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Programmable Multistable
Mechanisms: Synthesis and
Modeling
Compliant mechanisms can be classified according to the number of their stable states
and are called multistable mechanisms if they have more than one stable state. We intro-
duce a new family of mechanisms for which the number of stable states is modified by
programming inputs. We call such mechanisms programmable multistable mechanisms
(PMM). A complete qualitative analysis of a PMM, the T-mechanism, is provided includ-
ing a description of its multistability as a function of the programming inputs. We give an
exhaustive set of diagrams illustrating equilibrium states and their stiffness as one pro-
gramming input varies while the other is fixed. Constant force behavior is also character-
ized. Our results use polynomial expressions for the reaction force derived from
Euler–Bernoulli beam theory. Qualitative behavior follows from the evaluation of the
zeros of the polynomial and its discriminant. These analytical results are validated by
numerical finite element method simulations. [DOI: 10.1115/1.4038926]

1 Introduction and Statement of Results

Compliant mechanisms perform a function by their elastic
deformation via actuation inputs. Their qualitative behavior can
be characterized by their stable states where strain energy is mini-
mal, and multistable mechanisms are those having more than one
stable state, and the number of the stable states is called degree of
stability (DOS). Conventional multistable mechanisms have a
fixed DOS. In this paper, we examine a family of multistable
mechanisms, programmable multistable mechanisms (PMM),
where programming inputs can modify their DOS. Section 2 gives
an overview of PMMs.

In Sec. 3, we introduce a method for synthesizing PMMs which
we use to build the main mechanism of this paper, the T-
mechanism, as described in Sec. 4. Section 5 gives an analytical
derivation of the reaction force of this mechanism as a polynomial
of the actuation input. This expression allows us to characterize
the stability behavior of the T-mechanism based on the zeros of
the reaction force polynomial and its discriminant.

Section 6 provides a complete description of the stability
behavior of the T-mechanism in terms of its programming inputs.
This consists of the programming diagram illustrating DOS as
function of programming inputs and equilibrium and zero stiffness
diagrams, where one programming input is varied and the other is
fixed.

Finally, Sec. 7 gives numerical validation of our analytical
results using the finite element method (FEM).

2 Programmable Multistable Mechanisms

2.1 Conventional Multistable Mechanisms. Conventional
multistable mechanisms are those having fixed stability behavior.

They have application to energy harvesting [1,2], radio frequency
switches [3], and medical instrumentation [4].

Examples are orthogonal beam mechanisms [5,6], serial multi-
stable mechanisms [7], tristable four bar mechanisms [7], five bar
tristable mechanisms [8], Sarrus multistable mechanisms [9], dou-
ble Young tristable mechanism [10], and rolling contact multista-
ble mechanisms based on nonuniform cams [11].

Multistable mechanisms utilizing the nonlinear interaction
between electrostatic and electromagnetic forces were developed
in Refs. [3] and [12].

Synthesis of multistable mechanisms has been done by parallel
and serial connection of bistable mechanisms [7,10]. A classifica-
tion of multistable mechanisms based on their kinematics and
their strain energy was presented in Ref. [13].

2.2 Definitions. The stability behavior of multistable mecha-
nisms can be characterized in terms of reaction force which is
related to the strain energy and stiffness. We give formal defini-
tions to make these concepts as precise as possible.

(1) Our mechanisms have 1DOF, an actuation input x, assumed
to be a linear displacement.

(2) E(x) is the strain energy, the energy stored in the mecha-
nism due to its elastic deformation.

(3) Reaction force is the component of mechanism restoring
force along the direction of its displacement x and is given
by

F ¼ dE

dx
(1)

Note that according to our definition, reaction force is a scalar.
(4) Secant stiffness is defined by

ks ¼
F

x
(2)

(5) Tangential stiffness is defined by
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kt ¼
dF

dx
(3)

Remark. Secant stiffness is used for the derivation of reaction
force in Sec. 5 and tangential stiffness is used the evaluation
of zero stiffness positions in Sec. 6. The difference between
the two stiffness values is explained in Ref. [14].

(6) Equilibrium positions are values of the actuation input at
which the reaction force is zero. In the generic case, an
equilibrium position is stable when its tangential stiffness
is positive and unstable when it is negative. This paper
only deals with this generic case, see Ref. [15] for details.

(7) Degree of stability is the number of distinct stable states of
a multistable mechanism (not considered with multiplicity).

(8) We call a 1DOS mechanism monostable, a 2DOS mecha-
nism bistable, a 3DOS mechanism tristable, and a 4DOS
mechanism quadrastable.

2.3 Multistability Programming. Programmable multistable
mechanisms are (Nþ 1)DOF mechanisms with one actuation
input and N programming inputs, where N is the degree of pro-
gramming (DOP).

The stability behavior of these mechanisms with respect to their
actuation input can be modified on varying the programming
inputs.

Figure 1 gives a block diagram representation of a 3DOP multi-
stable mechanism and illustrates the effect of the programming
inputs on its strain energy. The mechanism can be programmed to
be monostable or bistable. Programming inputs can be mechani-
cally imposed as done here or controlled via an electric current,
magnetic field or pressure.

The best previously known programmable bistable mechanism
(PBM) is the axially loaded beam in which axial load switches
monostability to bistability [16,17]; our paper generalizes this
concept. Previous work has also considered electrically modified
axial load [18], so the results of our paper are not limited to
mechanical programming.

A special PMM exhibiting monostability up to quadrastability
was applied to ocean wave energy harvesting [2], and bistable
Miura origami mechanisms were connected serially to produce
PMMs [20]. These papers do not provide an analysis of the effect
of the programming inputs on DOS, position of equilibrium states,
zero stiffness states, and the stiffness of stable states as is done in
our paper.

The main results of this paper are as follows:

(1) Generic methods for synthezing PMMs.
(2) Definition of parameters characterizing PMMs.
(3) An explicit analytical modeling of 2DOP T-connected

PMMs.
(4) Analytical estimate of PMM constant force regimes.

3 Synthesis

3.1 General Method. Programmable multistable mechanisms
can be synthesized by combining PBM to obtain a DOS � 2. This
method consists of two steps as illustrated in Fig. 2: the first step
is bistability programming where PBMs are constructed, and the
second step is combining these PBMs. This method can be simply
applied to any bistable mechanism in literature.

Bistability programming refers to the process of introducing a
programming input to a monostable mechanism to produce a
PBM. We then combine these PBMs.

The 2DOP T-combination is the connection where the base of
one PBM is connected to the actuation block of the other such the
actuation directions are orthogonal, as illustrated in Fig. 3.

3.2 Basic Example. A simple example of PBM is the double
parallelogram mechanism (DPM) shown in Figs. 4 and 5(a). It
consists of two horizontal beams centrally connected by the actua-
tion block where the actuation input x is imposed. The beams are
fixed at one extremity and axially guided at the other extremity
where the programming input p is applied.

The T-combination of two DPMs is shown in Fig. 5(b). This
mechanism can be programmed to be monostable, bistable, trista-
ble, and quadrastable, as shown in Fig. 6.

3.3 T-Connection Versus Serial and Parallel Connections.
Methods for connecting PBMs are the T-connection and the
well-known serial and parallel connections (see Fig. 7); the
parallel connection is only applicable to tension-based bistable
mechanisms [10,20].

This paper focuses on the T-connection since it has five distinct
stability regions whereas the serial and parallel connections only
have four. The T-mechanism has drawbacks, the stiffness of the
bistable module depends on its driving bistable module (see Secs.
4 and 5); so the size of the mechanism increases faster with
increasing DOS as compared to serial and parallel configurations.

4 T-Mechanism

The main focus of this paper is the T-mechanism shown in
Fig. 8 (see Fig. 18 for a three-dimensional FEM rendering). It is a
refinement of the basic example of Sec. 3.2 where a spring is used
to load axially the horizontal DPM.

We call the horizontal DPM module 1, with beams of length ‘1,
width w and thickness t1 and the vertical DPM module 2, with
beams of length ‘2, width w, and thickness t2. Module 1 is axially
loaded by a parallelogram spring with beams of length ‘r , width
w, and thickness tr, as shown in Fig. 8(c). We call this spring the
programming spring.

4.1 Operation of the Mechanism. The T-mechanism of
Fig. 8 has one actuation input x and two programming inputs p1,
p2. The actuation block of module 2 is displaced transversely by
x. In its axial direction, module 2 is displaced by k2 at one extrem-
ity and has axial load N2. It is axially displaced by p2 at its other
extremity.

Since the two modules are T-combined, module 1 is displaced
transversely by k2. In its axial direction, module 1 is displaced by
k1 under axial load N1.

The programming spring is loaded transversely by the displace-
ment p1 which imposes an axial load N1 on module 1.

Fig. 1 Block diagram representation of a 3DOP PMM pro-
grammed to be (a) monostable and (b) bistable
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Multistability programming of the T-mechanism relies on DPM
buckling imposed by the programming inputs p1, p2.

If p1, p2 are both smaller than the critical buckling loads pcr
1 and

pcr
2 of modules 1 and 2, respectively, the mechanism is

monostable.
If p1 < pcr

1 and p2 > pcr
2 , only module 2 buckles and the mecha-

nism is bistable.
If p1 > pcr

1 , the mechanism can be monostable, bistable, trista-

ble, or quadrastable depending on p2. There are values pa
2; p

b
2, with

pa
2 < pb

2, such that:

If p2 < pa
2, the mechanism is monostable; if pa

2 < p2 < pb
2, the

mechanism is bistable; if pb
2 < p2 < pcr

2 , the mechanism is trista-
ble and quadrastable when p2 > pcr

2 .
The physical significance of pa

2 and pb
2 is that module 1 is

known to buckle when p1 > pcr
1 and has three equilibrium states at

k2 ¼ ka
2; k

b
2; k

c
2, where ka

2 < kb
2 < kc

2 with ka
2; kc

2 stable and kb
2

unstable, see Ref. [14]. Then pa
2 ¼ ka

2; p
b
2 ¼ kb

2, as follows from
Eq. (7) at x¼ 0.

Remark. If pcr
2 > pb

2, the mechanism cannot be tristable or quad-

rastable. Moreover, pa
2; p

b
2; p

cr
2 depend on p1.

4.2 Dimensions of the Mechanism. The relative dimensions
of module 1, module 2, and the programming spring determine
the values of pcr

1 ; pa
2; pb

2; pcr
2 and the possible DOS.

We use the following dimensionless parameters to represent the
relative dimensions of the T-mechanism:

� Stiffness ratio of module 1: g1 ¼ Ir‘
3
1=ðI1‘

3
r Þ.

� Stiffness ratio of module 2: g2 ¼ I1‘
3
2=ðI2‘

3
1Þ.

� Length ratio of module 2: a2 ¼ ‘2=‘1.

In order to fully illustrate multistability programming, we
choose g1; g2; a2 so that the T-mechanisms can exhibit monosta-
ble, bistable, tristable, or quadrastable behavior. Figure 9

Fig. 2 Synthesis of PMMs

Fig. 3 Block diagram representation of (a) PBM and (b) 2DOP
T-combination

Fig. 4 Double parallelogram mechanism and its strain energy
when programmed to be (a) monostable and (b) bistable

Fig. 5 (a) Double parallelogram mechanism connection blocks
and (b) 2DOP T-combination of DPMs
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illustrates possible DOS for a range of g1, g2, and different values
of a2. These values satisfy the conditions of Euler–Bernoulli
theory, and we believe that the computations of this paper hold for
the values given in Fig. 9(b), see Ref. [21]; we refer to the range
of values given in this figure as admissible g1; g2.

In the main example of this paper, we select the physical
dimensions ‘1¼12ðmmÞ; ‘2¼12ðmmÞ; ‘r¼3ðmmÞ; t1¼100ðlmÞ;
t2¼60ðlmÞ; tr¼140ðlmÞ;w¼3ðmmÞ with Young’s modulus
Y¼210ðGPaÞ. This gives g1¼176;g2¼4:6;a2¼1, the point high-
lighted in Fig. 9(b).

Fig. 6 Stable states of the 2DOP T-mechanism programmed to be (a) monostable, (b) bista-
ble, (c) tristable, and (d) quadrastable

Fig. 7 Block diagram representation, example mechanism and DOS diagram of (a) T-
connection, (b) serial connection, and (c) parallel connection
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5 Analytical Model

In this section, we derive the strain energy and the reaction
force of the T-mechanism based on Euler–Bernoulli theory [22].
The model is valid under the following assumptions, referring to
Fig. 8:

(1) A linear elastic material is used.
(2) Beam length is greater than beam thickness so that shear

strain can be neglected.
(3) Actuation force F is applied to the center of the central

block of module 2.
(4) Module 2 is connected to the central block of module 1.
(5) Axial shortening of module 1 is an order of magnitude less

than the axial shortening of module 2, i.e., k1 � k2.
(6) The displacement range of mechanism is within its interme-

diate range [13].
(7) Axial load of each blade is inferior to its buckling load with

both ends fixed against rotation.

Our analysis consists of the following steps:

(1) Compute the zero load stiffness and zero stiffness load of
DPMs of the T-mechanism in terms of their dimensions
and the material properties.

(2) Express the relation between the axial shortening k1; k2

and the programming inputs p1, p2 and the actuation input
x.

(3) Calculate the axial load N1 imposed on module 1 as func-
tion of p1, p2, x.

(4) Calculate the secant stiffness kp1
s of module 1 based on the

axial load N1 in terms of its zero load stiffness and zero
stiffness load.

(5) Calculate the axial load N2 applied on module 2 as func-
tion of p1, p2, x.

(6) Calculate the secant stiffness ks of the T-mechanism,
equal to the secant stiffness kp2

s of module 2.
(7) Calculate the reaction force of the T-mechanism using

Hooke’s law, F¼ ksx.
(8) Calculate the strain energy of the T-mechanism by inte-

grating its reaction force with respect to displacement.
(9) Define dimensionless mechanism parameters.

(10) Calculate the zero load stiffness and zero stiffness load in
terms of dimensionless parameters.

(11) Derive dimensionless reaction force and tangential stiff-
ness in terms of dimensionless parameters.

(12) Express dimensionless reaction force and tangential stiff-
ness in terms of cubic polynomials.

5.1 Zero Load Stiffness and Zero Stiffness Load. Zero load
stiffness is the secant stiffness of the mechanism at zero axial
load. The zero load stiffness kp1

0 of module 1 and kp2

0 of module 2
are [14]

kp1

0 ¼
48YI1

‘3
1

; kp2

0 ¼
48YI2

‘3
2

(4)

Fig. 8 (a) Constructed T-mechanism, (b) top view, and (c) main components

Fig. 9 Range of DOS for admissible g1, g2 for (a) a2 5 0:5, (b) a2 5 1, and (c) a2 5 1:5
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where Y is Young’s modulus of the beams, I1 ¼ wt3
1=12 and I2 ¼

wt3
2=12 are the second moment of inertia of the beams of module

1 and module 2, respectively.
Zero stiffness load is the axial load at which the secant stiffness

of the mechanism is zero. The zero stiffness loads Np1

0 of module
1 and Np2

0 of module 2 are [14]

Np1

0 ¼
2p2YI1

‘2
1

; Np2

0 ¼
2p2YI2

‘2
2

(5)

The secant stiffness kr
s of the programming spring is well-

approximated by [14]

kr
s ¼

24YIr

‘3
r

(6)

where it is assumed that the axial load has a negligible effect on
the stiffness of the programming spring.

5.2 Axial Shortening. The axial shortening of module 2 is
[14]

k2 ¼ p2 �
6x2

5‘2

(7)

Since module 1 and module 2 are T-combined, the axial displace-
ment of module 2 equals the transverse displacement of module 1,
so k2 leads to an axial shortening

k1 ¼ �
6k2

2

5‘1

(8)

of module 1. By direct substitution of Eq. (7) into Eq. (8), the
axial shortening of module 1 becomes

k1 ¼ �
216

125‘1‘2
2

x4 þ 72p2

25‘1‘2

x2 � 6p2
2

5‘1

(9)

5.3 Axial Loads. Module 1 imposes an axial load N2 on mod-
ule 2 as illustrated in Fig. 8. From Hooke’s law

N2 ¼ kp1

s k2 (10)

where kp1
s is the secant transverse stiffness of module 1 which

equals [14]

kp1

s ¼ kp1

0 1� p2N1

10Np1

0

 !
(11)

The force N1 imposed by the programming spring on module 1
depends on p1 and is calculated using Hooke’s law

N1 ¼ kr
sðp1 þ k1Þ

By direct substitution from Eq. (9), the axial load on module 1 is

N1 ¼ kr
s p1 �

216x4

125‘1‘
2
2

þ 72p2x2

25‘1‘2

� 6p2
2

5‘1

 !
(12)

By direct substitution from Eq. (12) into Eq. (11), the transverse
stiffness of module 1 is

kp1

s ¼ kp1

0 �
p2kp1

0 kr
sp1

10Np1

0

þ6p2kp1

0 kr
sp2

2

50Np1

0 ‘1

 !

�72p2kp1

0 kr
sp2

250‘1‘2Np1

0

x2þ 216p2kp1

0 kr
s

1250‘1‘2
2Np1

0

x4 (13)

The axial load N2 of module 2 is found by direct substitution of
Eqs. (7) and (13) into Eq. (10)

N2 ¼ kp1

0 p2 �
p2kp1

0 kr
sp1p2

10Np1

0

þ 6p2kp1

0 kr
sp3

2

50Np1

0 ‘1

 !

� 6kp1

0

5‘2

� 6p2kp1

0 kr
sp1

50Np1

0 ‘2

þ 108p2kp1

0 kr
sp2

2

250Np1

0 ‘1‘2

 !
x2

þ 648p2kp1

0 kr
sp2

1250Np1

0 ‘1‘2
2

x4 � 1296p2kp1

0 kr
s

6250Np1

0 ‘1‘
3
2

x6 (14)

5.4 Secant Stiffness. The secant stiffness ks of the T-
mechanism equals the secant stiffness of module 2

ks ¼ kp2

s (15)

The secant stiffness of module 2 depends on its axial load N2

[14]

kp2

s ¼ kp2

0 1� p2N2

10Np2

0

 !
(16)

By substitution from Eqs. (14) and (15) into Eq. (16), the secant
stiffness of the T-mechanism becomes

kt
s ¼ kp2

0 �
p2kp2

0 kp1

0 p2

10Np2

0

þ p4kp2

0 kp1

0 kr
sp1p2

100Np2

0 Np1

0

� 6p4kp2

0 kp1

0 kr
sp3

2

500Np2

0 Np1

0 ‘1

 !

þ 6p2kp2

0 kp1

0

50Np2

0 ‘2

� 6p4kp2

0 kp1

0 kr
sp1

500Np2

0 Np1

0 ‘2

þ 108p4kp2

0 kp1

0 kr
sp2

2

2500Np2

0 Np1

0 ‘1‘2

 !
x2

� 648p4kp2

0 kp1

0 kr
sp2

12;500Np2

0 Np1

0 ‘1‘
2
2

x4 þ 1296p4kp2

0 kp1

0 kr
s

62;500Np2

0 Np1

0 ‘1‘
3
2

x6

(17)

5.5 Reaction Force. The reaction force of the T-mechanism
follows Hooke’s law

F ¼ ksx

Direct substitution from Eq. (17) yields

F ¼ kp2

0 �
p2kp2

0 kp1

0 p2

10Np2

0

þ p4kp2

0 kp1

0 kr
sp1p2

100Np2

0 Np1

0

� 6p4kp2

0 kp1

0 kr
sp3

2

500Np2

0 Np1

0 ‘1

 !
x

þ 6p2kp2

0 kp1

0

50Np2

0 ‘2

� 6p4kp2

0 kp1

0 kr
sp1

500Np2

0 Np1

0 ‘2

þ 108p4kp2

0 kp1

0 kr
sp2

2

2500Np2

0 Np1

0 ‘1‘2

 !
x3

� 648p4kp2

0 kp1

0 kr
sp2

12;500Np2

0 Np1

0 ‘1‘
2
2

x5 þ 1296p4kp2

0 kp1

0 kr
s

62;500Np2

0 Np1

0 ‘1‘
3
2

x7 (18)

5.6 Strain Energy. The strain energy E of the T-shaped
mechanism is the integral of its reaction force F with respect to its
displacement x, and integrating Eq. (18) gives

E ¼ kp2

0

2
� p2kp2

0 kp1

0 p2

20Np2

0

þ p4kp2

0 kp1

0 krp1p2

200Np2

0 Np1

0

� 3p4kp2

0 kp1

0 krp
3
2

500Np2

0 Np1

0 ‘1

 !
x2

þ 3p2kp2

0 kp1

0

100Np2

0 ‘2

� 3p4kp2

0 kp1

0 krp1

1000Np2

0 Np1

0 ‘2

þ 27p4kp2

0 kp1

0 krp
2
2

2500Np2

0 Np1

0 ‘1‘2

 !
x4

� 27p4kp2

0 kp1

0 krp2

3125Np2

0 Np1

0 ‘1‘
2
2

x6þ 81p4kp2

0 kp1

0 kr

31;250Np2

0 Np1

0 ‘1‘
3
2

x8 (19)
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where the constant of integration is set to zero, since we are only
interested in strain energy difference.

5.7 Normalization. Normalization enables our analysis to be
independent of physical dimensions. We introduce the following
dimensionless parameters:

(1) actuation input x̂ ¼ x=‘2,
(2) programming inputs p̂1 ¼ p1=‘1; p̂2 ¼ p2=‘2,

and dimensionless properties:

(1) secant stiffness k̂ s ¼ ks‘
3
2=ðYI2Þ,

(2) reaction force F̂ ¼ F‘2
2=ðYI2Þ, and

(3) strain energy Ê ¼ E‘2=ðYIÞ.
Equations (4)–(6) and (17) give

k̂ s ¼ b0 þ b1x̂2 þ b2x̂4 þ b3x̂6 (20)

where

b0 ¼ 48� 576g2p̂2

5
þ 3456g1g2p̂1p̂2

25
� 20;736g1g2a

2
2p̂3

2

125

b1 ¼
3456g2

25
� 20;736g1g2p̂1

125
þ 36;429g1g2a

2
2p̂2

2

61

b2 ¼ �
7883g1g2a

2
2p̂2

11
; b3 ¼

30;672g1g2a
2
2

107

(21)

Equations (4)–(6) and (18) give (normalized Hooke’s law)

F̂ ¼ b0x̂ þ b1x̂3 þ b2x̂5 þ b3x̂7 (22)

and Eqs. (4)–(6) and (19) give (normalized integration)

Ê ¼ b0

2
x̂2 þ b1

4
x̂4 þ b2

6
x̂6 þ b3

8
x̂8 (23)

5.8 Reduction to Cubic Polynomial

5.8.1 Reaction Force. The normalized reaction force can be
written in terms of a cubic polynomial

F̂ ¼ x̂ Uðx̂2Þ (24)

where

UðzÞ ¼ b0 þ b1zþ b2z2 þ b3z3; z ¼ x2 (25)

The equilibrium points of F̂ are

q0 ¼ 0; q6
i ¼ 6

ffiffiffiffi
zi
p

; i ¼ 1; 2; 3 (26)

where z1, z2, z3 are the roots of the polynomial UðzÞ. Note that
qþi ; q

�
i make physical sense only if zi is real and non-negative.

5.8.2 Tangential Stiffness. The normalized tangential stiffness
is

k̂ t ¼
dF̂

dx̂

so it can be written

k̂ t ¼ Nðx̂2Þ (27)

where

NðzÞ ¼ b0 þ 3b1zþ 5b2z2 þ 7b3z3; z ¼ x2 (28)

The zero stiffness positions are

f6
i ¼ 6

ffiffiffiffi
zi
p

; i ¼ 1; 2; 3 (29)

where z1, z2, z3 are the roots of the cubic polynomial NðzÞ.
Note that fþi ; f

�
i make physical sense only if zi is real and non-

negative.

5.9 Roots of a Cubic Polynomial. The qualitative behavior
of the roots of UðzÞ can be described by its discriminant [23]

DU ¼ 18b3b2b1b0 � 4b3
2b0 þ b2

2b
2
1 � 4b3b

3
1 � 27b2

3b
2
0 (30)

If DU is negative, then U has one real root; otherwise, it has
three real roots. The sign of the real roots can be determined by
Descarte’s rule of signs which states that the number of positive
roots of a polynomial is either equal to the number of sign dif-
ferences between consecutive nonzero coefficients or is less than
it by an even number, and equality holds if all the roots are real
[23,24].

5.10 Evaluation of DOS. We use the basic properties of the
previous section to compute the DOS, the number of minima of
the strain energy E. Since E is an even degree polynomial with
E!1 as x̂ ! 61, it is easily seen that in the generic case

DOS ¼ nq þ 1

2
(31)

where nq is the number of equilibrium points. Let nþ be the num-
ber of positive roots of U, Eq. (26) shows that nq ¼ 2nþ þ 1; so
that

DOS ¼ nþ þ 1 (32)

We can now use the discriminant and Descarte’s rules of signs to
evaluate the DOS as shown in Table 1, where rðDÞ is the sign of
discriminant and nr is the number of sign changes of the coeffi-
cients of U.

6 Qualitative Stability Behavior

For fixed programming inputs p̂1; p̂2, the qualitative stability is
given by the strain energy, as shown in Fig. 10 for different pro-
grammed DOS. Note that x̂ ¼ 0 is always an equilibrium state,
stable for odd DOS and unstable for even DOS, and the other
equilibrium states are symmetric around x̂ ¼ 0. The rest of this
section characterizes qualitative behavior as the programming
inputs p̂1; p̂2 vary.

Our explicit analytical computations, including the evaluation
of DOS, are summarized in Figs. 11–19 and pertain to the specific
values g1 ¼ 176; g2 ¼ 4:6, and a2 ¼ 1, see Sec. 4.2. We believe
that the same qualitative behavior holds for all admissible g1, g2,
and a2 ¼ 1, see Ref. [21].

Table 1 Evaluation of DOS

rðDÞ nr DOS

� 0 1
þ 1
� 1 2
þ 2
� 2 1
þ 3
� 3 2
þ 4
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6.1 Computation of DOS of the T-Mechanism. Our main
result is the DOS as a function of p̂1; p̂2 illustrated in Fig. 11(c)
for g1 ¼ 176; g2 ¼ 4:6, and a2 ¼ 1.

In order to derive this, we begin by considering all admissible
g1, g2, and a2 ¼ 1. Although the DOS depends on the polynomial
U defined in Eq. (25), we will show that it can be largely deter-
mined by b0, the constant term of U. Indeed, b0 is the tangential

stiffness at x¼ 0, the equilibrium state q0, and as illustrated in Fig.
10 going from odd DOS to even DOS or vice-versa is equivalent
to a change in the sign of b0, so roots of b0 ¼ 0 determine a
change of DOS. The values of p̂2 for which b0 vanishes are
p̂a

2; p̂b
2; p̂cr

2 and correspond to the buckling described in Sec. 4.1.
Figure 13 is an example of how these values delineate regions
with different DOS.

Fig. 10 Strain energy of the T-mechanism programmed to be (a) monostable at p̂1 5 0; p̂2 5 0,
(b) bistable at p̂1 5 0; p̂2 5 0:12, (c) tristable at p̂1 5 0:0175; p̂2 5 0, and (d) quadrastable at
p̂1 5 0:12; p̂2 5 0:0175

Fig. 11 (a) Sign of the discriminant DU, (b) number of sign alternations nr, and (c) DOS

Fig. 12 Sign of (a) b0, (b) b1, (c) b2, and (d) b3
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According to Secs. 5.9 and 5.10, the number of real zeros of U
is determined by the sign of its discriminant

DU ¼ �5111670774:5g2
1g

2
2 � 3029140967:2g1g

4
2

þ10904907482:1g2
1g

4
2p̂1 � 13085888978:5g3

1g
4
2p̂2

1

þ5234355591:4g4
1g

4
2p̂3

1 � 29089g2
1g

3
2p̂2 þ 34906:8g3

1g
3
2p1p̂2

þ62870:5g2
1g

4
2p̂2

2 � 150889:0g3
1g

4
2p̂1p̂2

2 þ 90533:5g4
1g

4
2p̂2

1p̂2
2

þ75934:2g3
1g

3
2p̂3

2 � 0:2g3
1g

4
2p̂4

2 þ 0:26g4
1g

4
2p̂1p̂4

2

�0:28g4
1g

4
2p̂6

2 (33)

where floating point coefficients highlight approximate behavior.
Equation (33) shows that only the terms not involving p̂2 are

significant, as illustrated by Fig. 11(a), where the positive and
negative values of D are separated by a horizontal line at
p̂1 ¼ p̂cr

1 .

To compute p̂cr
1 , we let D�U be the terms of DU not involving p̂2

and find the value p̂cr
1 for which D�Uðp̂cr

1 Þ ¼ 0. Dividing D�U by the
leading coefficient of p̂3

1 gives the normalized discriminant

Dn
U ¼�0:976562g2

1g
2
2 � 0:578704g1g

4
2 þ 2:08333g2

1g
4
2p̂1

�2:5g3
1g

4
2p̂2

1 þ g4
1g

4
2p̂3

1

(34)

where p̂cr
1 is a root of this polynomial. We now examine b0 and

note that b0 ¼ Bðp̂2Þ, where B(z) is a polynomial with coefficients
depending on p1. The discriminant of B is

DB ¼�1711891286:1g2
1g

2
2 � 1014454095:4g1g

4
2

þ3652034743:6g2
1g

4
2p̂1 � 4382441692:3g3

1g
4
2p̂2

1

þ1752976676:9g4
1g

4
2p̂3

1 (35)

Fig. 13 (a) Sign and zeros of b0 and (b) DOS with boundaries

Fig. 14 Equilibrium and zero stiffness diagrams for the fixed
values shown in (a): (b) p̂1 5 0:0, (c) p̂1 5 0:007, (d) p̂1 5 0:012,
(e) p̂1 5 0:016, and (f) p̂1 5 0:02

Fig. 15 Equilibrium and zero stiffness diagrams for the
fixed values shown in (a): (b) p̂2 5 20:06, (c) p̂2 5 20:03, (d)
p̂2 5 0:025, (e) p̂2 5 0:06, and (f) p̂2 5 0:12
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and dividing by the leading coefficient p̂3
1 gives the normalized

form

Dn
B ¼ �0:976563g2

1g
2
2 � 0:578704g1g

4
2 þ 2:08333g2

1g
4
2p̂1

�2:5g3
1g

4
2p̂2

1 þ g4
1g

4
2p̂3

1 (36)

A comparison of Dn
U and Dn

B shows that they only differ in the
term g2

1g
2
2 by one part per million, so for admissible g1; g2 and the

range of programming values p̂1; p̂2, the two polynomials can be
considered equal with DU ¼ 2:98598DB. It follows that the real
root of DB can be identified with p̂cr

1 , the root of DU. On solving
Dn

B ¼ 0 using the exact values of b0 given in Eq. (21), we get

p̂cr
1 ¼

5

6g1

þ 126

127

1

g1g2

� �2=3

(37)

We conclude that for p̂1 fixed, U and b0 have the same number of
real zeros, as p̂2 varies.

The number of coefficient sign alternations of U, as p̂1; p̂2 vary,
is computed by the signs of b0;b1;b2; b3 shown in Fig. 12
and leads to the number of coefficient sign alternations shown in
Fig. 11(b). Numerical inspection for our chosen values of
g1 ¼ 176; g2 ¼ 4:6 shows that the regions having an equal num-
ber of sign alternations are essentially determined by the sign of

Fig. 16 Stiffness and sign of stiffness at equilibrium positions:
(a) and (b) for q0, (c) and (d) for q1, (e) and (f) for q2, (g) and (h)
for q3

Fig. 17 (a) Selected values of p̂1; p̂2 leading to near zero force
and near constant force regions: (b) zero force monostable
mechanism at p̂1 5 0; p̂2 5 0:052, (c) constant force monostable
mechanism at p̂1 5 0:012; p̂2 5 0, (d) zero force bistable mecha-
nism at p̂1 5 0:017; p̂2 5 20:045, (e) constant force bistable
mechanism at p̂1 5 0:007; p̂2 5 0:092, and (f) zero force tristable
mechanism at p̂1 5 0:017; p̂2 5 0:12

Fig. 18 FEM rendering of T-mechanism deformation
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b0, so, as expected, the boundaries between such regions corre-
spond to zeros of b0 as illustrated in Fig. 13.

6.2 Equilibrium and Zero Stiffness Diagrams. An equilib-
rium and zero stiffness diagram gives the positions of equilibrium
and zero stiffness positions as one programming input is fixed and
the other varies. Characteristically, these diagrams exhibit bifur-
cation, see Ref. [15] for the definition of the different types of
bifurcation.

Figure 14 gives the equilibrium and zero stiffness diagrams as a
function of p̂2 for five different values of p̂1 as illustrated with the
programming diagram in Fig. 14(a).

Figure 14(b) corresponds to p̂1 ¼ 0. For p̂2 < p̂cr
2 , where

p̂cr
2 ¼ 0:055, the mechanism is monostable with stable position

q0 ¼ x̂ ¼ 0. At p̂2 ¼ p̂cr
2 , a pitch-fork bifurcation occurs. The sta-

ble position q0 becomes unstable and bifurcates into two stable
positions q6

1 . Also, at p̂2 ¼ p̂cr
2 , a saddle-node bifurcation occurs

for zero stiffness positions.
Figure 14(c) corresponds to p̂1 ¼ 0:007. Bifurcation of both

equilibrium and zero stiffness occurs at p̂cr
2 ¼ 0:08 and four new

zero stiffness states appear when p̂2 > 0:08.
Figure 14(d) corresponds to p̂1 ¼ 0:012 and bifurcation occurs

at p̂cr
2 ¼ 0:1. Note that as p̂1 increases with p̂2 fixed, zero stiffness

positions move closer to x̂ ¼ 0 and bifurcation occurs at a higher
p̂cr

2 .
Figure 14(e) corresponds to p̂1 ¼ 0:017. Since p̂1 > p̂cr

1

¼ 0:016, the zero stiffness positions merge and two pitch-fork

bifurcations occur at p̂2 ¼ p̂a
2 ¼ �0:055 and p̂2 ¼ p̂b

2 ¼ �0:045.
At p̂2 ¼ p̂a

2, stable position q0 becomes unstable and bifurcate into

two stable states q6
3 . At p̂2 ¼ p̂b

2, unstable position q0 becomes

stable and bifurcates into two unstable positions q6
2 . A pitch fork

bifurcation occurs at p̂2 ¼ p̂cr
2 , where p̂cr

2 ¼ 0:12 and q0 bifurcates

into two unstable q6
1 .

Figure 14(f) corresponds to p̂1 ¼ 0:02. This figure is qualita-
tively the same as Fig. 14(e), where, for fixed p̂2, positions q6

3

move apart and q6
1 move closer. The bifurcation positions p̂a

2 and
p̂b

2 have moved apart.
Similarly, Fig. 15 gives equilibrium and zero stiffness positions

for five different values of p̂2, as illustrated in Fig. 15(a).
Figure 15(b) corresponds to p̂2 ¼ �0:06. The mechanism is

monostable for p̂1 < p̂cr
1 with a stable state q0 ¼ x̂ ¼ 0. At

p̂1 ¼ p̂cr
1 , stable position q0 bifurcates into two stable states q6

3

and becomes unstable. A saddle node bifurcation occurs for the
zero stiffness position at p̂1 ¼ p̂cr

1 .
Figure 15(c) corresponds to p̂2 ¼ �0:03 with one stable posi-

tion for p̂1 < p̂cr
1 . A saddle node bifurcation occurs at p̂1 ¼ p̂cr

1 ,

where equilibrium states q6
2 ; q

6
3 are created. As illustrated in Sec.

6.1, on increasing p̂1; p̂b
2 increases. When p̂b

2 ¼ p̂2 ¼ �0:03, a
subcritical pitch-fork bifurcation occurs, and the stable state q0

becomes unstable and bifurcates into two unstable positions q6
2 .

Figure 15(d) corresponds to p̂2 ¼ 0:025. This figure is qualita-
tively the same as Fig. 15(c), where, positions q6

2 ; q6
3 move apart

from x¼ 0.
Figure 15(e) corresponds to p̂2 ¼ 0:06. An inverted super criti-

cal bifurcation occurs when p̂cr
2 ¼ 0:06, where stable position q0

becomes unstable on decreasing p̂1 and bifurcates into two stable
states q6

1 . Saddle node bifurcations occurs at p1 ¼ pcr
1 where posi-

tions q6
2 ; q

6
3 are created.

Figure 15(f) corresponds to p̂2 ¼ 0:12. This figure is qualita-
tively the same as Fig. 15 except that the inverted super critical
bifurcation occurs at p̂1 values greater than p̂cr

1 .
Note that in Figs. 15(c)–15(f), saddle node bifurcations of zero

stiffness positions occur at lower values of p̂1 than for equilibrium
positions.

6.3 Stiffness Diagrams. Mechanism stiffness at stable and
unstable states is of great importance to compliant mechanism
design [25]. Using Eq. (20), we calculate the effect of the pro-
gramming inputs on the stiffness of equilibrium states and recall
that the sign of the stiffness determines stability.

6.3.1 Equilibrium Position q0. The equilibrium position q0

exists for all p̂1; p̂2. When p̂1 < p̂cr
1 , its stiffness k̂q0

decreases
with increasing p̂2. It is zero at p̂2 ¼ p̂cr

2 and negative for
p̂2 > p̂cr

2 .
When p̂1 > p̂cr

1 , the stiffness k̂q0
decreases with increasing p̂2

reaching zero at p̂2 ¼ p̂a
2. It is negative for p̂a

2 < p̂2 < p̂b
2, zero at

p̂2 ¼ p̂b
2 and negative for p̂2 > p̂cr

2 . Figures 16(a) and 16(b) illus-
trate kq0

with respect to p̂1; p̂2.

6.3.2 Equilibrium Positions q6
1 . The equilibrium positions

qþ1 ; q
�
1 are symmetric around x̂ ¼ 0 and they exist when p̂2 > p̂cr

2 .
Their stiffness kq1

is always positive, so they are stable. With p̂1

fixed, increasing p̂2 increases kq1
. For p̂2 fixed, increasing p̂1

decreases kq1
. Figures 16(c) and 16(d) illustrate kq1

with respect to
p̂1; p̂2.

6.3.3 Equilibrium Positions q6
2 . The equilibrium positions,

qþ1 ; q
�
1 are unstable, symmetric around x̂ ¼ 0 and they exist only

when p̂2 > p̂b
2 and p̂1 > p̂cr

1 . On increasing p̂2 for a given p̂1, their
stiffness kq2

decreases. Figures 16(e) and 16(d) illustrate kq2
with

respect to p̂1; p̂2.

6.3.4 Equilibrium Positions q6
3 . The equilibrium positions

qþ3 ; q
�
3 are stable, symmetric around x̂ ¼ 0 and they exit only

when p̂2 > p̂a
2 and p̂1 > p̂cr

1 . On increasing p̂2 for a given p̂1, their
stiffness kq3

increases. As p1 increases and p̂2 is fixed, the magni-

tude of k̂q3
increases. Figures 16(g) and 16(f) illustrate kq3

with
respect to p̂1; p̂2.

6.4 Special Cases. The T-mechanism exhibits near constant
stiffness when the axial loads of its double parallelogram modules

Fig. 19 (a) Values of p̂1; p̂2 for FEM simulation with T-
mechanism programmed to be (b) monostable at p̂1 5 0; p̂2 5 0,
(c) bistable at p̂1 5 0; p̂2 5 0:12, (d) tristable at p̂1 5 0:0175;
p̂2 5 0, (e) quadrastable at p̂1 5 0:0175; p̂2 5 0:012, and (f) Pres-
ent difference between analytical and numerical models
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equal their zero stiffness loads. This leads to zero and constant
force mechanisms [26].

We examine four cases with values illustrated in Fig. 17(a). We
have made FEM simulations which validate the analytical model
[21].

6.4.1 Zero Force Monostable Mechanism. When p̂1 < p̂cr
1

and p̂2 ¼ p̂cr
2 , the T-mechanism switches from monostability to

bistability. The axial load of module 2 is equals its zero stiffness
load [16]. The T-mechanism has a near zero reaction force in the
range �0:07 < x̂ < 0:07 for p̂1 ¼ 0:0; p̂2 ¼ 0:052, as illustrated
in Fig. 17(b).

6.4.2 Constant Force Monostable Mechanism. When the
axial load on module 1 equals its zero stiffness load and p̂2 < p̂a

2,
the mechanism is monostable and has regions of near constant
force. Figure 17(c) illustrates the reaction force of the mechanism
when p̂1 ¼ 0:012; p̂2 ¼ 0 with constant force range �0:18 < x̂ <

�0:13 and 0:13 < x̂ < 0:18, with F̂ ¼ �4:2 and 4.2, respectively.

6.4.3 Zero Force Bistable Mechanism. When p̂2 ¼ p̂b
2 and

p̂1 > p̂cr
1 , the mechanism switches from bistability to tristability.

The axial load of module 2 equals its zero stiffness load, and the
mechanism has near zero reaction force at x̂ ¼ 0 leading to a zero
force bistable mechanism. Figure 17(d) illustrates the reaction
force of the mechanism at p̂1 ¼ 0:017; p̂2 ¼ �0:045, where the
zero force range is �0:03 < x̂ < 0:03.

6.4.4 Constant Force Bistable Mechanism. When p̂2 > p̂cr
2

and p̂1 < p̂cr
1 , the mechanism is bistable. When the axial load of

module 1 equals its zero stiffness load, the mechanism has near
constant force behavior. Figure 17(e) illustrates the reaction force
of the mechanism at p̂1 ¼ 0:007; p̂2 ¼ 0:092, where the constant
force ranges are �0:31 < x̂ < �0:22 and 0:22 < x̂ < 0:31, with

F̂ ¼ �0:13 and 0.13, respectively.

6.4.5 Zero Force Tristable Mechanism. When p̂1 > p̂cr
1

and p̂2 ¼ p̂cr
2 , the mechanism switches from tristability to

quadrastability. The axial load of module 2 equals its zero stiff-
ness load. The mechanism has zero force behavior around x̂ ¼ 0.
Figure 17(f) illustrates the reaction force of the mechanism at
p̂1 ¼ 0:017; p̂2 ¼ 0:12 with zero force range �:03 < x̂ < 0:03.

6.5 Degree of Stability Sensitivity. As demonstrated in
Sec. 6.1, qualitative behavior is determined by the zeros of b0,
and this parameter is a polynomial in p̂1; p̂2, as given by Eq. (21)
of Sec. 5.7, and is linear in p̂1 and cubic in p̂2. This gives smooth
dependence on p̂1; p̂2 except at bifurcation points, i.e., DOS is
locally constant.

Sensitivity to p̂1; p̂2 holds for the DOS at bifurcation points,
since p̂1; p̂2 change continuously while the DOS is a discrete
number. More generally, sensitivity of DOS at bifurcation is
intrinsic to programmable multistable mechanisms since a discrete
change occurs by continuous actuation [16].

Our model gives explicit formulas for bifurcation as function of
programming input. Section 6.1 shows that bifurcation in p̂1

occurs at p̂cr
1 given by Eq. (37) and for p̂2 at zeros of b0 at

p̂a
2; p̂b

2; p̂cr
2 .

7 Numerical Validation

COMSOL FEM was used to model the stability behavior of the
2DOP T-mechanism. Geometric nonlinearity was implemented by
the solid mechanics module. Mesh convergence tests were per-
formed to ensure the validity of solutions. Figure 18 illustrates the
deformation of the mechanism for p̂1 ¼ 0:0; p̂2 ¼ 0:12.

Figure 19 gives the reaction force for monostable, bistable, tri-
stable, and quadrastable configurations, calculated analytically and
numerically. These data indicate that, for small x̂, there is a good
match between our analytical calculations and numerical
simulations.

The discrepancy between the analytical and numerical models
can reach 20%, as illustrated in Fig. 19(f). This is explained by
having neglected the higher order nonlinear terms given in
Ref. [27].

However, the analytical and numerical curves are qualitatively
similar validating our qualitative analysis of stability behavior.

8 Applications

We give a brief overview of applications of programmable mul-
tistable mechanisms.

(1) Multistable mechanisms have been applied to computation.
Logical operations were implemented using bistable mech-
anisms in Ref. [28]. Micromechanical computation devices
have advantages over electronic circuits for low speed com-
putations [29]. We conjecture that by using higher DOS, it
is possible to realize a Turing complete mechanical com-
puter. This is the subject of our current research.

(2) Threshold sensors have multiple stable states and they
switch between them when sensing input exceeds threshold
values, they have been used as acceleration, position, and
shock threshold sensors [16,30]. Stability programming
extends the threshold sensing concept to programmable
sensors, where the number and the value of the threshold
states are modifiable.

(3) This paper provide a new method for connecting bistable
mechanisms to build programmable mechanical meta-
materials [31], where the effective value of Young’s modu-
lus, the Poisson’s ratio, and stable configurations can be
controlled and stiffness estimated by our analytic model.

(4) Puncturing human tissue is required during surgery and
necessitates great precision to avoid large forces causing
irreversible damage. Stability programming provides con-
trol over puncturing force and stroke as we demonstrated in
previous work [32].

9 Conclusion

We introduced the concept of stability programming and pro-
vided a novel analytic model of T-connected two degree of pro-
gramming mechanisms yielding explicit expression for degree of
stability, the position and stiffness of equilibrium states as well as
estimates for constant force regimes. Our analysis was validated
using FEM simulation.

We are currently working on the experimental validation as
well as applications to mechanical computation using generalized
T-combinations having higher degrees of programming.
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