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Abstract

Recent earthquake events throughout the world have once again exposed the vulnerability
of buildings with respect to earthquakes. It is unlikely and unsustainable to design and
- especially in regions with low-to-moderate seismic hazard - to retrofit all buildings to
remain within elastic displacement ranges during earthquakes with high return periods.
Therefore, post-earthquake assessment plays a fundamental role in the resilience of cities,
given the potential to reduce time between an earthquake event and the clearance for
(renewed) occupancy of a building. In this paper, a framework for model-based data inter-
pretation of measurements of earthquake-damaged structures is presented. The framework
allows engineers to combine ambient-vibration measurements and visual inspection to
reduce parametric uncertainty of a high-fidelity model using the error-domain model-
falsification methodology. For building types that have limited stiffness contributions
from non-structural elements (i.e. shear-wall buildings) and for which non-ductile failure
modes (such as out-of-plane failure) can be excluded, reduction in natural frequency and
damage grades derived from visual inspection provide global measurement sources for
structural identification. The application of the proposed methodology to a shear-resisting
building tested on a shake table illustrates that vulnerability-curve predictions provide
accurate damage estimates for subsequent earthquakes with probabilities between 50 and
100 percent for five measured scenarios. In complete absence of baseline information
regarding the initial building state and the earthquake signal, parametric uncertainty is
reduced by up to 76 percent. This study thus demonstrates usefulness for certain building
types to enhance post-seismic vulnerability predictions.
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1. Introduction

Recent earthquake events across the world have exposed the continuing earthquake-
related threats to built infrastructure. Despite improvements to building codes, existing
buildings have often been built either with inadequate assumptions regarding earthquake
actions or without any seismic consideration (especially in regions with low-to-moderate
seismic hazard). Therefore, earthquake events are likely be followed by significant post-
seismic assessment activities. Current practice for such assessment relies on visual
inspection, which has several shortcomings. In addition to being potentially subjective
[1, 2], visual inspection is slow [3] and usually provides information that is limited to how a
building behaved during the earthquake rather than contributing to quantitative estimates10

of vulnerability with respect to future seismic actions [4]. Little effort has focused on
evaluating the residual capacities of damaged structures to withstand future earthquake
actions. However, the imminent risk of aftershocks (as shown by the recent earthquake
sequence in Italy [5] with nine events exceeding magnitude 5.0 from August 2016 to April
2017) and the gradual deterioration of structures due to earthquake sequences justifies
residual-capacity assessments with respect to future actions.

Visual inspection alone may be insufficient for accurate and objective assessment of the
residual seismic capacity of buildings. Building owners often ask for detailed engineering
evaluations regardless of the outcome of visual screening [6]. Model-based measurement
interpretation has the potential to reduce the uncertainty related to structural behavior.20

Such uncertainties can undermine the accuracy and precision of detailed engineering
evaluations. However, despite growing popularity of smart-city applications and increased
availabilty of affordable sensors, it is unlikely that large parts of the building stock will
be equipped with permanent measurement systems soon. Such permanently installed
sensors would provide the engineers with measurement data before, during and in the
immediate aftermath of an earthquake. In absence of such detailed data, ambient-
vibration measurements are recommended as an objective data source to complement
visual inspections. Indeed, differences in fundamental frequencies have been found to
be indicators of structural damage in the past [7, 8, 9, 10]. Dunand et al. [11] were
the first to propose ambient vibrations as a complement for visual inspection to classify30

buildings in the aftermath of an earthquake. Model-based measurement-interpretation
techniques can help combine engineering knowledge (model) with observed behavior
(measurements). This paper contains a description of a methodology that exclusively
employs post-earthquake evidence (visual inspection and ambient-vibration measurements)
to reduce the uncertainty on the residual seismic capacity of earthquake-hit structures.
However, as structures must experience a reduction in stiffness prior to failure, the scope
of the methodology is currently limited to shear-resisting buildings that have low stiffness
contributions from non-structural elements.

In the past, much research effort has focussed on measurement-based damage detection
and damage identification of earthquake-hit structures [12, 13, 14, 15, 16]. Model-40

based localisation and quantification of damage using vibration measurements is usually
performed by updating parameter values of a linear finite element model [17, 18, 19].
However, such an approach implies that a large number of individual damage parameters
are known [15]. Methods for damage detection based on modal properties were also
proposed for cases without baseline (intact) measurement data [20, 21]. Nozari et al.
[22] proposed a non-deterministic approach in damage identification due to variability
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in ambient-vibration data. However, by relying on linear elastic models, such damage
identification approaches fail to provide accurate and useful predictions of the behavior of a
structure under future earthquakes. In addition, they claim that since initial and damaged
states are compared, model uncertainties that arise from omissions and simplifications,50

such as influence of boundary conditions and non-structural elements, can be neglected [23].
Few contributions stated that modelling uncertainty undermines vibration-based damage
detection [24, 25, 26]. Behmanesh and Moaveni [27] found that increasing levels of damage
lead to a decrease in the identification efficiency and accuracy. However, in absence of initial
measurements and in predicting the behavior under future earthquakes (extrapolation),
model uncertainties need to be carefully evaluated and transparently integrated into
model-measurement comparison strategies. Damage detection or anomaly detection was
also performed using model-free techniques [28, 29, 30, 31] that fail ensure behavior
extrapolation, such as prediction of the structural response under future earthquake
actions and designing repair activities as well as retrofitting for deteriorated buildings.60

Recently, the evaluation of the vulnerability increase of earthquake-damaged structures
with regard to aftershocks received attention, mostly for performance-based design [32].
In addition, updated vulnerability assessments for buildings characterized by a given
damage state after a main-shock have been proposed [33, 34, 35]. Trevlopoulos and
Guéguen [36] proposed an operational forecasting of vulnerability through a sequence
of aftershocks based on measured period elongation. However, few studies incorporate
measurement interpretation to update vulnerability curves after the main shock. In
addition, uncertainties are generally limited to ground-motion parameters, and do not
include behavior-modelling uncertainties.

In this paper, error-domain model falsification (EDMF) is used for data interpretation70

(comparison of model simulations with measured behavior). Observations from two sources
of different nature, subjective and approximate visual inspection as well as objective and
precise post-earthquake modal quantities are combined in order to reduce the uncertainty
regarding residual seismic capacity. Goulet et al. [37] formalized the idea of using data to
falsify wrong models instead of optimizing single models, which lead to the development
of a data interpretation technique, called EDMF, that accommodates modelling and
measurement errors that contain systematic bias [38]. EDMF has been shown in the
past to provide accurate prediction results in case of extrapolation in presence of large
uncertainties [39, 40].

This paper starts with a description of an iterative and sequence-free data-interpretation80

framework for post-earthquake assessment (Section 2). Most important elements of the
framework are presented: EDMF (Section 2.1), nonlinear models based on AEM (Section
2.2), use of static nonlinear prediction for vulnerability assessment (Section 2.3), combi-
nation of visual inspection and modal properties (Section 2.4), and iterative introduction
of measured information (Section 2.5). The proposed framework is tested on a half-scale
laboratory specimen (Section 3).

2. An iterative and sequence-free framework for post-earthquake assessment
of structures using static nonlinear predictions

A framework for model-based data interpretation in a post-earthquake context is
presented in this section. An existing framework for linear measurements and predictions90

of bridge behavior [41] is built upon, adapted and extended. The methodology proposed
3
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in this paper relies on static nonlinear predictions and measurement data that can be
gathered in the aftermath of an earthquake and thus, is limited to visual inspection and
post-earthquake natural frequencies. The aim of implementing a data-interpretation
technique is to reduce the parametric uncertainty of a physics-based model. Data
interpretation that is based on nonlinear behavior models involves engineering judgement
at multiple stages. Thus, the engineer is placed at the centre of the iterative framework
that is proposed in Figure 1. The main components of data interpretation, which are
iteratively revisited by the engineer, are: a physics-based model; structural measurements;
in-situ inspections; a data-interpretation methodology (EDMF); and behavior prognosis100

under future loading events. Finally, upon the vulnerability predictions that are made
using the physics-based model, stakeholders and governing bodies take decisions regarding
safety for occupancy of buildings.

Figure 1: Iterative and sequence-free framework for asset management of earthquake-damaged structures.
The engineer is at the center and evaluates and re-evaluates data sources, uncertainties, model classes,
visual information, model predictions using EDMF in order to reach robust and objective decisions.

As stated before, a physics-based model (see Section 2.2) is used to extrapolate
structural behavior under future earthquake actions. Within the scope of this paper,
the measurements and in-situ inspections are limited to the post-seismic building state.

4
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The proposed framework relies on iteratively revisiting several stages that form part of
data-interpretation applications. Model predictions and measured evidence are compared
using EDMF and, depending on the outcome of model falsification (see Section 2.1)
the engineer decides upon the following steps. Structural identification and behavior110

predictions are performed using static nonlinear model predictions. In this paper, a
high-fidelity nonlinear model is used for model predictions. While the framework can be
applied to a large range of nonlinear model classes (defined by inherent model fidelity),
selection of a specific model class and the related consequences on model predictions are
not within the scope of this paper.

The utility of in-situ inspection to assess the state of a building is manifold: replacing in-
situ visual observations with an automated and remote analysis of structural measurements
is not proposed. For example, danger from falling debris that often come from secondary
elements cannot be assessed by structural models of a building, since non-structural
elements are generally excluded from simulation models. Rapid visual screening is an120

assessment tool that provides useful post-earthquake evaluation of buildings for immediate
occupancy and crisis management. Although it has limitations regarding residual capacity
of deteriorated buildings (as discussed in the introduction, Section 1), the outcomes of
visual inspection are tightly integrated into the framework. In addition, numerical models
often implicitly involve assumptions related to structural behavior, especially with regard
to failure modes. Expert-conducted visual inspection either bolsters such assumptions
or indicates presence of more likely failure modes. Also, predicted locations of damage
can be compared to the observed damage in order to validate models. As some failure
modes (such as loss of bond between concrete and reinforcement bars) do not have a
significant influence on building stiffness, their detection through vibration measurements130

is not dependable. Alternative assessment tools are needed to help engineers in detecting
the presence of such failure modes.

In the past, outcomes of visual inspection have been linked to physical quantities of
buildings. For example, the European Macroseismic Scale (EMS98) defines five damage
grades (DG) that can be observed through visual inspection [42] and that have been
linked to mechanical parameters of the structure [43]. Therefore, DGs can be considered
a data source for structural identification. As higher DGs involve ultimate displacement
or rotation, they add valuable information regarding nonlinear ultimate states of the
structure. Also, DGs provide a link between the initial and post-earthquake buildings
states and thus, alleviate the need for initial modal properties that are often not available.140

In a similar way to modal properties, DGs provide a global score to the damage a
building sustained during an earthquake (the general DG is a weighted average over the
whole building). Therefore, local failure mechanisms have little effect on the reported DG.
In addition, a calculated approximate DG will not replace in-situ inspection, since local
mechanisms and falling debris that are potential sources of danger are not recognised.
Especially in unreinforced masonry buildings, local mechanisms may lead to important
damage and potentially, to collapse.

2.1. Error-domain model falsification

Relying on EDMF as the basis of the proposed framework for residual-capacity
estimation results from several strengths of the EDMF methodology:150
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• EDMF provides robustness with respect to unknown correlations between model
uncertainties of various sources [39].

• The expected utility of an additional data source can help the engineer to choose be-
tween several data sources, such as material testing, ambient vibration measurements
or refined site analysis for soil-structure interactions.

• Upon availability, EDMF allows the engineer to incorporate additional information,
such as the outcome of a detailed in-situ inspection, easily and explicitly. Availability
of new measurements or re-evaluating uncertainty distributions does not require
additional simulation runs.

• Engineers are able to combine various types of measurement data with different160

forms and levels of uncertainty. When conservative bounds on uncertainty are
estimated, EDMF offers accurate identification results, as has been shown in the
past [39, 40].

• Observed DGs typically result in ranges of possible maximum displacements during
an earthquake. Within such ranges all displacement values are equally likely and
thus, informed likelihood functions (such as Gaussian distributions) that form part
of other structural-identification methodologies are not compatible with this context.

• Unlike other engineering structures, such as high-rise buildings and bridges, ambient-
vibration measurements on low to medium rise buildings usually result in charac-
terising less than five vibration modes. Generally, data-interpretation techniques170

require more measurement data points to provide accurate results. With conser-
vative uncertainty estimations, use of EDMF involves lower precision than other
population approaches in order to provide accuracy and robustness in contexts
where there is a low number of measurements.

• An EDMF-based framework is compatible with engineering practice that typically
involves reasoning with models at various levels of approximation.

2.1.1. Background of error-domain model falsification

The model falsification approach has been built upon the strategy that measurement
data should ideally be used to discard (or falsify) inappropriate models instead of validating
models - a concept in accordance with the principles of scientific discovery [44]. Thus,180

a multi-model strategy has been introduced into data interpretation [45, 46]. As not
every every relevant phenomenon and physical parameter that influences the behavior of
complex full-scale structures can be included in structural models, falsification thresholds
are calculated to discard model instances.

Simplifications and omissions result in a model error value, ug, which characterises
the model class g(.). Similarly, measurement data ŷ is subject to a measurement error uy.
Given the parameter values, θ∗, for the model g(.) are known, and the model error value
ug is known, the true structural response equals the sum of the model prediction, gi(θ

∗),
and the model error, ug,i. In a similar way, the true structural response equals the sum
of the measured value, ŷi, and the measurement error, uy,i, thus leading to Equation 1190

for every measured quantity i.
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gi(θ
∗) + ug,i = ŷi + uy,i,∀i = 1, 2, ..., nm (1)

The complexity of full-scale engineering structures and their response to unmodelled
conditions hinders precise knowledge of the model and measurement error values. Due
to the absence of precise information related to error values, they are characterised
by random variables: Ug for model uncertainty and Uŷ for measurement uncertainty.
A joint probability density function, fUc

(Uc) ∼ Uŷ − Ug, is obtained by combining
measurement and modelling uncertainty. The joint PDF, fUc

, is generally dominated by
model uncertainties, which have much higher variances than measurement uncertainties
[47]. Also, unlike measurement uncertainties, model uncertainties are often biased (non-
zero mean distributions).200

Based on the joint distribution, fUc
(Uc), lower and upper thresholds, Tlow,i and Thigh,i,

are derived and delimitate the shortest interval corresponding to a target probability φd
(see Eq. 2). To account for the simultaneous comparisons of nm measured quantities with
model predictions, the Šidák correction for multiple hypotheses testing [48] is applied in
the calculation of threshold bounds in Eq. 2).

∀i ∈ {1, 2, ..., nm} : φ
1/nm

d =

∫ Thigh,i

Tlow,i

fUc,i
(Uc,i)dUc (2)

A parameter combination instance is falsified if for one measured quantity the residual
between model prediction and measurement, gi(θ)− ŷi, lies outside the interval delimited
by the lower and upper thresholds. Model instances that have been falsified are assigned
a probability of 0. Candidate models satisfy equation 3 for all nm measured quantities
and are assumed to be equally likely.210

∀i ∈ {1, 2, ..., nm} : Tlow,i ≤ gi(θ)− ŷi ≤ Thigh,i (3)

Rectangular regions of acceptance of residuals between model predictions and measure-
ments provide candidate models that are robust with respect to unknown and changing
correlations between residuals related to multiple measured quantities [38, 39, 49].

2.2. Physics-based model: The applied-element method

The proposed framework involves structural identification of the parameters of a
physics-based model. Thus, parameter values of the physics-based model that are
compatible with post-seismic evidence are inferred and subsequently used to perform
behavior predictions that involve extrapolation. In this paper, the applied-element method
(AEM) is used as physics-based model in order to simulate pushover curves (see Section
2.3). In addition, AEM provides a link between the reduction in fundamental frequency220

(as a consequence of damage) and the displacement at the top of the building. This means
that for each displacement value of the pushover curve, the fundamental frequency of the
building is determined, as discussed in Section 2.3.

AEM is a numerical modeling strategy that has been developed as an alternative
simulation technique to the finite element method. AEM captures high geometric and
material non-linearities. In order to capture a large range of failure modes that can be
found in reinforced-concrete and masonry structures - such as rocking, joint de-bonding,
sliding or shear diagonal cracking - the AEM divides structural components into small
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elastic elements that are connected through springs as illustrated in Figure 2. Thus,
elements do not share common points unlike finite elements, and this enables simulation230

of large displacements and progressive element separation through failure of the contact
springs [50].

Pairs of normal and shear springs localize stresses, strains and deformations at the
element contact points [51] (see Figure 2). The behavior of masonry blocks is assumed
to be similar to concrete-type behavior models, described by a Maekawa compression
model that includes unloading and reloading [52], as shown in Figure 2. Accordingly, the
envelope of the compressive stress-strain behavior law is defined by the initial Young’s
modulus, the fracture parameter representing the extent of the internal damage, and
the compressive plastic strain. Tensile stresses follow a linear behavior law up to the
cracking point when tensile strength is reached. Thus, the material is assumed to crack240

when major principal stresses reach maximum tensile strength. Once cracked, the spring
stiffness is set to be zero as the spring is modelled to be broken.

In shear, the tangent modulus is calculated according to the strain at the spring
location. Shear stress and shear strain follow a linear relationship until cracking. Then,
shear stresses drop to a level of shear stress that depends on the aggregate interlock
and friction at the crack surface. Once separation strain is reached, adjacent elements
are separated at the connecting face. All the springs are cut and, if the elements create
contact again during further steps of the analysis, the contact behavior is similar to two
rigid bodies. In case of contact between elements, linear springs are generated at contact
points, governed by parameters such as normal and shear contact-stiffness factors and250

friction coefficient in case of contact between initially linked elements. When a material
undergoes combined compressive and shear stresses, the failure of the material follows
the Mohr-Column failure envelope.

Shear spring
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Figure 2: Principle of the applied-element method (AEM). Structures are divided into elastic cubes that
are connected by pairs of nonlinear normal and shear springs. Masonry elements are simplified to have
averaged behavior between mortar and masonry blocks.

Thus, springs defined by the AEM are able to capture joint de-bonding, shear sliding,
direct tension and partial connectivity between elements. However, shear-compression
failure due to high axial loads is not taken into consideration. AEM has been shown by
several researchers [53, 54, 55, 56, 57, 58, 59, 60] to predict post-yield structural behavior
of masonry and reinforced-concrete structures that are defined by a particularly large
range of potential failure modes. The applicability of AEM to successfully simulate large
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deformations has been demonstrated by Tagel-Din and Meguro [61], among others. In260

this paper a macro-modelling approach is chosen, in which bricks, mortar joints and
brick-mortar interfaces are represented as an equivalent material. Such an approach
is most suitable for practical applications of the AEM, especially when populations of
models are simulated.

2.3. Static nonlinear predictions of seismic behavior

Static nonlinear pushover curves provide predictions of displacement capacities of
buildings that are independent of earthquake excitation and therefore do not require
earthquake-related information. Three-dimensional nonlinear models (such as AEM-based
models described in the previous section 2.2) provide a link between top displacement
(that can be related to DGs) and the reduction in natural frequencies due to damage,270

as shown in Figure 3. Figure 3 shows a pushover curve (base shear as a function of top
displacement) and the DGs related to particular points of the pushover curve. In addition,
Figure 3 shows the evolution (i.e. reduction) of the fundamental frequency as a function
of top displacement. Nonlinear numerical models, that have localised formulations of
influence of damage on stiffness, provide simulation results for both curves presented
in Figure 3. Also, when such high-fidelity models are used, pushover-curve simulations
present an interesting reduction in computation time when compared to full-transient
dynamic time-history analysis for which calculation time - especially in a multiple-model
setup - can become prohibitive.

Base shear

Top displacement

Fund. frequency

Figure 3: Schematic representation of the evolution of damage and natural frequency under increasing
lateral top displacement, as typically simulated by pushover analyses.

Using for instance the N2 method proposed by Fajfar et al. [62], predictions of the280

displacement demand related to a given seismic demand (in the acceleration-displacement
response spectrum (ADRS) format) can be made. Thus, displacement demands can be
derived for a given building with respect to code-based seismic displacement-demand
spectra or acceleration-displacement response spectra of real earthquakes. In the proposed
framework, the goal is to predict vulnerability curves: evolution of predicted DGs with
respect to increasing seismic demands. In order to simplify predictions, DGs are predicted
with respect to changing earthquake levels that are expressed as peak ground acceleration
(PGA) values. The same seismic demand spectrum is scaled in order to obtain increasing
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PGA values (see Figure 4). Figure 4 contains an illustration of scaling (or magnifying)
the demand spectrum to increasing amplitudes in order to derive, for the same pushover290

curve, the corresponding values of displacement demands and thus, predicted DGs.

Figure 4: Predicting displacements for increasing demand Mi using simulated pushover curves and scaled
design spectra in the acceleration-displacement response spectrum (ADRS) format.

A limitation of vulnerability predictions using pushover curves is related to the
assumption of in-plane-collapse mechanisms. By enforcing a certain load distribution
(often triangular displacement distributions along the building height or a displacement
distribution that is similar to the mode shape of the fundamental mode), the collapse
mechanism is often limited to in-plane load-bearing. For some buildings, this load-bearing
mechanism is not realistic. Recently, adaptive pushover techniques have been proposed to
overcome some of the aforementioned limitations [63, 64]. However, in the context of this
paper, classic pushover curves are considered with triangular displacement distribution
applied to the initial centre of torsion of the slabs. Relying to such pushover curves assumes300

that the building behavior under earthquake loads is dominated by the fundamental
mode. As stated before, the scope of buildings for the proposed methodology is limited to
shear-resisting buildings and thus, the conditions for use of pushover curves are expected
to be met.

2.4. Combining visual inspection and ambient-vibration data

As mentioned in Section 2.3 a physics-based model is used to establish a link between
displacement at the top of the building and reduction in natural frequencies (as a function
of damage). Thresholds based on the measured post-earthquake frequency and the
estimated combined uncertainty are subsequently used to derive for each model instance
g(θ) the range of displacement demand (such as top displacement or first-story drift)310

that are compatible with frequency thresholds. The interval that is delimited by the
displacement demand, df−drop,Thigh

(θ), corresponding to the upper threshold, Thigh, and
the displacement demand, df−drop,Tlow

(θ), corresponding to the lower threshold, Tlow, is
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denoted ∆f−drop(θ), as shown in Figure 5. Similarly, using thresholds on the observed
DGV I , an interval of potential values of displacement demand that are compatible with
visually observed DGs can be derived. This interval is denoted ∆DG(θ) (see Figure 5).

Candidate parameter combinations, θεΩ′′, need to verify the condition that the subset
of intersection between the displacement demand intervals defined by measured post-
earthquake frequency, ∆f−drop(θ), and observed DG, ∆DG(θ), is not empty, as established
by Equation 4 and illustrated in Figure 5. It is recalled that candidate models that are320

obtained using Equation 4, require no information regarding the ground motion or the
initial building state.

Ω′′ = {θεΩ | ∆f−drop(θ) ∩∆DG(θ) 6= ∅} (4)

Figure 5: Post-earthquake structural identification based on static nonlinear predictions of frequency
drop and base shear as a function of displacement demand. Candidate models have an intersection subset
of displacement values between intervals based on measured frequency and observed DG.

2.5. Iterative introduction of measured information

The framework presented in Figure 1 is intended to be applied in an iterative and
sequence-free manner. Therefore, two potential sequences of structural identification
of earthquake-damaged structures are described in order to show the potential of the
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proposed framework to incorporate new information sources and to adapt to the needs
identified by the engineer, who is at the center of the framework (see Figure 1). The
case study described in Section 3 will provide further insight into the applicability of the
framework.330

2.5.1. Structural-identification sequence example 1

Step 1 - In-situ inspection: After a damaging earthquake, visual screening (VS) of a
building is performed in order to determine the DG and to exclude dangerous collapses
of non-structural elements.

Step 2 - Ambient-vibration measurements: Using one sensor (typically at the top of
the building) the fundamental frequency in each direction can be derived.

Step 3 - Developing a model : From VS or from construction drawings a physics-based
three-dimensional model is developed.

Step 4 - EDMF : Predictions of an initial model population of the physics-based model
(based on combinations of parameter values) are compared to the measured natural340

frequency (using Eq. 3) after estimating the ranges of uncertainties that arise from
measurement and modelling errors. The whole model population is falsified, indicating
either a wrong modelling assumption or misevaluated uncertainties. It is the role of the
engineer to decide which task(s) of the framework (see Figure 1) should be re-evaluated.

Step 5 - Detailed in-situ inspection: Given the complete model population is falsified
an in-depth visual inspection of the damaged building is performed to detect model
assumptions that are not compatible with the selected model. A slight soil-structure
interaction is observed as well as cracks in the floor-slabs that fail to provide complete
redistribution of the forces between the walls.

Step 6 - Redefining uncertainties: Uncertainty bounds are redefined (increased) in350

order to include the observations from the detailed in-situ inspection.
Step 7 - EDMF : Based on the new uncertainty distribution, EDMF is performed

again without the need for resimulation of the physics-based model. A large range of
candidate models is found which undermines prediction precision. Again, several tasks of
the framework (see Figure 1) can potentially be re-evaluated.

Step 8 - Refining the model : The physics-based model is refined in order to include the
outcomes of the in-depth visual inspection (Step 5) and new simulations are performed.

Step 9 - EDMF : Based on the initial uncertainty distribution (Step 4), EDMF is
performed again. An acceptable number of candidate models is obtained and the prediction
uncertainty is deemed acceptable by decision-makers (typically parametric uncertainty on360

predictions is of the same order of magnitude than modelling uncertainties).
Step 10 - Prognosis : The vulnerability prediction of the deteriorated structure exceeds

minimum requirements set by decision-makers. Therefore, the residual capacity is esti-
mated to be insufficient and the building is tagged unsafe for occupancy. The candidate
model instances found in Step 9 are thus kept in order to estimate the utility of repair
interventions.

2.5.2. Structural-identification sequence example 2

Steps 1 to 3 : Similar to example 1.
Step 4 - EDMF : Model-population predictions are compared to measured evidence

(using Eq. 3). Falsification performance is poor and parametric uncertainty remains too370
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high for objective decision-making and thus, the engineer needs to re-evaluate one or
more tasks of the iterative framework (see Figure 1).

Step 5 - Estimating expected utility of additional measurements: The physics-based
model is used to estimate the expected utility of additional measurements such as mode-
shapes (requiring an array of sensors) or laboratory tests on a given material type. It is
concluded that the expected utility of such measurements is low.

Step 6 - Information from city-scale comparisons: In order to retrieve additional
sources of information, the engineer decides to perform city-scale comparisons. For
instance, a building that is of a similar building class and shows no signs of damage can
be used (with increased modelling uncertainty) as an estimate of the initial (undamaged)380

natural frequency. In addition, based on the candidate models, a rough estimate of the
amplitudes of the response spectrum of the main-shock can be obtained.

Step 7 - EDMF : Based on the new sources of measurements obtained in Step 6,
EDMF is performed again. Falsification performance is increased and thus, performance
predictions are performed.

Step 8 - Prognosis: The predicted vulnerability of the deteriorated structure complies
with minimum requirements that are set by authorities. Upon verification that no
secondary (non-structural) elements are a source of danger for the inhabitants, the
building is tagged safe for occupancy.

3. Case study390

The methodology is applied to a case study in order to illustrate applicability and
potential of model-based data interpretation with scarce measurement data to enhance
building-state-related knowledge. The case study is a half-scale mixed unreinforced-
masonry reinforced-concrete building with four floors see Figure 6) that has been tested
on a shake table under an earthquake sequence with increasing amplitudes of shaking
by Beyer et al. [65]. Schematic building drawings of the tested specimen are provided
in Figure 6. Additional masses have been added to the slabs in order to comply with
similarity laws for stresses.

The earthquake excitation that has been used during the shake-table tests is the
east-west component measured at the ground station of the Ulcinj-Hotel Albatros station400

during the April 15th, 1979 Montenegro earthquake [66]. This accelerogram has a
reasonable match with a slightly modified version of the Eurocode 8 spectrum for soil
class D (see [65] for further details regarding the design spectrum).

Shake-table tests exclude uncertainties from environmental influences (such as temper-
ature, irradiation and changing soil conditions). In addition, no non-structural elements
such as separation walls and windows influence the natural frequencies. Finally, the
applied accelerations have been unidirectional in the longitudinal direction, reducing
torsional and bi-directional effects. Since the level of uncertainties of this case-study is
low, identification and prediction results represent upper bounds to the performance of
the proposed methodology. Nevertheless this case is of interest because ambient-vibration410

data on a building under a sequence of earthquake events and for multiple damage
states is scarce, especially for European building types (low-rise mixed masonry-concrete
buildings). In addition, the shake-table tests comparisons of predictions with observed
behavior of structures under subsequent shaking events.
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Figure 6: Schematic drawings of the mixed unreinforced-masonry reinforced-concrete building tested on a
shake table by [65]. Dimensions correspond to a half-scale specimen. Additional masses have been added
to comply with similarity laws for stresses. Shake-table tests have been uni-directional in the longitudinal
direction.

3.1. Relation between structural damage and fundamental frequency

White-noise (WN) excitation has been tested between shake-table tests [65] and the
findings are summarized in Table 1 for the building states after shaking events 3 to 8 (no
WN tests have been carried out between shaking events 6 and 7). The initial (undamaged)
fundamental frequency of the building has been measured to be 7.9 Hz. The DG observed
following the tests vary from DG1 to DG3. As can be seen in Table 1 the amplitudes420

of vibration exceed the levels of ambient vibrations, for which a range of 1 µm s−2 to
1 mm s−2 is generally admitted. In addition, for the white-noise tests following shaking
event 5, the amplitude of shaking is of one order of magnitude lower compared to the
other tests. Thus, higher values of fundamental frequencies are obtained. This is in
agreement with previous observations [67] and can be explained by an elastic reduction
of stiffness under higher amplitudes of shaking.

When comparing WN tests that involve similar amplitudes of shaking (Tests 3, 4, 7
and 8 in Table 1), a trend of frequency-reduction with increased levels of damage (higher
DGs) can be observed (for the first two fundamental frequencies in the longitudinal
direction, f1 and f2). This tendency is a necessary starting point for the proposed430

methodology. Previous research [11, 9] has resulted in the conclusion that a frequency
drop of approximatively 30% is the limit of DG1. In this case-study, the boundary seems
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to be lower, as DG2 is observed for a frequency drop of less than 30% (see Table 1).
This difference may have arisen from the laboratory conditions, where the pre-stressed
anchorage of the building to the shake table remain elastic and no reduction of soil
stiffness from large-amplitude vibrations occurs.

Table 1: Influence of observed damage on the measured natural frequencies.

Test f1 [Hz] Reduction f1 [%] f2 [Hz] AV level [mm/s2] DG
3 6.6 -16.5 24.1 176 1
4 5.8 -26.6 23.8 176 2
5 6.3 -20.3 23.9 26.2 2
7 5.3 -33.0 23.2 175 2
8 5 -37.0 21.6 176 3

3.2. Physics-based model using the applied element method

A three-dimensional model using the applied-element method (AEM) (see Section 2.2)
is build to predict nonlinear structural behavior. Unreinforced masonry is modelled as
nonlinear macro-elements in a similar way to concrete elements. The numerical model is440

in total composed of 27′552 elements connected by 1′718′587 nonlinear springs.
Given uncertainties on density are comparatively low, only material parameters related

to load-resisting properties are included in the analysis. The load-resisting material
properties that apply to both masonry and concrete elements are: Young’s modulus,
Poisson’s coefficient, maximum strain, friction coefficient as well as maximum tensile
and compressive strengths. Thus, 12 parameters are identified to influence the nonlinear
lateral load-bearing behavior of the modelled building. The 12 parameters, along with the
range of values that is assumed based on engineering judgement and existing literature are
reported in Table 2. Although steel reinforcement bars have an influence on the predicted
pushover curve and especially the predicted ultimate displacement, these structural450

elements do not have a significant influence on the fundamental frequency and therefore,
standard reinforcement is assumed throughout the analysis.

Pushover curves of the studied building are obtained by enforcing a triangular lateral
displacement shape at the centre of torsion of the four slabs. The obtained pushover
curves characterise the total shear force at the base of the building as a function of top
displacement. As the exact definition of yield displacement based on simulated cracks is
time consuming and uncertain [68], a bilinear approximation of the predicted pushover
curve is derived through minimizing the error between the AEM-based curve and a bilinear
approximation. The yield displacement is subsequently derived from the bilinear curve.
In addition, a global definition is used to derive ultimate displacement which is reached460

when the total base shear force drops below 80% of the maximum base shear. Such global
definitions carry some uncertainty but are necessary for automated prediction of yield
and ultimate displacement in a model-population approach.

A sensitivity analysis using a Box-Behnken design-of-experiment scheme [69] is per-
formed in order to assess the relative importance of each parameter on the prediction
results. The prediction results that are used to derive the relative importance are yield
displacement, ultimate displacement, initial frequency and frequency after 6 mm of top
displacement. Using linear regression, an estimate of the sensitivity values is obtained
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Table 2: Parameters included in the sensitivity analysis (Box-Behnken design of experiments). The five
parameters with the highest influence on yield displacement (dyield), ultimate displacement (dult), initial
fundamental frequency (fini) and fundamental frequency at 6mm top displacement (f6mm) are retained
as primary parameters for the analysis.

Parameter Units Range
Sensitivity [%]

Retain
dyield dult fini f6mm

Masonry
Young’s mod. kN/mm2 [2,8] 37 35 71 51 Yes
Poisson’s coeff. - [0.1,0.3] 1 3 5 0 No
Maximum strain mm/m [0.5,8] 0 7 0 0 No
Friction coeff. - [0.6,0.8] 7 9 0 1 No
Tens. strength N/mm2 [0.05,1.5] 19 22 2 25 Yes
Compr. strength N/mm2 [4,12] 8 11 0 4 Yes

Reinforced Concrete
Young’s mod. kN/mm2 [20,40] 20 5 20 8 Yes
Poisson’s coeff. - [0.1,0.3] 2 0 1 1 No
Maximum strain mm/m [1,10] 0 0 0 0 No
Friction coeff. - [0.7,0.8] 1 1 0 0 No
Tens. strength N/mm2 [1,3] 5 6 0 10 Yes
Compr. strength N/mm2 [30,50] 0 0 0 1 No

and reported in Table 2. Although the precise choice of the value of 6 mm is arbitrary, it
ensures slight damage for all parameter combinations. Changing the displacement value470

taken for sensitivity analysis in the range of slight damage does not significantly alter the
conclusions of the analysis and thus, the parameters selected as primary parameters do
not change. Young’s modulus of masonry is found to have the highest influence on all
predictions.

Parameter selection for the subsequent model-based data interpretation using EDMF
is based on the following criteria: a relative importance exceeding five percent on two
predicted values and on average on the four predicted values. Thus, five parameters are
retained to build the initial model population using grid sampling (see Table 2): Young’s
modulus of masonry (4 divisions), tensile strength of masonry (3 divisions), compressive
strength of masonry (2 divisions), Young’s modulus of concrete (3 divisions) and tensile480

strength of concrete (2 divisions). In total, the initial model population is composed
of 144 model instances. The vulnerability prediction that is obtained using the 144
parameter combinations of the initial model population (no data interpretation is done)
and the estimated uncertainties (see Section 3.3.1) is shown in Figure 7. A Monte-Carlo
combination of predictions using static nonlinear predictions and the N2 method for
scaled spectra is used (see Figure 5).

3.3. Model-based data interpretation using sparse measurements

As explained in Section 2.4, DGs oberved using visual inspection and post-earthquake
fundamental frequencies derived from vibration measurements are combined to reduce
parametric uncertainty related to an earthquake-damaged building. The EDMF method-490

ology is applied to falsify model instances that are not compatible with observed evidence.
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Figure 7: Initial vulnerability predictions (prior to earthquake shaking and without considering measure-
ment data) using scaled acceleration-displacement spectra following the static nonlinear approach (see
Figure 5).

3.3.1. Sources of uncertainty for identification

An important step of the EDMF methodology, which is used to interpret measurement
data, is related to estimated uncertainties that influence measured and observed behavior.
For the measurements and model predictions used in the case study, the following
uncertainty sources are detected and estimated based on engineering judgement (previous
work has shown that EDMF is robust with respect to uncertainty estimates [40]):

• A measurement uncertainty resulting from sensor precision, weather and loading
conditions as well as time-domain to frequency-domain transformation is estimated
to follow a zero-mean normal distribution with a standard deviation of 0.15 Hz.500

• A model uncertainty in predicting the natural frequency is estimated to be part
of the interval [−0.08, 0.04]. Given the reduction in natural frequency is obtained
by loading-only (instead of loading-unloading) the model prediction is predicted to
be biased towards lower values. Given the lower level of amplitudes that charac-
terize WN excitation after shaking event 5, the uncertainty interval is changed to
[−0.12, 0.0], as the model does not predict regaining higher stiffness values under
very low shaking amplitudes.

• A DG boundary definition uncertainty is estimated to result from subjectivity in
visual inspection and from the empirical definition of the DGs as well as model
imprecisions in displacement predictions. The estimated relative uncertainty range510
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for the DG boundaries is: [−0.125, 0.125] for Sd,1; [−0.25, 0.25] for Sd,2 as well as
Sd,3; and [−0.20, 0.05] for Sd,4.

3.3.2. Performance of structural identification with scare measurements

Using Equation 4, model instances that have incompatible ranges for displacement
demand between the observed DG and the measured fundamental frequency are falsified.
Using this sparse post-earthquake information sources, the performance of model falsifica-
tion is estimated using the reduction in model instances (i.e. the percentage of initial
model instances that is falsified), which is an indirect performance indicator. For the
post-shaking situations summarised in Table 1, 75% of the initial model instances are
falsified after shaking event 3, 57% after shaking event 4, 53% after shaking event 5, 63%520

after shaking event 7 and 17% after shaking event 8. Thus, based on these performances
the observed DG influences the performance of EDMF in this specific case. In other words,
the initial model population generally predicts higher DGs compared to the observed
DGs for a given frequency drop.

In Figure 8 a parallel-axes plot provides an overview of the identification results using
data following shaking event 5. The parallel axes allow for presentation of normalized
ranges of parameters and predictions. Given the parameter space is sampled using grid
sampling, the five first vertical axes that contain parameter values in Figure 8 have
equidistant values (that are unchanged after falsification), while prediction values show a
larger scatter. Although no reduction in the range of parameters is obtained, 53% of the530

initial model population is falsified as stated before. The reduction in model population
results from falsifying several parameter combinations. This results in a reduction of
the prediction range of yield displacement of 77%. Reduction in uncertainty of initial
frequency and ultimate displacement remains low compared to the uncertainty reduction
regarding yield displacement, as can be seen in Figure 8. Therefore, adding information on
initial frequency, as proposed in the iterative framework has potential to further decrease
parametric uncertainty.

Table 3: Performance of model-based measurement identification with scarce measurements following five
shaking events.

Event nr Falsified Yield displacement Ultimate displacement
instances [%] range reduction [%] range reduction [%]

3 76 13 3
4 60 12 3
5 62 60 2
7 65 14 2
8 18 3 3
4 and 5 71 38 35
5 and 7 81 50 35

Given the iterative nature of the proposed framework, falsification can be performed
for two consecutive shaking events without additional model-simulation runs. Thus,
when information obtained following shaking events 4 and 5 are combined 71% of the540

initial model population are falsified, whereas 81% are falsified by combining information
obtained after events 5 and 7 (see Table 3).
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Figure 8: Parallel axes plot showing the results of model falsification using data following shaking event
5. The first five parallel axes contain normalized parameter ranges and the last three parallel axes
contain normalized prediction values of the initial fundamental frequency, yield displacement and ultimate
displacement. While little reduction in the parameter ranges is obtained, prediction ranges (especially
yield displacement) are reduced.

3.4. Predicting structural vulnerability during subsequent shaking

Using the candidate models that are obtained using model-based measurement inter-
pretation as described in the previous Section 3.3.2, the vulnerability of the building with
respect to future shaking events is predicted using the prediction methodology described
in Section 2.3. For predictions, the initial slope of the pushover curve is replaced with the
fundamental frequency derived from vibration measurements after the previous shaking
up to the intersection of the deteriorated slope with the initial pushover curve.
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3.4.1. Sources of uncertainty for predictions550

Similarly to the identification step, several sources of uncertainty affect the model
predictions based on pushover curves using the N2 method. A relative uncertainty
following a zero-mean normal distribution with a standard deviation of 7.5% is linked
to the acceleration demand values given by the ADRS spectra. The base-shear values
are estimated to be affected by a uniform relative uncertainty bounded between −20%
and 20%, which also covers uncertainty related to the N2 method itself, which has been
shown to be inaccurate for high frequency values when the equal displacement rule does
not apply [70]. For the uncertainties related to the definition of DG boundaries the same
values than for identification are used (see Section 3.3.1).

The initial slope of the pushover curves is given by the fundamental frequency that560

is measured after the previous earthquake. This fundamental frequency is estimated
to have a biased uncertainty taken from the interval [−0.10, 0.0] when displacement
demand is predicted using the N2 method. This uncertainty is not related to measurement
uncertainty (which is typically centered on zero). The uncertainty arises from the physics-
based model not capturing the elastic frequency drop (nonlinear elasticity) that structures
exhibit under large-amplitude vibrations [10]. In addition, this frequency drop cannot be
exactly known and varies between buildings. The uncertainty is biased towards negative
values, as buildings always show elastic frequency drops and never an increase in frequency.
In classical assessment approaches, such frequency drops are explained by reducing the
modulus of elasticity of building materials.570

In applications based on real ambient vibrations this uncertainty would be even more
biased towards negative values, as suggested by Michel et al. [67], who found an elastic
frequency drop close to 33%. As the WN tests following shaking sequence 5 involves
much lower lower amplitudes of vibration (see Table 1), the uncertainty interval is thus
estimated to be more biased: [−0.15, 0.5]. All the described uncertainty sources are
combined with the parametric uncertainty of the candidate model set using a Monte-Carlo
combination scheme with 50000 randomly selected samples.

3.4.2. Vulnerability prediction results using updated parameter values

The vulnerability prediction for the building state following shaking event 3 is shown
in Figure 9. The cumulative density function of DGs 2 to 5 as a function of PGA allows580

the decision makers to take actions with enhanced knowledge regarding the safety for
occupancy of the earthquake-damaged building. Compared with the initial vulnerability
predictions (see Figure 7) the damage suffered by the building and the reduction in
parametric uncertainties results in a more pessimistic prediction, mostly for DGs 1 to
3. As can be seen in Figure 8, the reduction in uncertainty is more important for yield
displacement than for ultimate displacement and thus, the prediction for DGs 4 and 5 is
less affected. This is also due to the fact that in this example, a DG 1 has been observed.
In the following shaking event 4 (PGA equal to 3.5 m s−2), a DG2 has been observed.
This observed behavior is predicted with a probability of 65%. In comparison with the
initial vulnerability predictions without measurement interpretation (see Figure 7) the590

vulnerability prediction carries less uncertainty and ambiguity. In addition, the initial
vulnerability curve inaccurately predicts a DG1 with more than 95 percent probability -
showing potentially unsafe predictions when damage is not taken into account and no
structural identification is performed.
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Figure 9: Vulnerability prediction using scaled acceleration-displacement spectra (see Figure ref-
fig4:DisplacementDeltaIdentification) based on candidate models that are identified using data available
after shaking event 3. The arrow indicates the DG 2 observed for the following shaking event 4.

The vulnerability prediction for the building state following shaking event 7 is shown in
Figure 10. In the following shaking event 8 (PGA of 6.4 m s−2), a DG3 has been observed.
This observed behavior is predicted with a probability of 55%. In a similar way, Figure
11 gives the vulnerability prediction for the building state following shaking event 8. The
DG 4 to 5 observed during the subsequent shaking test (PGA of 15 m s−2) is predicted
with a probability of 100%. For the model-based measurement interpretation following600

the shaking events 4 and 5 the DG2 that has been obeserved during the subsequent test
sequence are predicted with respectively 88% and 51%. These prediction results are
obtained using exclusive post-earthquake observations from one building state. For all
five building states used for model-based measurement interpretation, the observed DG
of the following shaking test is predicted with a probability exceeding 50%, which is an
encouraging result.
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Figure 10: Vulnerability prediction using scaled acceleration-displacement spectra (see Figure 5) based
on candidate models identified after shaking event 7. The arrow indicates the DG 3 observed for the
following shaking event 8 (PGA = 6.4 m s−2).
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Figure 11: Vulnerability prediction using scaled acceleration-displacement spectra (see Figure 5) based
on candidate models identified after shaking event 8. The arrow indicates the DG 4-5 observed for the
following shaking event 8 (PGA = 15 m s−2).
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3.5. Iterative identification during earthquake sequences

Earthquakes are rarely limited to a single shaking event, they often consist in a
sequence of several shaking events or at least several aftershocks following a main shock.
Using the candidate models that are identified following an earthquake event, not only610

classic vulnerability curves can be predicted (such as shown in Section 3.4), but also
a prognosis can be made for the frequency drop related to given DGs that could be
observed under subsequent shaking events. Such a prediction is shown in Figure 12 for
the building state following shake sequence 7. In Figure 12 for each DG the probability
distribution with respect to the amplitude of shaking (PGA) and the frequency drop is
shown. With such a representation, approximate knowledge of the PGA of a subsequent
shaking event allows the engineer to derive the most likely DG rapidly assess the utility
of taking new vibration measurements (before taking measurements). Therefore, such
predictions comply with the proposed framework (see Figure 1) as it guides the engineer
in choosing the next iteration in case of aftershocks. As can be observed in Figure 12,620

in case of a earthquake that has a PGA of approximately 6 m s−2 (as is the case for the
following shaking test, represented by a cross in Figure 12), the probability is spread
mostly between 4 Hz and 5 Hz in case of a DG3. Therefore, the utility of taking additional
measurements is limited, given the uncertainty related to fundamental frequencies.
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Figure 12: Prediction of the evolution of the fundamental frequency as a function of the amplitude of
shaking (given in peak ground accelerations) for DGs 2 to 4, based on candidate models. Predictions
are based on the building state after shaking event 7 and thus, the initial frequency corresponds to the
natural frequency measured after shaking event 7 (5.3 Hz). The presence of fundamental frequency values
exceeding the measured initial frequency is explained by accepting frequency values between thresholds
and thus, exceeding the initial frequency (see Section 3.3.1. The cross indicates the observation made
after the subsequent shaking event 8. Such predictions are a useful tool for rapid evaluation following an
aftershock and gives an indication of the usefulness of additional vibration measurements.
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4. Discussion

The proposed methodology of model-based interpretation of scarce post-earthquake
measurements is applied to a shake-table structure, which has several limitations. As
already discussed, the uncertainties from soil-structure interaction and secondary elements
can be neglected in laboratory conditions. However, techniques exist to decouple modal
properties of soil and structures [10]. Also, the earthquake signals are relatively close to630

the selected spectrum, which reduces uncertainties in the displacement-demand prediction.
In this paper, the methodology is applied to a single building specimen to illustrate

applicability. General applicability of the methodology cannot be confirmed. It is
anticipated that for full-scale in-service buildings, mass and stiffness contributions from
non-structural elements are an important uncertainty source. In case of shear-resisting
buildings, such as presented in the case study, the influence of structural elements has a
more prominent influence than in case of moment-resisting reinforced-concrete frames
with masonry infill walls. In cases of significant contribution from non-structural elements
to global stiffness and mass of a building, major non-structural parts need to be modelled
(as nonlinear elements) alongside structural elements, since damage to these elements can640

reduce natural frequencies of a building. If such elements cannot be modelled satisfactorily,
the applicability and performance of the method are likely to be lowered.

The proposed methodology applies to buildings that show reduction in stiffness (cracks)
prior to failure. In addition, the failure modes that are activated need to have a measurable
influence on stiffness and thus, natural frequencies. Failure modes that do not have these
characteristics (such as loss of bond between concrete and reinforcement bars) need to be
investigated using alternative assessment tools.

Although the methodology is primarily intended for regions with low-to-medium
seismic hazard, it can also be applied to regions with higher seismic hazard. As no
information regarding the earthquake and the initial building condition is needed in650

this approach, the influence of previous damage (due to long-term degradation under
successive earthquakes) is expected to have a marginal influence on the identification
results. However, future work is needed to confirm when this is, and is not, true.

The methodology can also be applied using acceleration-displacement response spectra
of true earthquake signals. Further research is needed to evaluate the applicability of the
N2-method techniques to derive the displacement demand from inelastic spectra of real
earthquakes (such as the equal-displacement rule).

5. Conclusions

A framework for model-based measurement interpretation in a post-earthquake context
with scarce measurement information is proposed. This framework applies to shear-660

resisting buildings that show stiffness degradation prior to failure. In absence of baseline
information related to the building and information regarding the signal and amplitude
of the damaging earthquake, a three-dimensional nonlinear model is used to predict
structural vulnerability of an earthquake-damaged shear-resisting concrete or masonry
building. The work presented in this paper leads to the following conclusions:

• The framework allows engineers to reduce parametric uncertainties using scarce
measurement data and perform accurate vulnerability predictions. DGs observed
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during earthquake events following structural identification are predicted with
probabilities of 50% to 100%. Between 13 to 76 percent of the initial model
instances are falsified using observed DG and fundamental post-earthquake frequency.670

For these calculations no baseline information of the initial building state or the
earthquake is needed.

• Error-domain model falsification (EDMF) is a suitable data-interpretation tool to
combine measurement data from qualitative and quantitative sources. Potential dis-
placement ranges that are compatible with measured post-earthquake fundamental
frequencies as well as the observed damage grade are compared in order to discard
inappropriate combinations of structural parameters.

• EDMF supports iterative integration of information and is thus compatible with
decision-making processes in post-earthquake scenarios.
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[10] A. Astorga, P. Guéguen, T. Kashima, Nonlinear elasticity observed in buildings during a long sequence710

of earthquakes, Bulletin of the Seismological Society of America 108 (3A) (2018) 1185–1198.
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l’Algérie 12 (2004) 177–191.

25

Published in Soil Dynamics and Earthquake Engineering



[12] N. Stubbs, A general theory of non-destructive damage detection in structures, in: Structural
Control, Springer, 1987, pp. 694–713.

[13] S. W. Doebling, C. R. Farrar, M. B. Prime, others, A summary review of vibration-based damage
identification methods, Shock and vibration digest 30 (2) (1998) 91–105.

[14] O. Salawu, Detection of structural damage through changes in frequency: a review, Engineering720

structures 19 (9) (1997) 718–723.
[15] E. P. Carden, P. Fanning, Vibration based condition monitoring: a review, Structural Health

Monitoring 3 (4) (2004) 355–377.
[16] K. Worden, J. Dulieu-Barton, An overview of intelligent fault detection in systems and structures,

Structural Health Monitoring 3 (1) (2004) 85–98.
[17] B. Moaveni, X. He, J. P. Conte, J. I. Restrepo, Damage identification study of a seven-story full-scale

building slice tested on the UCSD-NEES shake table, Structural Safety 32 (5) (2010) 347–356.
[18] B. Moaveni, A. Stavridis, G. Lombaert, J. P. Conte, P. B. Shing, Finite-element model updating for

assessment of progressive damage in a 3-story infilled RC frame, Journal of Structural Engineering
139 (10) (2012) 1665–1674.730

[19] D. Foti, V. Gattulli, F. Potenza, Output-Only Identification and Model Updating by Dynamic
Testing in Unfavorable Conditions of a Seismically Damaged Building, Computer-Aided Civil and
Infrastructure Engineering 29 (9) (2014) 659–675.

[20] N. Stubbs, S. Park, C. Sikorsky, S. Choi, A global non-destructive damage assessment methodology
for civil engineering structures, International Journal of Systems Science 31 (11) (2000) 1361–1373.

[21] R. Rodriguez, J. A. Escobar, R. Gomez, Damage detection in instrumented structures without
baseline modal parameters, Engineering Structures 32 (6) (2010) 1715–1722.

[22] A. Nozari, I. Behmanesh, S. Yousefianmoghadam, B. Moaveni, A. Stavridis, Effects of variability
in ambient vibration data on model updating and damage identification of a 10-story building,
Engineering Structures 151 (2017) 540–553.740

[23] I. Behmanesh, B. Moaveni, C. Papadimitriou, Probabilistic damage identification of a designed
9-story building using modal data in the presence of modeling errors, Engineering Structures 131
(2017) 542–552.

[24] G. Hearn, R. B. Testa, Modal analysis for damage detection in structures, Journal of Structural
Engineering 117 (10) (1991) 3042–3063.

[25] M. I. Friswell, Damage identification using inverse methods, Philosophical Transactions of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences 365 (1851) (2007) 393–410.

[26] J. Mottershead, M. Friswell, Model updating in structural dynamics: a survey, Journal of sound and
vibration 167 (2) (1993) 347–375.

[27] I. Behmanesh, B. Moaveni, Probabilistic identification of simulated damage on the Dowling Hall750

footbridge through Bayesian finite element model updating, Structural Control and Health Monitoring
22 (3) (2015) 463–483.

[28] K. Worden, A. Lane, Damage identification using support vector machines, Smart Materials and
Structures 10 (3) (2001) 540.

[29] D. Posenato, F. Lanata, D. Inaudi, I. F. C. Smith, Model-free data interpretation for continuous
monitoring of complex structures, Advanced Engineering Informatics 22 (1) (2008) 135–144.

[30] I. Laory, T. N. Trinh, D. Posenato, I. F. C. Smith, Combined model-free data-interpretation method-
ologies for damage detection during continuous monitoring of structures, Journal of Computing in
Civil Engineering 27 (6) (2013) 657–666.

[31] B. Xu, J. He, S. F. Masri, Data-Based Model-Free Hysteretic Restoring Force and Mass Identification760

for Dynamic Systems, Computer-Aided Civil and Infrastructure Engineering 30 (1) (2015) 2–18.
[32] J. W. van de Lindt, N. Nazari, Y. Li, Quantifying and accounting for aftershock hazard in performance-

based earthquake engineering.
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