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Abstract
Peatlands are ecosystems for which carbon budget relies strongly on the meteorological and hydrological conditions. Here, using
a manipulative field experiment, we measured ecosystem respiration (RECO) over two years (2013–2014) in a poor fen in Poland
to estimate the carbon emission in a changing climate. The experiment consisted of warming (open-top chambers - OTC) and
water table manipulation. The application of OTC increased the mean values of daily maximum air temperature by approx. 1.1–
1.8 °C. Warming or the increased water table depth separately resulted in an increase in ecosystem respiration by approx.
0.1 μmol CO2 m

−2 s−1 and 0.3 μmol CO2 m
−2 s−1, respectively. However, our results show also the additive nature of warming

and water table drawdown impact on daily RECO during the studied years (2013–0.80 μmol CO2 m
−2 s−1 and 2014–1.16 μmol

CO2 m
−2 s−1). With the natural dry period event which occurred in 2014, the seasonal RECO increased by approx. 0.2 μmol CO2

m−2 s−1 as compared to the previous year. Projected global warming will therefore significantly enhance C loss from poor fens in
this region of Europe.
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Introduction

Peatlands play an important role in the global carbon cy-
cle, despite the fact that they cover less than 3% of the
global land area. With an estimated 270–547 Pg carbon
(C) stored as peat (Clymo et al. 1998; Turunen et al. 2002;
Yu et al. 2010) – i.e. 50–500 kg C m−2 – peatland ecosys-
tems comprise over one-third of the global soil carbon
pool (Gorham 1991; Lappalainen 1996; Rydin and
Jeglum 2013). Peatlands are largely located in the northern
hemisphere, almost 80% can be found in the boreal and
subarctic zones (Smith et al. 2007; Yu et al. 2010), 10% in
the tropics and Southeast Asia, and 10% in the temperate
zone (Lappalainen 1996; Frolking et al. 2011).

Peatlands have for long been considered as economically
useful sources of carbon (Kirkinen et al. 2007, 2010), but
recently the attention shifted towards their conservation due
to their role in the global carbon cycle, affecting global climate
(Frolking et al. 2011). Their functioning as carbon sink, how-
ever, relies both on temperature and hydrology (Fekete et al.
2010), which in turn affects the groundwater table, and indeed
these are the main drivers controlling C fluxes in peatland
ecosystems (Gunnarsson 2005; Limpens et al. 2008; Lund
et al. 2010; Waddington et al. 2015). However, various distur-
bances affect the C sink potential, most often implying chang-
es in soil microbial activities (Strack and Waddington 2007;
Dorrepaal et al. 2009; Dieleman et al. 2015; Robroek et al.
2015; Pullens et al. 2016) or plant community composition
(Dorrepaal et al. 2003; Buttler et al. 2015).

Increase global warming is an important driver of
change in the carbon balance of these ecosystems (Alm
et al. 1999). Over the period of 1906–2005, global air
temperatures increased by about 0.7 °C (IPCC Working
Group 1 et al. 2013). Notably, the last decade of that pe-
riod was the warmest on record (IPCC Working Group 1
et al. 2013). Further, general climate models predict tem-
perature to increase by additional 2–8 °C, depending on
the region, by the end of the twenty-first century
(Christensen et al. 2007). As reported by NASA and
NOAA, 2016 was the warmest year on record globally
(Northon 2017). Additionally, IPCC predicts patterns in
precipitation to change, with more intensive (extreme)
rainfall periods that alternate periods of drought (IPCC
Working Group 1 et al. 2013). Together, these changes
in climate conditions will alter the hydrological conditions
in peatlands and will modify processes related to the car-
bon cycle. Understanding the importance of biotic and
abiotic controls on carbon fluxes from peatlands is, there-
fore, crucial to infer the role of climate change on the
feedback of carbon to the atmosphere (Turetsky et al.
2002; Limpens et al. 2008). Additionally, water table
drawdown, and long periods without rain, can thus signif-
icantly impact the structure of the microbial community

(Jaatinen et al. 2007) and the functioning of peatlands
(Weltzin et al. 2003; Bragazza 2008), which then can
(temporarily) shift from C sinks to C sources (Lafleur
et al. 2005; Lund et al. 2012).

The potential of northern peatlands to accumulate carbon
(C) is largely determined by the balance between carbon up-
take by its vegetation (i.e. through photosynthesis) and carbon
release from the peat soil (Alm et al. 1997). Increase global
warming, such as the increased temperature and resulting wa-
ter table drawdown, may imbalance peatland carbon cycles,
resulting in a large feedback to the global climate. Results
from a recent gradient study have identified reduced peat moss
production and increased ecosystem respiration as the main
cause of the reduced C uptake by alpine peatlands subjected to
the increased temperature and long periods without rain
(Bragazza et al. 2016). The authors noted that the increased
uptake by the vascular plant community could not compensate
for the negative effects of the ecosystem respiration.

Ecosystem respiration (RECO) is usually defined as the
sum of autotrophic and heterotrophic respiration (Giardina
and Ryan 2000; Valentini et al. 2000). Dorrepaal et al.
(2009) have shown that in peat soils, 70% of RECO is
accounted by heterotrophic respiration (i.e. decomposition).
Therefore, RECO seems mainly driven by abiotic conditions,
such as soil moisture and temperature (Komulainen et al.
1999; Dorrepaal et al. 2009). However, the relative impor-
tance of temperature and hydrological conditions for RECO is
unclear and seems to depend on their relative effect on au-
totrophic and heterotrophic pathways, which might be
decoupled (Lafleur et al. 2005). Remarkably, the effect of
vegetation on heterotrophic respiration seems to be larger
than the effect of temperature (Ward et al. 2015) or water
table (Turetsky et al. 2008), highlighting the importance of
these biotic controls on peatland carbon fluxes.

Using an innovative approach of water table manipula-
tion, combined with the use of open-top chambers
(OTC’s) to increase air and peat temperature, we studied
the effect of the water table drawdown and increased tem-
perature on the RECO. By experimentally raising or elevat-
ing 1 × 1 m ‘intact soil monoliths’ within their surrounding
soil, thus maintaining a hydrological connection with the
surrounding peat matrix, we were able to manipulate the
water table, without any concomitant change in the plant
and microbial community (as generally seen in micro-
topographical gradient studies) (Lamentowicz et al.
2016). We hypothesized that the increased temperature
and decreased water table level would result in the in-
creased loss of carbon by respiration, and that the effects
of both are additive. Furthermore, we hypothesized that
seasonality in respiration rates should follow the patterns
in monthly temperature, yet that these relationships are
expected to be higher in dry conditions as compared to
wet conditions.
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Materials and Methods

Study Site

The experimental site, Linje mire (53°11′15^N, 18°18′34″E),
is located in northern Poland (Fig. 1), at 91 m a.s.l. The site
(approx. 6 ha) is classified as a poor fen with ombrotrophic
vegetation in the central part (Kucharski and Kloss 2005). It
was drained in the past (dysfunctional drainage ditches are still
visible on the peatland surface - Boński and Bońska 2004), but
it has been under protection since 1901. The climate is mild
oceanic to mild continental (Kottek et al. 2006); mean annual
air temperature is approx. 8.0–8.5 °C, and annual precipitation
varies between 500 and 550 mm (1971–2000) (Lorenc 2005;
Hałas et al. 2008).

The dominant plants species in the experimental area is
Sphagnum fallax (H. Klinggr.). The vascular plant community
is dominated by the tussock cottongrass (Eriophorum
vaginatum L.) and the common sedge (Carex rostrata
Stokes), which are accompanied by the common cranberry
(Oxycoccus palustris L.), the pine (Pinus sylvestris L.) and
the marsh tea (Rhododendron tomentosum Stokes). Endemic
to the site, and a glacial relict, is the dwarf birch (Betula nana
L.) (Kloss 2005; Kloss and Żurek 2005).

Within the experimental area, we selected 28 1 × 1 m plots
with homogeneous plant species assemblage and comparable
water table depths. A boardwalk was constructed to prevent
damages caused by trampling during the measurements and
maintenance works. Half of the plots were covered with open-
top chambers (OTCs) that served to increase air temperature.
The remaining half of the plots served as ambient controls

(CTL). Within both treatments (OTC and CTL), in three plots
water table depth was increased (dry – D), whilst in the other
three plots water table depth was decreased (wet – W).
Further, three plots were assigned as control treatments, and
as such water table remained non-manipulated. For simplicity,
these plots are hereafter referred to as ‘cut’ water table plots
(cut – C). The wet plots were constructed by cutting and re-
moving three 50 × 50 × 30 (l × w × h) blocks of peat including
vegetation. We then removed 10 cm of the underlying peat,
after which the earlier removed blocks were carefully re-
placed. This resulted in water table depths under the peat sur-
face in the plots to be decreased by 10 cm, without losing the
hydrological connection with the surrounding peat matrix.
This whole procedure was repeated for the dry plots, but in
this case the 10 cm of peat that earlier was removed from the
wet plots was added to the plots before replacing the peat
block plus vegetation. This procedure resulted in plots where
the water table was manipulated without changing the hydro-
logical context, but with the increased water table depths of
10 cm. The plots with non-manipulated water table received
exactly the same treatment, but no peat was removed or added
before placing back the peat blocks plus vegetation. The
whole procedure led to triplicated plots with all combinations
of increased temperature (OTC) or ambient temperature
(CTL), and reduced water table depth (wet – W), ambient
water depth (cut – C), and increased water table depth (dry -
D) (Fig. 1). All 18 experimental plots were bordered with
plastic sheeting (15 cm height) so as to maintain the structure
of the moss carpet. To control the effect of cutting, the remain-
ing 10 plots – which had intact (uncut) peat soil – only re-
ceived either the OTC (OTC, n = 5) or remained non-covered

Fig. 1 Linje mire location and experimental design
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(CTL) (Lamentowicz et al. 2016). OTCs were constructed
according to the ITEX protocol (Shaver et al. 2000), and
consisted of transparent polycarbonate hexagonal chambers
(50 cm high, 1.7 m top-width, 2.4 m base-width). OTCs allow
quasi-natural transmittance of visible wavelengths, and mini-
mize the transmittance of re-radiated infrared wavelengths
(Marion et al. 1997). All OTCs were raised 10 cm above the
peat surface to allow air circulation (Lamentowicz et al. 2016).

Measurements of Meteorological Variables

Soil temperature sensors (5TM; DecagonDevices, USA)were
installed in all plots at 5 cm depth below the peat moss surface.
These sensors registered the peat temperature (Ts) at 5 s inter-
vals, after which 2-min average values were logged (CR1000,
Campbell Sci., U.S.A.). These data were used to calculate
mean daily soil temperature. Simultaneously, air temperature
(Ta) was recorded using HOBO U23 Pro v2 data loggers
(Onset Computer Corporation, USA). The sensors were
installed at the height of 30 cm above the soil surface to mon-
itor the microclimate in each plot. These parameters were
measured every 10 min and used to calculate mean daily Ta.

To record water table depths (WTD), HOBO U20–001-01
pressure data loggers (Onset Computer Corporation, USA)
were installed in four wells (5 cm diameter and 2 m long
PVC wells) around the experimental site. These loggers were
set to record pressure every 3 h and data were averaged to
calculate daily values. WTD within each plot was then calcu-
lated using experimental treatment (−10 cm, 0 cm and +10 cm)
relative to the averaged water table depth across the experimen-
tal site. These calculated values were calibrated by manual
measurements conducted from time to time in the pipe placed
in the center of each plot for hydrochemistry measurements.

Precipitation was recorded continuously 1 m above the soil
surface using a tipping bucket Rain Gauge Smart Sensor (S-
RGB-M002) with a resolution of 0.2 mm. This sensor was
connected to HOBO U30 USB Weather Station Data Logger
(Onset Computer Corporation, USA) and the interval of mea-
surements was 10 min.

Measurements of CO2 Exchange

At each plot, CO2 efflux was measured using a dynamic
closed chamber system (darkened net canopy assimilation
chamber; PP-Systems CPY-4) and an infrared gas analyzer
(PP-Systems EGM-4) in a Sphagnum dominated surface
where the collar of 20 cm diameter was inserted into the soil
to 10-cm depth. During the experiment, the collars were kept
free of vascular plants. The CO2 concentration was recorded at
4-s intervals for 2 min. The measurement campaigns were
carried out every two weeks during the growing season
(April–November). At each campaign field, measurements
were performed repeatedly during a full day, using three

analyzers and a stochastic sampling scheme for the path of
plot measurements. Fluxes are expressed in μmol CO2

m−2 s−1.

Data Analysis

Initially, basic statistical characteristics (mean, minimum,
maximum) have been calculated for each variable collected
in each plot for different time intervals (30 min, day, month
and year) in order to check the data on quality prior to further
statistical use. The collected data were categorized according
to the manipulative treatments in order to analyze their effect
on micrometeorological variables such as daily mean Ts, daily
mean Ta, daily mean WTD and RECO. Some missing Ts data
in 2013 were calculated using a neural network (Chambers
and Hastie 1992). The weights used for these networks were
obtained on the basis of training with the data series from
2014. Then we analyzed the distribution of each meteorolog-
ical variable (Ta, Ts and WTD). Since they did not pass the
Lilliefors normality tests, adapted for large data sets (≥ 5000
data entries), we continued using parametric tests. To test for
the differences between CTL and OTC treatments for the
whole measurement period, we used the one-way ANOVA
with P ≤ 0.05 significance threshold. The impact of treatments
on RECO values was also tested using a mixed effects model to
describe the repeated measures analysis. Treatment is treated
as a random variable in the model. (Chambers and Hastie
1992) while Tukey’s post hoc tests were used to determine
the differences between treatments (Tukey HSD).

The temperature dependence of soil respiration is commonly
expressed by Q10 value. Q10 values were determined for each
manipulation treatment. This parameter is the rate of RECO

change determined by the interval of Ts equal 10 °C (Winkler
et al. 1996; Fang and Moncrieff 2001). Q10 values were calcu-
lated as Q10= (R2/R1)10/(T2

-T
1
), where R2 and R1 are respira-

tion rates found at temperatures T2 and T1, respectively.
All statistical tests were performed with R software version

3.1.2 using the agricolae, car, doBy, lawstat, FactoMineR,
fBasics, flux, nortest, xts, zoo packages (Jurasinski et al.
2014, Gastwirth et al. 2015, Gross and Liggers 2015,
Mendiburu 2015, R Core Team 2014).

Results

Micrometeorological Conditions in the Experimental
Site

The mean Ta of each measurements period from April to
November was 13.3 °C and 14.0 °C, respectively (Fig. 2b).
The mean Ts in 2013 (12.1 °C) was 0.7 higher than in 2014
(11.4 °C) (Fig. 2a). In the first year, the mean daily Ta reached
a maximum on June 20th (25.7 °C) while the mean daily Ts

554 Wetlands (2018) 38:551–563



was the highest on August 7th (24.6 °C - Fig. 2b). In 2014 the
highest mean daily Ta was observed on July 8 (26.4 °C) and
the mean daily Ts on August 2nd (23.8 °C). In 2013 the
highest maximum Ta value was found on August 8th
(38.4 °C), while in 2014 this extreme was observed on
July 28th (38.3 °C). With respect to the WTD (Fig. 2c), the

mean value of measurement period was higher in 2013
(−7.4 cm) than in 2014 (−21.2 cm). The WTD during the
second half of 2014 was much lower than in the correspond-
ing period of the previous year. In the summer 2014, theWTD
was more than 20 cm lower than in summer 2013 and this
resulted in annual WTD amplitudes in 2013 (18.0 cm) lower
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than in 2014 (37.4 cm). Such fluctuations in groundwater
levels may be the result of the combination of higher Ta (in-
creasing evapotranspiration) and lower precipitation in 2014.
Indeed, the annual total precipitation in 2013 (477.6 mm) was
higher than in 2014 (408.7 mm).

The Effect of Warming and Water Table Manipulation
on Microclimate

On average for over two years, OTCs increased Ta by 0.3 °C,
which is in the range of results found in other works (e.g.
Buttler et al. 2015). Mean values of monthly Ta over two years
were not different between OTC (8.4 °C) and CTL (8.1 °C)
plots (P = 0.498). But mean monthly maximum Ta during this
period was higher in the OTC treatments (16.1 °C) as compared
to the CTL treatments (14.9 °C) (P < 0.001). Furthermore,
mean monthly Ts over the two years were significantly lower
at OTC plots than at CTL plots (P = 0.004). Mean values of
monthly Ts were equal between the OTC (7.1 °C) and CTL
(7.4 °C). If one considers only the two growing seasons, the
mean of daily maximumTa in OTC plots was increased by 1.1–
1.2 °C and 1.6–1.8 °C during the growing seasons of 2013 and
2014, respectively. Manipulation of the water table showed that
the mean of monthly WTD for both years was statistically
different between the three variants of water table treatments
(P < 0.05), which confirms the effectiveness of the applied ma-
nipulation. Over the two years, the water level manipulation did
not impact the mean of monthly Ta (P = 0.689), but it did affect
the mean of monthly Ts (P = 0.003).

Separate Effects of Cutting, Warming
and Water Table Manipulation on RECO

The difference between daily maximum Ta in OTC and CTL
plots (max delta was approx. 4 °C) determined conspicuous
differences in the observed RECO values (Fig. 4). OTC treat-
ments had a significant impact on Reco in 2013 (P = 0.006).
Additionally, differences in water level treatments had a sig-
nificant impact on mean daily RECO values in 2013 (P =
0.003) and 2014 (P = 0.016). The impact of cutting on RECO

(i.e. CTL vs CCTL) was found negligible (P > 0.05). In 2014,
there was an interaction between OTC and cutting (P < 0.01).
These tests showed also an interaction between OTC and
WTD in 2014 (P = 0.003).

Overall Comparison of RECO
Between Treatments

In 2014, there was also a significant interaction between
warming, cutting and water level. The values of RECO during
the measurement period of 2013–2014 were in the range

between 0 and 4.9 μmol CO2 m−2 s−1 (Fig. 3). The mean
RECO during the growing season in 2013 (0.58 μmol CO2

m−2 s−1) was approximately 0.2 μmol CO2 m
−2 s−1 lower than

in 2014 (0.76 μmol CO2 m
−2 s−1).

The highest of mean daily RECO values over the two grow-
ing seasons 2013–2014 was 0.93 μmol CO2 m

−2 s−1 (DOTC),
while the lowest was 0.53μmol CO2m

−2 s−1 (WCTL). If each
year is considered separately, in 2013 the lowest mean daily
RECO value was observed at OTC plots (0.51 μmol CO2

m−2 s−1), whereas in 2014 it was at COTC (0.65 μmol CO2

m−2 s−1). In contrast, the highest values of mean daily RECO

were in both years in DOTC plots (0.80 μmol CO2 m
−2 s−1

and 1.16 μmol CO2 m
−2 s−1 in 2013 and 2014, respectively).

Mean values of daily RECO in wet plots (0.54 μmol CO2

m−2 s−1 and 0.80 μmol CO2 m
−2 s−1, in 2013 and 2014, re-

spectively) were lower than RECO values found in dry plots
(0.72 μmol CO2 m

−2 s−1 and 0.91 μmol CO2 m
−2 s−1 in 2013

and 2014, respectively). Also, wet plots had the lowest mean
of maximum daily RECO values in 2013 (2.92 μmol CO2

m−2 s−1), while in 2014 it was at control plots (3.42 μmol
CO2 m−2 s−1). The dry conditions determined higher CO2

effluxes (Fig. 3).
Tukey test indicated two significantly different groups of

RECO treatments (letters A and B in Fig. 4). In both years mean
RECO values in DOTC treatment were significantly higher
than the values obtained in CTL, OTC andWCTL treatments.
In 2013, the CCTL belonged also to this last group, and in
2014 it was COTC.

Q10 Value

In our study Q10 coefficients varied between treatments and
years, ranging from 2.0 (DOTC and COTC in 2013) to 6.1
(WOTC in 2014) (Fig. 5). The pairwise comparisons, where
CTL, DCTL, CCTL and WCTL are compared with OTC,
DOTC, COTC and WOTC, respectively, show that in most
cases the OTC treatment increased Q10 value in 2013 and
2014 except the dry treatment in 2013 (DOTC, decrease of
0.2) and the wet treatment in 2013 (WOTC, decrease of 0.6).
The mean Q10 value for the period of April to November
2014 was 3.3, while for the same period in 2013 it was 3.0,
and for both years it was 3.1.

Discussion

Additive Effect ofWarming and Lowering ofWTD on C
Cycling

Many studies documented that main factors impacting soil
respiration (RECO) and therefore carbon emissions are air tem-
perature (Bubier et al. 1998; Bortoluzzi et al. 2006; Davidson
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et al. 2006; Chojnicki et al. 2010; Heijmans et al. 2013) or peat
temperature (Chapman and Thurlow 1996; Silvola et al. 1996;
Lafleur et al. 2005; Juszczak et al. 2013; D’Angelo et al.
2016). Approximate 1 °C temperature increase at subarctic
peatlands resulted in increases of RECO values and mobiliza-
tion of carbon that was located in deeper peat layers
(Dorrepaal et al. 2009). Chivers et al. (2009) stated that despite
different water levels observed at their sites, there was no
impact of WTD on RECO. Although, according to Lafleur

et al. (2005), a variability in WTD has a major impact on the
peatland respiration if the water table is close to the surface.

Our study provides experimental evidence that both
warming andWTD impacted RECO, but more importantly that
a combination of the increased temperature and lower WTD
resulted in an additive effect on loss of carbon by respiration.
The most striking differences were found at dry plots with
warming (DOTC), most likely due to the enhanced aerobic
conditions in the acrotelm (Chambers et al. 2011). Despite
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inter-annual climate variability, RECO values observed at
DOTC plots were significantly different from RECO in other
treatments, in both years. This supports the statement that the
impact of a single factor alone is less effective than a com-
bined effect. Indeed, in our experiment, the warming by
means of OTCs and the lowering of water table had the largest
impact on soil respiration.

Our results correspond well to findings in other experimental
studies. Samaritani et al. (2010) showed that the strongest dif-
ferences in soil respirationwere observed during thewarmer and

drier periods. Long periods without rain may result in a sharper
transition between unsaturated and saturated peat layers
(Hornibrook et al. 2008) and change diffusion coefficients and
water saturation within the peat, which can slow down the trans-
port of gases and solutes in the peat profile (Waddington and
Roulet 1997; Fraser et al. 2001; Limpens et al. 2008). Our results
show that the peatland carbon flux can be modified by even
small changes in environmental conditions such as those in-
duced by our treatments. Since processes related to carbon
losses are related to temperature and hydrology, which are

a b

Fig. 4 Tukey test comparison for mean values of RECO in all treatments
for the growing seasons 2013 (a) and 2014 (b). The central bars indicate
the median values, points indicate the mean values, the box limits indicate

the first and third quartiles and the whiskers show the minimum and
maximum values. Capital letters indicate significant differences
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dynamically interrelated, the application of combined tempera-
ture and WTD treatments has the potential to simulate more
reliably the impact of climate change on the functioning of
peatland than single factor manipulative experiments.

Cutting Impact on RECO

Since the cutting may have affected the vegetation functioning
and e.g. transpiration rates can be modified by this interven-
tion, therefore we did not notice differences between control
and cutting treatments in both measurement years. Also indi-
rectly cutting decreased Q10 in 2013 (Fig. 5) by interrupted
connection structures in peat monoliths, however dry and
warmer year of 2014 caused increasing Q10 values (Fig. 5).
So far many studies showed that clipping and removing the
aboveground parts of plants decreased RECO, because this
reduces soil respiration by decreasing the input of labile car-
bon to soil (Wan and Luo 2003; Bahn et al. 2006) and/or by
weakening the assimilation supply from photosynthesis (Bahn
et al. 2008). It is widely known that the cutting causes slower
regeneration of plants (Silvola et al. 1996).

High Yearly and Seasonal Variation of RECO

The respiration fluxes obtained during the two-field cam-
paigns show that higher RECO values were recorded in 2014,
which also had warmer mean annual Ta as compared to 2013.
Thus, the Ts measured at 5-cm depth was probably less influ-
ential on mean annual RECO values and the fact of temperature
drop at OTC sites suggests that heat induced CO2 emission
was mainly determined in upper layers of peat profile. Our
results showed a significant difference in the Ts between CTL
and OTC treatments, however mean Ts at OTC’s was lower
than CTL’s. This result may be explained by the fact that
OTCs did not affect the temperature as measured with the
sensors placed 5 cm below the surface (Chivers et al. 2009).
However, the impact of OTC may be noticeable during the
freeze-thaw and extremely high temperature events (Bokhorst
et al. 2013). Indeed, we have found significant effects of OTC
on plots’ microclimate using maximum daily Ta. Thus, the
significant effect of warming on monthly RECO values is most
likely the result of the increase in the Ta inside the chamber
during hot and sunny summer days (Fig. 3) (Lamentowicz
et al. 2016). In these extreme conditions, the OTC can effec-
tively change the heat balance at the peatland surface
(Lamentowicz et al. 2016) - an effect which can decline rap-
idly with depth. The advection of relatively warm air mass
during the winter time increases the speed of snow melting
at the peatland surface but the OTC presence can restrict the
heat transport via reduction of the wind speed over the vege-
tation canopy (the sensible heat flux reduction). Furthermore,
the presence of snow caused thermal insulation as well as
increased the albedo. Both phenomena reduced the amount

of heat at the surface of the peatland. This observation corre-
sponds well to what was described by other authors (Marion
et al. 1997; Johnson et al. 2013). Seasonality in respiration
rates in our study is following the monthly Ta patterns, how-
ever CO2 emission strongly depended on peat moisture. Nijp
et al. (2014) presented the opinion that in many situations
warming does not increase RECO because of the water access
limitation. Our results seem to be in contradiction to this state-
ment since the CO2 emission in 2014 was higher (0.2 μmol
CO2 m

−2 s−1) than in 2013 with the lower water level during
the second measurement season. Most probably the increase
of acrotelm thickness triggered the increase of CO2 emission
from the deeper peat layers.

Q10 Values Describe the Dynamics of RECO

The differences of peat Q10 values between treatments sup-
port previous findings that temperature and moisture have a
direct influence on Sphagnum productivity (Turetsky et al.
2012) and microbial communities (Peltoniemi et al. 2015),
and this is reflected in RECO. The higher temperatures elevate
CO2 respiration and may also stimulate plant productivity,
especially in cold regions (Rustad et al. 2001). Results of field
experiments show the increased Sphagnum productivity with
warming (Robroek et al. 2007), as long as there was sufficient
water (Dorrepaal et al. 2003). In Linje mire, the noticeably
lower Q10 values found in the dry treatment can be explained
by changes in microclimate conditions that affect the micro-
bial community (Luo et al. 2001; Allison et al. 2010; Crowther
and Bradford 2013) and particularly by the lower peat mois-
ture (Silvola et al. 1996; Suseela et al. 2012). These findings
follow the results presented by other authors, Q10 parameters
was also described by other authors and for wetlands have
been reported as values between 2.2 and 4.2. (Lafleur et al.
2005) and from 2.0 to 8.9 (Hirota et al. 2006), 2.9–9.4 (Acosta
et al. 2017). The values of this parameter in our case was
ranging from 2.0 to 6.1. Q10 values depended on the depth
where soil temperature was measured. High Q10 values were
related with soil temperature at 10 cm and they considered that
it reflects the influence of the low temperature range (Acosta
et al. 2017). Kirschbaum (1995) suggested that high Q10 can
be attributed to low soil respiration under low temperature.
Here, we demonstrate that the OTC generally increased the
respiration Q10 values, however in wet conditions, Q10 in-
creased strongly with OTC (WOTC = 6.1), indicating a high
reactivity of respiration rate when the organic matter got ex-
posed to aerobic conditions.

Estimated Yearly Carbon Loss

The estimated values of the cumulated RECO at Linje mire for
both years (113.7 g C-CO2 m−2 yr−1) are smaller than at
Degerö Stormyr poor fen in the middle of Sweden (404.0 g
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C-CO2 m
−2 yr−1) (Nillson et al. 2008; Wu et al. 2013). On the

other hand, similar values of cumulated RECO were measured
at Mer Bleue raised bog (Roulet et al. 2007) and at Stordalen
mixed mire (Bäckstrand et al. 2010), specifically 230.0 and
150.0 g C-CO2 m

−2 yr−1, respectively. These differences may
be dependent on the type of peatland (Jaatinen et al. 2007),
although inter-annual variability of temperature (Pullens et al.
2016) and moisture (Turetsky et al. 2012) may strongly mod-
ify the carbon balance of the compared mire ecosystems.

Conclusions

We report on the first experimental study in a Central
European peatland aiming at assessing the effect of projected
climate change on RECO.

1. Our results show that OTCs changed micrometeorologi-
cal conditions by the increase of Ta near the ground.

2. We show that the combined warming and lowering of
water table had an additive effect on the increased
peatland RECO. Respiration rates were highly seasonal
and followed patterns in mean monthly temperature
values.

3. Our experimental study confirms that peatland RECO is a
sensitive indicator, even of very subtle changes of micro-
meteorological conditions. Such sensitivity has an impor-
tant implication to monitor the carbon sink function of
Central European poor fens.

4. Q10 value very well describes the dynamics of RECO

since this parameter reacted to both changes in tempera-
ture and WTD.
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