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Abstract

The Coupled Atomistic/Discrete-Dislocation (CADD) method is a concurrent multiscale technique that
couples atomistic and discrete dislocation domains with the ability to pass dislocations seamlessly between
domains. CADD has been demonstrated only in 2d plane-strain problems, for which each individual dislo-
cation is either entirely atomistic or entirely discrete. Here, a full 3d implementation of CADD is presented,
with emphasis on the algorithms for handling the description of dislocation lines that span both atomistic
and continuum domains, so-called hybrid dislocations. The key new features of the method for 3d are (i)
the use of an atomistic template of the dislocation core structure to transmit the proper atomistic envi-
ronment of a continuum dislocation to the atomistic domain for hybrid dislocations and (ii) a staggered
solution procedure enabling evolution of the hybrid dislocations. The method naturally requires calibration
of discrete-dislocation Peierls stresses and mobilities to their atomistic values, implementation of a dis-
location detection algorithm to identify atomistic dislocations, and computation of continuum dislocation
displacement fields that provide boundary conditions for the atomistic problem. The method is implemented
using the atomistic code LAMMPS and the discrete dislocation code ParaDiS within the LibMultiscale envi-
ronment developed by the lead authors, and so has all the advantages of these widely-used high-performance
open-source codes. Validation and application of CADD-3d are presented in companion papers.

1. Introduction

The mechanical behavior of metals underpins the structural performance of components and systems across
the entire spectrum of modern technologies. As demands on material performance per unit cost or weight
increase, there is an increasing need to understand the origins of mechanical behavior as well as a need to
design new materials with improved properties (e.g. yield strength, ductility, fatigue or corrosion resistance).
This requires, in turn, the study of metals at increasingly smaller sizes – at the level of the dislocation
defects that are the carriers of plastic deformation and at the atomic level where the intimate interactions of
dislocations, cracks, solutes, and other defects control the observed macroscopic behavior. Furthermore, it is
now widely recognized that “plasticity” depends on the size of the region being deformed, generally obeying
the adage “smaller is stronger”. Such size effects are due to the fundamental structuring of the dislocation
defects over mesoscopic scales on the order of microns. Thus, for accuracy and realism, plasticity must be
modeled simultaneously across several scales, which presents conceptual and operational challenges.

Capturing material behavior at several scales requires the development and use of multiscale models. So-
called “hierarchical” methods use existing models at individual scales and pass appropriate parameters
from one scale to another. Due to their simplicity - there is no direct coupling of scales - hierarchical
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methods are the most commonly used approaches and should be used whenever possible. Hierarchical
methods rely, however, on the strong assumption that there exists a clear separation of scales of phenomena.
Unfortunately, such a separation often does not apply in plasticity because phenomena at the atomistic scale,
dislocation (mesoscale), and continuum scales are strongly coupled in determining observed macroscopic
behavior such as crack growth, hardening, or embrittlement. The issue of scale separation has been tackled
by the development of so-called “concurrent” methods that seamlessly integrate material descriptions at
several scales within a single computational framework. Such methods are far more difficult to develop
due to the need for handling a continuous dialog between domains at different scales. It is implicit in all
concurrent models that the higher-scale be sufficiently accurate for problems of inerest, and this requires
suitable calibration of the higher scale problem; the quality of the calibration is important for overall accuracy
but is not intrinsic to the coupling method itself. Two existing methods capable of handling non-trivial
plasticity phenomena operating at multiple scales simultaneously are (i) the “Coupled Atomistic/Discrete-
Dislocation” (CADD) model [33] where a fully atomistic domain communicates and exchanges dislocations
with a mesoscale dislocation dynamics regime, (ii) the “Coupled Discrete-Dislocation/Crystal-Plasticity”
method [37] where a discrete dislocation domain is directly coupled to a domain described by continuum
plasticity. These methods operate only within the limits of a 2d plane-strain approximation. While these
multiscale methods enable the investigation of many physical plasticity problems, the vast majority of
problems require a full three-dimensional description of the dislocation plasticity. The CAC model [39, 40]
is a more recent model in which a coarse-graining procedure starting from the atoms leads to a continuum
domain that can support 3d dislocation defects activated on slip planes depending on the chosen mesh.
The CAC method has the nice feature of preserving the correct anisotropic elasticity, and it automatically
embues the coarse-grained dislocations with various properties such as a Peierls stress and mobility. On the
other hand, the properties of the coarse-grain dislocations (mobility, Peierls stress, line tension) generally
differ from those of the fully-atomistic dislocations in a scale-dependent manner, and so a method in which
higher-scale dislocation models carefully match the atomistic dislocations has clear benefits. In addition,
coarse-graining involves an artificial smearing of the dislocation Burgers vector. This influences interactions
among dislocation segments at distances comparable to the coarse-graining scale, leading to possible loss of
fidelity for some critical dislocation processes such as junction formation. Thus, higher scale methods that
preserve dislocation interactions at small scales again have clear benefits.

In the present work, we introduce a new concurrent multiscale method, three-dimensional Coupled Ato-
mistic/Discrete-Dislocations (CADD-3d), in which there is an intimate and seamless coupling between mo-
lecular dynamics (MD) and discrete dislocation dynamics (DDD). Molecular dynamics is to be used in
local domains where dislocations nucleate or strongly interact with other atomistic defects such as cracks
or grain boundaries, i.e. where an atomistic resolution is essential. Outside of such regions, the evolving
plasticity (network of dislocations) is described by DDD at a much lower computational cost with no loss
in fidelity of the plasticity evolution beyond the usual assumptions of the well-established DDD method.
The main challenge for CADD-3d is the simultaneous description of different parts of the same dislocation
line spanning the two different domains (MD and DDD) at the same instant of time; we refer to such
dislocations as hybrid dislocations. We present a coupling that is robust in providing a correct atomistic
description when the dislocations intersect the coupling interface, such that the atomistic domain responds
as if embedded in an immense atomistic domain, i.e. atoms do not “know” that other parts of the material
are actually treated by an entirely different method because the forces on the atoms are (almost) exactly
the forces that would be generated in the immense (computationally unfeasible) atomistic simulation.

The remainder of this paper is organized as follows. In the next section, we outline the general domain
decomposition problem in the presence of hybrid dislocations and the staggered algorithm for evolving
both domains as the hybrid dislocations move. In Section 3, we discuss the implementation of proper
boundary conditions on the atomistic domain for a hybrid dislocation. We assume that readers are familiar
with the underlying methods (DDD and MD), but for completeness Appendice A provides brief reviews
of the fundamental methods and standard implementations. We summarize the method in Section 4, with
quasistatic validation of key aspects presented in the companion paper CADD-3d.II and dynamic validation
and example problems presented in companion paper CADD-3d.III.
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2. The CADD-3d algorithm

CADD-3d couples MD, DDD, and linear elasticity concurrently and assumes a decomposition of the compu-
tational domain Ω into a convex atomistic domain ΩA and a non-convex continuum domain ΩC separated
by a sharp interface ∂ΩI, see Figure 1.

uext on ∂Ωu

text on ∂Ωt

dislocation lines

n

∂ΩI

ΩA

ΩC

Figure 1: The computational domain Ω is decomposed into a convex atomistic domain ΩA and a continuum domain ΩC,
separated by a sharp interface ∂ΩI. Tractions text or displacements uext are applied on the external traction and displacement
boundaries ∂Ωt and ∂Ωu. Dislocation lines or networks are free to span and propagate across the domain.

As in any force-based concurrent atomistic/continuum coupling method, the displacements of the atoms
coinciding with the interface ∂ΩI serve as displacement boundary conditions for the continuum domain.
The solution of the continuum domain, given those boundary conditions and external boundary conditions
text and uext, then provides a displacement field that is used to determine the positions of atoms in a so-
called pad region ΩP surrounding the atomistic domain but lying physically inside the continuum domain
(omitted in Figure 1 for clarity, but shown at a later stage in Figure 2). The positions of the pad atoms then
serve as displacement boundary condition for the MD problem. Although fixed within the MD problem,
the pad atoms exert the correct non-local atomic forces on the interior atoms that should arise from the
atoms represented by the continuum domain. The interior atoms then move according to the total atomic
forces acting on them. The pad thickness is thus slightly larger than the cut-off radius of the interatomic
potential, so that all atoms in ΩA “feel” a full complement of surrounding atomic neighbors.

In the original plane-strain CADD, each dislocation is uniquely contained in one domain or the other, and
so the domain decomposition involves two well-defined boundary value problems, one for MD and one for
DDD, at any instant. In 3d, problems containing only fully atomistic and/or fully continuum dislocations,
i.e. no hybrid dislocations, can be treated in exactly the same manner. In plane-strain CADD, special
algorithms are used to transfer dislocations back and forth between the two domains. In 3d, portions of
dislocation loops can move between the two domains, with other portions of the same loop residing inside
the two domains (i.e. hybrid dislocations are created), as shown in Figures 2a, 2b, 2c. The previous passing
algorithms are incapable of handling this situation, and the formulation of the domain-decoupling in the
presence of hybrid dislocations has not been established; doing so is the main goal of this paper.

Figure 1 shows a three-dimensional view of a generic coupled domain. For visual clarity, we will explain
the CADD algorithm using a schematic problem in which all dislocations are confined within one single slip
plane. Then, a two-dimensional representation of the problem in a cross section of Ω can be shown without
loss of detail or generality. Figure 2a shows a single dislocation loop partially located within the continuum
domain ΩC and partially within ΩA. The entire domain Ω = ΩA ∪ΩC is bounded by ∂Ω = ∂Ωu ∪ ∂Ωt, on
which displacement and traction are imposed, respectively. Internal boundaries connect the atomistic and
continuum domain: the internal boundary of ΩC is the sharp interface ∂ΩI while the internal boundary for
the atomistic domain is defined by the finite-thickness pad region ΩP.

CADD-3d solves the DDD mechanics problem involving hybrid dislocations at any instant of time us-
ing a well-established approach [38, 7, 9]. For the DDD problem, the boundary conditions at the atom-
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istic/continuum interface are displacement boundary conditions defined by the positions of the interface
atoms. These displacements transmit all information about deformation and defects inside the atomistic
domain to the continuum domain. With this boundary condition specified, the displacements and stresses in
the DDD domain are then solved using the standard superposition method. The continuum portions of any
hybrid dislocations terminate on the boundary ∂ΩI. To form the closed loops required for the computation
of •̃ fields, additional fictitious segments are added outside of the DDD domain as shown in Figure 2c. The
added continuum segments outside the DDD domain have no influence on the final solution, even if they
overlap with the atomistic domain, because their fields are canceled exactly by superposition as a result of
the DDD procedure (see Weygand et al. [38]). Therefore, we are free to close all loops at the center of the
atomistic domain, which is convenient for management of all fictitious segments. The superposition method
divides the DDD problem into two sub-problems, see Figures 2c and 2d. The first is an infinite-domain
problem consisting of all dislocation loops in an infinite homogeneous elastic space (Figure 2c), with the
stress and displacement fields solving this problem denoted as σ̃(x) and ũ(x). The second is a boundary
value problem on the DDD domain now containing no dislocations and subject to the boundary conditions
(i) t̂ = [t(x) − σ̃(x)n(x)] on the boundary ∂Ωt where traction boundary conditions t are applied and (ii)
û = (u(x) − ũ(x)) on the boundary ∂Ωu ∪ ∂ΩI where displacement boundary conditions u are applied.
This second problem is solved numerically and yields the smooth fields û(x) and σ̂(x) throughout the DDD
domain (since σ̂ and û have no singularity in ∂Ωu ∪ ∂ΩI). The full solution throughout the DDD domain is
then the superposition of the fields of the two sub-problems, u(x) = ũ(x) + û(x) and σ(x) = σ̃(x) + σ̂(x).
We specifically reiterate that the closure of any hybrid dislocation loops outside the DDD domain is arbitrary
as far as the continuum displacement fields are concerned.

CADD-3d solves the MD mechanics problem involving hybrid dislocations at any instant of time as follows.
As in other atomistic/continuum coupling methods, and as stated above, the displacement fields due to
applied boundary conditions and discrete dislocations in the DDD region are imposed on the so-called “pad
atoms” in domain ΩP that surrounds the true MD domain ΩA. That is, the pad atom positions are controlled
entirely by the DDD problem and provide displacement boundary conditions for the inner MD domain ΩA.
Use of the continuum fields is valid for all dislocation segments lying in the DDD domain away from the pad
region, but is woefully inadequate for the hybrid dislocation segments actually penetrating the pad region
and entering into the MD region. We discuss this crucial issue in considerable detail in section 3 but here
simply state that the continuum Volterra field of the DDD problem is enriched around the center line of
the hybrid dislocation by an atomistic corrective field, the core template, such that the pad displacements
provide an accurate atomistic representation of the true dislocation core structure.

The key aspects of the CADD-3d algorithm for dealing with hybrid dislocations are then best illustrated
by considering the evolution of a straight hybrid dislocation (see Figure 3a). In the atomistic domain, the
dislocation exists implicitly via local atomic positions. In the continuum domain, the dislocation exists
explicitly as a sequence of discrete dislocation nodes and segments, and the dislocation properties are
calibrated to match the atomistic system. Under a uniform driving stress (Peach-Koehler force on the
dislocation), the straight dislocation should remain straight and there is no need to solve the elasticity
problem. The evolution of the straight dislocation is achieved as illustrated schematically in Figure 3b and
the algorithm executed at each time integration step is as follows.

Starting at t = t+n ,2 the dislocation line is straight. The nonlinear core region of the MD dislocation (pink
shaded area) is matched by the pad displacements using the core template (blue shaded area). The free
DDD nodes – represented by blue squares – are subject to the Peach-Koehler forces (see A.3.2) illustrated
by the blue arrows. An additional continuum dislocation segment extends into the atomistic domain, having
been detected by established methods for finding atomistic dislocation lines. The terminating end node of
the DDD dislocation is shown by the red circle inside the MD domain and is considered immobile in the
DDD computation. In the first step, the dislocation advances by an increment ∆l along most of its length,
in both DDD and MD domains, except in the region close to the interface where boundary conditions are

2The exponent ()+ indicates the time instantly after the force calculation phase, an exponent ()− instantly before coupling
the positional degrees of freedom.
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(a) Cross section of a three-dimensional problem on a slip-plane
containing a dislocation present in Ω.
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(b) MD part of the coupled problem.
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(c) DDD sub-problem solving the stresses σ̃ and displacements ũ
for dislocations in infinite homogeneous elastic medium.

∂ΩI

ΩC

∂Ωt

∂Ωu

n

(d) Boundary value sub-problem of DDD problem solving for the
corrective stresses σ̂ and displacements û of the DDD-domain sub-
ject to corrected applied external tractions t̂ = t− σ̃ n on ∂Ωt and
corrected applied displacements û = u− ũ on ∂Ωu and ∂ΩI.

Figure 2: Decomposition of the computational problem into their component sub-problems in the CADD method.

enforced, i.e. the pad atoms and the detected and constrained DDD node retain the positions of t = t+n at
t = t−n+1. Then, the new MD dislocation location is detected and the constrained end node is advanced to
the new position along the true atomistic dislocation line. The DDD segment attached to the constrained
node is then recomputed, re-straightening the discrete dislocation line at t = t+n+1. The atomistic template
in the pad is then updated according to the new continuum dislocation line. The MD dislocation line is
still non-straight at the end of this sequence (framed area in the figure) but the core template provides a
strong driving force to advance this small portion of the atomistic dislocation in the next time step. In
practice, the dislocation advances by only a small fraction of a Burgers vector per time step ∆l� ||B|| and
the non-linear core template is typically several Burgers vectors in diameter, so the non-straight portion of
dislocation is actually quite small (the figure is exaggerated) and negligible. With this schematic and short
description, we can now turn to the precise algorithm in the next section.

2.1. Integration in time
In computational mechanics, one typically chooses to evolve dynamic systems in time using some predictor-
corrector-type integration scheme (e.g., velocity-Verlet for MD, explicit or implicit Newmark β for finite-
element method (FEM)) because of their excellent energy conservation properties. Such schemes have the
following steps in common: i) at the beginning of a time step, the new positions (along with predicted
velocities) for the end of the time step are computed based on the forces in the current configuration, ii)
the forces are evaluated for the new configuration, iii) the predicted velocities at the end of the time step
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Figure 3: (a) Simulation setup for straight hybrid dislocation. The blue squares represent regular free DDD nodes. The
constrained “detected” node, represented by the red disk, is moved by the coupling scheme, not the DDD method. The
interface (marked grey) is intersected at a right angle. (b) Hybrid dislocation pinning at the interface.

are corrected. The coupling of systems integrated with predictor-corrector schemes is straight-forward and
consists of synchronizing those displacement degrees of freedom that serve as internal mutual boundary
conditions between sub-problems after the predictor step and the force degrees of freedom that serve as
boundary conditions after the force evaluation step.

The case of CADD-3d adds two complications. First, force-based coupling of a dynamic atomistic system
to a dynamic elastic system is inherently unstable [24], and second, DDD codes do not have a predictable
nor constant time step. For instance, the integration time step for the DDD sub-problem may be cut short
if an event such as a collision between DDD nodes is detected [38, 7, 9]. As a result, we only consider
semi-dynamic cases (molecular dynamics in the atomistic domain and statics in the continuum). We thus
present the CADD-3d algorithm for consistently coupling a MD sub-problem integrated in time using the
velocity-Verlet scheme to a static elastic (e.g. FEM) sub-problem and a DDD sub-problem that performs
an unknown number of sub-time steps per global system time step. Algorithm 1 shows a detailed overview
of the operations and their order of application, listed by sub-problem.

Phase 1 updates the free positional degrees of freedom for the two dynamic domains; in the MD sub-
problem, phase 1 uses the atomic forces fka, positions rka and velocities vka on all free atoms (i.e., atoms
in ΩA, but not for the pad atoms in ΩP) from the previous time step (t = tk) to execute the predictor
part of the velocity-Verlet scheme, which includes updating the atomic positions to rk+1

a (at t = tk+1) and
predicted velocities to vk+1/2

a in the MD region ΩA and computing the displacement uk+1
n of those atoms

coinciding with FEM nodes on the interface ∂ΩI. In the DDD subproblem, the new dislocation segments
sk+1

e of all free dislocation segments (i.e., segments that have at least one node in the continuum domain
ΩC, but not the pinned segments that are fully in the atomistic domain ΩA) are computed based on the
previous segments ske and the Peach-Koehler forces fkd on the nodes the continuum domain ΩC in the free
part of the dislocation network. The DDD update runs in one or more sub-time steps, see Appendix A.3.

The first coupling phase, c1 , uses the updated free atomic positions rk+1
a to detect dislocation lines in
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Algorithm 1: General CADD-3d algorithm: Quantities subscripted ∗a, ∗d, or ∗n relate to atomic,
dislocation nodal or finite-element nodal degrees of freedom, respectively, and ∗e relates to disloca-
tion segments. The superscript ∗k indicates the time step.

Phase Molecular Dynamics Dislocation Dynamics Linear Elasticity
1 Predictor Update segments

Input: fka, r
k
a,v

k
a ∀a ∈ ΩA fkd ∀d ∈ ΩC

ske ∀e ∈ γc

Output: rk+1
a ∀a ∈ ΩA sk+1

e ∀e ∈ γc

v
k+1/2
a ∀a ∈ ΩA
uk+1

n ∀n ∈ ∂ΩI
c1 Detect atomistic

dislocations
Input: rk+1

a ∀a ∈ ΩA
Output: sk+1

e ∀e ∈ γAD
c2 Compute •̃ contributions

Input: sk+1
e ∀e

Output: σ̃k+1
n ∀n ∈ ∂Ωt

ũk+1
n ∀n ∈ ∂ΩI ∪ ∂Ωu
ũk+1
a ∀a ∈ ΩP

c3 Compute •̂ boundary
corrections

Input: σ̃k+1
n ∀n ∈ ∂Ωt,

uk+1
n , ũk+1

n ∀n ∈ ∂ΩI ∪ ∂Ωu

Output: t̂
k+1
n ∀n ∈ ∂Ωt,

ûk+1
n ∀n ∈ ∂ΩI ∪ ∂Ωu

2 Solve elasticity
Input: t̂

k+1
n ∀n ∈ ∂Ωt,

ûk+1
n ∀n ∈ ∂ΩI ∪ ∂Ωu

Output: σ̂k+1
d ∀d ∈ NDD,
ûk+1
n ∀n ∈ ΩC
ûk+1
a ∀a ∈ ΩA

3 Compute forces Compute forces
Input: rk+1

a ∀a ∈ ΩA, sk+1
e , ∀e

ũk+1
a , ûk+1

a ∀a ∈ ΩP σ̂k+1
d ∀d ∈ NDD

Output: fk+1
a ∀a ∈ ΩA fk+1

d ∀d ∈ NDD

4 Corrector
Input: v

k+1/2
a ,fk+1

a ∀a ∈ ΩA,
Output: vk+1

a ∀a ∈ ΩA
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the atomistic domain ΩA (see Appendix C for details). The lines are discretized into discrete dislocation
segments sk+1

e with their nodes in ΩA pinned to serve as boundary conditions for the DDD sub-problem.

During the subsequent coupling phase, c2 , the entire network of segments se is evaluated to compute
the stress contribution σ̃k+1

n on the tractions assembled on boundary nodes in ∂Ωt and the displacement
contribution to the FEM displacements ũk+1

n on the interface nodes in ∂ΩI and the displacement boundary
nodes in ∂Ωu, as well as to the atomic displacements ũk+1

a of the pad atoms in ΩP.

The final coupling phase, c3 applies the principle of superposition in order to correct the boundary condi-
tions of the elastic problem: the •̃ boundary contributions obtained in phase c2 are used to compute the
corrected traction t̂k+1

n on the traction boundary ∂Ωt and displacements ûk+1
n on the interface ∂ΩI and the

displacement boundary ∂Ωu.

At this stage, the continuum domain has consistently updated boundary conditions for the end of the time
step (t = tk+1). These are now used in phase 2 to compute the static equilibrium in the continuum
domain ΩC. The solution yields the •̂ displacement contribution for the FEM nodes ûk+1

n ∀n ∈ ΩC and pad
atoms ûk+1

a ∀a ∈ ΩP, and the •̂ stress contribution on the dislocations nodes σ̂k+1
d ∀d ∈ ΩC. At the end of

this phase, all positional degrees of freedom (in particular, the positions of the pad atoms and the pinned
dislocation nodes), and the •̂ stress contributions at dislocation nodes are up to date for t = tk+1, with one
exception: in the case where dislocation segments intersect the pad and the interface, some of the pad and
interface atoms are contained in the highly non-linear dislocation core, where their displacements are poorly
described by the DDD solution. The positions of these atoms need to be corrected and we developed the
concept of the core template for that purpose (details in Section 3).

The forces for the dynamic sub-problems are computed in phase 3 . The MD sub-problem uses the positions
of the free atoms rk+1

a ∀a ∈ ΩA and the superposition principle for the pad atoms rk+1
a = r0

a + ũk+1
n +

ûk+1
n ∀a, n ∈ ΩP to evaluate the forces on free atoms fk+1

a ∀a ∈ ΩA. This superposition is valid as long
as no dislocation core crosses the pad region. Coupling the displacement field of dislocation cores needs
corrective terms that are presented in section 3. The DDD sub-problem uses the segments sk+1

e together
with the •̂ stress contributions on the free dislocation nodes σ̂k+1

d ∀d ∈ ΩC to evaluate the Peach-Koehler
forces on those same free nodes fk+1

d ∀d ∈ ΩC.

Finally, using the updated atomic forces fk+1
a , the free atoms velocities vk+1

a ∀a ∈ ΩA are modified, following
the predictor-corrector scheme, in phase 4 by applying the corrector step of the velocity-Verlet scheme. We
show in the companion paper CADD-3d.III that one can take advantage of the slower timescale of dislocation
motion with respect to atomistic motion and improve Algorithm 1’s efficiency by executing multiple MD
time steps per DDD step.

2.2. Dislocation detection
We mentioned the detection of dislocation segments in the atomistic domain (phase c1 in Algorithm 1).
Detection is a shorthand notation for the extraction of a line description of dislocation segments from a set
of atoms within which dislocation cores are embedded. A detection method is present in the original two-
dimensional version of CADD [see 33, for details], but since only edge dislocations exist and on a reduced set
of slip planes (three for a hexagonal close-packed plane), the problem is simpler than in three dimensions .
For the more general slip systems and character angles existing in 3d, we have adapted the method proposed
by Stukowski et al. [36] and Stukowski and Albe [35]. The Dislocation Extraction Algorithm (DXA) performs
Burgers circuit analyses and computes a set of line segments representing the entire dislocation network. To
the best of our knowledge, DXA has never been applied for on-going dislocation network evolution as needed
in CADD-3d. We have consequently developed a variant of DXA specifically tailored for our purposes. The
basic ideas of the detection algorithm are summarized in Appendix C.

2.3. Static resolution
For solving static problems, one can employ standard optimization approaches using gradients. As a matter
of fact, the gradients of the total energy are the force vectors fa, fd necessary to compute optimal search
directions. These could be exploited in conjugate gradient-type minimization schemes, if the total potential
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energy is corrected to avoid ghost forces [32]. In that case, the algorithm is changed by removing step 4
and changing step 1 for the construction of the new exploratory direction and the line search. However,
an important difficulty could arise due to the detection stage c1 . This is intrinsically non-smooth
and could prevent convergence by creating oscillations in the position of the detected segments. Studying
convergence properties of a global optimization procedure is beyond the scope of the present series of papers.
Instead, a domain decomposition and an alternative schwartz procedure where each model is equilibrated
with boundary conditions fixed from the other counter parts is adopted. This strategy has been employed
in the companion paper CADD-3d.II and will be described in more details there.

3. Accurate atomic boundary conditions for hybrid dislocations: the Core Template

The continuum Volterra solution for the dislocation displacement field is a poor representation of the true
field within the dislocation core. For a hybrid dislocation in the pad region, i.e. those dislocation segments
passing from the continuum region to the atomistic region, the use of the Volterra solution creates serious
artifacts. That is, if the pad atom displacements are imposed using the Volterra DDD solution, then real MD
atoms near the core will be subject to large spurious forces due to the error in the pad atom positions. Such
errors are especially egregious for fcc dislocations that dissociate into two partials separated by a stacking
fault. Figure 4 illustrates this point by considering the per-atom potential energy profile obtained for an
edge dislocation in fcc aluminum in the cases when a) the Volterra displacement field is used and b) after full
atomic relaxation is permitted resulting in two partial dislocations separated by a stacking fault. In Figure
4c is shown the energy change per atom upon relaxation, showing that the Volterra solution introduces
spurious energy reaching 0.4 eV. Minimizing the effect of these spurious energies and the associated forces
represents one of the main efforts in the present work.

(a) (b) (c)

Figure 4: Per atom potential energy extracted from a section normal to an edge dislocation line (ϑ = 90circle) in fcc aluminum
modeled with the Mendelev EAM potential [28], with a) the configuration given by the Volterra expression, b) the relaxed and
dissociated core structure and c) the difference of both that shows the energy reduction provided by the relaxation.

The goal of an accurate coupling is to have the real MD atoms experience accurate forces due to realistic
atomic displacements in the pad atoms. This can be achieved by enriching the continuum displacement field
with the displacement field of the true atomistic dislocation when and where such enrichment is necessary.
We envision the solution as follows. Let us imagine that any dislocation is described by a true discrete
atomistic core of displaced atoms within some inner radius Rcore and by a continuum displacement field
beyond Rcore. The entire DDD methodology would then proceed unchanged, but with the û field being
enriched by an atomistic description ∆ũcorr when the distance to the dislocation line for r < Rcore. With
such an enriched field, ũ +∆ũcorr, the imposition of the pad atom displacements automatically includes the
atomistically-enriched core structure for any dislocations within Rcore of the pad region, and especially for
hybrid dislocations that pass into the atomistic region. We now recognize, however, that the atomistically-
enriched field for r < Rcore is in fact only necessary for precisely those dislocation segments intersecting the
pad region. Outside of this region, the dislocations communicate with the pad through the displacement
field û+ ũ, and interact with each other through the stress field σ̂+ σ̃. There is thus no need for the atomic
resolution of the core in regions away from the pad region. In fact, the entire development of the DDD
method is based on the understanding that the dislocation core structures are not important for modeling of
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long-range dislocation interactions. Therefore, the atomistically-enriched field is, in practice, only necessary
for the hybrid dislocation segments in the pad region itself. We refer to this atomistic enrichment field as
the core template correction because the computed atom positions provide a template of a realistic atomistic
dislocation core environment for the real atoms in the MD domain. A related approach was used in plane-
strain CADD for dislocations approaching the coupling interface, and was shown to significantly reduce the
magnitude of spurious Peach-Koehler forces on both atomistic and continuum dislocations, see [13].

Figure 5 illustrates the application of the template correction in the case where a dislocation line intersects
the interface. Without a template, the pad atoms have reference positions of the crystalline lattice with
displacements given by the superposition of the corrective field û and the infinite-space field ũ of all the
dislocations, see (A.8). The true atomic displacements of the pad atoms (displacement field in ΩP) can be
represented as a sum of contributions (after phase 2 ) as

ua = û(xa) + ũ(xa, γc, γv) +∆ũcorr(xa) ∀xa ∈ ΩP, (1)

where the unknown corrective term ∆ũcorr(xa) accounts for all the non-linear material response around the
dislocation core. The exact core template correction ∆ũcorr(xa) for any atom a is then the error of the
semi-analytic contribution ũ(xa) of a dislocation network in a system free of elastic strain (û(xa) = const),

∆ũcorr(xa) = ua − ũ(xa), (2)

Far from any dislocation core, non-linear effects become negligible, and the small-strain linear elasticity
solution ũ converges with the atomistic solution u. With r(x) defined as the distance between x and the
nearest dislocation core, this is expressed as

lim
r(x)→+∞

||∆ũcorr(x)|| = 0. (3)

We can thus define a practical core radius Rcore as the smallest radius for which

||∆ũcorr(x)|| < κ (4)

for a suitably chosen tolerance κ > 0. Outside of Rcore, the atomistic corrections are deemed negligible
(errors in displacement less than κ). An error estimation of the template enables the choice of a suitable
core radius as detailed in Appendix B. The core template is only imposed within Rcore, as indicated by the
gray region in Figure 5. More formally, the dislocation core region around a core segment s is the domain

Ωcore
s (κ) = {x ∈ ΩP : dist(s,x) < Rcore} , (5)

where dist defines the euclidian distance between a line and a point. Also, we assume that dislocations are
sparse in the pad such that no point is within the core region of more than one core, i.e.

⋂
s
Ωcore
s (κ) = ∅.

Complicated cases, such as dislocation junctions, or structural changes due to applied stresses are not taken
into account in the present algorithm. Algorithms for passing of junctions, for instance, remain to be
developed along the lines of dislocation passing in CADD2d [33].

3.1. Implementation of core templates
To implement a continuous core template correction field for arbitrary character angles, we define a con-
tinuous function u(x) that interpolates the displacement field between (point-wise defined) atomistic core
structures at various character angles. The true core structure of a dislocation at a position x depends
on the local character angle ϑ(x), the curvature around x, and the applied stress (which distorts the core,
allowing it to overcome the Peierls barrier when the applied stress equals the Peierls stress). The use of
DDD implicitly assumes a small dislocation curvature over the scale of the dislocation core size. It possible,
but not necessary at this stage, to model the stress dependence of the core structure, which is mainly im-
portant for the atoms within a few ångströms of the center of the (partial) dislocation(s). This also excludes
core structural changes (large displacements) due to large stresses. These assumptions, however, allow us
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dislocation line

dislocation core u = ũ + ∆ũcore + û

linear region u = ũ + û

Rcore

pad

Figure 5: Schematic of dislocation core in the pad. For most of the pad, the linear elastic discrete dislocation dynamics
displacement solution is adequate, in the vicinity of the dislocation line, however, adding the core template ∆ũcorr is required
to minimise spurious forces.

to consider straight dislocation segments at given fixed character angles to build the core template. A set
of such templates, with various character angles, can be conveniently precomputed and then interpolated
during the coupled simulation. It is possible in principle to create a library of core templates for dislocations
under Escaig (non-glide) stresses. Such stresses may not always be negligible but standard DDD models do
not represent the dislocation as two dissociated partials, and therefore the effects of Escaig stresses are not
addressed here.

A set of straight atomistic dislocation cores spanning the full range of character angles3 is thus generated
using molecular statics minimization, c.f. [10] for details. The atomic displacements around the dislocation
line are extracted as illustrated on Figure 6b. For any given character angle ϑi, the atomic displacement
uϑi

(xa) varies along the dislocation line ξ. Because the dislocation is straight, we choose a coordinate system
with line vector ξ = x coinciding with the x axis and the normal to the slip plane n = y coinciding with the
y axis (c.f. Figure 6a). We set the origin on the dislocation line so that all atomic positions xa = (xa, ya, za)
are relative to the dislocation core. We then project the atomic positions onto the z-y plane as shown in
Figures 6(c, d), which reveals that the core template correction (i) can indeed safely be approximated as a
function of z, y coordinates only and (ii) is always sufficiently smooth to validate the approximation that
excludes the variations in the ξ direction. Note that the density of points in the projection normal to ξ
varies with the dislocation character angle. With the atomic positions projected onto two dimensions, it
is straightforward to subtract ũ(xa) from the displacements, triangulate the residual displacements, and
use first-order finite elements to interpolate the point-wise correction term ∆ũcorr

ϑi
(xa). This procedure

yields a continuous correction field ∆ũcorr
ϑi

(x) at each character angle ϑi. For an arbitrary character angle
ϑi ≤ ϑ < ϑi+1, we simply interpolate linearly between the two nearest solutions as

∆ũcorr
ϑ = α∆ũcorr

ϑi
+ (1− α)∆ũcorr

ϑi+1 with α = ϑi+1 − ϑ
ϑi+1 − ϑi

,

The near-elimination of any spurious forces on hybrid dislocations at the atomistic/continuum interface
using this continuous interpolated solution for the core template correction is assessed quantitatively in the
companion papers CADD-3d.II and CADD-3d.III.

4. Discussion

In this first paper of a series of three papers, we have presented the key concepts and algorithmic details
for the intimate coupling of a fully atomistic domain to a surrounding domain described by a nodal discrete
dislocation dynamics domain in full 3d. The goal of this CADD-3d model is to achieve full atomistic

3Because, the core template will vary with the character angle one has to consider as many as possible.
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(d) (e)

Figure 6: (a) Geometric setup for core template extraction. The heavy grey line represents the straight infinite dislocation line.
Because the line direction ξ coincides with the x axis and the normal to the slip plane n with the y axis, the Burgers vector
b is constrained to be in the x − z plane. The character angle of the dislocation is ϑ. The extracted configurations are for
a dislocation line in aluminum as described by the Mendelev EAM potential [28] following Cho et al. [10] approach. (b) The
template correction ∆ũcorr for a cylinder of atoms around a straight dislocation core. (c) The template correction ∆ũcorr of
the edge dislocation. (d) Interpolated template correction ∆ũcorr of the edge dislocation (e) Interpolated template correction
∆ũcorr of the mixed angle dislocation ϑ = 130.893.

resolution in regions where complex atomistic deformations are occuring that cannot be described solely
by dislocation dynamics but that are strongly influenced by, and also influence, surrounding dislocation
plasticity. The methodology proceeds by domain decomposition, reducing the problem to relatively standard
MD and DDD problems that are coupled through mutual evolving displacement boundary conditions at the
atom/continuum interface. We have focused particularly on treatment of hybrid dislocations, i.e. those
dislocations that span the atomistic/continuum interface, with a careful description of both the algorithm
for evolving the entire system and the core-template algorithm for minimizing spurious forces on atoms near
the interface.

Accuracy of the method is largely dictated by the quality of the calibration of the DDD material parameters
to the corresponding atomistic values. With accurate calibration, CADD-3d harnesses the power of both
the MD code LAMMPS and the DDD code ParaDis. Current approximations in the most commonly-used
version of ParaDis (isotropic elasticity, small-strain deformation, core energy models, the functional forms
for mobility laws, kinks/jogs due to dislocation junctions) can be systematically improved. The widely-
available version of ParaDis is easily modified to change the dislocation mobility law and core energy, while
an anisotropic elasticity code also exists. Thus, the accuracy of the DDD method that underlies CADD-3d
can be systematically advanced toward full fidelity, leaving only coupling errors of CADD-3d itself. In the
second paper of this series, we thus study the quasistatic behavior of dislocations in Al, which is fairly
isotropic and for which we have previously determined an accurate core energy, enabling careful assessment
of errors introduced by the coupling method. In the third paper, we study the dynamic evolution of various
dislocation configurations in Al using carefully calibrated mobility laws, enabling further assessment of the
CADD-3d method and demonstrating its use in modeling complex multiscale plasticity problems.

We have not discussed here the passing of dislocations in and out of the atomistic domain, i.e. the creation
of hybrid dislocations. In the third paper, we introduce a method that is suitable for problems consisting
only of collections of interacting dislocations without any other defects. This limit is, however, quite useful

12



in many cases. In particular, CADD-3d can be used to insert an MD box of atoms anywhere and anytime
into any fully DDD problem to analyze the atomistic behavior in a local region where the existing DDD
method may be inadequate. We will discuss more general passing algorithms in future work.

Appendix

A. The Models

A.1. Linear elastic continuum Mechanics
Linear elasticity is certainly the simplest model that can provide a prediction of the stresses and strains
for a body subjected to constraints such as forces, tractions and displacements. When we consider the
body/domain as ΩC, the partial differential equation to be solved is classically

∀x ∈ ΩC, σij,j(x) = 0 (A.1)

under the boundary conditions

∀x ∈ ∂Ωt, σ(x)n(x) = text(x) (A.2)
∀x ∈ ∂Ωu, u(x) = uext(x) (A.3)

where uext and text are prescribed displacements and tractions respectively, and n is the outward normal
to the boundary ∂Ωt. Under the small strain hypothesis, the constitutive law relating small strains ε with
stresses can be formulated as:

∀x ∈ ΩC, σij(x) = Cijklεkl(x) (A.4)

where Cijkl is a constant fourth order tensor. For the purpose of the proposed coupling method, a body not
containing any dislocation, i.e. where no plastic deformation occurred, will be modeled with linear elasticity.
The elasto-static equations can naturally be solved by means of the FEM. It is also possible to consider
a boundary integral formulation when Green’s functions complying with the boundary requirements are
accessible. We want to emphasize here that the proposed approach is in principle agnostic to the employed
linear elastic solver as long as Neumann and Dirichlet boundary conditions with anisotrope constitutive laws
can be handled.

A.2. Molecular dynamics
We use classical molecular dynamics to simulate matter at the atomic scale by modelling point mass atoms
subject to interatomic potentials. Born and Oppenheimer [6] formulated this approximation which is well
funded if the nuclei move much slower than the electrons (i.e., in mechanics at moderate temperatures
without chemical reactions). In such a case, the distribution of electrons adapts in a quasi-static manner
to the positions of the nuclei, and the interatomic forces (i.e. forces between nuclei) depend only on their
respective positions. It can be shown that the forces are therefore conservative and derive from a potential.
The force f i acting on any atom i of a system of N atoms is:

f i = −∇riU
a(r1, r2, · · · , rN ), (A.5)

where Ua is the potential energy of the system and rj , j ∈ {1, 2, · · · , N} are the atomic positions. The
governing equation of a system modeled by molecular dynamics is the Newton’s second law:

mir̈i = f i, (A.6)

where mi is the mass of the i-th atom. Different (explicit) integration schemes such as Verlet and Leap-Frog
are commonly used to integrate (A.6) in time, but also any classical mechanics integrator such as Newmark’s
corrector-predictor algorithm could be used. More details can be found in Griebel et al. [19], Rapaport
[31], Berendsen [4].
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MD is conceptually very simple and the main difficulty in its use is the sheer size of molecular systems. As
an illustration, the number N of atoms in V = 1 mm3 of pure aluminum is

N = Na
%V

mAl
≈ 1.8 · 1020, (A.7)

where Na is Avogadro’s constant, % and mAl are the solid density and the molar mass respectively. Such
a number of atoms is at least ten orders of magnitude larger than what a single computer nowadays can
handle. Molecular dynamics relies heavily on high performance computing using parallel machines and is
restricted to small simulation boxes.

Furthermore, the time steps necessary in the integration (A.6) is of the order of 1 fs = 1× 10−15 s, which is
extremely small from a mechanics point of view.

A.3. Discrete dislocation mechanics
As previously mentioned, dislocations are structural defects within an atomic lattice. Under loading con-
ditions, these can undergo motion that can be modeled. This is the direction taken by discrete dislocation
mechanics where dislocations are approximated with segments and where force-displacement relations allow
a proper dynamical evolution.

Dislocation mechanics models [17, 9] target the problem illustrated in Figure A.7a. A volume Ω with bound-
ary ∂Ω is subject to an external traction text on a part ∂Ωt of its boundary and an imposed displacement
uext on the remainder ∂Ωu = ∂Ω \ ∂Ωt of the boundary.

uext on ∂Ωu

text on ∂Ωt

dislocation lines

n

(a) Full initial and boundary value prob-
lem: The volume Ω contains a dislocation
network. External tractions text act on
∂Ωt and a displacement uext is imposed on
∂Ωu.

ũ on ∂Ωu

t̃ on ∂Ωt

n

(b) Dislocation network in infinite space.
The displacement ũ is evaluated on ∂Ωu,
and the traction t̃ = σ̃ n on ∂Ωt.

t̂ = text − t̃ on ∂Ωt

û = uext − ũ on ∂Ωu

n

(c) Boundary conditions are corrected for
the elastic problem by subtracting the con-
tributions of the dislocation network that
violate the boundary conditions.

Figure A.7: Discrete dislocations problem, linearity is exploited to use superposition of •̃ and •̂ solutions.

The volume contains a network of dislocations. In two-dimensional problems, the dislocation network is a
set of individual straight parallel edge dislocations whereas three-dimensional networks are made of complex
and curved paths. Only linear elastic material and small strains are considered, which allows to use the
superposition principle, i.e. to write the displacement u, strain ε and stress field σ as sums of an elastic
contribution and a plastic contribution due to the dislocation network

u = û+ ũ, ε = ε̂+ ε̃, σ = σ̂ + σ̃, (A.8)

where (∗̃) denotes contributions of the dislocation network in an infinite space and (∗̂) the elastic boundary-
value contribution. The fields associated with the dislocation network are the superposition of the fields ũi,
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ε̃i, σ̃i due to all the n dislocation segments,

ũ =
n∑
i=1
ũi, ε̃ =

n∑
i=1
ε̃i, σ̃ =

n∑
i=1
σ̃i. (A.9)

The solid is considered infinite for the contributions of individual dislocation segments, see Figure A.7b and
the displacements ũ and traction t̃ = σ̃ n are evaluated of ∂Ωu and ∂Ωt, respectively. These fields are
then used to correct the boundary conditions (see Figure A.7c), which may be solved using any suitable
elasto-static method.

A.3.1. Dislocation strain energy and Peach-Koehler forces
The strain energy density caused by the presence of a dislocation in an infinite medium is at the source of
the displacement field ũ and also of the effective force acting on the line. Let us name C the line path that
characterizes the dislocations of interest. Then a purely linear elastic approach is accurate except if close to
the dislocation line C where the stress field diverges. The classical approach to circumvent this problem is
to regularize the strain field by spreading the Burgers vector over a distance a around the dislocation line.
In the end we obtain the following total strain energy:

U c =
∫

dU el(x, a)dx+
∫

dU core(x, a)dx

= U el(C, a) + U core(C, a) (A.10)

where we have named two contributions, U el and U core, as the non-singular elastic and core contributions to
the strain energy, both depending on the path C and a regulating parameter a, since these volume integrals
can be expressed as a line integral over C [22, 8]. By computing the variation of the energies U c and
U core with respect to a change of dislocation configuration, we obtain an effective line load that applies to
the dislocation line. The Peach-Koehler [22] formula provides the forces experienced by an infinitesimal
dislocation segment when subject to a stress-field:

fPK(x) = (σ(x) · b(x))× ξ(x) (A.11)

A.3.2. Dislocation discretization
Since dislocations are line defects, it is natural to decompose any such line into sub-elements. From classical
definitions, a dislocation is characterized with a path and a Burgers vector which may vary along this line.
In DDD, any dislocation is represented as a set of edges taken from γ that connect the nodes in the set N .
Any edge e ∈ γ is a pair of indices stating the nodes connected by element e. Each node n ∈ N is having
its coordinate labeled xn. An example of such a line description is illustrated in Figure A.8.

In implementations such as ParaDis [9], the dislocation lines are approximated using linear segments and it
is convenient to define the Burgers vector as a per-segment and per-direction constant (see, e.g., Bulatov and
Cai [7, Section 10.1.1]). Thus we denote bi,j the constant Burgers vector along the segment that connects
nodes i and j in direction ti,j . For this convention, it follows that bi,j = −bj,i since ti,j = −tj,i, see inset in
Figure A.8. The principle of conservation of the Burgers vector becomes that

∑
j bi,j = 0 across any node,

see inset in Figure A.8. Note that this choice of implementation trivially guarantees that the Burgers vector
is conserved along any simple loop iterated over in either direction.

The line force given in (A.11) can be integrated to nodal consistent elastic forces:

f el
i =

∮
C
fPK(x)Ni(x)dL(x) (A.12)

where Ni(x) stands for the shape function associated with node i. The next stage of discretization approx-
imates the interaction stress as a sum of contributions from the segments by using the following property:

Property 1. Stresses σ̃ generated by a closed dislocation path. Let a dislocation closed-path C being dis-
cretized with segments taken from γ. Then the total contribution to the stress σ̃ can be written as the sum
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Figure A.8: Dislocation network represented as a set of “nodes” interconnected by straight segments. Empty circles represent
simple computational discretization nodes. The full disk (node 0) is both a computational node and a physical node, since it
represents a dislocation triple-juncture. Note that two neighboring segments have the same Burgers vector if the connecting
node is a simple discretization node (e.g. b2,1 = b1,0). The sum of all incoming Burgers vectors matches the sum of all outgoing
Burgers vectors across a node.

of the contributions of the segments:
∀x σ̃(x) =

∑
e∈γ
σ̃e(x)

With such a superposition property, the discrete Peach-Koehler becomes:

fPK(x) =

∑
e∈γ

(σ̃e(x) · b)× ξ(x)

+ (σ̂(x) · b)× ξ(x) (A.13)

Discretizing the contour integral of (A.12) we obtain the following approximation4:

f el
i =

∑
e∈γ

∑
e′

∫
e′
{[(σ̃e(x) · b)× ξ(x)] + (σ̂(x) · b)× ξ(x)}Ni(x)dL(x). (A.14)

Overall it can be summarized with the following formula for the linear elastic force:

f el
i =

∑
e∈γ
f̃

el
e,i + f̂ i (A.15)

In order to include the self interaction, one has to take into account the core energy. This core energy
density is usually assumed to depend on the core energy associated with the local character angle of the
dislocation line. Also, it is possible again to express to volume integral as an integral over the line itself,
which combined with the discretization of C leads to:

U core(C, a) =
∫

dU core(x, a)dx =
∮
C
W core(ϑ(x), a)dL(x) ≈

∑
e∈γ

W core(ϑe, a)Le (A.16)

where Le is the length of segment e. A precise functional structure of W core is given in CADD-3d.II. The
core energy contribution to the nodal force is consequently related to the length variation of the segments
in γ:

f core
i =

∑
e∈γ

W core(ϑe, a)∂Le
∂xi

=
∑
e∈γ
f core
e,i (A.17)

Afterall we have the force acting on any dislocation node to be expressed as a sum of segment contributions

4Employing a quadrature rule will result in the same formulation.
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with externally applied forces:
∀i ∈ N f i =

∑
e∈γ

[
f core
e,i + f el

e,i

]
+ f̂ i (A.18)

A.3.3. Dislocation Mobility
The Peach-Koehler force field acts effectively on the line as a driving force. The dynamical evolution
can be realized by integrating the configuration of the dislocation lines over time. In the over-damped
regime, acceleration effects are neglected. Then the dislocation mobility is the relation existing between the
dislocation velocity v and the Peach-Koehler force [7]:

v(x) = Mϑ(x),T (fPK(x)) (A.19)

where Mϑ,T is a function that depends on the local character angle ϑ(x) and on the temperature T [22]. It
accounts for the energy dissipated during over-damped dislocation motion. At moderate velocities (a fraction
of the shear wave speed), the damping is due to phonon viscous forces which are mainly proportional to the
temperature [26, 21, 18] leading to a linear mobility relation:

v(x) = B(ϑ(x), T )fPK(x) (A.20)

where B is a tensor that depends on the dislocation character angle and temperature T . For convenience we
will now drop the dependence on x. In the case of FCC materials, it is classical to prevent climb motion5
to account for the effect of Shockley partials. To that end the tensor B can be defined as proportional to a
projection onto the slip plane:

B = Λϑ · (I − n⊗ n) (A.21)

where n is the unit vector normal to the desired slip plane, and Λϑ is a scalar. Then, by employing A.11
and A.21 into A.20 and rewriting thanks to cross product identities leads to:

v = Λϑ [b · σ · n] · (n× ξ) (A.22)

which shows that the infinitesimal dislocation velocity is in the direction (n × ξ), which is normal to the
dislocation line wihtin the slip plane. By defining the resolved shear stress as σres = b·σ·n

|b| we obtain the
scalar mobility relation, which is used in the ParaDis code:

|v| = Λϑσres|b| (A.23)

Such a mobility law can be evaluated either from experiments, theory [14, 1, 23, 12, 16] or molecular dynamics
simulations [25, 27, 29, 5, 11]. At moderate velocities, it was shown that Λϑ was inversely proportional to
temperature [29]). Furthermore, it is important to insist on the dependence of the mobility law with the
dislocation character angle. Offline molecular dynamics calculation can extract a finite set of mobility-angles
relations. Consequently, it is classical to interpolate Λϑ in between the precomputed angles [11].

In the small scale cases considered in the companion paper III, it is important to acknowledge inertial effects,
so that an effective mass has to be introduced:

σres|b| = Dϑ|v|+md|v̇l| (A.24)

where md is an effective mass density (Kg/m) and where we have noted D = Λ−1. If one wants to limit
motion when the resolved stress is below a Peierls stress, we obtain:

(σres − σPeierls) |b| = Dϑ|v|+md|v̇l| (A.25)

5out of slip plane.
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A.3.4. Linear-elastic prediction of the displacement field due to a dislocation loop
In order to enforce displacement boundary conditions we know that we have to provide the displacement ũ
on the ∂Ωu. It was defined as the displacement resulting for the presence of dislocations in an infinite space.
The work of Hirth and Lothe[22] provided the expression of such a displacement for an isotropic material
in the case a triangular dislocation loop connecting three points A, B and C

ũ(x) = bΞ(x)
4π − 1− 2ν

8π(1− ν) [fAB(x) + fBC(x) + fCA(x)] + 1
8π(1− ν) [gAB(x) + gBC + gCA(x)] (A.26)

tBC

tCA

tAB

A

C

B

RC

RB

RA

M

n
b

λC

λB

λA

Figure A.9: Geometrical description of a triangular loop ABC lying on a glide plane normal to the vector n with a unique
Burgers vector b. The point M is where the displacement field has to be evaluated.

where Ξ is the solid angle formed by vectors λA,λB,λC . Also f and g follow these expressions:

fAB = [b ∧ tAB]ln
(
RB

RA
· 1 + λB · tAB

1 + λA · tAB

)

gAB = [b · (λA ∧ λB)] λA + λB
1 + λA · λB

The meaning of the geometrical parameters RA,RB,RC ,λA,λB,λC , tAB, tBC and tCA are presented on Fi-
gure A.9. In the expression of ũ, the solid angle Ω is the only term being discontinuous and will acknowledge
the displacement jump through the glide plane of a FCC dislocation. Barnett and Baluffi [2, 3], proposed

n
b

Cp

Figure A.10: Generic decomposition of a polygonal loop lying on a glide plane normal to the vector n with a unique Burgers
vector b. The principle is to choose a point Cp in the glide plane and to decompose the loop in triangles. The displacement
produced by the superposition of the all the triangles is equivalent to that one produced by the polygonal loop.

to decompose any dislocation line discretized by segments in γ into triangles as illustrated on Figure A.10.
Based on this expression, Fivel and Depres [15] provide the algorithmic details of for the construction of the
displacement fields for an arbitrary dislocation loop, including the case where several slip planes would be
spanned by the same dislocation. This treatment allows to express displacement as a sum of contributions
from segments which provides the following property.
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Property 2. Displacement ũ generated by a closed dislocation path. Let a dislocation path C be a closed
loop discretized by the segments in γ. Then the displacement field created by C can be computed as a sum of
contributions from each segment:

∀x ∈ Ω ũ(x) =
∑
e∈γ
ũe(x)

B. Error estimation for the core template

The data generated from a MD simulation can then be simplified: all atomic positions x0,i are projected
onto the (y, z) plane in order to obtain a two-dimensional set of points x̄0,i

x̄0,i =
[

0 1 0
0 0 1

]
x0,i. (B.1)

Let us consider the situation where the core template is used over a radius rc. The total correction made
can be expressed in cylindrical coordinates (the axis of the cylinder is the line direction):

Err(rc) =
∫ Lx

x=0

∫ 2π

ϑ=0

∫ rc

r=0
| ∆ũcorr(r, x, ϑ) | r dr dx dϑ (B.2)

where Lx is the size of the considered cylinder, such as the one presented in Figure 6(a). If we approximate
the core template as a radial function:

Err(rc) = 2πLx
∫ rc

r=0
| ∆ũcorr(r) | r dr (B.3)

and by differentiation we obtain:

| ∆ũcorr(rc) |≈
1

2πLxrc

∂Err(rc)
∂rc

(B.4)

By extracting the error function numerically we can numerically estimate the dependency of the core tem-
plate correction to the radius as presented on Figure B.11.

Figure B.11: Core template correction magnitude as a function of the distance to the dislocation line.
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C. Dislocation Extraction Algorithm

The DXA requires the identification of reference lattice vectors corresponding to lattice vectors in the
deformed configuration. The atomic reference positions Λa is assumed to be a subset of a Bravais lattice

Λ := { a1 v1 + a2 v2 + a3 v3 | ∀ i = 1, ..., 3 ai ∈ Z },

with basis vectors {vi}i=1,...,3. For this purpose, we assume a tetrahedral tessellation (i.e. a three-
dimensional Delaunay triangulation) of the reference lattice Λa. This definition is not unique, e.g. other
types of elements could be used in almost the same manner. However, we found it most convenient to
employ a tetrahedral tesselation from a computational point of view since efficient tools for are available off
the shelf 6.

Since the reference lattice has translational symmetry there exists a finite set of distinct lattice vectors
X . We call elements v ∈ X the ideal lattice vectors. Next we assume a tessellation T of the current
configuration Λa + ua. We denote elements of T , i.e. tetrahedra, faces and edges, by t, f and s. In order
to identify “dislocated” tetrahedra, we seek to relate the edge vectors dys in T to the ideal lattice vectors.
This procedure is schematically depicted in Figure C.12(a) for a face-centered cubic (FCC) lattice. For the
identification we use the criterion from [34] defined

∀ dys dxs := Arg
{

min
v∈X
‖v − dys ‖

}
(C.1)

which minimizes the Euclidean norm with respect to X . We note that this procedure essentially detects
full dislocations in the deformed lattice. However, it is also possible to detect partial dislocations by adding
the ideal lattice vectors corresponding to the reference lattice structure in the stacking fault. This is shown
schematically in Figure C.12(a) for the FCC lattice which incorporates a hexagonal closed-packed (HCP)
structure in the stacking fault. Other criteria have been proposed, e.g. by comparing angles between lattice
vectors as done by [20] but we have found (C.1) to be a very robust criterion if solely crystal slip is considered
which suffices for our current purposes. However, we remark that the identification (C.1) is limited to single
crystals and small lattice rotations. For the more general identification procedure we refer the reader to
[36]. In the following we assume that each reference lattice vector is computed via the criterion (C.1). The
true Burgers vector for each face f ∈ T can then be readily identified via

bf =
∑
s∈f

dxs. (C.2)

Tetrahedra with bf 6= 0 for two or more faces are consequently defined as distorted tetrahedra (cf. Fi-
gure C.12(b)).

Algorithm 2 summarizes the relevant steps of our detection algorithm. In practice, we loop over all faces
until we detect a non-zero Burgers vector. Subsequently we track the dislocation line through the crystal
by repetitively identifying the next distorted neighbor of the previous tetrahedron. For each distorted
tetrahedron we store its center of mass to a vector p̂. We abort the tracking process if we arrive at the
initial tetrahedron or at a boundary face. In order to generate the line representation from the point set p̂
we have used a simple scheme by extracting only every N -th node into a reduced point set. A continuous
line representation is then derived by connecting the elements of the reduced point set via piece-wise linear
segments.
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Figure C.12: Schematic illustration of the identification of reference lattice vectors corresponding to the lattice vectors in the
current configuration.

Algorithm 2: Dislocation detection algorithm (dislocDetn)
Input: Deformed lattice Λa + ua

1 X ← define set of ideal lattice vectors;
2 T ← compute tetrahedralization of Λa + ua;
3 for all e ∈ T do
4 dxs ← compute its reference lattice vector using the criterion (C.1);
5 end
6 V ← {};
7 for f ∈ T do
8 bf ← compute its Burgers vector via (C.2);
9 if bf 6= 0 then

10 p̂ ← {};
11 while dislocation line not closed do
12 p̂ ← add center of mass of tf ;
13 tf ← identify distorted neighboring tetrahedra of tf ;
14 end
15 V ← add p̂;
16 eliminate distorted faces from T ;
17 end
18 end
19 for all p̂ ∈ V do
20 γa ← compute a continuous line representation from the point set p̂;
21 Γa← map γa to the reference configuration;
22 end

Output: Discrete atomistic dislocations γ
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Acronyms

DDD discrete dislocation dynamics
MD molecular dynamics
FEM finite-element method

CADD-3d glossary

ΩA Molecular dynamics region
ΩP Boundary condition of the the Molecular dy-

namics region. This is also referred as the pad
region in the literature

∂ΩI Atomic region providing the boundary condi-
tion to the linear elastic model. This region
is often referred as the interface

ΩC Continuum region. It is the superposition
of Dislocation dynamics and linear elastic re-
gions

∂Ωu Exterior boundary condition of the Contin-
uum region where displacements are pre-
scribed

∂Ωt Exterior boundary condition of the Contin-
uum region where tractions are prescribed

∆ũcorr Core template correction field
Ωcore Region defining the core of one or several dis-

locations

Atomistic glossary

Λa Bravais lattice of atomistic domain
fa force on atom a
va velocity of atom a
ra position of atom a
ua displacement of atom a
Ua Total Potential energy of atoms

Dislocation dynamics glossary

•̃ Field computed with infinite boundary condi-
tions following [38]

•̂ Field computed from an elastic boundary
value problem following [38]

Rcore Core Radius which is characterizing the non
linear region around the dislocation line

U core Core energy, defined as the lineic energy den-
sity for a disc of radius Rcore centered on the
dislocation line

U el Strain energy due to a dislocation
γ Set of dislocation segments
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γAD Dislocation segments located in the detection
zone within the molecular dynamics region

γc Dislocation segments with at least one end
located in the continuum region

γv Virtual dislocation segments employed to
close the loops on ∂ΩI

t̂ Corrected boundary traction for elasticity
boundary value problem

ũ Displacement field due to the presence of dis-
locations within infinite boundary conditions

ε̃ Infinitesimal strain field due to the presence
of dislocations within infinite boundary con-
ditions

σ̃ Stress tensor field due to the presence of dis-
locations within infinite boundary conditions

N Dislocation dynamics nodes
NDD Dislocation dynamics nodes associated to seg-

ments in γc

fd force on dislocation node d
se dislocation segment
fPK Peach Koehler force
C Path describing the dislocation lines
ξ Normalized vector along the dislocation line
b Burgers vector
B Characteristic tensor for the linear mobility

law
Λ Characteristic scalar in the FCC linear mobil-

ity law
M Mobility function
md Dislocation effective mass employed in the

modified mobility law
σres Resolved shear stress
σPeierls Peierls stress

Continuum elasticity

û Dislocation free displacement field
u Displacement field
t Boundary traction
ε Infinitesimal strain field
σ Cauchy stress field
ε̂ Dislocation free infinitesimal strain field
σ̂ Dislocation free stress tensor field
un displacement of finite-element node n
U c Strain energy of the continuum
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