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Abstract

In solid mechanics, linear structures often exhibit (local) nonlinear behavior when close to failure. For
instance, the elastic deformation of a structure becomes plastic after being deformed beyond recovery. To
properly assess such problems in a real-life application, we need fast and multi-query evaluations of cou-
pled linear and nonlinear structural systems, whose approximations are not straight forward and often
computationally expensive. In this work, we propose a linear-nonlinear domain decomposition, where the
two systems are coupled through the solutions on a prescribed linear-nonlinear interface. After necessary
sensitivity analysis, e.g. for structures with a high dimensional parameter space, we adopt a non-intrusive
method, e.g. Gaussian processes regression (GPR), to solve for the solution on the interface. We then utilize
different model order reduction techniques to address the linear and nonlinear problems individually. To
accelerate the approximation, we employ again the non-intrusive GPR for the nonlinearity, while intrusive
model order reduction methods, e.g. the conventional reduced basis (RB) method or the static-condensation
reduced-basis-element (SCRBE) method, are employed for the solution in the linear subdomain. The pro-
posed method is applicable for problems with pre-determined linear-nonlinear domain decomposition. We
provide several numerical examples to demonstrate the effectiveness of our method.

Keywords: Model order reduction, Reduced basis method, nonlinear structural analysis, Gaussian process
regression, machine learning

1. Introduction1

Benefiting from the rapid development of computational capabilities and simulation techniques, finite el-2

ement methods (FEMs) [58, 59] have received extensive recognition as a tool for high-fidelity approximation3

of complex systems governed by partial differential equations. Nevertheless, the need for increasing resolu-4

tion in simulations remains expensive for engineering applications. Hence, various model order reduction5

techniques have gained substantial attention for their capability to balance accuracy and efficiency.6

During the last decades, rapid and reliable model order reduction techniques, e.g. the reduced basis7

(RB) method [21, 40, 41, 43], the proper generalized decomposition (PGD) [9, 10], and machine learning8

approaches [37, 38], have been developed to treat problems governed by parametrized partial differential9

equations. Such methods are designed to approximate high-dimensional finite element solutions through10

low dimensional surrogates in a real-time or multi-query context with an accuracy comparable to the finite11

element solution.12

In this work, we focus on the intrusive RB method and the non-intrusive Gaussian processes regression13

(GPR) method. As the name suggests, intrusive methods, e.g., projection based methods, necessitate14

the modification of the deterministic model construction based on the intrinsic property of the underlying15

nonlinearity. Though intrusive models are capable of producing accurate results when proper methods16
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are applied, they may be computationally challenging and complex engineering application due to the17

modification needed for each individual problem. Non-intrusive methods, on the other hand, alleviate these18

complexities and are more generic for various types of nonlinearities. The RB method, carried out in an19

offline-online framework, is a widely acknowledged technique for model order reduction. One of its many20

merits is the low computational cost, which permits rapid numerical evaluation, where a posteriori error21

estimation provides quality control with respect to the original high fidelity solution. In the offline stage, a22

reduced space is constructed by the span of certain snapshots (finite element solutions at chosen parameters).23

The construction of this space is typically conducted through the Greedy algorithm [21, 40] or the proper24

orthogonal decomposition (POD) [33, 41]. The Greedy algorithm utilizes the RB intrinsic rigorous error25

estimator as the criteria to select a subset of solutions across the training parameters as the basis functions,26

while the POD approach adopts the singular value decomposition (SVD) to accommodate a large number27

of snapshots and truncate them, according to their singular values, to the desired amount of basis functions.28

Lastly, a (Petrov-)Galerkin projection is employed to reduce the affinely decomposable system and complete29

the offline stage.30

In the online stage, the coefficients of the reduced basis functions are obtained by assembling and solving31

the reduced system at new parameter values. The RB method ensures that the size of the online problem32

is independent of the dimension of the original finite element system, thereby achieving major computa-33

tional savings. For nonlinear and non-affine problems, this procedure is nonetheless not straightforward. To34

decouple and reduce such systems efficiently, the empirical interpolation method (EIM) [3] and its discrete35

derivative [7] have been proposed to restore the affine property of the underlying system. However, these36

methods are of an intrusive nature, which require the revision of existing codes depending on the nonlinear-37

ities, and are often less practical for complex problems. Hence, we focus on non-intrusive methods to treat38

the nonlinearities in this work.39

Aside from lack of flexibility to efficiently treat nonlinear and non-affine problems, the traditional RB40

method is also restricted to a relatively small number of parameters as the offline cost, associated with a41

rich training set, increases drastically with the increase of parameter dimensions. To cope with such issues42

and to encourage industrial application, the Reduced-Basis-Element Method (RBEM) was first introduced43

in [35], and subsequently applied in [34, 36]. The Static-Condensation Reduced-Basis-Element (SCRBE)44

method [26, 27, 54] was developed to establish a component-based synthesis and model order reduction45

through a static condensation framework. The SCRBE method comprises the static condensation (SC) [57]46

method with the component mode synthesis (CMS) [11, 24, 25] method and the conventional RB method47

to reduce the number of parameters in each component and facilitate the efficient dimension reduction of48

component interiors and interfaces. Later, this method was extended to eliminate inactive modes on the49

ports [14–16] to ensure further model order reduction.50

However, the SCRBE framework does not extend to nonlinear simulations. The intrinsic nature of the51

SC method, based on the Schur complement decomposition to eliminate the degree of freedom, confines this52

approach to linear problems. Nonetheless, the SCRBE method can still be implemented in systems with only53

local nonlinearities [2]. In this work, numerical examples of large-scale structures with local nonlinearities54

are considered in the context of component-based synthesis. However, we would like to point out that the55

method proposed in this work can be applied to any large-scale structure with local nonlinearity given a pre-56

determined linear-nonlinear interface. In the framework of [2], a linear-nonlinear domain decomposition is57

assumed, prior to the system reformulation. A SCRBE approximation is then considered over the sublinear58

domain while a full finite element simulation is carried out in the nonlinear subdomain. The resulting hybrid59

linear-nonlinear formulation is coalesced through a constraint matrix to secure the consistency of solutions60

on the linear-nonlinear interface.61

Driven by the rise of machine learning, non-intrusive methods have gained substantial attention. The62

GPR [18, 19] and the artificial neural networks (ANN) [22, 55] have been successfully applied to nonlinear63

problems for model order reduction, and reduced model error evaluation in [12]. A Gaussian process measures64

the similarity between sample points, using kernel functions, to predict the output values for new data points65

[42, 56]. Analogous to interpolation methods, the GPR is a regression based approach which maps the system66

parameters to the projection coefficients, and thus constructs the reduced solution from these coefficients and67

the chosen basis functions. This approach exploits the data-driven nature of machine learning techniques68
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and thoroughly decouples the offline-online stage through the input-output regression process.69

In this work, we exploit both the speedup brought by the SCRBE method and the fully decoupled input-70

output mapping of the GPR for large structures with local nonlinearities. While we adopt the assumption of71

a pre-divided linear-nonlinear domain as in [2], we first solve for the solution at the linear-nonlinear interface,72

assisted by sensitivity analysis [45] where we analyze the uncertainty of the solution at the interface under73

the influences of the uncertainty in the parameters. Such analysis has been carried out by means of different74

sensitivity indices in the field of uncertainty quantification for decades. The variance based global sensitivity75

indices (Sobol’ indices) [44, 51] and the derivative based global sensitivity measures (DGSM) [6, 28, 31] are76

widely used. The variance based sensitivity analysis has been adopted in [23] in the context of the RB77

method. In our work, we pursue the same analysis through derivative based measurements to reduce the78

number of parameters and obtain the solution on the interface. Equipped with this solution, the remaining79

system naturally separates into two parts: a linear problem that can be approximated efficiently by the80

intrusive SCRBE method and a nonlinear problem that can be treated using the non-intrusive GPR.81

The remainder of this paper is organized as follows. In Section 2, we provide an overview of the SCRBE82

methodology as well as the GPR method and the derivative based sensitivity analysis. Then our GPR-83

SCRBE approach is illustrated and the procedure is consequently specified in Section 3. In Section 4, we84

verify our approach on three examples from solid mechanics. Finally, we conclude our work in Section 5.85

For clarity of the notation, italic symbols are adopted for functions, functionals and bilinear forms, such86

as the displacement u, linear functional f and bilinear form a; italic bold symbols are adopted for vectors87

and matrices in linear algebra, such as the coefficients of the displacement u, the matrix of finite element88

basis functions Vh.89

2. Preliminaries90

In preparation for the introduction of the GPR-SCRBE method, we present the reduced basis method91

and its static condensation derivative, namely the SCRBE approximation, as well as the Gaussian processes92

regression and the derivative based sensitivity analysis in this section.93

2.1. The RB method94

The RB method is a well accepted model order reduction techniques. It was first applied to time95

independent elliptic problems, and subsequently extended to other classes of partial differential equations.96

The RB approximation is built upon a high fidelity finite element model of dimension Nh, determined by97

the underlying mesh and the order of the polynomials used to approximate the solution. The method98

first constructs a parameter independent reduced basis space spanned either by a set of snapshots, defined99

by high fidelity finite element solutions at chosen parameter values, chosen through the Greedy algorithm100

[40, 43], or by the dominant modes of the snapshots obtained through a POD procedure [21, 41]. The former101

necessitates either an error estimator (the weak Greedy algorithm) or the true error computation at each102

training sample. The latter utilizes the singular value decomposition to accommodate the most significant103

modes in the resulting basis. For general nonlinear problems the effective and rigorous a posteriori error104

estimator is often not available. Consequently, the POD algorithm is adopted in this work to construct the105

reduced basis space for the nonlinear problem.106

Let Ω ⊂ Rd, d = 1, 2, 3 be a bounded Lipschitz domain, and D ⊂ Rp be a prescribed p-dimensional,107

compact parameter set. We consider a Hilbert space V with inner product (·, ·)V and associated norm108

‖ · ‖V =
√

(·, ·)V . The corresponding dual space is denoted by V ′. We consider a parametrized continuous,109

coercive bilinear form a(·, ·;µ) : V × V → R and a parametrized bounded linear functional f(·;µ) ∈ V ′. A110

typical problem looks for a solution u(µ) ∈ V such that111

a(u, v;µ) = f(v;µ), ∀v ∈ V. (1)

We now introduce the finite element high fidelity solution uh(µ) ∈ Vh and its degree of freedom Nh. The112

solution manifold can be expressed as Mh = {uh(µ) : µ ∈ D}, and we select a set of Ns snapshots113

Mθ = {uh(µ1), uh(µ2), · · · , uh(µNs)}. To represent those snapshots in a low rank space, a POD is employed114
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to extract N modes, associated with the biggest N singular values. The resulting orthonormal reduced space115

can be expressed as116

VN = span{ψ1, ψ2, · · · , ψN} ⊂ Vh. (2)

The Schmidt-Eckart-Young theorem [13, 41, 46] shows that VN is the L2-optimal basis of size N within the117

space spanned by Mθ. The approximation error with respect to the space Mθ is bounded by the left out118

singular values
∑Ns
i=N+1 σ

2
i .119

The solution in the reduced space VN can be expressed as uN (µ) =
∑N
i=1 ψiuNi, so that (1) can be120

reinterpreted as a system of size N in the reduced space:121

a(uN , vN ;µ) = f(vN ;µ), ∀vN ∈ VN . (3)

This procedure is a Galerkin projection of the finite element space onto the reduced space. For the optimality122

of this method and its associated a priori and a posteriori error estimation, we refer the reader to [21, 40, 41].123

2.2. The SCRBE method124

The SCRBE method has been successfully developed in [14, 16, 17, 26]. To briefly introduce this method,125

we define a component library consisting of narch archetype components and their associated physical do-126

mains Ω̂i and parameters µ̂i ∈ D̂i ⊂ Rp̂i , i = 1, · · · , narch. The boundary ∂Ω̂i of each archetype component127

is composed of nγi disjoint local ports γ̂i,j , j = 1, · · · , nγi . Next, we introduce ninst physical components128

with associated domain Ωk = Tk(Ω̂π(k)) and ports γk,j = Tk(γ̂π(k,j)), k = 1, · · · , ninst, instantiated from the129

archetype library, where π(k) maps the kth instantiation to its archetype component π(k) in the library,130

π(k, j) maps the jth port of instantiation k to the local port on its archetype component, and Tk : γ̂π(k) → Ωk131

is a parametrized geometric mapping. We note that the kth instantiated component may connect to no more132

than nγπ(k) other instantiations.133

All ninst instantiated components are then connected together to form the physical system Ω = ∪ninst

k=1 Ω̄k.134

The resulting system parameter becomes µ = (µ1, · · · , µk) ∈ D ⊆ ⊕ninst

k=1 D̂π(k). The concatenation of the135

local ports results in the reordering of all nγglo global ports of the physical system. We note that the Dirichlet136

boundaries are exempted from the nγglo ports. We define the connectivity of two local ports γk,j and γk′,j′137

at the global port γl as ρl = {(k, j), (k′, j′)}, l = 1, · · · , nγglo. For ports on the global boundary, we have138

ρl = {(k, j)} where γk,j is the corresponding local port. We further define the port map πk(j) = l that maps139

a local port index j of a instantiation k to its global counterpart l.140

We require conforming port spaces and denote the finite element dimension of global port l as N γ
l =141

N γ
k,j = N γ

k′,j′ for all ρl = {(k, j), (k′, j′)} or ρl = {(k, j)}, l = 1, · · · , nγglo. The total degrees of freedom142

on the global ports are N γ =
∑nγglo

l=1 N
γ
l . We further define a finite element space Vh,π(k), k = 1, · · · , ninst,143

of dimension Nh,π(k) on each instantiation, so that the elliptic problem (1) can be reformulated as finding144

uh(µ) ∈ Vh = ⊕ninst

k=1 Vh,π(k) such that145

a(uh(µ), v;µ) =

ninst∑
k=1

aπ(k)(uh(µ)|Ωk , v|Ωk ;µk) = f(v;µ) =

ninst∑
k=1

fπ(k)(v|Ωk ;µk), ∀v ∈ Vh. (4)

2.2.1. Static condensation and reduced order approximation146

The static condensation (SC) method eliminates degrees of freedom in the interior of each component147

or equally the bubble spaces V0
h,i = {v ∈ Vh,i : v|γ̂i,j = 0, j = 1, · · · , nγi } = span{φi,1, · · · , φi,N 0

i
}, where N 0

i148

is the interior degrees of freedom of archetype component i. The SC method expresses these as the degrees149

of freedom in the active terms that interact with other components, scilicet the part of the solution on the150

ports that lie in the port spaces Vγh,i,j = span{ζi,j,1, · · · , ζi,j,Nγi,j} for i = 1, · · · , narch and j = 1, · · · , nγi .151

Consequently, there are two elements of the model order reduction: i) the bubble reduction where we replace152

the finite element space inside each instantiation with a reduced basis space and ii) the port reduction which153

retains the first few dominant port modes.154
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We start with the introduction of the reduced bubble space, comprising basis functions obtained in the155

original bubble space V0
h = ⊕ninst

k=1 V0
h,π(k) and the reduced port space constructed by truncated port modes156

in the original port space Vγh = ⊕ninst

k=1 ⊕
nγ
π(k)

j=1 V
γ
h,π(k),j :157

V0
N = ⊕ninst

k=1 V
0
Nπ(k)

= ⊕ninst

k=1 span{ψπ(k),1, · · · , ψπ(k),Nπ(k)
} ⊂ V0

h,

VγM = ⊕ninst

k=1 ⊕
nγ
π(k)

j=1 V
γ
Mπ(k),j

= ⊕ninst

k=1 ⊕
nγ
π(k)

j=1 span{χπ(k),j,1, · · · , χπ(k),j,Mπ(k),j
} ⊂ Vγh ,

(5)

where N =
∑ninst

k=1 Nπ(k) and M =
∑ninst

k=1

∑nγ
π(k)

j=1 Mπ(k),j , and Nπ(k) and Mπ(k),j indicate the number of158

reduced bubble functions associated with each instantiation and the number of reduced port functions159

associated with each local port, respectively.160

We approximate the finite element solution uh(µ) ∈ Vh by uN,M (µ) ∈ VN,M = V0
N ⊕ V

γ
M consisting of161

two separate reduced spaces:162

uN,M (µ) = u0
N,M (µ) + uγN,M (µ), (6)

where u0
N,M (µ) ∈ V0

N and uγN,M,k(µ) ∈ VγM . We note that the bubble solution u0
N,M (µ) =

∑ninst

k=1 u
0
N,M,k(µ)163

can be recovered independently on each instantiation k by solving164

a(u0
N,M,k(µ), v;µ) = f(v;µ), ∀v ∈ V0

Nπ(k)
, (7)

and uγN,M (µ) is the solution of165

a(uγN,M (µ), v;µ) = f(v;µ)− a(u0
N,M (µ), v;µ), ∀v ∈ VγM . (8)

We note that Nπ(k) � N 0
π(k) and the bubble solution u0

N,M (µ) =
∑ninst

k=1 u
0
N,M,k(µ) can be recovered indepen-166

dently on each instantiation k through a Galerkin projection. The resulting equation to be solved constitutes167

a system of size M � N γ , thus saving a significant amount of computational effort. For the training of the168

two types of reduced spaces and more details on the model construction and model properties, we refer the169

reader to [14–17, 26, 49].170

2.2.2. The hybrid-SCRBE method171

We reiterate that we assume a prescribed linear-nonlinear domain decomposition, and in this section and172

onwards, we shall affix the subscripts ”LIN” and ”NLIN” to specify quantities that pertain to the linear and173

nonlinear subdomains, respectively. We define the linear subdomain where only linear operators act upon174

as ΩLIN(µ) and the nonlinear subdomain where the nonlinear operators are defined over as ΩNLIN(µ) such175

that176

Ω̄LIN(µ) ∪ Ω̄NLIN(µ) = Ω̄(µ), ΩLIN(µ) ∩ ΩNLIN(µ) = ∅, (9)

and the interface between them177

Γ(µ) = Ω̄LIN(µ) ∩ Ω̄NLIN(µ). (10)

We briefly summarize the method proposed in [2]. We first introduce the corresponding finite element178

spaces VLIN
h (µ) = {v ∈ (H1(ΩLIN(µ)))3 | v|∂ΩLIN,D

= 0} over ΩLIN(µ) and the space VNLIN
h (µ) = {v ∈179

(H1(ΩNLIN(µ)))3 | v|∂ΩNLIN,D
= 0} over ΩNLIN(µ), where ∂ΩLIN,D(µ) and ∂ΩNLIN,D(µ) are Dirichlet bound-180

ary conditions on ΩLIN(µ) and ΩNLIN(µ), respectively. We have Vh = {v ∈ (H1(Ω(µ)))3 | vLIN ∈ VLIN
h (µ), vNLIN ∈181

VNLIN
h (µ)}. The operators can readily be defined as a(·, ·;µ) : VLIN

h ×VLIN
h → R, b(·, ·;µ) : VNLIN

h ×VNLIN
h →182

R, and f(·;µ) : VLIN
h → R. The elliptic problem (1) becomes: find uh(µ) ∈ Vh(µ) such that183

a(uLIN
h (µ), vLIN;µ) + b(uNLIN

h (µ), vNLIN;µ) = f(vLIN;µ), ∀v ∈ Vh(µ). (11)

We point out that the continuity condition on the linear-nonlinear interface Γ is weakly incorporated into184

(11) through the test function v which does not vanish on Γ.185

In [2], this system is split into two parts: the linear model which approximates the solution uLIN
N,M,h(µ)186
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on ΩLIN(µ) and can be estimated in the reduced space VLIN
N,M,h = VN,M by the SCRBE method. The187

nonlinear model solves for uNLIN
N,M,h(µ) on ΩNLIN(µ) and can be treated by the FEM in its original dimension188

in VNLIN
N,M,h = VNLIN

h . These two models are coupled through the part of the shared solution on Γ(µ). To189

ensure the consistency of the solution on Γ(µ), the constraint uΓ
N,M,h(µ) = uLIN

N,M,h(µ)|Γ = uNLIN
N,M,h(µ)|Γ is190

imposed, equally expressed in vector form uΓL
N,M,h(µ) = (VΓ

L)TuΓh
N,M,h(µ), where uΓL

N,M,h(µ) indicates the191

L coefficients of the port reduced functions on Γ(µ), VΓ
L is the matrix of the reduced port space on Γ(µ),192

comprising L basis vectors (with respect to the FE basis function), and uΓh
N,M,h(µ) indicates the coefficients193

of uΓ
N,M,h(µ) in the FE basis. Hence, the solution on Γ can be expressed either as a vector of reduced port194

function coefficients or interpreted in terms of the finite element basis coefficients on the linear-nonlinear195

interface. The hybrid solution vector uN,M,h(µ) can be constructed as196

uN,M,h(µ) =

[
uNLIN−Γ
N,M,h (µ)

uLIN
N,M,h(µ)

]
=


uNLIN−Γ
N,M,h (µ)

uΓL
N,M,h(µ)

uLIN−Γ
N,M,h (µ)

 =


uNLIN−Γ
N,M,h (µ)

(VΓ
L)TuΓh

N,M,h(µ)

uLIN−Γ
N,M,h (µ)

 , (12)

where uNLIN−Γ
N,M,h (µ) and uLIN−Γ

N,M,h (µ) represent uNLIN
N,M,h(µ) and uLIN

N,M,h(µ) with the part of coefficients on Γ(µ)197

removed, respectively. This leads to a constraint matrix K that facilitates the prolongation of the reduced198

subsystem and the FE subsystem such that199

KuN,M,h(µ) = K


uNLIN−Γ
N,M,h (µ)

uΓL
N,M,h(µ)

uLIN−Γ
N,M,h (µ)

 =


uNLIN−Γ
N,M,h (µ)

uΓh
N,M,h(µ)

uΓL
N,M,h(µ)

uLIN−Γ
N,M,h (µ)

 =

[
uNLIN
N,M,h(µ)

uLIN
N,M,h(µ)

]
. (13)

Thus, this coupled solution uN,M,h(µ) is decomposed into two parts uNLIN
N,M,h(µ) and uLIN

N,M,h(µ) that express200

the solution over the linear and nonlinear subdomains, respectively. The resulting system consists of non-201

invasive blocks of the residual vector that represent the linear and nonlinear segments202

KTR+(KuN,M,h(µ);µ) = 0, (14)

where R+(·;µ) is the residual vector over the nonlinear subdomain with respect to b(uNLIN
N,M,h(µ), vNLIN

h ;µ)203

for all vNLIN
h ∈ VNLIN

N,M,h and over the linear subdomain with regard to a(uLIN
N,M,h(µ), vLIN

N,M,h;µ)− f(vLIN
N,M,h;µ)204

for all vLIN
N,M,h ∈ VLIN

N,M,h, respectively. This formulation also leads to a non-intertwined Jacobian matrix,205

which can be solved by iterative methods, e.g. the Newton-Raphson method. For more information on this206

hybrid-SCRBE approach, we refer the reader to [2].207

2.3. The GPR208

A Gaussian process (GP) can be interpreted as a distribution over functions, comprising a collection of209

random variables, every finite subset of which has a multivariate normal distribution. In machine learning,210

a Gaussian process employs a kernel or covariance function to measure the similarity between the point of211

inference and the sampling points to determine the weights of regression [42]. It was shown in [39] that a212

fully connected single layer neural network with infinite many hidden units and Gaussian priors on weights213

and biases converges to a GP. Later, the convergence of infinitely wide deep neural networks to GPs was214

shown in [32]. In the context of machine learning and model order reduction, GPRs have been successfully215

applied to various problems and their error estimation in [12, 18, 19].216

Let D = {(xi, yi) : i = 1, 2, · · · ,M} denote M observations, where xi ∈ X ⊂ Rd are the d-dimensional217

inputs, with X being the input space, and yi ∈ R are the corresponding outputs. A Gaussian process218

assumes that the input-output map follow an unknown regression function: f : X→ R, such that yi = f(xi)219
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or yi = f(xi) + ε if corrupted by noise. In a GPR model, we first assume a prior on the unknown function220

f to be a GP, effected by noise fluctuations:221

f(x) ∼ GP (m(x), κ(x,x′)), y = f(x) + ε, ε ∼ N (0, σ2
y), (15)

where m(x) = βTH(x) is the mean, H(x) are the basis functions in X, βT are the corresponding coefficients,222

and κ(·, ·) : X× X→ R is the covariance function that estimates the resemblance of two inputs.223

With many possible covariance functions, we briefly present one kernel that is used in this work, referred224

to as the automatic relevance determination-squared exponential (ARD-SE) covariance function:225

κ(x,x′) = σ2
f exp

(
−1

2

d∑
m=1

(xm − x′m)2

σ2
m

)
. (16)

This kernel takes the individual length scale for each input dimension into consideration, hence permitting226

a more flexible measurement.227

Given M observations, a prior joint GP can be defined:228

y|X ∼ N (m(x),Ky) , Ky = κ(X,X) + σ2
yIM , (17)

where y = [y1, y2, · · · , yM ]T, X = [ x1 | x2 | · · · | xM ], and IM is the M -dimensional unit matrix. To infer229

noise free output f∗ at an unobserved point x∗ ∈ X, the posterior distribution shall be drawn from230

f∗|x∗,X,y ∼ N (m∗(x∗),K∗) ,

m∗(x∗) = m(x∗) + κ(x∗,X)K−1
y (y −m(X)) , K∗ = κ(x∗,x∗)− κ(x∗,X)K−1

y κ(X,x∗).
(18)

The unknown hyperparameters θ = {σf , σ1, · · · , σd, σy} can be estimated by maximizing the marginal231

likelihood p(y|X, θ):232

θopt = arg max
θ

log p(y|X, θ)

= arg max
θ

{
−1

2
(y − βTH(X))TK−1

y (θ)(y − βTH(X))− 1

2
log |Ky(θ)| − M

2
log(2π)

}
.

(19)

2.4. The DGSM233

We reiterate that we deal with large-scale structures that permit high dimensional parameter spaces.234

However, the GPR often fails to learn a high dimensional multivariate problem, since the Euclidean length235

based inputs correlation becomes less informative as the input dimension increases, and the computational236

effort needed to learn one function grows exponentially [5, 53]. This is referred to as the curse of dimen-237

sionality [4]. In our work, instead of learning a nonlinear problem with high dimensional parameter inputs,238

we focus on methodologies that compress the input space while retaining parameters that bring significant239

uncertainty with respect to the quantity of interest. A common method to reduce the number of parameters240

is sensitivity analysis, which employs sensitivity indices to rank the importance of parameters.241

Variance-based global sensitivity indices, e.g. Sobol’ indices, necessitate a fairly large amount of model242

evaluations to acquire decent accuracy and convergence, and is computationally expensive for large scale en-243

gineering applications. Here, we introduce an alternative to the Sobol’ indices, namely the derivative-based244

global sensitivity measures (DGSM), for the necessary sensitivity analysis to enable large-scale structural245

problems and allow high dimensional parameter spaces in a computational efficient manner. Albeit prob-246

lem dependent, the computational effect for the evaluation of DGSMs is generally much lower than the247

corresponding cost for the Sobol’ indices [30, 50].248

Let l be a differentiable output function and θ = (θ1, · · · , θd) be the d-dimensional input defined in the249

d-dimensional unit hypercube. The partial derivative ∂l/∂θi estimates the local variation of l with respect250
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to the local change of θi. This quantity shall be used here to construct the DGSM for i = 1, · · · , d:251

νi =

∫
[0,1]d

(
∂l

∂θi

)2

p(θ)dθ = E

[(
∂l

∂θi

)2
]
, (20)

where p(θ) is the probability density function. The element effect (EE) is adopted to evaluate ∂l/∂θi [30, 52],252

expressed as a straightforward finite difference approach:253

∂l

∂θi
= EEi =

l(θ1, · · · , θi−1, θi + ∆θi, θi+1, · · · , θd)− l(θ)
∆θi

. (21)

Though the estimation of DGSMs employs a Monte Carlo or Quasi Monte Carlo sampling method by254

averaging the evaluations of the partial derivatives, it requires fewer sampling points as compared with255

variance-based methods due to it’s insensitiveness to the variance of the quantity of interests, where only256

the derivatives are employed. Hence, the computational effort of evaluating DGSMs is typically significantly257

lower than that of variance-based sensitivity indices [50].258

We point out the connection between the DGSM indices νi and Sobol’ indices [44, 51]259

Stoti =
Eθ∼i(Vθi(l|θ∼i))

V(l)
= 1− Vθ∼i(Eθi(l|θ∼i))

V(l)
, (22)

where Eθi and Vθi are the mean and variance, respectively, taken over θi, V(l) is the total variance of260

l(θ1, · · · , θd), and θ∼i represents θ with ith component removed. It is shown in [29] that small DGSMs yield261

small total sensitivity indices such that262

Stoti ≤ Ciνi
V(l)

, (23)

where Ci is the Poincaré constant and its value depends on the probability distribution. Hence, parameters263

with low DGSMs are expected to have less significance on the corresponding output of interest, and they264

can be removed without reducing the accuracy of the global problem.265

3. The GPR-SCRBE approximation266

In this section, we present the GPR-SCRBE approach to tackle large scale problems in solid mechanics267

with local nonlinearities and separate parameter subspaces DLIN and DNLIN, which are defined over ΩLIN268

and ΩNLIN, respectively. The parameter space can be rewritten as D = {µ ∈ Rd | µLIN ∈ DLIN and µNLIN ∈269

DNLIN}. We note that µNLIN is considered of more importance for the treatment of the solution over the270

nonlinear subdomain than is µLIN. Hence, µNLIN are used as one part of the input to the nonlinear model.271

The contribution of µLIN can be attributed to the solution on the interface which serves as the other part of272

the input to the nonlinear model. We consider the problem (11) and use the approximation from the hybrid-273

SCRBE solver introduced in Sec.2.2.2 as the “truth”. We notice that the essential step in a hybrid-SCRBE274

solve is the coupling of the linear estimation uLIN
N,M,h(µ) and nonlinear solution uNLIN

N,M,h(µ) through the linear-275

nonlinear interface uΓL
N,M,h(µ), or equally uΓh

N,M,h(µ). Since the nonlinear part resides in the high dimensional276

finite element space, the static condensation-based model order reduction from the hybrid-SCRBE solver277

can only reduce the linear subproblem efficiently. Fig. 3 shows a simplified decomposition of a domain and278

its associated solutions.279

In order to enable a global reduction while utilizing the advanced computational acceleration provided280

by the SCRBE solver for linear systems simultaneously, we incorporate the sensitivity analysis with the281

GPR approach to decouple the physical system. Specifically, we employ the DGSMs with respect to uΓ
h(µ)282

to reduce the number of parameters, retaining parameters introduce significant uncertainty on the behavior283

of uΓ
h(µ), and are used to construct GPRs for its approximation. With the approximation on the linear-284

nonlinear interface, seeking an approximation of uLIN−Γ
h (µ) corresponds to solving a linear SCRBE system.285

Taking the approximation of uΓ
h(µ) as part of the inputs, another set of GPRs can be constructed to estimate286
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Figure 1: Decomposition of a domain into subdomains and their associated parameters and solutions.

uNLIN−Γ
h (µ). For the sake of simplicity of the exposition, we drop the parameter dependence on Ω and Γ in287

this section.288

For the preparation of the proposed approach and error analysis in this section, we decompose the hybrid-289

SCRBE solution uN,M,h(µ) into the bubble reduction u0
N,M,h(µ) and the port reduced solution uγN,M,h(µ),290

and decompose uγN,M,h(µ) further into uΓ
N,M,h(µ) = uN,M,h(µ)|Γ and uγ−Γ

N,M,h(µ) = uN,M,h(µ)|γ−Γ, where291

γ−Γ indicates all ports in the linear subdomain with the linear-nonlinear interface Γ removed. Similarly, the292

reduced space VγN,M,h can be split into VΓ
N,M,h over Γ(µ) and Vγ−Γ

N,M,h over ΩLIN(µ)\Γ(µ) to accommodate293

uΓ
N,M,h(µ) and uγ−Γ

N,M,h(µ), respectively. Assuming that uΓ
N,M,h(µ) can be solved in advance as well, the294

linear part of the hybrid-SCRBE problem becomes295

a(uγ−Γ
N,M,h(µ), v;µ) = f(v;µ)− a(u0

N,M,h(µ), v;µ)− a(uΓ
N,M,h(µ), v;µ), ∀v ∈ Vγ−Γ

N,M,h. (24)

3.1. Methodology296

We start with the special case where only one nonlinear subdomain and one linear-nonlinear interface297

are present, and we then generalize the method to the general setting where multiple nonlinear subdomains298

and interfaces coexist. We first carry out the sensitivity analysis over the interface. Since there may not be299

any output designed specifically for the linear-nonlinear interface, we integrate (21) and (23), and propose300

a modified version ν̂i as the DGSM for the ith parameter that does not require any output function:301

ν̂i =
νi∑d
i=1 νi

,

νi = E

[(
‖uΓ

h(µ1, · · · , µi−1, µi + ∆µi, µi+1, · · · , µd)− uΓ
h(µ)‖

∆µi

)2
]
,

(25)

where ‖ · ‖ denotes the L2 norm. All parameters can be ranked according to their impact on uΓ
h(µ). The302

first dΓ parameters such that
∑dΓ

i=1 ν̂i ≥ r shall be retained. Here r is chosen by empirical judgment or303

engineering specification. We define this screening process as operator S(·) : D → DΓ, and the dΓ selected304

parameters comprise a reduced input domain DΓ ⊂ RdΓ .305

We then construct an orthonormal reduced basis space VLΓ = span{ψ1, · · · , ψL} from NΓ snapshots306

uΓ
h(µi), i = 1, · · · , NΓ, by extracting the first L singular vectors. The reduced basis approximation on the307

interface is expressed as308

uΓ
L(µ) =

L∑
i=1

uΓ
L,i(µ)ψi, (26)

where uΓ
L,i is the individual coefficient which we can model through GPRs. For each basis coefficient i,309

i = 1, · · · , L, we define πiΓ : DΓ → R as the regression function that maps the parameters in DΓ to the310
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ith coefficient of basis function ψi. To acquire the reduced solution on the interface, we estimate all L311

coefficients, which result in L Gaussian regression models.312

For the ith GP model πiΓ(·), the training data set consists of nΓ
tr training samples xij = S(µj) ∈ DΓ,313

yij = ψTi u
h
Γ(µj), j = 1, · · · , nΓ

tr. We then define πΓ(·) : DΓ → RL as the collection of the L individual GPs314

such that315

πΓ(S(µ)) = [π1
Γ(S(µ)), · · · , πLΓ (S(µ))]T . (27)

The inferred RB approximation reads316

uΓ
h(µ) ≈ uΓ

L(µ) = VL
ΓπΓ(S(µ)) =

L∑
i=1

πiΓ(S(µ))ψi. (28)

To treat the local nonlinearities and construct a model order reduced approximation for uNLIN−Γ
h (µ), we317

take the nonlinear parameters µNLIN and the approximation on the linear-nonlinear interface uΓ
L(µ) into318

consideration. Instead of the high dimensional µ ∈ D, we take µNLIN ∈ DNLIN and uΓ
L(µ) as the input319

parameters to formulate a new set of GP models to fully reduce the nonlinear subsystem.320

Let VNLIN−Γ
K = span{φ1, · · · , φK} be an orthonormal reduced basis space of size K, constructed from321

the first K singular vectors of NNLIN snapshots uNLIN−Γ
h (µi), i = 1, · · · , NNLIN. The corresponding approx-322

imation is expressed as323

uNLIN−Γ
K (µ) =

K∑
i=1

uNLIN−Γ
K,i (µ)φi, (29)

where uNLIN−Γ
K,i is the individual coefficient of φi in VNLIN−Γ

K . Similarly, we define πiNLIN : DNLIN×RL → RK324

as the GP to approximate the ith coefficient of uNLIN−Γ
K . The required training data is a collection of nNLIN

tr325

pairs (xij , y
i
j), j = 1, · · · , nNLIN

tr , where xij = (µNLIN
j , uLΓ(µj)) ∈ DNLIN × RL and yij = φTi u

NLIN−Γ
h (µj). The326

collection of projections πiNLIN forms the reduced coefficient vector327

πNLIN(µNLIN, uΓ
L(µ)) = [π1

NLIN(µNLIN, uΓ
L(µ)), · · · , πKNLIN(µNLIN, uΓ

L(µ))]T . (30)

The fully reduced estimation for the nonlinear subdomain reads328

uNLIN−Γ
h (µ) ≈ uNLIN−Γ

K (µNLIN,uΓ
L(µ)) = VNLIN−Γ

K πNLIN−Γ(µNLIN,uΓ
L(µ)). (31)

To incorporate the two approximations in the linear-nonlinear coupled system, we take uΓ
N,M,L,K(µ) := uΓ

L(µ)329

and uNLIN−Γ
N,M,L,K(µ) := uNLIN−Γ

K (µ). Recall that N and M indicate the bubble and port reduction from the330

SCRBE approach, whereas L and K represent the two sets of GPRs on the linear-nonlinear interface and331

over the nonlinear subdomain, respectively. Analogous to the nonlinear subsystem, the linear subsystem332

can readily be solved as a function of µLIN and the linear-nonlinear interaction uΓ
N,M,L,K(µ). We then form333

the global approximation uN,M,L,K(µ) as334

uN,M,L,K(µ) = uΓ
N,M,L,K(µ) + uNLIN−Γ

N,M,L,K(µNLIN, uΓ
N,M,L,K(µ)) + uLIN−Γ

N,M,L,K(µLIN, uΓ
N,M,L,K(µ)), (32)

where two of the three terms, uΓ
N,M,L,K(µ) ∈ VΓ

L and uNLIN−Γ
N,M,L,K(µ) ∈ VNLIN−Γ

K , have already been estimated335

through their associated GPRs. The remaining part uLIN−Γ
N,M,L,K(µLIN, uΓ

N,M,L,K(µ)) can be calculated by the336

SCRBE solver.337

We recall that in the SCRBE approach, uN,M (µ) is split into u0
N,M (µ) and uγN,M (µ), where u0

N,M (µ) ∈ V0
N338

represents the reduced bubble approximations that can be solved individually in advance on each components339

and uγN,M (µ) ∈ VγM reflects the reduced port approximations that reside on each boundary of the linear340
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subsystem (including the linear-nonlinear interface Γ). Similarly, we have341

uLIN
N,M,L,K(µ, uΓ

N,M,L,K(µ)) = uΓ
N,M,L,K(µ) + uLIN−Γ

N,M,L,K(µLIN, uΓ
N,M,L,K(µ))

= u0
N,M,L,K(µLIN) + uγN,M,L,K(µ).

(33)

We then propose to split the port approximation uγN,M,L,K(µ) as342

uLIN
N,M,L,K(µ, uΓ

N,M,L,K(µ)) = u0
N,M,L,K(µLIN) + uΓ

N,M,L,K(µ) + uγ−Γ
N,M,L,K(µLIN, uΓ

N,M,L,K(µ)), (34)

where u0
N,M,L,K(µLIN) ∈ V0

N,M,L,K = V0
N , uΓ

N,M,L,K(µ) ∈ VΓ
N,M,L,K = VΓ

L, uγ−Γ
N,M,L,K(µLIN, uΓ

N,M,L,K(µ)) ∈343

Vγ−Γ
N,M,L,K = Vγ−Γ

M is the port approximation without counting the linear-nonlinear interface Γ, and Vγ−Γ
N,M,L,K ⊂344

VγN,M,L,K = VγM indicates the reduced space VγN,M,L,K with the expression on Γ removed. Given that345

uΓ
N,M,L,K(µ) is obtained through GPRs and u0

N,M,L,K(µLIN) can be approximated individually on each346

component, analogous to the formulation (8), we then solve for uγ−Γ
N,M,L,K(µ) ∈ Vγ−Γ

N,M,L,K such that for all347

v ∈ VγN,M,L,K348

a(uγ−Γ
N,M,L,K(µLIN, uΓ

N,M,L,K(µ)), v;µ) = f(v;µ)− a(u0
N,M,L,K(µLIN), v;µ)− a(uΓ

N,M,L,K(µ), v;µ). (35)

In a divide-and-conquer manner, the global RB approximation uN,M,L,K(µ) is thus separated into four349

segments350

uN,M,L,K(µ) =uΓ
N,M,L,K(µ) + u0

N,M,L,K(µLIN)

+ uNLIN−Γ
N,M,L,K(µNLIN, uΓ

N,M,L,K(µ)) + uγ−Γ
N,M,L,K(µLIN, uΓ

N,M,L,K(µ)).
(36)

The first and second terms can be approximated independently with complexity O(LntrΓ ) and O(N3). Here-351

after, the third and fourth terms can be estimated individually by utilizing the first two results at the352

computational cost of O(KntrNLIN) and O(M3), respectively. We note that compared to the hybrid-SCRBE353

approach with online computational cost being proportional to the FE degrees of freedom over the nonlinear354

subdomain and the number of iterations needed for convergence, the computational saving of the proposed355

method is huge, as the online evaluation of each GPR necessitates only the calculation of one function value,356

given pre-trained hyper-parameters. The main cost of the proposed method is dominated by the linear part,357

i.e. the treatment of the solution over the linear subdomain, given the solution on the interface. This cost358

is O(N3) as denoted by the second term in (36) with N being the number of active port modes of the linear359

subsystem. However, we point out that the offline training cost of the proposed approach is presumably360

higher than the hybrid-SCRBE approach. The computational cost is O(n3
tr), where ntr indicates the number361

of training samples, to invert the matrix Ky(θ) at each iteration of the training process, as shown in (19).362

Now, we extend this method to a general setting where several nonlinear components and multiple363

linear-nonlinear interfaces are present. Let ΩiNLIN, i = 1, · · · , nNLIN, be nNLIN subdomains of Ω, and Γi,j ,364

j = 1, · · · , niΓ, be niΓ linear-nonlinear interfaces of ΩiNLIN, where365

Ω̄ = Ω̄LIN ∪nNLIN
i=1 Ω̄iNLIN and Ω̄LIN ∩ Ω̄iNLIN = ∅, ∀i = 1, · · · , nNLIN. (37)

Analogous to (36), we decompose the global RB approximation uN,M,L,K(µ) into segments on the interfaces366

and the interior of the nonlinear components367

uN,M,L,K(µ) =u0
N,M,L,K(µLIN) + uγ−Γ

N,M,L,K(µLIN, uΓ,1,1
N,M,L,K(µ), · · · , uΓ,nNLIN,n

nNLIN
Γ

N,M,L,K (µ))

+

nNLIN∑
i=1

niΓ∑
j=1

uΓ,i,j
N,M,L,K(µ) +

nNLIN∑
i=1

uNLIN−Γ,i
N,M,L,K (µNLIN, uΓ,i,1

N,M,L,K(µ), · · · , uΓ,i,niΓ
N,M,L,K(µ)).

(38)
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We note that a total number of
∑nNLIN

i=1 niΓ GPRs are required to approximate uΓ,i,j
N,M,L,K(µ) and nNLIN GPRs368

are needed to solve for uNLIN−Γ,i
N,M,L,K (µNLIN, uΓ,i,1

N,M,L,K(µ), · · · , uΓ,i,niΓ
N,M,L,K(µ)). Consequently, we reformulate (35)369

to solve for uγ−Γ
N,M,L,K(µLIN, uΓ

N,M,L,K(µ)) ∈ Vγ−Γ
N,M,L,K , such that for all v ∈ VγN,M,L,K370

a(uγ−Γ
N,M,L,K(µLIN, uΓ

N,M,L,K(µ)), v;µ) =f(v;µ)− a(u0
N,M,L,K(µLIN), v;µ)

− a(

nNLIN∑
i=1

niΓ∑
j=1

uΓ,i,j
N,M,L,K(µ), v;µ).

(39)

3.2. Error analysis371

We reiterate that we use the hybrid-SCRBE approximation as our truth reference. Hence, we compare our372

solution uN,M,L,K(µ) with the hybrid-SCRBE solution uN,M,h(µ) for error analysis. Precisely, we compare373

the solution of each component individually. For a nonlinear component i, i = 1, · · · , nNLIN, we take the niΓ374

neighboring linear components that share the linear-nonlinear interfaces j, j = 1, · · · , niΓ, with the nonlinear375

component i for the error analysis. For the interior of the nonlinear component and its interfaces, we define376

eΓ
i,j(µ) =

‖uΓ,i,j
N,M,L,K(µ)− uΓ,i,j

N,M,h(µ)‖
‖uΓ,i,j

N,M,h(µ)‖
,

eNLIN−Γ
i (µ) =

‖uNLIN−Γ,i
N,M,L,K (µNLIN, uΓ,i,1

N,M,L,K(µ), · · · , uΓ,i,niΓ
N,M,L,K(µ))− uNLIN−Γ,i

N,M,h (µ)‖
‖uNLIN−Γ,i

N,M,h (µ)‖
.

(40)

To facilitate the error analysis in Sec. 4, we define the POD solutions uiPOD(µ) as the FE solution uih(µ) of377

the nonlinear component i projected onto the reduced spaces, such that the vector form can be defined as378

uΓ,i,j
POD(µ) = (VΓ,i,j

N,M,L,K)TuΓ,i,j
N,M,h(µ),

uNLIN−Γ,i
POD (µ) = (VNLIN−Γ,i

N,M,L,K )TuNLIN−Γ,i
N,M,h (µ),

(41)

where VΓ,i,j
N,M,L,K and VNLIN−Γ,i

N,M,L,K are the matrices of the RB basis coefficients over the linear-nonlinear379

interfaces and nonlinear subdomain interiors, respectively. We note that in the nonlinear setting, projected380

POD solutions are often more accurate than solutions obtained by solving a reduced nonlinear problem using381

either intrusive or non-intrusive approaches in the same space, due to the limitation of available data and the382

intrinsic nonlinear behavior [7, 41]. This could potentially lead to the stagnation of the error convergence.383

For the comparison of errors, we define the relative POD errors as384

eΓ
POD,i,j(µ) =

‖uΓ,i,j
POD(µ)− uΓ,i,j

N,M,h(µ)‖
‖uΓ,i,j

N,M,h(µ)‖
,

eNLIN−Γ
POD,i (µ) =

‖uNLIN−Γ,i
POD (µ)− uNLIN−Γ,i

N,M,h (µ)‖
‖uNLIN−Γ,i

N,M,h (µ)‖
.

(42)

As discussed in Sec. 2.1, uΓ,i,j
POD(µ) and uNLIN−Γ,i

POD (µ) are the best approximation that can be obtained in385

VΓ,i,j
N,M,L,K and VNLIN−Γ,i

N,M,L,K . Therefore, eΓ
POD,i,j(µ) and eNLIN−Γ

POD,i (µ) shall be viewed as the lower bounds of386

eΓ
i,j(µ) and eNLIN−Γ

i (µ), respectively.387

For the error analysis of the adjacent linear components, we note that there is no error in the approx-388

imation of u0
N,M,L,K(µLIN) with respect to u0

N,M,h(µ), which is the RB approximation obtained from the389

hybrid-SCRBE solver, because both of them are solved individually on the interior of each component by390

the same procedure. Since the hybrid-SCRBE provides only RB solutions uγ−Γ
N,M,h for the linear components,391

the POD solutions and, consequently, the POD errors, cannot be estimated. Hence, we define the linear392
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error as393

eγ−Γ
i,j (µ) =

‖uγ−Γ,i,j
N,M,L,K(µLIN, uΓ,i,j

N,M,L,K(µ))− uγ−Γ,i,j
N,M,h (µ)‖

‖uγ−Γ,i,j
N,M,h (µ)‖

, (43)

where uγ−Γ,i,j
N,M,L,K(µLIN, uΓ,i,j

N,M,L,K(µ)) is the solution of the adjacent linear component j of nonlinear compo-394

nent i. We further point out that the test space Vγ−Γ
N,M,L,K of (35) is equivalent to the test space Vγ−Γ

N,M,h395

in the hybrid-SCRBE solver. This results in a global bound of ‖uγ−Γ
N,M,L,K(µ) − uγ−Γ

N,M,h(µ)‖ in terms of396

‖uΓ
N,M,L,K(µ)− uΓ

N,M,h(µ)‖, such that397

‖uγ−Γ
N,M,L,K(µ)− uγ−Γ

N,M,h(µ)‖ ≤ C(µ)‖uΓ
N,M,L,K(µ)− uΓ

N,M,h(µ)‖, (44)

where C(µ) depends only on µ.398

Proof. For simplicity, we refer to the parameter dependence (µLIN, uΓ
N,M,L,K(µ)) as (µ). Recall that the two399

approximations uγ−Γ
N,M,L,K(µ) and uγ−Γ

N,M,h(µ) are obtained from400

a(uγ−Γ
N,M,L,K(µ), v;µ) = f(v;µ)− a(u0

N,M,L,K(µ), v;µ)− a(uΓ
N,M,L,K(µ), v;µ) ∀v ∈ Vγ−Γ

N,M,L,K ,

a(uγ−Γ
N,M,h(µ), v;µ) = f(v;µ)− a(u0

N,M,h(µ), v;µ)− a(uΓ
N,M,h(µ), v;µ) ∀v ∈ Vγ−Γ

N,M,h.
(45)

Since u0
N,M,L,K(µ) = u0

N,M,h(µ) and Vγ−Γ
N,M,L,K is equivalent to Vγ−Γ

N,M,h, we have

a(uγ−Γ
N,M,L,K(µ)− uγ−Γ

N,M,h(µ), v;µ) = a(uΓ
N,M,h(µ)− uΓ

N,M,L,K(µ), v;µ)

By definition, the bilinear form a is coercive and continuous, we can then define the coercivity and continuity401

constants with respect to ‖ · ‖ as402

α(µ)‖v‖2 ≤ a(v, v;µ) ∀v ∈ Vh,
a(v, w;µ) ≤ γ(µ)‖v‖‖w‖ ∀v, w ∈ Vh.

(46)

Applying the coercivity and continuity constant to the equation above, we have

α(µ)‖uγ−Γ
N,M,L,K(µ)− uγ−Γ

N,M,h(µ)‖2 ≤a(uγ−Γ
N,M,L,K(µ)− uγ−Γ

N,M,h(µ), uγ−Γ
N,M,L,K(µ)− uγ−Γ

N,M,h(µ);µ)

=a(uΓ
N,M,L,K(µ)− uΓ

N,M,h(µ), uγ−Γ
N,M,L,K(µ)− uγ−Γ

N,M,h(µ);µ)

≤γ(µ)‖uΓ
N,M,L,K(µ)− uΓ

N,M,h(µ)‖‖uγ−Γ
N,M,L,K(µ)− uγ−Γ

N,M,h(µ)‖,

so that

‖uγ−Γ
N,M,L,K(µ)− uγ−Γ

N,M,h(µ)‖ ≤ γ(µ)

α(µ)
‖uΓ

N,M,L,K(µ)− uΓ
N,M,h(µ)‖.

Let C(µ) = γ(µ)
α(µ) and this completes the proof.403

We note that in active learning [47] or Greedy training [40], such a posteriori error estimation can404

potentially identify the insufficiently rich parameter subdomain, where the sample set employed in the405

sensitivity analysis is not comprehensive enough to capture the derivative behaviors in that region. In such406

a case, corrections to the previous model can be made on the fly by including samples that maximizes the407

a posteriori error indicator.408

4. Numerical results409

We consider three dimensional elasto-plastic problems with local linear isotropic hardening. For an410

elasto-plastic body with small deformation, the definition of the Cauchy strain tensor ε and the equation of411
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equilibrium are given as follows412

ε =
1

2

[
∇u+ (∇u)T

]
,

divσ + b = 0 ,
(47)

where u is the displacement field, σ is the Cauchy stress tensor and b is a body force. In the theory of413

classical rate-dependent plasticity, e.g. [8, 20, 48], it is assumed that the strain tensor ε can be decomposed414

into an elastic part and a plastic component, denoted by εe and εp, respectively, such that ε = εe+εp. The415

stress response is only related to the elastic strain εe. Considering the linear isotropic elasticity, Hooke’s416

law yields417

σ = C : εe = C : (ε− εp) , (48)

where the stiffness tensor is defined as418

C =
1

E
[(1 + ν)I − ν1⊗ 1]. (49)

Here E is the Young’s modulus, ν is the Poisson’s ratio, I is the fourth-order identity tensor and 1 is the419

second-order identity tensor.420

Next, we define a material internal variable q ∈ Rm and a yield function g : R3×3 × Rm → R. This421

function describes the occurrence and development of the plasticity. When g(σ, q) < 0, the state (σ, q)422

remains inside the elastic domain. It moves to and remains on the yield surface only when g = 0. For the423

associative hardening considered in this work, the flow rule is given by424

ε̇p = γ∂σg(σ, q). (50)

To insure this inequality constraint of g, a nonnegative function γ, referred to as the consistency parameter,425

is introduced. Hence, the inequality constraint conforms to the Kuhn–Tucker complementarity conditions426

γ ≥ 0 , g(σ, q) ≤ 0 , and γg(σ, q) = 0 , (51)

and the consistency requirement427

γġ(σ, q) = 0 . (52)

Evidently, γ = 0 holds for any elastic state g < 0. On the other hand, when g = 0, ġ < 0 (γ = 0) is referred428

to as the elastic unloading. Meanwhile, ġ = 0 along with γ = 0 is called neutral loading, and ġ = 0 with429

γ > 0 is termed plastic loading.430

We further assume that the hardening depends only on the total plastic deformation, quantified by the431

effective plastic strain εp, i.e. q = q(εp). This scalar εp is defined as432

εp = C|εp| , (53)

where C is a positive constant and can be determined via the uniaxial test of a given material.433

In the plastic or neutral loading stage, the consistency condition ġ = 0 yields434

γ =
1

h
∂σg : σ̇ =

∂σg : C : ε̇

∂σg : C : ∂σg + h
, with h := −C|∂σg|

(
∂qg · ∂εpq

)
. (54)

Thus we obtain the expression of the stress rate σ̇ in terms of the total strain rate ε̇ as435

σ̇ = Cep : ε̇ , (55)
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where Cep is the elasto-plastic stiffness tensor defined by436

Cep = C − sgn(γ)
C : (∂σg ⊗ ∂σg) : C

∂σg : C : ∂σg + h
, (56)

with sgn denoting the sign function.437

In the J2 flow theory, the yield function, often referred to as the von Mises yield criterion, is given by438

g(σ, (α, σY )) = J2(σ −α)− σ2
Y /3 , (57)

where α is a set of internal variables representing the center of the von Mises yield surface, σY is the von439

Mises flow stress, and J2(τ ) = |τ |2/2 − tr[τ ]
2
/6 denotes the second deviatoric stress invariant. This J2-440

plasticity model is adopted in this work and we consider the case of linear isotropic hardening, i.e. ∂εpσY is441

a positive constant and α = 0.442

In this work, the FE solver from Akselos[1] is employed as the reference solver in the first numerical443

example, while the hybrid-SCRBE solver from Akselos is used as reference in the second and third numerical444

example. We assume that the hybrid-SCRBE solutions are accurate enough for engineering applications, so445

that we can use the hybrid-SCRBE solution as the reference, or truth solution, to validate our approach.446

In all numerical examples, the MATLAB function RegressionGP.fit is used to train the GPR models and447

construct predictions.448

4.1. Numerical example: steel beams449

The first example consists of two components of connecting steel beams as shown in Fig. 4.1. We assume450

that the component on the left is plastic by setting a low yield stress to this component, and the component451

on the right is elastic by applying a very high yield stress. A homogeneous Dirichlet boundary condition452

is applied on the plastic side of the beams, and boundary on the elastic side of the beams is assumed free.453

The degrees of freedom of the full model are 64, 785 in the original finite element space. We introduce454

two parameters: one nonlinear parameter µ1, ranging from 250 to 280 MPa, to indicate the plasticity yield455

stress of the nonlinear component, and one linear parameter µ2, ranging from 1 × 107 to 1.2 × 107 N/m3,456

to reflect the body force exerted on the linear component. We note that the Young’s modulus and the457

Poisson’s ratio of both components are set to 200 GPa and 0.3, respectively. The tangent modulus of the458

linear isotropic hardening is set to 0.3 GPa, the yield stress of the linear component is set to 5× 105 MPa459

so that plasticity does not occur, and the body force of the nonlinear component is set to 1 × 107 N/m3.460

To construct the model, we randomly generate 500 uniformly distributed sample points in the parameter461

domain as the training set, and another 500 samples as the testing set.462

We note that since there are only two parameters, sensitivity analysis is not necessary. We also point463

out that due to the relatively small number of degrees of freedom, we are able to solve this model in the464

high fidelity finite element space. Hence instead of the hybrid-SCRBE solver, we employ the FE solver and465

utilize these high fidelity solutions as training samples, testing sets, and truth references. In addition, we466

construct the reduction model in the traditional RB sense as described in Sec. 2.1 over the linear component467

without static condensation such that468

uN,L,K(µ) = uLIN−Γ
N,L,K (µ) + uΓ

N,L,K(µ) + uNLIN−Γ
N,L,K (µ),

a(uLIN−Γ
N,L,K (µ), v;µ) = f(v;µ)− a(uΓ

N,L,K(µ), v;µ), ∀v ∈ VLIN−Γ
N,L,K ,

(58)

where N indicates the traditional model order reduction over the linear subdomain, In this case, uN,M,L,K(µ)469

and VLIN−Γ
N,M,L,K in Sec. 3.1 reduce to uN,L,K(µ) and VLIN−Γ

N,L,K , respectively.470

We show first in Fig. 3 three RB coefficients from the training set on the linear-nonlinear interface and471

three RB coefficients over the nonlinear subdomain with regard to the two corresponding parameter values.472

We observe that as the index of the basis function increases, the coefficient values become less smooth and473

harder to predict, which may be an indicator for a denser training set for higher dimensional coefficients,474

or decreasing accuracy for fixed number of training data. Next, we show the predictive results for the RB475
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(a) (b)

(c) (d)

Figure 2: Steel beams model: (a) model visualization - the component on the left is treated as a plastic model, the component
on the right is linear elastic; (b)-(d) example of results (plastic strain εxx, εyy , and εzz) at µ1 = 250 MPa and µ2 = 1 × 107

N/m3.
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coefficients both on the linear-nonlinear interface and over the nonlinear domain with a 95% confidence level476

in Fig. 4. We notice that the confidence range enlarges as the index of the RB basis function increases,477

hence resulting in a larger amount of uncertainty.478

Lastly, we present the convergence of the model which is constructed from 500 randomly generated479

training samples. We validate it against solutions at another 500 parameter values, and show the relative480

errors and their corresponding POD errors in Fig. 5. We note that as discussed in Sec. 3.2, the relative481

error over the linear subdomain is proportional to the relative error on the linear-nonlinear interface, as482

a result of the solution on the linear-nonlinear interface being considered as an external source acted on483

the linear subsystem. Similarly, we use the solution on the interface as part of the inputs to the nonlinear484

model, and observe that the error on the interface again reflects the error over the nonlinear subdomain.485

We further point out that the plateau in the convergence is due to the decreasing smoothness of the POD486

mode coefficients as the POD mode index number increases, making it more and more difficult for the GPR487

to achieve the same predictive accuracy, as shown in Fig. 3. Consequently, more and more data is required488

to guarantee a continuous decrease of errors for an increasing number of POD modes. We show in Fig. 5(c)489

and (d) the convergence results on the linear-nonlinear interface and over the nonlinear domain obtained490

from different number of training samples. The observation confirms our conjecture. We show that the491

stagnation in Fig. 5 confirms the observation in Fig. 3 and Fig. 4 that the predictive accuracy of the GPR492

decreases as the index number increases due to the lacking of training data. We note that compared to the493

nonlinear FE solver of 64, 785 unknowns, we get up to 105 speedup using the GPR solver. This number is494

expected to grow larger as the degrees of freedom of the original problem increases.495

4.2. Numerical example: chair496

The second example is a chair that consists of 41 components of 13 identical steel beams (8 on the497

bottom, 4 in the middle, 1 on the top) and 28 other components as shown in Fig. 6. The component in498

yellow is assumed to be plastic through a low yield stress, and all other components are elastic by applying499

a high yield stress. Homogeneous Neumann boundary conditions are applied at the bottom of the chair.500

The degrees of freedom of the full model are 1, 779, 975 in the original finite element space. We set one501

out of the 13 steel beam components to be nonlinear with 4 parameters: the yield stress µNLIN,1 ∈ [30, 32]502

MPa, the body force µNLIN,2 ∈ [5, 6] × 107 N/m3, the Young’s modulus µNLIN,3 ∈ [200, 220] GPa, and the503

Poisson’s ratio µNLIN,4 ∈ [0.28, 0.3]. For the remaining i = 1, · · · , 12 linear steel beam components, we define504

three parameters for each component: the body force µLIN,3i−2 ∈ [5, 6] × 107 N/m3, the Young’s modulus505

µLIN,3i−1 ∈ [200, 220] GPa, and the Poisson’s ratio µLIN,3i ∈ [0.28, 0.3]. We note that the tangent modulus506

of the linear isotropic hardening is set to 0.3 GPa, the body force of all other components is set to 5× 107
507

N/m3, the Young’s modulus and the Poisson’s ratio of all linear components are set to 200 GPa and 0.3,508

respectively. In total, we have 40 parameters for the model.509

We construct the model using 500 randomly generated and uniformly distributed parameter points as510

the training set, and another 500 such samples as the testing set. We note that since there are two linear-511

nonlinear interfaces on the nonlinear component, we denote the interface on top as Γ1 and the interface on512

bottom as Γ2. We show sensitivity results in fig. 7(a). In this analysis we employ 20 parameter samples and513

we observe that the most important parameters for both interfaces are the nonlinear and linear parameters514

of the components that are close to these interfaces. We further notice that after sorting the parameters515

according to the significance of their sensitivity indices, the first 24 parameters capture a majority of the516

model uncertainty on the linear-nonlinear interfaces. However, we show later that for engineering accuracy,517

a small number of parameters suffices. In Fig. 7(b), we show the first 20 singular values of each solution part.518

The singular values over the nonlinear subdomain inevitably decay slower than the ones on the interfaces.519

It can be deduced that the error over the nonlinear subdomain will dominate and may potentially serve as520

the error indicator for the whole system.521

Lastly, we present the convergence results of 500 randomly generated testing parameters, the mean522

relative errors and their corresponding mean relative POD errors, shown in Fig. 7(c)-(f). In Fig. 7(c)-523

(d), our observation confirms the expectation that the first 24 out of the 40 parameters reflect the system524

behavior well on the linear-nonlinear interfaces. To reach an accuracy level of 10−3, 20 parameters needs to525

be incorporated in the model. Including more parameters as inputs does not improve the predictive results526
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significantly. In Fig. 7(e) and (f), the relative errors over both the nonlinear and the linear subdomains527

show similar trends, but the error in the nonlinear subdomain is higher, which confirms the nontrivial fact528

that the nonlinear error dominates. We note that the plateaus in convergence is caused by the inaccurate529

prediction for POD modes with higher index numbers, as in the previous numerical example. Increasing530

the amount of training data potentially improves the quality of the GPRs. We note that we get around 38531

times speedup when compared to the hybrid solve under the same condition. Since the speedup of the GPR-532

SCRBE approach is governed by the linear SCRBE solver, the speedup can be viewed as the computational533

saving of the linear SCRBE solver when compared to the nonlinear hybrid-SCRBE solver.534

4.3. Numerical example: structural building535

The third example is a three story structural building that consists of 408 components, among which 120536

are horizontal and vertical steel beams and the rest 288 are other components, e.g. connectors and adapters.537

As shown in Fig. 8(a)-(d), the two components in yellow are treated as plastic components with a low yield538

stress, while the material behavior of all other components is elastic by setting a significantly higher yield539

stress. Among the two nonlinear components, the one on the left is indexed component 1 and the one on540

the right is nonlinear component 2. Homogeneous Neumann boundary conditions are applied on the bottom541

of the structural building. There are more than 15 million degrees of freedom in the original finite element542

model. We set i = 1, 2 out of the 120 steel beam components to be nonlinear with 2 parameters: the yield543

stress µNLIN,2i−1 ∈ [6, 7] × 103 MPa and the body force µNLIN,2i ∈ [8, 9] × 108 N/m3. For the remaining544

i = 1, · · · , 118 materially elastic linear steel beam components, we assign the body force µLIN,i ∈ [8, 9]×108
545

N/m3 as the parameter for each component. We note that the Young’s modulus and the Poisson’s ratio are546

set to 200 GPa and 0.3, respectively. The yield stress of the linear component is set to 5× 105 MPa so that547

plasticity shall not occur, and the body force of all non-steel beam components is set to 8× 108 N/m3. In548

total, we have 122 parameters for the whole model.549

We construct the GPR-SCRBE model using 500 randomly generated and uniformly distributed points in550

the parameter domain as the training set, and another 500 such samples are employed as the testing set. We551

first show the result of the sensitivity analysis in Fig. 8(e), which is obtained from 20 parameter samples as552

discussed in Sec. 3.1. We notice that the most important parameters are the yield stress and the body forces553

of components located close to the linear-nonlinear interface. We observe that after sorting the parameters554

according to their sensitivity indices, the first 12 parameters capture the majority of the model behavior555

on the linear-nonlinear interface of each component. With the first 20 significant parameters, almost all556

characteristics of the solutions on the interface can be well represented. In Fig. 8(f), we demonstrate the557

first 20 singular values of each solution parts. Evidently, the singular values over the nonlinear subdomain558

decay slower than on the interfaces. We conjecture that the error over the nonlinear subdomain dominates559

and may serve as an error indicator of the whole system.560

We then present the convergence of the solution at 500 randomly generated testing parameters, the mean561

relative errors and their corresponding mean relative POD errors, shown in Fig. 9(a)-(f). In Fig. 9(a)-(b),562

our observation confirms our conjecture that the first 12 out of 122 most significant parameters describe563

the solution on the linear-nonlinear interface well, with an average relative error below 10−2. Afterwards,564

adding more parameters does not improve the predictive results remarkably. In Fig. 9(c)-(f), the relative565

errors over the nonlinear and linear subdomains show similar behavior, but the magnitude of the nonlinear566

errors is higher. We reiterate the data-driven nature of GPRs, which results in the stagnation of the error567

convergence.568

Lastly, we point out that we get around 22 times speedup with respect to the hybrid solve under the569

same condition. The speedup of the GPR-SCRBE approach is governed by the linear SCRBE solver of cost570

O(M3), since it is almost free to evaluate the GP regressions at chosen parameter values. The computational571

cost does not increase visibly even if we empoly a few more basis functions for the GP regressions, so that572

the speedup of GPR-SCRE solvers with different numbers of GP basis functions stays the same.573
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5. Conclusions574

A hybrid GPR and SCRBE approach is proposed to enable model order reduction of large-scale structures575

with local nonlinearities. In our framework, a prescribed linear-nonlinear domain division is prerequisite576

and an RB space is constructed for the linear-nonlinear interface. Rather than the conventional Galerkin577

approach, the GPR is used to carry out the reduced approximation for each basis coefficient to allow a full578

decoupling of the offline and online stages. Equipped with the approximation on the interface, the system579

is fully decoupled into one linear and one nonlinear subsystem. The linear subsystem can be treated by580

a SCRBE solver which ensures a high model order reduction and a controllable accuracy. The nonlinear581

subsystem is treated by GPRs, where, instead of the full parameter space, only nonlinear parameters and582

the RB solution at the linear-nonlinear interface are taken as model inputs. Our method is validated against583

three numerical examples of increasing complexity, and is shown to be an effective tool for the solution of584

large-scale structures with local nonlinearities and high dimensional parameter domains.585

We reiterate that all numerical results in this work are obtained in the context of component synthesis586

based SCRBE method. However, the proposed method can be applied to any problem with a pre-determined587

linear-nonlinear interface, i.e. thermal fin problems with local nonlinear heat transfer or fluid structure588

interactions. With the validation of numerical results, we conclude that the proposed method provides the589

capability that fit well in industrial-scale engineering applications in a multi-query and real-time context.590
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Steel beams model: visualization of the training set versus the RB coefficient values. (a)(c)(e) the first, third and
fifth RB coefficients of the training set on the linear-nonlinear interface; (b)(d)(f) the first, third and fifth RB coefficients of
the training set over the nonlinear subdomain.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Steel beams model: predictive results for RB coefficients. (a)(c)(e) predictive results of the first, third and fifth RB
coefficients on the linear-nonlinear interface; (b)(d)(f) predictive results of the first, third and fifth RB coefficients over the
nonlinear subdomain.
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(a) (b)

(c) (d)

Figure 5: Steel beams model: (a) convergence result of approximation errors, as well as POD errors, as defined in (42) and
(43); (b) the first 20 singular values of training samples; (c)-(d) convergence result of approximation errors on the interface and
over the nonlinear subdomain when different numbers of training samples are employed, respectively.
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(a) (b)

(c) (d)

Figure 6: Chair model: (a) model visualization - the component in yellow is treated as a plastic model, the remaining components
are linear elastic; (b)-(d) example of results (plastic strain εxx, εyy , and εzz) at µNLIN,1 = 30 MPa, µNLIN,2 = 5 × 107 N/m3,
µNLIN,3 = 200 GPa, µNLIN,4 = 0.28, and µLIN,3i−2 = 5 × 107 N/m3, µLIN,3i−1 = 200 GPa, µLIN,3i = 0.28 for i = 1, · · · , 12.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Chair model: (a) sensitivity analysis; (b) singular value decay; (c)-(f) convergence result of approximation errors, as
well as POD errors, as defined in (42) and (43).
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Structural building: (a) model visualization - the two components in yellow are nonlinear components, the one on
the left is component 1 and the one on the right is component 2; (b)-(d) example of results (plastic strain εxx, εyy , and εzz)
of nonlinear component 1 at µNLIN,2i−1 = 6 × 103 MPa, µNLIN,2i = 8 × 108 N/m3, i = 1, 2, and µLIN,i = 8 × 105 N/m3,
i = 1, · · · , 118; (e) sensitivity analysis; (f) singular value decay.
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Structural building: (a) sensitivity analysis; (b) singular value decay; (c)-(f) convergence result of approximation
errors, as well as POD errors, as defined in (42) and (43).
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