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Neuromorphic computing has emerged as a promising avenue towards building the next

generation of intelligent computing systems. It has been proposed that memristive devices,

which exhibit history-dependent conductivity modulation, could efficiently represent the

synaptic weights in artificial neural networks. However, precise modulation of the device

conductance over a wide dynamic range, necessary to maintain high network accuracy, is

proving to be challenging. To address this, we present a multi-memristive synaptic archi-

tecture with an efficient global counter-based arbitration scheme. We focus on phase change

memory devices, develop a comprehensive model and demonstrate via simulations the

effectiveness of the concept for both spiking and non-spiking neural networks. Moreover, we

present experimental results involving over a million phase change memory devices for

unsupervised learning of temporal correlations using a spiking neural network. The work

presents a significant step towards the realization of large-scale and energy-efficient neu-

romorphic computing systems.
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The human brain with less than 20W of power consump-
tion offers a processing capability that exceeds the peta-
flops mark, and thus outperforms state-of-the-art

supercomputers by several orders of magnitude in terms of
energy efficiency and volume. Building ultra-low-power cognitive
computing systems inspired by the operating principles of the
brain is a promising avenue towards achieving such efficiency.
Recently, deep learning has revolutionized the field of machine
learning by providing human-like performance in areas, such as
computer vision, speech recognition, and complex strategic
games1. However, current hardware implementations of deep
neural networks are still far from competing with biological
neural systems in terms of real-time information-processing
capabilities with comparable energy consumption.

One of the reasons for this inefficiency is that most neural
networks are implemented on computing systems based on the
conventional von Neumann architecture with separate memory
and processing units. There are a few attempts to build custom
neuromorphic hardware that is optimized to implement neural
algorithms2–5. However, as these custom systems are typically
based on conventional silicon complementary metal oxide semi-
conductor (CMOS) circuitry, the area efficiency of such hardware
implementations will remain relatively low, especially if in situ
learning and non-volatile synaptic behavior have to be incorpo-
rated. Recently, a new class of nanoscale devices has shown
promise for realizing the synaptic dynamics in a compact and
power-efficient manner. These memristive devices store infor-
mation in their resistance/conductance states and exhibit con-
ductivity modulation based on the programming history6–9. The
central idea in building cognitive hardware based on memristive
devices is to store the synaptic weights as their conductance states
and to perform the associated computational tasks in place.

The two essential synaptic attributes that need to be emulated
by memristive devices are the synaptic efficacy and plasticity.
Synaptic efficacy refers to the generation of a synaptic output
based on the incoming neuronal activation. In conventional non-
spiking artificial neural networks (ANN), the synaptic output is
obtained by multiplying the real-valued neuronal activation with
the synaptic weight. In a spiking neural network (SNN), the
synaptic output is generated when the presynaptic neuron fires
and typically is a signal that is proportional to the synaptic
conductance. Using memristive devices, synaptic efficacy can be
realized using Ohm’s law by measuring the current that flows
through the device when an appropriate read voltage signal is
applied. Synaptic plasticity, in contrast, is the ability of the
synapse to change its weight, typically during the execution of a
learning algorithm. An increase in the synaptic weight is referred
to as potentiation and a decrease as depression. In an ANN, the
weights are usually changed based on the backpropagation
algorithm10, whereas in an SNN, local learning rules, such as
spike-timing-dependent plasticity (STDP)11 or supervised learn-
ing algorithms, such as NormAD12 could be used. The imple-
mentation of synaptic plasticity in memristive devices is achieved
by applying appropriate electrical pulses that change the con-
ductance of these devices through various physical mechan-
isms13–15, such as ionic drift16–20, ionic diffusion21, ferroelectric
effects22, spintronic effects23,24, and phase transitions25,26.

Demonstrations that combine memristive synapses with digital
or analog CMOS neuronal circuitry are indicative of the potential
to realize highly efficient neuromorphic systems27–33. However,
to incorporate such devices into large-scale neuromorphic sys-
tems without compromising the network performance, significant
improvements in the characteristics of the memristive devices are
needed34. Some of the device characteristics that limit the system
performance include the limited conductance range, asymmetric
conductance response (differences in the manner in which the

conductance changes between potentiation and depression),
nonlinear conductance response (nonlinear conductance evolu-
tion with respect to the number of pulses), stochasticity associated
with conductance changes, and variability between devices.

Clearly, advances in materials science and device techno-
logy could play a key role in addressing some of these
challenges35,36, but equally important are innovations in the
synaptic architectures. One example is the differential synaptic
architecture37, in which two memristive devices are used in a
differential configuration such that one device is used for
potentiation and the other for depression. This was proposed for
synapses implemented using phase change memory (PCM)
devices, which exhibit strong asymmetry in their conductance
response. However, the device mismatch within the differential
pair of devices, as well as the need to refresh the device con-
ductance frequently to avoid conductance saturation could
potentially limit the applicability of this approach34. In another
approach proposed recently38, several binary memristive devices
are programmed and read in parallel to implement a synaptic
element, exploiting the probabilistic switching exhibited by cer-
tain types of memristive devices. However, it may be challenging
to achieve fine-tuned probabilistic switching reliably across a
large number of devices. Alternatively, pseudo-random number
generators could be used to implement this probabilistic update
scheme with deterministic memristive devices39, albeit with the
associated costs of increased circuit complexity.

In this article, we propose a multi-memristive synaptic archi-
tecture that addresses the main drawbacks of the above-
mentioned schemes, and experimentally demonstrate an imple-
mentation using nanoscale PCM devices. First, we present the
concept of multi-memristive synapses with a counter-based
arbitration scheme. Next, we illustrate the challenges posed by
memristive devices for neuromorphic computing by studying the
operating characteristics of PCM fabricated in the 90 nm tech-
nology node and show how multi-memristive synapses can
address some of these challenges. Using comprehensive and
accurate PCM models, we demonstrate the potential of the multi-
memristive synaptic concept in training ANNs and SNNs for the
exemplary benchmark task of handwritten digit classification.
Finally, we present a large-scale experimental implementation of
training an SNN with multi-memristive synapses using more than
one million PCM devices to detect temporal correlations in event-
based data streams.

Results
The multi-memristive synapse. The concept of the multi-
memristive synapse is illustrated schematically in Fig. 1. In such
a synapse, the synaptic weight is represented by the combined
conductance of N devices. By using multiple devices to represent
a synaptic weight, the overall dynamic range and resolution of the
synapse are increased. For the realization of synaptic efficacy, an
input voltage corresponding to the neuronal activation is applied
to all constituent devices. The sum of the individual device cur-
rents forms the net synaptic output. For the implementation of
synaptic plasticity, only one out of N devices is selected and
programmed at a time. This selection is done with a counter-
based arbitration scheme where one of the devices is chosen
according to the value of a counter (see Supplementary Note 1).
This selection counter takes values between 1 and N, and each
value corresponds to one device of the synapse. After the weight
update, the counter is incremented by a fixed increment rate.
Having an increment rate co-prime with the clock length N
guarantees that all devices in each synapse will eventually get
selected and will receive a comparable number of updates pro-
vided there is a sufficiently large number of updates. Moreover, if
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a single selection clock is used for all synapses of a neural net-
work, N can be chosen to be co-prime with the total number of
synapses in the network to avoid updating the same device in a
synapse repeatedly.

In addition to the global selection counter, additional
independent counters, such as a potentiation counter or a
depression counter, could be incorporated to control the
frequency of potentiation/depression events (see Fig. 1). The
value of the potentiation (depression) counter acts as an enable
signal to the potentiation (depression) event; a potentiation
(depression) event is enabled if the potentiation (depression)
counter value is one, and is disabled otherwise (see Supplemen-
tary Note 2). The frequency of the potentiation (depression)
events is controlled by the maximum value or length of the
potentiation (depression) counter. The counters are incremented
after the weight update. By controlling how often devices are
programmed for a conductance increase or decrease, asymmetries
in the device conductance response can be reduced.

The constituent devices of the multi-memristive synapse can be
arranged in either a differential or a non-differential architecture.
In the latter each synapse consists of N devices, and one device is
selected and potentiated/depressed to achieve synaptic plasticity.
In the differential architecture, two sets of devices are present, and
the synaptic conductance is calculated as Gsyn=G+−G−, where
G+ is the total conductance of the set representing the
potentiation of the synapse and G− is the total conductance of
the set representing the depression of the synapse. Each set
consists of N/2 devices. When the synapse has to be potentiated,
one device from the group representing G+ is selected and
potentiated, and when the synapse has to be depressed, one device
from the group representing G− is selected and potentiated.

An important feature of the proposed concept is its crossbar
compatibility. In the non-differential architecture, by placing the
devices that constitute a single synapse along the bit lines of a
crossbar, it is possible to sum up the currents using Kirchhoff’s
law and obtain the total synaptic current without the need for any
additional circuitry (see Supplementary Note 3). The differential
architecture can be implemented with a similar approach, where

one bit line contains devices of the group G+ and another those of
the group G−. The total synaptic current can then be found by
subtracting the current of these two bit lines. To alter the synaptic
weight, one of the word lines is activated according to the value of
the selection counter to program the selected device. The scheme
can also be adapted to alter the weights of multiple synapses in
parallel within the constraints of the maximum current that could
flow through the bit line (see Supplementary Note 3).

Multi-memristive synapses based on PCM devices. In this sec-
tion, we will demonstrate the concept of multi-memristive
synapses using nanoscale PCM devices. A PCM device consists
of a layer of phase change material sandwiched between two
metal electrodes (Fig. 2(a))40, which can be in a high-conductance
crystalline phase or in a low-conductance amorphous phase. In
an as-fabricated device, the material is typically in the crystalline
phase. When a current pulse of sufficiently high amplitude
(referred to as the depression pulse) is applied, a significant
portion of the phase change material melts owing to Joule heat-
ing. If the pulse is interrupted abruptly, the molten material
quenches into the amorphous phase as a result of the glass
transition. To increase the conductance of the device, a current
pulse (referred to as the potentiation pulse) is applied such that
the temperature reached via Joule heating is above the crystal-
lization temperature but below the melting point, resulting in the
recrystallization of part of the amorphous region41. The extent of
crystallization depends on the amplitude and duration of the
potentiation pulse, as well as on the number of such pulses. By
progressively crystallizing the amorphous region by applying
potentiation pulses, a continuum of conductance levels can be
realized.

First, we present an experimental characterization of single-
device PCM-based synapses based on doped Ge2Sb2Te5 (GST)
and integrated into a prototype chip in 90 nm CMOS
technology42 (see Methods). Figure 2(b) shows the evolution of
the mean device conductance as a function of the number of
potentiation pulses applied. A total of 9700 devices were used for
the characterization, and the programming pulse amplitude Iprog
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was varied from 50 to 120 μA. It can be seen that the mean
conductance value increases as a function of the number of
potentiation pulses. The dynamic range of conductance response
is limited as the change in the mean conductance decreases and
eventually saturates with increasing number of potentiation

pulses. Figure 2(c) shows the mean cumulative change in
conductance as a function of the number of pulses for different
values of Iprog. A well-defined nonlinear monotonic relationship
exists between the mean cumulative conductance change and the
number of potentiation pulses. In addition, there is a granularity
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that is determined by how small a conductance change can be
induced by applying a single potentiation pulse. Large con-
ductance change granularities, as well as nonlinear conductance
responses, both observed in the PCM characterization performed
here, have been shown to degrade the performance of neural
networks trained with memristive synapses34,43. Moreover, when
a conductance decrease is desired, a single high-amplitude
depression pulse applied to a PCM device has an all-or-nothing
effect that fully depresses the device conductance to (almost) 0 μS.
Such a strongly asymmetric conductance response is undesirable
in memristive-device-based implementations of neural net-
works44, and this is a significant challenge for PCM-based
synapses. Depression pulses with smaller amplitude could be
applied to achieve higher conductance values. However, unlike
the potentiation pulses, it is not possible to achieve a progressive
depression by applying successive depression pulses.

There are also significant intra-device and inter-device
variabilities associated with the conductance response in PCM
devices as evidenced by the distribution of conductance values
upon application of successive potentiation pulses (see Fig. 2(d)).
Note that the variability observed in these devices fabricated in
the 90 nm technology node is also found to be higher than that of
those fabricated in the 180 nm node as reported elsewhere34. Both
the mean and variance associated with the conductance change
depend on the mean conductance value of the devices. We
capture this behavior in a PCM conductance response model that
relies on piece-wise linear approximations to the functions that
link the mean and variance of the conductance change to the
mean conductance value45. As shown in Fig. 2(d), this model
approximates the experimental behavior fairly well.

The intra-device variability in PCM is attributed to the
differences in atomic configurations associated with the amor-
phous phase change material created during the melt-quench
process46. Inter-device variability, on the other hand, arises
predominantly from the variability associated with the fabrication
process across the array and results in significant differences in
the maximum conductance and conductance response across
devices (see Supplementary Fig. 1). To investigate the intra-device
variability, we measured the conductance change on the same
PCM device induced by a single potentiation pulse of amplitude
Iprog= 100 μA over 1000 trials (Fig. 2(e), left panel). To quantify
the inter-device variability, we monitored the conductance change
induced by a single potentiation pulse across the 1000 devices
(Fig. 2(e), right panel). These experiments show that the standard
deviation of the conductance change due to intra-device
variability is almost as large as that due to the inter-device
variability. The finding that the randomness in the conductance
change is to a large extent intrinsic to the physical characteristic
of the device implies that improvements in the array-level
variability will not necessarily be effective in reducing the
randomness.

The characterization work presented so far highlights the
challenges associated with synaptic realizations using PCM devices
and these can be generalized to other memristive technologies.
The limited dynamic range, the asymmetric and nonlinear
conductance response, the granularity and the randomness
associated with conductance changes all pose challenges for
realizing neural networks using memristive synapses. We now
show how our concept of multi-memristive synapses can help in
addressing some of those challenges. Experimental characteriza-
tions of multi-memristive synapses comprising 1, 3, and 7 PCM
devices per synapse arranged in a non-differential architecture are
shown in Fig. 3(a). The conductance change is averaged over
1000 synapses. One selection counter with an increment rate of
one arbitrates the device selection. As the total conductance is the
sum of the individual conductance values, the dynamic range

scales linearly with the number of devices per synapse.
Alternatively, for a learning algorithm requiring a fixed dynamic
range, multi-memristive synapses can improve the effective
conductance change granularity. In addition, in contrast to a
single device, the mean cumulative conductance change here is
linear over an extended range of potentiation pulses. With
multiple devices, we can also partially mitigate the challenge of an
asymmetric conductance response. At any instance, only one
device is depressed, which implies that the effective synaptic
conductance decreases gradually in several steps instead of the
abrupt decrease observed in a single device. Moreover, using the
depression counter, the cumulative conductance changes for
potentiation and depression can be made approximately sym-
metric by adjusting the frequency of depression events. Finally,
Fig. 3(b) shows that both the mean and the variance of the
conductance change scale linearly with the number of devices per
synapse. Hence, the smallest achievable mean weight change
decreases by a factor of N, whereas the standard deviation of the
weight change decreases by

ffiffiffiffi
N

p
, leading to an overall increase in

weight update resolution by
ffiffiffiffi
N

p
(see Supplementary Fig. 2).
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Simulation results on handwritten digit classification. In this
section, we study the impact of PCM-based multi-memristive
synapses in the context of training ANNs and SNNs. For synaptic
potentiation, the PCM conductance response model presented
above was used (see Fig. 2(d)). The depression pulses are assumed
to cause an abrupt conductance drop to zero in a deterministic
manner, modeling the PCM asymmetry. One selection counter is
used for all synapses of the network, and the weight updates are
done sequentially through all synapses in the same order at every
pass. Potentiation and depression counters are used to balance
the frequency of potentiation and depression events for N > 1.

First, we present simulation results that show the performance
of an ANN trained with multi-memristive synapses based on the
nonlinear conductance response model of the PCM devices. The
feedforward fully-connected network with three neuron layers is
trained with the backpropagation algorithm to perform a
classification task on the MNIST data set of handwritten digits47

(see Fig. 4(a) and Methods). The ideal classification performance
of this network, assuming double-precision floating-point
accuracy for the weights, is 97.8%. The synaptic weights are
represented using the conductance values of a multi-memristive
synapse model. In the non-differential architecture, a depression
counter is used to improve the asymmetric conductance response
and a potentiation counter to reduce the frequency of the

potentiation events. As shown in Fig. 4(a), the classification
accuracy improves with the number of devices per synapse. With
the conventional differential architecture with two devices, the
classification accuracy is below 15%. With multi-memristive
synapses in the differential architecture, we can achieve test
accuracies exceeding 88.9%, a performance better than the state-
of-the-art in situ learning experiments on PCM despite a
significantly more nonlinear and stochastic conductance response
due to technology scaling34. Remarkably, accuracies exceeding
90% are possible even with the non-differential architecture,
which clearly illustrates the efficacy of the proposed scheme.

In a second investigation, we studied an SNN with multi-
memristive synapses to perform the same task of digit recogni-
tion, but with unsupervised learning48 (see Fig. 4(b) and
Methods). The weight updates are performed using an STDP
rule: the synapse is potentiated whenever a presynaptic neuronal
spike appears prior to a postsynaptic neuronal spike, and
depressed otherwise. The amount of weight increase (decrease)
within the potentiation (depression) window is constant and
independent of the timing difference between the spikes. This
necessitates a certain weight update granularity, which can be
achieved by the proposed approach. The classification perfor-
mance of the network trained with this rule using double-
precision floating-point accuracy for the network parameters is
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conductance response of PCM devices is used to represent the synaptic weights in these simulations. Increasing the number of devices in multi-memristive
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initializations. The error bars represent the standard deviation (1σ). The dotted line shows the test accuracy obtained from a double-precision floating-point
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77.2%. A potentiation counter is used to reduce the frequency of
the potentiation events in both the differential and non-
differential architectures, and a depression counter is used in
the non-differential architecture to improve the asymmetric
conductance response. The network could classify more than 70%
of the digits correctly for N > 9 with both the differential and the
non-differential architecture, whereas the network with the
conventional differential architecture with two devices has a
classification accuracy below 21%.

In both cases, we see that the multi-memristive synapse
significantly outperforms the conventional differential architec-
ture with two devices, clearly illustrating the effectiveness of the
proposed architecture. Moreover, the fact that the non-
differential architecture achieves a comparable performance to
that of the differential architecture is promising for synaptic
realizations using highly asymmetric devices. A non-differential

architecture would have a lower implementation complexity than
its differential counterpart because the refresh operation34,37,
which requires reading and reprogramming G+ and G−, can be
completely avoided.

Experimental results on temporal correlation detection. Next,
we present an experimental demonstration of the multi-
memristive synapse architecture using our prototype PCM chip
(see Methods) to train an SNN that detects temporal correlations
in event-based data streams in an unsupervised way. Unsu-
pervised learning is widely perceived as a key computational task
in neuromorphic processing of big data. It becomes increasingly
important given today’s variety of big data sources, for which
often neither labeled samples nor reliable training sets are avail-
able. The key task of unsupervised learning is to reveal the
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statistical features of big data, and thereby shed light on its
internal correlations. In this respect, detecting temporal and
spatial correlations in the data is essential.

The SNN comprises a neuron interfaced to plastic synapses,
with each one receiving an event-based data stream as
presynaptic input spikes49,50 (see Fig. 5(a) and Methods). A
subset of the data streams are mutually temporally correlated,
whereas the rest are uncorrelated (see Supplementary Note 5).
When the input streams are applied, postsynaptic outputs are
generated at the synapses that received a spike. The resulting
postsynaptic outputs are accumulated at the neuron. When the
neuronal membrane potential exceeds a threshold, the output
neuron fires, generating a spike. The synaptic weights are updated
using an STDP rule; synapses that receive an input spike within a
time window before (after) the neuronal spike get potentiated
(depressed). As it is more likely that the temporally correlated
inputs will eventually govern the neuronal firing events, the
conductance of synapses receiving correlated inputs is expected to
increase, whereas that of synapses whose input are uncorrelated is
expected to decrease. Hence, the final steady-state distribution of
the weights should display a separation between synapses
receiving correlated and uncorrelated inputs.

First, we perform small-scale experiments in which multi-
memristive synapses with PCM devices are used to store the
synaptic weights. The network comprises 1000 synapses, of which
only 100 receive temporally correlated inputs with a correlation
coefficient c of 0.75. The difficulty in detecting whether an input
is correlated or not increases both with decreasing c and
decreasing number of correlated inputs. Hence, detecting only
10% correlated inputs with c < 1 is a fairly difficult task and
requires precise synaptic weight changes for the network to be
trained effectively51. Each synapse comprises N PCM devices
organized in a non-differential architecture. During the weight
update of a synapse, a single potentiation pulse or a single
depression pulse is applied to one of the devices the selection
counter points to. A depression counter with a maximum value of
2 is incorporated for N > 1 to balance the PCM asymmetry.
Figure 5(b) depicts the synaptic weights at the end of the
experiment for different values of N. To quantify the separation of
the weights receiving correlated and uncorrelated inputs, we set a
threshold weight that leads to the lowest number of misclassifica-
tions. The number of misclassified inputs were 49, 8, and 0 for N
= 1, 3, and 7, respectively. This demonstrates that the network’s
ability to detect temporal correlations increases with the number
of devices. This holds true even for lower values of the correlation
coefficient as shown in Supplementary Note 6. With N= 1, there
are strong abrupt fluctuations in the evolution of the conductance
values because of the abrupt depression events as shown in Fig. 5
(c). With N= 7, a more gradual potentiation and depression
behavior is observed. For N= 7, the synapses receiving correlated
and uncorrelated inputs can be perfectly separated at the end of
the experiments. In contrast, the weights of correlated inputs
display a wider weight distribution and there are numerous
misclassified weights for N= 1.

The multi-memristive synapse architecture is also scalable to
larger network sizes. To demonstrate this, we repeated the above
correlation experiment with 144,000 input streams, and with
seven PCM devices per synapse, resulting in more than one
million PCM devices in the network. As shown in
Fig. 5(d), well-separated synaptic distributions have been
achieved in the network at the end of the experiment. Moreover,
a simulation was performed with the nonlinear PCM device
model (see Methods). The simulation captures the separation of
weights receiving correlated and uncorrelated inputs. In both
experiment and simulation, ∼0.1% of the inputs were misclassi-
fied after training.

Discussion
The proposed synaptic architecture bears similarities to several
aspects of neural connectivity in biology, as biological neural
connections also comprise multiple sub-units. For instance, in the
central nervous system, a presynaptic neuron may form multiple
synaptic terminals (so-called boutons) to connect to a single
postsynaptic neuron52. Moreover, each biological synapse con-
tains a plurality of presynaptic release sites53 and postsynaptic ion
channels54. Furthermore, our implementation of plasticity
through changes in the individual memristors is analogous to
individual plasticity of the synaptic connections between a pair of
biological neurons55, which is also true for the individual ion
channels of a synaptic connection55,56. The involvement of pro-
gressively larger numbers of memristive devices during poten-
tiation is analogous to the development of new ion channels in a
potentiated synapse53,54.

A significant advantage of the proposed multi-memristive
synapse is its crossbar compatibility. In memristive crossbar
arrays, matrix–vector multiplications associated with the synaptic
efficacy can be implemented with a read operation achieving
O(1) complexity. Note that memristive devices can be read with
low energy (10–100 fJ for our devices), which leads to a sub-
stantially lower energy consumption than in conventional von
Neumann systems57–59. Furthermore, the synaptic plasticity is
realized in place without having to read back the synaptic weights.
Even though, the power dissipation associated with programming
the memristive devices is at least 10 times higher than that
required for the read operation, as only one device of the multi-
memristive synapse is programmed at each instance of synaptic
update, our scheme does not introduce a significant energy
overhead. Memristive crossbars can also be fabricated with very
small areal footprint27,29,60. The neuron circuitry of the crossbar
array, which typically consumes a larger area than the crossbar
array, only increases marginally owing to the additional circuitry
needed for arbitration. Finally, because even a single global
counter can be used for arbitrating a whole array, the additional
area/power overhead is expected to be minimal.

The proposed architecture also offers several advantages in
terms of reliability. The other constituent devices of a synapse
could compensate for the occasional device failure. In addition,
each device in a synapse gets programmed less frequently than if a
single device were used, which effectively increases the overall
lifetime of a multi-memristive synapse. The potentiation and
depression counters reduce the effective number of programming
operations of a synapse, further improving endurance-related
issues.

Device selection in the multi-memristive synapse is performed
based on the arbitration module alone, without knowledge of the
conductance values of the individual devices, thus there is a non-
zero probability that a potentiation (depression) pulse will not
result in an actual potentiation (depression) of the synapse. This
would effectively translate into a weight-dependent plasticity
whereby the probability to potentiate reduces with increasing
synaptic weight and the probability to depress reduces with
decreasing synaptic weight (see Supplementary Notes 7, 8). This
attribute could affect the overall performance of a neural network.
For example, weight-dependent plasticity has been shown to
impact the classification accuracy negatively in an ANN61. In
contrast, a study suggests that it can stabilize an SNN intended to
detect temporal correlations49.

The ANN and SNN simulations in section “Simulation results
on handwritted digit classification” with the PCM model perform
worse, even in the presence of multi-memristive synapses with N
> 10, than the simulations with double-precision floating-point
weights. We show that this behavior does not arise from the
weight-dependent plasticity of the multi-memristive synapse
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scheme, but from the nonlinear PCM conductance response (see
Supplementary Note 9). Using a uni-directional linear device
model where the conductance change is modeled as a Gaussian
random number with mean (granularity) and standard deviation
(stochasticity) of 0.5 μS, accuracies exceeding 96.7% are possible
in ANN with only 1% performance loss compared with double-
precision floating-point weights. Similarly, the network can
classify more than 77% of the digits correctly in the SNN using
the linear device model, reaching the accuracy of the double-
precision floating-point weights.

Note also that the drift in conductance states, which is unique
to PCM technology, does not appear to have a significant impact
on our studies. As described recently62, as long as the drift
exponent is small enough (<0.1; in our devices it is on average
0.05, see Supplementary Note 4), it is not very detrimental for
neural network applications. Our own experimental results on
SNNs presented in section “Experimental results on temporal
correlation detection” point in this direction, as the network
seems to maintain the classification accuracy despite drift.
Although conductance drift is not intended to be countered using
the multi-memristive concept, there are attempts to overcome it
via advanced device-level ideas35, which could be used in con-
junction with a multi-memristive synapse.

In the presence of significant nonlinear conductance response
and drift, one could envisage an alternate multi-memristive
synaptic architecture in which multiple devices are used to store
the weights, but with varying significance. For instance, if N-bit
synaptic resolution is required, N memory devices could be used,
with each device programmed to the maximum (fully poten-
tiated) or minimum (fully depressed) conductance states to
represent a number in binary format. In such a binary system, for
synaptic efficacy, each device needs to be read independently,
which could be accomplished by reading each of the N bits one by
one, or alternatively, N amplifiers could be used to read the N bits
in parallel. For synaptic plasticity, the desired weight update
should be done with prior knowledge of the stored weight.
Otherwise, a blind update could have a large detrimental effect,
especially if the error is associated with devices representing the
most significant bits. However, a direct comparison between these
alternate architectures and our proposed scheme requires a
detailed system-level investigation, which is beyond the scope of
this paper.

In summary, we propose a novel synaptic architecture com-
prising multiple memristive devices with non-ideal characteristics
to efficiently implement learning in neural networks. This
architecture is shown to overcome several significant challenges
that are characteristic to nanoscale memristive devices proposed
for synaptic implementation, such as the asymmetric con-
ductance response, limitations in resolution and dynamic range,
as well as device-level variability. The architecture is applicable to
a wide range of neural networks and memristive technologies and
is crossbar-compatible. The high potential of the concept is
demonstrated experimentally in a large-scale SNN performing
unsupervised learning. The proposed architecture and its
experimental demonstration are a significant step towards the
realization of highly efficient, large-scale neural networks based
on memristive devices with typical, experimentally observed non-
ideal characteristics.

Methods
Experimental platform. The experimental hardware platform is built around a
prototype PCM chip with 3 million devices with a four-bank inter-leaved archi-
tecture. The mushroom-type PCM devices are based on doped Ge2Sb2Te5 (GST)
and were integrated into the prototype chip in 90 nm CMOS technology, based on
an existing fabrication recipe42. The radius of the bottom electrode is ∼20 nm, and
the thickness of the phase change material is ∼100 nm. A thin oxide n-type field-
effect transistor (FET) enables access to each PCM device. The chip also integrates

the circuitry for addressing, an eight-bit on-chip analog-to-digital converter (ADC)
for readout, and voltage-mode or current-mode programming. An analog-front-
end (AFE) board is connected to the chip and accommodates digital-to-analog
converters (DACs) and ADCs, discrete electronics, such as power supplies, voltage
and current reference sources. An FPGA board with embedded processor and
Ethernet connection implements the overall system control and data management.

PCM characterization. For the experiment of Fig. 2(b), measurements were done
on 10,000 devices. All devices were initialized to ∼0.1 μS with an iterative proce-
dure. In the experiment, 20 potentiation pulses with a duration of 50 ns and
varying amplitudes were applied. After each potentiation pulse, the devices were
read 50 times in ∼5 s intervals. The reported device conductance for a potentiation
pulse is the average conductance obtained by the 50 consecutive read operations.
This method is used to minimize the impact of drift63 and read noise42. At the end
of the experiment, ∼300 devices were excluded because they had an initial con-
ductance of less than 0.1 μS or a final conductance after 20 potentiation pulses of
more than 30 μS.

In the measurements for Fig. 2(c), 10,000 devices were used. The data was
obtained after initializing the device conductances to ~5 μS by an iterative
procedure. Next, potentiation (depression) pulses of varying amplitude and 50 ns
duration were applied. Every potentiation (depression) pulse was followed by 50
read operations done ∼5 s apart. The device conductance was averaged for the 50
read operations.

In the experiments of Fig. 2(e), 1000 devices were used. All devices were
initialized to ∼0.1 μS with an iterative procedure. This was followed by four
potentiation pulses of amplitude Iprog= 100 μA and width 50 ns. After the last two
potentiation pulses, devices were read 20 times with the reads ∼1.5 s apart. The
device conductances for 20 read operations were averaged. The difference between
the averaged conductances for the third and fourth potentiation pulses is defined as
the conductance change. This experimental sequence was repeated on the same
devices for 1000 times so that 1000 conductance changes were measured for each
device.

For the experiments of Fig. 3, measurements were done on 1000, 3000, and
7000 devices for N= 1, 3, and 7, respectively. Device conductances were initialized
to ~5 μS by an iterative procedure. Next, for potentiation, programming pulses of
amplitude 100 μA and width 50 ns were applied. For depression, programming
pulses of 450 μA amplitude and 50 ns width were applied. After each potentation
(depression) pulse, device conductances were read 50 times and averaged. The
delay between each read event was ~5 s.

In all measurements, device conductances were obtained by applying a fixed
voltage of 0.3 V amplitude and measuring the corresponding current.

Simulation of neural networks. The ANN contains 784 input neurons, 250
hidden layer neurons, and 10 output neurons. In addition, there is one bias neuron
at the input layer and one bias neuron at the hidden layer. For training, all 60,000
images from the MNIST training set are used in the order they appear in the
database over 10 epochs. Subsequently, all 10,000 images from the MNIST test set
are shown for testing. The test set is applied at every 1000th example for the last
20,000 images of the 10th epoch of training, and the results are averaged. The input
images from the MNIST set are greyscale pixels with values ranging from 0 to 255
and have a size of 28 times 28. Each of the input layer neurons receives input from
one image pixel, and the input is the pixel intensity scaled by 255 in double-
precision floating point. The neurons of the hidden and the output layers are
sigmoid neurons. Synapses are multi-memristive, and each synapse comprises N
devices. The devices in a synapse are arranged using either a non-differential or a
differential architecture. In the non-differential architecture, we scale the device
conductance of 0 μS to weight � 1

N and that of 10 μS to weight 1
N. The weight is not

incremented further if it exceeds 1
N to model the PCM saturation behavior. The

minimum weight is � 1
N because the minimum device conductance is 0 μS. The

weight of each device wn is initialized randomly with a uniform distribution in the
interval �1

2N ;
1
2N

� �
. The total synaptic weight is calculated as

PN
n¼1 wn. In the dif-

ferential architecture, N devices are arranged in two sets, where N
2 devices represent

G+ and N
2 devices represent G−. We scale the device conductance of 0 μS to weight

0 and that of 10 μS to weight 2
N. The weight is not incremented if it exceeds 2

N and
the minimum weight is 0. The weight of each device wn+, n− for n= 1, 2,…, N2 is
initialized randomly with a uniform distribution in the interval 1

N ;
2
N

� �
. The total

synaptic weight w is
P

n wnþ
� �� P

n wn�
� �

. For double-precision floating-point
simulations, the synaptic weights are initialized with a uniform distribution in the
interval [−0.5, 0.5]. The weight updates Δw are done sequentially to synapses, and
the selection counter is incremented by one after each weight update. If Δw > 0, the
synapse will undergo potentiation. In both architectures, each potentiation pulse on
average would induce a weight change of size ε ¼ 0:1

N if a linear model was used; the
number of potentiation pulses to be applied are calculated by rounding Δw

ε . Then,
for each potentiation pulse, an independent Gaussian random number with mean
and standard deviation according to the model of Fig. 2(d) is added. This weight
change is applied to the device to which the selection counter points. If Δw < 0, the
synapse will undergo a depression. In the differential architecture, a potentiation
pulse is applied to a device from the set representing G− using the above-
mentioned methodology. In the non-differential architecture, a depression pulse is
applied to one of the devices pointed at by the selection counter if Δw < –0.5ε. The
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weight of the device drops to 0. For N > 1, we used a depression counter of length 5
and a potentiation counter of length 2. No depression or potentiation counter is
used for N= 1. In the differential architecture, after the weight change has been
applied for potentiation and depression, synapses are checked for the refresh
operation. If there is a synapse which has w+ > 0.9 or w− > 0.9, a refresh is done on
that synapse; w is recorded, and all devices in the synapse are set to 0. The
programming will be done to devices of the set w+ if w > 0 or to devices of the set
w− if w < 0. The number of potentiation pulses is calculated by rounding Δw

ε . The
pulses are applied to all devices, starting with the first device of the set. One
independent Gaussian random number with mean and standard deviation
according to the model of Fig. 2(d) is calculated for each of the potentiation pulses.
The learning rate is 0.4 for all simulations.

The SNN comprises 784 input neurons and 50 output neurons. These synapses are
multi-memristive, and each synapses consists of Nmemristive devices. The network is
trained with all 60,000 images from the MNIST set over three epochs and tested with
all 10,000 test images from the set. The test set is applied at every 1000th example for
the last 20,000 images, and the results are averaged. The simulation time step is 5ms.
Each input neuron receives input from one pixel of the input image. Each input image
is presented for 350ms, and the information regarding the intensity of each pixel is in
the form of spikes. We create the input spikes using a Poisson distribution, where
independent Bernoulli trials are conducted to determine whether there is a spike at a
time step. A spike rate is calculated as pixel intensity

255 ´ 20Hz. A spike is generated if
spike rate × 5ms > x, where x is a uniformly distributed random number between 0
and 1. The input spikes create a current with the shape of a delta function at the
corresponding synapse. The magnitude of this current is equal to the weight of the
synapse. The synaptic weights w are learned with an STDP rule48. The synapses are
arranged in a non-differential or a differential architecture. In both architectures, we
scale the device conductance of 0 μS to weight 0 and that of 10 μS to weight 1

N. The
weight is not incremented further if it exceeds 1

N. The minimum weight is 0 because
the minimum device conductance is 0 μS. In the non-differential architecture, the
weight of each device wn is initialized randomly with a uniform distribution in the
interval 2

5N ;
3
5N

� �
. The total synaptic weight is calculated as

PN
n¼1 wn . In the

differential architecture, N devices are arranged in two sets. The weight of each device
wn+,n− for n= 1, 2,…, N2 is initialized randomly with a uniform distribution in the
interval 3

5N ;
4
5N

� �
. The total synaptic weight is

P
n wnþ

� � � P
n wn�

� � þ 0:5. For
double-precision floating-point simulations, the synaptic weights are initialized with a
uniform distribution in the interval [0.25, 0.75]. At each simulation time step, the
synaptic currents are summed at the output neurons and accumulated using a state
variable X. The output neurons are of the leaky integrate-and-fire type and have a leak
constant of τ= 200ms. Each output neuron has a spiking threshold. This spiking
threshold is set initially to 0.125 (note that the sum of the currents is normalized by
the number of input neurons) and is altered by homeostasis during training. An
output neuron spikes when X exceeds the neuron threshold. Only one output neuron
is allowed to spike at a single time step, and if the state variables of several neurons
exceed their threshold, then the neuron whose state variable exceeds its threshold the
most is the winner. The state variables of all other neurons are set to 0 if there is a
spiking output neuron. If there is a postsynaptic neuronal spike, the synapses that
received a presynaptic spike in the past 30ms are potentiated. If there is a presynaptic
spike the synapses that had a postsynaptic neuronal spike in the past 1.05 s are
depressed. The weight change amount is constant for potentiation (Δw= 0.01) and
depression (Δw= –0.006), following a rectangular STDP rule. The weight updates are
done using the scheme described above with ε ¼ 0:05

N . For the non-differential
architecture, a depression pulse is applied when Δw < 0. The depression counter
length is set to the floor of 1

N ´ 0:006 for N > 1. In the non-differential and the
differential architecture, a potentiation counter of length 3 and 2 is used, respectively.
After the 1000th input image, upon presentation of every two images, the spiking
thresholds of the output neurons are adjusted through homeostasis. The threshold
increase for every output neuron is calculated as 0.0005 × (A−T), where A is the
activity of the neuron and T is the target firing rate. A is calculated as S

350ms ´ 100, where
S is the sum of the neuron’s firing event in the past 100 examples. We define the T as

5
350ms ´ 50, where 50 is the number of output neurons in the network. After training,
the synaptic weights and the neuron thresholds are kept constant. To quantify how
well the training is, we show all 60,000 images to the network, and the neuron that
spikes the most often during the presentation of an image for 350ms is recorded. The
neuron is mapped to the class, i.e., to one of the 10 digits, for which it spiked the most.
This mapping is then used to detect the classification accuracy when the test set is
presented.

Correlation detection experiment. The network for correlation detection com-
prises 1000 plastic synapses connected to an output neuron. Each synapse is multi-
memristive and consists of N devices. The synaptic weights w∈[0,1] are learned
with an STDP rule64. Because of the hardware latency, we will use normalized units
to describe time in the experiment. The experiment time steps are of size Ts= 0.1.
Each synapse receives a stream of spikes, and the spikes have the shape of the delta
function. 100 of the input spike stream are correlated. The correlated and the
uncorrelated spike streams have equal rates of rcor= runcor= 1. The correlated
inputs share the outcome of a Bernoulli trial. This Bernoulli trial is described as B
= x > 1− rcor × Ts, where x is a uniformly distributed random number. By using
this event, the input spikes for the correlated streams are generated as
B ´ ðrcor ´ Ts þ

ffiffi
c

p
´ ð1� rcor ´ TsÞ> x1Þþ � B ´ ðrcor ´ Ts ´ ð1 � ffiffi

c
p Þ> x2Þ,

where x1 and x2 are uniformly distributed random numbers, c is the correlation
coefficient of value 0.75, and ~ denotes the negation operation49,51. The uncorre-
lated processes are generated as x3 > 1− runcor × Ts, where x3 is a uniformly dis-
tributed random variable. Note that the probability of generating a spike is low
because rcor;uncor ´ Ts � 1. These input spikes generate a current of the size of the
synaptic weights. At every time step, the currents are summed and accumulated at
the neuronal membrane variable X. The neuronal firing events in any given time
step are determined only by the spiking events that occur in that time step. If X
exceeds a threshold of 52, the output neuron fires. The weight update calculation
follows an exponential STDP rule where the amount of potentiation is calculated as
Aþe

�jΔtj=τþ and that of depression is calculated as �A�e
�jΔtj=τ� . A+, A− are the

learning rates, τ+, τ− are time constants, and Δt is the time difference between the
input spikes and the neuronal spikes. We set 2 ×A+= A−= 0.004 and τ+= τ−=
3 × Ts. The higher-order pairs of spikes are also considered in our algorithm.

The weight storage and weight update operations are done on PCM devices. We
access each PCM device sequentially for reading and programming. For device
initialization, an iterative procedure is used to program the device conductances to
0.1 μS and this is followed by one potentiation pulse of amplitude Iprog= 120 μA
and 50 ns width. Although the weight update is calculated using an exponential
STDP rule, it is applied following a rectangular STDP rule. For potentiation, a
single potentiation pulse of amplitude Iprog= 100 μA and 100 ns width is applied
when Δw ≥ 0.001. For depression, a single depression pulse of amplitude Iprog=
440 μA and 950 ns width is applied when Δw ≤−0.001. The potentiation and
depression pulses are sent to one device from the multi-memristive synapse the
selection counter points to. When applying depression pulses, a depression counter
of length 2 is used for N > 1. After each programming operation, the device
conductances are read by applying a fixed voltage of amplitude 0.2 V and
measuring the corresponding current. The conductance value G of a device is
converted to its synaptic weight as wn ¼ G

N ´ 9:5 μS.The weights of the devices in a

multi-memristive synapse are summed to calculate the total synaptic weightPN
n¼1 wn .

For the large-scale experiment, 144,000 synapses are trained, of which 14,400
receive correlated inputs. Each multi-memristive synapse comprises N= 7 devices,
and a total of 1,008,000 PCM devices are used for this experiment. The same
network parameters as in the small-scale experiment are used, except for the
neuron threshold. The neuron threshold is scaled with the number of synapses and
is set to 7488. The learning algorithm and conductance-to-weight conversion are
identical to those in the small-scale experiment.

The nonlinear PCM model used for the accompanying simulation study is
based on the conductance evolution of PCM devices with Iprog= 100 μA pulse
amplitude and a pulse width of 50 ns. Two potentiation pulses are applied
consecutively to capture the conductance change behavior of one potentiation
pulse with pulse width 100 ns of the experiments. A depression pulse is assumed to
set the device conductance to 0 μS, irrespective of the conductance value prior to
the application of the pulse.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon request.
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