3,

where it is possible to see the notation used to label 100 mm wafers (that is, adding A or B to

the stack label, according to the position of the wafer). 100 mm wafers W03A, W06A, W07A

Figure 3.3 – Scheme for downsizing from 200 mm to 100 mm wafers.

and W20A were chosen to be processed. The top wafer contact (top side) was fabricated with

aluminum, while the bottom wafer contact (bottom side) was fabricated with platinum. These

metals were chosen after preliminary tests on Schottky diodes fabrication. Holes for top light

injection TCT were also perfomed in the middle of the diode (in a matrix with 5 square holes
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(a) (b)

Figure 3.4 – (a) Cross section and (b) layout of a Schottky diode. Dimensions in figure are
expressed in μm.

per edge, 4 μm wide). The footprint dimension of diodes was 240 μm, the footprint dimension

of conctact pads was 200 μm, connected to the diode through a 10 μm wide, 480 μm long

aluminum path. First wafers were cleaned, with Microposit® remover 1165 at 70◦C (to remove

the 5 μm thick photoresist) and then with RCA cleaning without HF. Then, silicon dioxide was

thinned down to 500 nm by wet etching in BHF 7:1. After this step, the first lithography for

the definition of diodes areas was performed on the top side using 1 μm of photoresist AZ

ECI 3007, while the bottom side was protected with 4 μm of photoresist AZ ECI 3027. Etching

of silicon dioxide was performed with BHF 7:1, to completely remove the oxide on the diode

surface. Then, photoresist stripping and RCA cleaning step were performed to assure the

cleaning of the diode surface, and aluminum was deposited by sputtering (325 nm thick), with

a previous argon bombardment cleaning in the same tool. A second lithography, to pattern

the diodes, the contact pads for measurements and the holes to assure light injection, was

performed on the top side, using 1 μm of photoresist AZ ECI 3007, while the bottom side was

protected with 4 μm of photoresist AZ ECI 3027. Aluminum dry etching was performed, and

the photoresist stripped. The last step was the deposition of platinum. For this, the top side

was protected with 4 μm of photoresist AZ ECI 3027, and then the bottom side was etched

with BHF 7:1, and then sputtering of platinum (400 nm thick) was performed on the same

side, with a previous argon bombardment cleaning. Figure 3.4a shows the cross section of the

diode at the end of the process, while figure 3.4b shows the layout.

3.3.2 CV and IV measurements
Before the TCT characterization, the diodes were tested through IV (current versus voltage)

and CV (capacitance versus voltage) measurements using a Keithley 2410 voltage generator

for biasing, a Keithley 6485 for current measurements, and an Agilent E4980A LCR meter for

capacitance measurements. The voltage was applied to the top contact, while the bottom

contact was connected to ground. The IV (figure 3.5a) and CV (figure 3.5b) characterizations

confirm a standard Schottky behavior [83]. Both CV and IV characteristics are consistent with

a N-type doped substrate where the reverse biasing is obtained by setting the top electrode to

negative values. However, since the doping of silicon is expected to be P-type, such a reverse
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(a) (b)

Figure 3.5 – (a) IV and (b) CV characteristics of Schottky diodes fabricated on different wafers.

bias configuration should occur with a positive voltage on the top contact. This unexpected

behavior is also evidenced in measurements on MOS capacitors fabricated on the same

substrates (figure 3.6). Evidently, the wafers happen to be N-type. This surprising finding can

be explained by the generation of thermal donors that takes place during the high temperature

process prior the wafer bonding (oxidation) and by the annealing (performed at 400◦C on

some wafer). Indeed, as reported by Bruzzi et al. [67], these processes could activate oxygen in

silicon, generating donors, that could reach a concentration high enough to invert the doping

type of silicon. The range of temperatures at which this occurs spans from 30◦C to 900◦C, with

two peaks in the donors generation rate at 450◦C and 750◦C [79].

Figure 3.6 – CV characteristics of MOS fabricated on different wafers.
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3.4 TCT Measurements of Schottky diodes
3.4.1 Edge TCT measurements
To confirm that Schottky diodes are properly working, and to start the study of the electrical

properties of the bonding interface, eTCT measurements were performed. Charges were

injected on the side of the diode bulk by means of an IR laser (wavelength 1064 nm), with a

beam diameter of 10 μm at the focus point (located under the middle of the diode surface).

The reverse bias voltage was applied with a Keithley 2410 through a CIVIDEC C2HV Broadband

Amplifier (gain 40 dB, bandwidth 2 GHz) to the top side contact, from which also the transient

current signal was recorded using an oscilloscope Agilent DSO9254A. The collected charge was

measured by integrating the transient current signal, and a map of this charge was generated

for diodes W20A (reference in figure 3.8a) and W03A (bonded, in figure 3.8b), at -60 V. Figure

3.7 shows the reference system. From plots in figure 3.8 it is possible to observe the extension

Figure 3.7 – Reference system of 2D plots shown in figure 3.8. The black dot indicates the
position of the 0, while the yellow semicircle shows where the depletion region is located.

of the depletion region under the diode surface, since charge collection occurs only in the

depletion region. From figure 3.8a, it is possible to observe that silicon depletes in all directions,

since there is not any barrier in the bulk, and from depletion width estimation it is possible to

(a) (b)

Figure 3.8 – (a) Collected charge for the reference diode (W20A) and (b) for the bonded diode
(W03A).
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estimate the effective doping concentration (of donors), that is 1012 cm-3 (a value consistent

with previous studies of thermal generation of donors [67]). The long tail on the right of the

plot represents a field that is generated by capacitive coupling between the contact pad, the

conduction path and the silicon (see figure 3.4b), through the passivation oxide. Figure 3.8b

shows a completely different shape of the depletion region. Indeed, it is only 25 μm thick

(while in the case of the reference diode it is around 300 μm thick). Since the only difference

between the two diodes is the presence of the bonding interface, a first conclusion is that this

layer of amorphous silicon blocks the collection of charges generated between the interface

and the bottom side of the diode. The reason for which the depletion region is only 25 μm

thick and not 50 μm (full thickness opf the top part of the stack, see table 3.1) is the deflection

of the IR laser. Indeed, the light beam is tilted by the borders of the device due to the Snell law

nai r sinθai r = nSi sinθSi , where nai r = 1 [85] is the refractive index of air, nSi = 3.55 [86] is the

refractive index of silicon, θai r is the angle of incidence with the edge of the diode and θSi is

the angle of refraction inside silicon, as shown in figure 3.9a. During measurements, the diode

was not perfectly flat, and therefore this tilting impedes the charge generation at the edges

of the depletion region. Moreover, imperfections in the edges caused by dicing also could

generate light deflection. However, if the diode is diced in the middle, then all the depletion

region would be illuminated, and observed to be 50 μm thick. Results are shown in figure 3.9b,

where the tail on the right of the image is again due to capacitive coupling between the contact

pad, the conduction path and silicon through the passivation oxide (see figure 3.4b).

(a) (b)

Figure 3.9 – (a) Light deflection causes by edge imperfections, where it is possible to observe
the effects of Snell law on measurements, and (b) eTCT measurements of diced diode.

3.4.2 Top TCT measurements
Top TCT measurements are conducted with a 50 ps pulsed laser emitting at a wavelength of 660

nm. The spot diameter on the surface of the device is 10 μm and illumination occurs through

the pinholes in the center of the diode (see figure 3.4b). The biasing and the measurements

are conducted with the same setup used for eTCT. First measurements were performed on

diodes fabricated on the same wafers investigated in the previous analysis. Results for the

diode W20A (reference) show a standard behavior (see figure 3.10a) of a TCT signal generated

by a fully depleted region. In this case, different bias voltages are applied, and the shape of
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(a) (b)

Figure 3.10 – TCT signals from measurements on diodes (a) W20A (reference) and (b) W03A
(bonded), at different bias voltages.

the TCT signal is decaying according to the Ramo’s theorem [87] in case of a linear electric

field, as it happens in a ideal diode in reverse bias. The situation is different for the bonded

wafers W03A where a different behavior is reported in figure 3.10b. The currents decay have

a different shape. A first peak is observed at around 2 ns, followed by a slowly decaying tail.

As in eTCT, this is a clear signature of the effect of the bonding interface. This anomalous

behavior is further confirmed in figure 3.11 reporting TCT measurement of two additional

bonded diodes, W06A (figure 3.11a) and W07A (figure 3.11b). These shapes are similar to the

one observed in diode W03A, but W06A is slightly different when looking at the long tail after

3 ns. Indeed, for diodes W03A and W07A the long decay starts increasing in amplitude with

the bias for applied voltages higher than -45 V. For diode W06A, we can also observe such a

behaviour, but for voltages higher than -70 V. In the next section, an analysis of TCT curves

is performed in details with additional simulations using the analytical model presented in

chapter 2.

50



3.4. TCT Measurements of Schottky diodes

(a) (b)

Figure 3.11 – TCT signals from measurements on diodes (a) W07A (bonded) and (b) W06A
(bonded), at different bias voltages.

Figure 3.12 – Comparison between analytical simulations and measurements on diode W20A
(reference) at -70 V.

3.4.3 Discussion
In order to understand the behavior of the bonding interface, the analytical model developed

in chapter 2 is used. This gives a fast and comprehensive analysis of the main phenomena

induced by the interface. A first simulation is performed in order to determine the doping

concentration in the silicon bulk, by comparing the results of the analytical model for a

standard diode with the measurements on the reference not bonded wafer W20A. In figure

3.12 it is possible to observe a good matching between simulations and measurements for a

diode with a N-type bulk doping concentration of 1.5×1012 cm-3 (close to the value obtained

from e-TCT measurements analysis), at -70 V. In the work of Flötgen et al. [58] the bonding

interface generated by the wafer bonding technique was found to be an amorphous layer

spreading in 3 nm. Introducing this thickness in the analytical model (chapter 2), a good

matching with experimental data is obtained for a traps density of the order of 3×109 cm-2.
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Indeed, simulations of bonded diodes show that the introduction of an interface layer with

these traps concentration gives curves with the same shape of measured ones. The most

important parameter in this case happens to be the quantity of ionized traps, which influences

the electric field profile of the diode by introducing a discontinuity at the interface. In figure

3.13, it is possible to observe 3 simulated curves for different ionized traps densities (2.7×1010

cm-2, 5.7×1010 cm-2 and 8.7×1010 cm-2) and compare them with measurements of diode

carried out on W03A (bonded) at -70 V. Obviously, there is a strong influence of the interface

trap density on the whole TCT shape, and the best matching is obtained unambiguously for a

density of charge of 5.7×1010 cm-2 (donor traps, positively charged). Note that the long tail

Figure 3.13 – Comparison between analytical simulations with different ionized traps densities
and measurements on diode W03A (bonded) at -70 V.

that is visible after 3 ns in measurements (figures 3.10 and 3.11) is not present in the analytical

model simulations. By performing the same simulations with TCAD, it is possible to observe

that this tail is related to diffusion processes in the undepleted bulk. Indeed, in figure 3.14

the simulations performed at -45 V of the Schottky diodes are shown, with 5.7×1010 cm-2

ionized traps, with the 725 μm thick bulk and without it, compared to measurements. The

tail disappears in absence of the bulk. To add the contribution of the undepleted bulk to

the analytical model, the tail from measurements was fitted with an exponential decay such

as exp(−ξt ), with ξ = 0.0203 ns-1 . Adding this exponential to the model (in figure 3.15), it

is possible to observe good matching (similar shapes of the transient current) between the

simulated and the measured data, in both cases, bonded and reference diodes, using the

same parameters of simulations in 3.12 and 3.13. To explain the reason for which the long

tail after 3 ns starts to be influenced by the applied voltage for values higher than a certain

threshold, it is necessary to observe the electric field profile, shown in figure 3.16a for TCT

with an ionized trap density equal to 5.7×1010 cm-2. From this plot, we observe 2 regimes: one

where the discontinuity of the electric field cancels it at the interface (depth of 50 μm), which

happens at relatively low voltages, and the other at higher voltages where, the electric field
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3.4. TCT Measurements of Schottky diodes

Figure 3.14 – Comparison between Sentaurus TCAD simulations and measurements of TCT,
with and without the 725 μm bulk, at -45 V, with 5.7×1010 cm-2 ionized traps.

(a) (b)

Figure 3.15 – Comparison between analytical model with exponential tail and measurements.
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extends beyond the interface, creating a depletion in the subsequent bonded wafer. Indeed,

(a) (b)

Figure 3.16 – (a) Electric field profile from analytical simulations of diode W03A (bonded) for
different applied voltages, at an ionized traps density of 5.7×1010 cm-2 and (b) TCT signal
simulations with the same parameters.

considering measurements on the diode W03A (figure 3.10b), if the bias voltage is smaller than

-45 V, the long tail does not depend on the voltage since the bulk of the bottom wafer is not

depleted, and it can be explained by the extrinsic capacitive discharge as in measurements on

diode W20A. However, when the voltage is larger than -45 V, the electric field discontinuity at

the interface is smaller than its value at the interface, and therefore the depletion region will

extend in the bottom part of the wafers stack. The presence of an electric field will generate a

drift across the bonding interface, meaning that the tail of the TCT signal will now be generated

by the electric field. This result is evidenced by the analytical model for two different regimes.

The first one is when a diode of 50 μm thick is considered, and is valid for low voltages (-45 V

in case of diode W03A) where the depletion region is confined by the charged interface (for

instance, -30 V in figure 3.16a). The second case is when the depletion region extends further

in the bottom wafer, which occurs for higher voltages (for instance, -70 V in figure 3.16a).

Figure 3.16b illustrates the currents simulated with the analytical model that are compared

with measurement done on diode W03A (bonded). The density of equivalent ionized traps can

therefore be obtained by simulating a TCT curve with the same ratio between the peak and

the tail for voltages where depletion extends over the bonding interface. The values obtained

for the diodes considered in this work are presented in table 3.2. These values give a first hint

Diode Voltage Threshold (V) Traps density (cm-2) Surface treatment Annealing

W03A -45 5.7×1010 Hydrophobic 400◦C
W06A -70 9.3×1010 Hydrophobic Room T
W07A -45 5.7×1010 Hydrophilic 400◦C

Table 3.2 – Values of interface traps densities for measured bonded diodes.
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on the impact of different process bonding parameters. For instance, it seems that annealing

at 400◦C reduces the density of ionized traps, while the surface treatment prior bonding does

not affect this parameter. Similarly, a lower traps density could be related to a better quality

interface, consistent with the fact that stacks W03A and W07A were annealed, while stack W06

was not.

3.5 Conclusions
In this chapter, a method for the characterization of amorphous interfaces in bulk silicon

wafers using TCT was presented and discussed in details. This characterization method can

be used to study interface charged defects generated during the bonding process. Impor-

tantly, despite the interface being electrically conductive in the common sense, extracting

free carriers across it is not guaranteed because of electrostatic issues arising with interface

charge traps. An estimation of the traps density is then mandatory, which is proved to be

feasible with the TCT technique. In this context, the bonding process analyzed in this paper

generates an interface which effect is to prevent mobile charges to be collected by an active

circuit implemented across the interface. Considering the working principle of radiation de-

tectors, their fabrication using CMOS-compatible SAB could strongly affect charge collection,

and therefore detection performances. A different characterization method is presented in

appendix A, and also in this case, results suggest that the interface could strongly affect the

performances of radiation detectors. To solve this problem, two solutions have been identified,

on two different levels. From a process level, it could be possible to reduce the number of

traps by changing the bonding parameters, for instance by using a different plasma source for

the surface preparation prior bonding, or by changing the annealing time. In this case, the

discontinuity of the electric field at the interface would decrease, reducing its field blocking ef-

fect. From a design level, a solution to reduce the effects on radiation detectors performances

could be to place the bonding interface at the position of the PN junction. This comes directly

from the consideration that the maximum of the electric field intensity is located at this point.

Therefore, the electric field discontinuity should be less effective. This can be studied by TCAD

simulations.

Figure 3.17 (where results from TCAD are compared to the analytical model) shows that

substituting Schottky diodes with PN diodes, in case of traps interface presence at 50 μm from

the junction, does not change the TCT signal and the electric field, that are similar to figure

3.16. In simulations, the bulk silicon doping concentration is 1.5×1012 cm-3, N-type, the traps

concentration is 5.7×1010 cm-2, and the reverse bias is 70 V. In figure 3.18 it is possible to

observe the effects on TCT signal and electric field of bonding interface placed at the junction

(simulations are performed with TCAD using the same parameters of the ones presented in

figure 3.17, except for the position of the interface). The TCT signal is similar to the one of a

standard diode. Also the electric field is similar (figure 3.18b), with the exception of the peak

at the junction, that however does not affect the signal, and therefore the charge transport in

the diode. To conclude, by combining this design solution with process optimization, it could

be possible to fabricate a radiation detector with this technique with CMOS-compatible SAB,

with performances that are not affected by this process. In the next chapter, the development
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(a) (b)

Figure 3.17 – Comparison between TCAD simulations and analytical model of (a) TCT signal
and (b) electric field of a PN Diode, in case of interface located at 50 μm from the junction.
The signal shape, as well the electric field profile, are similar to Schottky diodes measurements
shown in figure 3.16. Traps concentration is 5.7×1010 cm-2, reverse bias is 70 V.

(a) (b)

Figure 3.18 – Comparison of (a) TCT signal and (b) electric field between a standard diode and
a diode with bonding interface at the PN junction. The signal shape, as well the electric field
profile, are similar. Traps concentration is 5.7×1010 cm-2, reverse bias is 70 V.
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of a new charge injection method for TCT, to enable the use of setups simpler than lasers for

light injection, is described.
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4 Electrical injection TCT

This chapter is based on the paper "Principle of the electrically induced Transient Current

Technique", edited by JINST, volume 13, May 2018, doi: https://doi.org/10.1088/1748-0221/13/05/P05021,

by J. Bronuzzi, M. Moll, D. Bouvet, A. Mapelli and J.M. Sallese. The paper is an original work

performed by me, with the supervision of the other authors.

In this chapter, a new approach to charge injection for TCT analysis is presented, the electrical

injection TCT (el-TCT). It is obtained through the implementation of a lateral PiN structure

in an operational device, that is assumed to give only little or no impact on its performance

and would allow to apply the TCT technique during irradiation tests and experiments. Such

characterization is impossible to perform with light injection TCT. A proof of concept for el-

TCT is presented, while the implementation of structures in operating devices is not studied in

detail. This study is perfromed through numerical simulations carried out with the Sentaurus

TCAD software, resulting in an adaptation of the silicon diode layout for el-TCT applications.

These simulations are followed by the design, fabrication and experimental characterisation

of silicon structures.

4.1 Principle and simulations of el-TCT
4.1.1 The device architecture

A cross section of an el-TCT device structure is shown in figure 4.1a. and table 4.1 summarises

the device parameters used for the TCAD simulations.

PW NW S T h Cp CB ,n CC ,n DLp DLB ,n DLC ,n

7 3 2 320 4.5×1018 5.82×1019 1019 1.25 1.02 0.7

Table 4.1 – List of doping parameters for TCAD simulation. PW , NW , S, T h, DLp , DLn , DLn

are expressed in μm and Cp , CB ,n , CC ,n are expressed in cm-3. Cp is the peak P-type doping
concentration at surface, CB ,n is the peak N-type doping concentration at surface (front side,
contact B), CC ,n is the peak N-type doping concentration at surface (back side, contact C),
DLp is the P-type doping Gaussian width, DLB ,n is the N-type doping Gaussian width (front
side, contact B), DLC ,n is the N-type doping Gaussian width (back side, contact C).
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(a) (b)

Figure 4.1 – (a) Cross-section of a device for el-TCT and (b) scheme of the applied voltage
signals. Diffusion doping is shown in the gap between the electrodes. P+ and N+ indicates
respectively p-type and n-type doped regions.

The N-type substrate doping concentration was set to 7×1011 cm-3. Gaussian doping profiles

with maximum concentrations at the surface have been used to simulate the strongly doped

silicon regions generated by implantation and then diffusion. The doping of the top side

extends into the PW and NW regions, that are the P-type (P+) and N-type strongly (N+) doped

region on the front side of the device (see figure 4.1a). In the S regions (corresponding to

the spaces between the PW and the NW regions), the doping is obtained by lateral diffusion

from the PW and the NW regions. The thickness T h of the device is 320 μm. The simulated

structure represents only a small part of the devices produced in this work (see Figure 8). In

the el-TCT concept, injection of free charge carriers (electrons in our case) is done by means

of N-type implants surrounded by P-type doped regions (respectively red and blue regions in

figure 4.1a). Note that the P-type doped layers constitute the front electrodes of the detector

which are also implemented in devices for optical TCT, while the N-type doped layers are

specific to el-TCT architectures. The electrons are injected into the lightly doped substrate

by pulsing node B from Vbi as,B to Vtr ans,B (e.g. for 1 ns), while the voltage difference between

nodes A and C is set to operate the PN junction in reverse bias (e.g. Vbi as,A −Vbi as,C < 0)

creating an electric field in the bulk of the PiN structure. A biasing scheme (including the

voltage waveform applied to contact B) is shown in figure 4.1b. This architecture and the

related biasing sequence are optimized so that injection takes place at node B. The principle

of operation and device optimization will be addressed in the next section.

4.2 Physical principle
The injection of carriers into the lightly doped region depends strongly on the shape of the

doping profiles and the distance S between the peaks of the Gaussian profiles of the implants,

i.e. the distance between the edges of the implanted areas (see figure 4.1a and table 4.1). A

static IV characteristic obtained from TCAD simulations of the current exiting at node C versus
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Figure 4.2 – Static IV characteristic of the current at node C versus the positive voltage at node
B (voltages applied at node C and A are respectively +200 V and +0 V).

the voltage applied at node B (the voltages applied at nodes C and A are respectively +200V and

+0V) is shown in figure 4.2. As long as the voltage at node B is higher than +4 V, current does

not flow. In other words, applying a voltage between A and C so that the PiN diode remains

reverse-biased blocks injection of electrons from B to C. The injection of electrons becomes

effective only when the voltage on the N-type node B is lower than +4 V. For these voltage

values, the IV characteristic follows a resistive behaviour. A current appears between nodes B

and C during injection, whereas the lateral PN junction remains reverse biased and controls

the electrostatic potential below the N-type doped region at node B. In fact, the injection

process is controlled by the fringing electric field created by the lateral P-type and N-type

doped layers. In order to understand how electrical injection is controlled by external voltages,

a cross-section of the potential profile at the centre of the device is plotted in figure 4.3 during

transient operation for two relevant biasing conditions: (a) with no voltage pulse applied

(before 0 ns, with Vbi as,B equal to +4 V) and (b) with a pulse voltage of Vtr ans,B equal to +3 V.

The 2D plot of the conduction band edge energy before the pulse reveals the presence of an

energy barrier that blocks electrons to be injected. This barrier is visible in the conduction

band edge potential plot of figure 4.3 obtained along the centre of the device, i.e. along the

injection channel. The voltage applied to that P-type doped layer creates a lateral barrier

which encloses and isolates the source of electrons (N-type node). Similarly, the electron

density along the same line is shown in figure 4.3a and it is possible to see that the channel

ends when the electron density becomes negligible, which corresponds to a depth of about 4

μm. Next, when the voltage applied at node B is lowered to +3 V during 1ns, the shape of the

potential is modified and a channel starts to open (see figure 4.3b). Indeed, the energy barrier

for electrons is decreased. After 1 ns, the electron concentration at 4 μm is about 3×1013 cm-3,

much higher than before the pulse (3×1010 cm-3). Finally, when the potential at node B is

reset to the off-state potential after 1 ns, the energy barrier goes back to its initial value and

61



Chapter 4. Electrical injection TCT

the channel switches off again. The time scale of the pulse corresponds to the time needed

for electrons to reach the region where the electric field created by the reverse biased PiN

junction will make them drift towards node C (corresponding to the blue area in figure 4.3)

preventing electrons to flow towards node B. It is this displacement current that creates the

transient current signal at the output node C.

4.2.1 Thermionic emission

To get a deeper understanding of the electrical injection principle, the influence of bias

voltages is analysed by carrying out TCAD simulations. Six combinations of voltages have

been used and are listed in table 4.2. In all cases, the voltage applied to contact A is equal to 0

V, the voltage applied to node C is equal to +200 V, and the duration of the pulse applied to

node B is 1 ns, as shown in figure 4.1b. The current is always recorded at node C. As shown in

Combination Vbi as,B (V) Vt r ans,B (V)

1 +4 +3
2 +5 +4
3 +7 +6
4 +4 +2
5 +7 +1
6 +6 +2

Table 4.2 – List of voltage combinations applied at node B in TCAD simulations.

figures 4.4a and 4.4b, the current height depends solely on the pulse voltage Vtr ans,B , which

can be seen by comparing the current signals of combinations 4 and 6. Combination 3 shows

no current pulse, as the barrier blocks the electron injection. In case of combination 5, we

observe a significant change of the shape of the pulse. This is because the injected charge is

high enough to locally modify the electric field of the diode during the drift (see figure 4.4c,

where the electric field profile during the drift is shown when the electron cloud is located at

position 150 μm). A similar result is obtained by comparing the injected charge Qi n and the

potential barrier height ΦB ,0 (considering figure 4.3, it is defined as the difference between the

maximum of the conduction band edge potential and its value at position 0 μm) at time 0 ns

(i.e. during the voltage pulse) between the combinations as listed in table 4.3. Values reported

in table 4.3 suggest that a higher potential barrier during the voltage pulse leads to a lower

density of injected electrons per unit volume, while the height of the barrier before the pulse

does not seem to be relevant. It can be assumed that injection of electrons inside the silicon

bulk from the N-type doped injector occurs mainly through thermionic emission. To show

this, a new series of simulations is performed, whose results are showed in figure 4.5a, and

then compared with the analytical formula for thermionic emission, in equation (4.1) [83]:

J=A∗T 2 exp

(−ΦB

kT

)
(4.1)

62



4.2. Physical principle

(a) (b)

Figure 4.3 – Plots of the conduction band edge potential and injected electron density (a)
before the voltage injection pulse and (b) during the pulse. The voltage applied to the p-type
doped areas generates a barrier in front of the n-type doped well. When the voltage pulse is
applied, the barrier is lowered and electrons can be injected inside the device bulk.
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(a) (b)

(c)

Figure 4.4 – (a,b) TCT signal currents of the first six combinations, in which the arrows show
the combination of positive voltages Vbi as,B and Vtr ans,B , following this notation: (Vbi as,B ,
Vtr ans,B ), and (c) electric field profile in case of combination 5, before injection and during
the drift.

Combination ΦB ,−t (eV) ΦB ,0 (eV) Qi n (C)

1 0.665 0.371 1.82×10−17

2 1.086 0.665 2.64×10−20

3 2.090 1.568 2.60×10−20

4 0.665 0.315 2.94×10−16

5 2.091 0.306 6.83×10−16

6 1.568 0.315 2.90×10−16

Table 4.3 – Comparison between injected electrons density and potential barrier height. ΦB ,−t

is the potential barrier height before the voltage pulse, ΦB ,0 is the potential barrier height
during the pulse, at 0 ns, Qi n is the injected charge.
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where J is the emission current density, k and A∗ are the Boltzmann and Richardson constants,

T is the temperature and ΦB is the height of the potential barrier. If injection proceeds from

thermionic emission, the current densities should scale exponentially with the values of

the potential barriers. In figure 4.5a, it is possible to observe this behaviour. The same is

observed for the analytical expression, shown in figure 4.5a. An important difference between

the two curves for the highest value of the potential barrier is observed. In this case, the

emission current should be smaller than the reverse bias current value obtained in TCAD

simulations, which is the value shown in plot. The similar behaviour of the two currents

(a) (b)

Figure 4.5 – (a) Comparison between TCAD and the thermionic emission formula of current
densities, and (b) injection charge versus applied pulse voltage, i.e. the positive voltage applied
to node B during the pulse.

supports the hypothesis that thermionic emission can describe the physical mechanism for

charge injection. Figure 4.5b represents the dependence of the injected charge with respect

to the pulse applied at node B (while voltage levels for nodes A and C are kept the same,

respectively 0 V and +200 V). Since the barrier height at node B is not proportional to the

applied voltage, the dependence of the injected charge density with voltage is not exponential.

4.2.2 Electrical versus optical excitation
The next step in the study of el-TCT is to perform a qualitative comparison between the TCT

signals obtained with light and electrical excitation techniques on a standard diode and an

el-TCT device. Except for the N-type injector implant, the simulated structures share the

same technological parameters, therefore, in case of the diode the P-type doping is Gaussian.

Concerning the simulation parameters, the voltage difference applied between opposite P-

type and N-type doped layers (nodes C and A in figure 4.1a) is fixed to +200 V (positive on node

C and 0 V on node A). Other parameters such as the voltage at node B and the parameters of

light injection such as the pulse duration, the pulse bias and the intensity of light are listed

in table 4.4. In case of el-TCT device, light is injected from the top, between the contacts A

and B, to simulate the masking of the aluminium contacts. The pulse length is 1 ns. Note that

these parameters are tuned to obtain concordance between transient current for optical and
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Electrical injection Light injection

Vbi as,C (V) Vbi as,B (V) Vtr ans,B (V) λL ASER (nm) I (mW/cm2) tpul se (ps) Vbulk (V)
+200 +4 +3 660 1 50 +200

Table 4.4 – Parameters of simulations of el-TCT and light injection TCT. λ is the laser wave-
length, I is the laser intensity, tpul se is the pulse time width, Vbulk is the reverse bias voltage.

el-TCT as shown in Figure 4.6, which does not hamper the formal analysis. According to the

(a) (b)

Figure 4.6 – Comparison between TCAD simulations of light injection TCT and el-TCT. The
left plot (a) shows a comparison between light injection TCT on a standard diode and on a
device for el-TCT, and electrical injection on an el-TCT device. The right plot (b) shows the
profile of the Y component of the electric field at the centre of a standard diode compared to
the one at the centre of an el-TCT device.

numerical simulations, removing the N-type injector does not affect the electric field profile

inside the silicon bulk (see figure 4.6b, where the Y component of the electric field is taken at

the centre of the devices), which is a prerequisite to compare both methods. In case of el-TCT,

a positive electric field is observed from 0 to 5 μm. This is due to the doping of the N-type

implant, and does not cause any hole accumulation since holes quickly recombine due to the

high N-type doping of the injector. Similarly, the transient currents (see figure 4.6a) reveal

that electrical and light injection TCT are consistent, providing evidence that the concept of

el-TCT is meaningful. It is possible to observe peaks in case of light injection between 0 and 2

ns. They are due to the fact that holes are also generated and immediately collected in case

of light injection. For electrical injection, only electrons are injected. Moreover, the curve

corresponding to the light injection in the diode is smaller than the others between 0 and 2 ns.

This is due to the Gaussian profile of the P-type doped silicon, which generates a slow increase

of the electric field before the PN junction.
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4.3 Devices and experimental characterization

4.3.1 Devices and measurement setup

Based on numerical simulations, a device was designed and fabricated at CMi, to demonstrate

the proof of concept. The device consists of a matrix of N-type doped wells surrounded by a P-

type doped silicon, which represent respectively contacts A and B in figure 4.1a. The substrate

is a 4-inch N-type silicon wafer and constitutes the i region of the PiN diode. In order to achieve

a large depletion region, the silicon wafer has a nominal resistivity greater than 5000 Ωcm,

which corresponds to a doping concentration smaller than 1012 cm-3 (similar to the one used in

TCAD simulations). The fabrication process flow is summarized in table 4.5, and the following

machines and services have been used: ACS200 Gen3 for automatic coating and development,

Heidelberg VPG200 for direct i-line (355-365 nm) laser writing lithography with 5 mm head,

IBS (Ion Beam Service) for ion implantation, Tepla GIGAbatch for photoresist oxygen plasma

stripping, Pfeiffer SPIDER600 for sputtering, SPTS APS dielectric etcher for dry etching of SiO2,

Disco DAG810 for wafer grinding, Steag Mecapol E460 for chemical mechanical polishing

(CMP), Centrotherm furnaces for POCl3 doping, STS multiplex for Al dry etching, Alliance

Concept DP650 for Al sputtering. At the end of the process, spreading resistance profiling

(SRP) [88] measurements were performed, showing a bulk doping concentration of 3×1012

cm-3. This difference from the nominal resistivity value before processing could be due to

high temperature steps during the processing that can lead to thermal donor generation [67].

Figure 4.7 shows the top view and cross section of the designed diodes (figure 4.7a) as well

as an optical microscope picture of the top of the fabricated devices (figure 4.7b). Different

(a) (b)

Figure 4.7 – (a) Top view of the layout and cross-sections in the vertical (XS1) and horizontal
(XS2) directions and (b) optical microscope picture of the fabricated device top side.
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Step Process Parameters

1 Photolithography Photoresist: AZ ECI 3027, thickness 4 μm
2 Boron ion implantation Dose 1015 cm-3, Energy 30 keV
3 Photoresist stripping First plasma oxygen, then remover microposit 1165
4 SiO2 sputtering Thickness 2 μm
5 Photolithography Photoresist: AZ ECI 3007, thickness 1.5 μm
6 SiO2 etching Reactive ion etching
7 Photoresist stripping First plasma oxygen, then remover microposit 1165
8 Phosphorus ion implantation Dose 1016 cm-3, Energy 30 keV
9 Photoresist coating Photoresist: AZ ECI 3027, thickness 4 μm
10 Back side wafer thinning Grinding and CMP, final thickness 320 μm
11 Photoresist stripping Remover microposit 1165
12 SiO2 etching BHF diluted in water 7:1
13 SiO2 sputtering Thickness 2 μm
14 Phosphorus doping Furnace with POCl3 atmosphere during 15 min at 1100◦C
15 SiO2 etching BHF diluted in water 7:1
16 SiO2 sputtering Thickness 400 nm
17 Photolithography Photoresist: AZ ECI 3007, thickness 1.5 μm
18 SiO2 etching Reactive ion etching
19 Photoresist stripping First plasma oxygen, then remover microposit 1165
20 Al with 1% of Si sputtering Thickness 300 nm
21 Photolithography Photoresist: AZ ECI 3007, thickness 1.5 μm
22 Al with 1% of Si etching Reactive ion etching
23 Photoresist stripping First plasma oxygen, then remover microposit 1165
24 Photolithography Photoresist: AZ ECI 3027, thickness 4 μm
25 Al with 1% of Si sputtering Thickness 300 nm
26 Photoresist stripping Remover microposit 1165
27 Dicing

Table 4.5 – Process flow for the fabrication of devices for el-TCT.

versions of the read-out circuit have been developed before the final configuration. First, the

signal generator Picosecond Pulse Labs (model 10,050A) was used for the generation of the

nanosecond voltage pulse, that needed to be attenuated, since it is positive, fixed at +10 V

of amplitude, too much for experiments on electrical injection (attenuators were added to

reduce the pulse amplitude). This pulse was applied directly to the node A, while node B

was connected to ground (see figure 4.1a for references). This was to apply a forward bias

for the lateral junction only during the pulse, to emulate the configuration of simulations.

The signal was recorded through the oscilloscope Agilent DSO9254A from the node C (see

figure 4.1a), using a bias-tee Picosecond Pulse Labs model 5531, useful to apply also the

bias voltage to the same contact using a Keithley 2410 voltage generator . This first simple

configuration had the drawback that there was not a reverse bias configuration of the lateral

junction when the pulse was not applied, and that the pulse was applied to the A node instead

of the B node (as in simulations). To obtain a configuration closer to the one simulated with
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TCAD, a signal inverter was applied to the output of the pulse generator, the Phillips Scientific

model 460. In this case, the pulse was applied to the N-type doped injectors, while the P-type

doped contact was connected to ground. Also in this case, measurements were not the same

as the simulations. The last step was the addition of a second bias-tee, the Mini-Circuits

ZFBT-6GW, to add a bias to the applied pulse connected to the N-type doped contact. The

final configuration of the circuit used for the el-TCT measurements is shown in figure 4.8.

Concerning the device, the Bulk contact represents the contact to the strongly doped N-type

back implant (node C in figure 4.1a), the N-type contact represents the N-type doped well

(node B in figure 4.1a) and the P-type contact represents the P-type doped silicon (node A in

figure 4.1a). In case of light injection, a 50 ps pulse laser (wavelength 660 nm), with a spot

Figure 4.8 – Schematic of the circuit used for measurements.

diameter of 10 μm positioned in the middle of the device (i.e. shining on the centre of the

n-type wells matrix shown in Figure 4.7b). The N-type contact is biased at a value close to the

offset voltage used for electrical injection (+4.1 V), and the TCT signal is amplified using the

CIVIDEC C2HV Broadband Amplifier (gain 40 dB, bandwidth 2 GHz), connected on the back

side of the device. The measured capacitance of the device is 3.54 pF at 100V, 3.04 pF at 120V

and 2.64 pF at 140V.

4.4 Transient current measurements and analysis
The electrical pulse that is applied to the N-type doped well (node B in figure 4.1a) is shown in

figure 4.9a. The overall pulse duration is about 1 ns during which the voltage changes abruptly

from +3.75 V to +0.2 V. The transient current generated by the drift of the injected carriers is

shown in figure 4.9b for different back side voltages. It is possible to observe a small distortion

at 12 ns. This is due to a parasitic signal inside the circuit for voltage pulse generation, since it

is possible to observe the same feature on the injection pulse in figure 4.9a. Another parasitic

pulse is observed at 25 ns, which however is out of the time window of interest for the TCT
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measurement in figure 4.9b. Increasing the voltage between nodes A and C (VAC ) modifies

the shape of the transient current. Up to 2 ns after the electrical pulse, the current increases.

This could be due to the increase in the electric field in the lightly doped region, as observed

in the TCAD simulations of optical TCT on standard diode in figure 4.9b, but also due to

the finite rise time of the read-out circuit. After 10 ns, it is possible to observe a signal that

fades, since the device is not fully depleted. In order to compare el-TCT with light induced

TCT, the normalized transient currents obtained from both methods are shown in Figure

4.9b (VAC are listed in the legend for different measurements), where the reverse PiN diode

biases are kept the same for optical and electrical injection methods. The normalization has

been performed by introducing a constant U (the same for all measurements), according to

i (t )el−T C T =Ui (t )l i g ht i n j ect i on . Both methods lead to similar shapes of TCT curves (in both

(a) (b)

Figure 4.9 – (a) Voltage pulse applied to the n-type doped wells with positive sign and (b)
comparison between TCT signals obtained by light and electrical injection.

cases the time between the rising and decaying of the currents is close to 10 ns), even if the

difference between curves obtained from optical TCT is small (a similar behavior observed in

TCAD simulations in figure 4.10b). This confirms that electrical and light injection methods

yield equivalent results. The signal-to-noise ratio can be improved by using a dedicated

board in which generation of the signal and readout are performed close to the device. A last

validation of the el-TCT comes from TCAD simulations. A modified version of the structure

presented in figure 4.1a (where the parameter S and the bulk doping profile are used as

matching parameters, since the doping profile at the end of the fabrication process is different

from the nominal one) was used to carry out numerical simulations of el-TCT. The best

matching between TCAD and measurements was obtained for a bulk doping of 3× 1012

cm-3(as the one measured with SRP at the end of the process) and an S parameter equal to 0

μm (meaning that in this simulations the regions PW and NW are not spaced). In section 2.4.2,
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the bulk doping concentration is found to be 1.3×1012 cm-3. One explaination for the fact that

this value is different with the one found in the present section is the slight difference in the

doping profile between a standard diode and the device for el-TCT. A comparison between

the simulated and the measured el-TCT signals is presented in figure 4.10a (see VAC in the

legend). An overall agreement with experiments can be observed for light injection TCT in

Figure 4.10b. This supports the hypothesis that the signal measured after electrical injection

(a) (b)

Figure 4.10 – Comparison between TCAD simulations and experimental data of TCT signals
obtained by electrical (a) and light (b) injection.

can be attributed to the drift of the electrons injected in the low doped silicon. The injected

charge can be controlled by the voltage applied to the N-type doped wells and observed as

integral of transient current in time-induced charge. This analysis has been carried out both

for experimental data and TCAD simulations. The results presented in figure 4.11 (the value

of the peak voltage is the absolute value) reveal a dependence on the Vtr ans,B , similar to the

behaviour shown in figure 4.5b.

4.5 Conclusions
A new method of carrier injection for TCT characterization, called el-TCT and relying on the

concept of electrical charge injection in PiN diodes has been proposed, simulated with TCAD

and demonstrated experimentally. The fabricated device structures for el-TCT validated the

feasibility to use the electrical charge injection method for device characterization. This new

concept allows the integration of a charge injection mechanism into an operational device

like photon or particle detectors. Such modified devices no longer need complex external

excitation sources (alpha particles, lasers, etc.) to perform TCT. The co-integration of el-TCT

with active sensors, where injection and detection can be implemented concurrently, should

pave the way to in-situ characterization of solid-state particle or photon detectors. To reduce

the costs, and to simplify the fabrication process, a different design of el-TCT devices can be

implemented, with the use of Schottky junctions instead of PN junctions (Schottky diodes

do not require implantation steps). In this case, the device structure would be different, as
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Figure 4.11 – Measured injected charge as a function the voltage applied to node B during the
pulse.

SchW

(μm)
NW

(μm)
S
(μm)

T h
(μm)

Vbi as,B

(V)
Vt r ans,B

(V)
Vbi as,A

(V)
Vbi as,C

(V)

7 3 2 320 +4 +3 0 +200

Table 4.6 – Simulations parameters for el-TCT with Schottky junctions.

shown in figure 4.12. The working principle is the same of PN junction devices, where the

Schottky junction has the same role of the P-type doped contact of the diode. The biasing

configuration and voltage pulse for the use of this device are the same of the ones presented in

figure 4.1b. TCAD simulations show that it is possible to obtain signals similar to PN junction

el-TCT devices (figure 4.13), by using parameters in table 4.6, where the doping of silicon is

7×1011 cm-3. Moreover, figure 4.14 shows that, during the voltage pulse, the conduction band

changes, as in the case of PN junctions (see figure 4.3). The barrier is lowered, and it is restored

to the starting value at the end of the pulse.
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Figure 4.12 – Structure for el-TCT with Schottky junctions. SchW is the width of the Schottky
contacts , NW is the width of the N-type doped well, to obtain ohmic contact, S is the spacing
between Schottky junctions and ohmic contact.

Figure 4.13 – TCT signal obtained by el-TCT with Schottky junctions. Simulation parameters
are listed in table 4.6.
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(a) (b)

Figure 4.14 – Conduction band barrier (a) during and (b) after the voltage pulse, for Schottky
el-TCT devices.
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5 Conclusions and outlook

This thesis presents a new characterization method of electrical properties for thin bonding

interfaces in silicon based on TCT. It has been developed for the evaluation of a novel CMOS-

compatible bonding process for the fabrication of monolithic radiation detectors. Moreover,

within this thesis, a new method for charge injection in TCT measurements, that relies on the

application of voltage pulses instead of light pulses, was introduced. This approach could lead

to new possibilities such as in-situ and online measurements.

An analytical study of a method for thin bonding interface characterization has been pre-

sented, showing that the analysis of a TCT signal can give information about the traps types

and concentration inside it. As a result of this study, an analytical model has been developed,

to perform fast analysis of TCT signals, without the use of complex simulation tools as Sen-

taurus TCAD. The characterization has been performed by TCT measurements of Schottky

diodes, a simple and cheap method, since it requires to perform only the process itself on

standard high resistivity wafers, and then to fabricate the diodes. Despite the simplicity of

this method, it has been possible to understand the conduction properties of the interface,

and to have a hint on the concentration of ionized traps. The results of this characterization

indicate that the bonding interface blocks the passage of electrons clouds at low voltages, by

considerably decreasing the intensity of the electric field in the region located in the bottom

part of the diode. This could represent an important issue related to the fabrication of mono-

lithic detectors, since the charge generated in the silicon bulk would not be collected by the

read-out electronics. To solve this problem, two possible solutions have been identified: one

is to optimize the bonding process, in order to reduce the number of traps at the interface (for

instance by using different plasma sources), the other is to design the detector in such a way

that the bonding interface is located at the PN junction.

In the second part of this work, a new method for charge injection through voltage pulses for

TCT measurements has been demonstrated. The integration of devices for this purpose is

based on standard CMOS-compatible processes, to introduce N-type doped wells (to which

a nanosecond voltage pulse is applied) for charge injection in P-type doped contacts in PiN

diodes. First TCAD numerical simulations have been carried out to study the principle and

the feasibility of the charge injection. Results show good agreement between standard TCT,

obtained by means of light injection with laser, and el-TCT, i.e. the transient current signals

are similar in shape. Moreover, what observed is that the electric field shape in the bulk is not
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influenced by the presence of N-wells. After this study, fabrication has been performed at CMi,

obtaining devices that have been measured at the SSD group of CERN. Experimental results

confirmed what was obtained by simulations, giving a proof of principle of el-TCT.

Outlook

If implemented in the same silicon substrate of radiation detectors, el-TCT devices would

introduce a new tool for the study of radiation damage during the sensor lifetime. Since the

measurements need only electrical connections between the device and the setup (composed

of a pulse generator and an oscilloscope), that could be placed on the same support of radiation

detectors, there would be no need of dismounting them from the experiment to perform TCT

measurements. This characteristic could be used also to study the electric field in silicon

during irradiation tests, without pausing them to extract the detector from the setup.

It has been demonstrated that CMOS-compatible SAB, together with design solutions, can be

used to fabricate radiation detectors. Instead of using high resistivity silicon as sensing bulk,

other materials could be used, such as Germanium, in which charge carriers mobility is higher

than in silicon [89]. This would help, since the diffusion would be faster, that is positive for

charge collection in radiation detectors, as seen in section 1.2.2. This process could be used

not only for electrical connection between two substrates, but also to fabricate microchannels

for electronics cooling. Indeed, mechanical strength has been demonstrated to be high [58],

and therefore, a silicon substrate on which microchannels have been etched could be bonded

on a CMOS wafer. In this case, the cooling would be optimal, since both the channels and the

electronics share the same bulk.
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A INVESTIGATOR chips fabricated by
CMOS-compatible SAB

In this appendix, a method for the characterization of bonding interfaces based on the use

of INVESTIGATOR chip developed for the upgrade of the ALICE ITS. This work has been

performed using the INVESTIGATOR measurements setup of the ALICE ITS group at CERN.

Informations about the INVESTIGATOR chip, designed by this group, are based on the work of

Jacobus Willem Van Hoorne [13]. Measurements have been carried out in collaboration with

Qasim Malik.

A.1 INVESTIGATOR chip from ALICE ITS upgrade

The INVESTIGATOR chip has been designed to allow the study of the influence of different

layouts parameters on the particle detection performance of MAPS for the ALICE ITS upgrade.

It is composed by a sensitive layer with P-type epitaxial silicon (resistivity higher than 1000

Ω cm) deposited on a low resistivity silicon bulk. It is divided in different mini-matrices

(MM) of 8 pixels per edge, each of them with different dimensions. Each pixel is composed

of one N-well surrounded by a P-well, and it is reversely biased (with a back bias voltage

Vbb), to obtain a depletion region extending from the N-well into the epitaxial layer. The

cross section of the chip is shown in figure A.1, where layout parameters under study are

marked. Measurements to analyze the influence of different layout parameters are usually

performed by irradiating the chip with X-rays from a 55Fe source and electrons from a 90Sr

source (radiation is applied from the front side, where CMOS circuitry is present). The charge

generated inside silicon by radiation can be collected in two different ways: by drift, when

the charge is located inside the depletion region of the N-well of the pixel, and by diffusion,

when the charge is generated outside the depletion region. If diffusing charges reach the

low resistivity bulk, they are reflected into the epitaxial silicon. In case of diffusion, charges

generated by the passage of a radiation particle (called event) can reach more than one N-well,

and therefore they can be collected by more than one pixel. The read-out relies on a voltage

drop (Vev ) on the collection pixel due to the discharge of the pixel input capacitance (Cpx )

caused by the charge (Qev ) collection (see equation (A.1)).

Vev = Qev

Cpx
(A.1)
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Figure A.1 – Cross section of two INVESTIGATOR pixels. The white regions are the depletion
regions of pixels. Two different color are used to mark the drift and the diffusion paths,
respectively green and red.

The following nomenclature is usually considered during measurements analysis: cluster

(the group of pixels that collect charge from one event), cluster multiplicity (the number of

pixels that compose a cluster. When higher than one, than more than one pixel collected

charge in one event (charge sharing)), seed pixel (the pixel that collects the largest number of

charges in one event). Signals from INVESTIGATOR measurements consist in the collection

of number of events that occurs for each voltage drop caused by charge collection. The two

most used radiation sources for INVESTGATOR testing are 55Fe and 90Sr. In measurements

with the first one, an example of signal is shown in figure A.2. Fe55 sources generate X-rays

with two different energies: 5.9 keV and 6.5 keV. The probability of having these energies are

respectively 90% and 10%, with penetration profile inside silicon shown in figure A.3. From

signal in figure A.2, it is possible to observe two peaks at high voltage values: these are the

signals generated by events where the charge is entirely collected inside the depletion region

of one pixel. The highest peak corresponds to the 5.9 keV photons (90% of probability), and

therefore it can be used to calculate the number of electrons per mV of voltage drop (V5.9),

by following equation (A.2) and considering that this X-ray energy generates in average 1640

electrons.

nel /mV = 1640 el

V5.9
(A.2)

The part of signal at lower voltages is composed by events where charge sharing occurs.

Measurements with 90Sr sources give different signals. In this case, a continuous spectrum

of electrons is generated, resulting in a typical signal that presents a Landau shape as the

one shown in figure A.4. It is usually plotted as the number of events versus the number
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Figure A.2 – Example of seed signal from 55Fe measurements.
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Figure A.3 – Intensity penetration profiles of X-rays in silicon. The intensity is plotted as the
ratio between the actual and the starting value.
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of generated electrons (that is calculated by considering the conversion value from 55Fe

measurements). Since the penetration length for electrons in this case is much higher than the
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Figure A.4 – Example of seed signal from 90Sr measurements.

pixel thickness, charge is considered to be generated linearly with the particle path length (60

electrons per μm in the case of these measurements). Therefore, the thickness of the sensitive

region of the pixel tpx can be extracted by looking at the number of electrons with the highest

number of events nel ,max considering equation (A.3).

tpx = nel ,max

60 el /μm
(A.3)

From these measurements, other parameters that can be extracted are the charge collection

efficiency (the ratio between the detected charge and the total charge that is generated) and

the relative depletion volume (the ratio between the depleted volume and the total volume).

For more information about the INVESTIGATOR chip, it is possible to consult the PhD thesis

of Jacobus Willem Van Hoorne [13].

A.2 INVESTIGATOR chip for bonding interface characterization
To characterize the bonding interface electrical properties with the INVESTIGATOR chip, it

is necessary to modify its structure at the wafer level, by removing the low resistivity silicon

part (this step reduces the thickness of this layer to 17 μm) and then by performing the CMOS

compatible wafer bonding with a substrate, of different kinds: full thickness high resistivity

silicon wafer (resistivity higher than 5000 Ω cm, 750 μm thick), thinned high resistivity silicon

wafer (two different thicknesses have been tested: 55 μm and 90 μm), high resistivity epitaxial

silicon wafers (whose properties are the same of the wafer on which the INVESTIGATOR chip

has been fabricated). Fabrication of these chips has been performed by G-ray Switzerland [90].

For each case, measurements described in the previous section are performed, and results are

shown in the following sections.
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A.2.1 List of chips
Table A.1 shows the list of chips that have been provided by G-ray. The delivery number is listed

in the chronological order of chips arrival at CERN. Table A.2 shows the list of mini-matrices

Delivery # Chip ID Batch # Bonded substrate Th (μm)

1 GRAY-1; GRAY-2; GRAY-3;
GRAY-4; GRAY-5; GRAY-6

1 Resistivity > 5000 Ω

cm
777

2 1C; 1E; 2B; 3B; 3F; 4F; 5C; 5D 1 Resistivity > 5000 Ω

cm
777

3 GRAY-55um 2 Resistivity > 5000 Ω

cm
55

3 GRAY-90um 2 Resistivity > 5000 Ω

cm
90

4 GRAY-epi-1; GRAY-epi-2 3 Resistivity > 5000 Ω

epitaxial 20 μm thick
on low resistivity sili-
con

752

Table A.1 – List of chips provided by G-ray.

that have been measured, with the different dimensions corresponding to the ones in figure

A.1.

MM Pitch (μm) Electrode size (μm) Spacing (μm) P-well width (μm)

26 20 3 3 5.5
27 20 3 4 4.5
28 20 3 5 3.5
90 28 5 3 8.5
4 20 3 5 3.5
110 30 2 3 11

Table A.2 – List of mini-matrices measured in this work, with the corresponding dimensions.

A.2.2 Delivery 1
The first chips received have been measured under 55Fe and 90Sr irradiation, from the front

side. The back side of chip GRAY-6 has been also irradiated, but since the thickness of the

chip is much higher than the penetration length of X-rays (see figure A.3), no data have been

recorded. Table A.3 shows the list of measurements performed. All results have been compared

with a standard INVESTIGATOR chip, called 252.

55Fe measurements

Results from 55Fe measurements on MM 110 are shown in figure A.5. From the seed pixel signal

(figure A.5a) of G-ray chips it is possible to see that the component of signal corresponding to
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Chip MM Source Vbb (V)

GRAY-1 110 55Fe -3, -6
110 90Sr -6

GRAY-3 110 55Fe -6
GRAY-4 110 55Fe 0, -6

110 90Sr -6
GRAY-5 110 55Fe 0,-1,-3,-6

28 55Fe, 90Sr -6
GRAY-6 110 55Fe, 90Sr 0,-1,-3,-6

26, 27, 28 55Fe, 90Sr -6
Standard chip 252 110 55Fe, 90Sr 0,-1,-3,-6

Table A.3 – List of measurements performed on G-ray chips from the first delivery.

the charge sharing is very small, compared with the same measurement performed on the

standard INVESTIGATOR chip. By looking at the cluster multiplicity (figure A.5b), it is possible

to observe the absence of charge sharing, while in case of the standard chip cluster multiplicity

is higher than 1. This first results show no collection of charges that are not generated into the

drift region.

Seed Signal [mV]
0 20 40 60 80 100 120 140

N
or

m
al

iz
ed

 C
ou

nt
s

0

0.02

0.04

0.06

0.08

0.1
GRAY-1_mm_110_VBB-6.0
GRAY-3_mm_110_VBB-6.0
GRAY-4_mm_110_VBB-6.0
GRAY-5_mm_110_VBB-6.0
GRAY-6_mm_110_VBB-6.0
252_mm_110_VBB-6.0

(a)

Cluster Size [# pixels]
1 2 3 4 5 6 7 8 9 10

N
or

m
al

iz
ed

 C
ou

nt
s

0

0.2

0.4

0.6

0.8

1

1.2
GRAY-1_mm_110_VBB-6.0
GRAY-3_mm_110_VBB-6.0
GRAY-4_mm_110_VBB-6.0
GRAY-5_mm_110_VBB-6.0
GRAY-6_mm_110_VBB-6.0
252_mm_110_VBB-6.0

(b)

Figure A.5 – Seed signal (a) and cluster multiplicity (b) of 55Fe measurements performed on
MM 110, at Vbb =−6 V.

90Sr measurements

Results from Sr90 measurements are shown in figure A.6. Also in this case, it is possible to

observe the absence of charge sharing (by looking at the cluster multiplicity in figure A.6b).

Moreover, the position of the peak of the seed signal (figure A.6a) is at around 250 electrons.

This corresponds to 4.16 μm of sensitive layer. Similar measurements have been performed

on MM 26, 27 and 28. In this case, the P-well width is decreasing from MM 26 to MM 28 (see

Table II). The distance between two different N-wells is also decreasing, and therefore the
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Figure A.6 – Seed signal (a) and cluster multiplicity (b) of 90Sr measurements performed on
MM 110, at Vbb =−6 V.

probability of having charge sharing should increase. The results are shown in figure A.7, and

it is possible to observe that charge sharing increases from MM 26 to MM 28. The comparison
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Figure A.7 – Seed signal (a) and cluster multiplicity (b) from measurements with 90Sr on MM
26, 27 and 28, at bias voltage Vbb =−6 V.

with the standard chip 252 anyway shows that charge sharing in case of G-ray chips is much

weaker than in the case of the standard chip (figure A.8).

Conclusions

From measurements on MM 110, it is difficult to draw conclusions on the properties of the

bonding interface. Indeed, since the high resistivity bulk is 750 μm thick, charges diffusing into

the bulk will be never reflected (as they are in case of epitaxial silicon, when reflection occurs

at the junction with the low resistivity silicon). Therefore, the absence of charge sharing could

be due to the trapping of charges at the bonding interface, or to the transmission into the bulk.

Measurements on MM 26, 27 and 28 do not add any new conclusion, since the charge sharing
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Figure A.8 – Comparison of seed signal (a) and cluster multiplicity (b) between chip 252 and
GRAY-6 on MM 28, at bias voltage Vbb =−6 V.

that has been measured is too weak, and could occur in the silicon layer between the CMOS

circuitry and the bonding interface.

A.2.3 Delivery 2
Chips from delivery 2 have been sent from G-ray to test the process uniformity on one wafer.

Therefore they all come from the same wafer, taken from different positions. Table A.4 resumes

the measurements performed on these chips that have been irradiated from the front side.

Chip MM Source Vbb (V)

1C; 1E; 2B; 3B; 3F; 4F; 5C; 5D 28 55Fe -6

Table A.4 – Measurements on chips from second delivery.

Chip 3F was not working (the leakage current was too high, and therefore it was impossible to

perform any analysis). The other chips show a similar behavior (figure A.9). Therefore, it is

possible to conclude that the bonding process is uniform across the same wafer.

A.2.4 Delivery 3
In the third delivery, chips with different thicknesses have been tested. Table A.5 resumes the

measurements performed on these chips.

55Fe measurements

Since the thickness of the chips is much smaller than in the previous cases, it has been possible

to measure a signal from back side irradiation with 55Fe. Indeed, X-rays can penetrate through

silicon, reaching the front side of the chip. Therefore, there should be both the contributions

of drift and diffusion. Most of the generated charges will be located out of the depletion

region, and therefore should be collected by diffusion, giving a charge sharing higher than
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Figure A.9 – Seed signal (a) and cluster multiplicity (b) from measurements of chips from
second delivery, on MM 28 at bias voltage Vbb =−6 V.

Chip MM Source Vbb (V)

GRAY-55um 28 90Sr -6
GRAY-90um 28 90Sr -6
GRAY-55um 90 55Fe -6
GRAY-90um 90 55Fe -6
252 90 55Fe -6

Table A.5 – Measurements performed on thinned chips.
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in the front side illumination case. Since 90Sr electrons penetration length is bigger than the

chips thickness, back and front side illumination measurements are similar. Results from 55Fe

measurements are shown in figure A.10. Measurements on the standard chip 252 have been

performed, in order to have a comparison with the G-ray chips.
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Figure A.10 – Seed signal (a) and cluster multiplicity (b) from 55Fe measurements on thinned
chips, on MM 90 at bias voltage Vbb =−6 V.

90Sr measurements

Measurements with 90Sr (figure A.11) are similar to the previous measurements of the chips

from the first delivery (see figure A.6).
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Figure A.11 – Seed signal (a) and cluster multiplicity (b) from 90Sr measurements on thinned
chips, on MM 28 at bias voltage Vbb =−6 V.

Conclusions

From these results, it is difficult to draw conclusions on the charge transfer across the bonding

interface. Indeed, in case of back side illumination, X-rays can reach the upper part of the
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A.3. Conclusions

bonded INVESTIGATOR (see figure A.1) in both cases, 55 μm and 90 μm (see figure A.3).

Therefore, the obtained signal could come from charges that are generated between the CMOS

circuitry and the bonding interface, and that do not need to pass through it to be collected.

It is important to notice that, since the total thickness of the chips is much smaller than in

the case of the first delivery, charges diffusing into the bulk should be reflected by the end of

the chip. In this case, we should observe charge sharing, in both cases, front and back side

illumination. The fact that the cluster multiplicity is always 1 could be a hint of the fact that

the interface is blocking charges passage. This is valid for both 55Fe and 90Sr measurements.

A.2.5 Delivery 4
Chips from the last delivery have been bonded on a silicon epitaxial layer with high resistivity

(larger than 1000 Ω cm), 20 μm thick, that has been grown on a low resistivity silicon bulk.

By checking the powering of the chips, the first one (GRAY-1-epi) was not working properly,

showing a high leakage current. Therefore, it was impossible to measure it. Table A.6 resumes

the measurements performed on the second chip.

Chip MM Source Vbb (V)

GRAY-2-epi 4, 110 55Fe, 90Sr 0, -3, -6

Table A.6 – Measurements performed on chips with bonded epitaxial layer.

55Fe measurements

Results from 55Fe measurements are shown in figure A.12 (for MM 110) and in figure A.13

(for MM 4). MM 4 has been used for the same reason of MM 28 (they are the MM with the

minimum distance between two N-wells, see table A.2). The difference between these two

mini-matrices is the position of the input transistor (for MM 4, it is outside the N-well, for MM

28 it is inside). From figures A.12 and A.13, it is possible to observe that measurements results

are similar to the ones performed on G-ray chips from the first delivery (see figure A.5), as it is

possible to see by comparing with measurements on GRAY-6.

90Sr measurements

A similar result is obtained in case of 90Sr measurements, shown in figures A.14 and A.15.

Conclusions

As in the previous measurements, also in this case it is difficult to draw conclusions on the

charge transport across the bonding interface.

A.3 Conclusions
The measurements on bonded INVESTIGATOR chips cannot be used to draw conclusions

on the charge sharing across the bonding interface. Indeed, in all cases, the absence of

charge sharing could be due to trapping at the interface or diffusion into the bulk without

any reflection. In case of measurements of thinned chips (delivery 3) and chips bonded on
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Figure A.12 – Seed signal (a) and cluster multiplicity (b) from 55Fe measurements on chips
bonded on epitaxial silicon, on MM 110.
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Figure A.13 – Seed signal (a) and cluster multiplicity (b) from 55Fe measurements on chips
bonded on epitaxial silicon, on MM 4.
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Figure A.14 – Seed signal (a) and cluster multiplicity (b) from 90Sr measurements on chips
bonded on epitaxial silicon, on MM 110.
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Figure A.15 – Seed signal (a) and cluster multiplicity (b) from 90Sr measurements on chips
bonded on epitaxial silicon, on MM 4.
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epitaxial silicon (delivery 4), one could expect the reflection of diffusing charges, and therefore

charge sharing. In these two cases, its absence could indicate poor charge transport across

the interface. These results could be consistent with the ones reported in chapter 3, that are

that the bonding interface blocks the passage of generated charges through it, but due to the

complexity of the test structures, it is difficult to draw a conclusion on these measurements

(the absence of charge sharing could also be due to INVESTIGATOR chips damage during

fabrication).
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Politecnico di Torino, Torino, Italy; INP de Grenoble, Grenoble, France; 
EPFL, Lausanne, Switzerland – Master degree
September 2013 – September 2015

Nanotechnologies for ICTs. Diplomas:
Diplôme d’ingenieur
Laurea Magistrale

Politecnico di Torino, Torino, Italy – Bachelor degree
September 2010 – September 2013

Physics engineering. Diploma:
Laurea

PROFESSIONAL SKILLS
Micro and nano fabrication
• Photolithography and Electron beam lithography
• Dry and wet etching
• Lift-off
• Sputtering and evaporation deposition
• Dicing
• Wire bonding
• Silicon microchannels fabrication
• Diodes fabrication

Semiconductor devices modeling
• TCAD modeling of silicon devices
• Analytical modeling of silicon devices
Semiconductor devices characterization
• Transient Current Technique characterization
• CV characterization
• IV characterization
• Pixel detectors characterization and analysis
Programming languages 
• C, C++, bash script, Matlab, VHDL 

WORK EXPERIENCE PROJECTS
CERN, Geneva, Switzerland
PhD project
September 2015 – August 2018

Characterization of electrical properties of low temperature covalent
bonding interface in silicon
Design, modeling, fabrication and characterization of devices for electronic 
injection of charges in silicon, for characterization of radiation damage 
(TCT)
Clean-room fabrication of metallic mockups of electronics chips for ATLAS 
experiment
Characterization of silicon pixel detector performances
Fabrication of silicon microchannels on the back side of electronic chips 
for cooling

CERN, Geneva, Switzerland
Master thesis internship
February 2015 – August 2015

Fabrication of PMMA microchannels for applications in scintillation 
radiation detectors

IMEP-LAHC, Grenoble, France
Internship
June 2014 – August 2014

Simulation and spectrum analysis of optical waveguides
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