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1.  Introduction

The production of droplets is of fundamental importance in 
industrial liquid–liquid contact processes, such as solvent 
extraction, ink jet printing, spray atomization, emulsification 
processes, and polymer extrusion (see [1, 2], to name a few). 
In microfluidic applications with two immiscible fluids, drop-
lets are usually produced through passive techniques, where 
the flow field deforms the interface and promotes interfacial 
instabilities which lead to drop formation (see for instance [3] 
and the references therein).

One of the simplest possible devices consists of a co-axial 
injector, where the dispersed phase is injected in an outer 
carrier fluid which flows in a cylindrical tube. Cramer et al 
[4] carried out experiments on a co-flowing device with a 
needle placed inside a rectangular flow cell. They showed 
that the breakup of the liquid stream into droplets can be clas-
sified in two regimes: dripping, in which droplets pinch off 
near the injector tip, and jetting in which droplets pinch off 
from an extended thread downstream of the needle tip. The 
first regime is observed for small values of the inner phase 
flow rate Q̃1, where the capillary force dominates. As Q̃1 is 
increased (keeping the external phase flow rate Q̃2 constant), 
viscous forces become comparable to the capillary ones and a 

transition to the jetting regime occurs. The transition depends 
also on the two fluids viscosities and on the interfacial tension.

Ten years ago, both Utada et al [5, 6] and Guillot and cow-
orkers [7, 8] studied the stability of viscous jet confined within 
a viscous outer liquid in a microchannel. The latter carried 
out a local stability analysis of the developed flow profile (see 
figure 1(b)), herein also referred to as outlet profile, using a 
lubrication approximation and neglecting inertial terms. They 
interpreted the transition from dripping to jetting as a transition 
from an absolute to a convective instability, a concept widely 
applied in instabilities of shear flows and wakes (see [9] for 
details). In an absolutely unstable system perturbations can 
grow and withstand the mean advection, leading to self-sus-
tained oscillations. In contrast, convectively unstable flows do 
not display intrinsic dynamics and essentially behave as ampli-
fiers: external perturbations are amplified while propagating 
through the system. In co-axial devices an absolutely unstable 
configuration is related to a self sustained production of drop-
lets (dripping), while a convectively unstable flow is expected 
to result in droplets which form at a finite distance downstream 
(jetting), only after the instability could grow sufficiently. The 
authors could identify a critical value of the capillary number 
Ca as a function of the flow parameters such as the fluid viscos-
ities and the interface position (H̃out = HoutR in figure 1(b)). 
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A good agreement was found between the theoretical critical 
value and the capillary number at which transition from drip-
ping to jetting was observed in experiments, confirming that 
the two transitions are related. The lubrication approach failed 
for low values of the jet radius H̃out: in that case the complete 
set of equations must be considered in order to have a correct 
agreement with experiments, as shown in [10, 11].

The local analysis carried out in these studies can be applied 
to parallel or slowly spatially evolving flows. Nonetheless, 
the flow is expected to vary rapidly from a bi-Poiseuille 
velocity profile close to the nozzle to the fully developed one 
as depicted in figure 1(b). In analogy with single phase pipe 
flow, the entry length is expected to scale like the pipe radius 
in the low Reynolds limit. In addition, the nozzle radius H̃in 
can be significantly different from the developed jet radius 
H̃out , leading to an interface that varies along the stream-wise 
direction. To take into account non-parallel effects, a global 
stability analysis must be carried out. The studies using global 
methods have until now been concentrated on wakes behind 
solid obstacles and detached flows (see [12, 13] for reviews), 
but mainly of single phase flows. A global stability analysis 
using the long-wave Eggers and Dupont 1D approximation 
of a free jet (see [2] for a review of its many applications) 
was conducted in [14], who demonstrated the role of the axial 
curvature in the stabilization of a streched flow. Gordillo et al 
[15] studied the droplet production mechanisms of two coaxial 
streams in the so called tip-streaming regime, where the inner 
phase presents a cone-jet structure. They carried out a global 
stability analysis of the jet, by using a very elegant slender-
body approximation. The regime where uniformly sized drop-
lets are produced was found to be associated to a globally 
stable flow, while the global instability of the cone-jet caused 
its unsteady oscillation and thereby produced a polydisperse 
spray. As far as the native 2D equations  are concerned, a 
global stability analysis of the 2D wake of immiscible flows 
has been carried out in [16], who observed a counterintui-
tive destabilizing effect of the surface tension in this planar 
configuration. In the axisymmetric configuration, Cruz-Mazo  
et al [17] have recently conducted a global stability analysis of 
the flow-focussing geometry.

In this study we consider the flow in a co-axial injector 
and we investigate the effect of the entry region by means of 
a global stability analysis. The paper is organized as follows. 

Section 2 describes the geometry, the governing equations and 
the numerical methods which are validated in section  3. In 
section  4 we investigate the effect of fluid viscosities, flow 
rates and surface tension on the spatial evolution of the base 
flow. The stability properties of the base flow are then inves-
tigated by a global stability analysis of the 2D axisymmetric 
flow in section 5, before conclusions are drawn.

2.  Problem description

We consider the flow of two incompressible and immiscible 
fluids in a pipe of radius R. One of the fluids is injected by 
using a nozzle of radius H̃in = HinR as sketched in figure 1. 
The two fluids have the same density ρ, which allows us to 
neglect gravity effects altogether, but different viscosity: 
µ1 for the inner fluid and µ2 for the outer one. The inlet 
velocity distributions are respectively a Hagen–Poiseuille 
profile with flow rate Q̃1 = Q1uDR2 for the inner flow, and 
an annular profile with flow rate Q̃2 = Q2uDR2 for the outer 
flow, where uD is the interface velocity reached by the jet 
once it has evolved downstream into the fully developed 
profile with interface location HoutR (see section  2.1 for 
the explicit expressions of the velocity profiles). In the fol-
lowing, we neglect inertial effects compared to the capillary 
forces, ρu2

D � γ/R, where γ is the surface tension. We have 
also checked a posteriori that the dimensionless eigenfre-
quencies of the unstable modes found in our analysis are of 
order one, implying that unsteady inertial terms scale like 
the convective inertial terms and can be neglected along with 
the latter.

The governing equations for the fluids are the incompress-
ible Stokes equations  in axisymmetric coordinates (r, z), 
made dimensionless with the external pipe radius R, the fully 
developed velocity uD and the outer viscosity µ2. The problem 
is characterized by four dimensionless parameters:

Ca =
µ2uD

γ
, λ =

µ1

µ2
, Q =

Q1

Q2
, Hin,� (1)

where Ca is the capillary number, λ the viscosity ratio, Q is 
the flow rate ratio and Hin the inlet interface location. All the 
flow quantities, such as the flow rates Q1 and Q2 and the devel-
oped interface position Hout, depend on the parameters intro-
duced above (see for instance equation (6)).

fluid 1

fluid 2
Hin

R

uD

z

r

µ2, Q2

µ1, Q1

inlet profile outlet profile

µ2, Q2

Hout

HinR
HoutR

Figure 1.  Flow domain and notations used in the text. On the left a 3D sketch of the core-annular flow, on the right a 2D view of the 
geometry. The dash-dotted line (−·) is the axisymmetric axis, the dotted line (··) is the interface, while the continuous line is the pipe wall 
at r  =  R. The inner fluid, with viscosity µ1 and flow rate Q1, flows in an immiscible fluid with viscosity µ2 and flow rate Q2.
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2.1.  Fully-developed solution and inlet velocity profiles

The fully developed solution is well known as core-annular 
flow solution and can be expressed as follows, given the 
chosen non-dimensionalization

uout
1 (r) = 1 − 1

λ

H2
out − r2

H2
out − 1

for 0 � r � Hout� (2)

uout
2 (r) = 1 − H2

out − r2

H2
out − 1

for Hout � r � 1.� (3)

This piece-wise velocity profile both satisfies continuity of 
velocity (with nondimensional interface velocity 1) and conti-
nuity of shear stress. The resulting flow rates write

Q1 = π

(
H2

out −
H4

out

2λ(H2
out − 1)

)
,� (4)

Q2 =
π(1 − H2

out)

2
,� (5)

Q =
2H2

out

(1 − H2
out)

+
H4

out

λ(1 − H2
out)

2
.� (6)

To ensure conservation of flux, the following velocity pro-
files, ensuring null velocity on r = Hin are imposed at the inlet

uin
1 (r) =

2Q1(H2
in − r2)

πH4
in

for 0 � r � Hin,� (7)

uin
2 (r) =

2Q2(ln(Hin)(r2 − H2
in)/(1 − H2

in) + ln( r
Hin

))

π(ln(Hin)(1 − H2
in)− 2 ln(Hin)− (1 − H2

in))
for Hin � r � 1.

� (8)

2.2.  Non-parallel steady solution

In order to carry out a stability analysis, we first need to com-
pute a steady solution. The base flow is computed assuming an 
axisymmetric solution by solving a single Stokes equation in 
the full domain coupled with the level set function that allows 
one to distinguish the two fluids (see [18, 19] for details on 
the method). The varying fluid properties, like for instance the 
viscosity, can be expressed as function of the level-set func-
tion. The advantage of this method is that we can perform 
numerical simulations with low capillary number Ca without 
having to parametrize the surface curvature (figure 2(a)). The 
governing equations become:

0 = ∇ ·
[
−p̄I+ µ(φ)

(
∇ū + (∇ū)T

)]
+ Ca−1C̄n̄δe(φ),

� (9)

ū · ∇φ = ∇ · (D∇φ),� (10)

∇ · ū = 0,� (11)

where µ(φ) denotes the viscosity, which is a function of the 
level set function φ:

µ(φ) = 1 + (λ− 1)He(φ),� (12)

where He(φ) is a regularized Heaviside function with con-
tinuous second derivative and transition thickness e which 
depends on the mesh size. The capillary effects are modelled 
by the last term on the right-hand side of equation  (9). The 
capillary force is localized at the interface by the regular-
ized Dirac delta function δe (φ) which is concentrated where 
φ = 0. The geometric properties of the interface are easily 
determined from the level-set function. The unit normal vector 
n̄ and the surface curvature C̄  are respectively given by

n̄ =
∇φ

|∇φ|
,� (13)

C̄ = −∇ · n̄.� (14)

An important aspect of the level-set method is the treatment 
of the artificial diffusion D required for numerical stability. In 
our model we used a streamline diffusion (streamline upwind 
Petrow–Galerkin method with tuning parameter δsd = 0.25 
[20]). Finally, Dirichlet boundary conditions are used for ū 
and φ at the inlet and on the channel wall, while symmetry 
conditions are prescribed on the axis. At the outlet, the radial 
velocity is set to zero while the axial velocity and the level-set 
function both satisfy a Neuman condition.

The base flow simulations were carried out with COMSOL 
Multiphysics 4.2a with P2–P1 discretization for the fluid and 
a P3 discretization for φ. The non linear base state is obtained 
with a Newton method where the linear systems are solved 
with the direct solver PARDISO [21].

The base flow computation, based on the level set method, 
is validated against results obtained with two other different 
numerical approaches. The first method used is the boundary 
element method (BEM), a so-called meshless interface 
tracking method where only the boundaries are discretized. 
Details on the method can be found in [22]. In addition, the 
base flow is also obtained by using a volume of fluid (VOF), 
along with a finite volume spatial discretization, implemented 
in the open source code Gerris Flow Solver [23]. Since these 
two methods solve for time-evolutions, they can be only 
compared in the Ca = ∞ limit, in order to avoid Rayleigh–
Plateau like instabilities. Figure 3 shows the interface location 
obtained with the three methods for a flow with the following 
parameters: inner pipe radius Hin = 0.7, viscosity ratio λ = 5, 
flow ratio Q  =  0.388. We can see that the level set method is 
in remarkable agreement with the other two numerical tech-
niques. For the base flow calculation, the level set approach 
is preferred because the Newton method also allows one to 
find steady unstable solutions. As already mentioned, both 
the BEM and the VOF unsteady codes used here are indeed 
prompt to reflect the instability of the liquid jet.

2.3.  Global stability analysis

The stability properties of a steady base-flow can be assessed 
through a linear stability analysis by considering the time 
evolution of a small perturbation sought in term of a normal 
mode. Nonetheless the linearization of the level set form
ulation is particularly challenging due to the presence of the 
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Dirac delta function. In this study, we preferred to use an 
alternative approach for the stability problem formulation. 
The problem is formulated in two different grids (one for each 
fluid) that can interact through the boundary conditions at the 
interface, i.e. continuity of the velocity and stress jump (figure 
2(b) and equations (19) and (18)). The flow variables are the 
velocity Ui = uiez + vier  and the pressure Pi where the index 
i = {1, 2} denotes respectively the inner and the outer flow. In 
addition, the interface Γint is parametrized by a function H(z, t) 
where the associated scalar field F(r, z, t) = r − H(z, t) van-
ishes F(H, z, t) = 0. The nonlinear governing equations  for 
the two fluids are:

0 = ∇ · σi� (15)

∇ · Ui = 0� (16)

∂tF = −Ui∇F� (17)

where σi = −PiI+ µi
(
∇Ui +∇UT

i

)
 is the stress tensor. Note 

that µi here is λ for i  =  1 and 1 for i  =  2. Equation (17) is the 
kinematic equation, defined only on the interface boundary, 
which describes the motion of the interface (see [24]). As pre-
viously in the level-set formulation, Dirichlet boundary con-
ditions are used for Ui  at the inlet and on the channel wall, 
while symmetry conditions are prescribed on the axis. At the 
outlet, the radial velocity is set to zero while the axial velocity 
satisfies a Neuman condition. In addition to these equations, 

continuity of velocity is imposed as well as the stress jump 
accounting for capillary forces at the interface

[[Ui]]r=H(z,t) = 0,� (18)

[[σin]]r=H(z,t) =
C

Ca
n,� (19)

where the notation [[· · · ]] denotes the jump from the inner to the 
outer flow. The unit vector n normal to the interface pointing 
towards the outer fluid, the tangential vector t and the mean 
curvature C can be written as:

n =
(1,−∂zH)(

1 + (∂zH)
2
)1/2 ,

� (20)

t =
(∂zH, 1)(

1 + (∂zH)
2
)1/2 ,

� (21)

C = −∇ · n.� (22)

In order to carry out a global stability analysis we divide 
the flow variables Q = (U, P, H) into the steady state 
q̄i = (ūi, p̄i, h̄) and one small amplitude time-varying pertur-
bation q̂i = (ûi, p̂i, ĥ):

Ui(r, z, t) = ūi(r, z) + εûi(r, z) exp(−iωt)

Pi(r, z, t) = p̄i(r, z) + εp̂i(r, z) exp(−iωt)

H(z, t) = h̄(z) + εĥ(z) exp(−iωt)
� (23)

where ω ∈ C is the complex mode frequency and ε � 1. The 
complex eigenfrequency is decomposed into its real (oscil-
lating) and imaginary (growing or decaying) part ω = ωr + iωi, 
such that a mode is unstable if ωi > 0.

By injecting the flow decomposition into the governing 
equations and linearizing, we obtain a set of equations which 
describe the linear evolution of the perturbations. Note that 
the base flow and the linear stability computations are carried 
out through two different methods (see figure 2 for a sketch 
of the two different approaches), thus some preliminary steps 
need to be performed to do the stability analysis.

Level set φ = 0

Single domain

µ, ū, p̄, φ

(a)

Domain 1

continuity

stress

Domain 2µ2, û2, p̂2

Ω1

Ω2

µ1, û1, p̂1, ĥ

Γint

(b)

Figure 2.  Base flow (a): the two fluid are computed in the same fixed grid by implementing the Stokes equation of a single velocity field in 
the full domain and the two layers are distinguished by a presence of the level-set function. Perturbed flow (b): the two fluid are computed 
in two different grid by implementing the Stokes equations of two velocity fields with the addition of the linearized boundary conditions at 
the interface. (a) Base flow. (b) Global stability.

Figure 3.  Comparison of the interface position found with the 
level-set method (red full line), boundary element method  
(∗ marker) and VOF description (o marker) for a co-axial flow. 
Simulations done for Hin = 0.7, Q1  =  0.512, Q2  =  1.319, 
Q  =  0.388, λ = 5 and Ca = ∞. The fully developed interface 
location is Hout = 0.4.
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The computational domains are built using the level set 
interface position. Nonetheless, the obtained interface is char-
acterized by small numerical oscillation caused by the inter-
polation of the isoline φ = 0. Therefore a fitting procedure 
was devised where an optimal fitting spline is computed by 
minimising an error indicator. Once the interface is discre-
tized, the base flow can be easily computed in the two sepa-
rated domains and the error due to the interface spline can be 

computed as 
∫
Γint

ū · n̄dΓ/
∫
Γint

dΓ. The baseflow in the sepa-
rated domains is computed by using a finite-element method, 
with cubic elements P3 for the velocities and quadratic ele-
ments P2 for the pressure, which is an higher order version of 
the standard Taylor-Hood elements (see [25] for details).

The governing equations for the linear evolution of the per-
turbations can be written as:

0 = ∇ · σ̂i� (24)

∇ · ûi = 0� (25)

−iωĥ = −ū1
∂ĥ
∂z

−
(

û1 + ĥ
∂ū1

∂r

)
∂h̄
∂z

+ v̂1 + ĥ
∂v̄1

∂r
� (26)

where σ̂i = −p̂iI+ µi
(
∇ûi + (∇ûi)

T
)
 is the perturbed 

viscous stress tensor. Equation  (26) is the linearized kine-
matic equation. Besides the no-slip conditions at the 
wall (û2|r=R = v̂2|r=R = 0) and the symmetry condition 
(∂rû1|r=0 = v̂1|r=0 = 0), the flow has to satisfy also the 
interface boundary conditions at the unperturbed interface 
r = h̄(z). We impose on the domain 2 the continuity of the 
velocity

û1 + ĥ∂rū1 = û2 + ĥ∂ru2� (27)

while in domain 1 we impose the tangential and normal stress 
conditions

[[
tT
σin̂ + tT

σ̂in + t̂Tσin̂ + ĥnT ∂σi

∂r
n

]]

r=h̄(z)

= 0� (28)

[[
nT σ̂in + 2n̂Tσin̄ + ĥnT ∂σi

∂r
n

]]

r=h̄(z)

= Ca−1(nT Ĉn + 2n̂TCn)

� (29)
where we recall that the notation [[· · · ]] denotes the jump from 
the inner to the outer flow. The geometric properties of the per-
turbed interface are obtained by introducing the flow decom-
position (23) into the relations (20)–(22) and linearising. In 
particular, the perturbed normal vector n̂ and curvature per-
turbation Ĉ are written as:

n̂ = −
∂zĥ

(
∂zh̄, 1

)
(

1 +
(
∂zh̄

)2
)3/2 ,� (30)

Ĉ =− ĥ

h̄2
(
(∂zh̄)2 + 1

)1/2 − 1(
(∂zh̄)2 + 1

)3/2 ∂zzĥ

+

(
3∂zzh̄∂zh̄(

(∂zh̄)2 + 1
)5/2 − ∂zh̄

h̄
(
(∂zh̄)2 + 1

)3/2

)
∂zĥ.

� (31)

At the inlet boundary we impose an homogeneous Dirichlet 
conditions on the radial velocity v̂ and interface displacement 
ĥ, while we impose a Neumann condition on the streamwise 
velocity û. Finally at the outlet we add a sponge region where 
the velocities and the height function are forced smoothly 
towards zero (see details in appendix A).

Figure 4.  Structure of matrix A for the global stability analysis.
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Equations (24)–(26), together with the boundary conditions 
are discretized in space similarly to the base-flow (P3–P2 ele-
ments). The interface perturbation ĥ has been discretized with 
a P2 element defined on the interface boundary. The meshes 
as well as the discrete matrices resulting from Galerkin finite-
element method are generated with the software FreeFem++ 
[26], leading to a generalized eigenvalue problem

Ax = −iωBx,� (32)

where x is a vector containing all the discrete unknowns of the 
problem, i.e. velocities and pressure for the two fluids and the 
interface perturbation ĥ. The matrix A contains the discretiza-
tion of the differential operators and includes the boundary 
conditions. To build this matrix, the following steps have 
to be performed: (i) we build the matrices Ai  for the sepa-
rated domains, (ii) the kinematic equation is discretized, (iii) 
we build the block off-diagonal matrices and (iv) finally we 
assemble the four matrices into the global one. A sketch of the 
matrices’ structure of the matrices is shown in figure 4. Matrix 
A1 contains the discretization of the Stokes equations for the 
inner fluid with a stress condition on the interface, while 
matrix A2 contains the discretization of the Stokes equa-
tions for the outer fluid, where we have a Dirichlet boundary 
condition for the interface velocity. The two sub-problems are 
coupled together by imposing at the discrete level the stress 
exerted by fluid 2 on fluid 1 with an upper-diagonal matrix and 
the continuity of velocity at the interface as a lower-diagonal 
matrix. The matrix B is in principle equal to a mass matrix on 
the degree of freedom related to the interface position and null 
anywhere else. Nonetheless, for numerical stability reasons, 
at the left-hand side of the perturbed Stokes equation  (24), 
a small term −iεωûi is added. The value ε = 10−5 has been 
chosen in such way that the first four digits of the most 
unstable eigenvalue did not change with the addition of this 
term. The eigenvalue problem (32) is solved with a Krylov–
Shur method along with a shift-invert strategy by using the 
numerical library SLEPc ([27]).

3.  Validation: stability of a parallel flow

The global stability framework is now validated for a parallel 
flow with a fully-developed velocity profile, taking as com-
putational domain of finite length L. Therefore the interface 
height is constant (h̄(z) = Hin = Hout), the base flow velocity 
field depends only on the r-coordinate ū = (ū(r), 0) and the 
pressure field p̄ respects both the pressure jump at the inter-
face p̄1 − p̄2 = Ca−1C̄ = Ca−1H−1

out  and the pressure gradient 
∂zp̄ = −4(1 − H2

out). The parallel flow case allows us to 
validate the global stability tools against the results of a local 
stability analysis. As reference we consider the lubricated local 
analysis performed by [7] and the exact local analysis per-
formed by [10] for the creeping flow limit. Note that in [10], 
the flattening contribution coming from the disturbed inter-
face position in velocity and stress continuity was forgotten. 
We have therefore implemented a Chebyshev discretization of 

these linearized 1D equations as a correction to the dispersion 
relation in [10]. This numerical code also easily allowed us to 
determine the saddle point of dispersion relation. This local 
stability code is validated comparing the green crosses and 
the red points in figure 5(a), where the imaginary (growing 
or decaying) part ωi  of the obtained eigenvalues is plotted as 
a function of its real (oscillating) part ωr , such that a mode is 
unstable if ωi > 0.

Figure 5 shows the stability for a parallel flow case with 
interface height Hout = 0.5, viscosity ratio λ = 1, Capillary 
number Ca = 1/20 and L = 10π. As a first validation we 
impose periodic boundary conditions at the right and left 
boundaries. As expected the global analysis spectrum recovers 
the local analysis dispersion relation. In figure  5(a) we see 
that the global analysis (red dots) is in excellent agreement 
with the corrected analysis in [10] (green crosses) while the 
lubrication hypothesis in [7] (black triangles) yields a slight 
overestimation of the growth rate.

Figure 5.  Comparison of the global and local stability results for a 
parallel flow case with Hout = 0.5, λ = 1, Ca = 1/20 and L = 10π. 
At inlet and outlet we impose different boundary conditions: (a) 
periodic (b) Dirichlet v̂ = 0 and ĥ = 0. The white triangles (�) are 
the solution of the global lubrication stability analysis inspired by 
the dispersion relation in [7] (see appendix B), respectively with 
periodic boundary conditions (a), and Dirichlet conditions (b). 
The green crosses (   ) are the exact solutions of the local analysis 
performed by [10] (with additional flattening terms missing in his 
derivation) computed from our Chebyshev code. The red dots ( ) 
are the solution of the global stability analysis, while the filled 
black triangle (�) in figure (b) is the saddle point of the dispersion 
relation in [7] and the star ( ) in (b) the saddle point of the corrected 
dispersion relation in [10] including the missing flattening terms. (a) 
Periodic boundary conditions. (b) Dirichlet boundary conditions.
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We then consider a finite computational domain, where 
we impose the Dirichlet boundary conditions v̂ = ĥ = 0 
both at the inlet and the outlet. The global modes for an 
z-independent system, such as the one studied in this sec-
tion, are known to be reminiscent of the absolute frequency 
of the system. In the limit of an infinite streamwise exten-
sion of the domain (L → ∞), a continuous branch of the 
spectrum emanates from each saddle point ω0, as explained 
in [28, 29]. In contrast, when we consider a computational 
box of finite size a discrete spectrum of global modes which 
satisfy the boundary conditions is expected. In figure 5(b) 

we see that the absolute mode does indeed mark a point 
from which the sequence of global modes emerges. The 
global modes behaviour is also confirmed in the lubrica-
tion hypothesis case (black triangles), where we perform 
a global analysis by using a simplified model derived by 
taking advantage of the polynomial dispersion relation (see 
appendix B for details) pertaining when this approximation 
is enforced. Figure 5 shows that in the lubrication hypoth-
esis, both the frequency and growth rate of the global modes 
are overestimated, for both sets of streamwise boundary 
conditions.

Figure 6.  Axial ū ((a), (c) and (e)) and radial v̄ ((b), (d) and (f)) velocity profiles for different sections along z = {0, 0.05, 0.5, 1}. The 
parameters Q2  =  1.18 and Ca = 1 are kept constant, while Hin is varied from top to bottom from 0.4 ((a) and (b)) via 0.5 ((c) and (d)) to 0.6 
((e) and (f)). Colors represent different λ− Q combinations : λ = 1/5; Q1  =  1.44 (purple dashed line), λ = 1; Q1  =  0.916 (red line) and 
λ = 5; Q1  =  0.812 (green dotted line).

Figure 7.  Streamwise velocity ū (top) and radial velocity v̄ for a co-axial flow with Q1  =  1.44, Q2  =  1.18, Hin = 0.6, λ = 1/5 and Ca = 1.
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4.  Base flow of co-axial streams

Given the very large parameter space describing the possible 
base flows, we concentrate at present on a few sets of inter-
esting parameters. The base flow is obtained as described in 
section 2.2. We use a rectangular computation domain with 
radius 1 and length L  =  10. The domain is long enough to 
allow the flow to reach the fully developed state. The inlet 
profile, defined in (7)–(8) assumed parabolic in the inner 
layer and parabolic–logarithmic in the outer layer, introduces 
a region of local deficit which gradually recedes towards a 
double-parabolic channel flow profile developed downstream.

The base flow changes rapidly as it evolves downstream. 
In figure 6 we plot the streamwise and radial velocity for dif-
ferent streamwise stations. In the region close to the nozzle 
we notice that a region with negative radial velocity appears, 

Figure 8.  Influence of the viscosity ratio on the interface displacement. We impose at the inlet Q1  =  0.2029, Q2  =  1.4726 and Hin = 0.4 
and we determine the interface height for different viscosity ratio λ = {0.1, 1, 10}. When the outer flow is more viscous λ < 0.1 (green 
dotted line) we can observe the interface height h(x) is not monotonic, and it reaches the fully developed state faster than when the inner 
flow is more viscous λ = 10 (black dashed line).

Figure 9.  Influence of the surface tension on the base flow; Hin = 0.5, Hout = 0.5 λ = 5.0, Q1  =  0.812 and Q2  =  1.18. The red lines 
correspond to the case without surface tension Ca = ∞, while the black dashed lines were obtained with Ca = 1. In (a), the interface is 
represented with a zoom on the entry region. In (b), the pressure profiles are given at different streamwise stations: z  =  0.05 (b1), z  =  0.5 
(b2) and z  =  1 (b3).

Figure 10.  Eigenvalues for Hin = 0.5, Hout = 0.4, λ = 5 and 
decreasing value of Ca. Each combination of color and marker is 
associated with a different value of Ca. The filled markers are the 
most unstable eigenvalue for that capillary number.
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which quickly diminishes, as confirmed by the velocity maps 
of figure  7. The fully-developed piecewise Poiseuille flow 
develops in about a radius. The necessary space to obtain a 
completely developed flow does not seem to depend on the 
initial confinement Hin of the co-axial flow.

The base flow and the interface location depend on the 
Capillary number Ca, the viscosity ratio λ = µ1/µ2, flow rate 
ratio Q = Q1/Q2 and aspect ratio Hin. Figure  8 underlines 
how the streamwise velocity in the entry region and the height 
of the interface depends on the viscosity ratio. Changing 
the viscosity ratio, the monotonicity of the interface posi-
tion changes. If the outer flow is more viscous (λ < 1) the 
interface reaches the fully developed state always in a non-
monotonous way. Moreover, for the same imposed inlet flow 
rate Q1 and Q2, if λ < 1 the flow evolves faster, reaching the 
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Figure 11.  Real and imaginary part of the eigenfunctions of unstable mode for Hin = 0.5, Hout = 0.4, λ = 5 and Ca = 1/30. Comparison 
unperturbed interface (black line) and perturbed interface (white line). The color map is scaled with the maximum real amplitude of ĥ of the 
eigenfunction.

Figure 12.  (a) Absolute/convective transition curves from the modified dispersion relation of [10] for λ = {1/5, 1, 5}. (b)–(d) phase 
diagram of the instability in the (Hout, Ca) plane for a fixed value of Hin = 0.5 and different value of viscosity ratio λ = {1/5, 1, 5}. The 
black dashed lines represent the local lubrication analysis [7], the red lines are the absolute/convective transition curves from the dispersion 
relation of [10] with the addition of the flattening terms. The black points are the results of our global analysis. Above the curves, the 
system is stable, while below it is unstable.

Figure 13.  Neutral capillary number as a function of the nozzle 
diameter Hin for a fixed value of the degree of confinement of the 
fully developed flow Hout = 0.5 and viscosity ratio λ = 1/5. The red 
line is the theoretical line separating the dripping region (above) and 
the jetting region (below) predicted by the local analysis ([10]). The 
black points are the global modes with their respective error bars 
obtained by changing the interpolation procedure of section 2.3.
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fully developed state earlier than when the inner flow is more 
viscous.

Surprisingly, the surface tension plays a minor role on 
the base flow. Increasing the surface tension, for the same 
operating parameters, the interface position does not change. 
As consequence also, the velocity field is not effected by an 
increase of surface tension. Minor differences can be noticed 
only when the inner flow is more viscous than the outer (see 
figure  9). Nonetheless, the pressure jump, according to the 
Laplace law, increases if the surface tension increases.

5.  Stability of the spatially developing flow

We now investigate the stability of the steady spatially devel-
oping flow described in the previous section.

Figure 10 shows how the surface tension affects the sta-
bility of the flow. We consider a co-axial flow with Hin = 0.5, 
Hout = 0.4, λ = 5 and we decrease the Capillary number. In 
the (ωr,ωi)-plane we plot the eigenvalues obtained by the 
global stability described in section 2.3. The frequency and 
growth-rate of the eigenvalues are given by the real and com-
plex part of ω = ωr + iωi respectively. We observe a bifur-
cation from stable (ωi < 0) to unstable (ωi > 0) between 
Ca = 1/21 and Ca = 1/30. The growth rate increases if the 
Capillary number decreases. If Ca < 1/35 there are several 
unstable modes, in analogy with the general picture shown 

in section 3. The spatial shape of the unstable mode can be 
seen in figure 11. The streamwise and radial components of 
the oscillation û, v̂ and the perturbed interface are amplified 
downstream.

As revealed in figure 12, we now track the neutral curve 
in the (Hout, Ca)-plane, where the transition separating the 
unstable region (below the points) and the stable region 
(above the points) are reported, for a fixed inlet nozzle posi-
tion Hin = 0.5 and varying viscosity ratios λ = {1/5, 1, 5}. In 
the (Hout, Ca)-plane we can also plot the absolute/convective 
unstable transition obtained from the local stability analysis 
of the fully developed flow for the same operating parameters. 
Convective instabilities, which are convected downstream 
while growing in amplitude, are in this setting expected to be 
associated to globally stable flows, while absolute instabili-
ties, which grow and travel backwards are likely to correspond 
to globally unstable flows. More specifically, we report in fig-
ures 12(b)–(d) the A/C transition curves found by [7] (black 
dashed lines) and the modified dispersion relation in [10] (red 
lines). Observe that, in all cases that we have analyzed, the 
global stability predicts a more stable flow than the lubrication 
and Stokes equations-based local analyses. In particular we 
notice that for small value of the degree of confinement Hout 
the Stokes parallel flow analysis and the global stability have 
the same qualitative and qualitative behaviour, while the lubri-
cation local stability fails in the prediction of the convective/
absolute transition. In contrast the lubrication and exact local 

Figure 14.  Dynamic behavior in (Q̃1, Q̃2) plane and stable/unstable transition. The black dashed lines correspond to the lubrication co-
axial analysis performed by Guillot et al [7]. The red line represent the no-inertial analytic solution found by Herrada et al [10] with the 
addition of the flattening terms in the analysis. The black points are the results of our global stability analysis. The flow rates are expressed 
in (μl h-1), the outer radius is R  =  275 μm while the outer viscosity µ2 = 0.235 Pa s. The nozzle radius is Hin = 0.5 for all transition 
illustrated.
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solutions slightly overestimate the global results when the 
confinement ratio is large (Hout ∼ 0.7) and the flow becomes 
more sensitive to the presence of the wall. The viscosity ratio 
has a large impact on the stability properties of the flow. In 
particular, the flow is more and more stable as the viscosity 
ratio λ decreases. For reference, the absolute/convective trans
ition curves from the modified dispersion relation in [10] have 
been reported in figure 12(a) for λ = {1/5, 1, 5}.

We now let the nozzle radius Hin vary. From the different 
base flow behaviour depicted in section 4, a significant effect 
on the global stability could be expected. Surprisingly, for a 
fixed Hout the critical capillary number has been found almost 
insensitive to the nozzle dimension, as shown in figure  13. 
The error bars in the figure are computed by keeping fixed the 
mesh resolution and by just changing the interface interpola-
tion spline. We estimate an average error of about 10% due 
to the interface interpolation procedure. We can see that the 
fitting error is comparable to the influence of the nozzle posi-
tion. Based on these considerations, we kept fixed Hin = 0.5 
in the subsequent part of the work.

Following the guidelines in [10] and [7], we represent the 
stability results also in the (Q̃1, Q̃2) operational plane, for 
values of the parameters common in microfluidic devices 
(see figure 14). This representation is particularly useful for 
comparison with experimental data, since in experiments 
the flow is modified by changing the flow rates. At fixed Q̃2, 
increasing Q̃1 increases the jet velocity allowing the instability 
to have more convection, and this behaviour promotes con-
tinuous jets. As observed above, for small value of the outer 
flow rate Q̃2, that correspond to large value of Hout, the local 
stability analysis slightly overestimates the global results. We 
can conclude that the dripping to jetting transition is a pro-
cess mostly dominated by the intrinsic properties of the fully 
developed streams, and that the development of the flow in 
the entry region has a small stabilizing effect on the flow. In 
particular, the role of the entry region seems to be more rel-
evant for low values of the external flow rate. It is noteworthy 
that also available experimental data (see [10, 11]) shows that 
in this regime the flow is more stable compared to the local 
analysis predictions.

6.  Conclusion

In this study, we have analysed the influence of the entry 
region on the dripping to jetting transition in a coflowing 
streams device.

We have first investigated the effect of several parameters 
such as the flow rate ratio Q, the viscosity ratio λ and the 
capillary number Ca on the flow behaviour of the steady con-
tinuous jets solution. In addition, we characterized the effect 
of geometry by varying the nozzle radius Hin, showing that 
the flow varies rapidly (in about one radius) from the nozzle 
velocity profile to the parallel fully developed flow.

In the second part, we have performed a global stability 
analysis of the spatially evolving two phase flow. For high 
external flow rate value, the global stability analysis almost 
recovers the same results of the exact local analysis. This 

implies that for low degrees of confinement, the dripping to 
jetting transition is a process dominated by the intrinsic prop-
erties of the developed streams and not by the complex flow 
evolution in the entry region. In contrast, for small external 
flow rate, or high degree of confinement, the flow is more sen-
sitive to the presence of the wall and becomes slightly more 
stable than predicted by the local theory. We also showed that 
the dripping to jetting transition is not affected by the geo-
metrical details such as the nozzle dimension.

Despite an improved accuracy ensured by the global char-
acter of our analysis with respect to a local spatio-temporal 
analysis of the fully developed profile, the main limitation of 
the present study remains its linearity. Whether the nonlinear 
development of the instability and the subsequent pinch-off in 
the near-nozzle region have an importance on the frequency 
of droplet production remains unaddressed, calling for future 
non-linear analyses. Whether such a nonlinear analysis can 
also account for the failure of the local absolute/convective 
frequency prediction [30] in the dripping regime, remains an 
open issue.

Another natural perspective consists in taking account 
inertia both in the base flow computation as well as in the 
global stability analysis. Inertia is likely to elongate the entry 
length, thereby possibly reinforcing the influence of the inlet 
condition and nozzle geometry. Finally, the influence of sur-
face rheology and soluto-capillary effects on the base flow 
development and its instability deserves also to be considered.
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Appendix A.  Sponge region at the outlet of the 
perturbed computational domain

The sponge region extends from Lbf = L + 2.5 to Lgs = L + 5 
and in this region we impose a forcing both in the momentum 
and kinematic equation:

ξf =
αf

1 + exp
(

1
z′−1 + 1

z′

)
� (A.1)

where z′ = z−Lbf
Lgs−Lbf

, α = 50 is the force strength parameter and 
f indicates respectively {u, h}.

Appendix B. Toy model for the global stability  
analysis of coaxial jets under the lubrication 
hypothesis

Under the lubrication hypothesis, the dispersion relation for 
the coaxial jets has a polynomial form [7]:

ω(k) = αk + iβ
(
k2 − k4h2)� (B.1)
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where α and β are functions of the flow parameters (Ca, λ and 
Q) and h is the interface position.

In such cases, it is possible to recover the underlying PDE 
from the dispersion relation. Let us consider a general plane 
wave solution φ(z, t) = φ0 exp(ikz − iωt), (note that φ does 
not refer here to the level set function, but rather to an arbi-
trary function) where the differential operators become:

∂

∂t
= −iω� (B.2)

∂n

∂zn = (ik)n.� (B.3)

By manipulating equations  (B.1), (B.2) and (B.3) we 
obtain:

∂φ

∂t
= −β

(
∂2φ

∂z2 + h2 ∂
4φ

∂z4

)
− α

∂φ

∂z
.� (B.4)

This 1D problem can be used to carry out a global stability 
analysis and to investigate the effect of the streamwise con-
finement. In the spirit of a global analysis, let us consider a 

solution in the following form φ(z, t) = ˆφ(z) exp(−iωt), 
where only the time dependence is sought in normal mode 
form. We obtain the following eigenvalue problem:

−iωBφ̂ = A(α,β)φ̂� (B.5)

where A = −β
(

∂2

∂z2 + h2 ∂4

∂z4

)
− α ∂

∂z.

Problem (B.5) is numerically solved with a Chebyshev 
spectral collocation method in a physical domain ranging 
from 0 � z � L, with inlet and outlet homogeneous Dirichlet 
boundary conditions φ(0) = φ(L) = 0.

As already noted by [29], there is an upper limitation on the 
lenght L of the computational box. In figure B1 we can see that 
when L is larger than 20π the global spectrum is not aligned 
on a single branch, but instead the eigenvalues arrange them-
selves on a bell shaped curve which passes above the location 
of the true global modes. Heaton et al [29] suggest that this 

phemonenon is caused by a combination of the non-normality 
of the linear operator and issues of numerical precision. Since 
the global mode is expected to grows exponentially in the 
axial direction, if the computational box is too large the global 
mode can not be resolved accurately. Heaton et al [29] pro-
posed that |k0i|L  <  c where c is a constant that depends on the 
considered case.
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