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Review Article 

Simulations employing finite element method at 

liquid|liquid interfaces 

Pekka Peljo 

1 , ∗, Micheál D. Scanlon 

2 and T. Jane Stockmann 

3 , ∗

Simulated curves compared to recorded data have provided a 
breadth of insight into mechanisms and kinetic aspects of 
charge transfer at the liquid|liquid interface (LLI). This is often 
performed with software employing finite element methods 
(FEMs). The advent and application of this asset to soft 
interfacial chemistry has allowed a more facile exploration of 
geometric considerations, the role of interfacial size (from 

macro to nano), while simultaneously expanding to include 
homo/heterogeneous reactions such as electrocatalytic, 
photochemical, nanoparticle interactions, etc. This article 
provides insight into the status of the field of LLI FEM studies 
as well as a perspective as to what role simulations and 

numerical analysis will play in the future. 
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ntroduction 

inite element method (FEM) simulation software is ul- 
imately a synthesis of established analytical equations 
ith geometric components. These can then contain com- 
lex material properties or be combined with multiple 

hysics (so-called multi-physics), or equation sets, e.g.
eat transfer with electrical conduction. The degree of 
omplexity of these systems necessitates their numeri- 
urrent Opinion in Electrochemistry 2018, 7 :200–207 
al simulation. To facilitate this, the geometry is subdi-
ided by a mesh consisting of elements, e.g. free trian-
ular or quadrilateral. In this discretization , the problem
s then solved for each element and subsequently com-
ared to the whole. FEM has been an invaluable utility for
lectrochemists in battery, materials, mass transport prob- 
ems, etc. and has been comprehensively reviewed [1–3] .

ore complex simulations of electrochemical systems, for 
xample by molecular dynamics or by density functional 
heory, are outside the scope of this article. 

lectrochemistry at interfaces between two immiscible 

lectrolyte solutions (ITIES) is a distinct and versatile
rea of contemporary electrochemistry, as summarized by 

ecent reviews [4–9] . This review will focus on digital sim-
lations of electrochemical processes at ITIES, highlight- 

ng the applications as well as the perspectives. Scheme 1
llustrates the development of a simulation from the ex-
eriment, in this case an interface held at the tip of a
ipette – a micro-ITIES, as well as mesh refinement. Re-
ning the mesh can be a particularly challenging aspect
f the FEM; too fine and run-times become prohibitively
ong, too coarse and the result is not accurate or precise.

reat care should be given to this step, with comparison
sing simple mechanics to known analytical solutions be-
ore moving forward with more exotic systems. 

harge transfer simulations at an ITIES 

hile conventional electrochemistry operates at a 
olid|liquid interface, e.g. metal (Pt, Au, etc.) or carbon,
undamentally analogous charge transfer reactions can 

ake place at LLIs such as water|oil (w|o), or even w|ionic
iquid (w|IL). This means that the same electrochemical 
echniques (e.g., cyclic voltammetry (CV)) and theory 

f charge transfer can be transposed to so-called soft
nterfaces. This is advantageous as LLI electrochemistry 

s not limited to redox electrochemistry, but also includes
imple and facilitated ion transfer (FIT) reactions, where 

ons are pushed or pulled across an interface. Simple ion
ransfer (IT) of ion i with charge z transferring from water
w) to oil (o) is given through the following reaction: 

 

z 
w 

↔ i z o (1) 

ons are manipulated by biasing the potential across
he ITIES using electrodes immersed in either phase.
he potential drop is localized across the w|o inter-

ace ( ∼1 nm) and called the Galvani potential difference
 φw 

− φo = �w 

o φ) ; where φw 

and φo are the potentials in
www.sciencedirect.com 
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Scheme 1 

( A ) schematic of a micropipette ITIES experimental setup; ( B ) photograph of the pipette tip immersed in an organic phase (o) with an aqueous (w) 
solution held inside and the interface at the tip; ( C ) the pipette tip converted to 2D axial symmetric geometry, taking advantage of the infinite 
rotational symmetry C ∞ 

element of the cylindrical capillary and further reducing it in half greatly reduces the computational effort and simulation run 
time; ( D ) illustrates the mesh surrounding the simulated ITIES shown in C, where an additional geometry element, a box, has been added to better 
refine the mesh in the area of hemispherical diffusion in the vicinity of the ITIES on the o side. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

phase w and o , respectively. �w 

o φ is controlled via elec-
trodes positioned in either phase. In this way, �w 

o φ is simi-
lar to E or the potential drop across a solid|liquid boundary
and the kinetics of IT are often handled using a Butler–
Volmer model [4] . These equations often form the basis
for most simulations, which can then be expanded upon
for further complexity. Indeed, the driver for digital sim-
ulations is often the absence of a simplified analytical so-
lution. 

Fundamental studies 

Droplet or thick-film modified electrodes are one macro-
ITIES (mm 

2 to cm 

2 ) system often simulated, with elec-
tron transfer (ET) across the electrode-droplet interface
coupled to IT across the LLI. Zanotto et al. [10 

●] recently
explored a solid electrode completely covered by a thick
organic film, which was then immersed in an aqueous
phase, using a 1D simulation. They showed [10 

●] that the
coupled effect of ET at the solid| o interface with IT at w | o
had an appreciable influence on the shape, peak-to-peak
potential difference, as well as the mid-peak potential in
the i –V curve. The numerical simulations could satisfac-
torily explain deviation from the 59 mV peak-to-peak sep-
aration expected for a reversible ET or IT reaction (num-
ber of electrons z = 1 for ET or singly charged species for
IT). This approach is actually similar to typical ionophore-
based ion-selective electrodes (ISE) [11] , where a solid
conducting polymer is used for ET that is coupled with
www.sciencedirect.com 
transfer of an analyte ion across the water-membrane in-
terface. Simulations of these kinds have been considered
by Lewenstam utilizing Nernst–Planck–Poisson equa-
tions [12] , and by Amemiya [13,14] and Bakker’s groups
[15 

●,16] for the fully electrolyte supported case; i.e. Fick’s
laws of diffusion. 

These simulations were extended to 2D to study coupled
ET–IT reactions upon collision of organic droplets with
an electrode [17 

●] , considering both diffusion and migra-
tion. In this case, the secondary or tertiary current distri-
bution was also solved to show that the i R drop in the
toluene solution is negligible. Furthermore, both the en-
tire electrode| o and w | o surface are electrochemically ac-
tive, despite higher current densities at the three-phase
boundary. From comparison with the experimental data,
it was apparent that the colliding droplets had quite high
contact angles with the electrode after collision. 

Meanwhile, the exact mechanism of ET across LLIs has
been a subject of controversy [2] . This topic was recently
revisited by a combination of experiments and FEM sim-
ulations of ET between ferrocene (Fc) and hexacyano-
ferrate (FeCN 6 

4–) [18 

●] . Comparison with experimental
and simulated CVs indicate that the likely mechanism is
one of potential independent Fc partitioning to w with
subsequent Fc oxidation/FeCN 6 

4– reduction in the bulk
aqueous phase, followed by potential-dependent Fc + 
Current Opinion in Electrochemistry 2018, 7 :200–207 
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ransfer back from w → o . These data agree well with the
arlier experimental and simulated results of Osakai and 

o-workers [19] . If a gold nanofilm was added to the in-
erface, it behaved as a bipolar electrode and electrons 
ere shuttled through the gold film in a heterogeneous 

nterfacial redox electrocatalysis [18 

●,20] . Stockmann et 
l. [21 

●] exploited the Pt nanoparticle catalysis of O 2 

eduction at a LLI for single nanoparticle impact stud- 
es; whereby, as a nanoparticle impacts with the inter- 
ace a spike from the electrocatalytically enhanced reac- 
ion is recorded in the current transient in the pA range.

anoparticle simulations [21 

●] at the LLI were used to
xplore the effect of penetration depth, through a sym- 
etrically bifurcated sphere cap and superhemisphere, on 

he spike current intensity. These simulations also con- 
rmed the necessity of an O 2 partitioning mechanism –
etween water and 1,2-dichloroethane – proposed by Tro- 

ánek et al . [22] . 

D simulations have provided insight into differential ca- 
acitance at the back-to-back double layers formed when 

 LLI is established. These showed that the width and
ymmetry of the two interfacial regions are crucial param- 
ters and experimental capacitance data could be used to 

stimate the width of the interfacial region, which the au-
hors suggest is on the order of 3 nm [23] . FEM was also
sed to calculate the current distribution in a large rectan-
ular cell with smaller electrodes, ruling out the current 
istribution as an explanation for the driving force for a
arangoni shutter where gold nanoparticles, adsorbed at 

he ITIES, move to the center of the cell and to the edges
s a function of the applied polarization [24] . 

dditionally, FEM have been utilized for detailed charac- 
erization of a flexible thin layer electrochemical flow cell 
or ultrasensitive amperometric detection at an ITIES,
eaching nanomolar detection limits [25] . If ITIES- 
ased devices become more common, this kind of sim- 
lation will be extremely useful for device optimiza- 
ion. The recent use of macro scale (mm → cm) models
 10 

●,16,18 

●,26 

●–29 ] suggests that there is a thriving field
f study for bulk material properties, their interaction with 

he LLI, and the fundamental interrogation of the LLI’s 
hysical properties. 

ith the rapid development of modern micro [30,31] ,
nd nano fabrication techniques [32,33] , there was a push
oward miniaturization owing to a number of benefits.
hese included reduced capacitance/solution resistance 

ue to the lower operational current range and thus, no
onger required i R-compensation. This meant that the in- 
erfacial surface (e.g. radius of a disc interface) was smaller
han the diffusion layer thickness ( δ ≈ ( Dt ) 1/2 ) at most scan
ates and hence steady state current profiles were gen- 
rated. This improved mass transport increased the ex- 
erimental sensitivity permitting the exploration of faster 
harge transfer reactions and had a concomitant increased 
urrent Opinion in Electrochemistry 2018, 7 :200–207 
nterest toward their characterization through simulation.
 recent perspective by Arrigan and Herzog [8 

●] in this
ournal examined simple IT and so the concept is only
riefly introduced here. Additionally, electrochemistry at 
acro, micro, and nano interfaces has been reviewed re-

ently [7,9] . One of the first simulations by Girault’s group
34] focused on the position of the LLI at a micropore;
n either side or within a microchannel. Later, pore an-
le and spacing were explored for micro-ITIES arrays by
rrigan’s group [35,36] . This was extended to interfaces
oused at the tip of pulled borosilicate or quartz glass cap-

llaries [37,38] . Nishi et al. [37] examined the geometric ef-
ect combined with a viscous secondary phase, specifically 

|IL vs. w|o interfaces, where the diffusion coefficient is
–4 orders of magnitude lower for the former vs. the latter.
his causes the i –V profile to resemble a macro-ITIES

ignal with linear diffusion dominating in both IT direc-
ions owing to the increased viscosity in the IL phase,
hereas w diffusion is confined by the pipette walls. In
009, Rodgers et al. [38] examined the effect of taper angle
n pulled quartz pipettes, the diffusion of species, and the
esultant i –V signal. They demonstrated that forward and
everse waves could characterize the geometric and trans-
ort properties of the pulled pipette [38] with a high de-
ree of sensitivity. Simultaneously, micro LLI arrays have 

een developed and explored, e.g. Alvarez de Eulate et al.
39] , with the goal of understanding interface location and
ts impact on i –V curves. 

he complexity of these models was increased to ex-
mine FIT processes with typically 3–4 processes be-
ng considered [5] . This has led to studies at the w |IL
nterface [40] where ILs have been shown to be ex-
ellent solvents for metal ion extraction, but also the
tility of somewhat exotic organic solvents, like CHCl 3 
41] . In the latter [41] , a phospholipid, 1,2-dimyristoyl-
n-glycero-3-phosphocholine (DMPC), highly soluble in 

HCl 3 ( ε = 4.81), was investigated at a blunt pulled
icro-ITIES (Ø = 25 μm). This confirmed that the ana-

ytical solution of FIT, formulated for a macro-ITIES, was
ransposable to the micro-ITIES platform employed. 

lectrocatalytic reactions 

wing to its biomimetic nature, there are a number of
aluable electrocatalytic reactions such as the O 2 reduc- 
ion reaction (ORR) that are of considerable interest. This
s exemplified through the recent work by Girault’s group
26–28] , examined through a macro-ITIES 1D simula-
ion. Therein, Girault and co-workers examined the ORR 

see Figure 1 ) using decamethylferrocene (DMFc), and 

ther metallocenes as catalyst/electron donor in the oil
hase and H 2 SO 4 as the proton source in the aqueous
hase. Protons are pushed across the interface at high pos-

tive potentials and coordinate with DMFc in the bulk
il phase in the vicinity of the ITIES. While the DMFc
ydride formation, and subsequent oxidation, were 

reated as bulk processes, the speed of the reaction in-
www.sciencedirect.com 
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Figure 1 

Mechanism of O 2 reduction using decamethylferrocene as both 
electron donor and catalyst, while the liquid|liquid interface, between 
water|1,2-dichloroethane (w|DCE) acts as the junction for charge 
separation. 
Source: Adapted from Journal of Electroanalytical Chemistry, Vol 729, 
Stockmann TJ, Deng H, Peljo P, Kontturi K, Opallo M, Girault HH, 
Mechanism of oxygen reduction by metallocenes near liquid|liquid 
interfaces, Pages No.43-52, Copyright 2014, with permission from 

Elsevier [27] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dicated that the reaction layer was small, ∼50 μm, com-
pared to the diffusion layer thickness without O 2 re-
duction, ∼200 μm [27] . Simulated and experimental CVs
were compared through two curve features: (i) the ab-
sence of a proton return peak in the edge-of-scan profile
and (ii) the DMFc + transfer peak intensity. Through a
similar process, this group examined the surprising O 2 re-
duction at LLIs in the presence of alkali metals or rather
their hydration sphere, whose protons are made acidic as
they transfer across the ITIES [28,29] . 

Optimizing or predicting the reaction layer thickness
of a system is a valuable utility when trying to incor-
porate additional in situ detection methods to comple-
ment the electrochemical ones, such as electrogener-
ated chemiluminescence, scanning electrochemical mi-
croscopy (SECM), etc. 

SECM simulations 

SECM digital simulations have been utilized extensively
for LLIs. For example, H 2 O 2 generated from O 2 reduc-
tion by DMFc at a trifuorotoluene|water (TFT|w) inter-
face was probed by a SECM tip sensitive to H 2 O 2 , and the
experimental results were compared with FEM simulated
curves. If the H 2 O 2 generation was modeled as a constant
flux from the ITIES, simulations show negative feedback
www.sciencedirect.com 
close to the interface, while the experiments show contin-
uous increase also close to the interface. Hence, a model
considering H 2 O 2 generation within the 50 μm thick uni-
form reaction zone was considered to obtain better agree-
ment with the experimental data [42] . 

Mirkin and co-workers proposed ET/IT as a new mode of
SECM operation, using a nanometer sized pipette filled
with an organic phase containing a neutral redox mediator
[43] . This redox mediator can partition into the aqueous
phase and undergo redox reactions at the substrate. The
ions produced in this ET reaction can be transferred into
the organic filling solution of the nanopipette in an IT re-
action, giving rise to a measurable IT tip current. Trans-
fer of other ions at the tip can be used for distance con-
trol in negative feedback mode. Digital simulations were
employed to study the ET/IT feedback considering (i)
the partitioning of neutral redox species from the pipette
to the external solution, (ii) diffusion of these species to
and their oxidation (or reduction) at the conductive sub-
strate, (iii) diffusion of the reaction product to the pipette
orifice, and (iv) IT at the tip ITIES. This approach was
later used to detect short-lived intermediates of electro-
catalytic O 2 reduction, by using O 2 as a redox mediator for
the ET reaction, and measuring the IT current of the O 2 

–

intermediate [44] . Additionally, simulations can be used
to generate analytical approximations, as done recently by
Oleinick et al. [45 

●●] for the ET/IT SECM configuration
where the surface-generated ionic species is either chem-
ically stable or participates in a first- or second-order ho-
mogeneous reaction. 

Furthermore, digital simulations of SECM have been
used to study the kinetics of O 2 reduction by DMFc in
acidified DCE in an EC ꞌmechanism, where DMFc gener-
ated at the SECM tip reacted homogenously with O 2 and
protons to regenerate the initial DMFc + . Through com-
parison of simulated and experimental curves an apparent
rate constant for the homogeneous reaction was obtained
[46] . 

Nanopores fabricated in a nanocrystalline silicon mem-
brane have been probed by SECM with a high degree
of resolution achieved through the use of a nanopipette
[47,48] . FEM simulation was employed to investigate the
spatial resolution of the approach [47] . This report has
interesting implications toward biological cellular imag-
ing particularly when combined with the following: (i)
the recent work by Kuss et al. [49] that used high speed
SECM imaging with a Pt disc micro electrode in conjunc-
tion with a forced convection numerical model to study
the redox properties of live cells; (ii) as well as the work
of Henderson et al. [50] in the development of a 3D topo-
graphical simulation for their live cell investigations. The
combination of these three works suggests one direction
SECM and numerical analysis could take. That is, rapid
bio-imaging of cells using liquid|liquid junction scanning
Current Opinion in Electrochemistry 2018, 7 :200–207 
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Figure 2 

Comparison of the z-velocity maps obtained for the aqueous phase in a 
cylindrical cell, with a rotating rod ( r = 3 mm) at ω = 62.8 Hz from 3D 

FEM simulation of laminar flow (left) and from MRI, both in y, z-planes. 
ITIES is located at the bottom of the figure and there is negligible 
convection in the DCE phase. The asymmetry results from a slight 
misalignment between the rotating rod and the cell. 
Source: Adapted from Journal of Electroanalytical Chemistry, Vol 791, 
Vega Mercado F, Ovejero JM, Zanotto FM, Serial MR, Velasco MI, 
Fernándes RA, Acosta RH, Dassie SA, Facilitated proton transfer across 
liquid|liquid interfaces under forced hydrodynamic conditions. 
Determination of partition coefficients of neutral weak bases, Pages No. 
64-74, Copyright 2017, with permission from Elsevier [53 ●] . 
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robes with a high degree of spatial resolution. With this,
 more comprehensive picture of bio-cellular processes 
ould be gained in conjunction with the simultaneous re- 
ponse of live cells to external stimuli. The LLI offers
he possibility to investigate living cells using non-redox 

ctive charged species. This is demonstrative of one po- 
ential avenue for FEM simulation development and ap- 
lication. 

ultiphysics approach 

vejero et al. have studied the effect of forced hydrody- 
amic convection on both IT and FIT, both theoretically 

nd experimentally [51] . This is an example of a typical
pproach where the fluid velocity was assumed indepen- 
ent of the distance from the stirrer [51] . This assumption

s reasonable if the electrode distance from the stirrer is
arge enough, reaching a constant value of 0.88447 ×√ 

vω ,
here v is the kinematic viscosity and ω is the angular
elocity of rotation, as demonstrated by Levich [52] . Ad-
itionally, hydrodynamic conditions produced by the ro- 
ating stirrers are comparable to those of the rotating-disc 
lectrode at long distance [51] . These kinds of models
re relatively easy to solve, but the model accuracy can
e rather limited. However, recent development in both 

omputer hardware and software has made more complex 

odels accessible even on tabletop computers. For exam- 
le, recently Vega Mercado et al. proposed a novel elec-
rochemical methodology to determine the partition co- 
fficient of neutral weak bases [53 

●] . In this case, forced
onvection by a rotating rod in the top phase was used to
nhance the mass transfer to and from the top phase, and
he relationships between charges transferred during the 

orward sweep of the CV at different rotation rates and at
ifferent pHs allow determination of the partition coeffi- 
ients of weak bases. Models of varying complexity were 

eveloped to validate the methodology, whereas mag- 
etic resonance imaging (MRI, also sometimes called nu- 
lear magnetic resonance (NMR) imaging) was utilized to 

xperimentally validate the computational fluid dynamic 
CFD) simulations, both in 2D and 3D. This article is an
xample of the complex combination of both CFD sim- 
lations with those of mass transfer in two phases, acid–
ase reactions, partitioning of neutral species, and poten- 
ial controlled IT. The discrepancy between the simu- 
ated and experimental velocity values show that further 
evelopment is still required especially for 3D modeling,
ut the trends are reproduced remarkably well, as shown 

n Figure 2 . 

oving boundary model was utilized by Oseland et al. 
54 

●] , who used a 1D FEM model to study amine (jef-
amine D230) transfer from an expanding droplet into an 

queous solution. Microelectrochemical measurements at 
xpanding droplets were used to probe the potentio- 
etric response of a pH sensitive microelectrode, and 

his response could be converted to give the concentra- 
ion profile of the amine as a function of the electrode-
urrent Opinion in Electrochemistry 2018, 7 :200–207 
roplet separation when the measurement was coupled 

ith time-lapse microscopy. The theoretical concentra- 
ion profile obtained with a moving plane model in COM-
OL to describe the expanding droplet matched well the
xperimental data [54 

●] . Moving boundaries are impor-
ant for applications where shape and size of the droplet
hanges over time, for deposition of solids at LLI etc. and
urther development is expected to see these models uti-
ized for understanding these effects better. For example,
he shape of a droplet on an electrode depends on the
pplied potential, so digital simulations corroborated by 

xperiments would be beneficial for understanding the 

lectrochemical response upon droplet collision with an 

lectrode. 

urthermore, a fundamental question that is still of im-
ortance is the adsorption of species at an ITIES and in
he vicinity on the material walls of electrolytic cells. This
as previously been explored by Méndez et al. [55] using a
uoy–Chapman model for species adsorbing at the inter-

ace, while Ellis et al. [56] examined species adsorbing on
he pore wall of a micro-pore ITIES through a Langmuir
www.sciencedirect.com 
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Figure 3 

(A) Operating principle of the photo-ionic cell, where the dye is photoreduced in aqueous phase and extracted into the organic phase. ( B) Digital 
simulations of mass transport; ( C ) absorption of light; and ( D ) fluid flow are required to estimate the system performance and to determine the critical 
parameters. Here an example of a 2 mm diameter droplet of aqueous phase containing 0.5 mM of the dye, moving up at the terminal velocity of 
0.34 m/s in organic phase, under ca. 1 sun illumination from below. Simulations were done in 2D axis symmetric mode [58 ●] . 
Source: Adapted with permission from J. Phys. Chem. C, 119 (2015) 4728-4735. Copyright 2015 American Chemical Society [58 ●] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

model. It would be interesting to combine these two per-
spectives as well as include other phenomena, like photo-
catalytic processes or the influence of adsorbed nanopar-
ticles. 

Photochemical charge transfer reactions 

Another example of utilizing multiphysics digital simu-
lations was demonstrated by Méndez et al. [57] for in-
vestigating photochemical reactions at LLIs under hydro-
dynamic convection in a system for conversion and stor-
age of solar energy: photo-ionic cells. The solar energy
is converted to chemical energy in a homogenous photo-
chemical reaction between a sensitizer and a quencher,
and stored by extraction of the photoproduct into the or-
ganic adjacent phase (as shown in Figure 3 A), followed by
physical separation of the phases. The energy can be re-
covered electrochemically with a biphasic fuel cell to pro-
duce electricity on demand [57] . Photochemical reactions
have a large number of parameters affecting the quan-
tum yield and efficiency of the system, so digital simu-
lations are useful to pinpoint the most critical ones for
further optimization. This requires coupling of simula-
tions for both the light absorption and the mass transport
of reactants, as well as computational fluid dynamics to
account for the fluid flow; some results are illustrated in
Figure 3 B–D [58 

●] . The FEM simulations were used to
evaluate the conditions required to reach large quantum
yields of over 50%: long excited state lifetime (in the or-
der of 10–100 μs), large partition coefficient for the hy-
drophobic photoproduct, reasonable dye concentrations
and large redox potential difference between the sensi-
tizer and the quencher [57] . The simulations also show
that the photoreaction should take place very close to the
LLI to minimize the diffusion lengths and time to avoid
www.sciencedirect.com 
recombination reactions. Further simulations were per-
formed to evaluate the effect of the droplet size on the at-
tainable quantum yield [58 

●] . These papers give an exam-
ple of utilizing digital simulations for “debottlenecking”,
where the effect of the different parameters are evaluated
to give guidelines about what is required to achieve high
utilization of light. 

Conclusions and perspectives 

This review has shown that digital simulations have been
utilized to analyze experimental results involving interfa-
cial charge transfer reactions, moving interfaces, partition
and complexation of species, photoreactions and forced
hydrodynamic convection. 

As computational power further increases and the requi-
site cost (in terms of both time and monetarily with re-
gards to computational processing power and memory)
becomes more affordable/achievable, the use of simu-
lation software toward geometric, materials, etc., prob-
lems will become more ubiquitous and further exploit
the ‘multi-physics’ aspect. That is to say, the inherent
power of this method is not only to merge geometric and
mass transport properties together, but is likely to ex-
pand to incorporate the interaction of other physical pa-
rameters, e.g., capacitance models, surface tension (e.g.
through moving boundary), as well as nanoparticle inter-
actions, etc., not to mention 3D aspects, pushing the fron-
tier understanding and physical insight of complex pro-
cesses of LLI systems. 

As stated in the review by Arrigan and Herzog [8 

●] about
miniaturized ITIES: “truly comprehensive models that
incorporate mass transport, kinetics and capacitance, to
Current Opinion in Electrochemistry 2018, 7 :200–207 
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nable a complete characterization of a system under dy- 
amic electrochemical conditions have yet to appear”.
his review indicates that significant progress has been 

ade in comprehensive modeling, and this trend will con- 
inue. However, it should be stressed that certain care has
o be taken with simulations, and verification against ex- 
erimental and analytical solutions should always be per- 
ormed. 
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