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We compute the scaling dimensions of operators with large global charge and spin in 2þ 1 dimensional
conformal field theories. By the state-operator correspondence, these operators correspond to superfluids
with vortices and can be systematically studied using effective field theory. As the spin increases from zero
to the unitarity bound, the superfluid state corresponding to the lowest dimension operator passes through
three distinct regimes: (i) a single phonon, (ii) two vortices, and (iii) multiple vortices. We also compute
correlation functions with two such operators and the Noether current.
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I. INTRODUCTION

Perhaps a way to phrase the main difference between
high energy physics and condensed matter physics is that
high energy physics mostly occurs in the vacuum while
condensed matter physics occurs at finite density. In a
conformal field theory (CFT), this particular difference
disappears: The state-operator correspondence maps finite
density states to local operators and therefore maps finite
density correlators to vacuum correlators.
Recently, this idea was applied using superfluids [1–9].

Superfluids are finite density states and correspond to
operators with large global charge. Furthermore, super-
fluids are described by an effective field theory (EFT),
allowing the computation of correlators in a systematic
perturbative expansion [10]. This EFT was used to study
the CFT operator spectrum at large global charge [1–9].
In an independent line of research, much work was

devoted to using the conformal bootstrap [11,12] to study
the CFT operator spectrum at large spin [13–24]. This
motivated us to ask the following question: Can large spin
operators also be studied using EFT techniques? An
obvious approach to this question is to start with the large
charge operators studied by Refs. [1–9] and then proceed
by adding increasing amounts of spin to them. This
translates to adding angular momentum to the correspond-
ing superfluid.

Experimentally, when angular momentum is added to a
superfluid in the laboratory, vortices develop [25]. However,
the superfluid EFT used by Refs. [1–9] does not incorporate
vortices; all angular momentum is carried by phonons alone.
This suggests that the EFT would incorrectly describe high
angular momentum states. Conveniently, a superfluid EFT
that incorporates vortices was recently constructed [26].
We will use this EFT to study operators that have large spin
as well as large charge.

II. RESULTS

We found that we can study large charge operators with
arbitrary spin, provided that the spin is parametrically
below the unitarity bound. This range of spins is disjoint
from the range in which the large spin bootstrap work
[13–24] is valid—that work only applies to operators
parametrically close to the unitarity bound. Therefore,
our results complement the bootstrap results.
We calculated the dimension Δ of the lowest dimension

operator with charge Q ≫ 1 and spin J. As J varies from 0
to Δ, the corresponding superfluid state passes through three
qualitatively distinct regimes. Wewill simply state the results
now and derive them later. The results are displayed at
leading order in both largeQ and large J. At this order, there
is only a single free parameter α for the entire range of J.
For 0 ≤ J ≲ ffiffiffiffi

Q
p

, the lowest energy state has no vortices
and consists of a single phonon of angular momentum J.
The corresponding operator dimension Δ is [1,3]

Δ ¼ αQ3/2 þ Jffiffiffi
2

p : ð1Þ
For

ffiffiffiffi
Q

p ≲ J ≤ Q, the lowest energy state consists of a
vortex-antivortex pair whose separation increases with J.
The corresponding operator dimension Δ is
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Δ ¼ αQ3/2 þ
ffiffiffiffi
Q

p
3α

ln
Jffiffiffiffi
Q

p : ð2Þ

For Q < J ≲Q3/2, the lowest energy state consists of
multiple vortex-antivortex pairs distributed so that the
superfluid has the same velocity profile as that of a rotating
rigid body [27]. The corresponding operator dimension Δ is

Δ ¼ αQ3/2 þ 1

2α

J2

Q3/2 : ð3Þ

As J → Q3/2 ∼ Δ, the EFT breaks down and, as men-
tioned, we are unable to reach the spin of the operators
studied in Refs. [13–24] by bootstrap methods.
Our results apply to any CFT that satisfies three con-

ditions: First, its large charge sector can be described as a
superfluid; second, this superfluid admits vortices; third,
the only low energy degrees of freedom are the Goldstone
modes of the superfluid. These are the simplest and most
natural conditions we can imagine. Because of this, we
believe—but cannot prove—that our results apply to a wide
range of CFTs with a Uð1Þ global symmetry. For example,
we expect that they apply to the critical Oð2Þ model [28]
and can be tested in principle. Recently, this question was
framed within the conformal bootstrap [29].

III. GENERAL STRATEGY

Wewill now explain in more detail how the above results
were derived. Our general strategy consists of combining
two powerful tools: EFT and the state-operator correspon-
dence. We begin by considering a dþ 1 dimensional CFT
on a cylinder R × Sd. Next, we assume that a given EFT on
this cylinder is a valid description of our CFT. Finally, we
apply the state-operator correspondence directly to the
states of this EFT. Throughout this paper, unless otherwise
stated, we shall work at leading order in the derivative and
field expansion within EFT [1,3].
Note that this strategy differs from that in Ref. [3], which

takes the “top-down” approach of projecting onto a desired
state using the Euclidean path integral. Instead, we are
taking the “bottom-up” approach of simply assuming an
EFT and then quantizing its Hamiltonian while always
remaining in Lorentzian spacetime.
As a reminder, in a CFT, there is a one-to-one corre-

spondence between the eigenstates of the Hamiltonian H
on Sd and the set of scaling operators at any given point.
This is called the state-operator correspondence (see
[11,12] for reviews). The energy E of a state is related
to the scaling dimension Δ of the corresponding operator
by E ¼ Δ/R, where R is the radius of the sphere Sd.
All other conserved quantum numbers of the state (such as
global charge and spin) are identical to those of the
corresponding operator.

IV. DUAL GAUGE FIELD

We now specialize the construction of [26] to the
cylinder S2 ×R. It uses a dynamical gauge field aμ instead
of the more familiar Goldstone field π. We begin with the
effective Lagrangian for a conformal superfluid written in
terms of π [1,3,10]:

L ¼ cð∂χÞ3; ð4Þ
where c is an unknown constant and χ ≡ μtþ π. The
parameter μ can be interpreted as the chemical potential.
We use the notation w≡ ðgμνwμwνÞ1/2, where gμν is the
spacetime metric and wμ is an arbitrary spacetime vector.
We then dualize χ by formally treating vμ ≡ ∂μχ as an
independent variable and using a Lagrange multiplier aμ to
set the curl of vμ to zero:

L ¼ cv3 −
1

2π
aμ

ϵμνλffiffiffi
g

p ∂νvλ; ð5Þ

where we use the combination ϵμνλ/
ffiffiffi
g

p
to denote the

antisymmetric Levi-Civita tensor. Integrating out vμ gives

L ¼ −κf3/2; ð6Þ

where f ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
fμνfμν

p
and fμν ≡ ∂μaν − ∂νaμ. We dropped a

boundary term that came from integrating (5) by parts
because it is metric independent and thus does not affect
the energy momentum tensor. The coefficient κ in (6) is
related to the coefficient c in (4) as κ ¼ 1

25/4ð3πÞ3/2
1ffiffi
c

p .

The relation between χ and aμ is given by the expression
for the Uð1Þ current jμ:

jμ ¼ 3cð∂χÞ∂μχ ¼ 1

4π

ϵμνλffiffiffi
g

p fνλ: ð7Þ

In the vacuum, the charge density is hj0i ¼ Q
4πR2, whereQ is

the net charge of the superfluid state and R is the radius of
the sphere. This translates to a homogeneous magnetic field

hfθϕi ¼ B sin θ≡ Q
2R2

sin θ ð8Þ

and results in a net magnetic flux of 2πQ through the
sphere. Parametrically, the cutoff Λ of our EFT is

Λ ∼
ffiffiffiffi
B

p
∼

ffiffiffiffi
Q

p
R

: ð9Þ

V. PARTICLE-VORTEX DUALITY

Vortices in the superfluid description correspond to
heavy charged particles in the gauge theory description.
They are treated in a first-quantized form as 0þ 1 dimen-
sional worldlines embedded in the 2þ 1 dimensional
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spacetime. We will use the terms “vortex” and “charged
particle” interchangeably.
To write the effective action for a conformal superfluid

with vortices [26], we parametrize the spacetime trajectory
of the pth vortex by Xμ

pðτÞ, where τ is an auxiliary time
parameter. We further imposeWeyl and τ-reparametrization
invariance, with the former reducing to conformal invari-
ance in the relevant case of a static metric. The action can
be organized as a derivative expansion with the lowest
order terms given by

S ¼ −κ
Z

d3x
ffiffiffi
g

p
f3/2 −

X
p

qp

Z
aμdX

μ
p

−
X
p

Z
dτγp

ffiffiffi
f

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν ̇X

μ
p ̇Xν

p

q
þ � � � : ð10Þ

The first term is the kinetic term (6) for the gauge field.
The second term is the leading coupling between a particle
of charge qp and the gauge field [30]. The last term can be
viewed as the action for a relativistic point particle [30]
with mass γp

ffiffiffi
f

p
. The dots in (10) represent terms with at

least two derivatives on either Aμ or X
μ
p, and the coefficient

γp should in general be promoted [26] to a function of
jμ ̇Xμ/ðj̇XÞ, where jμ is the Uð1Þ current (7). However, as
we will now explain, the leading order description of our
system is fully determined by the first line of (10).

VI. LOWEST LANDAU LEVEL

Each Xμ
p describes the motion of a 2D particle in a

magnetic field and consists of two pairs of canonically
conjugate variables. These can be further decomposed into
one pair that describes the motion of the guiding center
and another pair that describes cyclotron motion. Without
interparticle interactions, excitations of the first pair are
gapless while excitations of the second pair have a gap
ω ¼ B/m, where m is the particle mass. The gapped
excitations are the Landau levels [31], and the gaplessness
of the guiding center variables is the usual degeneracy of
Landau levels.
In our system (10), ω ∼

ffiffiffiffi
B

p
, which coincides with the

EFT cutoff (9). Thus, within the domain of validity of our
EFT, the dynamics of Xμ reduces to that of just the guiding
center—the Landau levels are effectively integrated out
[32–34]. One well-known fact [35,36] is that the guiding
center can be described by dropping the mass term (the
second line) from the Lagrangian (10). Physically, this is
because in the massless limit, the Landau level gap ω → ∞.
Formally, this is because the first line in (10) is linear in the
particle velocity. This constrains the two physical coor-
dinates to be canonically conjugate to each other, halving
the dimension of phase space.
The terms in the second line of (10) are genuine higher

derivative corrections. On the one hand, they bring in new

states with energy ∼
ffiffiffiffi
B

p
. On the other, at sufficiently low

energy, they can be treated as small perturbations of the
leading single derivative term. This is fully analogous to
supplementing the 1D Lagrangian ̇q2 with the four-deriva-
tive term q̈2/Λ2: States arise with energy ∼Λ, but at low
energy, the four-derivative term can be treated as a
perturbation using standard EFT methods. We leave a
systematic study of higher order corrections for future
work, though we will briefly mention some effects below.
In what follows, we will therefore derive leading order

results by simply dropping the second line in (10) and
assume

S ¼ −κ
Z

d3x
ffiffiffi
g

p
f3/2 −

X
p

qp

Z
aμdX

μ
p: ð11Þ

The electrostatic potential coupling will generate nontrivial
dynamics and a gap for the guiding centers. As long as
particle separations are larger than the cutoff length 1/

ffiffiffiffi
B

p
,

this is within the regime of validity of the EFT.

VII. CLASSICAL ANALYSIS

We will now compute the classical energy and angular
momentum of a state with a given configuration of vortices.
By the state-operator correspondence, this gives us the
dimension Δ and spin J of the corresponding operator.
We will work to leading order in largeQ and in large vortex
separations. At this order, the equations of motion from
(11) are

1

e2
∇μfμν ¼ J ν; ð12Þ

Ei ¼ ð̇XpÞjfji; ð13Þ

where Ei ≡ fi0 is the electric field and J ν is the current due
to the point charges. The coupling e2 is defined as

1

e2
≡ 3κ

21/4
1ffiffiffiffi
B

p : ð14Þ

Equation (12) is Maxwell’s equations and (13) imposes that
the particles move on trajectories with vanishing Lorentz
force. In other words, as expected, the particles exhibit pure
drift velocity motion. This is consistent with cyclotron
degrees of freedom being integrated out. Thus, the particle
velocities are j̇X⃗pj ∼ jE⃗j/B ∼ 1/

ffiffiffiffi
Q

p
and can be neglected.

Our problem has reduced to the 2D electrostatics of point
charges on a sphere in a constant magnetic field.
The stress energy tensor Tμν ¼ 2ffiffi

g
p δS

δgμν is

Tμν ¼
κffiffiffi
f

p ð−3fμαfνα þ gμνf2Þ: ð15Þ
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Using this, we calculate the dimension Δ to be

Δ ¼ Q3/2ffiffiffiffiffiffiffiffiffiffi
27πc

p þ R3

2e2

Z
dθdϕ sin θE⃗2: ð16Þ

Physically, the first term is the energy stored in the
background magnetic field while the second term is the
energy stored in the electric field sourced by the particles.
In Coulomb gauge, Ei ¼ ∂ia0, where a0 is the electric

potential due to a collection of point charges on a 2-sphere:

a0ðr⃗Þ ¼ −
e2

4π

X
p

qp lnðr⃗ − R⃗pÞ2: ð17Þ

We used embedding coordinates of the 2-sphere in R3,
where r⃗ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ is a unit 3-vector
and analogously for R⃗p. The total electric field energy is a
sum of pairwise contributions for each charge:

Re2

8π

�
−
X
p≠r

qpqr lnðR⃗p − R⃗rÞ2 −
X
p

q2p ln 02
�
: ð18Þ

The last term is the familiar divergent self-energy of a point
charge. It will be cut off at angular lengths ∼1/

ffiffiffiffi
Q

p
(9).

Thus, the dimension Δ (16) is

Δ ¼ αQ3/2 −
ffiffiffiffi
Q

p
12α

X
p≠r

qpqr ln
ðR⃗p − R⃗rÞ2

Q
; ð19Þ

where α≡ 1/
ffiffiffiffiffiffiffiffiffiffi
27πc

p
, and we used

P
pqp ¼ 0 to combine

the logarithms in (18).
The angular momentum J⃗ can also be calculated from

the stress tensor (15) and is

J⃗ ¼ −
X
p

qp
Q
2
R⃗p: ð20Þ

VIII. DERIVATION OF RESULTS

The results stated at the beginning of this paper can now
be derived. First, note that the self-energy of a particle of
charge q is proportional to q2—this is the second term in
(18). Because of this, particles with jqj > 1 are energeti-
cally unfavored.

(i) Equation (1) is derived using the phonon dispersion
relation [1,3], ω ¼ ½1

2
lðlþ 1Þ�1/2, where l is an-

gular momentum and ω is energy. Since ω/l
decreases with l, energy is lowest at fixed J with
a single phonon of l ¼ J.

(ii) Equation (2) is derived by evaluating Δ (19) and
J (20) on a configuration with a single vortex-
antivortex pair.

(iii) Equation (3) is derived by approximating the vortex
distribution as a continuous distribution and then

minimizing Δ (19) for fixed J (20) using variational
techniques. This gives a vortex distribution ρ of

ρ ¼ 3

2πR2

J
Q
cos θ ð21Þ

and results in the superfluid having the same
velocity profile as that of a rigid body [27].

(iv) As J → Q3/2, the electric field jE⃗j approaches the
magnetic field B and the drift velocities become
relativistic. This causes the EFT to break down
because the higher order terms neglected in (11)
become unsuppressed. The guiding centers becomes
as energetic as the cyclotron degrees of freedom and
anything else at the EFT cutoff (9).

IX. QUANTIZATION

Since the vortex positions are continuous, some ques-
tions may occur: How many distinct states are there? How
does the quantization of angular momentum arise? These
questions are answered when we quantize our system of
charged particles in a magnetic field. Solving for a0
using (17) and ignoring fluctuations of ai, our effective
Lagrangian (11) becomes

L ¼
X
p

qpA⃗ · ̇R⃗p þ
e2

8π

X
p;r

qpqr lnðR⃗p − R⃗rÞ2; ð22Þ

where A⃗ is the potential for a magnetic monopole [37,38].
We use the gauge in which Aϕ ¼ 1

2
Qð1 − cos θÞ and

Aθ ¼ 0. This system is known as the “fuzzy sphere”
[39,40].
Due to the somewhat complicated form of A⃗, it is useful

to switch to spinor coordinates [41,42]:

ψ ≡
�

cos θ
2

sin θ
2
eiϕ

�
; ð23Þ

where we suppressed the vortex index. In these coordinates,
R⃗ ¼ ψ†σ⃗ψ and A⃗ · ̇R⃗ ¼ −iQψ† d

dtψ . This identifies the

canonical momentum corresponding to ψp as −iQqpψ
†
p.

The canonical commutation relations imply that the angular
momentum (20) commutes with the Hamiltonian and
satisfies ½J i;J j� ¼ iϵijkJ k [39,40]. We use curly J⃗ to
denote the angular momentum operator.
For illustration, consider the case of two vortices of unit

charge. The Hamiltonian corresponding to (22) is then

H ¼ constþ e2

4π
ln J⃗ 2; ð24Þ

where “const” involves terms that are independent of the
vortex coordinates, and we used (20) to express H in terms
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of J⃗ . The spectrum is thus entirely determined by the
spectrum of J⃗ 2. As is well known, J⃗ 2 ¼ JðJ þ 1Þ, where
J is an integer and for each value of J, there are 2J þ 1
degenerate states.
Restoring the constants in (24), the dimension of the

corresponding operator is

Δ ¼ αQ3/2 þ
ffiffiffiffi
Q

p
6α

ln
JðJ þ 1Þ

Q
: ð25Þ

We can trust this equation for
ffiffiffiffi
Q

p ≲ J ≤ Q. The lower
value is determined by requiring that the vortices be
separated by distances larger than the cutoff ∼1/

ffiffiffiffi
B

p
.

The upper value occurs when the two particles are at
opposite poles.

X. CORRELATORS

The EFT can also be used to compute correlation
functions [3]. Let us consider correlators involving the
Uð1Þ current jμ. From (7) and Gauss’s law, we see that the
line integral

H
jμdxμ about a closed curve C at a fixed time

is simply 1
2π times the total charge qenc enclosed by C:

hvortexj
I
C
jμdxμjvortexi ¼

e2qenc
2π

; ð26Þ

where jvortexi is a generic vortex state. By the state-
operator correspondence, this amounts to a prediction about
three-point functions. We will now consider two simple
examples.
As a first example, we consider a vortex-antivortex pair

located at the north and south poles. Then (26) becomes

hvortexjjϕðθ;ϕÞjvortexi ¼
e2

2πR
; ð27Þ

where now jvortexi is a state with J ¼ Jz ¼ Q and jϕ is the
azimuthal component of jμ. In general, the expectation
value of a spin-1 operator jϕ in a state jJ; Jzi with J ¼
Jz ¼ Q is [43]

hQ;Qjjϕðθ;ϕÞjQ;Qi ¼ R2
XQ
m¼0

am cos2m θ; ð28Þ

where am are arbitrary (theory-dependent) constants sub-
ject to the constraint

P
mam ¼ 0. By equating (27) to (28),

we obtain the following predictions for am at leading order:

am ¼
� ffiffiffi

Q
p
3α ; if m ¼ 0;

0; if 1 ≤ m ≪
ffiffiffiffi
Q

p
:

ð29Þ

Because of the EFT cutoff (9), we can only make
predictions for m ≪

ffiffiffiffi
Q

p
. The constraint

P
mam ¼ 0 is

thus irrelevant for our discussion.

As a second example, we consider the states described
by (3). Using (21), we find

hvortexjjϕðθ;ϕÞjvortexi ¼
3e2

8π2R
J
Q
sin2 θ: ð30Þ

Rewriting (28) in the Fourier basis:

hQ;Qjjϕðθ;ϕÞjQ;Qi ¼ R2
XJ
m¼0

bm cos 2mθ; ð31Þ

we obtain the following predictions for bm at leading order:

bm ¼
( ð−1Þm

8πα
Jffiffiffi
Q

p ; if m ¼ 0; 1;

0; if 2 ≤ m ≪
ffiffiffiffiffiffiffiffi
J/Q

p
:

ð32Þ

Because we used a continuous approximation for the
density ρ (21), we can only make predictions for m ≪ffiffiffi
ρ

p ∼
ffiffiffiffiffiffiffiffi
J/Q

p
.

XI. LARGE N

So far, we assumed that the numerical coefficients in our
effective Lagrangian are Oð1Þ, corresponding to an under-
lying strongly coupled CFT. The case of a weakly coupled
or large N theory is quickly illustrated. However, the
conclusions depend on whether the weak coupling appears
in the χ description (4) or in the aμ description (6). We will
refer to the χ description as “electric” and to the aμ one as
“magnetic”, with couplings g2e ≡ 1/Ne and g2m ≡ 1/Nm,
respectively.
Consider first a weakly coupled magnetic theory (for

example, the large Nm setup discussed in Refs. [44–51]).
Since 1/α ∼ g2m is small, the “bare” vortex mass (∼γ

ffiffiffiffi
Q

p
) is

no longer subdominant to the electric field energy in (16).
Therefore, the contribution 1

21/4
nγ

ffiffiffiffi
Q

p
should be added to

(2) and (3), where n ¼ 2 for J ≤ Q and n ¼ 3J/Q for
J ≫ Q. For simplicity, we assumed the same bare mass for
all vortices. This gives the dominant spin-dependent con-
tribution to Δ for J ≲Q/g2m.
Consider now a weakly coupled electric theory. The

essential difference in this case is that the cutoff is naturally
identified with μ ∼ ge

ffiffiffiffi
Q

p
[2] instead of with (9). Therefore,

a single phonon is restricted to J ≲ ge
ffiffiffiffi
Q

p
and a vortex-

antivortex pair to J ≳Qμ−1 ∼
ffiffiffiffi
Q

p
/ge. States with J in the

gap between the two consist of multiple phonons,
approaching a 1/g2e number of them as J →

ffiffiffiffi
Q

p
/ge. At

this point, the lowest energy state shifts from multiple
phonons to the vortex-antivortex pair. This consistently
reflects the fact that vortices are now heavy solitons and
consist of also roughly a 1/g2e number of elementary quanta.
Since α ∼ ge, the logarithmic term in (2) is indeed the
expected result, μ/g2e ln μd, for a semiclassical solution with
a vortex-antivortex pair split by a distance d ¼ J/Q. While
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possible a priori, we are not aware of any system in which
the weakly coupled electric picture applies.

XII. HIGHER ORDER CORRECTIONS

On general grounds, we expect corrections to come from
higher derivative terms controlled by the cutoff length scale
l≡ Λ−1 (9). Two classes of effects are expected. The first is
controlled by the volume of the sphere and scales as
l2/R2 ∼ 1/Q. The second class is controlled by the sepa-
ration d among vortices and scales as l2/d2, where the
double power of d is dictated by rotational invariance.
Using the relation J ∼ Bd (20), we have l2/d2 ∼Q/J2.
In analyzing the possible terms in the Lagrangian, one

indeed finds such corrections. The first class, already
discussed in Refs. [1,3], arises from higher derivative
corrections paired by conformal invariance with terms
suppressed by R/f, where R is the Riemann tensor. The
second class arises from the mass term in (10). There we
find relative corrections to the vortex action proportional to
E⃗2/B2 and ̇X⃗ ∧ E⃗/B. These both scale as l2/d2 ∼Q/J2 on
our solutions, becoming large at the lower edge J ∼

ffiffiffiffi
Q

p
of

the two vortex states.
Notice that the second class of corrections is larger than

theOð1/JÞ quantum correction distinguishing (25) from the
classical result (2). Nonetheless, the quantum correction
is functionally distinguished and thus calculable. We also
note that the universal OðQ0J0Þ contribution from the
phonon Casimir energy [1,3] persists in the presence of
vortices because the phonon spectrum is unmodified at
leading order. We leave a systematic study of higher order
corrections for future work.

XIII. DISCUSSION

To summarize, we calculated the scaling dimensions of
operators with global charge Q ≫ 1 and spin J ≲Q3/2 by
combining the state-operator correspondence with the EFT
of vortices in superfluids. We also calculated correlation
functions with two such operators and the Noether current.
Other correlators as well as higher order corrections can be
systematically computed.
Our results apply to any CFT whose large charge

sector is described by the EFT we presented. To be clear,

we have not proved that there actually exists any such
CFT. However, what are the possibilities? Given a state
with finite charge density, the Uð1Þ symmetry may or
may not be spontaneously broken. If it is broken, then
the state is a superfluid and our results generically apply.
If it is not broken, then the state is not a superfluid (e.g.,
a Fermi liquid) and our results do not apply. Because
superfluids are such a natural possibility, we believe that
there exists a large class of CFTs to which our results
apply.
Of course, it would be nice to explicitly identify such

CFTs. One way forward is to consider CFTs that allow a
perturbative expansion in some parameter and explicitly
check if our results apply. For example, in Uð1Þ gauge
theories, operators charged under the current (7) have been
studied in a 1/N expansion [44–51], where N is the number
of charged fields. The same operators were also studied in
the ϵ expansion [52]. In both cases, results were only given
for small Q, but the methods also apply at large Q. Related
to largeN, large charge states have also been studied via the
AdS/CFT correspondence under the name of “holographic
superconductors” [53–60].
Perhaps AdS/CFT can also teach us how to study

operators with J ∼ Δ using EFT techniques, as this was
the original motivation for the large spin bootstrap work
[13–23]. The idea was that these operators should be
described as widely separated—and therefore weakly
interacting—objects in AdS space [13]. This weak inter-
action suggests an EFT description, and such an EFTwould
then apply to all CFTs.
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