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Resilience management during 
large-scale epidemic outbreaks
Emanuele Massaro  1,2,3, Alexander Ganin  1,4, Nicola Perra5,6,7, Igor Linkov1 &  
Alessandro Vespignani6,7,8

Assessing and managing the impact of large-scale epidemics considering only the individual risk 
and severity of the disease is exceedingly difficult and could be extremely expensive. Economic 
consequences, infrastructure and service disruption, as well as the recovery speed, are just a few of the 
many dimensions along which to quantify the effect of an epidemic on society’s fabric. Here, we extend 
the concept of resilience to characterize epidemics in structured populations, by defining the system-
wide critical functionality that combines an individual’s risk of getting the disease (disease attack rate) 
and the disruption to the system’s functionality (human mobility deterioration). By studying both 
conceptual and data-driven models, we show that the integrated consideration of individual risks and 
societal disruptions under resilience assessment framework provides an insightful picture of how an 
epidemic might impact society. In particular, containment interventions intended for a straightforward 
reduction of the risk may have net negative impact on the system by slowing down the recovery of basic 
societal functions. The presented study operationalizes the resilience framework, providing a more 
nuanced and comprehensive approach for optimizing containment schemes and mitigation policies in 
the case of epidemic outbreaks.

Data-driven models of infectious diseases1–15 are increasingly used to provide real- or near-real-time situational 
awareness during disease outbreaks. Indeed, notwithstanding the limitations inherent to predictions in complex 
systems, mathematical and computational models have been used to forecast the size of epidemics16–19, assess 
the risk of case importation across the world10,14,20, and communicate the risk associated to uncurbed epidemics 
outbreaks21–23. Despite contrasting opinions on the use of modelling in epidemiology24, in the last few years a 
large number of studies have employed them to evaluate disease containment and mitigation strategies as well 
as to inform contingency plans for pandemic preparedness11,13,15,24,25. Model-based epidemic scenarios in most 
cases focus on the “how many and for how long?” questions. Furthermore, mitigation and containment policies 
are currently evaluated in the modelling community by the reduction they produce on the attack rate (number 
of cases) in the population. These studies aim at identifying best epidemic management strategies but typically 
neglect the epidemic and mitigation impact on the societal functions overall.

The evaluation of vulnerabilities and consequences of epidemics is a highly dimensional complex problem that 
should consider societal issues such as infrastructures and services disruption, forgone output, inflated prices, 
crisis-induced fiscal deficits and poverty26,27. Therefore, it is important to broaden the model-based approach to 
epidemic analysis, expanding the purview by including measures able to assess the system resilience, i.e. response 
of the entire system to disturbances, their aftermath, the outcome of mitigation as well as the system’s recovery 
and retention of functionality28–30. Most important, operationalizing resilience29–31 must include the temporal 
dimension; i.e. a system’s recovery and retention of functionality in the face of adverse events30,32–35. The assess-
ment and management of system resilience to epidemics must, therefore, identify the critical functionalities of 
the system and evaluate the temporal profile of how they are maintained or recover in response to adverse events.
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Even though the assessment and management of adverse events resilience of complex systems is the sub-
ject of active research32,33,35,36, its integration in the computational analysis of epidemic threats is still largely 
unexplored27,37,38.

Here, we introduce a resilience framework to the analysis of the global spreading of an infectious disease in 
structured populations. We simulate the spread of infectious diseases across connected populations, and monitor 
the system–level response to the epidemic by introducing a definition of engineering resilience that compounds 
both the disruption caused by the restricted travel and social distancing, and the incidence of the disease. We find 
that while intervention strategies, such as restricting travel and encouraging self-initiated social distancing, may 
reduce the risk to individuals of contracting the disease, they also progressively degrade population mobility and 
reduce the critical functionality thus making the system less resilient. Our numerical results show a transition 
point that signals an abrupt change of the overall resilience in response to these mitigation policies. Consequently, 
containment measures that reduce risk may drive the system into a region associated with long-lasting overall dis-
ruption and low resilience. Interestingly, this region is in proximity of the global invasion threshold of the system, 
and it is related to the slowing down of the epidemic progression. Our study highlights that multiple dimensions 
of a socio-technical system must be considered in epidemic management and sets forward a new framework of 
potential interest in analyzing contingency plans at the national and international levels.

Results
We provide a general framework for the analysis of the system-level resilience to epidemics by initially consid-
ering a metapopulation network (Fig. 1A). In this case we consider a system made of V distinct subpopulations. 
These form a network in which each subpopulation i is made of Ni individuals and is connected to a set ki of other 
subpopulations. A complete description of the networked systems is given in the Methods section. The notation 
and the description of the parameters used in our simulations are reported in Table 1.

Diffusion Processes. The edge connecting two subpopulations i and j indicates the presence of a flux of 
travelers i.e. diffusion, mobility of people. We assume that individuals in the subpopulation i will visit the subpop-
ulations j with a per capita diffusion rate dij on any given edge39 (see the Methods section for further details). We 
define the total number of travelers Z between the subpopulations i and j at time t as Zij(t) = dijNi(t), so that when 
the system is fully functional, the total number of travelers at time t from the node i is Z t Z t( ) ( )i j k iji

= ∑ ∈ . Under 
these conditions, the total number of travelers in the metapopulation system at time t is simply Z(t) = ∑iZi(t). In 
the following we assume that infected individuals do not travel between subpopulations, thus reducing the actual 
number of travelers.

Reaction Processes. In analyzing contagion processes we extend the compartmental scheme of the basic 
SEIR model40,41 (see Methods and Supplementary Information (SI) for a detailed description). Indeed an impor-
tant element in the mitigation of epidemics is self-initiated behavioral changes triggered in the population by 

Figure 1. Schematic representation of the metapopulation model. The system is composed of a network of 
subpopulations or patches, connected by diffusion processes. Each patch contains a population of individuals 
who are characterized with respect to their stage of the disease (e.g. susceptible, exposed, susceptible with 
fear, infected, removed), and identified with a different color in the picture. Individuals can move from a 
subpopulation to another on the network of connections among subpopulations. At each time step individuals 
move with a commuting rate cij from subpopulation i to subpopulation j. (B) Schematic illustration of the 
system’s critical functionality. The system if fully functional (CF(t) = 1) during ordinary conditions when all the 
subpopulations are healthy and the number of real commuters is equal to the number of virtual commuters, 
i.e. D(t) = 0 and C(t) = Z(t). After the outbreak takes place (T0) the system’s functionality decreases because of 
the disease propagation and the eventual travel reduction. Next the system starts to recover until the complete 
extinction of the epidemic (TE) which corresponds to the time when no more infected individuals are in the 
system. The curves (a) and (b) represent the critical functionality of scenarios corresponding to high and low 
values of resilience.
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awareness/fear of the disease42,43. These generally reduce the transmissibility and spreading. Examples of behavio-
ral changes include social distancing behaviors such as avoidance of public places, working from home, decrease 
of leisure and business travel etc. In order to include behavioral changes in our model, we consider a separate 
behavioral class within the population44, defining a special compartment of susceptible individuals, SF, where 
F stands for “fearful”. In particular, individuals transition to this compartment depending on the prevalence of 
infected and other fearful individuals according to a rate βF. This rate mimics the likelihood that individuals will 
adopt a different social behavior as a result of the increased awareness of the disease as perceived from the number 
of infected and fearful individuals present in the system. Clearly, spontaneous or more complex types of transi-
tions (for example indirectly linked to the disease transmission due to mass media effects44) could be considered. 
However, they would require more parameters and introduce other non-trivial dynamics. We leave the study of 
other behavioral changes models for future works. It follows that in each subpopulation the total number of indi-
viduals is partitioned into the compartments S(t),SF(t),E(t),I(t),R(t) denoting the number of susceptible, fearful, 
exposed, infected, and removed individuals at time t, respectively. The transition processes are defined by the 
following scheme: S + I → E + I, S + I → SF + I, S + SF → 2SF, SF + I → E + I, E → I and I → R with their respective 
reaction rates, β, βF, αβF, rbβ, λ and μ. Analogously, individuals in the SF compartment may transition back in the 
susceptible compartment with a rate μF, SF + S → S. The model reverts to the classic SEIR if βF = 0 (the detailed 
presentation of the dynamic is reported in the SI). The basic reproductive number of an SEIR model is R0 = β/μ. 
This quantity determines the average number of infections generated by one infected individual in a fully sus-
ceptible population. In each subpopulation the disease transmission is able to generate a number of infected 
individuals larger than those who recover only if R0 > 1, yielding the classic result for the epidemic threshold45; if 
the spreading rate is not large enough to allow a reproductive number larger than one (i.e., β > μ), the epidemic 
outbreak will affect only a negligible portion of the population and will quickly die out (the model details are 
reported in the Methods section).

System’s resilience. Here, we introduce a quantitative measure that captures and implements the definition 
of resilience in epidemic modelling, similarly to what proposed in Ganin et al.32,34. Among the many possible 
elements defining the resilience of a system, we consider the system-wide critical functionality as a function of the 
individual’s risk of getting the disease and the disruption to the system’s functionality generated by the human 
mobility deterioration. For the sake of simplicity, in our model we assume that infected individuals do not travel. 
The extension to models in which a fraction of infected individuals are traveling is straightforward4 with the only 
effect of decreasing the timescale for the disease spreading, but not altering the overall dynamic of the system. 
Furthermore, as discussed below, the system might be subject to other travel limitations. As a result, during the 

Notation Description

V Number of subpopulations in the metapopulation network

N Number of individuals in the system

〈k〉 Average degree of the metapopulation network

D Number of diseased populations

H Fraction of healthy populations

A Fraction of active travelers in the system

p The parameter that regulates the system wide travel restrictions

r System’s resilience

CF System’s critical functionality

Tc Resilience control time

S Susceptible individuals

SF Susceptible individuals with fear

E Exposed individuals

I Infected individuals

R Recovered individuals

R0 Basic reproduction number

λ The rate at which an ‘exposed’ person becomes ‘infected’

μ The rate at which an ‘infected’ recovers and moves into the ‘recovered’ 
compartment

β The parameter controlling how often a ‘susceptible’-‘infected’ contact results in 
a new ‘exposed’

βF The parameter controlling how often a ‘susceptible’-‘infected’ contact results in 
‘susceptible individual with fear’

α The parameter controlling how often a ‘susceptible’-‘susceptible individuals with 
fear’ contact results in a new ‘susceptible individual with fear’

rb
The parameter that modulates the level of self-induced behavioral change that 
leads to the reduction of the transmission rate

μF
The rate at which individual with fear moves back into the ‘susceptible’ 
compartment

Table 1. Notation and description of the parameters used in our simulations.
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epidemic we have an overall decrease in the mobility flows with respect to a disease-free scenario. It follows that 
the number of travelers between subpopulations i and j at time t is C t c N t( ) ( )ij ij i=

∼ , where cij is the adjusted 
diffusion rate, N t S t E t R t( ) ( ) ( ) ( )i i i i= + +

∼ , and the total number of commuters in the metapopulation system 
at time t is given by C t C t( ) ( )i= ∑ . Note that in general, cij < dij. This can be naturally related to a deterioration 
of the system-level critical functionality as it corresponds to economic and financial losses as well as logistic and 
infrastructural service disruption. In order to evaluate the system’s loss of critical functionality related to the 
travel restrictions, we define the fraction of active travelers at time t as A(t) = C(t)/Z(t).Analogously, we charac-
terize the system’s risk related to the disease propagation as the fraction of healthy subpopulations 
H(t) = 1 − D(t)/V, where D(t) is the number of diseased subpopulations at time t and Vis the total number of 
subpopulations in the system. The number of diseased subpopulations accounts for the amount of risk posed to 
individuals in the system, which we assume to be proportional to the overall attack rate and expresses the vulner-
ability of the networked system36,46,47. Here, as the model assumes statistically equivalent subpopulations, the 
attack rate is proportional to the number of subpopulations affected by the epidemic. At time t, we define the 
critical functionality, CF(t), (Fig. 1B), as the product of the fraction of active travelers A(t) and the fraction of 
healthy populations H(t), i.e. CF(t) = H(t) ⋅ A(t). Per our earlier definition of resilience32 r, we evaluate it as the 
integral over time of the critical functionality, normalized over the control time TC so that r ∈ [0,1]:

∫= .r
T

CF t dt1 ( )
(1)C

T

0

C

The control time TC corresponds to the maximum extinction time TE for different values of epidemic repro-
ductive number R0 (see the Supporting Information for further detail). Resilience, therefore, also includes the 
time dimension, in particular, the time to return to full functionality, as defined by the system’s critical elements. 
In reference32 we provided an operational definition of resilience starting from the concepts advanced by the 
National Academy of Sciences in USA. In this paper, we apply such general framework to the case of disease 
spreading. Furthermore, we extend it to reaction-diffusion processes on metapopulations. In the following, we 
will quantitatively characterize different containment/mitigation interventions via a critical functionality analysis. 
Desirable (optimal) strategies correspond to high (maximum) value of r. It is worth remarking that, for the sake 
of simplicity, we use here a definition of critical functionality that weights equally the two components A(t) and 
H(t). Thus, our findings are constrained by such choice. The two contributions could be weighted differently, i.e. 
CF(t) = H(t)α ⋅ A(t)β. However, our aim is to highlight the importance of going beyond “model-based” approach 
to epidemic analysis and move towards system resilience assessments. In this spirit, we opted for the simplest defi-
nition of critical functionality able to capture the two most used metrics in model-based approaches: epidemic 
risk and mobility. We used the multiplication of the two quantities because it makes the critical functionality more 
sensitive to small changes of the values. Furthermore, by multiplying two ratios we don’t need to add a normali-
zation factor (the critical functionality is defined in the interval [0,1]). In more realistic context, and depending 
on the precise cost-benefit analysis, the various terms may be weighted differently and more complex functional 
form for the critical functionality can be defined. Among other things, these type of analysis could consider: (i) 
the details of the disease spreading in the population such as mortality, infectiousness, recovery time, and possible 
residual immunity (ii) the preparedness, measured in terms of availability of vaccines, anti-virals, hospital beds, 
or intensive care units, (iii) the socio-economical costs induced by a major outbreak and by interventions such as 
travel bans, school closures etc. (iv) politics and public perception of risk.

Effects of system-wide travel restrictions. Epidemic containment measures, based on limiting or con-
straining human mobility, are often considered in the contingency planning and always re-emerge when there 
are new infectious disease threats1. The target of these control measures are travels to/from the areas affected by 
an epidemic outbreak and the corresponding decrease of infected individuals reaching areas not yet affected by 
the epidemic. At the same time, travel restrictions have a large impact on the economy and affect the delivery of 
services, including medical supplies and the deployment of specialized personnel to manage the epidemic. For 
this reason, travel restrictions must be carefully scrutinized to trade off the costs and benefits. We introduce the 
parameter p∈[10−5,1] that allows us to simulate policy-induced system-wide travel restrictions. In our settings, 
such measures are active until the disease is circulating in the system, i.e. there is at least one infected individual 
across all subpopulations. In the case of no travel restrictions and/or after the disease dies out, we have p = 1. In 
the case of travel restrictions (p < 1), we rescale travel flow so that mobility is a fraction of that in the unaffected 
system; i.e. cij = p ⋅ dij. To better understand the effect of such mitigation strategy, let us consider the classic SEIR 
model by setting βF = 0. In the presence of travel restrictions and depending on the level of mixing, each sub-
population may or may not transmit the infection or contagion process to another subpopulation it is in contact 
with. In other words, the mobility parameter p influences the probability that exposed individuals will export the 
contagion process to other regions of the metapopulation network. Further, it introduces a transition between a 
regime in which the contagion process may invade a macroscopic fraction of the network and a regime in which it 
is limited to a few subpopulations. The transition is mathematically characterized by the global invasion threshold 
R*

45. This is the analogue of the basic reproductive number at the subpopulations level and defines the average 
number of infected subpopulations generated by one infected subpopulation in a fully susceptible metapopula-
tion system. In general, R* is a function of the basic epidemic parameters, including R0, and the mobility param-
eter p. The invasion threshold occurs at the critical value pc for which R* = 1. In some cases, pc can be evaluated 
analytically (see the Methods section). In general, it can be estimated numerically by measuring the number of 
infected subpopulations as a function of the parameter p.

Risk, as measured in terms of attack rate, is, therefore, monotonically decreasing due to increasingly restricted 
travel, and falls to virtually zero for values of p below the invasion threshold. Thus, from a risk perspective, the 
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best strategy during a disease outbreak is to reduce the mobility. However, an inspection of the profile of resilience 
provides a different picture. In Fig. 2 we report the value of r obtained by sampling the phase space of the model 
p−R0 for different values of the travel diffusion parameter and the epidemic reproductive number in heteroge-
neous metapopulation systems (a comparison between homogenous and heterogeneous networks is reported in 
SI). Each point of the phase space is studied by performing 100 stochastic realizations. The 3D dimensional plot 
in the p,R0,r space reported in Fig. 2A indicates that the overall resilience profile is characterized by a sharp drop 
as we approach the invasion threshold, i.e. p → pc.

Figure 2B shows that, while the risk decreases, the reduction of the diffusion rate p causes a reduction of r 
until the global invasion threshold, after which the resilience value rapidly increases. This effect is mainly due 
to the critical slowing of the epidemic spreading near the invasion threshold. Indeed, close to the threshold, the 
epidemic is still in a supercritical state, but it takes increasingly longer time to invade the system as the threshold 
is approached. This can be simply related to the divergence of the invasion doubling time Td, which is defined as 
the time until the number of infected subpopulations doubles, relative to that at some other time. The doubling 
time is related to the subpopulation reproductive number as Td ~ (R* − 1)−1, leading to a divergence of the dou-
bling time as the invasion threshold is approached for R* → 1. Although the absolute risk is very low, the system 
remains in a state of deteriorated functionality (restrictions in travels) for longer and longer times48. The decrease 
of functionality is not offset by a corresponding decrease of risk, and the minimum in resilience is attained exactly 
at the global invasion threshold. The comparison between the theoretical values of the invasion threshold and the 
computed minimum values of resilience is reported in Fig. 2C.

Effects of self-initiated behavioural changes. In order to isolate the effects of behavioural changes, 
in this section the travel parameter is kept constant with p = 1. Individuals in the SF compartment adopt travel 
avoidance so that βF plays a similar role to the travel restriction as reported in Fig. 3. Furthermore, inside each 
subpopulation, individuals in the SF compartment reduce their contacts, thus decreasing the likelihood to become 
infected. Overall, the presence of self-initiated behavioral changes in a population results in a reduction of the 
final epidemic size. In this setting, we have explored a phase space of parameters constituted of R0∈[1.01,3] and 
βF∈[0,20] (see the Methods section for the other model parameters). In Fig. 3A we quantify resilience for different 
values of the fear parameter βF in heterogeneous metapopulation systems. The 3D dimensional plot in the βF,R0,r 
space shows a clear similarity with the travel restrictions scenario. Figure 3B shows that, while increasing βF leads 
to a decrease in risk, it also induces a reduction of resilience. It is possible to observe that, even in this case, the 
minimum values of r are related to the invasion threshold. In Fig. 3C the phase diagram of the fraction of diseased 
populations at the end of the simulations D∞/V is reported in the βF,R0 space. This picture shows that there is 
a critical value of the fear transmissibility parameter βF, after which the fraction of diseased populations D∞/V 
starts to decrease (i.e. D∞/V < 1). The minimum value of resilience, in this case, corresponds to the value of the 
fear transmissibility, after which a reduction of the fraction of diseased populations is observed. Although the 

Figure 2. Resilience and final fraction of diseased populations in the heterogeneous metapopulation system 
with traffic dependent diffusion rates. (A) 3D surface representing resilience in a homogeneous metapopulation 
system as a function of local threshold R0and the diffusion rate p: the minimum value of resilience separates two 
regions associated to values very close to the optimal case. (B) Cross-sections (blue) of the 3D plot for R0 = 3.5 
and its comparison with the final fraction of diseased populations (red): while the reduction of the diffusion 
rate p brings to a constant the fraction of diseased populations it also causes an initial decrease of resilience to 
a minimum value after which it starts increasing and the system returns to its optimal conditions. (C) The map 
of the final fraction of diseased populations D∞/V is shown as a function of the local epidemic threshold R0 and 
the travel diffusion p. We show that the minimum values of resilience (blue points) correspond to the theoretical 
value of the final fraction of diseased subpopulations D∞/V at the end of the global epidemic (black line).
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approach to this critical boundary corresponds to a reduction of the infection risk, similarly to the case of travel 
restrictions, the measured resilience of the system decreases and attains its minimum value right at the transition 
point.

Effects of system-wide travel restrictions in data-driven simulations. As a further confirmation 
of the validity of the theoretical construct above described, we tested our results in a data-driven modelling 
setting. We considered the Global Epidemic and Mobility model (GLEAM)3,49 which integrates high resolution 
demographic and mobility data by using a high-definition, geographically structured metapopulation approach. 
The model’s technical details and the algorithms underpinning the computational implementation have been 
extensively reported in the literature. GLEAM is a spatial, stochastic and individual-based epidemic model that 
divides the world population into geographic census areas, defined around transportation hubs and connected 
by mobility fluxes. The population of each census area is obtained by integrating data from the high-resolution 
population database of the ‘Gridded Population of the World’ project of the Socioeconomic Data and Application 
Center at Columbia University (SEDAC). The mobility among subpopulations is comprised of global air travel 
and the small-scale movement between adjacent subpopulations; i.e., the daily commuting patterns of individu-
als. Commuting and short-range mobility considers data from 80,000 administrative regions in 5 different con-
tinents. Here, we considered the Continental United States and simulated an SEIR contagion process, in which 
infected individuals do not travel. The number of infected subpopulations at the end of an outbreak and resil-
ience as a function of the global mobility restrictions that result are shown in Fig. 4. The initial conditions of the 
epidemic were set with 5 infected individuals in the city of New York, assuming β = 0.48, λ = 0.66 and μ = 0.45. 
Mobility restrictions are implemented by reducing all the mobility flows connecting diseased subpopulations by 
a factor p, thus considering the heterogeneities of the subpopulations due to their different local mobility patterns 
(see SI). The control time TC used in the calculation of r corresponds to the epidemic extinction time for the dif-
ferent values of the diffusion rate.

As with the theory-driven model here we observe that a reduction of the travel diffusion p brings a constant 
reduction of diseased populations, but also reduces resilience until a critical value pc = 1.2 ⋅ 10−4. In Fig. 4B we 
illustrate the geographical spreading of the contagion process and the reduction of traveling of each subpopula-
tion tracked by the model in the Continental USA for values of p corresponding to three different regions of the 
diagram of Fig. 4A. The figure clearly illustrates three regimes: i) for low travel reduction, a very severe epidemic 
hits all the subpopulations, but the short duration allows the system to go back to normal in a short time (high 
values of resilience); ii) for travel reduction close to the global invasion threshold, a small number of subpopu-
lations are hit but the system critical functionality is compromised for a very long time, thus, resulting in a low 
values of resilience; iii) travel reduction above the critical threshold allows the system to contain the epidemic 
at the origin with low risk and high values of resilience. It is worth remarking that in the data-driven model, the 
minimum value of resilience is reached for travel restrictions that correspond to a reduction of mobility of three 

Figure 3. Resilience and diseased populations in a heterogeneous metapopulation system with individual self-
dependent travel reduction. (A) 3D surface representing resilience in a heterogeneous metapopulation system 
as a function of local threshold R0 and the fear parameter βF: two areas of high values of resilience are separated 
with a narrow region of very low ones. (B) Comparison between resilience (blue) reported as cross-sections 
of the 3D plot for R0 = 1.3 and the final fraction of diseased populations D∞/V (red): while the increase of the 
fear transmissibility parameter βF brings to a constant the fraction of the diseased populations it also causes an 
initial decrease of resilience to a minimum value after which the system bounces back to optimal conditions. (C) 
Even in this case the minimum values of resilience (blue points) correspond to the transition region from high 
to low final diseased populations. The colormap of the logarithmic of the healthy populations (log(1 − D∞/V)) is 
shown as a function of the local epidemic threshold R0 and the fear parameter βF.
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to four orders of magnitude. This is because in modern transportation networks the global invasion threshold, 
as already pointed out in other studies10,14,20,39, is reached only for very severe travel restrictions that are virtually 
impossible to achieve. In other words, in realistic settings the feasible increase of travel restrictions appears always 
to decrease resilience. This calls for a careful scrutiny of the trade-off between individual’s risk and resilience, as 
the region where both are achieved is virtually not accessible.

Discussion
The realistic threat quantification is difficult and evaluation of vulnerabilities and consequences of new disease 
epidemics is certainly a challenge. We analyzed the impact of an infectious disease epidemic in structured popula-
tions by considering a definition of system resilience that takes into consideration not only the number of infected 
individuals but also society’s need for maintaining certain critical functions in space and time37. In particular, we 
assume that the limitations and disruptions of human mobility deteriorate the system’s functionality. We observe 
that containment measures, that limit individuals’ mobility, are advantageous in reducing risk but may deteriorate 
the system’s functionality for a very long time and thus correspond to low resilience. Although we have considered 
only two of the many dimensions encompassing the functionality of socio-technical systems28,30, we show that 
study of resilience allows stakeholders to measure the impact of epidemic threats and differentiate between dif-
ferent management alternatives. It is straightforward to envision more realistic definition of the critical function-
ality. The components of critical functionality could be weighted according to objective/subjective evaluation of 
their relevance to stakeholders. Finally, cost-benefit analyses and ethical considerations should be included in the 
analysis of the societal impacts of disease that could lead to long lasting effects or even death of the affected indi-
viduals. This study highlights the importance of resilience-focused analysis for selecting intervention strategies. 
The natural tendency to be conservative in managing potentially inflated risks associated with new and emerging 
epidemics can result in unnecessary burdensome and possibly ineffective actions like quarantines as well as travel 
bans50. The emerging field of resilience assessment and management29 and its implementation32,34,35 could thus 
evaluate cross-domain alternatives to identify a policy design that enhances the system’s ability to (i) plan for such 
adverse events, (ii) absorb stress, (iii) recover, and (iv) predict and prepare for future stressors through necessary 
adaptation. To this end, the framework we presented can be of potential use for optimizing the policy response 
to a disease outbreak by balancing risk reduction with the disruption to critical functions that is associated with 
public health interventions.

Methods
Disease propagation and self-initiated behavioral changes. The metapopulation system is described 
by a scale-free network (SF) with a power-law degree distribution P(k) ∼ k(−γ), which is generated by the config-
uration model51 with the minimum degree m = 2, γ = 2.1. (For the travel restriction scenario, in the SI, we report 
a comparison of the results between the heterogeneous networked system described above and a metapopulation 
system formed by a random network with Poisson degree distribution, which is generated by the Erdos–Rényi 
(ER) model52). The networks have V = 5000 nodes and average degree 〈k〉 ∼ 6, while the total number of individ-
uals is N = V 2 = 25. 106 which are distributed among the subpopulations nodes proportional to their degree dis-
tribution. At the beginning, 10 populations are selected at random and 50 individuals are set as exposed. All other 
individuals across the system are initially susceptible. We study a compartmental scheme that extends the basic 
SEIR40 model by considering separate behavioral classes within populations (see SI for the detailed description of 
the model). For this reason, we assume that individuals can spontaneously change their behavior because of the 

Figure 4. Resilience and epidemic size in the data-driven scenario. (A) The plot shows the difference between 
resilience (blue) and the final fraction of diseased populations (red) for different values of the diffusion rate p. 
Here, we can identify three critical regions of the system. (i) diffusion rate p = 0.1 above the critical invasion 
threshold. Even if the system is characterized by sub-optimal resilience, the disease spreads all over the system. 
(ii) the reduction of the diffusion parameter p results in a significant decrease of the number of diseased 
populations but also in a dramatic decrease of resilience; (iii) below the critical invasion threshold resilience 
goes back to high values as fraction of diseased populations approaches zero. (B) Epidemic size (red) and 
resilience (blue) for the different values of the diffusion parameter p corresponding to the three aforementioned 
regions. Python 2.7 (https://www.python.org/) and the Basemap library (https://pypi.python.org/pypi/
basemap/1.0.7) were used to create these maps.

https://www.python.org/
https://pypi.python.org/pypi/basemap/1.0.7
https://pypi.python.org/pypi/basemap/1.0.7
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fear of the disease entering in a specific compartment SF of susceptible individuals. In the case of travel restric-
tions, we set the transition rate from exposed to infected λ = 0.67 days−1 and recovery rate μ = 0.33 days−1. In the 
case of the behavioral model, we set the disease parameters λ = 0.3 days−1 and μ = 0.1 days−1 while we consider an 
infection probability reduction r b= 0.15, the self-reinforcement parameter α = 0.1 and the relaxation parameter 
μF = 0.5. All the presented results are averaged over 100 simulations.

Mobility process. We adopt a simplified mechanistic approach that uses a Markovian assumption for mod-
eling migration among subpopulations; at each time step, the movement of individuals is given according to a 
matrix dij that expresses the probability that an individual in the subpopulation i is traveling to the subpopulation 
j. We assume that the diffusion rate on any given edge from a subpopulation node of degree ki to a subpopulation 
node of degree kj is proportional to kj

39 and it is given by dij = ω0 (kikj)θ/Ti, where Ti = ∑j wij = ∑j ω0(kikj)θ repre-
sents the total flow in i, while θ and the exponent ω0 are system specific (e.g., and θ = 0.5 and in the world-wide air 
transportation network53). In this scenario, we consider θ = 0.5 and ω0 = 10−3.

Global invasion threshold. For the SEIR model it is possible to explicitly calculate the average number of 
infected subpopulations for each infected subpopulation in a fully susceptible metapopulation system as 

ˆ⁎ =
μ λ

−
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3 where N̂  represents the average number of individuals in a subpopulation. The condi-

tion R* = 1 defines the invasion threshold for the system. Only for R* > 1 can the epidemic spread to a large number 
of subpopulations. The invasion threshold readily provides an explicit condition for the critical mobility pc, below 
which an epidemic cannot invade the metapopulation system, yielding the equation 
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