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Abstract 

A numerical investigation was carried out in order to simulate experimental results previously 

obtained concerning two-dimensional (2D) in-plane crack propagation in laminated glass fiber-

reinforced polymer (GFRP) plates. The laminated plates were designed with an embedded 

circular pre-crack and subjected to quasi-static out-of-plane loads. In order to study the 

transition from standard fracture mechanics tests, where the crack propagates only in one 

dimension (1D), to 2D scenarios, additional double cantilever beam (DCB) experiments were 

carried out on the same material system. Three-dimensional finite element models were 

developed for the simulation of the experimental fracture responses and cohesive elements were 

used to take into account the fracture mechanisms acting on the fracture process zone. 

Compared to the 1D DCB specimens, a much higher value of the total strain energy release rate 

(SERR) was obtained for the 2D plates, which was correlated to their higher flexural stiffness 

and to the stress stiffening effect caused by the stretching of their deformed part. Furthermore, 

and based on the numerical results, it was proved that the area of the fully developed fiber-

bridging in the plates can be directly obtained from the experimental compliance vs crack area 

curves. 
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1. Introduction  

Despite the good structural performance of fiber-reinforced composite materials (FRPs) [1], 

mechanisms such as delamination in laminated components may lead to a considerable 
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reduction in the load-bearing capacity of the structure. Significant efforts have been devoted to 

the investigation of the delamination fracture behavior of laminated composites [2-4]. Pure and 

mixed-mode fracture behaviors have been widely investigated, i.e. beam-like specimens such 

as the double cantilever beam (DCB) for Mode I, end-loaded split (ELS) for Mode II or mixed-

mode bending for mixed-Mode I/II, have all been extensively used and standardized [5-7]. 

However, some of the conditions required by these types of experiments, such as a constant 

crack width or single direction of propagation, may not correspond to the actual delamination 

damage growth that occurs in FRP structures. In many scenarios, delamination damage may 

develop all around the contour of a defect with an increasing length of the front of the 

propagating crack. Furthermore, accurate determination of the strain energy release rate 

(SERR) is a key factor for damage-tolerant structural design and therefore the development of 

new fracture experimental designs better able to represent realistic scenarios is needed. Some 

investigations studying the two-dimensional (2D) propagation of an embedded pre-crack in 

composite materials can be found in [8-13]. Various sources of delamination are considered: 

buckling-driven delamination in [8-11] or out-of-plane deformation of the laminate around a 

disbond due to differences in pressure in [12-13]. However, in all of them, the fracture 

properties were assumed to be those obtained from the previously mentioned standard beam-

like specimens with one-dimensional (1D) crack propagation.  

When a material undergoes deformation and damage, different toughening mechanisms may be 

activated, increasing the energy dissipation level. These damage mechanisms can be considered 

intrinsic or extrinsic, depending on whether they appear behind or in front of the crack tip 

respectively [14]. Intrinsic damage is related to the fracture resistance of a material and typically 

associated with plasticity in ductile materials such as metals or soft polymers, e.g., 

thermoplastics. On the other hand, extrinsic damage appears in front of the crack and is the 

main source of toughening in quasi-brittle materials such as thermoset FRPs. Fiber-bridging, 

matrix cracking and fiber pull-outs are some of the processes considered as extrinsic damage 

[15, 16], which occur in the fracture process zone (FPZ). Fiber-bridging is considered the most 

efficient of these to reduce the strain/stress level at the crack tip [15, 17] and thus increase the 

SERR value required to further extend the crack. This behavior is reflected in the resistance 

curves (R-curves) which typically present initially increasing SERR values for small crack 

lengths, and then reach a steady-state plateau for crack lengths corresponding to fully developed 

fiber-bridging [17, 18]. When the length of the fiber-bridging is comparable to or greater than 

one of the dimensions of the specimen/component in which the crack is propagating (usually 
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called large-scale bridging, LSB), the R-curve has been proved to be size and geometry 

dependent [19-21]. The prediction of the structural response by means of linear elastic fracture 

mechanics (LEFMs) only applies for small FPZs where the damage can be reduced to one point 

(the crack tip), i.e. no significant extrinsic mechanisms develop. If this condition does not apply, 

more complex methods are required [22-24]. Cohesive zone models (CZMs) [25-27] have been 

widely and successfully used for the simulation of fracture in many quasi-brittle materials [28] 

and have been proved particularly accurate in cases of materials developing a long FPZ with a 

high fiber-bridging contribution [29-30]. In the cohesive model the cohesive stresses (also 

named tractions) inside the FPZ tend to close the crack. The cohesive law describes the 

evolution of these tractions as a function of the crack-opening displacement. Based on this, the 

bridging fibers are considered as tractions along the bridging length, resulting in the so-called 

bridging law [24] that has usually been considered as a material property regardless of the size 

and geometry of the system [19, 31-32]. This implies the assumption of the value of the SERR 

at the steady state as a material property [33]. Nevertheless, as previously mentioned, the R-

curves of materials presenting LSB are strongly dependent on the specimen’s geometry and 

therefore any experimentally or numerically derived bridging law cannot be considered as a 

material property. Although some studies have described effects of thickness variation in the 

increasing part of the R-curves [29], recent investigations [15, 17, 33-34] have also reported a 

high influence of this parameter on the steady-state SERR value (plateau of the R-curve) of 

DCB specimens, proving a considerable influence of stiffness in the development of the fracture 

mechanisms and fiber-bridging in particular. Micromechanical models of DCB specimens with 

different thicknesses were developed in [15] showing that the extension of the fiber-bridging 

was dependent on the curvature of the arms. Thicker, therefore stiffer, and less curved arms 

presented longer bridging lengths and thus increased fiber-bridging.   

The experimental fracture behavior of laminated FRP plates with an embedded circular pre-

crack (i.e. 2D delamination) and subjected to quasi-static out-of-plane opening loads – similar 

to the loads applied in a DCB – was investigated in [35]. The results of these experiments 

showed that due to the boundary conditions inherent to an embedded pre-crack growing in a 

plate, stretching stresses appeared in the circumferential and radial directions resulting in a 

stiffening of the plate, in addition to the general increase in the flexural stiffness that occurs due 

to the transition from the (1D) beam to the (2D) plate configuration [35].  

The objective of this work was the numerical investigation of the 2D in-plane crack propagation 

in two of the laminated plates presented in [35], in order to better understand the nature of the 
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aforementioned additional stiffening effects and the associated mechanisms. The material 

system of the selected plates was glass/epoxy with a long continuous filament mat 

reinforcement whose nature led to the development of a considerable amount of fiber-bridging. 

For the sake of comparison and to understand the transition from standard 1D fracture 

experiments to 2D crack propagation scenarios, DCB specimens with different widths were 

further experimentally investigated. Three-dimensional finite element models were developed 

to simulate the experimental fracture responses of the plates and the DCBs using cohesive 

elements to take into account the fracture mechanisms acting on the FPZ. The influence of the 

parameters of the traction-separation laws on the load-displacement curves of the two 

investigated configurations was analyzed.  

2. Experimental methods 

2.1. Previous experimental investigation of laminated plates 

The 2D delamination behavior of FRP laminated plates under quasi-static out-of-plane opening 

loading was experimentally investigated in [35]. The experimental program was conducted on 

twelve GFRP/epoxy plates comprising different glass reinforcements. The investigation 

presented here involves the two plates with six layers of long continuous glass filament mat 

reinforcement (CFM). A detail of the fiber reinforcement is given in Fig.1(a) and the properties 

of the glass fibers and epoxy resin are given in Table 1 (manufacturer data [36-37]). The plates 

were fabricated using a vacuum infusion process with an embedded circular pre-crack in the 

center and at the midplane. The layup and geometrical description are presented in Table 2 and 

the crack propagation pattern obtained for one of the plates is shown in Fig. 1(b). An example 

of the experimental set-up for the CFM.2 plate is presented in Fig. 2(a). Due to the high 

translucency of the laminates, the crack tip could be precisely identified through the occurring 

whitening of the delaminated areas. To monitor the position of the crack tip three different 

measuring systems were employed: a 3D Digital Image Correlation System (DIC), a digital 

camera and visual measurements (see Fig. 2 (a, b)). Eight rulers starting from the end of the 

pre-crack were drawn on the plates corresponding to eight directions of propagation, named 

after the cardinal directions (see “Crack measuring system” in Figure 2 (a)). The propagation 

along the east (“E”) direction was measured by the DIC system (0.2 Hz of acquisition frequency 

and accuracy of ± 0.005 mm). The direction of propagation monitored with the digital camera 

(also acquisition frequency of 0.2 Hz) was northwest (“NW”). Along the remaining directions, 

the crack front was recorded visually and in-situ during the experiments. From these 

experimental values, average curves (one per plate) of radial crack length were obtained and 
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used to derive a continuous progression of the circular crack area. The load and opening 

displacement were obtained from the machine (W+B electromechanic machine of 50-kN 

capacity, ±0.11% accuracy). Further details concerning the measuring methodologies can be 

found in [35]. 

A DCB specimen of 25-mm width and 220-mm length was radially cut from the CFM.1 plate, 

see Fig. 1(b), to perform a cantilever beam bending test at different clamping distances on the 

un-cracked region and derive the in-plane E-moduli of the plate. An experimental value of 8.64 

GPa was obtained and used in the numerical model of the plates. This value differed by less 

than 10% from the analytically estimated value (see [35]) (see Table 3). The in-plane shear 

modulus was calculated for an isotropic material with a previously estimated in-plane Poisson 

ratio and the remaining out-of-plane properties were assumed to be the estimated values. These 

updated values were used for all the numerical simulations of the plates presented.  

 

2.2. Experimental investigation of Mode I DCB specimens 

Double cantilever beam (DCB) specimens were used to determine the Mode I SERR (see Fig. 

3). The same material system (long continuous glass filament mat reinforcement/epoxy resin) 

and lay-up (six layers of 600 g/m2) as those of the previously studied plates were used. A 

vacuum infusion process was employed for fabrication of the laminates and a Teflon film of 

13-µm thickness was placed at the midplane to introduce the pre-cracks. The infusion and 

curing protocols were identical to those of the plates (see [35] for further details). Once cured, 

the DCB specimens were cut from the laminates by means of a water jet machine. Specimens 

of four different widths, b, (25, 40, 60 and 100 mm) were investigated to determine any possible 

influence of this parameter on the experimental SERR. Two fabrications were carried out and 

due to small differences in the vacuum level of the pump, small discrepancies in thickness, h, 

and consequently the E-modulus existed. Specimens of 25- and 40-mm width were cut from 

the first fabrication, with an average thickness value of 7.64±0.01-mm while specimens of 60- 

and 100-mm width were cut from the second fabrication, with a corresponding average 

thickness of 6.80±0.01-mm. As mentioned above, another DCB specimen of 25-mm width 

(DCB-25-3) was cut directly in the radial direction from the CFM.1 plate.  

To allow the transfer of the load from the loading frame to the specimens, two different types 

of loading blocks were used. For all the DCB specimens except DCB-25-3, adhesively-bonded 

“in-house fabricated” piano-hinged loading blocks (see Fig. 3(a)) were employed. For specimen 



6 
 

DCB-25-3, patented [38] mechanically-fixed loading blocks were used (Fig. 3(b)). The 

geometrical and elastic properties of the DCB specimens are presented in Table 4.   

The experiments were performed under displacement-control on a 100-kN MTS Landmark 

servo-hydraulic testing rig with a load cell of 25 kN calibrated to 20% of its maximum capacity 

at a rate of 2.5 mm/min. All the experiments were conducted under laboratory conditions, 

21±3ºC and 40±10% RH.  

The experimental set-up and instrumentation layout are shown in Fig. 4(a). The crack length 

was monitored with a digital camera (camera 1 in Fig. 4(a)) placed above the highly translucent 

specimens focusing on the grid ruler drawn over the upper surface (see Fig. 4 (b and c)). The 

grid size was set to 1 mm over the first centimeter after the crack tip and to 5 mm over the rest 

of the length. The acquisition frequency was set to 0.2 Hz and each picture was registered with 

the corresponding load and displacement values recorded by the machine (accuracy of ±0.5%). 

Additionally, in order to monitor the bridging length from the side of the specimens, a second 

digital camera (camera 2 in Fig. 4(a)), also synchronized with the machine, was used. The same 

acquisition frequency was set and the opening displacement between the arms was monitored 

by pairs of black dots (with an accuracy of 10-5 m) marked at equal intervals of around 2 mm 

on the upper and lower lateral surfaces of the specimens (see Fig. 4 (d)).  

3. Numerical methods  

3.1. Description of numerical model of laminated plates 

A finite element (FE) model was developed to simulate the delamination behavior of the CFM 

plates using the commercial finite element analysis (FEA) software ABAQUS 6.14.1. The 

dimensions of the model are presented in Fig. 5. The built-in continuum shell element of eight 

nodes and reduced integration (CS8R) from Abaqus/Standard was used to mesh the GFRP bulk 

material [39]. Two through-thickness elements were assigned to each of the halves (in relation 

to the midplane) of the plate, which, after a sensitivity analysis, proved to be sufficient to 

capture the bending behavior accurately. A single zero-thickness layer of three-dimensional 

cohesive elements of eight nodes (Abaqus COH3D8 [39]) was implemented at the midplane of 

the un-cracked region (Fig. 5). To assure a correct dissipation of energy during delamination, a 

minimum of fifteen elements in the cohesive zone length (CZL) (i.e. the length along the plane 

of the crack along which the cohesive forces were acting) was guaranteed throughout the 

analysis [40]. The greatest dimension of the elements of the model varied from 0.6 mm in the 

un-cracked region close to the pre-crack to 4 mm at the boundaries. The engineering constants 
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used to define the bulk material are presented in Table 3. The nonlinear geometry (NLGEOM) 

option was used to account for large deformation effects.  

Two symmetry planes (D1 and D2) coincident with the diagonals of the plates were considered 

and therefore corresponding symmetric boundary conditions were applied (see Fig. 5). The steel 

inserts and external loading blocks [35] were not explicitly modeled. Instead, the nodes of the 

inner faces of the loading areas (spanning from the center of the plates to the loading 

circumference, i.e. a radius of 35 mm, “referenced areas” in Fig. 5 and [35]) were tied by means 

of a rigid body condition [39] to reference points (indicated in Fig. 5) where the boundary 

conditions were applied. An out-of-plane displacement condition (in-plane displacements 

constrained) was applied to the upper reference point and a pinned condition (all displacements 

constrained) to the bottom reference point. To capture the behavior of the complex loading 

system, whose rotations were partially impeded due to the upper and lower external steel plates, 

equivalent in-plane E-moduli and shear modulus, stiffer than the values used for the bulk 

material (see Table 3), were calibrated for these regions by an iterative procedure to fit the 

initial slope of the experimental curves. Resulting fitted values were E1=E2=42 GPa and 

G12=15.8 GPa. The model comprised 75146 nodes and 56664 elements. As in the experiments, 

the boundary edges of the plate were free.  

To determine any possible contribution of shear fracture modes (Mode II and Mode III) in 

addition to the obvious opening fracture mode (Mode I), the shear displacements in the cohesive 

elements were also computed. Insignificant and close-to-zero values were always obtained 

assuring a pure opening mode propagation of the crack. 

3.2. Description of numerical model of DCB specimens 

For the numerical simulation of the DCB experiments, the FEA software ABAQUS 6.14.1 was 

also employed. The two GFRP beams were modeled with 3D built-in continuum shell elements 

(CS8R) as for the plate and a single zero-thickness layer of three-dimensional cohesive 

elements (Abaqus COH3D8 [39])) was also implemented at the midplane in the un-cracked 

region. A minimum of ten cohesive elements in the cohesive zone length (CZL) are guaranteed 

for these models. Likewise, the greatest dimension of the elements varies from 0.83 mm in the 

un-cracked zone to 0.26 mm close to the pre-crack. The loading blocks were not modeled and 

the DCBs were only simulated from the loading line onwards (i.e. according to Fig. 3, only 

from a0). The boundary conditions were applied at the bottom (pinned condition) and top edges 

(out-of-plane opening displacement condition). The engineering constants used to define the 

bulk material are listed in Table 4 and as for the plates, the nonlinear geometry (NLGEOM) 
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option was used to account for large deformation effects. One FE model for each of the DCB 

configurations presented in Table 4 was performed.  

3.3. Cohesive zone modeling   

In Mode I delamination, cohesive elements are defined by their “traction-separation” response 

where the normal traction, 𝜎𝜎, over the fracture process zone (FPZ) is a function of the local 

crack-opening displacement δ as illustrated in Fig. 6-7. Once the FPZ is fully developed, the 

maximum crack opening, 𝛿𝛿𝑓𝑓, is achieved and tractions vanish. Two different damage processes 

can be distinguished in composite materials in the presence of fiber-bridging. The first is related 

to damage and micro-fractures of the matrix (epoxy) in the process zone in front of the crack 

tip (DP1 in Fig. 6) while the second corresponds to the fiber-bridging behind the crack (DP2). 

As investigated in literature [18, 30], the traction separation law suitable for the simulation of 

delamination under the effect of fiber-bridging is the result of the combination of i) the 

traditional cohesive law, where damage evolves according to a linear softening (from damage 

initiation traction, 𝜎𝜎𝑐𝑐, to the maximum bridging traction, 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚), and ii) the bridging law, where 

damage evolves according to bridging stress functions (from 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 to zero tractions). The 

former corresponds to the initial part of the traction-separation law in Fig. 6 (in orange) and the 

latter to the second part (in blue). The traction-separation law used in this paper to define the 

behavior of the cohesive elements is shown in Fig. 7. The first part of the law (in orange) is 

attributed to the initial damage growth in the DP1 zone and the area under this bilinear part 

equals the strain energy release rate (SERR) at the crack tip, Gtip, corresponding to the energy 

required for crack initiation. The second part (in blue) corresponds to the SERR due to the fiber-

bridging, Gbr. The addition of these two SERR values equals the total area under the traction-

separation law, which will be referred hereafter as Gtot (i.e. Gtot = Gtip + Gbr). The bridging 

tractions are given by [18]:  

𝜎𝜎𝑏𝑏𝑏𝑏(𝛿𝛿) = 𝑒𝑒−𝛾𝛾�𝛿𝛿−𝛿𝛿1𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 �1 −�
𝛿𝛿−𝛿𝛿1
𝛿𝛿𝑓𝑓−𝛿𝛿1

� , 𝛿𝛿1 ≤ 𝛿𝛿 ≤ 𝛿𝛿𝑓𝑓                                                              (1) 

where 𝛿𝛿 is the crack-opening displacement (COD), 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 and 𝛿𝛿1 are the maximum bridging 

traction and the corresponding COD and 𝛿𝛿𝑓𝑓 is the COD at the end of the bridging zone. 

Likewise, 𝛾𝛾 is the parameter governing the bridging tractions’ profile. As can be observed in 

the zoom of the bridging tractions in Fig. 7, the smaller the value of 𝛾𝛾 (for fixed values of 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 

and 𝛿𝛿𝑓𝑓) the greater the area under the curve, and thus the greater the value of Gbr. The overall 

traction-separation response is defined as:  

𝜎𝜎 = �1 − 𝐷𝐷(𝛿𝛿)�𝐾𝐾0𝛿𝛿                                                                                                                 (2) 
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𝐷𝐷(𝛿𝛿) =

⎩
⎨

⎧
0              𝑓𝑓𝑓𝑓𝑓𝑓  0 ≤ 𝛿𝛿 ≤ 𝛿𝛿𝑐𝑐    

1 − 𝛼𝛼𝛼𝛼+𝛽𝛽
𝐾𝐾0𝛿𝛿

         𝑓𝑓𝑓𝑓𝑓𝑓  𝛿𝛿𝑐𝑐 ≤ 𝛿𝛿 ≤ 𝛿𝛿1            

1 − 𝜎𝜎𝑏𝑏𝑏𝑏
𝐾𝐾0𝛿𝛿

                 𝑓𝑓𝑓𝑓𝑓𝑓  𝛿𝛿 > 𝛿𝛿1                 
                                                                    (3) 

where 𝜎𝜎 is the general cohesive traction, 𝐷𝐷 is the damage, 𝐾𝐾0 is the initial cohesive stiffness 

and α and β are:  

𝛼𝛼 = 𝜎𝜎𝑐𝑐−𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
𝛿𝛿𝑐𝑐−𝛿𝛿1

                                                                                                                                 (4) 

𝛽𝛽 = 𝜎𝜎𝑐𝑐 − 𝛼𝛼𝛿𝛿𝑐𝑐                                                                                                                              (5) 

where 𝜎𝜎𝑐𝑐 and 𝛿𝛿𝑐𝑐 are the corresponding values of the traction and COD for damage initiation.  

The presented traction-separation law was implemented in the FE model by means of a user 

material subroutine (UMAT) written in FORTRAN programming language. The damage 

definition (𝐷𝐷(𝛿𝛿)) was changed according to the formulation presented (Eq. 2-5). Details and 

theoretical background of the formulation of the original UMAT can be found in [41, 42].  

4. Experimental results and discussion 

4.1. Experimental results for laminated plates 

The experimental results previously obtained for the two laminated plates under study in this 

investigation (CFM) are summarized in the following. In Fig. 8 the load vs displacement and 

average crack-length vs displacement curves are shown for both CFM plates.  

In Fig. 8 it can be observed that, even after crack initiation, a continuously increasing load-

opening displacement behavior was obtained up to specimen failure. This behavior differed 

from the load-displacement behavior in fracture mechanics experiments such as DCB, where 

the load tends to decrease during crack propagation, due to the different crack growth pattern 

observed in each system. In a DCB (or any beam-like fracture experiment) the length of the 

crack front remains almost constant and perpendicular to the direction of propagation for each 

increment in the length of the crack and therefore the cracked area grows proportionally to the 

crack length. However, in a 2D fracture experiment, the crack front (perimeter of the concentric 

circles) increases for each increment in the radial direction, causing a non-proportional growth 

of the crack area in relation to the propagation distance and forcing the load to increase to 

maintain the crack propagation (i.e. more energy is needed to advance the crack by the same 

increment). This difference in the growth of the area of the crack between the two 

configurations is presented in Fig. 9 using the numerical results of the plate and of the DCB-

40(1-2). The crack areas represented in this figure correspond to propagated crack areas and 

therefore the area of the pre-cracks is not considered. To compare the results, the crack area in 
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the DCB was calculated by considering a width equal to the length of the perimeter of the pre-

crack in the plate (2π·90 mm) (see Fig. 9). In the horizontal axis two values can be read: crack 

length for the DCB and crack radius for the plate. It can be observed that the growth of the 

crack area is greater in the plate than in the equivalent DCB and how this difference increases 

as the crack propagates.  

The curves illustrating the crack area vs the compliance (calculated as δ/P, δ being the opening 

displacement and P the load) of the plates are shown in Fig. 10. The area was calculated for 

each increment as the area between the crack front and the loading line, i.e. a 35-mm radius 

circle passing through the center of the screws that constitute the loading points (see Fig. 1). 

Based on the compliances, two main different regions could be differentiated (A and B in Fig. 

10). In region A, a decreasing behavior of the compliance was observed (i.e. stiffening of the 

plate) down to a minimum value (transition point, TP). From the TP onwards (Region B), the 

compliance started to increase (i.e. softening of the plate). The decreasing behavior of region A 

in the curve of the CFM.2 plate was however less accentuated than for the CFM.1 plate.  

The initial ascending branch of the compliance curve immediately after crack initiation was 

attributed to an initial readjustment between the loading system and the specimen. The changes 

in the stiffness were caused by three different mechanisms activated during the opening of the 

plates: stretching, fiber-bridging and crack propagation. Two curvatures could be distinguished 

as the plate opened: the radial and the circumferential. The frame-like boundary of the plates, 

i.e. the undamaged zone around the crack which did not deform and thus acting like a frame, 

led to the radial stretching of the out-of-plane deforming open part of the plates. Likewise, as 

the crack was embedded in the plate, the elongation in the circumferential direction during the 

out-of-plane deformation was also constrained, causing the corresponding circumferential 

stretching. Therefore, the plate was subjected to a biaxial stretching and thus a biaxial stiffening 

effect. Once the crack started propagating, the other two mechanisms were activated: the fiber-

bridging, contributing to the stiffening of the plate, and the crack propagation itself, causing the 

softening of the system. The stiffening mechanisms prevailed over the softening up to the TP. 

Beyond the TP, the softening was the dominant mechanism. Typically, for a standard (1D) 

fracture experiment, crack propagation is the dominant mechanism after crack initiation, always 

leading to an upward trend of the compliance curve. Further discussion and details can be found 

in [35].  
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4.2. Experimental results for DCB specimens 

The experimental load-displacement responses of the new set of DCB specimens described in 

Section 2.2 are presented in Fig. 11. Typical curves of this type of specimens (increase of the 

load up to a maximum followed by decrease) can be observed. Representative side views of the 

fiber-bridging for two specimens are presented in Fig. 12. For the calculation of the total SERR 

of the specimens, 𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡, the experimental compliance method (ECM) was used. The 𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡 derived 

from the experiments is the sum of the SERR at the crack tip, 𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡, and the SERR due to the 

fiber-bridging, 𝐺𝐺𝑏𝑏𝑏𝑏. The expression used for the calculation based on the experimental 

compliance was the following [43]:  

𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐺𝐺𝑏𝑏𝑏𝑏 = 𝑃𝑃2

2𝑏𝑏
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                                                                                                     (6) 

where P is the load, b is the specimen width, C is the compliance and a is the crack length. The 

R-curves obtained for all the DCB specimens are shown in Fig.13. According to these curves, 

values of 400 J/m2 and 2000 J/m2 respectively were assigned to 𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡 and 𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡. The length of the 

fiber-bridging observed in the side views of the specimens (see Fig. 12) are in good agreement 

with the lengths inferred from the R-curves (i.e. the crack length corresponding to the starting 

point of the plateau of the crack propagation value, see Fig.13). A value of ~10 mm for the 

fiber-bridging length was obtained along with a maximum COD, 𝛿𝛿𝑓𝑓, of ~1.25 mm (see Fig. 12). 

Likewise, as can be observed in Fig. 13, similar R-curves were obtained (considering the typical 

scatter) regardless of the width.  

5. Numerical results and discussion 

5.1. DCB specimens 

The traction-separation law described in Section 3.3 was implemented in the cohesive elements 

of the FE model developed for the DCB specimens presented in Section 3.2. The experimentally 

obtained SERR values of 𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡=400 J/m2 and 𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡=2000 J/m2 (i.e. 𝐺𝐺𝑏𝑏𝑏𝑏=1600 J/m2) and the 

maximum COD (𝛿𝛿𝑓𝑓=1.25 mm) were assigned. According to [44, 45], the maximum traction for 

damage initiation was assumed to be equal to 30% of the tensile strength of the matrix (84 MPa, 

manufacturer data [37]), i.e.  𝜎𝜎𝑐𝑐=25.2 MPa. The initial cohesive stiffness, 𝐾𝐾0, was taken as being 

equal to 10000 MPa/mm [41] and the resulting value of 𝛿𝛿1was 0.027 mm. The values of the 

maximum bridging traction, 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚, and the bridging traction decay ratio, 𝛾𝛾, were estimated 

iteratively to fit the numerical with the experimental load-displacement responses. 

Corresponding values of 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 =5 MPa and 𝛾𝛾 =0.46 were obtained to maintain the Gtot equal 



12 
 

to 2000 J/m2. The same traction-separation law was used for all DCB specimens and is 

presented in Fig. 14. The numerical load-displacement curves obtained for the new set of DCB 

specimens are shown in Fig. 11. As can be observed, the experimental curves are in good 

agreement with the numerical prediction.  

As mentioned in Section 2.2, a wide range of DCB specimen widths was selected in order to 

study the influence of the width on the total SERR. As previously described, the reinforcement 

is composed of long continuous glass filaments randomly distributed in-plane and although no 

influence of the width has been reported in the literature for unidirectional-fiber DCB 

specimens, a possible effect of the anchorage length (which increases with width) on the fiber-

bridging behavior was considered. However, in view of the experimental R-curves presented in 

Fig. 13 and the validity of the same bridging parameters for all specimens (see numerical load-

displacement curves in Fig. 11), it can be concluded that the width of the DCB specimens has 

no influence on the fracture results, at least in the range investigated here. Therefore, the 

development of the fiber-bridging has been proved to be independent of the length of the fibers 

in mat-like reinforcements.  

5.2. Laminated plates 

The same type of traction-separation law was implemented in the cohesive elements of the FE 

model of the plates. Initially, the same traction-separation law obtained for the DCB specimens 

was used (see Fig. 14), the total value of the SERR being therefore equal to Gtot=2000 J/m2. 

However, the numerical load-displacement response obtained with these values did not 

correspond to the experimental curves, leading to an underestimation of the experimental load, 

as shown in Fig. 15. In order to better approach the experimental behavior, a fitting process was 

carried out. The values of 𝐾𝐾0, Gtip, 𝜎𝜎𝑐𝑐 and 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 (typically matrix-dominated values) were kept 

constant and the same as those obtained from the DCB specimens. The adjustment of the law 

was accomplished by fitting the value of 𝐺𝐺𝑏𝑏𝑏𝑏 and therefore modifying the values of 𝛾𝛾 and 𝛿𝛿𝑓𝑓. 

The selected values that allowed the FE model to predict the experimental behavior were 

𝛾𝛾=0.01 and 𝛿𝛿𝑓𝑓=1.58 mm which lead to a 𝐺𝐺𝑏𝑏𝑏𝑏 value of 2600 J/m2 and therefore to a Gtot value of 

3000 J/m2. The obtained traction-separation law is presented in Fig. 14. The revised numerical 

load-displacement and crack length-displacement curves are shown in Fig. 16. A very good 

agreement with the experimental results was obtained. The numerically determined initiation 

of the crack (see Fig. 16) was taken as the point where the first cohesive element reached a 

COD equal to 𝛿𝛿1= 0.027 mm (see Fig. 7 and Fig. 14) and therefore the point where the SERR 

equaled Gtip. It can be observed that the numerical initiation value was between the experimental 
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initiation values of the two plates, proving that the initial part of the traction-separation law (up 

to 𝛿𝛿1 in Fig. 7) is independent of any size or geometry change. The second part of the law (from 

𝛿𝛿1 to 𝛿𝛿𝑓𝑓 in Fig. 7) was however the varying part, proving that the fiber-bridging is not a material 

property and is likely to vary under different configurations of the same material system.  

In Fig. 10 the numerical compliance vs crack area is shown, also presenting good agreement 

with the trend of the experimental curves. The initial increasing behavior of the experimental 

compliance was not reproduced in the numerical results, proving that its attribution to local 

slipping effects was correct. The TP (see Section 4.1) is indicated in both the experimental and 

numerical curves. As for the initiation value in Fig. 16, the numerical TP was between the two 

experimental results, also obtaining a good agreement with the latter. 

The numerically derived R-curve is shown in Fig. 17. The numerical value of the crack area at 

the TP in Fig.10 coincides with the numerical value of the fully developed bridging area in the 

numerical R-curve (see Fig. 17). Consequently, with the value of the area at the TP obtained 

from the compliance vs crack area curve, the value of the bridging area of the plate can be 

directly obtained. The numerical value of this propagated area was ~29600 mm2 which 

corresponded to a propagated radial length measured from the front of the pre-crack of ~13.2 

mm. As described in Section 4.1, the TP corresponds to the change in behavior of the 

compliance when the general softening due to the propagation of the crack dominated over the 

stiffening mechanisms (stretching and fiber-bridging). Therefore, as a result of the 

identification of the fully developed bridging area with the TP, any decrease or increase in the 

bridging area would lead the compliance vs crack area curve moving to the left or right 

respectively (Fig. 18). The initiation point, proved to be a material property, would not change. 

Moreover, this correspondence between the TP and the full development of the fiber-bridging 

justifies the change of the increasing load-displacement curve from non-linear to linear (see 

TPs in Fig. 16). Before the TP the stiffening mechanisms were dominant and therefore the load 

increased non-linearly. However, the TP was the point where the softening started to dominate 

and the fiber-bridging was fully developed, achieving an equilibrium between stiffening and 

softening and entering the plateau of the R-curve (Fig. 17). Therefore, the linearization of the 

increasing load (beyond the TP) can be related to the stabilization of the crack propagation.  

The fitting of the traction-separation law revealed a dependency between the slope of the load 

after the TP and the value of 𝐺𝐺𝑏𝑏𝑏𝑏 (controlled by the parameters 𝛾𝛾 and 𝛿𝛿𝑓𝑓) and therefore between 

the values of TP and 𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡. The slope obtained with a value of Gtot=2000 J/m2 was 0.213 (see 
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Fig. 15) while the slope obtained with a value of Gtot=3000 J/m2 was 0.273 (see Fig. 16). Thus 

the greater the value of Gtot, the greater the value of the slope. Likewise, the numerical slope 

was also between the two experimental values (0.266 and 0.294). 

The total value of the SERR obtained from the FEM of the plates was 50% higher than the total 

SERR derived from the DCB specimens, increasing from 2000 J/m2 to 3000 J/m2. This increase 

in the Gtot, and thus in the R-curve, was directly related to the difference in stiffness between 

the DCB specimens and the plates. In terms of flexural stiffness, the plate was several times 

stiffer than any of the investigated DCB specimens. Furthermore, the biaxial stretching of the 

deformed part of the plate (radially and circumferentially) resulted in a biaxial “stress 

stiffening” effect. Consequently, more fiber-bridging than in the DCB specimens developed in 

the plates. Due to the in-plane isotropy of the plate, the opening of the crack was the same all 

along its contour (i.e. circumferential concentric growth) restraining the fiber-bridging to 

develop only in the radial direction, in spite of the bi-dimensionality of the crack propagation. 

The fiber-bridging length and 𝛿𝛿𝑓𝑓 were higher in the plates than in the DCB specimens (13.2 vs 

10 mm and 1.58 vs 1.25 mm respectively). The rate of decay of the bridging tractions, γ, was 

considerably smaller in the plates (0.01 vs 0.46 in the DCB specimens) and became the main 

parameter responsible for the increase of the 𝐺𝐺𝑏𝑏𝑏𝑏 and thus of the Gtot. The lower the rate of 

decay, the lower the reduction in the bridging traction for a specific crack opening along the 

bridging zone (see Fig. 7). Therefore, the increase of the stiffness in the plates contributed to 

the development of a fiber-bridging capable of maintaining higher bridging tractions during the 

opening of the crack.  

The difference in the amount of fiber-bridging developed in the DCB specimens and the plates 

was also determined by comparing the experimental and numerical load-displacement results 

obtained for DCB-25-3 (cut from CFM.1), presented in Fig. 19. For the sake of comparison, 

the experimental and numerical results obtained for the other DCB specimens of the same width 

(DCB-25 (1-2) were also added in Fig. 19. The numerical response of DCB-25-3 was obtained 

by implementing the same traction-separation law as for the rest of the DCB specimens but, 

resulted in an underestimation of the load. Typically, for standard fracture load-displacement 

curves, two different regions can be identified regarding the shape of the traction-separation 

law [16]. The first region (region 1 in Fig. 19) depends on the shape of the traction-separation 

law and corresponds to the development of the fiber-bridging. The second (region 2 in Fig. 19), 

once the fiber-bridging is fully developed, depends exclusively on the value of Gtot (i.e. the total 

area under the traction-separation law). This second region can be clearly identified in Fig. 19 
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for DCB-25-3 as the region where the numerical results match the experimental results. It is 

also evident that the Gtot-dominated region of DCB-25-3 overlapped the same region in DCB-

25 (1-2) (i.e. both Gtot values were the same). The length of the radius of the fully developed 

bridging area in the plates was found to be 13.2 mm and the length of the propagated crack 

(measured from the end of the pre-crack) of DCB-25-3 cut from CFM.1 was 22.5 mm. 

Therefore, a 13.2-mm bridging length was already present in DCB-25-3 before the experiment. 

However, as the DCB opened, the new fiber-bridging was developing up to the bridging length 

corresponding to the DCB configuration (~10 mm) and consequently, a drop in the load was 

registered (see Fig. 21) as a result of the loss in the amount of fiber-bridging.  

5.3. Influence of shape of traction-separation law 

A different type of traction-separation law was implemented in the FE models to compare the 

influence of the shape of the law on the load-displacement response of the DCB specimens and 

the laminated plates. In both cases, a law with a linear softening (see Fig. 14) from 𝜎𝜎𝑐𝑐 onwards, 

without explicitly taking into account fiber-bridging, was selected for the comparison. The 

value of the Gtot was the same as for the traction-separation laws obtained with fiber-bridging 

(i.e. 2000 J/m2 for the DCB and 3000 J/m2 for the plate). The chosen DCB specimen was the 

DCB-100-2 and the corresponding results are presented in Fig. 20. It can be observed how the 

Gtot-dominated regions (region 2) of both overlapped, similarly to what occurred in Fig. 19 with 

the DCB-25 specimens while initially (region 1) their behavior differed due to the differences 

in the shape of the traction-separation law. However, a different behavior was obtained from 

the plate (see Fig. 21). In this case, instead of an overlapping of the Gtot-dominated regions, 

parallel curves were obtained, as the value of Gtot is the same. Consequently, the shape of the 

traction-separation law chosen to simulate the fracture behavior in plates affected not only the 

load-displacement results during the development of the bridging area (i.e. up to the TP) but 

also the rest of the curve, leading to the overestimation of the load in this case. This behavior 

proves the previously discussed relationship between the slope of the load-displacement curve 

after the TP and the value of Gtot. 

6. Conclusions 

A numerical investigation of the 2D in-plane crack propagation in laminated plates with an 

embedded circular pre-crack was carried out in order to simulate the fracture behavior of the 

same plates that were experimentally investigated in a previous work [35]. Additional DCB 

experiments were performed to study the transition from 1D to 2D crack propagation scenarios. 

Three-dimensional FE models were developed to simulate the exhibited experimental fracture 
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behaviors in both experimental configurations and cohesive elements were used to model the 

FPZ and a detailed analysis of the results was presented. The following conclusions can be 

drawn from this work:  

1. The selected shape of the traction-separation law was able to model the fracture 

behavior of the plates, reproducing the trend in the behavior shown in the experimental 

load vs displacement and compliance vs crack area curves. By calibrating the law to fit 

the experimental and the numerical values, the total SERR and fiber-bridging values of 

the plates were determined.  

2. The stress stiffening of the plates (due to the stretching) together with the increase in 

the flexural stiffness (from beam to plate) led to an increase of the developed fiber-

bridging area, causing a 50% increase of the total SERR compared to the total SERR 

obtained from the DCB specimens. Taking into account the stiffness effects on the 

fracture mechanisms, more efficient damage-tolerant structural designs can be 

developed for large-scale bridging scenarios. 

3. The stiffness variations of the plates were reflected in the compliance vs crack area 

curves, which exhibited first a decreasing behavior down to a minimum (transition 

point) after which it started to increase. This transition point represented the threshold 

between the stiffening and softening mechanism predominance.   

4. The fully developed fiber-bridging area in the plates was correlated with the crack area 

at the transition point of the compliance vs crack area curves. Any increase or decrease 

in the amount of fiber-bridging would be reflected in this curve by anticipating or 

delaying the appearance of the transition point. Therefore, the area of the fiber-bridging 

can be directly obtained from the experimental compliance without any further 

experimental measurement. 

5. The transition point was also correlated to the change from non-linear to linear 

increasing of the load, confirming the full development of the fiber-bridging and 

achievement of an equilibrium between the stiffening and softening mechanisms 

existing in the plates. 

6. The slope of the load vs displacement curve in the linear part (i.e. after the transition 

point) was correlated to the total SERR. Higher slopes corresponded to higher total 

SERR values and vice versa. 
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Tables:  

 

Table 1. Material properties  

Material E 
(GPa) 

G 
(GPa) 

ν 
(-) 

ρ 
(g/cm³) 

Epoxy resin 2.96 1.30 0.35 1.14 
E-CR glass 80.00 32.80 0.22 2.62 

     
Table 2. Description of GFRP laminated plates 

Plate type No. of layers 
Dimensions (mm) 

(width x height x avg. thickness) 

CFM.1 6 420x420x7.50 
CFM.2 6 420x420x6.99 

 

Table 3. Elastic properties of laminated plates 

 E1=E2 
(GPa) 

E3 
(GPa) 

G12 
(GPa) 

G13= G23 
(GPa) 

ν12 
(-) 

ν13= ν23 
(-) 

Estimated in [35] 
(CFM.1) 9.34 4.68 3.51 1.54 0.33 0.30 

Used in FEM  8.64* 4.68 3.25* 1.54 0.33 0.30 
* Updated values from the DCB test 

 

Table 4. Geometrical and elastic properties of fracture mechanics (DCB) specimens  

 b 
(mm) 

h  
(mm) 

L  
(mm) 

m  
(mm) 

a0 
(mm) 

E1=E2 
(GPa) 

E3 
(GPa) 

G12 
(GPa) 

G13= G23 
(GPa) 

ν12 
(-) 

ν13= ν23 
(-) 

DCB-25 #1-2 25 7.64 250 42 50 9.22 

4.64 3.47 1.54 

0.33 0.3 

DCB-25-3* 25 7.5 220 12.5 42 8.64 

DCB-40 #1-2 40 
7.64 

250 

42 50 
 9.22 

DCB-40 #3-5 40 25 30 

DCB-60 #1-3 60 
6.80 

42 50 
10.03 4.90 3.77 1.57 

DCB-100 #1-3 100 42 50 
*Specimen cut from plate CFM.1, see Fig. 1 (b). 
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Figures:  

 

 

Fig. 1. Detail of glass fiber reinforcement (a) and crack propagation pattern in plate CFM.1 
(b). Units in mm. 

 

 

 

 

Fig. 2. Experimental set-up; (a) experiment on CFM.2 and crack measuring system layout; (b) 
layout of set-up 
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Fig. 3. DCB configurations; (a) in-house developed loading blocks (piano hinges); (b) 
patented [38] loading blocks; dimensions see Table 4 

 

 

Fig. 4. DCB experimental set-up; (a) general view; (b) example of image from upper camera 
(Camera 1 in (a)); (c) DCB specimen with drawn grid ruler used for measurement of crack 

length; (d) example of image from side camera (Camera 2 in (a)) 
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Fig. 5. Description of finite element model of laminated plate  

 

 

 

Fig. 6. Schematic general fracture section of Mode I delamination with fiber-bridging  

 

 

 

Fig. 7. Description of traction-separation law 
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Fig. 8. Load and crack length vs displacement curves of CFM plates  

 

 

Fig. 9. Comparison of growth of crack area in a plate and equivalent DCB 

 

 

Fig. 10. Comparison of experimental and numerical crack area vs compliance of CFM plates 
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Fig. 11. Comparison of experimental and numerical load-displacement curves of DCBs 

 

 

 

Fig. 12. Fiber-bridging zone; (a) DCB-25-2; (b) DCB-60-2 

 

 

 

Fig. 13. Experimental R-curves obtained for DCB specimens 
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Fig. 14. Traction-separation curves used in numerical models  

 

 

Fig. 15. Comparison of experimental and numerical load-displacement curves of CFM plates 
using cohesive parameters and total SERR obtained from DCBs 

 

 

Fig. 16. Comparison of experimental and numerical load and crack lengths vs opening 
displacement curves of CFM plates 
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Fig. 17. Numerical R-curve of laminated plate  

 

 

Fig. 18. Description of general behavior of crack area vs compliance curves 

 

 

Fig. 19. Comparison of experimental and numerical curves of DCB-25 (1-2) and DCB-25-3 
(cut from plate CFM.1) 
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Fig. 20. Influence of shape of cohesive law in DCB-100-2: with and without bridging law. 

 

 

 

Fig. 21. (a) Influence of shape of cohesive law in plates: with and without bridging law; (b) 
zoom of region indicated in (a). 


