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1 Introduction

A central question in the perturbative quantization of gauge field theories is to what extent

the gauge symmetry is preserved by renormalization. Intuition tells that in the absence of

anomalies, i.e. when the measure in the path integral is gauge invariant, the counterterms

required to cancel the ultraviolet divergences should be gauge invariant as well. A rigorous

proof of this assertion, however, is highly non-trivial due to the breaking of the gauge
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symmetry required to quantize gauge theories (gauge-fixing procedure). The original gauge

invariance still survives in the Becchi-Rouet-Stora-Tyutin (BRST) [1–3] structure of the

gauge-fixed action Σ which remains invariant under infinitesimal variations generated by

the nilpotent BRST operator. At tree level, Σ is a sum of a BRST exact part responsible

for the gauge fixing and the classical gauge invariant action which depends only on the

physical fields (gauge fields and matter) and is independent of the Faddeev-Popov ghosts.

The physical content of gauge invariance will be retained if this BRST structure persists

under renormalization. In particular, it will guarantee that the partition function obeys

Slavnov-Taylor identities at all orders of the perturbative expansion.

In addition, to preserve the key properties of quantum field theory, the BRST structure

must be compatible with locality. Namely, starting from a gauge theory with a local1

Lagrangian, both the BRST-exact and the gauge-invariant parts of the renormalized action

must be given by integrals of local Lagrange densities.

In the textbook examples of renormalizable relativistic theories, such as quantum elec-

trodynamics or Yang-Mills (YM) theory, the previous properties can be proven by “brute

force”: one first writes down all possible counterterms allowed by power counting and then

solves the equations for their coefficients following from the Slavnov-Taylor identities. The

last step required to bring the renormalized action into the BRST form is a field redefini-

tion. Positive canonical dimensions of the fields and the absence of any coupling constants

with negative dimensionality imply in these simple cases that the field redefinition must

have the form of a multiplicative wavefunction renormalization, whose coefficient is easy

to find, see e.g. [4].

In general the situation is much more involved. This is the case, for example, in

non-renormalizable theories (understood as effective field theories, EFTs) where one en-

counters coupling constants of negative dimension. In these cases an explicit solution of

the Slavnov-Taylor identities appears infeasible. Even if such solution were available, the

field redefinition bringing it to the BRST form could be nonlinear and arbitrarily compli-

cated, rendering a brute-force search for it hopeless. The same is true for renormalizable

higher-derivative gravity [5] where the canonical dimension of the metric is zero, implying

that its renormalization can be, and actually is, nonlinear. To study the consistency of

the BRST structure with renormalization in this type of theories one needs more powerful

methods.

It is well-known that the classification of possible counterterms arising in general gauge

theories requires computing the cohomology of an extended BRST operator [6–10] (see

also [4]). To be compatible with the BRST structure, the latter must consist of local2

gauge-invariant functionals of physical fields only. This was indeed demonstrated in [11–13]

for the EFT consisting of general relativity coupled to YM with semisimple gauge group

extended by arbitrary gauge invariant higher-order operators. These references use the

1That is represented as a sum of terms depending on fields and their derivatives at a point. This sum

can, in principle, be infinite provided terms with higher number of derivatives are treated perturbatively,

as it happens in effective field theories.
2The requirement of locality is crucial. Refs. [7–9] studying the BRST cohomology in general gauge

theories do not guarantee its locality and have to postulate it as an additional assumption.
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advanced mathematical apparatus of local cohomology theory. Notably, for gauge groups

with Abelian factors they still leave room for non-trivial cohomologies different from gauge

invariant functionals which, if generated by divergences, would imply deformations of the

original gauge symmetry. Additional arguments must be invoked to forbid the appearance

of such counterterms in the studied cases [10].

The purpose of our work is to address the BRST structure of renormalized actions in

general gauge field theories admitting background field gauges. Our motivation is twofold.

First, we will provide a new, and we believe simpler, derivation of the results concerning

the renormalization of Einstein-YM theories and strengthen them for the case of theories

with Abelian subgroups. Second, our analysis covers a broader class of gauge theories not

considered in the classic papers [11–13]. This includes, in particular, the higher-derivative

gravity and gauge/gravity theories without relativistic invariance.

Non-relativistic gauge theories play a prominent role in condensed matter

physics [14–17] (see also references therein), investigations of non-relativistic Weyl invari-

ance and holography [18, 19], and may be relevant for particle model building [20–22]

(see [23] for a summary of extra motivations and results in non-relativistic gauge theories).

Furthermore, abandoning relativistic invariance (while keeping the gauge group of time-

dependent spatial diffeomorphisms) allows one to construct power-counting renormalizable

models of gravity in arbitrary spacetime dimensions including the phenomenologically in-

teresting case of (3+ 1) dimensions [24, 25]. The renormalizability beyond power counting

was established in [26] for a large subset of these gravity models, the so-called projectable

Hořava gravities. It was assumed in [26] that renormalization preserves gauge invariance,

which was explicitly demonstrated only at one loop. One of the goals of the present paper

is to demonstrate the validity of this assumption to all loop orders and thereby complete

the proof of renormalizability of projectable Hořava gravity.

Our approach is based on the background field method [27–29] (see also [30, 31]), a

powerful tool for calculating the quantum effective action in gauge theories and gravity.

The main virtue of this method is that it preserves the gauge invariance of the calculations

even after gauge fixing. This is achieved by the introduction of additional external sources

— background fields — in such a way that the partition function remains invariant under

simultaneous gauge transformations of the variables in the path integral (“quantum fields”)

and the background fields. We denote this transformation “background-gauge transforma-

tion”. At the same time the quantum gauge transformations acting only on the quantum

fields are broken by gauge fixing and the path integral is well defined (at least perturba-

tively). The construction of background-covariant gauge fixing conditions is straightforward

in theories containing fields in linear representations of gauge groups with linear generators.

These conditions imply that the background-gauge symmetry is preserved by renormaliza-

tion which serves as a strong selection criterion for possible counterterms. This method

greatly simplifies the renormalization of coupling constants in the one-loop approximation

after the background fields are identified with the mean value of the quantum fields [32–34].

In this case the counterterms take a manifestly gauge invariant form.

Beyond one-loop the situation becomes more complicated. The subtraction of sub-

divergences necessary to eliminate the nonlocal infinities requires counterterms where the

quantum fields are distinct from the background fields. Background-gauge invariance is
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not sufficient to completely fix the structure of such counterterms and the BRST struc-

ture associated to the quantum gauge transformations must be exploited, as is done in the

cases of gauges without background fields [35–39]. In practical calculations these coun-

terterms can sometimes be avoided by subtle methods that have been developed for YM

and relativistic gravity. However, these techniques generically feature nonlocal divergences

at intermediate steps of the calculations, that cancel only in the final quantities evaluated

on-shell [40–44]. The presence of nonlocal divergences makes these methods inappropriate

for a general analysis of renormalizability. More recently it has been advocated [45] that

the use of a background gauge combined with the standard subtraction scheme provides a

valuable tool for such analysis (see also [46, 47]). This reference uses the Batalin-Vilkovisky

formalism [48–51] to prove the existence of a canonical transformation bringing the renor-

malized action to the BRST form. However, this requires introducing background field

counterparts for all quantum fields of the theory including Faddeev-Popov ghosts and,

moreover, the addition of Batalin-Vilkovisky antifields for all background fields. Such pro-

liferation of objects makes the construction rather baroque and obscures the subtleties of

the derivation.

In this paper we adopt a different strategy and proceed along the lines of traditional

cohomology analysis. Our key finding is that the background-gauge invariance greatly

facilitates the computation of the local BRST cohomology. The latter reduces to coho-

mologies of a few simpler nilpotent operators that are readily computed using elementary

algebraic techniques. The resulting constraints on the form of the renormalized action

imply that, upon an appropriate field redefinition, it acquires the desired BRST form (a

local gauge-invariant functional plus a BRST-exact piece). The argument does not involve

any power-counting considerations. When available, such considerations lead to further

refinements which we discuss. We keep track of locality at all steps of the derivation.

Our proof applies to theories characterized by the following properties: the gauge

algebra is irreducible and closes off-shell; the gauge generators depend on the fields at most

linearly; the structure functions are field independent. These conditions ensure that the

theory admits a convenient background-covariant gauge fixing. Additionally, we assume the

absence of anomalies and locality of the leading ultraviolet divergences (ones that remain

after subtraction of subdivergences). The latter requirement should not be confused with

locality of the BRST decomposition, which is not postulated a priori, but is derived from

the previous assumptions.

The above class is quite broad. It encompasses renormalizable and non-renormalizable

(effective) theories with Abelian and non-Abelian gauge groups, general relativity and

higher-derivative gravity. In addition to the standard relativistic versions of these theories,

it also includes their non-relativistic generalizations [24, 25, 52–54]. As a corollary of our

general result we establish for the first time the compatibility of the BRST structure with

renormalization in projectable Hořava gravity [24, 25] which completes the proof of its

renormalizability. A notable example that is not covered by our study is supergravity

where the gauge algebra closes only on-shell.3

3For N = 1 supergravity in four spacetime dimensions, the off-shell closure of the algebra can be achieved

by introduction of auxiliary fields, but then the generators become nonlinear in the fields [55].
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While various ingredients of our analysis have already appeared in the literature, to

the best of our knowledge, they have never been put together. To make the presentation

self-contained we review these ingredients in the relevant sections. Several concrete exam-

ples aim to illustrate the physical content of the general result. For simplicity we focus

throughout the paper on theories with bosonic gauge parameters.

The paper is organized as follows. In section 2 we describe our assumptions, introduce

the background gauge fixing and formulate our main result (section 2.4). In section 3 we

illustrate its implications on several examples. We discuss explicitly the standard renormal-

izable YM in (3+1) dimensions, relativistic higher-derivative gravity in (3+1) dimensions,

projectable Hořava gravity in general dimensions and general relativity in (3 + 1) dimen-

sions (understood as an effective theory). In section 4 we turn to the proof of our general

result and derive the equations satisfied by the effective action as a consequence of the back-

ground and quantum gauge invariances. These equations are used to analyze the structure

of the divergent counterterms in section 5, which is the central part of the paper. Here

we formulate the cohomology problem and use the background-gauge invariance to split it

into several subproblems. Solving them we fix the structure of the renormalized action and

demonstrate existence of a field redefinition that casts it into the BRST form advocated

in section 2.4. This completes the formal proof. Section 6 is devoted to one more example

— the O(N) vector model in (1 + 1) spacetime dimensions written as an Abelian gauge

theory. This example is interesting as it features nonlinear wavefunction renormalization,

being at the same time simple enough to admit an explicit treatment. We verify at one

loop that the counterterms in this theory have the structure determined by the general

argument. We conclude in section 7. Appendix A contains the derivation of the Slavnov-

Taylor and Ward identities for the partition function. In appendix B we prove a lemma

about the cohomology of an operator appearing in our analysis. Some formulae used in

the computation of the effective action of the O(N) model are summarized in appendix C.

2 Assumptions and proposition

2.1 Gauge algebra

We consider a theory with local gauge and matter fields ϕa, where a is a collective notation

for all indices and the coordinates. The theory is described by the action S[ϕ ] which

is an integral of a local Lagrangian density L(ϕ). The latter is expanded as a sum of

terms depending on the fields ϕa and their finite-order derivatives at a given point.4 The

action S[ϕ] is invariant under gauge transformations with local bosonic parameters εα. The

transformations are assumed to have at most linear dependence on the fields,

δεϕ
a = Ra

α(ϕ) ε
α, Ra

α(ϕ) = P a
α +Ra

bαϕ
b , Ra

α(ϕ)
δS[ϕ ]

δϕa
= 0 . (2.1)

4Throughout the text the dependence of local functions on the fields and their finite-order derivatives

will be denoted by round brackets, while square brackets will denote the functional dependence of integral

quantities with local or nonlocal integrands.
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We further assume that the gauge algebra closes off-shell,

[

δε, δη
]

ϕa = δςϕ
a , (2.2)

where

ςα = Cα
βγε

βηγ , (2.3)

and Cα
βγ are field-independent structure functions. The closure condition implies the

relations,

Ra
bαP

b
β −Ra

bβP
b
α = P a

γC
γ
αβ , (2.4a)

Ra
bαR

b
cβ −Ra

bβR
b
cα = Ra

cγC
γ
αβ . (2.4b)

In addition, Cα
βγ obey the Jacobi identities,

Cα
β[γC

β
λµ] = 0 , (2.5)

where the square brackets mean anisymmetrization over the respective indices.

Next, we require that the set of gauge generators Ra
α(ϕ) is locally complete and irre-

ducible. These properties are defined as follows:

(i) Local completeness [51, 56]: any local operator Xa
α(ϕ) satisfying the equation

δS

δϕa
Xa

α = 0, (2.6)

is represented as a linear combination of the gauge generators and equations of

motion,

Xa
α = Ra

β Y
β
α +

δS

δϕb
I [ba]α , (2.7)

where Y β
α and I

[ba]
α are local and I

[ba]
α is antisymmetric in its indices. The locality

condition means that Y β
α and I

[ba]
α are non-zero only if the coordinates corresponding

to β and α or a, b and α coincide.

(i) Irreducibility [48–50]: let ϕa
0 be a solution of the equations of motion, so that

δS

δϕa
(ϕ0) = 0 . (2.8)

If a gauge parameter εα satisfies the relations

Ra
α(ϕ0) ε

α = 0 , (2.9)

then εα = 0. In other words, gauge transformations act non-trivially on on-shell

configurations.

– 6 –
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The class of theories described above is quite broad. It includes, in particular, rela-

tivistic Abelian and non-Abelian gauge theories together with their extensions by higher-

derivative operators, general relativity and relativistic higher-derivative gravity, e.g. [5].

Moreover, it contains non-relativistic generalizations of these theories. Some examples are

discussed in section 3 and in section 6. As we mentioned, a notable exception from this

class is supergravity, both due to the fermionic nature of the gauge parameter and openness

of the gauge algebra.

For the sake of clarity, we focus in what follows on theories where all fields ϕa are

bosonic. The inclusion of fermionic matter fields is straightforward, but would complicate

the formulae by additional (−1) factors.

2.2 Background gauge

To quantize the theory we need to fix the gauge. We introduce the background fields5 φa

and choose the gauge fixing function χα(ϕ, φ) in such a way that it transforms covariantly

under simultaneous local gauge transformation of ϕa and φa with the same parameter ε

but their own generators Ra
α(ϕ) and Ra

α(φ) respectively,

δεϕ
a = Ra

α(ϕ) ε
α , δεφ

a = Ra
α(φ) ε

α . (2.10)

Covariance of χα under the transformations (2.10) implies,

δεχ
α ≡

δχα

δϕa
δεϕ

a +
δχα

δφa
δεφ

a = −Cα
βγχ

βεγ . (2.11)

We will refer to (2.10) as “background-gauge transformations” and to χα(ϕ, φ) as “back-

ground-covariant gauge conditions”. We further choose χα to be linear in the difference

(ϕa − φa),

χα(ϕ, φ) = χα
a (φ) (ϕ

a − φa) . (2.12)

The gauge-fixing function is assumed to be local in space-time, i.e. it depends only on the

values of the fields and their derivatives of finite order at a point.

The gauge fixing is implemented by the BRST procedure [1–3] (see also [4]). Labelling

anticommuting ghosts ωα, antighosts ω̄α and the Lagrange multiplier bα with the condensed

gauge index α, we define the standard action of the BRST operator s

sϕa = Ra
α(ϕ)ω

α , (2.13a)

sωα =
1

2
Cα

βγ ω
βωγ , (2.13b)

s ω̄α = bα , (2.13c)

sbα = 0 . (2.13d)

The closure conditions (2.4), (2.5) imply that s is nilpotent. The background fields φa

are invariant under the action of s. Next, we introduce two sets of anticommuting aux-

iliary fields γa, Ω
a and a commuting field ζα. They are also invariant under the BRST

5For bosonic gauge algebras that we consider in this paper, it is sufficient to introduce background

counterparts to bosonic fields only, even if the theory contains fermionic matter.
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transformations generated by s. We define the gauge fermion as

Ψ0[ϕ, ω, ω̄, b, φ, γ, ζ ] = ω̄α

(

χα
a (φ)(ϕ

a − φa)−
1

2
Oαβ(φ) bβ

)

− γa(ϕ
a − φa) + ζαω

α . (2.14)

Here Oαβ(φ) is an invertible local operator that can, in general, depend on the background

fields6 and transforms covariantly under the background-gauge transformations. Finally,

we construct the gauge-fixed action,

Σ0[ϕ, ω, ω̄, b, φ, γ, ζ, Ω] = S[ϕ] +QΨ0 , (2.15)

with

Q = s+Ωa δ

δφa
. (2.16)

Following [35–39] we have extended the usual BRST operator in such a way that it controls

not only the field BRST transformations but also the variation of the gauge-fixing term

under the changes of φ. Clearly, Q is nilpotent due to the anticommuting nature of Ωa.

Explicitly, the action (2.15) reads,

Σ0[ϕ, ω, ω̄, b, φ, γ, ζ, Ω] = S[ϕ ] + bαχ
α
a (φ) (ϕ

a − φa)−
1

2
Oαβ(φ) bαbβ − ω̄α χ

α
a (φ)R

a
β(ϕ)ω

β

+ γaR
a
α(ϕ)ω

α +
1

2
ζαC

α
βγ ω

βωγ +Ωc ω̄α

[

δχα
b

δφc
(ϕ− φ)b − χα

c −
1

2

δOαβ

δφc
bβ

]

+Ωcγc .

(2.17)

One recognizes the gauge fixing part (second and third terms in the first line)7 and the

Faddeev-Popov action for the ghost-antighost pair (last term in the first line). The second

line collects the dependence on the auxiliary fields γa, ζα and Ωa. Notice that γa and ζα
couple as sources to the BRST variations of ϕa and ωα respectively.

In view of the nilpotency of Q the gauge-fixed action is BRST-invariant,

QΣ0 = 0 . (2.18)

This equation will be used below to derive the Slavnov-Taylor identities constraining the

ultraviolet divergences. Also, for background-covariant gauges of the above type, Ψ0 and

Σ0 have an additional symmetry: they are invariant under background-gauge transforma-

tions (2.10),

δεΨ0 = 0, δεΣ0 = 0 , (2.19)

if simultaneously with ϕa and φa we transform all fields in the appropriate linear represen-

tations:

δεγa = −γbR
b
aαε

α , δεω
α = −Cα

βγ ω
βεγ , δεζα = ζβC

β
αγε

γ , δεΩ
α = Ra

bαΩ
bεα , (2.20)

6This dependence is, in fact, inevitable in gravity (see section 3).
7Gaussian integration over the Lagrange multiplier bα gives a familiar gauge breaking term 1

2
χαO−1

αβχ
β

with the weighting factor inverse to Oαβ .
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and similarly for ω̄α and bα. Note that for theories with diffeomorphism invariance ωα

transforms as a contravariant vector, whereas ω̄α, bα, γa, ζα are vector/tensor densities.

Finally, the action (2.17) possesses a global U(1) symmetry corresponding to the ghost

number with the following assignment of charges:

gh(ϕ) = gh(φ) = gh(b) = 0 , gh(ω) = gh(Ω) = +1 ,

gh(ω̄) = gh(γ) = −1 , gh(ζ) = −2 .
(2.21)

Using (2.17) as the tree-level action and introducing sources coupled to the “quantum”

fields (ϕ, ω, ω̄, b) we write the “bare” generating functional for connected graphs,

W0[J, ξ̄, ξ, y, φ, γ, ζ, Ω] =−~ log

∫

dΦ exp

[

−
1

~

(

Σ0 + Ja(ϕ
a − φa) + ξ̄αω

α + ξαω̄α + yαbα
)

]

.

(2.22)

Here we have collectively denoted all quantum fields by Φ in the integration measure and

explicitly included the Planck constant ~ as a counting parameter for the order of the loop

expansion.8

2.3 Absence of anomalies and locality of divergences

We impose two more conditions on the theory. First, we postulate the absence of gauge

anomalies, i.e. the existence of a regularization prescription that preserves the gauge invari-

ance of the functional integration measure. This is achieved by dimensional regularization

in many cases.

Second, we require that a variant of the standard subtraction scheme (e.g. minimal

subtraction) [57] eliminates all nonlocal divergences. Let us expand on this point. In the

standard scheme the counterterms are constructed inductively in the number of loops L

or, equivalently, in the powers of ~. Let us assume that at order O(~L−1) we have already

constructed the renormalized action

ΣL−1 = Σ0 +
L−1
∑

l=1

~
lΣC

l , (2.23)

where Σ0 is the tree-level action (2.17) and ΣC
l are divergent local counterterms. This ac-

tion is such that the generating functional WL−1 defined by the formula analogous to (2.22)

with the replacement Σ0 7→ ΣL−1 produces Green’s functions that are finite at (L−1) loops.

Next, we introduce the mean fields9 as functional derivatives of the generating func-

tional with respect to the sources,10

〈ϕa〉 − φa =
δW

δJa
, 〈ωα〉 =

δW

δξ̄α
, 〈ω̄α〉 =

δW

δξα
, 〈bα〉 =

δW

δyα
, (2.24)

8Throughout the paper we work with Euclidean field theory and use the corresponding definition of the

generating functional. As the operator Oαβ in (2.17) is usually chosen positive-definite, the convergence of

the path integral requires that the integration in bα runs along the imaginary axis. This subtlety does not

affect our analysis.
9These should not be confused with the background fields φa.

10We fix the sign of the derivatives with respect to the anticommuting variables by placing the differential

on the left, df = dθf ′(θ).
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and define the effective action Γ as the Legendre transform of W ,

Γ
[

〈ϕ〉, 〈ω〉, 〈ω̄〉, 〈b〉, φ, γ, ζ, Ω
]

= W − Ja(〈ϕ
a〉 − φa)− ξ̄α〈ω

α〉 − ξα〈ω̄α〉 − yα〈bα〉 . (2.25)

Clearly, it satisfies,

δΓ

δ〈ϕa〉
= −Ja ,

δΓ

δ〈ωα〉
= ξ̄α ,

δΓ

δ〈ω̄α〉
= ξα ,

δΓ

δ〈bα〉
= −yα , (2.26)

The (L− 1)-th order effective action has the form

ΓL−1 = Σ0 +

∞
∑

l=1

~
lΓ

(l)
L−1 , (2.27)

where Γ
(l)
L−1 is the contribution of diagrams with l loops. By the assumption of the induction

step, all terms Γ
(l)
L−1 with l ≤ L− 1 are finite and the divergence of the L-th term,

Γ
(L)
L−1,∞ ≡ ΓL,∞[〈ϕ〉, 〈ω〉, 〈ω̄〉, 〈b〉, φ, γ, ζ, Ω] (2.28)

is local. Then the counterterm ΣC
L is identified with −ΓL,∞ where the mean fields are

replaced by the quantum fields,

ΣL[ϕ, ω, ω̄, b, φ, γ, ζ,Ω] = ΣL−1 − ~
LΓL,∞[ϕ, ω, ω̄, b, φ, γ, ζ, Ω] . (2.29)

According to the standard theorems [57] (see [58] for the generalization to theories with-

out Lorentz invariance), this subtraction removes the L-loop divergences, as well as all

subdivergences in (L+ 1)-loop diagrams.

In relativistic gauge theories with Lorentz-covariant gauge fixing, this guarantees that

the remaining divergence of order O(~L+1) in the effective action ΓL is local and the sub-

traction can be repeated at the (L+1)-th loop order. The situation is less straightforward

in the absence of Lorentz invariance [26] and the locality of the remaining divergences must

be verified in every given theory. It was shown to hold for non-relativistic YM theories with

anisotropic (Lifshitz) scaling and projectable Hořava gravity [26]. In the present paper we

postulate it as a property of the class of theories under study.

To avoid cluttered notations, we will omit the averaging symbols on the arguments of

the effective action Γ in what follows.

2.4 Proposition: BRST structure of the renormalized action

We will show that a slight modification of the subtraction prescription by the inclusion

of additional local terms of order O(~L+1) on the r.h.s. of (2.29) leads to a renormalized

action ΣL that preserves the BRST structure. More precisely, our result is formulated as

follows.

Let us denote the fields coupled to the external sources J, ξ̄ by ϕ̃, ω̃ and consider local

field reparameterizations of the form,

ϕ̃a = ϕ̃a
L(ϕ, ω, φ, γ̂, ζ, Ω) ω̃α = ω̃α

L(ϕ, ω, φ, γ̂, ζ, Ω) , (2.30)
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where we have introduced the combination

γ̂a = γa − ω̄αχ
α
a (φ) (2.31)

that will play an important role below. Upon the field redefinition the L-th order generating

functional reads,11

WL[J, ξ̄, ξ, y, φ, γ, ζ, Ω] = −~ log

∫

dΦ exp

[

−
1

~

(

ΣL+Ja(ϕ̃
a
L−φa)+ ξ̄αω̃

α
L+ξαω̄α+yαbα

)]

.

(2.32)

We will demonstrate the existence of a field redefinition (2.30) such that ΣL takes the form,

ΣL[ϕ, ω, ω̄, b, φ, γ, ζ, Ω] = SL[ϕ] +QΨL[ϕ, ω, ω̄, b, φ, γ, ζ, Ω] , (2.33)

where SL[ϕ] is a gauge invariant local functional and the BRST operatorQ has been defined

in (2.16). The gauge fermion ΨL is a local functional with ghost number (−1) which is

invariant under background-gauge transformations (2.10), (2.20) and has the form,

ΨL = Ψ̂L[ϕ, ω, φ, γ̂, ζ, Ω]−
1

2
ω̄αO

αβ(φ)bβ , (2.34)

where

Ψ̂L = −γ̂a(ϕ
a − φa) + ζαω

α +O(~) . (2.35)

Further, the reparameterization (2.30) itself is generated by the gauge fermion,

ϕ̃a
L = φa −

δΨL

δγa
, ω̃α

L =
δΨL

δζα
. (2.36)

Together with (2.35) this implies that at tree level ϕ̃, ω̃ coincide with ϕ, ω and the gauge

fermion ΨL coincides with the expression (2.14). Thus, we recover (2.22) at tree level.

Eqs. (2.32)–(2.36) represent a generalization of the construction described in section 2.2

that is forced on us by renormalization. Notice that the sources Ja, ξ̄α now couple to

composite local operators that in general depend not only on the quantum fields, but also

on the external backgrounds φa, γa, ζα, Ω
a. Nevertheless, this is not problematic due to

the property (2.35), (2.36) that ensures linearity of the coupling at leading order in ~.

We will see in section 3 and section 6 that in many interesting theories, that are

typically renormalizable, power counting considerations strongly restrict the dependence

of the renormalized gauge fermion Ψ̂L on the auxiliary fields. Namely, in these cases Ψ̂L is

independent of Ωa and can depend on γ̂a, ζα only linearly,

Ψ̂L = −γ̂aU
a

L (ϕ, φ) + ζαω
βV α

Lβ (ϕ, φ) , (2.37)

with

U a
L = ϕa − φa +

L
∑

l=1

~
lu a

l (ϕ, φ) , (2.38a)

V α
Lβ = δαβ +

L
∑

l=1

~
lv α

lβ(ϕ, φ) . (2.38b)

11We disregard the functional Jacobian |δΦ̃/δΦ| which gives a contribution to the Lagrangian of the form
∑

n On∂ . . . ∂ δ(0) with some local operators On. Such contributions vanish in dimensional regularization.
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Correspondingly, the field redefinition (2.36) bringing the counterterms into the BRST-

invariant form simplifies to

ϕ̃a
L = φa + U a

L (ϕ, φ) , ω̃α
L = V α

Lβ (ϕ, φ)ω
β . (2.39)

In this case it does not involve the auxiliary sources γa, ζα, Ω
a.

3 BRST structure for selected gauge theories

In this section we illustrate the notions and results described above on several gauge theories

and discuss restrictions imposed on the structure of divergences by power counting in

renormalizable cases. Together with a few well-known examples we consider the case of

projectable Hořava gravity whose BRST structure is studied here for the first time. Readers

interested in the general proof can skip this section and proceed directly to section 4.

3.1 Relativistic Yang-Mills in (3+1) dimensions

As a first example, we consider the standard YM theory in (3 + 1) spacetime dimensions.

It has been already studied using an approach similar to ours in [35–39]. Let us start by

expanding the condensed notations,12

ϕa 7→ Ai
µ(x) , εα 7→ εi(x) , (3.1a)

Ra
bα 7→ f ijk δνµ δ(x− x1) δ(x− x2) , P a

α 7→ δij ∂µδ(x− x1) , (3.1b)

Cα
βγ 7→ f ijk δ(x− x1) δ(x− x2) , (3.1c)

where Ai
µ(x) is the usual Yang-Mills field, i is the color index and f ijk are the totally

antisymmetric coordinate independent structure constants of the gauge group. We next

introduce the background field Bi
µ(x) and the gauge-fixing function,

χα 7→ ∂µ(Ai
µ −Bi

µ) + f ijkBjµ(Ak
µ −Bk

µ) ≡ Dµ
(B)(A

i
µ −Bi

µ) . (3.2)

Introducing the Faddeev-Popov ghosts ωi(x), antighosts ω̄i(x), the Lagrange multiplier

bi(x) and the BRST sources

γa 7→ γiµ(x) , ζα 7→ ζi(x) , Ωa 7→ Ωi
µ(x) , (3.3)

we obtain the gauge-fixed action,

Σ0 =

∫

d4x

[

1

4g2
F i
µνF

iµν + biDµ
(B)(A

i
µ −Bi

µ)−
α

2
bibi +Dµ

(B)ω̄
iD(A)µω

i

+ γiµDµ(A)ω
i +

1

2
ζif ijkωjωk +Ωi

µD
µ
(A)ω̄

i +Ωi
µγ

iµ

]

.

(3.4)

12Where no confusion is possible, we keep a condensed notation for space-time coordinates as x and their

delta functions as δ(x).
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The constant g is the gauge coupling and α is the gauge-fixing parameter. The field strength

and covariant derivatives are defined in the standard way,

F i
µν = ∂µA

i
ν − ∂νA

i
µ + f ijkAj

µA
k
ν , (3.5a)

D(A)µω
i = ∂µω

i + f ijkAj
µω

k , (3.5b)

and similarly for D(A)µω̄
i. The B-covariant derivative D(B)µω̄

i is given by an expression

analogous to (3.2). Clearly, the action (3.4) is invariant under gauge rotations of all fields

accompanied by simultaneous gauge transformations of Ai
µ and Bi

µ: these are precisely the

background-gauge transformations introduced in section 2.2.

An important property of the YM theory is renormalizability. Its key prerequisite are

restrictions imposed on divergences by power counting. The scaling transformations,

xµ 7→ a−1xµ , Ai
µ 7→ aAi

µ , (3.6)

where a is an arbitrary positive constant, leave the classical YM action invariant. We

will say that Ai
µ has scaling dimension (+1), whereas the dimension of xµ is (−1). The

rest of (3.4) will be also invariant if we simultaneously scale all fields with the following

dimensions,

[Ai
µ] = [Bi

µ] = [ωi] = [ω̄i] = 1 , [bi] = [γiµ] = [ζi] = [Ωi
µ] = 2 . (3.7)

The textbook analysis of divergent Feynman diagrams shows that the scaling dimensions

of local counterterms needed to cancel the divergences do not exceed 4. Comparing with

the BRST form (2.33) and taking into account that the generalized BRST operator Q

increases the scaling dimension by 1, we conclude that the dimensions of local operators

entering into the renormalized gauge fermion Ψ̂ do not exceed 3. Recalling further that

the ghost number of Ψ̂ is (−1) we write down the most general expression compatible with

these requirements,

Ψ̂ [A,ω,B, γ̂, ζ] =

∫

d4x
(

− γ̂iµ U i
µ(A,B) + ζiωjV ij

)

, (3.8)

where V ij are dimensionless constants, while U i
µ depends on Ai

µ and Bi
µ at most linearly.

We observe that Ψ̂ does not depend on Ωi
µ and is linear in γiµ and ζi. As discussed in

section 2.4, this implies that the field redefinition needed to bring the counterterms into the

BRST form is independent of the auxiliary BRST sources, see (2.39). Positive dimensions

of the YM field and ghosts further constrain this reparameterization to be linear.

3.2 Higher-derivative relativistic gravity in (3+1) dimensions

The fields describing relativistic gravitational theories are identified as follows:

ϕa 7→ gµν(x) , εα 7→ εµ(x) , (3.9)

where gµν(x) is the spacetime metric and εµ(x) is a vector field generating infinitesimal

diffeomorphisms. The gauge transformations read,

δεgµν = ελ∂λgµν + gµλ∂νε
λ + gνλ∂µε

λ = ∇(g)µ εν +∇(g)ν εµ , (3.10)
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where in the last equality we have lowered the indices using the metric gµν and introduced

the covariant derivative ∇(g) constructed using this metric. The expression (3.10) implies,

Ra
bα 7→δρµ

[

δσν
(

∂λδ(x−x1)
)

δ(x−x2) + δσλδ(x−x1) ∂νδ(x−x2)
]

+ δρνδ
σ
λδ(x−x1) ∂µδ(x−x2),

(3.11a)

P a
α = 0 , Cα

βγ 7→ δµλδ(x− x1) ∂νδ(x− x2)− δµν
(

∂λδ(x− x1)
)

δ(x− x2) . (3.11b)

We focus on the theory in (3 + 1) dimensions including up to 4-th order derivatives of the

metric. The classical action reads

S =

∫

d4x
√

|g|

[

1

f2
1

RµνR
µν +

1

f2
2

R2 −
1

2κ2
R+

Λ

κ2

]

, (3.12)

where |g| is the determinant of the metric, Rµν is the corresponding Ricci tensor and

R ≡ Rµνg
µν is the Ricci scalar; f2

1 , f
2
2 , κ

2 and Λ are coupling constants. The quantum

properties of this theory were first analyzed in [5]. The fact that the action contains fourth

derivatives of the metric entails well-known problems with the physical interpretation of

the theory [59]. However, this issue is irrelevant for our purposes.

Introducing the background metric gµν(x) we consider the gauge fixing function,

χα 7→ χµ = gµλgνρ�(g)∇(g)ν(gλρ − gλρ) , (3.13)

where ∇(g) and �(g) stand for the covariant derivatives and d’Alembertian constructed

from the background metric. Introducing the fields of the BRST sector,

ωα 7→ ωµ(x) , ω̄α 7→ ω̄µ(x) , bα 7→ bµ(x) , γa 7→ γµν(x) , ζα 7→ ζµ(x) , Ωa 7→ Ωµν(x) ,

(3.14)

and the operator Oαβ ,

Oαβ 7→ −α
gµν
√

|g|
�(g)δ(x− x1) , (3.15)

we arrive at the gauge-fixed action,

Σ0 = S[gµν ] +

∫

d4x

{

bµχ
µ +

α

2
bµ

gµν
√

|g|
�(g)bν +

(

∇(g)νω̄µ

)

gµλgνρ�(g)

(

∇(g)λωρ+∇(g)ρωλ

)

+γµν
(

∇(g)µων+∇(g)νωµ

)

+ζµω
λ∂λω

µ +Ωµνγ
µν

+Ωµν ω̄λ

[

δχλ

δgµν
+

α

2

δ

δgµν

(

gλρ
√

|g|
�(g)

)

bρ

]}

. (3.16)

We have not expanded the variational derivatives in the last term as the corresponding

expressions are rather lengthy and not informative. The background-gauge transformations

correspond to diffeomorphisms,

xµ 7→ xµ + εµ(x) , (3.17)

under which gµν , gµν , ω
µ, Ωµν transform as tensors, whereas ω̄µ, bµ, γ

µν , ζµ transform as

vector/tensor densities. For example,

δεω
µ = ελ∂λω

µ − ωλ∂λε
µ , (3.18a)

δεω̄µ = ελ∂λω̄µ + ω̄λ∂µε
λ + ω̄µ∂λε

λ , (3.18b)
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and similarly for the rest of the fields. It is straightforward to see that this is a symmetry

of the action (3.16). The fact that bµ is a covariant vector density explains the unusual

placement of
√

|g| in the denominator of the operator (3.15).

The four-derivative terms in the classical action (3.12) are invariant under rescaling

xµ 7→ a−1xµ ,

with the metric gµν kept intact. The same is true for the BRST-exact part of (3.16) if we

assign the following scaling dimensions,

[gµν ] = [gµν ] = [ωµ] = [ω̄µ] = 0 , [bµ] = [Ωµν ] = 1 , [γµν ] = [ζµ] = 3 . (3.19)

As in the case of YM, it can be shown13 [5] that the power-counting restricts the scaling

dimensions of counterterms in the Lagrangian to be less than or equal to 4. This again

constrains the dependence of the gauge fermion on the auxiliary fields. We observe that

the BRST transformations increase the scaling dimension of all fields14 by 1. This implies

that Ψ̂ should contain local operators of dimensions not higher than 3. Also, their ghost

number must be equal to (−1). Taking into account the scaling dimensions (3.19) and the

ghost charges (2.21) we obtain the most general expression,

Ψ̂ [g, ω, g, γ̂, ζ] =

∫

d4x
(

− γ̂µν Uµν(g, g) + ζµω
ν V µ

ν (g, g)
)

, (3.20)

where Uµν , V
µ
ν are dimensionless functions of the quantum and background metric fields

that transform covariantly under background diffeomorphisms. We observe that, similarly

to YM, Ψ̂ is linear in the BRST sources γ and ζ. However, since the scaling dimension

of both metrics is zero, the coefficients in (3.20) can depend nonlinearly on gµν and gµν .

This implies that the field redefinition (2.39) required to restore the BRST structure of the

renormalized action is genuinely nonlinear, cf. [5].

It is worth noting that the original proof of renormalizability of the theory (3.12)

presented in [5] is tied to specific gauges where the structure of divergences is particularly

simple due to some special features of the action. For more general gauges, ref. [5] took

the cohomological structure of divergences as an assumption. Our results provide a proof

of this structure for a general background gauge and, in this respect, complement the

analysis of [5].

3.3 Projectable Hořava gravity in (d+ 1) dimensions

Consider a (d+1)-dimensional spacetime with Arnowitt-Deser-Misner (ADM) decomposi-

tion of the metric,

ds2 = N2dt2 + gij(dx
i +N idt)(dxj +N jdt) , (3.21)

13The choice of gauge (3.13) is important for the argument. It ensures that the propagators of the metric

perturbations and ghosts fall off as the fourth power of momentum and as a consequence the degree of

divergence of Feynman diagrams is consistent with the naive power counting.
14In this case it is due to the presence of derivatives acting on the transformed field, rather than the

non-zero dimension of ghosts as it happens for YM.
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where the indices i, j = 1, . . . , d denote spatial directions;15 they are raised and lowered

using the spatial metric gij . Let us impose the so-called “projectability” constraint that the

lapse N is not dynamical and fix N = 1. This constraint is compatible with a subgroup

of time-dependent diffeomorphisms along spatial directions. Thus, the fields and gauge

parameters are identified as follows,

ϕa 7→ gij(t,x), N i(t,x) , εα 7→ εi(t,x) . (3.22)

The gauge generators and the structure constants are given by the corresponding reduction

of eqs. (3.11). The classical action is taken in the form [24, 25],

S =
1

2κ2

∫

dtddx
√

|g|
(

KijK
ij − λK2 + V(gij)

)

, (3.23)

where

Kij =
1

2
(ġij −∇(g)iNj −∇(g)jNi) (3.24)

is the extrinsic curvature on the constant-time slices and K ≡ Kijg
ij is its trace. Here dot

denotes derivative with respect to time and covariant derivatives ∇(g) are constructed using

the spatial metric gij ; κ and λ are coupling constants. The potential V contains all local

terms invariant under spatial diffeomorphisms that can be constructed from the spatial

metric gij using no more than 2d spatial derivatives; generically, it is a finite polynomial of

the d-dimensional Riemann tensor and its covariant derivatives. Clearly, the action (3.23)

does not possess Lorentz symmetry. On the other hand, its highest-derivative part is

invariant under anisotropic (Lifshitz) scaling transformations,

x 7→ a−1 x , t 7→ a−d t , (3.25)

with the scaling dimensions of the fields,

[gij ] = 0 , [N i] = d− 1 . (3.26)

Note that different components of the gauge fields (the components of the ADM met-

ric (3.21) in this case) have different dimensions which is a common situation in theories

with Lifshitz scaling.

A background-gauge fixing procedure compatible with the scaling symmetry (3.25)

was constructed in [26]. We introduce the background fields gij(t,x), Ni(t,x) and the

combinations

hij = gij − gij , ni = N i −Ni . (3.27)

Then the gauge-fixing function reads,

χα 7→ χi = Dtn
i +

α

2
Oijgkl

(

∇(g)khlj − λ∇(g)jhkl
)

, (3.28a)

where

Dtn
i = ṅi −Nk∇(g)kn

i +∇(g)kN
i nk , (3.28b)

15We do not use color YM indices in this subsection, so there should be no confusion with the notations

of section 3.1.
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and the operator Oij has the form,16

Oij = (−1)d−1∇k1
(g) . . .∇

kd−2

(g)

(

∆(g)g
ij + ξ∇i

(g)∇
j
(g)

)

∇(g)kd−2
. . .∇(g)k1 . (3.28c)

Here the covariant spatial Laplacian ∆(g) and all covariant derivatives ∇(g) are defined

using the background metric gij with their indices raised and lowered using the same

metric; the constants α and ξ are gauge parameters. This gauge fixing term satisfies

all the requirements formulated in section 2.2: it is linear in the difference between the

quantum and background fields, and covariant under simultaneous gauge transformations

of these fields.

We now introduce the rest of objects entering in the BRST construction,

ωα 7→ ωi(t,x) , ω̄α 7→ ω̄i(t,x) , bα 7→ bi(t,x) Oαβ 7→
α

√

|g|
Oijδ(t− t′)δ(x− x′) ,

(3.29a)

γa 7→
{

γij(t,x), γi(t,x)
}

, ζα 7→ ζi(t,x) , Ωa 7→
{

Ωij(t,x), Ωi(t,x)
}

. (3.29b)

The full gauge-fixed action is lengthy and we do not write it explicitly. Importantly, with

an appropriate assignment of dimensions to the fields it is invariant under the scaling

transformations (3.25). By inspection of the gauge-fixing and the Faddeev-Popov ghost

terms we find,

[ωi] = [ω̄i] = 0 , [bi] = 1 . (3.30a)

The background fields inherit the dimensions from their dynamical counterparts,

[gij ] = 0 , [Ni] = d− 1 . (3.30b)

To determine the dimensions of the auxiliary fields γij , γi, ζi recall that they couple to

the BRST variations sgij , sN i, sωi respectively. The latter have the same form as in

relativistic gravity and thus contain one spatial derivative acting on the fields. This yields,

[sgij ] = [sωi] = 1 , [sN i] = d . (3.30c)

Then, the scale invariance of the terms γasϕ
a, ζαsω

α in the action requires

[γi] = d , [γij ] = [ζi] = 2d− 1 . (3.30d)

Finally, the coupling Ωaγa present in the action fixes the dimensions of Ωij , Ω
i,

[Ωij ] = 1 , [Ωi] = d . (3.30e)

The results of [26] imply that in this theory the ultraviolet divergences consist of local

operators with scaling dimensions not higher than 2d. Thus, all assumptions of section 2

are satisfied and according to section 2.4 the renormalizad action has the form (2.33). As the

BRST transformations increase the dimensionality of the fields by unity, the renormalized

gauge fermion Ψ̂ appearing in (2.33) contains operators with dimensions less or equal to

16Note that Oij corresponds to the operator denoted by O−1

ij in ref. [26].
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(2d − 1). The general expression satisfying this property and having the ghost number

(−1) reads,

Ψ̂ =

∫

dtddx
(

− γ̂ij Uij(γ, g)− γ̂iU
i(g,N, g,N) + ζi ω

j V i
j (g, g)

)

, (3.31)

where Uij , V
i
j are dimensionless functions of gij , gij , whereas Ui can also linearly depend

on N i, Ni. Once more we observe that Ψ̂ is independent of Ωij , Ω
i and depends linearly

on the rest of BRST sources.

Establishing the BRST structure of counterterms in the projectable Hořava gravity

together with the results of ref. [26] completes the proof of renormalizability of this theory.

3.4 General relativity as effective field theory in (3+1) dimensions

As an example of a non-renormalizable theory we consider Einstein’s general relativity

in (3 + 1) dimensions. The field content and gauge transformations are the same as in

section 3.2. What differs is the structure of the classical action which now reads,

S =
1

2κ2

∫

d4x
√

|g| (2Λ−R+ . . .) , (3.32)

where dots stand for an infinite sum of various local scalar operators constructed from the

Riemann tensor and its derivatives. They can be ordered according to the total number

of derivatives n they contain.17 At each fixed order, the number of possible terms is

finite (though it grows quickly with n). In the spirit of effective field theory, the higher

derivative contributions are treated as corrections to the terms explicitly shown in (3.32).

In particular, the graviton propagator is determined from the Einstein-Hilbert part and

falls off as p−2 at large momenta p.

The background-covariant gauge-fixing function can be chosen as in eq. (3.13). A yet

simpler choice is provided by

χα 7→ χµ = gµλgνρ∇(g)ν(gλρ − gλρ) , (3.33)

where gµν is the background metric. The rest of the gauge fixing construction proceeds

in complete analogy with section 3.2. In the present case there are no power-counting

arguments constraining the dependence of divergences on auxiliary fields. Still, the propo-

sition formulated in section 2.4 ensures that they are compatible with the BRST structure.

The field renormalization required to recover this structure is expected to have the general

form (2.30) and involve ghosts and auxiliary fields in a nonlinear manner.

4 Equations for the effective action

We now derive the equations obeyed by the effective action ΓL defined in (2.25) corre-

sponding to the generating functional of the form (2.32). We will omit the loop index L in

this section.

17Thus, the terms RµνR
µν and R2 contain 4 derivatives (n = 4), RµνλρR

λρστR µν
στ contains 6 derivatives

(n = 6), etc.
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As shown in appendix A, the closure of Σ under the action of the extended BRST

operator, QΣ = 0, together with the absence of anomalies, implies the Slavnov-Taylor

identity for the partition function,
[

− Ja
δ

δγa
+ ξ̄α

δ

δζα
+ ξα

δ

δyα
+Ωa δ

δφa

]

W = 0 . (4.1)

Whereas the invariance of Σ and Ψ under background gauge transformations leads to the

Ward identities,
[

− JaR
a
bα

δ

δJb
+ Cγ

βαξ̄γ
δ

δξ̄β
− Cβ

γαξ
γ δ

δξβ
− Cβ

γαy
γ δ

δyβ

+Ra
α(φ)

δ

δφa
− γbR

b
aα

δ

δγa
+ Cβ

γαζβ
δ

δζγ
+Ra

bαΩ
b δ

δΩa

]

W = 0 .

(4.2)

In addition, the equations of motion for the Lagrange multiplier bα imply,
[

χα
a

δ

δJa
−Oαβ δ

δyβ
−

Ωa

2

δOαβ

δφa

δ

δξβ
+ yα

]

W = 0 . (4.3)

Let us stress that the derivation of eqs. (4.2), (4.3) essentially relies on the property that

the gauge generators and the gauge-fixing condition are linear in the quantum field.

Turning to the effective action, we use the relations (2.24), (2.26) and rewrite the

identities (4.1), (4.2) and (4.3) in the following form,18

δΓ

δγa

δΓ

δϕa
+

δΓ

δζα

δΓ

δωα
+ bα

δΓ

δω̄α
+Ωa δΓ

δφa
= 0 , (4.4a)

Ra
α(ϕ)

δΓ

δϕa
− Cγ

βαω
β δΓ

δωγ
+ ω̄βC

β
γα

δΓ

δω̄γ
+ bβC

β
γα

δΓ

δbγ

+Ra
α(φ)

δΓ

δφa
− γbR

b
aα

δΓ

δγa
+ ζβC

β
γα

δΓ

δζγ
+Ra

bαΩ
b δΓ

δΩa
= 0 , (4.4b)

χα
a (ϕ

a − φa)−Oαβbβ −
Ωa

2

δOαβ

δφa
ω̄β −

δΓ

δbα
= 0 . (4.4c)

It is convenient to consider a reduced effective action Γ̂ obtained from Γ by subtracting

the gauge-fixing term and its derivatives with respect to the background fields,

Γ̂ = Γ − bα

(

χα
a (ϕ− φ)a −

1

2
Oαβbβ

)

−Ωaω̄α

(

δχα
b

δφa
(ϕ− φ)b − χα

a −
1

2

δOαβ

δφa
bβ

)

. (4.5)

Substituting this expression into (4.4c) yields that Γ̂ is independent of bα,

δΓ̂

δbα
= 0 . (4.6)

Then the identity (4.4a) splits into two equations,

χα
a

δΓ̂

δγa
+

δΓ̂

δω̄α
= 0 , (4.7a)

δΓ̂

δγa

δΓ̂

δϕa
+

δΓ̂

δζα

δΓ̂

δωα
+Ωa

(

δΓ̂

δφa
+ ω̄α

δχα
b

δφa

δΓ̂

δγb

)

= 0 . (4.7b)

18Recall that we omit averaging symbols on the mean fields.
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The first one implies that Γ̂ depends on the antighost only through the combination (2.31),

so that

Γ̂ = Γ̂ [ϕ, ω, φ, γ̂, ζ, Ω ] . (4.8)

Next, we use the relation
δ

δφa

∣

∣

∣

∣

γ̂

=
δ

δφa

∣

∣

∣

∣

γ

+ ω̄α
δχα

b

δφa

δ

δγb
, (4.9)

where the index on the right of the vertical line means that the φ-derivative is taken at

fixed γ̂ or γ. Consequently, eq. (4.7b) takes the form,

δΓ̂

δγ̂a

δΓ̂

δϕa
+

δΓ̂

δζα

δΓ̂

δωα
+Ωa δΓ̂

δφa
= 0 . (4.10a)

The Ward identities (4.4b) also simplify to,

Ra
α(ϕ)

δΓ̂

δϕa
−Cγ

βαω
β δΓ̂

δωγ
+Ra

α(φ)
δΓ̂

δφa
−γ̂bR

b
aα

δΓ̂

δγ̂a
+ζβC

β
γα

δΓ̂

δζγ
+Ra

bαΩ
b δΓ̂

δΩa
= 0. (4.10b)

Finally, Γ̂ has zero ghost number, i.e. it is invariant under phase rotations of the fields ω,

γ̂, ζ, Ω with charges (2.21). Together with eqs. (4.10) this will be used in the next section

to constrain the structure of ultraviolet divergences.

Clearly, the identities (4.10) are satisfied by the reduced tree-level action Σ̂0, which is

related to (2.17) by a formula analogous to (4.5). Explicitly, we have,

Σ̂0 = S[ϕ ] + γ̂aR
a
α(ϕ)ω

α +
1

2
ζαC

α
βγω

βωγ . (4.11)

Note that Σ̂0 does not have any explicit dependence19 on Ωa and φa. Consequently,

the last term in (4.10a) and the third term in (4.10b) are absent in the corresponding

identities for Σ̂0.

5 Structure of divergences

We return to the renormalization procedure. Let us assume that at the order of (L − 1)

loops we have already shown that the renormalized generating functional WL−1 has the

form (2.32)–(2.36). The first divergence of the effective action ΓL−1 appears at order ~
L

and is local, see eqs. (2.27), (2.28). The standard procedure prescribes to subtract it from

ΣL−1 in order to obtain the action renormalized at L loops. Our task is to work out the

structure of this divergence. To avoid cluttered notations we will omit the indices related

to the induction step and will denote the relevant divergent part ΓL,∞ simply as Γ∞.

First, we observe that the transformation (4.5) involves only finite quantities, so that

the divergent parts of Γ and Γ̂ coincide,

Γ∞ = Γ̂∞[ϕ, ω, φ, γ̂, ζ, Ω] . (5.1)

19Only an implicit dependence of Σ̂0 on φa through the combination (2.31) remains.
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Due to the linearity of the Ward identities (4.10b), they are obeyed separately by each

term in the expansion of Γ̂ in ~; in particular, they hold for the divergent part Γ̂∞. Next,

we consider eq. (4.10a). The first divergent contribution into it appears at the order ~
L.

Equation (4.10a) at this order then implies

Q+Γ̂∞ = 0 , (5.2)

where we have introduced an operator Q+ that acts on a functional X of the fields ϕ, ω,

φ, γ̂, ζ , Ω as follows,

Q+X =
δΣ̂0

δγ̂a

δX

δϕa
+

δΣ̂0

δϕa

δX

δγ̂a
+

δΣ̂0

δζα

δX

δωα
+

δΣ̂0

δωα

δX

δζα
+Ωa δX

δφa

≡ (Σ̂0, X) +Ωa δX

δφa
.

(5.3)

Here Σ̂0 is the reduced tree-level action (4.11) and in the second line we defined the

antibracket (Σ̂0, X). A straightforward calculation using the structural relations (2.4), (2.5)

shows that the latter is nilpotent,

(Σ̂0, (Σ̂0, X)) = 0 , (5.4a)

and anticommutes with the operator Ω δ/δφ,
(

Σ̂0, Ω
a δX

δφa

)

= −Ωa δ

δφa
(Σ̂0, X) . (5.4b)

The properties (5.4) imply nilpotency of Q+. Note that using the explicit form of Σ0 and

the BRST transformations (2.13), Q+ can be written as

Q+X = (sϕa)
δX

δϕa
+ (sωα)

δX

δωα
+Ωa δX

δφa

∣

∣

∣

∣

γ̂

+
δΣ̂0

δϕa

δX

δγ̂a
+

δΣ̂0

δωα

δX

δζα
. (5.5)

The first three terms here resemble the action of the operator Q introduced in section 2.2.

However, there are a few differences. Q is defined on functionals of all quantum fields

ϕ, ω, ω̄, b and external backgrounds φ, γ, ζ, Ω. On the other hand, Q+ acts on functionals

that are restricted to the minimal sector of quantum fields ϕ, ω and, instead of γ, depend

on the combination γ̂ (see (2.31)) treated as a free variable.

We now use eq. (5.2) to determine the dependence of Γ̂∞ on the background fields φa.

5.1 Separating the background field dependence

We expand Γ̂∞ in powers of the auxiliary source Ω,

Γ̂∞ =
∑

k

Γ̂∞,{k} , Γ̂∞,{k} = Ωa1 . . . Ωak Γ̂∞,{k},[a1,...,ak][ϕ, ω, φ, γ̂, ζ] . (5.6)

We assume that this sum is finite, k ≤ K, which will be justified shortly. Substituting (5.6)

into (5.2) we obtain

Ωa δΓ̂∞,{K}

δφa
= 0 , (5.7a)

Ωa δΓ̂∞,{k}

δφa
+ (Σ̂0, Γ̂∞,{k+1}) = 0 , 0 ≤ k ≤ K − 1 . (5.7b)
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As shown in appendix B, the cohomology of the operator Ωδ/δφ on the space of local

functionals vanishing at Ω = 0 is trivial. In other words, eq. (5.7a) implies that Γ̂∞,{K} is

represented as

Γ̂∞,{K} = Ωa δ

δφa
Υ{K−1} , (5.8)

where Υ{K−1} is a local functional of ghost number (−1) invariant under background-gauge

transformations. Inserting this representation into (5.7b) for k = K − 1 yields

Ωa δ

δφa

(

Γ̂∞,{K−1} − (Σ̂0, Υ{K−1})
)

= 0 , (5.9)

where we have used the property (5.4b). Again, this implies

Γ̂∞,{K−1} = (Σ̂0, Υ{K−1}) +Ωa δ

δφa
Υ{K−2} . (5.10)

By continuing this reasoning and using the properties (5.4) we obtain a representation of

the type (5.10) for all Γ̂∞,{k}, 1 ≤ k ≤ K−1. For k = 0 an additional contribution appears,

Γ̂∞,{0} = (Σ̂0, Υ{0}) + Γ , (5.11)

where Γ [ϕ, ω, γ̂, ζ] is independent of Ω and the background field φ. Collecting all contri-

butions together we arrive at

Γ̂∞ = Γ [ϕ, ω, γ̂, ζ] +
K−1
∑

k=0

(Σ̂0, Υ{k}) +
K
∑

k=1

Ωa δ

δφa
Υ{k−1}

= Γ [ϕ, ω, γ̂, ζ] +Q+Υ , (5.12)

where in the second line we have defined

Υ [ϕ, ω, φ, γ̂, ζ, Ω] =
K−1
∑

k=0

Υ{k} . (5.13)

We can now appreciate the power of the background-field approach. The pieces de-

pendent on the background fields have separated into a Q+-exact contribution leaving

behind the part Γ that depends only on the quantum fields. The original invariance un-

der background-gauge transformations implies that Γ is gauge-invariant on its own. More

precisely, we write

Γ = S[ϕ] + Λ[ϕ, ω, γ̂, ζ] , (5.14)

where Λ vanishes at ω = 0. The ghost-independent part S[ϕ] cannot depend on γ̂ or ζ as

the latter have negative ghost charges (see (2.21)), whereas the ghost number of Γ is zero.

Then, due to the Ward identities (4.10b), the local functional S[ϕ] satisfies

δS

δϕa
Ra

α(ϕ) = 0 . (5.15)

We will see in section 5.3 that in the subtraction procedure it combines with the classical

action S[ϕ] and corresponds to the renormalization of the couplings in the classical gauge
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invariant Lagrangian. The rest of the terms in (5.12), (5.14) generates a renormalization

of the gauge fermion and the corresponding field redefinition.

We still have to justify the assumption that the sum (5.6) can be truncated at finite

k. We do it using the notion of derivative expansion. Being local, the functional Γ̂∞ is

a spacetime integral of a Lagrangian which can be written as a series of terms, each of

them containing a finite number of derivatives. Let us introduce a formal book-keeping

parameter l∗ of dimension of length counting the number of derivatives in a given term,

and convert the derivative expansion into a Taylor series20 in l∗. We denote by Γ̂N
∞ the

part of Γ̂∞ containing all terms of order ln∗ , n ≤ N , i.e. all terms with up to N derivatives.

Now, Ω is an anticommuting local field. With a finite number of derivatives at disposal,

one can construct only a finite number of local operators out of it. Therefore Γ̂N
∞ is a finite

polynomial21 in Ω.

Next, we observe that Σ̂0 is also a local functional and hence contains derivatives in

non-negative powers. Thus, it is represented as a series with non-negative powers of l∗, so

that the antibracket (Σ̂0, . . .) acting on a given operator cannot decrease its order in l∗.

In addition, the operator Ωδ/δφ does not contain l∗ at all. We conclude that Γ̂N
∞ satisfies

eq. (5.2), up to corrections of order lN+1
∗ ,

Q+Γ̂
N
∞ = O(lN+1

∗ ) . (5.16)

Splitting Γ̂N
∞ into monomials in Ω one can repeat the derivation leading to (5.12), up to

corrections of order O(lN+1
∗ ) on the r.h.s. As this representation holds for any N , we can

send the latter to infinity22 and recover (5.12) for the full divergent part Γ̂∞ without any

corrections.

5.2 Ghost-dependent contribution

It remains to fix the structure of the term Λ in (5.14). It satisfies the equation,

(Σ̂0, Λ) = 0 . (5.17)

Using the explicit form of the reduced tree-level action (4.11) and the definition of the

antibracket, we obtain

Ra
α(ϕ)ω

α δΛ

δϕa
+

(

δS

δϕa
+ γ̂bR

b
aαω

α

)

δΛ

δγ̂a
+

1

2
Cα

βγω
βωγ δΛ

δωα

+
(

− γ̂aR
a
α(ϕ) + ζβC

β
αγω

γ
) δΛ

δζα
= 0 .

(5.18)

20In theories with Lifshitz scaling it would be natural to assign different weights to derivatives along

different spacetime directions, cf. section 3.3. However, the argument presented below does not depend on

whether one introduces such weighting or not, so for simplicity we treat all derivatives on equal footing.
21Note that its highest power is not directly related to N and can depend on the specifics of the theory

such as number of internal indices and spacetime dimensions, power-counting considerations, etc. The only

property which is important for us here is that this power is finite.
22In renormalizable theories with finite number of coupling constants the derivative expansion usually

terminates at a finite order in N .
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In addition, the invariance of Λ with respect to background-gauge transformations implies

the Ward identities (cf. (4.10b)),

Ra
α(ϕ)

δΛ

δϕa
− Cγ

βαω
β δΛ

δωγ
− γ̂bR

b
aα

δΛ

δγ̂a
+ ζβC

β
γα

δΛ

δζγ
= 0 . (5.19)

Multiplying the latter expression by ωα and subtracting it from (5.18), we arrive at the

equation

(q0 + q1)Λ = 0 , (5.20)

where the operators q0,1 are defined as

q0 Λ =
δS

δϕa

δΛ

δγ̂a
− γ̂aR

a
α(ϕ)

δΛ

δζα
, (5.21a)

q1 Λ = −
1

2
Cγ

αβω
αωβ δΛ

δωγ
. (5.21b)

Both operators are nilpotent and anticommute with each other,

(q0)
2 = (q1)

2 = q0q1 + q1q0 = 0 . (5.22)

The operator q0 is known in the mathematical literature as Koszul-Tate differential [56].

Let us expand Λ in powers of the ghost fields ωα,

Λ =
∞
∑

k=1

Λ{k} , Λ{k} = ωα1 . . . ωαkΛ
{k}
[α1,...,αk]

[ϕ, γ̂, ζ] . (5.23)

Note that the sum starts at k = 1 as, by definition, Λ vanishes at ω = 0. The conservation of

the ghost number and the ghost charges (2.21) imply that each term Λ{k} in the expansion

is a finite polynomial in γ̂ and ζ that vanishes at γ̂ = ζ = 0. Thus Λ{k} satisfies,

Λ{k}
∣

∣

ω=0
= Λ{k}

∣

∣

γ̂=ζ=0
= 0 . (5.24)

We now substitute (5.23) into (5.20) and obtain a chain of equations,

q0Λ
{1} = 0 , (5.25a)

q0Λ
{k} + q1Λ

{k−1} = 0 , k ≥ 2 . (5.25b)

The Koszul-Tate differential q0 has trivial cohomology on functionals satisfying (5.24) if

the gauge algebra obeys the conditions 2.1, 2.1 from section 2.1 [51]:

q0X = 0 , X
∣

∣

ω=0
= X

∣

∣

γ̂=ζ=0
= 0 =⇒ X = q0Y . (5.26)

Moreover, under natural assumptions about the regularity of the equations of motion, the

functional Y can be chosen to be local [56, 60], provided X itself is local. Finally, one

can show along the lines of [60] that there exists a choice of Y which inherits all linearly

realized symmetries commuting with q0. In particular, we can take Y [ϕ, ω, γ̂, ζ] to be

invariant under background-gauge transformations if so is X.
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Thus we write,

Λ{1} = q0Ξ
{1} , (5.27)

where Ξ{1} is local and background-gauge invariant. Substituting this into eq. (5.25b) for

k = 2 and interchanging the order of q0 and q1 we obtain,

q0
(

Λ{2} − q1Ξ
{1}

)

= 0 , (5.28)

whence

Λ{2} = q1Ξ
{1} + q0Ξ

{2} . (5.29)

Continuing by induction, we obtain analogous representations for all Λ{k}. Collected to-

gether they give,

Λ = (q0 + q1)Ξ , Ξ =
∞
∑

k=1

Ξ{k} . (5.30)

To make the last step, we notice that Ξ, due its invariance under background-gauge trans-

formations, obeys a Ward identity analogous to (5.19). Combining this with (5.30) we get,

Λ = (Σ̂0, Ξ) . (5.31)

This is our final expression for Λ.

Putting together the contributions (5.12), (5.14), (5.31) and reintroducing the loop

index L, we obtain the desired form of the L-loop divergence

ΓL,∞ = SL[ϕ] +Q+Υ L , (5.32)

where Υ L = ΥL + ΞL and we have used that ΞL is independent of φ.

5.3 Subtraction and field redefinition

We now define the L-th order renormalized action as23 (compare with (2.29)),

ΣL[ϕ, ω, ω̄, b, φ, γ, ζ, Ω] = ΣL−1 − ~
LΓL,∞[ϕ, ω, φ, γ̂, ζ, Ω] +O(~L+1) , (5.33)

where the last term on the r.h.s. stands for local operators multiplied by at least ~L+1 that

will be specified shortly. The presence of these operators does not spoil the key property

of the subtraction prescription, namely that it removes all subdivergences at (L+ 1)-loop

order. Thus, according to the assumption stated in section 2.3, the (L+1)-loop divergence

will be local.

We now show that ΣL can be brought to the form (2.33) by a reparameterization of

the fields ϕ, ω. Substituting the expression (5.32) in (5.33) and expanding explicitly the

23Strictly speaking, according to the standard scheme one should take φa − δΨL−1/δγa and δΨL−1/δζα
instead of ϕa and ωα as arguments of ΓL,∞. However, due to the representation (2.35) valid for ΨL−1, the

difference produced by this replacement is of higher order in ~. It is included in the O(~L+1) term in (5.33).
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operator Q+ we obtain,

ΣL = Σ0 +
L−1
∑

l=1

~
lΣC

l − ~
LSL − ~

L δΥ L

δγ̂a

δΣ̂0

δϕa
+ ~

L δΥ L

δζα

δΣ̂0

δωα

− ~
L δΣ̂0

δγ̂a

δΥ L

δϕa
− ~

L δΣ̂0

δζα

δΥ L

δωα
− ~

LΩa δΥ L

δφa

∣

∣

∣

∣

γ̂

+O(~L+1) .

(5.34)

As before, the index γ̂ on the partial derivative with respect to the background field in the

last significant term emphasizes that it is taken at fixed γ̂. The first two terms in the last

line have the form,

− ~
Lsϕa δΥ L

δϕa
− ~

Lsωα δΥ L

δωα
. (5.35)

This suggests to define the L-th order gauge fermion,

ΨL = ΨL−1 − ~
LΥ L , (5.36a)

and the L-th order counterterm

ΣC
L = −SL[ϕ]− sΥ L −Ωa δΥ L

δφa

∣

∣

∣

∣

γ

= −SL[ϕ]−QΥ L . (5.36b)

To proceed, we notice that the expressions (2.17) and (4.11) imply

δΣ0

δϕa
=

δΣ̂0

δϕa
+ bαχ

α
a +Ωbω̄α

δχα
a

δφb
. (5.37a)

Further, as a consequence of the definition (2.31) we have

sΥ L = sϕa δΥ L

δϕa
+ sωα δΥ L

δωα
− bαχ

α
a

δΥ L

δγ̂a
. (5.37b)

Finally, the φ-derivatives at fixed γ and γ̂ are related by (4.9). Collecting all the previous

expressions together, we find that eq. (5.34) simplifies to

ΣL = Σ0 +
L
∑

l=1

~
lΣC

l − ~
L δΥ L

δγa

δΣ0

δϕa
+ ~

L δΥ L

δζα

δΣ0

δωα
+O(~L+1) . (5.38)

The first two terms already have the desired BRST form (2.33),

Σ0 +
L
∑

l=1

~
lΣC

l = S[ϕ]−
L
∑

l=1

~
lSL[ϕ] +QΨL . (5.39)

The remaining contributions are absorbed by a field redefinition, as we now demonstrate.

First we perform the change of variables ϕ, ω 7→ ϕ′, ω′ given by

ϕa = ϕ′a + ~
L δΥ L

δγa
(ϕ′, ω′, . . .) +O(~L+1) , (5.40a)

ωα = ω′α − ~
L δΥ L

δζα
(ϕ′, ω′, . . .) +O(~L+1) , (5.40b)
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where we again allow for possible local contributions of higher order in ~. Next, we Taylor

expands all quantities in the differences (ϕ − ϕ′), (ω − ω′). Then, the third and fourth

terms in (5.38) are cancelled by the linear contribution in the series for Σ0. Other terms

generated by the expansion are of higher powers in ~. Notice that they are local. Thus,

by properly adjusting the O(~L+1) contribution in (5.38) they can be cancelled as well.

To complete the argument we need to verify that the operators coupled to sources in

the path integral have the right form (2.36) in terms of the new variables. This is done

through the following chain of relations,

ϕ̃a
L−1(ϕ, ω, . . .)− φa = −

δΨL−1

δγa
(ϕ, ω, . . .)

= ϕa − φa +
L−1
∑

l=1

~
l δΥ l

δγa
(ϕ, ω, . . .)

= ϕ′a − φa +

L−1
∑

l=1

~
l δΥ l

δγa
(ϕ, ω, . . .) + ~

L δΥ L

δγa
(ϕ′, ω′, . . .) +O(~L+1)

= ϕ′a − φa +
L
∑

l=1

~
l δΥ l

δγa
(ϕ′, ω′, . . .)

= −
δΨL

δγa
(ϕ′, ω′, . . .) = ϕ̃a

L(ϕ
′, ω′, . . .)− φa , (5.41)

where in passing to the fourth line we have assumed that the O(~L+1) terms in (5.40a)

are adjusted to absorb the (local) contributions produced by the change of variables in Υ l,

1 ≤ l ≤ L− 1. Exactly the same reasoning applies to δΨL−1/δζα.

In the last step, we erase primes on the new variables. Thus, we have found the choice

of variables in the path integral, such that eqs. (2.32)–(2.36) are satisfied at the L-th loop

order. This statement extends to all loops by induction. This completes the proof of the

proposition formulated in section 2.4 and is the main result of this work.

6 Counterterms and nonlinear field renormalization in O(N) model: ex-

plicit one-loop calculation

As an illustration of the above formalism we study one-loop counterterms in the (1+1)-

dimensional O(N)-invariant sigma model. In particular, we will see the necessity of a

nonlinear field renormalization to restore the BRST structure. We start with the action,

S =
1

2g2

∫

d2x ∂µni∂
µni , (6.1)

where i = 1, . . . , N ; g is the coupling constant and the scalar fields ni(x) are subject to the

constraint,

n2 ≡ δijn
inj = 1 . (6.2)

The latter can be solved by expressing

ni =
ϕi

√

ϕ2
, (6.3)
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where the fields ϕi(x) are unconstrained. The price to pay is the appearance of a gauge

symmetry corresponding to the pointwise rescaling of ϕi,

δεϕ
i(x) = ϕi(x) ε(x), (6.4)

where ε(x) is an arbitrary function. Clearly, the transformation (6.4) leaves ni(x), and

hence the action, invariant. In terms of ϕi the action reads,

S[ϕ] =
1

2g2

∫

d2x

{

1

ϕ2

[

δij −
ϕiϕj

ϕ2

]

∂µϕ
i∂µϕj

}

. (6.5)

The gauge generator is linear in the fields,

Ra
bα 7→ δij δ(x− x1) δ(x− x2) , P a

α = 0 , (6.6)

so this model belongs to the class of theories subject to our renormalization procedure. For

the sake of convenience we set the coupling constant g to one in what follows.

The local background-covariant gauge condition χα(ϕ, φ), the gauge fixing matrix

Oαβ(φ) and its (nonlocal) inverse can be conveniently chosen in the form

χα(ϕ, φ) 7→ χ = �

(

φi(x)

φ2(x)

(

ϕi(x)− φi(x)
)

)

= �

(

φ(x) · ϕ(x)

φ2(x)

)

, (6.7a)

Oαβ(φ) 7→ O(x, x′) = −� δ(x− x′), O−1
αβ (φ) 7→ O−1(x, x′) = −

1

�
δ(x− x′), (6.7b)

where we have introduced the notation for the O(N)-invariant scalar product,

A ·B = δijA
iBi ≡ AiB

i . (6.8)

The corresponding anticommuting ghost ωα and antighost ω̄α, as well as the Lagrange

multiplier bα, are scalars with respect to the (1 + 1)-dimensional Lorentz transformations

and do not carry any O(N) indices, ωα 7→ ω(x), ω̄α 7→ ω̄(x), bα 7→ b(x). The theory is

Abelian, Cα
βγ = 0, so that the BRST transform of the ghost field ω(x) vanishes and the

source ζα does not appear in the gauge-fixed action. Nevertheless, we have to keep the

source ζα in the gauge fermion to fulfil the requirement (2.35). Therefore, the tree level

reduced gauge fermion equals

Ψ̂0 = −γ̂a(ϕ
a − φa) + ζαω

α =

∫

d2x
(

− γ̂i (ϕ
i − φi) + ζω

)

, (6.9a)

γ̂i = γi −
φi

φ2
�ω̄ . (6.9b)

The background field independent choice (6.7b) of O considerably simplifies the form of

the BRST action (2.17) and moreover simplifies the result of integrating over the Lagrange

multiplier bα. The effect of this integration is the replacement of the bα-dependent terms

– 28 –



J
H
E
P
0
7
(
2
0
1
8
)
0
3
5

by the gauge breaking term quadratic in the gauge condition, after which the BRST ac-

tion (2.17) takes the form (in condensed notations)24

Σ0[ϕ, ω, ω̄, φ, γ,Ω] = S[ϕ] +
1

2
χα(ϕ, φ)O−1

αβ χβ(ϕ, φ)− ω̄α χ
α
a (φ)R

a
β(ϕ)ω

β

+ γaR
a
α(ϕ)ω

α +Ωa ω̄α
δχα(ϕ, φ)

δφa
+Ωaγa . (6.10)

Explicitly, the previous action reads

Σ0[ϕ, ω, ω̄, φ, γ,Ω] =

∫

d2x

{

1

2
Gij ∂µϕ

i∂µϕj −
1

2

ϕ · φ

φ2
�

(

ϕ · φ

φ2

)

−
ϕ · φ

φ2
(� ω̄)ω

+ (γ · ϕ)ω +

(

Ω · ϕ

φ2
− 2

(ϕ · φ) (Ω · φ)

(φ2)2

)

� ω̄ +Ω · γ

}

.

(6.11)

Here Gij denotes the metric of the target manifold,

Gij =
Pij

ϕ2
, Pij = δij −

ϕiϕj

ϕ2
, (6.12)

and Pij is a projector along the directions orthogonal to ϕj . All terms in the Lagrangian

have mass dimension 2 if the dimensions of the fields are chosen as,

[ϕ] = [φ] = [ω] = [ω̄] = [Ω] = 0 , [γ] = 2 . (6.13)

The theory is renormalizable, hence all divergences also have dimension 2. This implies that

the renormalized gauge fermion Ψ̂ should remain linear in γ̂i and independent25 of Ωi, as

in other renormalizable examples encountered in section 3. On the other hand, due to the

zero mass dimension of the gauge fields, we expect that it will have nonlinear dependence

on ϕi and φi. These expectations are confirmed below by an explicit calculation.

The one-loop effective action of the model is given by the functional supertrace,

Γ1 =
1

2
STr

(

log FIJ

)

, (6.14)

where FIJ is the inverse propagator of the theory. The latter is given by the second order

mixed (left and right) functional derivatives of the action with respect to the full set of

boson-fermion fields of the theory ΦI(x) = (ϕi(x), ω(x), ω̄(x))

FIJ δ(x− x′) =

→
δ

δΦI(x)
Σ0[ϕ, ω, ω̄, φ, γ,Ω]

←
δ

δΦJ(x′)
. (6.15)

This second order differential operator acting in the space of perturbations of the fields

δΦJ has the form,

FIJ = DIJ �+ 2Γµ
IJ ∂µ +ΠIJ . (6.16)

24We disregard the one-loop functional determinant (DetO)−1/2 originating from this integration, because

it is a trivial field-independent normalization constant.
25Recall that Ψ̂ has ghost number (−1), whereas the fields have ghost charges (2.21). Note also that the

contribution involving ζ in Ψ̂ does not get renormalized since ζ does not appear in the action.
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The expressions for the matrix valued coefficients DIJ , Γµ
IJ and ΠIJ are given in ap-

pendix C.

The divergent part of (6.14) for a general operator of the form (6.16) is easily obtained

by the heat kernel method as a local functional of the operator coefficients [27, 28, 30, 44].

First, the inverse propagator is converted into the form of a covariant d’Alembertian,

F I
J = −(DµD

µ)IJ + P I
J , (6.17)

built in terms of covariant derivatives Dµ with some generic connection Γ µ = Γ I
µ J . These

covariant derivatives act in the linear space of fields Φ = ΦI(x) and field matrices X =

XI
J(x) as

DµΦ = ∂µΦ+ Γ µΦ, DµX = ∂µX + [Γ µ,X ]. (6.18)

In the case of a (1 + 1)-dimensional flat spacetime the one-loop divergence takes a partic-

ularly simple form: it depends only on the potential term P of this operator

1

2
STr logF

∣

∣

∞
=

1

4π(2− d)

∫

d2x strP . (6.19)

Here str is the matrix supertrace over indices I,

strP =
∑

I

(−1)ǫIP I
I , (6.20)

where ǫI = 0, 1 is the Grassmann parity of the matrix entry labeled by the index I. We

used dimensional regularization to capture the divergence in the limit d → 2.

We convert (6.16) into the form (6.17) by canonically normalizing the second-order

derivative term of the inverse propagator, FIJ = −DIKFK
J . Then

F = −
(

�1+ 2Γ µ ∂µ +Π
)

, (Γ µ)IJ = DIKΓµ
KJ , ΠI

J = DIK ΠKJ , (6.21)

where DIK is the inverse of the matrix DIJ , D
IKDKJ = δIJ . Next, the first-order derivative

term of (6.21) is absorbed into the covariant derivative (6.18) with the connection Γ µ. As

a result, the operator (6.21) takes the form (6.17) with P = −Π + ∂µΓ
µ +Γ µΓ µ, so that

finally the one-loop divergence reads

Γ1,∞ = −
1

4π(2− d)

∫

d2x str (Π − Γ µΓ µ), (6.22)

where we have dropped the total derivative term26 ∂µ(strΓ
µ). The matrices Γ µ and Π are

26We also disregard the ultralocal contribution of the transition from FIJ to F ,

STr log FIJ = STr logF + STr log(−DIJ ) = STr logF + δ(0)(. . .) ,

which might be canceled by an appropriate local contribution of the measure in the path integral and

anyway vanishes in dimensional regularization.
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evaluated in appendix C. Substituting the corresponding expressions into (6.22) we obtain,

~Γ1,∞=−
~

2π(2− d)

∫

d2x

{

N − 2

2
Gij∂µϕ

i∂µϕj +
(φ2)2

(ϕ · φ)2
(ϕ · γ̂)ω (6.23)

+

(

δij
ϕ2

− 2
φiϕj

(ϕ · φ)ϕ2
+

φiφj

(ϕ · φ)2

)

∂µϕ
i∂µϕj −

(

δij
(ϕ · φ)

−
φiϕj

(ϕ · φ)2

)

∂µϕ
i∂µφj

−

[

ϕ2

(ϕ · φ)
δik− 2

φ2

(ϕ · φ)2
ϕiφk −

ϕ2

(ϕ · φ)2
(

φiϕk + ϕiφk

)

+
φ2(ϕ2 + φ2)

(ϕ · φ)3
ϕiϕk

]

Ωkγ̂i

}

.

If we set φi = ϕi, Ωi = γi = ω = 0, only the first term in this expression will survive

corresponding to the well-known expression for the 1-loop divergence in the O(N)-model

(see e.g. [61]).

Let us look at the terms in the last line of (6.23) bilinear in Ωk and γ̂i. According to

eq. (5.32), they originate from the action of the operator Ωδ/δφ on the one-loop (L = 1)

quantum dressing Υ 1 of the gauge fermion in (5.36a). Clearly, we are in the situation when

this dressing is independent of Ω and linear in γ̂,

Υ 1 = γ̂au
a
1(ϕ, φ) .

Therefore, the terms bilinear in Ωk and γ̂i should be identified with Ωaγ̂b δu
b
1/δφ

a, or

∂ui
1(ϕ, φ)

∂φk
=

1

2π(2− d)

[

ϕ2

ϕ · φ
δik −

2φ2

(ϕ · φ)2
ϕiφk

−
ϕ2

(ϕ · φ)2
(

φiϕk + ϕiφk

)

+
φ2(ϕ2 + φ2)

(ϕ · φ)3
ϕiϕk

]

. (6.24)

One can check that a nontrivial integrability condition for this equation is satisfied, and

the solution reads

ui
1(ϕ, φ) = −

1

4π(2− d)

[

φ2(ϕ2 + φ2)

(ϕ · φ)2
ϕi −

2ϕ2

(ϕ · φ)
φi

]

. (6.25)

According to (2.37), (2.38a) this function generates the one-loop field renormalization,

ϕi 7→ ϕ̃i
1 = ϕi + ~ui

1(ϕ, φ) . (6.26)

Notice that this renormalization is essentially nonlinear. Still, it is covariant with re-

spect to simultaneous gauge transformations of both quantum and background fields, as it

should be.

It remains to be shown that the rest of the terms in (6.23) recover the correct BRST

structure of the renormalized action after the field redefinition (6.26). We observe that

the first term of (6.23) is the gauge invariant counterterm — proportional to the classical

action,

S1 = −
N − 2

4π(2− d)

∫

d2xGij∂µϕ
i∂µϕj . (6.27)
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The second term bilinear in γ̂i and ω can be represented as the sum of two terms:

γ̂a
δRa

α

δϕb
ub
1ω

α=

∫

d2x(γ̂ · u1)ω =
1

4π(2−d)

∫

d2x

[

−
φ2(ϕ2 + φ2)

(ϕ · φ)2
(γ̂ · ϕ) +

2ϕ2

(ϕ · φ)
(γ̂ · φ)

]

ω,

(6.28a)

−γ̂a
δua

1

δϕb
Rb

αω
α=−

∫

d2xγ̂i
∂ui

1

∂ϕk
ϕkω =

1

4π(2−d)

∫

d2x

[

φ2(ϕ2−φ2)

(ϕ · φ)2
(γ̂ · ϕ)−

2ϕ2

(ϕ · φ)
(γ̂ · φ)

]

ω.

(6.28b)

Finally, the second line of (6.23) coincides with the change of the classical action under the

field reparametrization (6.26),

δS

δϕa
ua
1 =−

1

2π(2− d)

∫

d2x

[(

δij
ϕ2

− 2
φiϕj

(ϕ · φ)ϕ2
+

φiφj

(ϕ · φ)2

)

∂µϕ
i∂µϕj

−

(

δij
(ϕ · φ)

−
φiϕj

(ϕ · φ)2

)

∂µϕ
i∂µφj

]

.

(6.29)

With the field reparametrization (6.26) we therefore have

Σ0

∣

∣

ϕ→ϕ+~u1
= S +QΨ0 + ~

(

δS

δϕa
ua
1 + bαχ

α
au

a
1 + γ̂a

δRa
α

δϕb
ub
1ω

α +Ωa δχ
α
b

δφa
ub
1ω̄α

)

+O(~2), (6.30)

~Γ1,∞

∣

∣

ϕ→ϕ+~u1
= ~

(

S1 +
δS

δϕa
ua
1 +Ωaγ̂b

δub
1

δφa
+ γ̂a

δRa
α

δϕb
ub
1ω

α − γ̂a
δua

1

δϕb
Rb

αω
α

)

+O(~2).

(6.31)

Thus, the renormalized action reads

Σ1 ≡
[

Σ0 − ~Γ1,∞

]

ϕ→ϕ+~u1
= S[ϕ]− ~S1[ϕ] +Q

(

Ψ0 − ~Υ 1

)

+O(~2) , (6.32)

where in the expression for QΥ 1 we took into account the dependence of γ̂a = γa−ω̄αχ
α
a (φ)

on ω̄ and φ. This BRST structure of the one-loop renormalization is in full agreement

with (2.33) — the renormalized gauge invariant action S1[ϕ] = S[ϕ] − ~S1[ϕ] plus the

BRST exact term with the gauge fermion dressed by a local quantum correction inducing

the field reparameterization.

7 Conclusions and discussion

In this paper we have demonstrated the local BRST structure of renormalization in a wide

class of gauge field theories admitting background-covariant gauges. Simply stated, we have

shown that, for theories of this class, the renormalization procedure does not spoil gauge

invariance. This class encompasses all standard Einstein-YM-Maxwell theories, whether

renormalizable or not. In this way we reproduce the classical results concerning renormal-

ization of Einstein-YM theories and strengthen them for the case of theories with Abelian

subgroups. Other representatives of the class covered by our analysis are non-relativistic

YM-Maxwell theories and projectable Hořava gravity. This offers the first demonstration
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of the BRST structure of projectable Hořava gravity which completes the proof of its renor-

malizability. The previous list of applications of our results is certainly not exhaustive. As

suggested by the example considered in section 6, they can be useful for studying various

σ-models and other theories where gauge invariance is introduced as a tool to resolve the

complicated structure of the field configuration space.

Our argument makes essential use of the background fields φ. With a suitable choice

of the gauge condition they allowed us to introduce an additional gauge invariance with re-

spect to background gauge transformations. We then extended the BRST construction with

an auxiliary anticommuting source Ω controlling the dependence of the gauge-fixing term

on the background fields. The counterterms generated by renormalization were shown to

belong to the local cohomology of the extended BRST operators on the space of functionals

polynomial in Ω and the Faddeev-Popov ghosts. Our key observation is that the presence

of linearly realized background-gauge invariance allows one to split the computation of

this cohomology into several steps involving cohomologies of a few simpler operators. By

completing these steps we have concluded that the counterterms split into a BRST exact

piece and a local gauge invariant functional S[ϕ ] depending only on the dynamical —

“quantum” — fields which renormalizes the physical action of the system. Our derivation

is self-contained and does not rely on any power counting considerations. We have dis-

cussed the simplifications that appear if such considerations apply. Our results agree with

those of [45] whenever they overlap.

We have discussed in detail the local field redefinition bringing the renormalized action

into the BRST form. This field redefinition, which in simple models has a multiplicative

linear nature, becomes essentially nonlinear in generic theories, as we illustrated with an

explicit example (section 6). Despite this complication, it preserves a universal structure:

at any order in the loop expansion, the renormalized quantum fields are generated by

eq. (2.36) with the local generating functional Ψ . The latter is identical to the gauge

fermion appearing in the exact part QΨ of the full BRST action Σ = S[ϕ ] +QΨ dressed

by loop corrections. This property provides a systematic algorithm to construct the field

redefinition order by order in perturbation theory. What one needs to do is just to deter-

mine Ψ from the part of the counterterm containing the BRST sources and background

fields. This procedure becomes particularly efficient when there are additional constraints,

e.g. due to power counting, that prevent Ψ from depending on the BRST source Ω associ-

ated to background fields. In that case, our results imply that the Ω-dependent part of the

counterterm has the form Ω δΨ/δφ (see the definition of Q in (2.16)). Therefore, Ψ can be

found by simply integrating the coefficient in front of Ω with respect to the background

fields. In terms of renormalized fields, the physical part S[ϕ ] of the renormalized action

becomes gauge invariant. Thus, the divergences contained in S[ϕ ] have the same structure

as the terms in the tree-level action and are absorbed by renormalization of the physical

coupling constants.

It is worth reviewing the various assumptions about the gauge algebra that entered

into our derivation. An essential assumption is the linearity of the gauge generators in

the gauge fields which allows one to easily construct background-covariant gauge condi-

tions. Moreover, the linearity of the resulting background-gauge covariance is crucial for
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its preservation at the quantum level. Another essential requirement is local completeness

of the gauge generators expressed by eqs. (2.6), (2.7). This plays an important role in

the homological analysis of the Koszul-Tate differential performed in [56, 60] and whose

results we used in section 5.2. On the other hand, it appears likely that the irreducibility

condition 2.1 from section 2.1 can be relaxed at the price of considerably complicating

the ghost sector. Indeed, the main steps in the proof in section 5 would be unchanged,

including the results of [56, 60] that are straightforwardly generalized to the reducible

case. Finally, we assumed the gauge algebra to close off-shell which allowed us to use the

standard BRST construction for the gauge fixing. It would be interesting to extend our

analysis to gauge theories with open algebras. The close connection between our approach

and the Batalin-Vilkovisky generalization of the BRST formalism to open algebras [48–51]

makes the existence of such extension quite plausible.

Though we have not addressed this topic in the present paper, we believe that our

method can be efficiently applied to renormalization of composite operators in gauge the-

ories. Another aspect of renormalization that has been left outside the scope of this paper

is that of quantum gauge anomalies. These are known to be related to BRST cohomologies

with non-vanishing ghost number. It would be interesting to see if the background-field

approach along the lines developed here can shed new light on this topic. We leave this

study for future.
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A Derivation of Slavnov-Taylor and Ward identities

To obtain the Slavnov-Taylor identity (4.1), note that the total action including the source

term in the exponential of (2.32) can be written in a BRST invariant form. For this purpose

we introduce the “doubly extended” BRST operator

Qext = s+Ω
δ

δφ
− J

δ

δγ
+ ξ̄

δ

δζ
+ ξ

δ

δy
, Q2

ext = 0 , (A.1)

and notice that the source term in the non-minimal sector can also be rewritten as a

BRST-exact expression,

ξω̄ + yb =

(

s+ ξ
δ

δy

)

yω̄ = Qext (yω̄) , (A.2)

where for brevity we omit the condensed indices of all quantities. Therefore, the total

BRST action including all sources takes a compact form in terms of the extended gauge
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fermion Ψext,

Σext = Σ − J
δΨ

δγ
+ ξ̄

δΨ

δζ
+ ξω̄ + yb = S +QextΨext, Ψext ≡ Ψ + yω̄, (A.3)

and the path integral for the generating functional (2.32) reads

e−W/~ =

∫

dΦ e−Σext/~. (A.4)

Clearly,

Qext e
−Σext/~ = 0, (A.5)

or
(

−J
δ

δγ
+ ξ̄

δ

δζ
+ ξ

δ

δy
+Ω

δ

δφ

)

e−Σext/~ = −s e−Σext/~, (A.6)

whence
(

−J
δ

δγ
+ ξ̄

δ

δζ
+ ξ

δ

δy
+Ω

δ

δφ

)

e−W/~ = −

∫

dΦ s e−Σext/~. (A.7)

The path integral here has the form,

∫

dΦ
(

sΦI
) δ

δΦI
e−F [Φ] = −

∫

dΦ
( δ

δΦI
sΦI(Φ)

)

e−F [Φ] , (A.8)

where the expression in brackets on the r.h.s. is the variation of the integration measure

dΦ under the BRST variation of the fields. It vanishes according to the assumption of

anomaly-free regularization and we arrive at eq. (4.1).

For the derivation of the Ward identity (4.2), we introduce, together with the quantum

fields Φ and background fields φ, also the collective notations for all the sources

J = Ja, ξ̄α, ξ
α, yα, γa, ζα, Ω

a. (A.9)

Then, in view of our choice of background-covariant gauge conditions, Σext[Φ, φ,J ] is

invariant with respect to the background-gauge transformations27 (2.10), (2.20) supple-

mented by

δεJa = −JbR
b
aαε

α , δεξ̄α = ξ̄βC
β
αγε

γ , δεξ
α = −Cα

βγξ
βεγ , δεy

α = −Cα
βγy

βεγ . (A.10)

We have,

δεΣext =

(

δεΦ
δ

δΦ
+ δεφ

δ

δφ
+ δεJ

δ

δJ

)

Σext = 0. (A.11)

27Note that the invariance of the source term −JaδΨ/δγa = Ja(ϕ̃L−φ)a relies on the homogeneity of the

linear transformation law for (ϕ̃L − φ)a contragredient to the transformation of Ja in (2.20).
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Next, we perform the change of integration variables Φ → Φ+δεΦ in the path integral (A.4).

If, as we did before, we disregard the gauge variation of the integration measure, we obtain

the following integral identity,

∫

dΦ δεΦ
δΣext

δΦ
e−Σext/~ = 0. (A.12)

On account of eq. (A.11), its l.h.s. equals

∫

dΦ

(

δεφ
δ

δφ
+ δεJ

δ

δJ

)

e−Σext/~ =

(

δεφ
δ

δφ
+ δεJ

δ

δJ

)

e−W/~, (A.13)

because the operator δεφ δ/δφ + δεJ δ/δJ is independent of the integration fields Φ and

can be commuted with the integration sign. Therefore,

(

δεφ
δ

δφ
+ δεJ

δ

δJ

)

W = 0, (A.14)

which in view of the expressions (2.10), (2.20) and (A.10) for δεφ and δεJ is just the

expression (4.2).

B Homology of the operator Ωδ/δφ

In this appendix we prove the statement used in section 5.1 that the cohomology of the

operator Ωδ/δφ on the space of local functionals vanishing at Ω = 0 is trivial.

Lemma. Let X[ϕ, φ,Ω, . . .] be a local functional of the gauge fields ϕa, background

fields φa, anticommuting BRST sources Ωa and, possibly, other fields represented by dots.

Assume that X vanishes at Ωa = 0,

X
∣

∣

Ω=0
= 0 , (B.1)

that it is invariant under background-gauge transformations and satisfies the equation

Ωa δX

δφa
= 0 . (B.2)

Then there exists a local functional Y , invariant under background-gauge transformations,

such that

X = Ωa δY

δφa
. (B.3)

Proof. The functional Y is constructed explicitly as,

Y = (φa − ϕa)
δ

δΩa

∫ 1

0

dz

z
X[ϕ,ϕ+ z(φ− ϕ), zΩ, . . .] , (B.4)

where the arguments of X represented by dots are left untouched. According to the as-

sumption (B.1), this expression indeed provides a regular functional. Notice that if X is

local, so is (B.4). Moreover, Y inherits background gauge invariance from X due to the
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linearity of background-gauge transformations. It remains to demonstrate (B.3). Using

the anticommutator

Ωa δ

δφa
(φb − ϕb)

δ

δΩb
+ (φb − ϕb)

δ

δΩb
Ωa δ

δφa
= Ωa δ

δΩa
+ (φa − ϕa)

δ

δφa
(B.5)

we find

Ωa δ

δφa
Y =

∫ 1

0

dz

z

(

z
d

dz
X[ϕ,ϕ+ z(φ− ϕ), zΩ, . . .]

)

= X[ϕ, φ,Ω, . . .] , (B.6)

where we again used (B.1). �

C Quadratic form for perturbations in the O(N) model

Here we summarize the expressions for the coefficients of the operator (6.16) appearing

in the quadratic action for the perturbations δΦI = (δϕi, δω, δω̄) of the O(N) model.

We write these coefficients as matrices with 3 × 3 block structure. The coefficient of the

d’Alembertian is the (super)symmetric matrix

DIJ =







Aij 0 Bi

0 0 C

−Bj −C 0






, (C.1)

with the following boson-boson Aij , boson-fermion Bi and fermion-fermion C entries

Aij = −Gij −
φiφj

(φ2)2
= −

1

ϕ2

[

δij −
ϕiϕj

ϕ2
+

ϕ2

φ2

φiφj

φ2

]

, (C.2)

Bi =
φi

φ2
ω +

Ωi

φ2
− 2

(Ω · φ)

(φ2)2
φi, C =

ϕ · φ

φ2
. (C.3)

The other two matrix coefficients have the form,

Γµ
IJ =







Γµ
ij 0 0

0 0 0

−∂µBj−∂µC 0






, ΠIJ =







Πij γ̂i 0

−γ̂j 0 0

−�Bj −�C 0






, (C.4)

Γµ
ij = −

1

2
(Gji,k +Gki,j −Gjk,i) ∂

µϕk −
φi

φ2
∂µ

(

φj

φ2

)

, (C.5)

Πij = −

(

Gik,jl −
1

2
Gkl,ij

)

∂µϕ
k∂µϕl −Gki,j�ϕk −

φi

φ2
�

(

φj

φ2

)

, (C.6)

where

Gij,k ≡
∂Gij

∂ϕk
= −

2δijϕk + δikϕj + δjkϕi

(ϕ2)2
+

4ϕiϕjϕk

(ϕ2)3
,

Gij,kl ≡
∂2Gij

∂ϕk∂ϕl
= −

2δijδkl + δikδjl + δjkδil
(ϕ2)2

−
24ϕiϕjϕkϕl

(ϕ2)4

+
4

(ϕ2)3

(

2δijϕkϕl + δikϕjϕl + δilϕjϕk + δjkϕiϕl + δjlϕiϕk + δklϕiϕj

)

.
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For the computation of the one-loop divergence of the effective action, we need the

matrices Π and Γ µ defined in (6.21). This, in turn, requires the inverse DIJ of the

matrix (C.1), which reads

DIJ =









Aij −AikBk/C 0

−BkA
kj/C BkA

klBl/C
2 −1/C

0 1/C 0









, (C.7)

where Bj and C are given by (C.3) and

Aij = − ϕ2

[

δij −

(

ϕiφj + φiϕj
)

ϕ · φ
+

φ2

ϕ2

(ϕ2 + φ2)

(ϕ · φ)2
ϕiϕj

]

(C.8)

is the inverse of the matrix Aij defined by (C.2), AilA
lj = δji . Using these expressions we

obtain,

Γ µ =









AilΓµ
lk 0 0

(∂µBk −BlA
lmΓµ

mk)/C ∂µC/C 0

0 0 0









. (C.9)

The diagonal blocks of Γ 2
µ equal

(Γ 2
µ)

i
j = AilΓµ

lkA
kmΓµmj , (Γ 2

µ)
ω
ω =

1

C2
(∂µC)2, (Γ 2

µ)
ω̄
ω̄ = 0. (C.10)

For the matrix of the potential term Π we need only its diagonal block elements which read

Π i
j = Ail Πlj +

1

C
Ail Blγ̂j , Π ω

ω = −
1

C
(Bk A

kl γ̂l −�C), Π ω̄
ω̄ = 0. (C.11)

Substituting the above results and expressions for Aij , Bi and C into the supertrace of

eq. (6.22), strΠ = Π i
i −Πω

ω −Π ω̄
ω̄ and similarly for trΓ 2

µ, we arrive at eq. (6.23).
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