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With the Energy Strategy 2050, Switzerland wishes to focus on balanced utilization of hydropower potentials and 
new renewable energy sources to accommodate nuclear energy phasing out. Integration of large amounts of new 
renewable energies such as wind and solar power represents a challenging task as far as the power network stability 
is concerned. Indeed, the intermittent pattern of new renewable energies needs substitution and storage capabilities 
that hydropower can offer due to the variety of possible technical solutions featuring large flexibility and high 
performances control capabilities. The production capacity potential must be addressed together with the ancillary 
services capacity to ensure the stability of the electrical grid. 
 
The decision-making process for the modernization of hydraulic power plant involves to overcome huge number of 
possible combinations of renovation options at early design stages, when each decision has a major impact on the 
final performance of the hydropower plant [11, 13]. The RENOVHydro project relies on a systematic assessment of 
the hydropower plants generation increase of each possible upgrade option using the SIMSEN software as a 
backbone to identify the most cost-effective civil and electromechanical options. The SIMSEN simulation software 
enables to model an entire hydro power plant including hydraulic, mechanical and electrical system and their related 
control. The numerical models enable considering various hydraulic layout configurations, including non-linear head 
losses, realistic empirical turbine performance hill chart, generator efficiency as well as operating flexibility offered 
by variable speed technology. Thus, each hydropower plant upgrade option can be assessed by considering hydraulic 
structure, hydro units and hydropower station interaction with the grid for the provision of ancillary services, as well. 
 
This paper presents the methodology of the RENOVHydro project to determine the best cost-effective modernization 
options. The RENOVHydro methodology is illustrated on a hydropower plant test case with 80MW installed 
capacity and comprising 4 Francis turbines operated under a maximum head of 107mWC. Different civil and 
electromechanical options are compared considering the available hydrology and the electricity market for a typical 
year. The annual revenue, the annual energy generation and the profitability are then computed to provide the 
optimal renovation option. Finally, with these systematic studies adaptable to any type of hydraulic machine, the 
assessment of any scenario is made possible considering economical, technical and environmental aspects. This high 
level of support for the decision-making process drastically reduces the risks of selecting under-optimal solution. 
 
1. Methodology to select the best technical options 
The RENOVHydro project is dedicated to the renovation of an existing hydroelectric power plant and an 
independent assessment of a high number of civil and electromechanical potential modifications using a unique 
methodology. Thus, energy and economic indicators such as annual energy generation, annual amount of 
turbined/pumped water, energy coefficient, investment cost, profitability and ancillary services for each renovation 
option can be analysed to identify the technical trends according a given political, economic and environmental 
context. The main methodology of this systematic study is illustrated in the Fig. 1 and the workflow of the 
RENOVHydro project is described in Fig. 4. 
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After selecting the reference SIMSEN model, the following renovation options are available for civil engineering 
and hydroelectric modifications: 

• For hydraulic structure: 
o Improve the efficiency of the water intakes; 
o Increase the conveyance capacity of the waterways; 
o Increase headrace reservoir storage; 
o Decrease the head losses in the waterways (e.g. enlarge headrace, add new tunnel, add new 

penstock); 
o Modify the hydraulic inertia of the waterways to improve response time (e.g. surge tank volume, 

diaphragm); 
• For hydraulic machinery:  

o Replace components such as turbine runner to increase turbine efficiency; 
o Upgrade a unit by replacing the turbine, considering also turbine type modification to increase 

installed capacity and increase turbine efficiency; 
o Adding a fully new unit to increase installed capacity and redundancy; 
o Add new pumping capacities for introducing/increasing storage capacity. 

• For electrical equipment: 
o Increase of generator capacity to comply with turbine capacity; 
o Introduce full size frequency converter on existing unit to allow for variable speed operation and 

thus improve unit operating range, efficiency, flexibility, and control services especially for unit 
with pumping capacity; 

o Replace fixed speed generator by variable speed machine (Full Size Frequency Converter or 
Double Fed Induction Machine); 

o Increase available rotating inertia for improved grid stability. 
 
After selecting the different renovation options for a given project, all possible combinations of options and the 
associated SIMSEN models will be automatically generated. Moreover, for each renovation option, a pre-
dimensioning and a cost estimation are computed to help the user for a first selection of the most relevant renovation 
options. 
 
1.1.1 Pre-dimensioning 
The dimensioning of the spiral casing, the runner and the draft tube for each type of turbine (Francis, Pelton, Kaplan, 
pump-turbine and pump) has been determined using statistical laws [2, 3, 4, 6, 7, 10, 16, 17] requiring knowledge of 
only four parameters:  

• Mechanical power,  
• Rated head,  
• Year of commissioning, 
• Frequency of the electrical grid. 

This first dimensioning makes it possible to define the complete geometry of a turbine (spiral case, runner, draft 
tube) and to estimate its rated data (rated discharge, rated rotational speed, peak efficiency, reference diameter of the 
runner, generator and runner inertia). All this information was validated by comparing the geometries estimated with 
existing hydraulic installations described in the Henry’s book [8]. The maximum error found on more than 50 test 
cases was a maximum of 10 percent. 
 
1.1.2 Price estimation of the modifications 
The price for each electromechanical element is based on the publication from Alvarado-Ancieta [1] and requires the 
knowledge of the head and discharge for a unit. This current estimation of the price considers the turbine, governors, 
valves, cooling and drainage water systems, cranes, workshops, generators, transformers, earthing systems, control 
equipment, telecommunication systems and auxiliary systems (draft tube gates, heating and ventilation, domestic 



water and installation). The price for each type of renovation option (runner replacement, turbine replacement, unit 
replacement), as well as a method of estimating prices for civil engineering options will be defined in a next stage of 
the project. 
  
1.2 Hydraulic performance table 

For each renovation option, a hydraulic performance table is computed in order to operate the hydraulic power plant 
at its maximum performance for a given power set point and a given gross head. To evaluate the hydraulic power 
plant performances over the entire operating range, each unit combination and each guide vane opening combination 
are evaluated for a given upstream water level. The total number of combinations is defined by the following 
equation, where n is the maximum number of units and p is the number of units in operation. For instance, for a 
hydraulic power plant with 4 units, the number of combinations is equal to 32. 
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The main methodology to study the entire operating range is the following: 

1. Among the different units of the power plant, one unit is defined as the reference. For this unit only, the 
guide vane opening evolves between 10 and 100% opening.  

2. For each fixed guide vane opening of the reference unit, the other units in operation operates jointly for 
guide vane opening between 40% and 100%. The openings below 40% are not considered because the 
global efficiency at partial load is significantly deteriorated. For instance, for a given power, it is more 
advantageous to have two units operating close to the best efficiency point (BEP) than to have three units at 
partial load with low efficiency. 

3. For each combination of units, the hydraulic power, the discharge, the rotational speed, the guide vane 
opening and the net head of each unit are calculated. The global performance of the hydraulic power plant is 
also computed by the following equation for turbine mode, where Pm is the mechanical power, Q is the 
discharge and H is the gross head: 
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4. Points 1, 2 and 3 are repeated by modifying the reference unit. 
5. Finally, the combination of units offering the best global efficiency for a given power set point is saved. 

Using the above methodology for 4 Francis turbine units, it requires 2000 different operating conditions to be 
simulated to derive the hydraulic performance table for one water level in the upstream reservoir. This method is 
applicable to all types of machines, but it is important to note that the Pelton and Kaplan turbines have respectively 
the number of injectors and the blade pitch angle β as additional degree of freedom. Therefore, a pre-process is 
necessary to determine the best combination (injector opening – number of injectors) and (GVO – blade pitch angle). 
Finally, this method should be applied for different water levels of the upstream reservoir. An example of results is 
illustrated in Fig. 3 for a given upstream water level and a hydraulic power plant with 4 Francis turbines. With this 
type of information, it is interesting to note that for a power set point lower than 18MW, only unit #4 can be operated 
in order to have the best performance. In addition, in this figure, the global performance considering energy losses 
along the pipes, the efficiency of the generator and transformer and the hydraulic characteristic of each unit is 
indicated on the right axis. 
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Moreover, to save computational resource and time, the problem is formulated in two stages optimisation problem. 
First, the reference year is divided into shorter periods of time: 12 months. The aim of the first stage optimisation 
problem is to find the optimal amount of turbined water for each month. In the second stage, for each month, the 
hourly MILP problem is solved with respect to volume define in the first stage. 

Finally, this mathematical approach makes it possible to determine energy and economic indicators such as annual 
energy generation, annual amount of turbined/pumped water, energy coefficient, investment cost and profitability for 
each renovation option. As the annual revenue has been maximized, the different technological renovation options 
can be analysed to identify the technical trends according a given political, economic and environmental context. 
This information is valuable assistance in the decision-making process regarding the economic potential of a project. 
 
1.4 Ancillary services analysis 

With transient simulations, the ancillary services and the flexibility of production is quantified and the realistic 
primary and secondary control potential can be assessed. The performance offered by the renovation options 
regarding interaction with the electrical power networks, such as primary and secondary control capabilities to 
determine the maximum load step response compatible with Transmission System Operator requirements, is 
evaluated [15]. This part of the study requires the optimization of the parameters of the power and speed regulators. 
This complex subject will be developed in more detail in a future stage of the project. 
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Table 2 : Comparison between the renovation options.

 

P N Dref Nq Eta Revenue Production Profitability Cost
[MW] [rpm] [m] [-] [-] [-] [-] [-] [-]

FTURB1 15 300.000 1.800 47.486 0.923 0.000
FTURB2 15 300.000 1.800 47.486 0.923 0.000
FTURB3 25 300.000 1.972 59.475 0.951 0.000
FTURB4 15 300.000 1.800 47.486 0.923 0.000

0.000

FTURB1 15 300.000 1.817 53.434 0.958 1.000
FTURB2 15 300.000 1.817 53.434 0.958 1.000
FTURB3 25 300.000 1.972 59.475 0.951 1.000
FTURB4 15 300.000 1.817 53.434 0.958 0.000

3.000

FTURB1 15 375.000 1.651 66.898 0.955 1.002
FTURB2 15 375.000 1.651 66.898 0.955 1.002
FTURB3 25 300.000 1.972 59.475 0.951 1.002
FTURB4 15 375.000 1.651 66.898 0.955 0.000

3.007

FTURB1 15 428.000 1.568 76.482 0.952 1.005
FTURB2 15 428.000 1.568 76.482 0.952 1.005
FTURB3 25 300.000 1.972 59.475 0.951 1.005
FTURB4 15 428.000 1.568 76.482 0.952 0.000

3.014

FTURB1 15 500.000 1.487 89.625 0.946 1.009
FTURB2 15 500.000 1.487 89.625 0.946 1.009
FTURB3 25 300.000 1.972 59.475 0.951 1.009
FTURB4 15 500.000 1.487 89.625 0.946 0.000

3.027

FTURB1 15 600.000 1.409 108.209 0.934 1.018
FTURB2 15 600.000 1.409 108.209 0.934 1.018
FTURB3 25 300.000 1.972 59.475 0.951 1.018
FTURB4 15 600.000 1.409 108.209 0.934 0.000

3.054

FTURB12 30 250.000 2.389 62.941 0.959 1.732
FTURB3 25 300.000 1.972 59.475 0.951 1.000
FTURB4 15 428.570 1.568 76.584 0.952 0.000

2.732

FTURB12 30 272.727 2.306 68.717 0.958 1.734
FTURB3 25 300.000 1.972 59.475 0.951 1.000
FTURB4 15 428.570 1.568 76.584 0.952 0.000

2.734

FTURB12 30 300.000 2.224 75.676 0.956 1.738
FTURB3 25 300.000 1.972 59.475 0.951 1.000
FTURB4 15 428.570 1.568 76.584 0.952 0.000

2.738

FTURB124 45 214.286 2.867 66.045 0.960 2.767
FTURB3 25 300.000 1.972 59.475 0.951 0.000

2.767

FTURB124 45 230.769 2.784 71.177 0.959 2.771
FTURB3 25 300.000 1.972 59.475 0.951 0.000

2.771

FTURB124 45 250.000 2.702 77.186 0.957 2.776
FTURB3 25 300.000 1.972 59.475 0.951 0.000

2.776

0.978 0.978 1.002

0.979 0.978 1.002

0.982 0.980 1.003

2 Francis (N = 250rpm)

2 Francis (N = 214.28rpm)

0.989 0.989 1.001

2 Francis (N = 230.77rpm)

3 Francis (N = 300rpm)

0.993 0.993 1.001

0.993 0.992 1.001

3 Francis (N = 250rpm)

3 Francis (N = 272.72rpm)

0.982 0.979 1.004

0.975 0.972 1.004

4 Francis (N = 600rpm)

4 Francis (N = 500rpm)

0.990 1.001

4 Francis (N = 300rpm)

0.997 0.996 1.001

1.006 1.005 1.002

4 Francis (N = 428rpm) 0.990

4 Francis (N = 375rpm)

4 Francis (original) 1.000 1.000

Scenarios Name turbine

1.000



4. Conclusion 
The RENOVHydro project is dedicated to the renovation of an existing hydroelectric power plant and an 
independent assessment of a high number of civil and electromechanical potential modifications using a unique 
methodology. Thus, energy and economic indicators such as annual energy generation, annual amount of 
turbined/pumped water, energy coefficient, investment cost, profitability and ancillary services for each renovation 
option can be analysed to identify the technical trends according a given political, economic and environmental 
context. The RENOVHydro methodology is divided into 3 distinct parts: 

• This first step focuses on the importation of the SIMSEN model of the original hydraulic power plant and 
on the selection of civil and electromechanical engineering renovation options. With SIMSEN simulation 
software, the pipe frictional losses, the singular head losses and a realistic performance hill chart of the 
turbine are considered in the simulation. A performance hill chart of the turbine can be selected in a 
database according to the value of the speed factor, the discharge factor and the year of commissioning. 
After selecting the reference numerical model, civil engineering and hydroelectric renovation options can be 
selected. According to the options, the pre-dimensioning of the spiral casing, the runner and the draft tube 
for each type of turbine (Francis, Pelton, Kaplan, pump-turbine and pump) are determined using statistical 
laws. The price for each electromechanical element is also estimated. Finally, a method of estimating prices 
for civil engineering options will be defined in a future stage of the project.  

• For the second step, a hydraulic performance table is computed for each renovation option in order to 
operate the hydraulic power plant at its maximum performance for a given power set point and a given 
upstream water level. To evaluate the hydraulic power plant performances over the entire operating range, 
each unit combination and each guide vane opening combination are evaluated. 

• The simulation of a complete year is developed in the third part of the RENOVHydro methodology. To 
compute production capacity of each renovation option, the electricity market price time history, the 
hydrology time history, the power and water level limitations are required. To guarantee the best 
performance of each renovation options, a mathematical optimisation approach is used with a Mixed-
Integer Linear Programming algorithm to maximize the annual revenue. 

This RENOVHydro methodology was illustrated on a hydropower plant test case with 80MW installed capacity and 
comprising 4 Francis turbines operated under a maximum head of 107mWC. This case study proposes to compare 3 
different renovation options: 1) upgrade 3 old units, 2) upgrade one unit and replace the two others old units by a 
new one and 3) replace 3 old units by only one. The energy and economic indicators lead to the following 
conclusion: 

• The maximum revenue generated is obtained with renovation option 1) and a rotational speed N = 300rpm. 

• For the total power range, the best efficiency is obtained for the renovation option 1). Thus, the higher the 
number of units, the better the power range is covered. 

• Despite the fact that the upgrade of the 3 units increases the annual production, the cost of 3x15MW units is 
higher than the cost of 1x15MW and 1x30MW unit and the cost of 1x45MW unit. Therefore, over 50 years, 
it becomes advantageous to choose a solution with only 3 units, because the initial investment will be 
amortized faster with this renovation solution.  

This first analysis indicates that option 1) produces a higher annual revenue +0.6% and option 2) is significantly 
cheaper –9% for a slightly lower annual revenue. This systematic study of the various technological solutions made 
it possible to identify the most relevant renovation options. Moreover, the best economic option shall be carefully 
evaluated considering maintenance periods and possible outage over the whole concession duration. The inclusion of 
maintenance periods in the methodology and the study of ancillary services are tools that will be added soon and that 
will help to select the most advantageous technological solution. 
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6. Nomenclature 

 
Dref 
g 
Hn 

Reference diameter [m] 
Gravity [m/s2] 
Rated head [mWC] 

n 
N 
p 
 

Maximum number of units [-] 
Rotational speed [rpm] 
Number of units in operation [-] 
 

Pm 
Q 
ρ 

Mechanical power [W] 
Discharge [m3/s] 
Density [kg/m3] 

Specific speed
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