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Abstract: Herein, we report a new method for the synthesis of bi-

heteroaryls, based on the Umpolung of indoles with benziodoxol(on)e 

hypervalent iodine reagents (IndoleBX). The oxidative coupling of 

IndoleBX with an equimolar amount of electron-rich benzenes, indoles, 

pyrroles and thiophenes proceeded under mild transition-metal free 

conditions. Functionalized non-symmetrical bi-indolyl heterocycles 

were accessed efficiently. Introduction of a new type of C2-substituted 

indole benziodoxole reagents further allowed extending the scope of 

the reaction to NH unprotected and C3-alkylated indoles. The 

obtained bi-heterocycles are important building blocks in synthetic 

and medicinal chemistry, and could be easily transformed into more 

complex heterocyclic systems. 

Bi- and oligo- (hetero)aryl indoles are important building 

blocks in synthetic and medicinal chemistry.[1] They are usually 

accessed via multi-step ring-forming processes.[2] Since 2007, 

more efficient approaches based on metal-catalyzed direct C-H 

coupling of two (hetero)arenes have been intensively studied, 

especially for the coupling of indoles with electron-neutral or -poor 

(hetero)-arenes.[3-5] However, the direct coupling of indoles with 

electron-rich heterocycles was successful only in the case of 

homo-coupling to form symmetrical bi-indolyl compounds.[6] This 

is an important limitation, as non symmetrical derivatives can be 

found in natural products like Asteropusazole A (1),[7] synthetic 

bioactive molecules like anti-estrogen 2,[8] hole transport materials 

like indole trimer 3,[9] and transition metal ligands like indole 

phosphine 4.[10] 

 

Figure 1. Selected reported compounds containing bi-heteroaryls. 

To access non-symmetrical electron-rich bi-heteroaryls, 

cyclization methods[11] or cross coupling reactions requiring pre-

functionalization of both partners[12] remain most often used.[13] 

The Umpolung of the reactivity of the indole ring to enable 

selective cross-coupling with electron-rich heterocycles is an 

attractive alternative approach (Scheme 1).[14] The protonation of 

3-bromo indole followed by Friedel-Crafts reaction and elimination 

has been reported, but required the use of strong acids (Scheme 

1A).[15] This led to multiple arylation and oligomerization, and 

therefore to a limited scope. Oxidative methods based on 

activation with hypochlorite[16] or sulfonium reagents[17] have been 

successful only for 3-substituted indoles. Kita and co-workers 

have been highly successful in the Umpolung of electron-rich 

benzene rings,[18] pyrroles[19] and thiophenes[20] through the use of 

hypervalent iodine reagents activated by Lewis acids without the 

need for any transition metal catalyst (Scheme 1B).[21] However, 

only very few examples of the Umpolung of indoles were 

reported.[22] In particular, the synthesis of hetero bi-indolyl 

compounds has never been reported. Therefore, there is currently 

no general method for the Umpolung of indoles allowing for 

reaction with electron-rich heterocycles under mild conditions. 

Scheme 1. Umpolung of indoles for accessing non-symmetrical bi-heteroaryls. 

The availability of stable isolable indole-based iodonium 

salts would allow oxidative coupling under more controlled 

conditions. However, these compounds are often not easily 

accessible, unstable or substituted with de-activating electron-

withdrawing substituents.[23] Our group and Yoshikai and co-

workers have introduced more stable indole- and pyrrole 
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benziodoxol(on)es (BX).[24]. Herein, we report the first use of 

these reagents for the oxidative coupling of indoles with electron-

rich heteroarenes under mild, transition metal free conditions, 

resulting in the first general coupling method for accessing hetero 

bi-indolyl compounds (Scheme 1C).  

As benchmark reagent for the optimization process we 

chose 1,3,5-trimethoxy benzene (1) as nucleophile. Using Kita's 

conditions (hexafluoroisopropanol (HFIP) as solvent and 

trimethylsilylbromide as Lewis acid),[19c] but with indoleBX 2a, we 

obtained product 7a in 41% yield (Table 1, entry 1). Bis-arylated 

byproduct 8 was also observed in 17% yield. Interestingly, only 

C2 functionalized indole 7a was obtained starting from C3-

substituted indoleBX 2a, whereas C3-substituted products were 

formed when using transition metal catalysis.[24a-c]  

Table 1. Optimization of the (hetero)arylation on electrophilic heterocycles. 

 

Entry Reagent Reaction Conditions[a] Yield[b] 7a/8 

1 2a 1.5 equiv 2a, 2.0 equiv TMSBr, HFIP 0.1 M 41%/17% 
 

2 2a 1.0 equiv TMSBr, HFIP 0.1 M 44%/12% 
 

3 2a 1.0 equiv TMSCl, HFIP 0.1 M 68%/-% 
 

4 2a 0.5 equiv TMSCl, HFIP 0.1 M 10%/-% 

5 2a 1.5 equiv 2a, 2.0 equiv HCl, HFIP 0.1 M - 

6 2a no HFIP or no TMSCl - 

7 2a 1.0 equiv TMSCl, 10 equiv HFIP, DCM 0.1 M 76%/-% 

8 3a 1.0 equiv TMSCl, 10 equiv HFIP, DCM 0.1 M 22%/ 

9 4a 1.0 equiv TMSCl, 10 equiv HFIP, DCM 0.1 M traces 

10 5 1.5 equiv 4-F-PIDA, 2.0 equiv TMSCl, HFIP 0.1 M 16%[c] 

11 6 1.5 equiv 6, 2.0 equiv. TMSBr, HFIP 0.1 M - 

[a] Reaction performed at 0.10 mmol scale at r.t. using 1.0 equiv indole reagent 

2-6 unless stated otherwise. [b] Isolated yield after purification by column 

chromatography. [c] Yield of 7a given. Oligomers, bis-indoles and indole-

indolines were also detected.  

Importantly, using equimolar amounts of TMSBr and 

reagent 2a did not change the outcome of the reaction (Table 1, 

entry 2). Switching from TMSBr to the milder TMSCl improved the 

yield of the mono-arylated product 7a, and suppressed the 

formation of 8 (Table 1, entry 3). A sub-stoichiometric amount of 

TMSCl led to a lower yield (Table 1, entry 4). Replacing TMSCl 

with HCl didn’t work and both Lewis acid and HFIP were 

necessary for the reaction to proceed (Table 1, entries 5-6). The 

latter is probably needed to stabilize cationic aromatic and 

iodine(III) species.[25] When running the reaction in 

dichloromethane (DCM), 10 equivalents of HFIP were enough to 

give indole 7a in 76% yield (Table 1, entry 7). Only very low yields 

were obtained with benziodoxole reagents 3a and 4a (Table 1, 

entries 8-9). Using 4-fluorophenyl iodobenzene diacetate (4-F-

PIDA) as oxidant together with N-methylindole (5) as reported by 

Kita and co-workers,[19c] afforded 7a in only 16% yield (Table 1, 

entry 10). Oligomers, bis-indoles and indole-indolines resulting 

from homocoupling were also detected in the reaction mixture. A 

control experiment with C3-iodoindole 6 confirmed the necessity 

of iodine(III) as activator (Table 1, entry 11).  

The reaction of different benziodoxolone reagents with 

trimethoxybenzene as nucleophile was then examined (Scheme 

2A). Products 7b and 7c bearing an iodine and a boronic esters 

substituent were obtained in 69 and 54% yield respectively. The 

method is therefore orthogonal to transition-metal catalyzed 

cross-couplings, allowing access to useful functionalities. 

Reagents with a NH-free indole were not successful. Starting from 

C2-methylated indoleBX, C3-arylated indole 7d was accessed in 

40% yield. Arylated pyrroles 7e-f were obtained in yield 

comparable to those reported by Kita and Dohi.[19c] 

 
Scheme 2. Scope of the Lewis acid promoted (hetero)arylation of indoles and 

pyrroles. Reaction conditions; 0.30 mmol nucleophile, 0.30 mmol 

indole/pyrroleBX 2, 0.30 mmol TMSCl, 3.0 mmol HFIP, DCM 0.2 M, r.t. [a] As a 

9:1 mixture of mono-/bi- arylation products. [b] As a 12:1 mixture of C3:C7 

heteroarylation products. [c] As a 1:1 mixture of C2:C3 heteroarylation products. 

With indoles as nucleophiles, we were delighted to obtain 

3’,2 mixed bi-indoles in moderate to good yields, with only minor 

formation of de-aromatization, oligomerization and homo-

coupling side products (Scheme 2B). In addition to homocoupling 

product 8a, mixed bi-indolyls 8b-f bearing electron-donating 

groups, halogens or boronic esters were obtained in 64-72% yield. 

When C6-OBn-methylindole was used, benzyl deprotected 



COMMUNICATION          

 

 

 

 

product 8g was formed. N-Unprotected indoles afforded products 

8h-j in 61-78% yield. When C3-substituted indoles were used as 

nucleophiles, 2’,3 connected bi-indolyl 8k-l were obtained in 45-

57% yield. Using substituted IndoleBX's allowed to introduce 

functionalities on the other indole ring (products 8m-o). For 

example, bi-indolyls 8e and 8m differ only by the position of the 

iodine atom. This could not have been achieved selectively with 

any previously reported method. Finally, preliminary results with 

pyrroles and thiophenes were also obtained (products 9a-b and 

10a-b respectively, Scheme 1C).  

The synthesis of IndoleBXs developed in our group[24a] did 

not allow access to indoles bearing easily removable nitrogen 

protecting groups or C3 substituents. We therefore developed a 

new synthetic approach for IndoleBXs bearing the iodine atom on 

the C2 position. After intensive screening of indole precursors and 

conditions,[26] we accessed the desired reagents 13 by reacting 

indole trifluoroborate salts 11[27] with fluoro benziodoxol(on)e 12 

(Scheme 3).[28]  Benziodoxolone reagents 13a-b were obtained in 

low yield. IndoleDBX (dimethylbenziodoxole) 13c-d were isolated 

in 86% and 53% yield respectively (the procedure was scalable 

up to two grams for the former). Substituents in C5, C6 and C3, 

including ethers, halogens and protected amines, were well 

tolerated, affording benziodoxoles 13e-i in 63-97% yield.[29] 

Best results in the heteroarylation of trimethoxybenzene (1) 

were obtained with N-Boc protected IndoleDBX reagents using 

TMSBr (Scheme 4). Under these conditions, the Boc group was 

removed, giving NH free indoles 14a-d in 50-94% yield.[30] It was 

now possible to obtain C2-arylated-C3-alkylated indoles 14e and 

14f in 82% and 75% yield respectively. The use of indoles as 

nucleophiles required milder TMSCl as Lewis acid and gave 

access to NH unprotected heterodimers 15a-c in 34-56% yield. 

Thiophene-indole heteroaryl 16 was obtained in 28% yield. 

 
Scheme 3. Synthesis of C2-substituted IndoleBX reagents. 

At this stage, it is difficult to propose a reaction mechanism 

rationalizing the observed regioselectivity. Either a nucleophilic 

(vicarious) aromatic substitution pathway or a single electron 

transfer (SET) from a charge-transfer complex could be 

considered.[18-21] In both cases, Lewis acid activation of the 

hypervalent iodine reagent would initiate the reaction.[31] The 

obtained products could be easily modified (Scheme 5). 

Cyclization of 8j with acetal 17 gave indole-carbazole 18 in 81% 

yield (Scheme 5A).[32] Palladium catalysed oxidative cyclization of 

8d led to the formation of carbazole 20 (Scheme 5B).[33]  Indole-

carbazoles are important sub-structures in optoelectronic 

materials.[9,34] Finally, a Ciamician-Dennstedt rearrangement 

converted indole 14a into quinoline 21 (Scheme 5C).[35] 

 
Scheme 4. Scope of the oxidative heteroarylation using C2-IndoleDBX 

reagents 13. Reaction conditions; 0.22 mmol nucleophile, 0.20 mmol indoleDBX, 

0.40 mmol TMSBr, 2.0 mmol HFIP, DCM 0.2 M, r.t. [a] TMSCl was used instead 

of TMSBr. 

In conclusion, we have reported a straightforward approach for 

the selective synthesis of mixed bi-(hetero)arenes. Electrophilic 

hypervalent iodine reagents (IndoleBX) were combined with 

equimolar amounts of functionalized indole, pyrrole and 

thiophene nucleophiles in a metal-free protocol. Selectively 

functionalized bi-indolyl heterocycles were obtained with high 

efficiency. New C2-IndoleDBXs reagents were synthesized, 

increasing significantly the scope of accessible bi-heterocycles. 

Further investigations are ongoing on the use of benziodoxol(on)e 

reagents in the Umpolung of electron-rich heterocycles. 

Scheme 5. Product derivatizations. 
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functional group tolerance set the stage for easy and regioselective post-

functionalization to access more complex heterocyclic systems. 

BX reagents are stable up to 150 °C and can be used for selective heterocycle 

transfer onto the C-H bonds of arenes ortho to directing groups by using rhodium or 

ruthenium catalysts. 
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1. Materials and Methods. 

All reactions were carried out in oven dried glassware under an atmosphere of nitrogen, unless 

stated otherwise. For quantitative flash chromatography, technical grade solvents were used. 

For flash chromatography for analysis, HPLC grade solvents from Sigma-Aldrich were used. 

THF, Et2O, CH3CN, toluene, hexane and CH2Cl2 were dried by passage over activated alumina 

under nitrogen atmosphere (H2O content < 10 ppm, Karl-Fischer titration). The solvents were 

degassed through Freeze-Pump-Thaw method when mentioned. All chemicals were purchased 

from Acros, Aldrich, Fluka, VWR, Aplichem, or Merck and used as such unless otherwise 

stated. Chromatographic purification was performed as flash chromatography using Macherey-

Nagel silica 40-63, 60 Å, with the solvents indicated as eluent under 0.1-0.5 bar pressure. TLC 

was performed on Merck silica gel 60 F254 TLC glass plates or aluminium plates and visualized 

with UV light, permanganate stain, CAN stain, or Anisaldehyde stain. Melting points were 

measured on a Büchi B-540 melting point apparatus using open glass capillaries, the data is 

uncorrected. 1H-NMR spectra were recorded on a Brucker DPX-400 400 MHz spectrometer in 

CDCl3, DMSO-d6 CD3OD, C6D6 and CD2Cl2, all signals are reported in ppm with the internal 

chloroform signal at 7.26 ppm, the internal DMSO signal at 2.50 ppm the internal methanol 

signal at 3.30 ppm, the internal dichloromethane signal at 5.30 ppm as standard. The data is 

being reported as (s = singlet, d = doublet, t = triplet, q = quadruplet, qi = quintet, m = multiplet 

or unresolved, br = broad signal, app = apparent, coupling constant(s) in Hz, integration, 

interpretation).13C-NMR spectra were recorded with 1H-decoupling on a Brucker DPX-400 100 

MHz spectrometer in CDCl3, DMSO-d6, CD3OD or CD2Cl2, all signals are reported in ppm with 

the internal chloroform signal at 77.0 ppm, the internal DMSO signal at 39.5 ppm, the internal 

methanol signal at 49.0 ppm and the internal dichloromethane signal at 54.0 ppm as standard. 

Infrared spectra were recorded on a JASCO FT-IR B4100 spectrophotometer with an ATR 

PRO410-S and a ZnSe prisma and are reported as cm-1 (w = weak, m = medium, s = strong, br 

= broad). High resolution mass spectrometric measurements were performed by the mass 

spectrometry service of ISIC at the EPFL on a MICROMASS (ESI) Q-TOF Ultima API.  

 

  



S3 

 

2. Preparation of IndoleBXs.  

The synthesis of the precursors for HeterocyclicBX reagents 2a-2f’, 3a, 4a, 13a-13i and their 

starting materials had been already described before.[1,2] The procedures here reported are taken 

from the cited publications to facilitate reproduction of the results by having all the data in the 

same file. Compound 12b is commercially available. 

 

Figure 2.1: Heterocyclic hypervalent iodine reagents precursor. 

2.1 Preparation of Hypervalent Iodine Precursors. 

1-Chloro-1,2-benziodoxol 3(1H)-one (12d): 

 

Following a slightly modified procedure,[3] commercially available 2- iodobenzoic acid 22 

(4.00 g, 16.1 mmol, 1 equiv.) was dissolved in anhydrous MeCN (30 mL). The resulting stirred 

suspension was heated to 75 °C in an oil bath. The dropping funnel was charged with a solution 

of trichloroisocyanuric acid 23 (1.41 g, 6.07 mmol, 1.02 Cl+ equiv.) in 10 mL of anhydrous 

MeCN by syringe. The solution of trichloroisocyanuric acid 23 was dropped into the vigorously 

stirred reaction mixture within 5 min. After addition was complete, the reaction mixture was 

refluxed for an additional 5 min. The reaction mixture was vacuum-filtered over a preheated, 
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sintered-glass funnel with a tightly packed pad of Celite (1 cm thick), and the filter cake was 

rinsed with additional hot MeCN (20-50 mL). The combined filtrates were evaporated to near-

dryness, and the resulting yellow solid was filtered over a sintered-glass funnel and washed 

with a small amount of cold MeCN. The mother liquor from filtration was partially concentrated 

on vacuum, giving a second crop of solids. The combined crops were dried under high vacuum 

to obtain 1-Chloro-1,2-benziodoxol 3(1H)-one 12d (3.16 g, 11.2 mmol, 69% yield) as light 

yellow solid. 1H NMR (400 MHz, Acetone-d6) δ 8.34 – 8.24 (m, 1H), 8.16 (ddd, J = 7.8, 6.5, 

1.8 Hz, 2H), 7.96 – 7.85 (m, 1H). The NMR values correspond to the reported ones.[3] 

1-Chloro-1,3-dihydro-3,3-dimethyl-1,2-benziodoxole (12e) 

 

Following a reported procedure,[3] commercially available methyl 2-iodobenzoate 24 (12.0 mL, 

76.0 mmol) was dissolved under N2 atmosphere in dry diethyl ether (400 mL) and then the 

solution was cooled to 0 °C with an ice bath. Methylmagnesium bromide (56.0 mL, 0.168 mol, 

2.20 equiv.) was added dropwise and the reaction was stirred for 30 min at 0 °C. The reaction 

mixture was then allowed to warm to room temperature and it was further stirred for 2 h. The 

reaction was quenched with NH4Cl in an iced bath. The organic layer was separated and 

extracted with Et2O (3 x 100 mL), washed with water (2 x 200 mL), brine (1 x 100 mL) then 

dried over MgSO4. The solvent was removed in vacuo.  

With no further purification the crude mixture was dissolved in CCl4 (7 mL) and tert-butyl 

hypochlorite (100 mL, 92.0 mmol, 1.20 equiv.) and the reaction mixture was stirred at room 

temperature. After one hour a yellow precipitate was collected by filtration and washed with 

hexane (60 mL) to afford compound 12e (7.70 g, 26.0 mmol, 34% yield) as a yellow solid. 1H 

NMR (400 MHz, CDCl3) δ 8.03 (dd, 1 H, J = 8.1, 1.1 Hz, CHAr), 7.55 (m, 2 H, CHAr), 7.17 

(dd, 1 H, J = 7.3, 1.7 Hz, CHAr), 1.55 (s, 6 H, (CH3)2).
 13C NMR (101 MHz, CDCl3) δ 149.5, 

131.0, 130.5, 128.4, 126.1, 114.7, 85.2, 29.2.  IR ν 3729 (w), 3626 (w), 2972 (w), 2924 (w), 

2362 (w), 2055 (w), 2018 (w), 1742 (w), 1564 (w), 1464 (w), 1439 (w), 1379 (w), 1378 (w), 

1366 (w), 1277 (w), 1276 (w), 1256 (w), 1181 (w), 1154 (m), 1112 (w), 1048 (w), 1003 (w), 

982 (w), 943 (m), 866 (m), 808 (w), 790 (w), 789 (w), 762 (s), 745 (w), 724 (w), 718 (w). The 

characterization data is in accordance with reported literature values.[4] 
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1-Chloro-1,3-dihydro-3,3-bis(trifluoromethyl)-1,2-benziodoxole (12f)  

 

Following a reported procedure, TMEDA (distilled over KOH) (1.26 mL, 8.20 mmol, 0.200 

equiv) was added to a solution of nBuLi (2.5 M in hexanes, 36.6 mL, 91.6 mmol, 2.20 equiv). 

After 15 min, the cloudy solution was cooled to 0 °C and 25 (7.00 mL, 42.0 mmol, 1 equiv) in 

THF (6 mL) was added dropwise. The reaction was stirred 30 min at 0 °C and then at RT 

overnight. I2 (11.2 g, 44.0 mmol, 1.06 equiv) was then added portionwise at 0 °C and the 

mixture stirred at 0 °C for 30 min and 4 h at RT. The reaction was quenched with saturated 

NH4Cl. Et2O (100 mL) was added and the layers were separated. The aqueous layer was then 

extracted twice with Et2O (3 x 50 mL). The organic layers were combined, washed twice with 

saturated NaS2O3 (2 x 50 mL), dried over MgSO4, filtered and concentrated under reduced 

pressure to afford 15.6 g of crude 26 as an brown oil which was used without further 

purification. The crude oil was dissolved in MeCN (40 mL) in the dark under air. 

Trichloroisocyanuric acid 23 (3.42 g, 14.3 mmol, 0.340 equiv.) was then added portionwise at 

r.t. After 30 min, the resulting suspension was filtered to afford 12f (7.30 g, 18.1 mmol, 43%) 

as a yellow solid. The mother liquors were carefully reduced to one third and filtered to afford 

more xx (8.85 g, 21.9 mmol, 52.1% yield) as a yellow solid. 1H NMR (400 MHz, CDCl3) δ 

8.09 (d, 1 H, J = 8.4 Hz, ArH), 7.85 (m, 1 H, ArH), 7.73 (m, 2 H, ArH). 13C NMR (101 MHz, 

CDCl3) δ 133.8, 132.1, 131.6, 129.7, 128.5, 122.8 (q, 289 Hz), 113.4, 84.8. The melting point 

and the 1H NMR correspond to the reported values.[5]  

 

Synthesis of 1-Acetoxy-1,2-benziodoxol-3-(1H)-one (12g) 
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Following a reported procedure,[1] NaIO4 (7.24 g, 33.8 mmol, 1.05 equiv) and 2-iodobenzoic 

acid 22  (8.00 g, 32.2 mmol, 1.00 equiv) were suspended in 30% (v/v) aq. AcOH (48 mL). The 

mixture was vigorously stirred and refluxed for 4 h. The reaction mixture was then diluted with 

cold water (180 mL) and allowed to cool to room temperature, protecting it from light. After 1 

h, the crude product was collected by filtration, washed on the filter with ice water (3 x 20 mL) 

and acetone (3 x 20 mL), and air-dried in the dark to give the pure hydroxylated intermediate 

12c. 

Following a reported procedure,[3] hydroxylated intermediate 12c (39.1 mmol, 1.00 equiv.) was 

suspended in acetic anhydride (35 mL) and heated to reflux for 5 minutes, up to dissolution of 

the starting material. The resulting clear, slightly yellow solution was slowly let to cool down 

to room temperature and then cooled to 0 °C for 30 minutes. The white suspension was filtered 

and the filtrate was again cooled to 0 °C for 30 minutes. The suspension was once again filtered 

and the combined two batches of solid product were washed with hexane (2 x 20 mL) and dried 

in vacuo to afford product 12g. 1-Acetoxy-1,2-benziodoxol-3-(1H)-one 12g (10.8 g, 35.3 

mmol, 90%) as a white solid. 1H NMR (CDCl3, 400 MHz) δ 8.24 (dd, J = 7.6, 1.6 Hz, 1H, 

ArH), 8.00 (dd, J = 8.3, 1.0 Hz, 1H, ArH), 7.92 (ddd, J = 8.4, 7.2, 1.6 Hz, 1H, ArH), 7.71 (td, 

J = 7.3, 1.1 Hz, 1H, ArH), 2.25 (s, 3 H, COCH3). 13C NMR (CDCl3, 100 MHz) δ 176.5, 168.2, 

136.2, 133.3, 131.4, 129.4, 129.1, 118.4, 20.4. NMR values are in accordance with the data 

reported in literature.[6] 

 

1-Acetoxy-1,3-dihydro-3,3-dimethyl-1,2-benziodoxole (12h) 

 

Following a reported procedure,[3] 1-chloro-1,3-dihydro-3,3-dimethyl-1,2-benziodoxole 12d 

(2.60 g, 8.77 mmol) was dissolved in dry acetonitrile (25 mL) under N2 atmosphere. The 

reaction flask was covered with aluminum foils and protected from light. Silver acetate (1.46 

g, 8.77 mmol, 1.00 equiv.) was then added in one portion. The reaction mixture was stirred in 

the dark at room temperature for 16 h. Filtration over a Celite plug and evaporation of the 

solvent yielded compound 12h (2.6 g, 8.8 mmol, 93%) as a brownish solid. 1H NMR (400 

MHz, CDCl3) δ 7.79 (dd, 1 H, J = 8.0, 1.3 Hz, CHAr), 7.47 (m, 2H, CHAr), 7.18 (dd, 1 H, J = 

7.2, 1.7 Hz, CHAr), 2.11 (s, 3 H, COCH3), 1.52 (s, 6 H, (CH3)2). 
 13C NMR (101 MHz, CDCl3) 



S7 

 

δ 177.4, 149.4, 130.4, 130.0, 129.9, 126.2, 115.7, 84.6, 29.2, 21.5.  IR ν 3099 (w), 3057 (w), 

2975 (w), 2930 (w), 2930 (w), 2865 (w), 1740 (w), 1640 (s), 1588 (w), 1566 (w), 1462 (w), 

1438 (m), 1363 (s), 1294 (s), 1259 (m), 1158 (m), 1114 (w), 1047 (w), 1033 (w), 1009 (w), 949 

(m), 926 (w), 866 (w), 761 (s), 723 (w).  The characterization data is in accordance with reported 

literature values.[3] 

 

 

1-Acetoxy-1,3-dihydro-3,3-bis(trifluoromethyl)-1,2-benziodoxole (12i) 

 

1-Chloro-1,3,-dihydro-3,3-bis(trifluoromethyl)-1,2-benziodoxole 12f (8.85 g, 21.9 mmol) and 

AgOAc (3.65 g, 21.9 mmol, 1.00 equiv.) were suspended in MeCN (109 mL, 0.2 M). After 

being stirred overnight in the dark, AgCl precipitated and was filtered off. The residue was 

washed with MeCN. The solvent was removed in vacuo to give 12i (9.37 g, 21.9 mmol, 100%) 

as a white solid. 1H NMR (300 MHz, CDCl3) δ  7.93 (d, J = 8.4 Hz, 1H, ArH), 7.61–7.79 (m, 

3H, ArH), 2.18 (s, 3H, CH3). The NMR values correspond to the reported ones.[6] 
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2.2 Preparation of N-carbamoylated and -tosylated indoles and their trifluoroborate 

salts. 

In this section, only the synthesis of non-commercially available indole compounds is reported. 

The synthesis of the precursors for HeterocyclicBX reagents 13a-13i had been already 

described by our group before. The procedures reported here are taken from the cited 

publications to facilitate reproduction of the results by having all the data in the same file.[7,8] 

General Procedure GP1 for the N-Carbamoylation of Indoles. 

 

Following a reported procedure,[9] to a solution of commercially available 1H-indoles (10.0 

mmol, 1.00 equiv.) and N,N-dimethylaminopyridine (122 mg, 1.00 mmol, 0.100 equiv) in 0.5 

M CH2Cl2, di-tert-butyl dicarbonate (2.40 g, 11.0 mmol, 1.10 equiv.) was added under vigorous 

stirring at 0 °C. The reaction was then allowed to stir at room temperature overnight. Brine (50 

mL) and CH2Cl2 (30 mL) were added to the reaction mixture and the organic layer extracted. 

The aqueous layer was further extracted with CH2Cl2 (2 x 50 mL). The combined organic layers 

were dried over MgSO4 concentrated in vacuum and the crude was directly submitted to short-

path flash chromatography (Pentane: EtOAc: 95:5) to afford the desired N-Boc indole 

derivatives 27a-27e. 

 

Figure 2.2 N-carbamoylated indoles. 

 

Tert-butyl 1H-indole-1-carboxylate (27a) 

Following the general procedure GP1 (synthesis of tert-butyl 1H-indole-1-

carboxylate was scaled up to 20.0 mmol without reoptimization of the protocol.), 

starting from commercially available 1H-indole (2.34 g, 20.0 mmol, 1.00 equiv.), 

after 16 hours tert-butyl 1H-indole-1-carboxylate 27a  was obtained as colorless oil (3. 90 g, 

17.9 mmol, 90% yield). Rf: 0.8 (Pentane: EtOAc 9:1) 1H NMR (400 MHz, CDCl3) δ 8.36 (d, J 

= 8.5 Hz, 1H, ArH), 7.74 (d, J = 3.8 Hz, 1H, ArH), 7.69 (dt, J = 7.7, 1.0 Hz, 1H, ArH), 7.47 

(ddd, J = 8.4, 7.1, 1.3 Hz, 1H, ArH), 7.37 (td, J = 7.5, 1.1 Hz, 1H, ArH), 6.68 (d, J = 3.8 Hz, 
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1H, ArH), 1.79 (s, 9H, C(CH3)3). 13C NMR (101 MHz, CDCl3) δ 149.5, 135.0, 130.3, 125.6, 

123.9, 122.4, 120.7, 114.9, 107.1, 83.2, 27.9. The NMR values correspond to the reported 

ones.[9] 

Tert-butyl 5-methoxy-1H-indole-1-carboxylate (27b) 

Following general procedure GP1, starting from commercially available 5-

methoxy-1H-indole (1.47 g, 10.0 mmol), after 14 hours tert-butyl 5-

methoxy-1H-indole-1-carboxylate 27b (1.92 g, 7.80 mmol, 78% yield) was 

obtained as a colorless solid. Rf: 0.8 (Pentane: EtOAc 95:5). 1H NMR (400 MHz, CDCl3) δ 

8.06 (d, J = 9.1 Hz, 1H, ArH), 7.59 (d, J = 3.6 Hz, 1H, ArH), 7.04 (d, J = 2.6 Hz, 1H, ArH), 

6.96 (dd, J = 9.0, 2.6 Hz, 1H, ArH), 6.51 (d, J = 3.7 Hz, 1H, ArH), 3.86 (s, 3H, OCH3), 1.68 (s, 

9H, C(CH3)3). 13C NMR (101 MHz, CDCl3) δ 155.7, 149.6, 131.3, 129.8, 126.4, 115.7, 112.9, 

107.1, 103.4, 83.4, 55.5, 28.1. The NMR values correspond to the reported ones.[10] 

Tert-butyl 6-methoxy-1H-indole-1-carboxylate (27c) 

Following general procedure GP1, starting from commercially available 6-

methoxy-1H-indole (1.47 g, 10.0 mmol), after 12 hours tert-butyl 6-

methoxy-1H-indole-1-carboxylate 27c (2.23 g, 9.02 mmol, 90% yield) was 

obtained as a colorless solid. Rf: 0.8 (Pentane: EtOAc 9:1).1H NMR (400 MHz, CDCl3) δ 7.75 

(s, 1H, ArH), 7.47 (d, J = 3.7 Hz, 1H, ArH), 7.42 (d, J = 8.6 Hz, 1H, ArH), 6.87 (dd, J = 8.5, 

2.4 Hz, 1H, ArH), 6.49 (dd, J = 3.7, 0.8 Hz, 1H, ArH), 3.88 (s, 3H, OCH3), 1.67 (s, 9H, 

C(CH3)3).13C NMR (101 MHz, CDCl3) δ 157.6, 149.8, 136.1, 124.5, 124.2, 121.2, 112.1, 107.1, 

99.2, 83.4, 55.6, 28.8. NMR values correspond to the reported ones.[11] 

 

Tert-butyl 6-bromo-1H-indole-1-carboxylate (27d) 

 Following general procedure GP1, starting from commercially available 6-

bromo-1H-indole (2.00 g, 10.2 mmol), after 16 hours tert-butyl 6-bromo-1H-

indole-1-carboxylate 27d (2.94 g, 9.93 mmol, 97% yield) was obtained as a 

white solid. Rf: 0.7 (Pentane: EtOAc 9:1) 1H NMR (400 MHz, CDCl3) δ 8.37 (s, 1H, ArH), 

7.56 (d, J = 3.7 Hz, 1H, ArH), 7.41 (d, J = 8.3 Hz, 1H, ArH), 7.34 (dd, J = 8.3, 1.8 Hz, 1H, 

ArH), 6.56 – 6.50 (m, 1H, ArH), 1.68 (s, 9H, C(CH3)3). 13C NMR (101 MHz, CDCl3) δ 149.3, 

135.8, 129.2, 126.2, 125.8, 121.9, 118.3, 117.8, 106.9, 84.1, 28.1. NMR values correspond to 

the reported ones.[12] 
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Tert-butyl 3-methyl-1H-indole-1-carboxylate (27e) 

 Following general procedure GP1, starting from commercially available 3-

methyl-1H-indole (1.31 g, 9.99 mmol), after 16 hours tert-butyl 6-bromo-1H-

indole-1-carboxylate 27e (2.00 g, 8.65 mmol, 87% yield) was obtained as a 

colorless liquid. Rf: 0.9 (Pentane: EtOAc 95:5). 1H NMR (400 MHz, CDCl3) 

δ 8.16 (br-s, 1H, ArH), 7.53 (d, J = 7.6 Hz, 1H, , ArH), 7.39 (s, 1H, ArH), 7.35 (ddd, J = 8.3, 

7.2, 1.4 Hz, 1H, ArH), 7.31 – 7.24 (m, 1H, ArH), 2.31 (s, 3H, CH3), 1.70 (s, 9H, C(CH3)3).
 13C 

NMR (101 MHz, CDCl3) δ 149.5, 135.3, 131.2, 123.9, 122.5, 122.1, 118.6, 116.0, 114.9, 82.7, 

27.9, 9.3. NMR values correspond to the reported ones.[13] 

Synthesis of 1-Tosyl-1H-indole (30) 

 

Following a reported procedure[14] to a solution of the commercially available NH-indole 28 

(3.52 g, 30.0 mmol, 1.00 equiv.) in anhydrous DCM (0.10 M, 300 mL) was added nBu4NHSO4 

(1.02 g, 3.00 mmol, 0.100 equiv.) followed by addition of freshly powdered NaOH (4.81 g, 120 

mmol, 4.00 equiv.). The resultant solution was allowed to stir at room temperature for 10 

minutes before addition of 4-methylbenzene-1-sulfonyl chloride 29 (11.4 g, 60.0 mmol, 2.00 

equiv.) and then allowed to stir at room temperature. After 3 hours, the reaction was quenched 

with H2O (equal amount to reaction solvent volume), the organic layer was collected, and the 

aqueous layer was extracted three times with CH2Cl2 (equal to reaction volume). The combined 

organic layers were dried over MgSO4, filtered and the solvent was removed under reduced 

pressure. The crude product was then purified via flash column chromatography and 1-tosyl-

1H-indole 30 (6.20 g, 22.8 mmol, 76% yield) was obtained as a colorless solid. Rf: 0.6 (Pentane: 

EtOAc 8:2). 1H NMR (400 MHz, CDCl3) δ 8.01 (dd, J = 8.3, 0.9 Hz, 1H, ArH), 7.83 – 7.75 

(m, 2H, ArH), 7.58 (d, J = 3.6 Hz, 1H, ArH), 7.53 (dt, J = 7.8, 1.0 Hz, 1H, ArH), 7.32 (ddd, J 

= 8.4, 7.2, 1.3 Hz, 1H, ArH), 7.24 (dd, J = 7.8, 1.0 Hz, 1H, ArH), 7.22 – 7.16 (m, 2H, ArH), 

6.66 (dd, J = 3.7, 0.8 Hz, 1H, ArH), 2.32 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3) δ 144.8, 

135.2, 134.7, 130.6, 129.8, 126.7, 126.2, 124.4, 123.2, 121.3, 113.4, 108.9, 21.4. The NMR 

values correspond to the reported ones.[14] 
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Synthesis of 2-(2-(1H-Indol-3-yl)ethyl)isoindoline-1,3-dione (33) 

 

Following the reported procedure,[15] a mixture of commercially available tryptamine 31 (1.00 

g, 6.24 mmol) and phthalic anhydride 32 (1.02 g, 6.80 mmol) in toluene (25 mL) was refluxed 

overnight (the reaction was completed as judged by TLC (Pentane: EtOAc 3:2)). The reaction 

mixture was cooled to room temperature and the solution was concentrated under vacuum. The 

crude product was purified by column chromatography on silica gel to get 2-(2-(1H-indol-3-

yl)ethyl)isoindoline-1,3-dione 33 (1.60 g, 5.50 mmol, 88% yield) as a yellow solid. Rf: 0.6 

(Pentane: EtOAc 2:3). 1H NMR (400 MHz, CDCl3) δ 8.09 (br-s, 1H, NH), 7.83 (dd, J = 5.4, 

3.1 Hz, 2H, ArH), 7.77 – 7.66 (m, 3H, ArH), 7.35 (d, J = 8.1 Hz, 1H, ArH), 7.22 – 7.03 (m, 3H, 

ArH), 4.07 – 3.96 (m, 2H, NCH2), 3.16 (dd, J = 8.9, 6.7 Hz, 2H, C-CH2).13C NMR (101 MHz, 

CDCl3) δ 168.3, 136.2, 133.8, 132.1, 127.3, 123.1, 122.1, 122.0, 119.5, 118.8, 112.3, 111.1, 

38.5, 24.4. The NMR values correspond to the reported ones.[16] 

General Procedure GP2 for the Borylation of N-Boc-Indoles. 

 

With a slight modification of the reported procedure,[17] 2,2,6,6-tetramethylpiperidine (1.30 

equiv.) in anhydrous THF (0.40 M) was cooled to -78 °C under an atmosphere of argon and 

treated dropwise with n-BuLi in Hexane (1.50 equiv.). The mixture was stirred at -78 °C for 10 

min, then a solution of the corresponding 1-(tert-butoxycarbonyl)-1H-indole 27a-27e (1.00 

equiv.) in THF (1.00 M) was added dropwise. The mixture was stirred at -78 °C for 45 min. 

B(Oi-Pr)3 (3.00 equiv.) was added dropwise, and the reaction mixture was stirred for 30 min at 

-78 °C before being warmed to r.t. The reaction mixture was quenched with H2O (30 mL), 

slowly acidified with 10% HCl at 0 °C (pH: 6), and extracted with EtOAc (3 times). The 

combined organic layers were washed with brine, dried over MgSO4, and the solvent was 

removed under vacuum. In the next step, without further purification, the crude product was 
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dissolved in MeOH (0.20 M) and cooled at 0° C. Then a 4.5 M aqueous solution of KHF2 (3.00 

equiv.) was slowly added and the reaction mixture was stirred for 4 hours until the clear solution 

turned to a thick suspension. The solid was then filtered and washed with a minimum of cold 

MeOH (2 mL). The solid was dried on a high-vacuum line to afford the corresponding trifluoro 

borate salts 11a-11e. 

 

Figure 2.3 Indole-C2-trifluoroborate potassium salts. 

Potassium trifluoro(1-tert-butoxycarbonyl-1H-indol-2-yl)borate (11a) 

Following general procedure GP2, starting from synthesized 1-(tert-

butoxycarbonyl)-1H-indole 27a (4.50 g, 20.7 mmol., 1.00 equiv.) with 

commercially available 2,2,6,6-tetramethylpiperidine (4.60 mL, 27.0 

mmol. 1.30 equiv.), 2.5 M n-BuLi in hexane (12.4 mL, 31.1 mmol, 1.50 

equiv.), triisopropyl borate (14.3 mL, 62.1 mmol, 3.00 equiv.) and 4.5 M aqueous solution of 

KHF2 (13.8 mL, 62.0 mmol, 3.00 equiv.) Potassium trifluoro(1-tert-butoxycarbonyl-1H-indol-

2-yl)borate (5.20 g, 16.1 mmol, 78% yield) 11a was obtained as colorless solid. 1H NMR (400 

MHz, DMSO-d6) δ 8.02 (dq, J = 8.3, 0.9 Hz, 1H, ArH), 7.47 – 7.31 (m, 1H, ArH), 7.22 – 7.03 

(m, 2H, ArH), 6.46 (s, 1H, ArH), 1.59 (s, 9H, C(CH3)3).13C NMR (101 MHz, DMSO-d6) δ 

151.3, 137.4, 130.7, 121.7, 121.3, 119.3, 114.6, 111.7, 81.5, 27.7. The NMR values correspond 

to the reported ones.[17] NB: the Carbon-Boron bond is not observed as reported in literature.[18] 

 

 

Potassium trifluoro(1-(tert-butoxycarbonyl)-5-methoxy-1H-indol-2-yl)borate (11b) 

Following general procedure GP2, starting from synthesized tert-butyl 5-methoxy-1H-indole-

1-carboxylate 27b (1.50 g, 6.00 mmol, 1.00 equiv.), with commercially available 2,2,6,6-

tetramethylpiperidine (1.33 mL, 7.89 mmol. 1.30 equiv.), 1.6 M n-BuLi in hexane (5.70 mL, 

9.10 mmol, 1.50 equiv.) triisopropyl borate (4.20 mL, 18.2 mmol, 3.00 equiv.) and 4.5 M 

aqueous solution of KHF2 (4.02 mL, 18.1 mmol, 3.00 equiv.) Potassium trifluoro(1-(tert-
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butoxycarbonyl)-5-methoxy-1H-indol-2-yl)borate  11b (1.18 g, 3.34 

mmol, 55% yield). 1H NMR (400 MHz, CD3CN) δ 7.56 (d, J = 9.0 

Hz, 1H, ArH), 6.64 (d, J = 2.6 Hz, 1H, ArH), 6.44 (dd, J = 9.0, 2.6 

Hz, 1H, ArH), 6.30 – 6.16 (m, 1H, ArH), 3.47 (s, 3H, OCH3), 1.33 

(s, 9H, C(CH3)3).13C NMR (101 MHz, CD3CN) δ 156.1, 152.2, 133.2, 132.9, 116.7, 113.7, 

111.4, 103.1, 83.2, 55.8, 28.2. The NMR values correspond to the reported ones.[11] NB: the 

Carbon-Boron bond is not observed as reported in literature.[18] 

 

Potassium trifluoro(1-(tert-butoxycarbonyl)-6-methoxy-1H-indol-2-yl)borate (11c) 

Following general procedure GP2, starting from synthesized tert-

butyl 6-methoxy-1H-indole-1-carboxylate 27c (650 mg, 2.63 mmol, 

1.00 equiv.), with commercially available 2,2,6,6-

tetramethylpiperidine (582 L, 3.42 mmol. 1.30 equiv.), 2.5 M n-BuLi in hexane (1.58 mL, 3.94 

mmol, 1.50 equiv.), triisopropyl borate (1.82 mL, 7.89 mmol, 3.00 equiv.) and 4.5 M aqueous 

solution of KHF2 (1.75 mL, 7.89 mmol, 3.00 equiv.). Potassium trifluoro(1-(tert-

butoxycarbonyl)-6-methoxy-1H-indol-2-yl)borate 11c (813 mg, 2.30 mmol, 88% yield) was 

obtained as colorless solid. M.p. 185 °C, decomposition). 1H NMR (400 MHz, Acetone-d6) δ 

7.65 (d, J = 2.3 Hz, 1H, ArH), 7.25 (d, J = 8.4 Hz, 1H, ArH), 6.72 (dd, J = 8.4, 2.3 Hz, 1H, 

ArH), 6.54 (s, 1H, ArH), 3.79 (s, 3H, OCH3), 1.68 (s, 9H, C(CH3)3). 13C NMR (101 MHz, 

Acetone-d6) δ 157.2, 152.4, 139.4, 126.4, 120.4, 113.5, 111.0, 101.2, 82.8, 55.6, 28.4. IR ν  

2976 (w), 1730 (m), 1699 (m), 1619 (w), 1484 (m), 1440 (w), 1368 (s), 1222 (m), 1200 (s), 

1147 (s), 1092 (s), 1004 (s), 920 (s), 843 (s), 778 (m). HR-ESI-MS: calcd for C14H16BF3NO3
+ 

314.1175 [M - K]+; found 314.1187. NB: the Carbon-Boron bond is not observed as reported 

in literature.[18] 

Potassium trifluoro(1-(tert-butoxycarbonyl)-6-bromo-1H-indol-2-yl)borate (11d) 

Following general procedure GP2, starting from synthesized tert-butyl 

6-bromo-1H-indole-1-carboxylate 27d (1.50 g, 5.06 mmol, 1.00 

equiv.), with commercially available 2,2,6,6-tetramethylpiperidine 

(1.12 mL, 6.58 mmol. 1.30 equiv.), 2.5 M n-BuLi in hexane (3.04 mL, 7.60 mmol, 1.50 equiv.) 

triisopropyl borate (3.51 mL, 15.2 mmol, 3.00 equiv.) and 4.5 M aqueous solution of KHF2 

(3.38 mL, 15.2 mmol, 3.00 equiv.). Potassium trifluoro(1-(tert-butoxycarbonyl)-6-bromo-1H-

indol-2-yl)borate 11d (0.830 g, 2.06 mmol, 41% yield) was obtained as colorless solid. M.p: 
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200 °C, decomposition. 1H NMR (400 MHz, Acetone-d6) δ 8.26 (d, J = 1.9 Hz, 1H, ArH), 7.36 

(d, J = 8.2 Hz, 1H, ArH), 7.23 (dd, J = 8.2, 1.8 Hz, 1H, ArH), 6.63 (d, J = 0.8 Hz, 1H, ArH), 

1.69 (s, 9H, C(CH3)3). 13C NMR (101 MHz, Acetone-d6) δ 152.0, 139.4, 131.4, 125.1, 121.6, 

119.0, 115.7, 113.2, 83.5, 28.2 IR ν 1737 (w), 1709 (w), 1448 (w), 1357 (m), 1325 (s), 1247 

(w), 1211 (w), 1126 (s), 987 (s), 837 (w). HR-ESI-MS: calcd for C13H13B
79BrF3NO2

+ 362.0175 

[M - K]+; found 362.0180. NB: the Carbon-Boron bond is not observed as reported in 

literature.[18] 

Potassium trifluoro(1-(tert-butoxycarbonyl)-3-methyl-1H-indol-2-yl)borate (11e) 

Following general procedure GP2, starting from synthesized tert-butyl 6-

methoxy-1H-indole-1-carboxylate 27e (2.00 g, 8.65 mmol, 1.00 equiv.), 

with commercially available 2,2,6,6-tetramethylpiperidine (1.91 mL, 11.2 

mmol. 1.30 equiv.), 2.5 M n-BuLi in hexane (5.20 mL, 12.9 mmol, 1.50 

equiv.), triisopropyl borate (6.00 mL, 25.9 mmol, 3.00 equiv.) and 4.5 M aqueous solution of 

KHF2 (5.80 mL, 25.9 mmol, 3.00 equiv.). Potassium trifluoro(1-(tert-butoxycarbonyl)-3-

methyl-1H-indol-2-yl)borate 11e (2.50 g, 7.40 mmol, 86% yield) was obtained as colorless 

solid, (Mp: 205 °C). 1H NMR (400 MHz, Acetone-d6) δ 7.96 – 7.86 (m, 1H, ArH), 7.48 – 7.34 

(m, 1H, ArH), 7.19 – 6.99 (m, 2H, ArH), 2.34 (s, 3H, CH3), 1.66 (s, 9H, C(CH3)3). 13C NMR 

(101 MHz, Acetone-d6) δ 152.4, 137.8, 133.8, 122.9, 121.8, 121.1, 118.3, 115.5, 82.6, 28.3, 

10.3.IR ν 2977 (w), 1726 (s), 1454 (w), 1374 (m), 1327 (s), 1238 (m), 1135 (s), 956 (s), 874 

(m), 740 (s). HR-ESI-MS: calcd for C14H16BF3NO2
+ 298.1226 [M - K]+; found 298.1230. NB: 

the Carbon-Boron bond is not observed as reported in literature.[18] 

Synthesis of potassium trifluoro(1-(tosyl)-1H-indol-2-yl)borate (11f) 

 

Following a reported procedure,[19] 1.6 M nBuLi in hexane (9.38 mL, 15.0 mmol, 1.5 equiv.) 

was added dropwise to a solution of N-tosyl-1H-indole 30 (2.71 g, 10.0 mmol, 1.00 equiv) 50 

mL of tetrahydrofuran at -78 °C. The reaction mixture was heated to room temperature and 

stirred for an additional 20 minutes. After cooling to -78 °C., triisopropyl borate (3.92 mL 17.0 

mmol, 1.70 equiv) was added. After 10 minutes of addition, the reaction was allowed to warm 
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to room temperature and stirred overnight. The reaction mixture was quenched with H2O (30 

mL), slowly acidified with 10% HCl at 0 °C (pH:6), and extracted with EtOAc (3 x 50 mL). 

The combined organic layers were dried over magnesium sulfate and evaporated under reduced 

pressure to give 3.15 g of a green oil. The crude product was used without further purification 

in the next reaction. The crude product was dissolved in MeOH (100 mL) and cooled to 0 °C. 

A 4.5 M solution of KHF2 in H2O (6.6 mL, 30 mmol, 3 equiv.) was slowly added and the 

resulting pink thick suspension was stirred at r.t. for 4 hours. The solid was filtered and dried 

under reduced pressure and washed with a minimum of cold MeOH (3 mL). The solid was dried 

on a high-vacuum line to afford the corresponding trifluoro borate salt potassium trifluoro(1-

(tosyl)-1H-indol-2-yl)borate 11f (1.65 g, 4.40 mmol, 44% yield) as colorless solid. M.p. 235 

°C. 1H NMR (400 MHz, Acetone-d6) δ 8.07 (dd, J = 8.8, 3.1 Hz, 3H, ArH), 7.39 – 7.25 (m, 

1H, ArH), 7.14 (d, J = 8.1 Hz, 2H, ArH), 7.11 – 6.99 (m, 2H, ArH), 6.45 (d, J = 0.8 Hz, 1H, 

ArH), 2.22 (s, 3H, CH3). 13C NMR (101 MHz, Acetone-d6) δ 144.2, 138.9, 138.4, 132.7, 129.8, 

128.3, 122.9, 122.8, 120.6, 116.8, 115.2, 21.3. IR ν  2040 (w), 1834 (w), 1417 (s), 1217 (s), 

853 (w). HR-ESI-MS: calcd for: Calcd for C15H12BF3NO2S
+ 338.0634[M - K]+; Found 

338.0626. NB: the Carbon-Boron bond is not observed las reported in literature.[18] 

Synthesis and characterization of tryptamine trifluoroborates (11g) 

 

Following a reported procedure,[20] a flame dried 20-mL pressure flask was charged with (1,5-

cyclooctadiene)(methoxy)iridium(I) dimer (17.0 mg, 30.0 µmol, 1.50 mol%), 4,4'-di-tert-butyl-

2,2'-dipyridyl (14.0 mg, 50.0 µmol, 3.00 mol%), bis(pinacolato)diboron (868 mg, 3.42 mmol, 

2.00 equiv.), N,N-phthaloyltryptamine 33 (500  mg, 1.72 mmol), and a stirring bar and sealed 

with a septum under an atmosphere of argon. Anhydrous dichloromethane (11 mL) was added 

via syringe to give a colorless suspension. The septum was replaced with the pressure flask’s 

Teflon seal and the entire mixture was heated in an oil bath set to 65 °C. After completion of 

reaction (checked by TLC; Pentane: EtOAc 7:3), the reaction mixture is filtered through a small 

silica path and evaporate to dryness. The crude reaction mixture was used for the next step. The 

crude product was dissolved in 10 mL MeOH, and cooled at 0 °C, then a 4.5 M solution of 
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KHF2 (1.20 mL, 5.20 mmol) was slowly added, and the reaction mixture was stirred for 4 hours 

until the clear solution turned thick. The solid was filtered and dried under reduced pressure 

and washed with a minimum of cold MeOH. The solid was dried on a high-vacuum line to 

afford as potassium trifluoro(2-(2-(1H-indol-3-yl)ethyl)isoindoline-1,3-dione) borate 11g (523 

mg, 1.32 mmol, 77%) as yellow solid. M.p. 210 °C, decomposition. 1H NMR (400 MHz, 

DMSO-d6) δ 9.90 (s, 1H, NH), 7.90 – 7.74 (m, 4H, ArH), 7.46 (d, J = 7.6 Hz, 1H, ArH), 7.23 

(d, J = 7.7 Hz, 1H, ArH), 6.81 (dt, J = 20.5, 7.1 Hz, 2H, ArH), 3.74 (q, J = 9.0, 8.3 Hz, 2H, 

NCH2), 3.04 (t, J = 7.8 Hz, 2H, NCH2-CH2-). 13C NMR (101 MHz, DMSO-d6) δ 167.9, 136.5, 

134.1, 131.8, 129.1, 122.8, 118.3, 116.8, 116.7, 111.0, 110.6, 39.1, 24.6. IR ν 3431 (w), 1705 

(m), 1616 (m), 1399 (w), 1325 (m), 1137 (s), 959 (s), 742 (s). HR-ESI-MS: calcd for 

C18H13BF3K0N2O2
+ 357.1022 [M - K]+; found 357.1028. NB: the Carbon-Boron bond is not 

observed as reported in literature.[18] 
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2.3 Optimization of the synthesis of C2-IndoleBX. 

 

 

Entry X R 
Hypervalent 

reagent (Y,Z) 

Promoter 

(mol%) 
Solvents Yielda 

1 BF3K Boc 12c Zn(OTf)2 DCM -b 

2  BF3K Boc 12f Zn(OTf)2 DCM -b 

3  BF3K Boc 12c ZnF2 DCM - 

4  BF3K Boc 12f ZnF2 DCM - 

5  BF3K Boc 12c TfOH DCM -b 

6  BF3K Boc 12f TfOH DCM -b 

7  SiMe3 H 12c TMSOTf MeCN - 

8  BF3K Boc 12ac NaBF4 MeCN 27%d,e 

9 BF3K Boc 12e NaBF4 MeCN 86%d,e 

10 SiMe3 Me 12e NaBF4 MeCN, -e,f 

11 BF3K Boc 12e AgBF4 MeCN, -b,f 

12 BF3K Boc 12d AgBF4 MeCN -b,f 

a) Substrate (0.25 mmol), hypervalent iodine reagent 12a-12d, 12g-12h (0.25 mmol), Promoter (20 mol%.) and 

solvent (0.05 M) at 25 °C. all reactions are carried out overnight (except entry 8: carried out for 30 h; entry 9: best 

yield was observed only in 2 hours) b) Degradation of reagent, no expected product was observed. c) This reagent 

was prepared in situ d) Isolated yield after flash chromatography is given. e) Entries 8-10, reactions were quenched 

with 5% aqueous NaBF4 solution. f) Entries 10-12, the reaction initially run at room temperature, no consumption 

of starting material was observed after 6 h then reactions were allowed to refluxing temperature for additional 12 

h 
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2.4 Preparation of PyrroleBX and IndoleBX Reagents. 

General Procedure GP3 for the Synthesis of C3-Heterocyclic-BX Reagents 2a-2f. 

 

Note: prior to the reaction, the glassware requires to be carefully cleaned with aqua regia to 

remove all metal traces; the commercially available heterocyclic starting material were 

purified through a short plug of silica prior to being used. 

 

GP3:  for 1.00 mmol: in an open air flask, the corresponding heterocycle (1.00 mmol, 1.00 

equiv.), freshly prepared acetoxy-benziodoxolone 12f (1.10 mmol, 1.10 equiv.) and Zinc(II) 

trifluoromethanesulfonate (72.7 mg, 0.200 mmol, 20 mol%.) were dissolved in DCM (20 mL, 

0.05 M). The reaction was stirred while being monitored by TLC (Pentane:EtOAc 9:1 for the 

starting materials, DCM:MeOH 9:1 for the products). Upon consumption of the starting 

material, the crude product was directly submitted to short-path flash chromatography 

(DCM:MeOH 10:1) to afford the desired Heterocyclic-BX compounds 2a-2f. 

 

1-(3-1-Methyl-1H-indole)-1H-1λ3 -benzo[b]iodo-3(2H)-one (2a)  

The synthesis of 1-(3-1-methyl-1H-indole)-1H-1λ3 -benzo[b]iodo-

3(2H)-one 2a was scaled up to 10 mmol without reoptimization of the 

protocol. 

Following procedure GP3: starting from commercially available 1-

methyl-1-H-indole 5 (1.35 g, 10.0 mmol), after 16 hours 1-(3-1-methyl-

1H-indole)-1H-1λ3 -benzo[b]iodo-3(2H)-one 2a (3.28 g, 8.70 mmol, 87% yield) was obtained 

as a brown foam. Rf: 0.4 (DCM:MeOH 9:1). 1H NMR (400 MHz, CDCl3) δ 8.40 (dd, J = 7.5, 

1.7 Hz, 1H, ArH), 7.82 (s, 1H, NCHCI), 7.55 – 7.48 (m, 2H, ArH), 7.39 – 7.35 (m, 2H, ArH), 

7.34 – 7.23 (m, 2H, ArH + CDCl3), 6.84 (d, J = 8.3 Hz, 1H, ArH), 4.02 (s, 3H, NCH3). 13C 

NMR (101 MHz, CDCl3) δ 166.8, 138.6, 137.6, 133.4, 133.3, 132.5, 130.5, 129.3, 125.2, 124.3, 

122.6, 119.9, 116.1, 110.7, 78.9, 33.9. IR ν 3107 (w), 3059 (w), 2948 (w), 1599 (s), 1552 (m), 
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1506 (m), 1454 (w), 1392 (m), 1277 (s), 1245 (s), 1225 (s), 1166 (s), 1131 (m), 1031 (s), 1004 

(w), 842 (w).  HR-ESI-MS calcd for C16H13INO2
+ [M+H]+ 377.9986, found 377.9990.  

1-(3-5-Iodo-1-methyl-1H-indole)-1H-1λ3 -benzo[b]iodo-3(2H)-one (2b) 

Following procedure GP3: starting from 5-iodo-1-methyl-1H-indole 

34d (257 mg, 1.00 mmol), after 16 hours 1-(3-5-iodo-1-methyl-1H-

indole)-1H-1λ3 -benzo[b]iodo-3(2H)-one 2b (380 mg, 0.755 mmol, 76% 

yield) was obtained as a yellow amorphous solid. NB: the reagent is 

unstable in acidic deuterated solvents and it decompose in short time, 

we recommend the immediate use after the synthesis. The proton NMR presents about 21% 

of the open protonated form. Rf: 0.3 (DCM:MeOH 9:1). 1H NMR (400 MHz, CDCl3) δ 8.24 

(m, 1H, ArH), 7.83 (s, 1H, NCHCI), 7.58 – 7.47 (m, 2H, ArH), 7.26 (m, 1H, ArH + CDCl3 ), 

7.21 - 7.18 (m, 2H, ArH), 6.67 (d, J = 8.1 Hz, 1H, ArH), 3.87 (s, 3H, CH3N). 13C NMR (101 

MHz, CDCl3) δ 168.6, 140.5, 136.8, 133.7, 132.6, 132.3, 131.4, 130.3, 128.1, 126.0, 122.3, 

119.1, 115.7, 112.9, 86.1, 34.0. IR ν 3092 (w), 3061 (w), 1600 (s), 1584 (m), 1557 (m), 1503 

(m), 1436 (w), 1422 (w), 1371 (m), 1265 (s), 1245 (s), 1225 (m), 1163 (m), 1113 (w), 1031 (s), 

1004 (w), 836 (w).  HR-ESI-MS calcd for C16H12I2NO2
+ [M+H]+ 503.8952; found 503.8952.  

 

1-(3-1-Methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole)-1H-1λ3 –benzo 

[b]iodo-3(2H)-one (2c) 

Following procedure GP3: starting from commercially available 1-

methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (149 

mg, 1.00 mmol), after 16 hours 1-(3-1-methyl-5-(4,4,5,5-tetramethyl-

1,3,2-dioxaborolan-2-yl)-1H-indole)-1H-1λ3 -benzo[b]iodo-3(2H)-one 

2c (276 mg, 0.549 mmol, 54% yield) was obtained as an orange 

amorphous solid. Rf: 0.46 (DCM:MeOH 9:1). 1H NMR (400 MHz, CD2Cl2) δ 8.32 (dd, J = 

7.5, 1.7 Hz, 1H, ArH), 7.93 (s, 1H, NCHCI), 7.81 (dd, J = 8.4, 1.1 Hz, 1H, ArH), 7.74 (s, 1H, 

CCHCBPin), 7.59 – 7.48 (m, 2H, ArH), 7.31 (ddd, J = 8.6, 7.1, 1.7 Hz, 1H, ArH), 6.85 (dd, J 

= 8.3, 0.9 Hz, 1H, ArH), 3.99 (s, 3H, NCH3), 1.30 (s, 12H, CBPin). 13C NMR (101 MHz, 

CD2Cl2) δ 167.0, 140.1, 139.6, 134.1, 133.8, 132.6, 131.0, 130.5, 129.5, 127.6, 126.0, 117.1, 

110.7, 84.5, 80.3, 34.4, 25.2. NB: the Carbon-Boron bond is not observed as reported in 

literature.[18] IR ν 3095 (w), 2979 (w), 1611 (s), 1558 (w), 1507 (w), 1436 (w), 1360 (s), 1303 
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(w), 1263 (w), 1142 (s), 1114 (w), 1074 (w), 970 (w), 861 (w). HR-ESI-MS  calcd for 

C22H24BINO4
+ [M+H]+ 504.0838; found 504.0835.  

1-(3-1,2-Dimethyl-1H-indole)-1H-1λ3 -benzo[b]iodo-3(2H)-one (2d) 

Following procedure GP3: starting from 2-methyl-1-methyl-1H-indole 

34a (145 mg, 1.00 mmol), after 16 hours 1-(3-1,2-dimethyl-1H-indole)-

1H-1λ3 -benzo[b]iodo-3(2H)-one 2d (364 mg, 0.930 mmol, 93% yield) 

was obtained as a dark violet foam. Rf: 0.43 (DCM:MeOH 9:1).).  1H 

NMR (400 MHz, CDCl3) δ 8.42 (dd, J = 7.3, 1.7 Hz, 1H, ArH), 7.52 (td, 

J = 7.3, 0.9 Hz, 1H, ArH), 7.44 (d, J = 8.2 Hz, 1H, ArH), 7.35 (m, 2H, ArH), 7.28 (m, 1H, 

ArH), 7.23 (ddd, J = 8.2, 6.9, 1.0 Hz, 1H, ArH), 6.77 (m, 1H, ArH), 3.91 (s, 3H, CH3N), 2.65 

(s, 3H, ICH=CHCH3). 13C NMR (101 MHz, CDCl3) δ 166.8, 145.3, 137.9, 133.7, 133.2, 132.7, 

130.5, 128.9, 124.7, 123.6, 122.4, 119.2, 115.5, 110.4, 80.1, 31.1, 13.2. IR ν 3055 (w), 2987 

(w), 2948 (w), 1717 (w), 1605 (s), 1584 (m), 1553 (m), 1516 (w), 1472 (w), 1437 (w), 1395 

(m), 1378 (m), 1268 (m), 1154 (w), 1032 (w), 1011 (w), 829 (w). HR-ESI-MS calcd for 

C17H15INO2
+ [M+H]+ 392.0142; found 392.0146. 

1-(2-1-Methyl-1H-pyrrole)-1H-1λ3 -benzo[b]iodo-3(2H)-one (2e) and 1-(3-1-methyl-1H-

pyrrole)-1H-1λ3 -benzo[b]iodo-3(2H)-one (2e’). 

Following procedure GP3: starting from 

commercially available 1-methyl-1H-pyrrole 

(0.890 ml, 1.00 mmol), after 12 hours 1-(2-1-

methyl-1H-pyrrole)-1H-1λ3 -benzo[b]iodo-

3(2H)-one 2e and 1-(3-1-methyl-1H-pyrrole)-

1H-1λ3 -benzo[b]iodo-3(2H)-one 2e’ were obtained as a 1:1 mixture (310 mg, 0.948 mmol, 

overall yield 95%) as an off-white, sticky amorphous solid. Rf: 0.5 (DCM:MeOH 9:1). The two 

compounds were separated by slow flash column chromatography (EtOAc:MeOH 9:1).  

1-(2-1-methyl-1H-pyrrole)-1H-1λ3 -benzo[b]iodo-3(2H)-one 2e (152 mg, 

0.465 mmol, 47% yield; off-white, sticky amorphous solid) Rf: 0.3 

(EtOAc:MeOH 9:1). 1H NMR (400 MHz, CD3OD) δ 8.24 (dd, J = 7.5, 1.6 

Hz, 1H, ArH), 7.65 (td, J = 7.4, 1.0 Hz, 1H, ArH), 7.55 (m, 1H, ArH), 7.27 

(t, J = 2.1 Hz, 1H, ArH), 7.01 (dd, J = 3.9, 1.6 Hz, 1H, ArH), 6.72 (dd, J = 

8.3, 1.0 Hz, 1H, ArH), 6.43 (dd, J = 3.9, 2.1 Hz, 1H, ArH), 3.78 (s, 1H, NCH3). 13C NMR (101 

MHz, CD3OD) δ 170.1, 135.5, 134.2, 133.2, 131.9, 131.4, 127.7, 126.6, 119.4, 112.9, 96.0, 
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37.4. IR ν 3415 (w), 3105 (w), 3049 (w), 2950 (w), 1604 (s), 1584 (m), 1558 (w), 1508 (w), 

1437 (w), 1346 (m), 1288 (m), 1223 (w), 1149 (w), 1091 (w), 1047 (w), 1005 (w), 829 (m).  

HR-ESI-MS  calcd for C12H11INO2
+ [M+H]+ 327.9829; found 327.9842.  

1-(3-1-methyl-1H-pyrrole)-1H-1λ3 -benzo[b]iodo-3(2H)-one 2e’ (158 

mg, 0.483 mmol, 48% yield; off-white, sticky amorphous solid). Rf: 

0.25 (EtOAc:MeOH 9:1). 1H NMR (400 MHz, CD3OD) δ 8.15 (dd, J 

= 7.5, 1.7 Hz, 1H, ArH), 7.53 (td, J = 7.3, 1.1 Hz, 1H, ArH), 7.49 – 7.40 

(m, 2H, ArH), 7.04 – 6.98 (m, 2H, ArH), 6.58 (d, J = 1.2 Hz, 1H, ArH), 

3.85 (s, 3H, NMe). 13C NMR (101 MHz, CD3OD) δ 170.0, 134.9, 134.2, 133.4, 132.8, 131.5, 

127.9, 127.7, 117.4, 116.6, 82.8, 37.1. IR ν 3447 (w), 3106 (w), 2947 (w), 2863 (w), 1603 (s), 

1591 (m), 1558 (m), 1512 (m), 1437 (w), 1354 (m), 1294 (w), 1110 (m), 1083 (w), 1007 (w), 

829 (m).  HR-ESI-MS calcd for C12H11INO2
+ [M+H]+ 327.9829; found 327.9842.  

1-(2-1-benzyl-1H-pyrrole)-1H-1λ3 -benzo[b]iodo-3(2H)-one (2f) and 1-(3-1-benzyl-1H-

pyrrole)-1H-1λ3 -benzo[b]iodo-3(2H)-one (2f’) 

Following procedure GP3: starting from 

commercially available 1-benzyl-1H-pyrrole 

(0.890 ml, 1.00 mmol), after 12 hours 1-(2-1-

benzyl-1H-pyrrole)-1H-1λ3 -benzo[b]iodo-

3(2H)-one 2f and 1-(3-1-benzyl-1H-pyrrole)-

1H-1λ3 -benzo[b]iodo-3(2H)-one 2f’ were 

obtained in 3:1 mixture (345 mg, 0.856 mmol, overall yield 86%), as a colorless amorphous 

solid. Rf: 0.7 (DCM:MeOH 9:1). The two compounds were separated by slow flash column 

chromatography (EtOAc:MeOH 9:1). 

 

1-(2-1-benzyl-1H-pyrrole)-1H-1λ3 -benzo[b]iodo-3(2H)-one 2f (85.0 mg, 

0.211 mmol, 21% yield); colorless foam. Rf: 0.5 (EtOAc:MeOH 9:1). 1H 

NMR (400 MHz, 2:1 mixture CD3OD:C6D6, referered to CD3OD) δ 8.18 

(dd, J = 7.5, 1.6 Hz, 1H, ArH), 7.28 (t, J = 7.4 Hz, 1H, ArH), 7.10 (t, J = 2.2 

Hz, 1H, ArH), 6.92 (m, J = 7.6, 2.9 Hz, 6H, ArH + C6D6), 6.71 (dd, J = 3.9, 

1.7 Hz, 1H, ArH), 6.35 (t, J = 3.4 Hz, 1H, ArH), 6.23 (d, J = 8.3 Hz, 1H, 

ArH), 4.90 (s, 2H, NCH2Ph). 13C NMR (101 MHz, 2:1 mixture CD3OD:C6D6, referered to 

CD3OD) δ 169.8, 136.9, 134.6, 132.7, 131.2, 131.1, 129.5, 129.0, 128.5, 127.2, 119.2, 112.9, 
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94.8, 54.7 (two Carbon signals under the deuterated benzene). IR ν 3109 (w), 3064 (w), 2968 

(w), 2875 (w), 1609 (s), 1585 (m), 1558 (w), 1503 (w), 1456 (w), 1440 (w), 1357 (m), 1277 

(w), 1103 (m), 1079 (w), 1032 (w), 1031 (w), 830 (w).  HR-ESI-MS calcd for 

C18H15INO2
+ [M+H]+ 404.0142; found 404.0140. 

 

1-(3-1-benzyl-1H-pyrrole)-1H-1λ3 -benzo[b]iodo-3(2H)-one 2f’ 

(260 mg, 0.645 mmol, 65% yield); colorless foam. Rf: 0.46 

(EtOAc:MeOH 9:1). 1H NMR (400 MHz, 2:1 mixture 

CD3OD:C6D6, refered to CD3OD) δ 8.29 (dd, J = 7.5, 1.7 Hz, 1H, 

ArH), 7.36 (t, J = 7.3 Hz, 1H, ArH), 7.30 – 7.20 (m, 3H ArH + C6D6), 7.18 – 7.08 (m, 3H, 

ArH), 6.97 (d, J = 2.0 Hz, 1H, ArH), 6.83 – 6.78 (m, 2H, ArH), 6.30 (dd, J = 3.0, 1.7 Hz, 1H, 

ArH), 4.93 (s, 2H, NCH2Ph). 13C NMR (101 MHz, 2:1 mixture CD3OD:C6D6, refered to 

CD3OD) δ 168.7, 136.8, 133.5, 133.0, 131.8, 130.9, 130.3, 128.8, 128.1, 127.4, 126.2, 125.5, 

116.3, 115.3, 82.4, 53.5. IR ν 3409 (w), 3114 (w), 2971 (w), 1609 (s), 1585 (m), 1558 (w), 

1456 (w), 1438 (w), 1365 (m), 1277 (s), 1160 (w), 1079 (w), 1032 (m), 835 (w).  HR-ESI-MS 

calcd for C18H15INO2
+ [M+H]+ 404.0142; found 404.0140. 

 

1-(3-1-Methyl-1H-indole)-3,3-dimethyl-1,3-dihydro-1λ3-benzo[d][1,2]iodoxole (3a) 

Following procedure GP3 (on 0.100 mmol scale): starting from 

commercially available 1-methyl-1-H-indole 5 (26.2 mg, 0.100 mmol) 

and 3,3-dimethyl-1λ3-benzo[d][1,2]iodoxol-1(3H)-yl acetate 12e 

(70.4 mg, 0.220 mmol, 1.10 equiv.), after 16 hours 1-(3-1-methyl-1H-

indole)-3,3-dimethyl-1,3-dihydro-1λ3-benzo[d][1,2]iodoxole 3a (40.1 

mg, 0.102 mmol, 51% yield) was obtained as a brown foam. Rf: 0.7 (DCM:MeOH 9:1). IR ν 

3115 (w), 3050 (w), 2986 (w), 1509 (w), 1455 (w), 1372 (w), 1284 (s), 1247 (s), 1225 (m), 

1166 (m), 1110 (w), 1031 (s), 992 (w).1H NMR (400 MHz, CDCl3) δ 7.92 (s, 1H, NCHCI), 

7.54 (m, 1H, ArH), 7.47 (m, 1H, ArH), 7.45 – 7.40 (m, 3H, ArH), 7.34 (ddd, J = 8.0, 6.9, 1.0 

Hz, 1H, ArH), 7.08 (ddd, J = 8.7, 5.8, 2.9 Hz, 1H, ArH), 6.87 (m, 1H, ArH), 4.02 (s, 3H, NCH3), 

1.75 (s, 6H, C(CH3)2). 13C NMR (101 MHz, CDCl3) δ 146.3, 140.2, 137.7, 130.9, 130.4, 128.9, 

128.7, 127.0, 124.8, 123.3, 119.6, 111.0, 108.9, 74.6, 72.9, 34.2, 30.5. HR-ESI-MS calcd for 

C18H19INO+ [M+H]+ 392.0506; found 392.0510.  
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1-(3-1-Methyl-1H-indole)-3,3-bis(trifluoromethyl)-1,3-dihydro-1λ3-

benzo[d][1,2]iodaoxole (4a) 

 Following procedure GP3 (on 0.100 mmol scale): starting from 

commercially available 1-methyl-1-H-indole 5 (26.2 mg, 0.100 

mmol), 1-acetoxy-1,3-dihydro-3,3-bis(trifluoromethyl)-1,2-

benziodoxole 12f (94.0 mg, 0.220 mmol, 1.10 equiv.) and in Et2O 

0.05 M, after 16 hours 1 (3-1-methyl-1H-indole)-3,3-

bis(trifluoromethyl)-1,3-dihydro-1λ3-benzo[d][1,2]iodaoxole 4a (56.1 mg, 0.112 mmol, 56% 

yield) was obtained as a brown foam. Rf: 0.7 (DCM:MeOH 9:1). IR ν 3069 (w), 2922 (w), 

2852 (w), 1732 (w), 1504 (m), 1457 (w), 1263 (s), 1212 (m), 1178 (s), 1157 (s), 1130 (m), 1047 

(w), 948 (s). 1H NMR (400 MHz, CDCl3) δ 7.86 (m, 1H, ArH), 7.53 (s, 1H, NCHCI), 7.52 – 

7.46 (m, 3H, ArH), 7.41 (ddd, J = 8.3, 7.0, 1.1 Hz, 1H, ArH), 7.28 (m, 1H, ArH), 7.23 (m, 1H, 

ArH), 6.95 (d, J = 8.3 Hz, 1H, ArH), 3.96 (s, 3H, NCH3). 13C NMR (101 MHz, CDCl3) δ 137.5, 

137.4, 131.7, 131.4, 130.1, 129.9, 126.9, 123.9, 123.2 (m), 122.1, 120.4, 112.2, 110.3, 84.2, 

81.55 (dt, J = 57.1, 28.5 Hz), 33.6 (one aromatic Carbon signal not resolved). HR-ESI-MS 

calcd for C18H13F6INO+ [M+H]+ 499.9941; found 499.9946. 

General Procedure GP4 for the Synthesis of C2-IndoleBX Reagents 13a-13b. 

 

Note: prior to the reaction, the glassware requires to be carefully cleaned with aqua regia to 

remove all metal traces; the commercially available heterocyclic starting material were 

purified through a short plug of silica prior to being used. 

Following a reported procedure,[21] commercially available spray-dried KF (581 mg, 10.0 

mmol) was dried in a schlenk flask at 150 °C under vacuum over 5 min. After cooling down to 

r.t., 1-chloro-1,2-benziodoxol-(1H)-one 12d (1.00 equiv.) was added to the vial, followed by 

anhydrous MeCN (5 mL). The yellow slurry of 12a was stirred for 2 h at 80 °C. After cooling 

down to r.t., the suspension was filtered over a sintered glass filter in a dry schlenk flask under 

inert conditions (NB: oxygen has to be completely avoided). A solution of the correspondent 
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potassium trifluoroborate substrate 11a or 11f (2.00 mmol, in 15 mL MeCN, 1.00 equiv.) was 

added and the resulting solution stirred at r.t. The reaction was monitored in TLC (DCM:MeOH 

9:1). After 2 hours the solution slightly changed its color. The reaction was left running 

overnight, and stopped after 30 h. Then 5% aqueous NaBF4 (60 mL) was added and the reaction 

mixture was vigorously stirred for 1 additional hour. (The reaction was stopped upon 

completion checked by TLC). The quenched reaction mixture was extracted using DCM (2x40 

mL), the combined organic layers washed with saturated NaHCO3 solution (40 mL) and then 

the organic layer dried over Na2SO4. The solvent was then removed under reduced pressure and 

the crude product purified via column chromatography (DCM:MeOH 10:1) to afford pure 

reagents 13a-13b. 

1-(Tert-butyl 1H-indole-1-carboxylate)-1H-1λ3 -benzo[b]iodo-3(2H)-one (13a)  

Following general procedure GP4, starting from potassium trifluoro(1-

tert-butoxycarbonyl-1H-indol-2-yl)borate 11a  (646 mg, 2.00 mmol, in 

15 mL MeCN, 1.00 equiv.) and 1-chloro-1,2-benziodoxol-(1H)-one 

11a (565 mg, 2.00 mmol, 1.00 equiv.), 1-(tert-butyl 1H-indole-1-

carboxylate)-1H-1λ3 -benzo[b]iodo-3(2H)-one 13a (250 mg, 0.540 

mmol, 27%), was obtained as a brown solid. M.p. 150 °C, decomposition. Rf: 0.5 (DCM: 

MeOH 9:1). 1H NMR (400 MHz, CDCl3) δ 8.41 (dd, J = 7.6, 1.7 Hz, 1H, ArH), 8.31 (d, J = 

8.5 Hz, 1H, ArH), 7.74 – 7.59 (m, 2H, ArH), 7.55 – 7.42 (m, 3H, ArH), 7.37 (t, J = 7.6 Hz, 1H, 

ArH), 7.00 (d, J = 8.4 Hz, 1H, ArH), 1.44 (s, 9H, C(CH3)3). 13C NMR (101 MHz, CDCl3) δ 

166.7, 148.5, 138.0, 134.0, 132.4, 130.9, 129.5, 127.5, 126.1, 126.0, 124.0, 121.7, 119.6, 116.1, 

105.9, 86.8, 27.8. (One aromatic carbon not resolved). IR ν 1728 (m), 1636 (s), 1567 (s), 1451 

(m), 1349 (m), 1227 (m), 1156 (w), 968 (w). HR-ESI-MS: calcd for C20H19INO4
+ 464.0353 

[M + H]+; found 464.0353. 

1-(2-1-(Tosyl)-1H-indol-2-yl)-1H-1λ3 -benzo[b]iodo-3(2H)-one (13b)  

Following general procedure GP4, starting from potassium trifluoro(1-

(tosyl)-1H-indol-2-yl)borate  11f (943 mg, 2.50 mmol, 1.00 equiv.) and 

1-chloro-1,2-benziodoxol-(1H)-one xx (706 mg, 2.50 mmol, 1.00 

equiv.), 1-(2-1-(tosyl)-1H-indol-2-yl)-1H-1λ3 -benzo[b]iodo-3(2H)-

one 13b (205 mg, 0.400 mmol, 16% yield) was obtained as colorless 

solid. M.p.: 185 °C. Rf: 0.5 (DCM: MeOH 9:1). 1H NMR (400 MHz, Acetone-d6) δ 8.22 (d, J 

= 8.5 Hz, 1H, ArH), 8.08 (d, J = 7.4 Hz, 1H, ArH), 7.92 – 7.84 (m, 2H, ArH), 7.73 (s, 1H, ArH), 
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7.67 (d, J = 7.9 Hz, 1H, ArH), 7.54 (t, J = 7.3 Hz, 1H, ArH), 7.47 (ddd, J = 8.5, 7.2, 1.3 Hz, 

1H, ArH), 7.43 – 7.35 (m, 1H, ArH), 7.35 – 7.27 (m, 1H, ArH), 7.21 (d, J = 8.1 Hz, 2H, ArH), 

6.82 (d, J = 8.4 Hz, 1H, ArH), 2.20 (s, 3H, CH3). 13C NMR (101 MHz, Acetone-d6) δ 166.9, 

147.1, 138.6, 135.4, 134.9, 133.9, 132.2, 131.3, 131.2, 131.1, 128.2, 128.1, 127.9, 127.8, 125.1, 

123.1, 120.0, 115.6, 110.1, 21.4. IR ν 1646 (w), 1603 (s), 1558 (w), 1370 (m), 1173 (s), 1089 

(s), 1007 (w), 827 (w). HR-ESI-MS: calcd for C22H16INNaO4S
+ 539.9737 [M + Na]+; found 

539.9736. 

 

General Procedure GP5 for the Synthesis of C2-IndoleDBX Reagents 13c-13i. 

 

Note: prior to the reaction, the glassware requires to be carefully cleaned with aqua regia to 

remove all metal traces; the commercially available heterocyclic starting material were 

purified through a short plug of silica prior to being used. 

 

In a dry round bottom flask, commercially available 1-fluoro-3,3-dimethyl-1,2-benziodoxole 

12b (1.00 equiv.) was dissolved in anhydrous MeCN (0.050 M). Potassium trifluoro indole 

borate salt 11 (1.00 equiv.) was added, and the mixture was stirred at r.t under inert atmosphere. 

After 2 hour 5% aqueous NaBF4 (30 mL/mmol, 13.6 equiv.) was added and  the reaction 

mixture was additionally stirred for 1 hour. (The reaction was stopped upon completion, 

checked by TLC (DCM: MeOH 9:1). The quenched reaction mixture was extracted using DCM 

(2x20 mL), the combined organic layers were washed with saturated NaHCO3 solution (20 mL), 

then the organic layer was dried over Na2SO4. Then the solvent was removed under reduced 

pressure. Column chromatrography purification with EtOAc: MeOH (10:1) afforded the desired 

C2-IndoleDBXs 13c-13i. 

 

 

 

 



S26 

 

1-(2-Tert-butyl 1H-indole-1-carboxylate)-3,3-dimethyl-1,3-dihydro-1λ3-

benzo[d][1,2]iodoxol  (13c) 

Following general procedure GP5, starting from potassium 

trifluoro(1-(tert-butoxycarbonyl-1H-indol-2-yl)borate 11a (168 mg, 

0.520 mmol, 1.00 equiv.) and commercially available 1-fluoro-3,3-

dimethyl-1,2-benziodoxole 12b (146 mg, 0.520 mmol, 1.00 equiv.), 

1-(2-tert-butyl 1H-indole-1-carboxylate)-3,3-dimethyl-1,3-dihydro-

1λ3-benzo[d][1,2] iodoxol  13c was obtained (215 mg, 0.450 mmol, 86%) as an off-white foam 

(M.p.: 128-133 °C). [Using same procedure this reaction was scaled up upto 5.00 mmol scale 

(1.40 g of Indole salt 11a)  and desired product 13c was obtained (2.02 g, 4.23 mmol, 85% 

yield) in same efficiency]. Rf: 0.6 (DCM: MeOH 9:1). 1H NMR (400 MHz, CDCl3) δ 8.34 (dd, 

J = 8.5, 1.0 Hz, 1H, ArH), 7.59 (dt, J = 7.8, 1.1 Hz, 1H, ArH), 7.46 (td, J = 7.3, 1.0 Hz, 1H, 

ArH), 7.43 – 7.36 (m, 2H, ArH), 7.32 – 7.26 (m, 1H, ArH), 7.20 – 7.16 (m, 1H, ArH), 7.15 (d, 

J = 0.8 Hz, 1H, ArH), 6.84 (dd, J = 8.3, 1.0 Hz, 1H, ArH), 1.54 (s, 6H, C(CH3)2), 1.46 (s, 9H, 

C(CH3)3).13C NMR (101 MHz, CDCl3) δ 149.3, 148.3, 137.7, 130.1, 129.9, 128.7, 127.0, 126.8, 

125.7, 123.1, 122.3, 120.9, 119.3, 115.8, 113.9, 85.0, 74.8, 32.3, 27.8. IR ν  2968 (w), 1729 (s), 

1435 (m), 1354 (s), 1325 (s), 1159 (s), 1136 (m), 1032 (m), 970 (m), 801 (m), 746 (s). HR-

ESI-MS: calcd for C22H25INO3
+ 478.0874 [M + H]+; found 478.0886. 

1-(2-1-Tosyl-1H-indole)-3,3-dimethyl-1,3-dihydro-1λ3-benzo[d][1,2] iodoxole (13d) 

Following general procedure GP5, starting from potassium 

trifluoro(1-(tosyl)-1H-indol-2-yl)borate  11f (566 mg, 1.50 mmol, 

1.00 equiv.) and commercially available 1-fluoro-3,3-dimethyl-1,2-

benziodoxole 12b (420 mg, 1.5 mmol, 1.00 equiv.), 1-(2-1-tosyl-1H-

indole)-3,3-dimethyl-1,3-dihydro-1λ3-benzo[d][1,2] iodoxole 13d 

(425 mg, 0.800 mmol, 53% yield) was obtained as colorless solid. M.p. 135-138 °C. Rf: 0.4 

(DCM: MeOH 9:1). 1H NMR (400 MHz, CDCl3) δ 8.31 (dd, J = 8.5, 1.0 Hz, 1H, ArH), 7.81 – 

7.74 (m, 2H, ArH), 7.56 (dt, J = 7.8, 1.1 Hz, 1H, ArH), 7.47 – 7.32 (m, 3H, ArH), 7.30 (td, J = 

7.6, 1.0 Hz, 1H, ArH), 7.18 – 7.11 (m, 3H, ArH), 7.07 (ddd, J = 8.4, 6.8, 1.7 Hz, 1H), 6.69 (dd, 

J = 8.3, 0.9 Hz, 1H, ArH), 2.31 (s, 3H, CH3), 1.58 (s, 6H, C(CH3)2).13C NMR (101 MHz, 

CDCl3) δ 148.3, 145.2, 137.6, 135.5, 130.6, 129.9, 129.8, 128.9, 127.1, 126.7, 126.4, 126.1, 

123.7, 123.6, 121.4, 120.2, 114.7, 114.4, 75.2, 31.5, 21.5. IR ν 2963 (w), 1597 (w), 1562 (w), 

1430 (m), 1366 (s), 1155 (s), 1090 (s), 951 (m). HR-ESI-MS: calcd for C24H23INO3S
+ 532.0438 

[M + H]+; found 532.0436. 
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1-(2-5-Methoxy-1-tert-butyl-1H-indole-1-carboxylate)-3,3-dimethyl-1,3-dihydro-1λ3-

benzo [d][1,2]iodoxole (13e) 

 Following general procedure GP5, starting from potassium 

trifluoro(1-(tert-butoxycarbonyl)-5-methoxy-1H-indol-2-

yl)borate 11b (706 mg, 2.00 mmol, 1.00 equiv.) and 

commercially available 1-fluoro-3,3-dimethyl-1,2-

benziodoxole 12b (560 mg, 2.00 mmol, 1.00 equiv.), 1-(2-5-

methoxy-1-tert-butyl-1H-indole-1-carboxylate)-3,3-dimethyl-1,3-dihydro-1λ3-benzo 

[d][1,2]iodoxole 13e (775 mg, 1.53 mmol, 76% yield) was obtained as brown solid foam. M.p. 

72-75 °C. Rf: 0.5 (DCM: MeOH 9:1). 1H NMR (400 MHz, CDCl3) δ 8.18 – 8.06 (m, 1H, ArH), 

7.40 – 7.36 (m, 1H, ArH),  7.30 (dd, J = 7.6, 1.6 Hz, 1H, ArH), 7.10 (ddd, J = 8.4, 7.0, 1.6 Hz, 

1H, ArH), 7.01 (s, 1H, ArH), 6.95 (dq, J = 5.9, 2.6 Hz, 2H, ArH), 6.76 (dd, J = 8.3, 1.0 Hz, 1H, 

ArH), 3.79 (s, 3H, OCH3), 1.46 (s, 6H, C(CH3)2), 1.36 (s, 9H, C(CH3)3). 13C NMR (101 MHz, 

CDCl3) δ 156.1, 149.3, 148.4, 132.5, 130.9, 130.0, 128.9, 127.2, 126.9, 122.3, 119.1, 116.6, 

115.1, 114.0, 102.7, 85.0, 74.8, 55.6, 32.4, 27.9. IR ν 2965 (w), 1727 (s), 1612 (w), 1434 (w), 

1357 (m), 1325 (s), 1253 (m), 1159 (s), 1117 (s), 1026 (s), 844 (m), 756 (s). HR-ESI-MS: calcd 

for C23H27INO4
+ 508.0979 [M + H]+; found 508.0981. 

1-(2-6-Methoxy-1-tert-butyl-1H-indole-1-carboxylate)-3,3-dimethyl-1,3-dihydro-1λ3-

benzo [d][1,2]iodoxole (13f) 

Following general procedure GP5, starting from potassium 

trifluoro(1-(tert-butoxycarbonyl)-6-methoxy-1H-indol-2-

yl)borate 11c (706 mg, 2.00 mmol, 1.00 equiv.) and 

commercially available 1-fluoro-3,3-dimethyl-1,2-

benziodoxole 12b (560 mg, 2.00 mmol, 1.00 equiv.), the 

corresponding indole reagent 13f (812 mg, 1.60 mmol, 80% yield) was obtained as brown solid 

foam, (M.P.: 70-75 °C). Rf: 0.6 (DCM: MeOH 9:1). 1H NMR (400 MHz, CDCl3) δ 7.89 (d, J 

= 2.3 Hz, 1H, ArH), 7.41 (d, J = 8.2 Hz, 2H, ArH), 7.34 (dd, J = 7.6, 1.6 Hz, 1H, ArH), 7.14 

(ddd, J = 8.4, 6.9, 1.5 Hz, 1H, ArH), 7.05 (s, 1H, ArH), 6.90 (dd, J = 8.6, 2.3 Hz, 1H, ArH), 

6.85 – 6.80 (m, 1H, ArH), 3.88 (s, 3H, OCH3), 1.50 (s, 6H, C(CH3)2), 1.41 (s, 9H, C(CH3)3).13C 

NMR (101 MHz, CDCl3) δ 158.8, 149.4, 148.3, 138.8, 129.8, 128.7, 126.9, 126.8, 123.8, 122.6, 

121.3, 117.1, 114.1, 113.0, 99.4, 84.9, 74.7, 55.5, 32.4, 27.8. IR ν 2963 (w), 1727 (m), 1613 
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(w), 1487 (w), 1362 (m), 1326 (s), 1155 (s), 1045 (m), 945 (m), 824 (m), 756 (m). HR-ESI-

MS: calcd for C23H27INO4
+ 508.0979 [M + H]+; found 508.0983. 

1-(2-5-Bromo-1-tert-butyl-1H-indole-1-carboxylate)-3,3-dimethyl-1,3-dihydro-1λ3-benzo 

[d][1,2]iodoxole (13g) 

Following general procedure GP5, starting from potassium 

trifluoro(1-(tert-butoxycarbonyl)-6-bromo-1H-indol-2-yl)borate 

11d (402 mg, 1.00 mmol, 1.00 equiv.) and commercially 

available 1-fluoro-3,3-dimethyl-1,2-benziodoxole 12b (280 mg, 

1.00 mmol, 1.00 equiv.), 1-(2-5-bromo-1-tert-butyl-1H-indole-1-

carboxylate)-3,3-dimethyl-1,3-dihydro-1λ3-benzo [d][1,2]iodoxole 13g (377 mg, 0.680 mmol, 

68% yield) was obtained as off-white solid foam. M.p. 73-78 °C Rf: 0.5 (DCM: MeOH 9:1). 

1H NMR (400 MHz, CDCl3) δ 8.54 (dt, J = 1.5, 0.7 Hz, 1H, ArH), 7.50 – 7.35 (m, 4H, ArH), 

7.18 (ddd, J = 8.4, 7.0, 1.6 Hz, 1H, ArH), 7.13 (d, J = 0.8 Hz, 1H, ArH), 6.80 (dd, J = 8.3, 1.0 

Hz, 1H, ArH), 1.54 (s, 6H, C(CH3)2), 1.45 (s, 9H, C(CH3)3).13C NMR (101 MHz, CDCl3) δ 

149.1, 148.3, 138.3, 130.1, 129.1, 129.0, 127.2, 127.1, 126.6, 122.3, 121.9, 120.0, 119.1, 114.0, 

85.9, 75.1, 32.2, 27.8 (one C is not resolved). IR ν 2969 (w), 1731 (s), 1352 (s), 1321 (s), 1235 

(m), 1157 (s), 1137 (m), 1031 (m), 970 (m), 908 (m), 754 (s). HR-ESI-MS: calcd for 

C22H24
79BrINO3

+ 555.9979 [M + H]+; found 556.0001 

 

1-(2-3-Methyl-1-tert-butyl-1H-indole-1-carboxylate)-3,3-dimethyl-1,3-dihydro-1λ3-benzo 

[d][1,2]iodoxole (13h) 

Following general procedure GP5, starting from potassium 

trifluoro(1-(tert-butoxycarbonyl)-3-methyl-1H-indol-2-yl)borate 

11e (1.69 g, 5.00 mmol, 1.00 equiv.) and commercially available 1-

fluoro-3,3-dimethyl-1,2-benziodoxole 12b (1.41 mg, 5.00 mmol, 

1.00 equiv.), 1-(2-3-methyl-1-tert-butyl-1H-indole-1-carboxylate)-

3,3-dimethyl-1,3-dihydro-1λ3-benzo [d][1,2]iodoxole 13h (2.40 g, 

4.88 mmol, 97% yield) was obtained as off-white foam. M.p. 128-130 °C. Rf: 0.6 (DCM: 

MeOH 9:1). 1H NMR (400 MHz, CDCl3) δ 8.27 (d, J = 8.4 Hz, 1H, ArH), 7.53 (d, J = 7.8 Hz, 

1H, ArH), 7.46 – 7.32 (m, 3H, ArH), 7.28 (t, J = 7.5 Hz, 1H, ArH), 7.12 (t, J = 7.6 Hz, 1H, 

ArH), 6.80 (d, J = 8.3 Hz, 1H, ArH), 2.42 (s, 3H, CH3), 1.54 (s, 6H, C(CH3)2), 1.45 (s, 9H, 

C(CH3)3). 13C NMR (101 MHz, CDCl3) δ 149.3, 148.4, 137.5, 129.7, 129.6, 128.6, 126.8, 

126.4, 125.8, 122.7, 119.3, 117.6, 115.8, 113.3, 84.5, 74.3, 32.3, 27.7, 11.9 (one aromatic 
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carbon signal is not resolved)  IR ν 1727 (w), 1352 (w), 1325 (m), 1157 (s), 1089 (m), 971 (w), 

857 (w), 750 (s). HR-ESI-MS: calcd for C23H27INO3
+ 492.1030 [M + H]+; found 492.1038. 

 

1-(2-(1H-Indol-3-yl)ethyl)isoindoline-1,3-dione)-3,3-dimethyl-1,3-dihydro-1λ3-

benzo[d][1,2] iodoxole (13i) 

Following general procedure GP5, starting from potassium 

trifluoro(2-(2-(1H-indol-3-yl)ethyl)isoindoline-1,3-dione) borate  

11g (396 mg, 1.00 mmol, 1.00 equiv.) and commercially available 

1-fluoro-3,3-dimethyl-1,2-benziodoxole (280 mg, 1.00 mmol, 1.00 

equiv.), 1-(2-(1H-indol-3-yl)ethyl)isoindoline-1,3-dione)-3,3-

dimethyl-1,3-dihydro-1λ3-benzo[d][1,2] iodoxole 13i (347 mg, 0.630 mmol, 63% yield) was 

obtained as yellow solid. M.p. 132-135 °C. Rf: 0.4 (DCM: MeOH 9:1). 1H NMR (400 MHz, 

CDCl3) δ 7.73 – 7.58 (m, 5H, ArH), 7.48 (d, J = 8.4 Hz, 1H, ArH), 7.22 (d, J = 7.5 Hz, 3H, 

ArH), 7.07 (t, J = 7.5 Hz, 1H, ArH), 6.96 – 6.84 (m, 1H, ArH), 6.66 (d, J = 8.3 Hz, 1H, ArH), 

3.83 (t, J = 7.7 Hz, 2H, NCH2), 3.12 (bs, 2H, C-CH2), 1.57 (s, 6H, C(CH3)2). (NH was not 

resolved). 13C NMR (101 MHz, CDCl3) δ 167.9, 148.1, 139.5, 133.7, 131.9, 130.0, 129.3, 

127.4, 126.9, 126.5, 123.8, 123.0, 121.0, 119.9, 119.1, 112.6, 112.4, 73.8, 38.5, 29.7, 25.6 (one 

aromatic Carbon signal is not resolved). IR ν 2965 (w), 1704 (m), 1434 (m), 1356 (w), 1155 

(s), 954 (s), 871 (m), 748 (s).  HR-ESI-MS: calcd for C27H24IN2O3
+ 551.0826 [M + H]+; found 

551.0834. 
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3. Metal Free (Hetero)-Arylation of Indoles.  

All commercially available chemicals were purchased from the suppliers quoted in Paragraph 

1.0 of Supplementary Informations: these chemicals were purified through a short plug of celite 

prior to their use in catalysis. The synthesis of non commercial available compounds is 

presented below. 

The synthesis of the starting materials 34a-34f  had been already described before.[1] The 

procedures here reported are taken from the cited publication to facilitate reproduction of the 

results by having all the data in the same file. 

 

3.1 Synthesis of Methylated Indoles.  

 

General Procedure GP6 for the N-Methylation of Indoles. 

 

GP6: The corresponding indole (1.00 - 5.00 mmol, 1.00 equiv.) was dissolved in dry THF (0.3 

M). Sodium hydride (60% suspension in mineral oil; 1.50 equiv.) was slowly added under N2 

flow at 0 °C. After being stirred at 0 °C for 15 min,the reaction mixture was allowed to warm 

to r.t for 1.5 h. It was then cooled back to 0 °C and methyl iodide (1.30 equiv.) was added. The 

mixture was warmed to r.t. and stirred overnight. After cooling again to 0 °C, the reaction was 

quenched with water (10 mL), extracted with Et2O (3 x 10 mL), the combined organic layers 

were dried over MgSO4, and the solvent removed under reduced pressure. The resulting crude 

product was purified via flash column chromatography (Pentane:EtOAc 9:1-4:1), to give the 

desired N-methylated indole. 
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Figure 3.1 Methylated Indole used for IndoleBX’s synthesis and Nucleophilic partners 

 

1,2-Dimethyl-1H-indole (34a) 

Following procedure GP6: starting from commercially available 2-

methylindole  (656 mg, 5.00 mmol), 1,2-dimethyl-1H-indole 34a (683 mg, 

4.70 mmol, 94% yield) was obtained as an off-white solid. 1H NMR (400 

MHz CDCl3) δ 7.69 (d, J = 7.8 Hz, 1H, ArH), 7.41 (dd, J = 8.1, 1.0 Hz, ArH), 

7.32 (m, 1H, ArH), 7.24 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H, ArH), 6.42 (s, 1H, NC(CH3)CH), 3.79 

(s, 3H, NCH3), 2.57 (d, J = 1.0 Hz, 3H, NCCH3). 13C NMR (125 MHz, CDCl3) δ  138.1, 136.9, 

128.1, 120.6, 119.8, 119.4, 108.8, 99.7, 29.5, 12.9. IR ν (neat) 3050 (w), 3020 (w), 2970 (m), 

1610 (w), 1400 (s), 1340 (m), 1240 (m), 930 (m), 910 (w), 780 (m), 750 (m), 730 (s).  1H NMR 

values are in accordance with the data reported in literature.[22] 

 

5-Methoxy-1-methyl-1H-indole (34b) 

Following procedure GP6: starting from commercially available 5-

methoxy-1H-indole (736 mg, 5.00 mmol), 5-methoxy-1-methyl-1H-indole 

34b (730 mg, 4.53 mmol, 91% yield) was obtained as a colorless crystalline 

solid. 1H NMR (400 MHz, CDCl3) δ 7.30 (d, 1H, J = 8.5 Hz, ArH) 7.13 (s, 

1H, ArH), 7.05 (s, 1 H, ArH), 6.92 (d, 1H, J = 8.8 Hz, ArH), 6.43 (d, 1H, J = 1.0 Hz, ArH), 

3.90 (s, 3H, NMe), 3.80 (s, 3H, OMe). 13C NMR (101 MHz, CDCl3) δ 154.0, 132.2, 129.3, 

128.8, 111.9, 109.9, 102.5, 100.4, 55.9, 33.0. IR ν 2952 (w), 2918 (w), 2834 (w), 1622 (m), 

1608 (w), 1577 (w), 1496 (s), 1459 (w), 1450 (m), 1449 (m), 1421 (s), 1347 (w), 1293 (w), 

1243 (s), 1191 (m), 1152 (s), 1102 (w), 1026 (m), 942 (w), 855 (m), 845 (w), 805 (s). 
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5-Chloro-1-methyl-1H-indole (34c) 

Following procedure GP6: starting from commercially available 5-chloro-

1H-indole (758 mg, 5.00 mmol), 5-chloro-1-methyl-1H-indole 34c (800 mg, 

4.83 mmol, 97% yield) was obtained as a colorless solid. 1H NMR (400 MHz, 

CDCl3) δ 7.64 (d, J = 2.1 Hz, 1H, ArH), 7.30 – 7.19 (m, 2H, ArH), 7.10 (d, J 

= 3.1 Hz, 1H, ArH), 6.47 (dd, J = 3.1, 0.7 Hz, 1H, ArH), 3.80 (s, 3H, NCH3). 13C NMR (101 

MHz, CDCl3) δ 135.1, 130.1, 130.1, 125.1, 121.8, 120.2, 110.2, 100.6, 33.1. IR ν 3102 (w), 

2943 (w), 2913 (w), 2881 (w), 2817 (w), 1567 (w), 1513 (m), 1475 (s), 1441 (m), 1421 (s), 

1379 (w), 1331 (m), 1278 (s), 1241 (s), 1199 (m), 1146 (m), 1106 (w), 1082 (m), 1063 (s), 1009 

(m), 909 (m), 870 (m), 869 (m). 

 

5-Iodo-1H-indole (34d) 

Following procedure GP6: starting from commercially available 5-iodo-1H-

indole (257 mg, 1.00 mmol), 5-iodo-1-methyl-1H-indole 34d (380 mg, 0.755 

mmol, 76% yield) was obtained as a colorless solid. 1H NMR (400 MHz, 

CDCl3) δ 7.98 (s, 1 H, ArH), 7.49 (d, J = 8.6 Hz, 1H, ArH), 7.13 (d, J = 8.6 

Hz, 1H, ArH), 7.04 (s, 1H, ArH), 6.43 (s, 1H, ArH), 3.80 (s, 3H, NCH3). 13C NMR (101 MHz, 

CDCl3) δ 135.8, 131.0, 129.8, 129.7, 129.6, 111.3, 100.3, 82.9, 33.0.  IR ν 3093 (w), 3053 (w), 

2940 (w), 2919 (w), 2886 (w), 2876 (w), 2856 (w), 1557 (m), 1510 (s), 1473 (s), 1432 (m), 

1420 (s), 1379 (w), 1329 (m), 1277 (s), 1242 (s), 1193 (w), 1151 (w), 1103 (m), 1079 (m), 1045 

(w), 1007 (m), 888 (s), 868 (m). 

 

6-(Benzyloxy)-1-methyl-1H-indole (34e) 

Following procedure GP6: starting from commercially available 6-

benzyloxyindole (223 mg, 1.00 mmol), 6-(benzyloxy)-1-methyl-1H-indole 

34e (237 mg, 1.00 mmol, 100% yield) was obtained as a orange solid. 1H 

NMR (400 MHz, CDCl3) δ 7.53 – 7.48 (m, 3H, ArH), 7.43 – 7.38 (m, 2H, 

ArH), 7.34 (m, 1H, ArH), 6.96 (d, J = 3.1 Hz, 1H, ArH), 6.93 – 6.85 (m, 2H, ArH), 6.43 (dd, J 

= 3.1, 0.8 Hz, 1H, ArH), 5.15 (s, 2H, CH2), 3.73 (s, 3H, NMe). 1H-NMR values are in 

accordance with the data reported in literature.[23] 

 



S33 

 

3.2 Optimization of the Metal Free (Hetero)-Arylation of Indoles with the C3 Reagent.  

 

Table 3.1: equivalents of 1 and LA screening: 

 

Entry Equiv. of xx Lewis Acid (equiv.) Yield%a xx/xx 

1 1.5 TMSBr (2) 41.4%/17% 

2 1 - -b 

3 1 TMSBr (2) 40%/23% 

4 1 TMSBr (1) 44%/12% 

5 1 TMSCl (1) 68%/- 

6 1 TMSI (1) -c 

a) Substrate 2a (0.100 mmol), 1,3,5 trimethoxybenzene 1 (equiv. given in the table), TMSCl-TMSBr-

TMSI (x equiv.) and HFIP (0.1 M) at 25 °C. Isolated yield after flash chromatography is given. b) 

no conversion, reagent 2a and nucleophile 1 are recovered. c) complete decomposition and 

polymerization. 

Table 3.2: Screening of the solvent: 

 

Entry Solvent  Yield%a xx/xx 

1 DCM  -b 

2 DCE  -b 

3 MeCN  4%/- 

4 THF  -b 
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5 Et
2
O  traces/- 

6 HFIP  68%/- 

7 MeOH  traces/- 

8 TFE  20%/- 

a) Substrate 2a (0.100 mmol), 1,3,5 trimethoxybenzene 1 (0.100 

mmol), TMSCl (1.00 equiv.) and HFIP (0.1 M) at 25 °C. Isolated yield 

after flash chromatography is given. b) no conversion, reagent xx and 

nucleophile xx are recovered.  

Table 3.3: screening of TMSCl equivalents: 

 

Entry TMSCl (equiv.) Yield%a xx/xx 

1 0.1 -b 

2 0.2 -b 

3 0.4  4%/- 

4 0.5 10%/- 

5 0.8 39%/- 

6 1  68%/- 

7 1.2 70%/- 

8 2 40%/-c 

a) Substrate 2a (0.100 mmol), 1,3,5 trimethoxybenzene 1 (0.100 

mmol), TMSCl (X equiv.) and HFIP (0.1 M) at 25 °C. Isolated yield 

after flash chromatography is given. b) no conversion, reagent 2a and 

nucleophile 1 are recovered. c) decomposition and polymerization of 

both reagent 2a and nucleophile 1 are detected. 

 

Table 3.4: Screening of substrate’s molarity in HFIP: 
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Entry HFIP (M) Yield%a xx/xx 

1 0.012 44%/-b 

2 0.025 47%/-b 

3 0.1 68%/- 

4 0.25 64%/-c 

5 0.5 = 20 equiv. 70%/-c 

a) Substrate 2a (0.100 mmol), 1,3,5 trimethoxybenzene 1 (0.100 

mmol), TMSCl (1.00 equiv.) and HFIP (X M) at 25 °C. Isolated yield 

after flash chromatography is given. b) reagent 2a and nucleophile 1 

are recovered. c) solubility problem of reagent 2a, incomplete reaction. 

 

Table 3.5: Screening of HFIP equivalents and concentration in DCM: 

 

Entry DCM (M) HFIP (equiv.) Yield%a xx/xx 

1 0.1 20 equiv. = 0.5 M 75%/- 

2 0.1 10  68%/- 

3 0.1 5 64%/- 

4 0.1 2 -b 

5 0.1 1 -b 

6 0.2 5 66%/- 
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7 0.2 10 75%/- 

8 0.2 20 75%/- 

9 0.25 10 68%/-c 

a) Substrate 2a (0.100 mmol), 1,3,5 trimethoxybenzene 1 (0.100 mmol), TMSCl (1.00 equiv.) and HFIP (X 

equiv.) in DCM (X M) at 25 °C. Isolated yield after flash chromatography is given. b) no conversion, 

reagent 2a and nucleophile 1 are recovered. c) decomposition of the reagent 2a is detected 

Table 3.6: screening of HFIP equivalents and concentration in DCM at 50 °C: 

 

Entry T (°C) HFIP (equiv.) DCM (M) Yield%a xx/xx 

1 25 10  0.2 75%/- 

2 50 10  0.1 74%/-b 

3 50 5 0.1 70%/- b 

4 50 2 0.1 68%/- b 

5 50 1 0.1 23%/- b 

a) Substrate 2a (0.100 mmol), 1,3,5 trimethoxybenzene 1 (0.100 mmol), TMSCl (1.00 equiv.) and HFIP (X 

equiv.) in DCM (X M) at 25 °C. Isolated yield after flash chromatography is given. b) decomposition of the 

reagent 2a is detected 

 

Substrate 3a (0.100 mmol), 1,3,5 trimethoxybenzene 1 (0.100 mmol), TMSCl (1.00 equiv.) in HFIP (0.1 M) at 25 

°C. Isolated yield after flash chromatography is given.  
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Substrate 4a (0.100 mmol), 1,3,5 trimethoxybenzene 1 (0.100 mmol), TMSCl (1.00 equiv.) in HFIP (0.1 M) at 25 

°C. Isolated yield after flash chromatography is given.  

Table 3.7: Optimization for Lewis acid and solvents for Arylation of IndoleDBX 

 

Entrya Lewis Acid (equiv.) Solvent Yield%a  

1 TMSCl (2) HFIP (0.1 M) -b 

2 TMSCl (2) HFIP (10.0 equiv.)+DCM(0.2 M) Traces 

3 TMSBr (2) HFIP 60% 

4 TMSBr (1) HFIP (10.0 equiv.)+DCM(0.2 M) 77% 

5 TMSI (2) HFIP (10.0 equiv.)+DCM(0.2 M) -c 

6 TMS-1H-imidazole (2) HFIP (10.0 equiv.)+DCM(0.2 M) -c 

a) Substrate 13c (0.100 mmol), 1,3,5 trimethoxybenzene 1 (xx 0.110mmol, 1.10 equiv.), TMSCl-TMSBr-

TMSI (2 equiv.) at 25 °C. Isolated yield after flash chromatography is given. b) no conversion, reagent 

13c and nucleophile 1 are recovered. c) complete decomposition and polymerization. 

 

1-Methyl-2,3-bis(2,4,6-trimethoxyphenyl)-1H-indole (8). 
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White resin. Rf: 0.38 (Pentane:EtOAc 1:1) 1H NMR (400 MHz, 

CDCl3) δ 7.37 – 7.28 (m, 2H, ArH), 7.13 (ddd, J = 8.3, 7.0, 1.1 Hz, 

1H, ArH), 6.99 (ddd, J = 7.9, 7.0, 0.9 Hz, 1H, ArH), 6.12 (s, 2H, ArH), 

6.11 (s, 2H, ArH), 3.82 (s, 3H, OMe), 3.82 (s, 3H, OMe), 3.60 (s, 3H, 

OMe), 3.57 (s, 6H, NMe), 3.53 (s, 6H, OMe). 13C NMR (101 MHz, 

CDCl3) δ 161.3, 159.8, 159.5, 159.2, 137.1, 131.8, 127.8, 120.6, 120.3, 

118.4, 109.3, 107.2, 106.7, 103.8, 90.5, 90.4, 55.5, 55.5, 55.2, 55.2, 30.7. IR ν 3001 (w), 2935 

(w), 2836 (w), 1587 (m), 1584 (s), 1464 (m), 1415 (m), 1336 (w), 1226 (s), 1128 (s), 1041 (w), 

811 (m), 741 (m). HR-ESI-MS calcd for C27H29NO6
+ [M+H]+ 464.1995; found 464.2093. 

  



S39 

 

3.3 Control experiments  

 

 

 

In an open air vial, commercially available 3-Iodoindole 6 (26.0 mg, 0.100 mmol, 1.00 equiv.), 

1,3,5-trimethoxybenzene 1 (25.0 mg, 0.150 mmol, 1.50 equiv.) and TMSBr (26.0 µL, 0.200 

mmol, 2.00 equiv.) were dissolved in HFIP (1 mL, 0.1 M). The reaction was stirred for three 

hours and then quenched with sat. aqueous NaHCO3 (4 mL); the organic layer was extracted 

with DCM (3x5 mL), then the solvent was removed under reduced pressure. No conversion in 

the desired product 1-methyl-3-(2,4,6-trimethoxyphenyl)-1H-indole 7a was detected. 

 

 

 

 

In an open air vial, IndoleBX reagent 2a (38.0 mg, 0.100 mmol, 1.00 equiv.), 1,3,5-

trimethoxybenzene 1 (25.0 mg, 0.150 mmol, 1.50 equiv.) and HCl in EtOH (80.0 µL, 0.200 

mmol, 2.00 equiv., 1.25 M in EtOH) were dissolved in HFIP (1 mL, 0.1 M). The reaction was 

stirred for three hours and then quenched with sat. aqueous NaHCO3 (20 mL); the organic layer 

was extracted with DCM (3x5 mL), then the solvent was removed under reduced pressure. No 

conversion in the desired product 1-methyl-3-(2,4,6-trimethoxyphenyl)-1H-indole 7a was 

detected. 

 

 



S40 

 

 

In an open air vial, commercially available N-methylindole 5 (13 µL, 0.10 mmol, 1.00 equiv.) 

and commercially available 4F-PIDA (34.0 mg, 1.00 mmol, 1.00 equiv) were left stirring in 

HFIP (1 mL, 0.1 M) for 30 minutes. Then 1,3,5-trimethoxybenzene 1 (25.0 mg, 0.150 mmol, 

1.50 equiv.) and TMSCl (25.5 µL, 0.200 mmol, 2.00 equiv.) were added to the mixture. The 

reaction mixture was stirred for three hours and then quenched with sat. aqueous NaHCO3 (4 

mL); the organic layer was extracted with DCM (3x5 mL), then the solvent was removed under 

reduced pressure. 1-methyl-3-(2,4,6-trimethoxyphenyl)-1H-indole 7a was obtained as white 

resin (4.80 mg, 16.0 µmol, 16% yield). For full characterization see the scope section. 
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3.4 Scope of the Metal Free (Hetero)-Arylation of Indoles.  

General Procedures GP7-GP9 Metal Free (Hetero)-Arylation of Indoles. 

 

GP7: In an open air vial, the corresponding IndoleBX 2a-2f’ (0.300 mmol, 1.00 equiv.), the 

1,3,5-trimethoxybenzene 1 (0.300 mmol, 1.00 equiv.), HFIP (315 µL, 3.00 mmol, 10.0 equiv.) 

and TMSCl (38.0 µL, 0.300 mmol, 1.00 equiv.) were dissolved in DCM (1.50 mL, 0.2 M). The 

reaction was stirred for three hours and then quenched with sat. aqueous NaHCO3 (4 mL); the 

organic layer was extracted with DCM (3x5 mL), then the solvent was removed under reduced 

pressure. Flash column chromatography (Pentane:EtOAc 9:1) afforded the desired products 7a-

7f. 

 

 

GP8: In an open air vial, IndoleBX 2a-2f’ (0.300 mmol, 1.00 equiv.), the corresponding 

heterocycle (0.300 mmol, 1.00 equiv.), HFIP (315 µL, 3.00 mmol, 10.0 equiv.) and TMSCl 

(38.0 µL, 0.300 mmol, 1.00 equiv.) were dissolved in DCM (1.50 mL, 0.2 M). The reaction was 

stirred for three hours and then quenched with sat. aqueous NaHCO3 (4 mL); the organic layer 

was extracted with DCM (3x5 mL), then the solvent was removed under reduced pressure. 

Flash column chromatography (Pentane:DCM 1:1) afforded the desired products 8a-10b. 
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GP9: In an open air vial, the corresponding C2-IndoleDBXs or C2-IndoleBXs 13a-13i (0.20 

mmol, 1.0 equiv.), the 1,3,5-trimethoxybenzene (1) or the heterocycle (0.22 mmol, 1.1 equiv.), 

HFIP (210 µL, 2.00 mmol, 10.0 equiv.) and TMSBr (52.8 µL, 0.400 mmol, 2.00 equiv.) were 

dissolved in DCM (1.0 mL, 0.20 M). The reaction was stirred for three hours and then quenched 

with saturated aqueous NaHCO3 (4 mL); the organic layer was extracted with DCM (3x5 mL), 

then the solvent was removed under reduced pressure. Purification on Preparative TLC (with 

mixture of EtOAc and Pentane as eluent) afforded the desired products 14a-16. 

 

3.4.1: Scope of trimethoxyphenylated-N-protected-Indoles and -Pyrroles 
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1-Methyl-2-(2,4,6-trimethoxyphenyl)-1H-indole (7a) 

Following procedure GP7: using IndoleBX reagent 2a (113 mg, 0.300 

mmol), after 3 hours 1-methyl-2-(2,4,6-trimethoxyphenyl)-1H-indole 

7a (64.0 mg, 0.216 mmol, 75% yield) was obtained as a white resin. 

Rf: 0.42 (Pentane:EtOAc 9:1). 1H NMR (400 MHz, CDCl3) δ 7.62 

(d, J = 7.8 Hz, 1H, ArH), 7.33 (d, J = 8.2 Hz, 1H, ArH), 7.18 (ddd, J 

= 8.1, 7.0, 1.2 Hz, 1H, ArH), 7.08 (m, 1H, ArH), 6.45 (s, 1H, ArH), 6.24 (s, 2H, ArH), 3.89 (s, 

3H, OMe), 3.73 (s, 6H, OMe), 3.51 (s, 3H, NMe). 13C NMR (101 MHz, CDCl3) δ 161.9, 160.0, 

137.1, 133.2, 128.0, 120.5, 120.4, 118.9, 109.2, 103.0, 102.4, 90.7, 55.8, 55.4, 30.1. IR ν 2379 

(w), 2321 (w), 1627 (s), 1523 (m), 1438 (s), 1362 (m), 1287 (m), 1178 (w), 1106 (s), 1073 (s), 

979 (w), 906 (m), 850 (m), 720 (s). HR-ESI-MS calcd for C18H20NO3
+ [M+H]+ 298.1438; 

found 298.1451. 

 

5-Iodo-1-methyl-2-(2,4,6-trimethoxyphenyl)-1H-indole (7b) and and 5-iodo-1-methyl-

2,3-bis(2,4,6-trimethoxyphenyl)-1H-indole (7b’) 

Following procedure GP7: using IndoleBX 

reagent 2c  (151 mg, 0.300 mmol), after 3 hours 

an unseparable mixture of mono-di products 5-

Iodo-1-methyl-2-(2,4,6-trimethoxyphenyl)-1H-

indole 7b and and 5-iodo-1-methyl-2,3-

bis(2,4,6-trimethoxyphenyl)-1H-indole 7b’ 

(88.0 mg, 0.207 mmol, 69% yield, 9:1 major-mono:minor-di) were obtained as yellow oil. Rf: 

0.38 (Pentane:EtOAc 9:1). 1H NMR (400 MHz, CDCl3) δ 7.94 (d, J = 1.7 Hz, 1H, ArH major), 

7.81 (d, J = 1.7 Hz, 1H, ArH minor), 7.48 (dd, J = 8.6, 1.7 Hz, 1H, ArH minor), 7.42 (dd, J = 

8.5, 1.7 Hz, 1H, ArH major), 7.11 (d, J = 8.6 Hz, 1H, ArH major), 7.07 (d, J = 8.8 Hz, 1H, ArH 

minor), 6.38 (s, 1H, ArH major), 6.24 (s, 2H, ArH major), 6.20 (s, 2H, ArH minor), 3.90 (s, 

4.3H, OMe major  + OMe minor), 3.82 (s, 3H, OMe minor), 3.73 (s, 6.8H, OMe major + 2xOMe 

minor), 3.54 (s, 3H, NMe minor), 3.48 (s, 3H, NMe major). 13C NMR (101 MHz, CDCl3) major 

162.1, 159.9 (2 aromatic carbon signals overlapped), 136.2, 134.2, 130.5, 128.9, 128.7, 111.3, 

101.7, 90.6, 82.4, 55.8, 55.4, 30.2. minor 162.8, 160.0, 159.4, 156.5, 137.4, 136.4, 132.7, 130.1, 

129.6, 111.6, 102.3, 91.5, 90.7, 83.2, 59.7, 56.3, 55.8, 55.5, 31.2 (two aromatic carbon not 

resolved). IR ν 3006 (w), 2937 (w), 2838 (w), 1613 (s), 1587 (m), 1467 (s), 1415 (m), 1229 

(m), 1128 (s), 1065 (w), 950 (w), 817 (w), 791 (m).  HR-ESI-MS mono: 

C18H19INO3
+ [M+H]+ 424.0404; found 424.0412, di not detected. 
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1-Methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(2,4,6-trimethoxyphenyl)-1H-

indole (7c) 

Following procedure GP7: using IndoleBX reagent 2d  (151 mg, 

0.300 mmol), after 3 hours 1-methyl-5-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)-2-(2,4,6-trimethoxyphenyl)-1H-indole 7c (68.3 

mg, 0.161 mmol, 54% yield) was obtained as a yellow oil. Rf: 0.40 

(Pentane:EtOAc 9:1). 1H NMR (400 MHz, CDCl3) δ 8.15 (s, 1H, 

ArH), 7.63 (dd, J = 8.3, 1.2 Hz, 1H, ArH), 7.32 (d, J = 8.3 Hz, 1H, ArH), 6.47 (s, 1H, ArH), 

6.23 (s, 2H, ArH), 3.89 (s, 3H, OMe), 3.71 (s, 6H, OMe), 3.50 (s, 3H, NMe), 1.37 (s, 12H, BPin-

Me). 13C NMR (101 MHz, CDCl3) δ 161.9, 160.0 (two aromatic carbon signals overlap), 

139.1, 133.3, 128.3, 127.8, 126.8, 108.6, 103.2, 102.9, 90.7, 83.2, 55.8 (two methoxy carbon 

signals overlap), 55.4, 30.1, 24.9. IR ν 2976 (w), 2935 (w), 2840 (w), 1610 (m), 1584 (m), 

1354 (s), 1327 (s), 1204 (m), 1125 (s), 1064 (m), 966 (w), 860 (m). HR-ESI-MS calcd for 

C24H31BNO5
+ [M+H]+ 424.2290; found 424.2289. 

 

1,2-Dimethyl-3-(2,4,6-trimethoxyphenyl)-1H-indole (7d) 

Following procedure GP7: using IndoleBX reagent 2b  (117 mg, 0.300 

mmol), after 3 hours 1,2-dimethyl-3-(2,4,6-trimethoxyphenyl)-1H-indole 

7d (37.1 mg, 0.120 mmol, 40% yield) was obtained as a yellow oil. Rf: 

0.52 (Pentane:EtOAc 9:1). 1H NMR (400 MHz, CDCl3) δ 7.27 (m, 1H, 

ArH), 7.21 (dt, J = 7.8, 1.0 Hz, 1H, ArH), 7.11 (ddd, J = 8.2, 7.0, 1.2 Hz, 

1H, ArH), 7.00 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H, ArH), 6.28 (s, 2H, ArH), 

3.90 (s, 3H, OMe), 3.71 (s, 9H, OMe + NMe) 2.25 (s, 3H, NCCH3). 13C NMR (101 MHz, 

CDCl3) δ 160.3, 159.3, 136.7, 135.2, 127.7, 120.1, 119.7, 118.7, 108.7, 105.2, 104.6, 90.8, 55.7, 

55.4, 29.7, 11.6.  IR ν 3002 (w), 2942 (w), 2837 (w), 1606 (m), 1585 (m), 1469 (m), 1414 (w), 

1205 (s), 1126 (s), 1062 (w), 956 (w), 739 (m). HR-ESI-MS calcd for 

C19H22NO3
+ [M+H]+ 312.1594; found 312.1596. 

 

1-Methyl-2-(2,4,6-trimethoxyphenyl)-1H-pyrrole (7e) 

 Following procedure GP7: using PyrroleBX reagent 2e or 2e’ (98.0 mg, 

0.300 mmol), after 3 hours 1-methyl-2-(2,4,6-trimethoxyphenyl)-1H-

pyrrole 7e (52.4 mg, 0.212 mmol, 71% yield) was obtained as a white 

solid. Rf: 0.60 (Pentane:EtOAc 9:1). 1H NMR (400 MHz, CDCl3) δ 6.72 
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(dd, J = 2.7, 1.8 Hz, 1H, ArH), 6.23 (dd, J = 3.5, 2.6 Hz, 1H, ArH), 6.19 (s, 2H, ArH), 6.07 (dd, 

J = 3.5, 1.7 Hz, 1H, ArH), 3.86 (s, 3H, CH3), 3.74 (s, 6H, CH3), 3.39 (s, 3H, CH3). 
1H-NMR 

values are in accordance with the data reported in literature.[24]  

 

1-Benzyl-2-(2,4,6-trimethoxyphenyl)-1H-pyrrole (7f) 

 Following procedure GP7: using PyrroleBX reagent 2f or 2f’ (121 

mg, 0.300 mmol), after 3 hours 1-benzyl-2-(2,4,6-

trimethoxyphenyl)-1H-pyrrole 7f (57.1 mg, 0.177 mmol, 59% 

yield) was obtained as a white solid. Rf: 0.58 (Pentane:EtOAc 

9:1). 1H NMR (400 MHz, CDCl3) δ 7.23 – 7.15 (m, 3H, ArH), 

7.04 – 6.98 (m, 2H, ArH), 6.73 (dd, J = 2.8, 1.8 Hz, 1H, ArH), 6.30 (t, J = 3.1 Hz, 1H, ArH), 

6.12 (s, 2H, ArH), 6.09 (m, 1H, ArH), 6.11 – 6.06 (m, 2H, ArCH2), 3.83 (s, 3H, OMe), 3.62 (s, 

6H, OMe). 1H-NMR values are in accordance with the data reported in literature.[24]  
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3.4.2: Scope of mixed 3’-2 biindoles. 

 

 

 

 

1,1'-Dimethyl-1H,1'H-2,3'-biindole (8a) 

Following procedure GP8: using commercially available N-

Methyl-Indole 5 (113 mg, 0.300 mmol), after 3 hours 1,1'-dimethyl-

1H,1'H-2,3'-biindole 8a (61.2 mg, 0.230 mmol, 77% yield) was 

obtained as a white solid. Rf: 0.40 (Pentane:EtOAc 9:1). 1H NMR 

(400 MHz, CDCl3) δ 7.82 (d, J = 8.0 Hz, 1H, ArH), 7.76 (d, J = 7.7 Hz, 1H, ArH), 7.50 – 7.46 
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(m, 2H, ArH), 7.42 (t, J = 7.6 Hz, 1H, ArH), 7.37 – 7.22 (m, 4H, ArH), 6.74 (s, 1H, ArH), 3.93 

(s, 3H, NMe), 3.84 (s, 3H, NMe). 1H-NMR values are in accordance with the data reported in 

literature.[25] 

 

1,1',5'-Trimethyl-1H,1'H-2,3'-biindole (8b) 

Following procedure GP8: using commercially available 1,5-

dimethyl-1H-indole (43.6 mg, 0.300 mmol), after 3 hours ,1',5'-

trimethyl-1H,1'H-2,3'-biindole 8b (52.6 mg, 0.192 mmol, 64% yield) 

was obtained as a yellow oil. Rf: 0.44 (Pentane:EtOAc 9:1). 1H NMR 

(400 MHz, CDCl3) δ 7.67 (dt, J = 7.8, 1.0 Hz, 1H, ArH), 7.51 (dt, J = 

1.8, 0.9 Hz, 1H, ArH), 7.40 (m, 1H, ArH), 7.31 (d, J = 8.5 Hz, 1H, ArH), 7.25 (m, 1H, ArH), 

7.22 – 7.12 (m, 3H, ArH), 6.63 (s, 1H, ArH), 3.86 (s, 3H, NMe), 3.77 (s, 3H, NMe), 2.49 (s, 

3H, CH3).  13C NMR (101 MHz, CDCl3) δ 137.9, 135.3, 129.6, 128.5, 128.3, 127.9, 123.9, 

120.9, 120.0, 119.9, 119.9, 119.5, 109.3, 109.2, 106.6, 101.2, 33.0, 31.0, 21.5. IR ν 3050 (w), 

2916 (w), 1592 (w), 1467 (s), 1336 (m), 1249 (m), 1151 (w), 1015 (w), 788 (m), 749 (s). HR-

ESI-MS calcd for C19H19N2
+ [M+H]+ 275.1543; found 275.1539. 

 

5'-Methoxy-1,1'-dimethyl-1H,1'H-2,3'-biindole (8c) and 5'-methoxy-1,1'-dimethyl-

1H,1'H-2,7'-biindole (8c’) 

Following procedure GP8: using 5-methoxy-

1-methyl-1H-indole 34b (48.4 mg, 0.300 

mmol), after 3 hours, 5'-methoxy-1,1'-

dimethyl-1H,1'H-2,3'-biindole 8c and 5'-

methoxy-1,1'-dimethyl-1H,1'H-2,7'-biindole 

8c’ (57.1 mg, 0.197 mmol, 65% yield, ratio major 8c: minor 8c' 12:1) were obtained as an 

unseparable mixture of yellow oil. Rf: 0.60 (Pentane:DCM 1:1). 1H NMR (400 MHz, CDCl3) 

δ 7.69 – 7.68 (m, 1H, ArH minor), 7.65 (dd, J = 7.8, 1.0 Hz, 1H, ArH major), 7.52 (s, 1H, ArH 

minor), 7.39 (d, J = 8.3 Hz, 1H ArH major + 1H ArH minor), 7.29 (d, J = 8.8 Hz, 1H ArH 

major + 2H ArH minor), 7.25 – 7.22 (m, 1H ArH major + 1H ArH minor), 7.18 (br s, 1H, ArH 

major), 7.15 (td, J = 7.5, 7.1, 1.0 Hz, 1H, ArH major), 7.12 (d, J = 2.4 Hz, 1H, ArH major), 

6.97 (dd, J = 8.9, 2.5 Hz, 1H, ArH major), 6.92 (d, J = 2.4 Hz, 1H, ArH minor), 6.60 (br s, 1H, 

ArH major – fast exchange with CDCl3), 3.89 (s, 3H, CH3 minor), 3.87 (s, 3H, CH3 major), 

3.82 (s, 3H, CH3 major), 3.80 (s, 3H, CH3 minor), 3.76 (s, 3H, CH3 major), 3.69 (s, 3H, CH3 

minor).13C NMR (101 MHz, CDCl3) δ major: 154.8, 137.9, 132.2, 129.0, 129.0, 128.3, 128.1, 
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121.0, 120.0, 119.6, 112.9, 110.4, 109.3, 106.8, 101.6, 55.9, 33.2, 31.0 (one aromatic carbon 

signal not resolved - minor not resolved). IR ν  3004 (w), 2950 (w), 2828 (w), 1668 (w), 1623 

(m), 1542 (m), 1489 (s), 1421 (w), 1288 (m), 1220 (m), 1140 (m), 1025 (w), 901 (m), 798 (s). 

HR-ESI-MS calcd for C19H19N2O
+ [M+H]+ 291.1492; found 291.1486. 

 

5'-Chloro-1,1'-dimethyl-1H,1'H-2,3'-biindole (8d) 

Following procedure GP8: using 5-chloro-1-methyl-1H-indole 34d 

(49.7 mg, 0.300 mmol), after 3 hours 5'-chloro-1,1'-dimethyl-1H,1'H-

2,3'-biindole 8d (63.4 mg, 0.215 mmol, 72% yield) was obtained as a 

yellow oil. Rf: 0.38 (Pentane:EtOAc 9:1). 1H NMR (400 MHz, 

CDCl3) δ 7.66 (dd, J = 2.0, 0.7 Hz, 1H, ArH), 7.64 (dt, J = 7.9, 1.1 Hz, 

1H, ArH), 7.35 (dd, J = 8.2, 0.9 Hz, 1H, ArH), 7.27 (dd, J = 8.8, 0.7 Hz, 1H, ArH), 7.26 – 7.21 

(m, 2H, ArH), 7.17 – 7.12 (m, 2H, ArH), 6.60 (s, 1H, ArH), 3.82 (s, 3H, NMe), 3.71 (s, 3H, 

NMe). 13C NMR (101 MHz, CDCl3) 137.9, 135.3, 134.1, 129.4, 128.6, 128.2, 126.2, 122.6, 

121.2, 120.1, 119.6, 119.6, 110.6, 109.3, 107.0, 101.6, 33.2, 30.9. δ. IR ν 3054 (w), 2942 (w), 

2885 (w), 1590 (m), 1586 (m), 1466 (s), 1369 (m), 1271 (s), 1244 (m), 1145 (m), 1092 (m), 

795 (s). HR-ESI-MS calcd for C18H16ClN2
+ [M+H]+ 295.0997; found 295.0995. 

 

5'-Iodo-1,1'-dimethyl-1H,1'H-2,3'-biindole (8e). 

Following procedure GP8: using 5-iodo-1H-indole 34e (77.0 mg, 

0.300 mmol), after 3 hours 5'-iodo-1,1'-dimethyl-1H,1'H-2,3'-biindole 

8e (82.5 mg, 0.214 mmol, 71% yield) was obtained as a yellow oil. 

Rf: 0.40 (Pentane:EtOAc 9:1). 1H NMR (400 MHz, CDCl3) δ 7.93 

(dd, J = 1.7, 0.5 Hz, 1H, ArH), 7.56 (dt, J = 7.8, 1.1 Hz, 1H, ArH), 

7.45 (dd, J = 8.6, 1.7 Hz, 1H, ArH), 7.28 (m, 1H, ArH), 7.16 (m, 1H, ArH), 7.09 – 7.04 (m, 2H, 

ArH), 7.03 (s, 1H, ArH), 6.51 (d, J = 0.8 Hz, 1H, ArH), 3.74 (s, 3H, NMe), 3.63 (s, 3H, NMe). 

13C NMR (101 MHz, CDCl3) δ 137.9, 136.0, 134.0, 130.6, 130.1, 129.0, 128.9, 128.2, 121.2, 

120.1, 119.7, 111.5, 109.4, 106.7, 101.7, 83.8, 33.1, 30.9. IR ν 2931 (m), 2855 (m), 1828 (w), 

1730 (s), 1655 (w), 1524 (w), 1436 (s), 1333 (m), 1278 (s), 1199 (s), 1058 (m), 992 (m), 897 

(m), 762 (w). HR-ESI-MS calcd for C18H16IN2
+ [M+H]+ 387.0353; found 387.0355. 

 

1,1'-Dimethyl-5'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H,1'H-2,3'-biindole (8f) 
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Following procedure GP8: using commercially available 1-methyl-5-

(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole  (77.0 mg, 

0.300 mmol), after 3 hours 1,1'-dimethyl-5'-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)-1H,1'H-2,3'-biindole 8f (79.2 mg, 0.205 mmol, 

68% yield) was obtained as a yellow oil. Rf: 0.38 (Pentane:EtOAc 

9:1). 1H NMR (400 MHz, CDCl3) δ 8.19 (s, 1H, ArH), 7.78 (dd, J = 8.3, 1.1 Hz, 1H, ArH), 

7.68 (dt, J = 7.8, 1.0 Hz, 1H, ArH), 7.41 (dd, J = 4.8, 0.9 Hz, 1H, ArH), 7.39 (dd, J = 4.7, 0.9 

Hz, 1H, ArH), 7.25 (m, 1H, ArH), 7.18 (s, 1H, ArH), 7.15 (m, 1H, ArH), 6.66 (d, J = 0.8 Hz, 

1H, ArH), 3.88 (s, 3H, NMe), 3.75 (s, 3H, NMe), 1.36 (s, 12H, BPin-Me). 13C NMR (101 MHz, 

CDCl3) δ 138.8, 137.9, 134.7, 128.5, 128.4, 128.3, 128.0, 127.5, 121.0, 120.0, 119.5, 109.3, 

108.8, 108.0, 101.8, 83.5, 60.4, 33.0, 30.9, 24.8. NB: the Carbon-Boron bond is not observed 

as reported in literature.[18] IR ν 3050 (w), 2978 (w), 2927 (w), 1614 (w), 1466 (m), 1352 (s), 

1311 (m), 1143 (s), 1095 (m), 968 (w), 866 (m), 737 (s). HR-ESI-MS calcd for 

C24H28BN2O2
+ [M+H]+ 387.2238; found 387.2244. 

 

1,1'-Dimethyl-1H,1'H-[2,3'-biindol]-6'-ol (8g) 

Following procedure GP8: using 6-(benzyloxy)-1-methyl-1H-

indole 34e (77.0 mg, 0.300 mmol), after 3 hours 1,1'-dimethyl-

1H,1'H-[2,3'-biindol]-6'-ol 8g (57.8 mg, 0.209 mmol, 70% yield) 

was obtained as a yellow oil. Rf: 0.28 (Pentane:EtOAc 9:1). 1H 

NMR (400 MHz, CDCl3) δ 7.65 (d, J = 7.8 Hz, 1H, ArH), 7.54 (d, J = 8.5 Hz, 1H, ArH), 7.37 

(m, 1H, ArH), 7.24 (m, 1H, ArH), 7.15 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H, ArH), 7.07 (s, 1H, ArH), 

6.83 (d, J = 2.3 Hz, 1H, ArH), 6.74 (dd, J = 8.5, 2.3 Hz, 1H, ArH), 6.61 (s, 1H, ArH), 4.97 (br 

s, 1H, OH), 3.77 (s, 3H, NMe), 3.76 (s, 3H, NMe). 13C NMR (101 MHz, CDCl3) δ 152.3, 137.9, 

137.8, 135.1, 128.3, 127.3, 122.2, 121.1, 120.9, 119.9, 119.5, 110.2, 109.3, 107.4, 101.2, 95.3, 

33.0, 30.9. IR ν 3369 (w), 2941 (w), 2900 (w), 1627 (s), 1593 (s), 1463 (m), 1395 (m), 1320 

(m), 1234 (m), 1183 (m), 1171 (m), 1081 (m), 966 (s), 780 (s). HR-ESI-MS calcd for calcd for 

C18H17N2O
+ [M+H]+ 277.1335; found 277.1344. 

 

1-Methyl-1H,1'H-2,3'-biindole (8h) 

Following procedure GP8: using commercially available 1H-indole  

(35.1 mg, 0.300 mmol), after 3 hours 1-methyl-1H,1'H-2,3'-biindole 8h 

(48.3 mg, 0.196 mmol, 65% yield) was obtained as a yellow oil. Rf: 0.50 

(Pentane:EtOAc 1:1). 1H NMR (400 MHz, CDCl3) δ 8.38 (br s, 1H, 
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NH), 7.72 (d, J = 8.0 Hz, 1H, ArH), 7.66 (d, J = 7.8 Hz, 1H, ArH), 7.48 (d, J = 8.2 Hz, 1H, 

ArH), 7.43 – 7.33 (m, 2H, ArH), 7.33 – 7.10 (m, 4H, ArH), 6.66 (s, 1H, ArH), 3.71 (s, 3H, 

NMe) (NB: the product is highly unstable under atmosphere – presence of grease in the proton 

NMR).   13C NMR (101 MHz, CDCl3) δ 138.1, 136.1, 135.1, 128.4, 127.3, 124.0, 122.9, 121.2, 

120.8, 120.3, 120.2, 119.7, 111.5, 109.5, 109.0, 101.7, 31.1. IR ν 3402 (m), 3058 (w), 2926 

(w), 2846 (w), 1593 (w), 1458 (m), 1329 (w), 1242 (m), 1097 (m), 1011 (w), 784 (m), 747 (s). 

HR-ESI-MS calcd for C17H15N2
+ [M+H]+ 247.1230; found 247.1226. 

5'-Fluoro-1-methyl-1H,1'H-2,3'-biindole (8i) 

Following procedure GP8: using commercially available 5-fluoro-1H-

indole (40.5 mg, 0.300 mmol), after 3 hours 5'-fluoro-1-methyl-1H,1'H-

2,3'-biindole 8i (62.0 mg, 0.235 mmol, 78% yield) was obtained as a 

yellow resin. Rf: 0.42 (Pentane:EtOAc 1:1). 1H NMR (400 MHz, 

CDCl3) δ 8.35 (br s, 1H), 7.67 (d, J = 7.7 Hz, 1H, ArH), 7.42 – 7.32 (m, 

4H, ArH), 7.26 (m, 1H, ArH), 7.17 (t, J = 7.4 Hz, 1H, ArH), 7.04 (td, J = 9.0, 2.5 Hz, 1H, ArH), 

6.64 (s, 1H, ArH), 3.75 (s, 3H, NMe) (NB: the product is highly unstable under atmosphere – 

presence of grease in the proton NMR).  13C NMR (101 MHz, CDCl3) δ 158.51 (d, J = 236.2 

Hz), 137.9, 134.3, 132.5, 128.6, 128.2, 127.63 (d, J = 8.5 Hz), 127.0, 125.4, 121.2, 119.90 (d, 

J = 46.8 Hz), 112.05 (d, J = 7.3 Hz), 111.31 (d, J = 26.3 Hz), 105.10 (d, J = 24.2 Hz), 101.6, 

30.9. IR ν 3433 (w), 3400 (m), 3050 (w), 1583 (m), 1486 (s), 1467 (s), 1387 (w), 1281 (m), 

1243 (m), 1163 (m), 930 (m), 744 (s). HR-ESI-MS calcd for C17H14FN2
+ [M+H]+ 265.1136; 

found 265.1137. 

 

5'-Bromo-1-methyl-1H,1'H-2,3'-biindole (8j) 

Following procedure GP8: using commercially available 5-bromo-1H-

indole  (58.8 mg, 0.300 mmol), after 3 hours 5'-bromo-1-methyl-

1H,1'H-2,3'-biindole 8j (60.8 mg, 0.187 mmol, 62% yield) was obtained 

as a yellow resin. Rf: 0.40 (Pentane:EtOAc 1:1). 1H NMR (400 MHz, 

CDCl3) δ 8.32 (br s, 1H, NH), 7.81 (d, J = 1.8 Hz, 1H, ArH), 7.65 (d, J 

= 7.8 Hz, 1H, ArH), 7.35 (m, 2H, ArH), 7.28 (s, 1H, ArH), , 7.28 – 7.22 (m, 2H, ArH), 7.15 

(td, J = 7.5, 1.1 Hz, 1H, ArH), 6.62 (s, 1H, ArH), 3.70 (s, 3H, NMe). 13C NMR (101 MHz, 

CDCl3) δ 137.9, 134.6, 133.9, 128.9, 128.2, 125.7, 124.8, 122.7, 121.3, 120.2, 119.7, 114.0, 

112.8, 109.4, 108.6, 101.9, 30.9. IR ν 3399 (w), 3157 (w), 2987 (w), 2888 (w), 1621 (w), 1535 

(w), 1477 (m), 1429 (m), 1267 (s), 1224 (s), 1090 (s), 1024 (s), 885 (m), 761 (m).  HR-ESI-

MS calcd for C17H14
79BrN2

+ [M+H]+ 325.0335; found 325.0329. 
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1,1',3-Trimethyl-1H,1'H-2,3'-biindole (8k) 

Following procedure GP8: using commercially available 1,3-

dimethyl-1H-indole (43.6 mg, 0.300 mmol), after 3 hours 1,1',3-

trimethyl-1H,1'H-2,3'-biindole 8k (36.9 mg, 0.134 mmol, 45% yield) 

was obtained as a yellow oil. Rf: 0.44 (Pentane:EtOAc 9:1). 1H NMR 

(400 MHz, CDCl3) δ 7.62 (dt, J = 7.9, 1.0 Hz, 1H, ArH), 7.46 (dt, J = 

7.2, 0.7 Hz, 1H, ArH), 7.44 (m, 1H, ArH), 7.36 (dt, J = 8.0, 0.9 Hz, 1H, ArH), 7.32 (ddd, J = 

8.2, 7.0, 1.2 Hz, 1H, ArH), 7.17 (m, 2H, ArH), 7.15 (m, 2H, ArH), 3.92 (s, 3H, NMe), 3.63 (s, 

3H, NMe), 2.29 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3) δ 137.3, 136.9, 131.5, 129.4, 128.6, 

128.2, 122.0, 121.1, 120.5, 119.9, 118.7, 118.5, 109.5, 109.1, 109.0, 106.1, 33.0, 30.8, 9.7. IR 

ν 3422 (s), 1592 (m), 1493 (w), 1442 (w), 1360 (w), 1287 (w), 1222 (w), 1144 (w), 1025 (m). 

HR-ESI-MS calcd for C19H19N2
+ [M+H]+ 275.1543; found 275.1542. 

 

2-(1'-Methyl-1H,1'H-[2,3'-biindol]-3-yl)ethanol (8l) 

Following procedure GP8: using commercially available 2-(1H-indol-

3-yl)ethanol (48.4 mg, 0.300 mmol), after 3 hours 2-(1'-methyl-

1H,1'H-[2,3'-biindol]-3-yl)ethanol 8l (49.8 mg, 0.172 mmol, 57% 

yield) was obtained as a yellow oil. Rf: 0.60 (Pentane:EtOAc 1:1). 1H 

NMR (400 MHz, CDCl3) δ 8.23 (br s, 1H, NH), 7.78 (dt, J = 7.9, 1.0 

Hz, 1H, ArH), 7.68 – 7.59 (m, 1H, ArH), 7.46 (s, 1H, ArH), 7.41 (m, 2H, ArH), 7.32 (ddd, J = 

8.2, 6.9, 1.2 Hz, 1H, ArH), 7.21 (m, 2H, ArH), 7.16 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H, ArH), 3.95 

(t, J = 6.4 Hz, 2H, CH2), 3.86 (s, 3H, NMe), 3.15 (t, J = 6.4 Hz, 2H, CH2), 1.55 (s, 1H, OH). 

13C NMR (101 MHz, CDCl3) δ 137.0, 135.9, 131.3, 128.9, 128.5, 126.8, 122.4, 121.6, 120.2, 

119.6, 119.5, 118.4, 110.7, 109.7, 107.7, 106.8, 62.9, 33.0, 28.3. IR ν 2926 (w), 2866 (w), 1550 

(s), 1528 (s), 1507 (s), 1475 (s), 1325 (s), 1276 (s), 1263 (s), 1193 (s), 1159 (s), 1116 (m), 1068 

(m), 1003 (m), 930 (s), 886 (m), 811 (m). HR-ESI-MS calcd for 

C19H18N2NaO+ [M+Na]+ 313.1311; found 313.1314. 

 

5-Iodo-1,1'-dimethyl-1H,1'H-2,3'-biindole (8m) 

Following procedure GP8: using commercially available 

methylindole 5 (39.4 mg, 0.300 mmol) and IndoleBX 2c (151 mg, 

0.300 mmol), after 3 hours 5-iodo-1,1'-dimethyl-1H,1'H-2,3'-

biindole 8m (58.9 mg, 0.152 mmol, 51% yield) was obtained as a 
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yellow oil. Rf: 0.35 (Pentane:EtOAc 9:1). 1H NMR (400 MHz, CDCl3) δ 7.97 (d, J = 1.6 Hz, 

1H, ArH), 7.69 (d, J = 8.0 Hz, 1H, ArH), 7.48 (dd, J = 8.6, 1.7 Hz, 1H, ArH), 7.42 (d, J = 8.3 

Hz, 1H, ArH), 7.34 (m, 1H, ArH), 7.23 (m, 1H, ArH), 7.20 (s, 1H, ArH), 7.15 (d, J = 8.5 Hz, 

1H, ArH), 6.55 (s, 1H, ArH), 3.89 (s, 3H, NMe), 3.73 (s, 3H, NMe). 13C NMR (101 MHz, 

CDCl3) δ 137.0, 136.9, 136.0, 130.9, 129.1, 128.6, 128.5, 127.5, 122.4, 120.4, 120.2, 111.3, 

109.6, 106.7, 100.5, 83.0, 33.1, 31.1. IR ν  048 (w), 2928 (w), 1734 (w), 1618 (m), 1589 (m), 

1467 (m), 1392 (m), 1372 (m), 1265 (m), 1248 (m), 1133 (w), 1089 (w), 1044 (w), 951 (w), 

897 (w), 871 (w), 787 (m), 741 (s). HR-ESI-MS) calcd for C18H16IN2
+ [M+H]+ 387.0353; 

found 387.0356. 

 

5'-Methoxy-1,1'-dimethyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H,1'H-2,3'-

biindole (8n). 

Following procedure GP8: using 5-methoxy-1-methyl-1H-

indole 34b (48.4 mg, 0.300 mmol) and IndoleBX 2d (151 mg, 

0.300 mmol), after 3 hours 5'-methoxy-1,1'-dimethyl-5-(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)-1H,1'H-2,3'-biindole 8n 

(69.0 mg, 0.166 mmol, 55% yield) was obtained as a yellow oil. 

Rf: 0.15 (Pentane:DCM 1:1). 1H NMR (400 MHz, CDCl3) δ 8.18 (s, 1H, ArH), 7.68 (dd, J = 

8.2, 1.2 Hz, 1H, ArH), 7.37 (d, J = 8.2 Hz, 1H, ArH), 7.29 (d, J = 8.9 Hz, 1H, ArH), 7.17 (s, 

1H, ArH), 7.09 (d, J = 2.5 Hz, 1H, ArH), 6.96 (dd, J = 8.9, 2.5 Hz, 1H, ArH), 6.62 (s, 1H, ArH), 

3.86 (s, 3H, NMe), 3.81 (s, 3H, NMe), 3.75 (s, 3H, NMe), 1.38 (s, 12H, BPin). 13C NMR (101 

MHz, CDCl3) δ 154.8, 139.8, 135.3, 132.2, 128.9, 128.1, 128.1, 127.9, 127.2, 112.9, 110.4, 

108.7, 106.7, 101.8, 101.4, 83.4, 55.9, 33.2, 30.9, 24.9. NB: the Carbon-Boron bond is not 

observed as reported in literature.[18] IR ν 2996 (m), 2867 (w), 2837 (w), 1521 (m), 1431 (m), 

1361 (w), 1288 (m), 1148 (w), 991 (s), 862 (s). HR-ESI-MS calcd for C25H29BN2O3
+ [M+] 

416.2094; found 416.2286. 

 

5'-Nitro-1,1'-dimethyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H,1'H-2,3'-

biindole (8o) 

Following procedure GP8: using commercially available 1-

methyl-5-nitro-1H-indole (53.0 mg, 0.300 mmol) and IndoleBX 

2d (151 mg, 0.300 mmol), after 3 hours 5'-nitro-1,1'-dimethyl-5-

(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H,1'H-2,3'-

biindole 8o (65.4 mg, 0.152 mmol, 51% yield) was obtained as 
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an orange oil. Rf: 0.20 (Pentane:EtOAc 4:1). 1H NMR (400 MHz, CDCl3) δ 8.62 (s, 1H, ArH), 

8.25 – 8.15 (m, 2H, ArH), 7.72 (m, 1H, ArH), 7.44 – 7.35 (m, 2H, ArH), 7.34 (d, J = 1.3 Hz, 

1H, ArH), 6.66 (s, 1H, ArH), 3.94 (s, 3H, NMe), 3.75 (s, 3H, NMe), 1.39 (s, 12H, BPin-Me). 

13C NMR (101 MHz, CDCl3) δ 142.3, 140.0, 139.5, 132.8, 131.1, 128.2, 127.8 (2 aromatic 

carbon signals overlapped), 127.0, 118.0, 117.6, 110.1, 109.6, 108.9, 103.0, 83.4, 33.5, 31.0, 

24.9. NB: the Carbon- bound to Boron is not observed as reported in literature.[18] IR ν 3482 

(w), 3333 (w), 3090 (w), 1519 (s), 1330 (s), 1282 (m), 1149 (m), 995 (m), 931 (s), 856 (s), 833 

(s). HR-ESI-MS calcd for C24H26BN3NaO4
+ [M+Na]+ 454.1909; found 454.1914. 

 

3.4.3: Scope of pyrrole- and thiophene-2-methylindoles. 

 

 

 

1-Methyl-2-(1-methyl-1H-pyrrol-2-yl)-1H-indole (9a) 

Following procedure GP8: using commercially available 1-methyl-1H-

pyrrole (27.0 µL, 0.300 mmol), after 3 hours 1-methyl-2-(1-methyl-1H-

pyrrol-2-yl)-1H-indole 9a (44.3 mg, 0.211 mmol, 70% yield) was obtained 

as a yellow oil. Rf: 0.70 (Pentane:EtOAc 9:1). 1H NMR (400 MHz, 

CDCl3) δ 7.64 (d, J = 7.9 Hz, 1H, ArH), 7.36 (d, J = 8.2 Hz, 1H, ArH), 7.26 (m, 1H, ArH), 7.15 

(ddd, J = 8.0, 7.0, 1.1 Hz, 1H, ArH), 6.81 (dd, J = 2.7, 1.8 Hz, 1H, ArH), 6.53 (s, 1H, ArH), 

6.30 (dd, J = 3.6, 1.7 Hz, 1H, ArH), 6.27 (dd, J = 3.6, 2.6 Hz, 1H, ArH), 3.66 (s, 3H, NMe), 

3.60 (s, 3H, NMe). 13C NMR (101 MHz, CDCl3) δ 137.5, 132.2, 127.6, 124.5, 123.6, 121.7, 

120.4, 119.7, 111.4, 109.5, 107.8, 103.2, 34.7, 30.6. IR ν 3050 (w), 2984 (w), 2887 (w), 1614 
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(w), 1471 (w), 1384 (w), 1259 (m), 1047 (m), 959 (s), 785 (m). HR-ESI-MS calcd for 

C14H15N2
+ [M+H]+ 211.1230; found 211.1227. 

 

1-Methyl-2-(1-phenyl-1H-pyrrol-2-yl)-1H-indole 9b and 1-methyl-2-(1-phenyl-1H-

pyrrol-3-yl)-1H-indole (9b’) 

Following procedure GP8: using commercially 

available 1-phenyl-1H-pyrrole  (43.0 µL, 0.300 

mmol), after 3 hours  a separable mixture of 1-

methyl-2-(1-phenyl-1H-pyrrol-2-yl)-1H-indole 

9b (26.2 mg, 96.0 µmol, 32% yield) and 1-methyl-2-(1-phenyl-1H-pyrrol-3-yl)-1H-indole 9b’ 

(24.1 mg, 88.0 µmol, 30% yield) was obtained as a yellow oil.  

 

9b Rf: 0.40 (Pentane:EtOAc 9:1) 1H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 7.9 Hz, 1H, ArH), 

7.29 – 7.13 (m, 7H, ArH), 7.13 – 7.06 (m, 2H, ArH), 6.50 (dd, J = 3.5, 1.8 Hz, 1H, ArH), 6.44 

(t, J = 3.2 Hz, 1H, ArH), 6.42 (s, 1H, ArH), 3.34 (s, 3H, NMe). 13C NMR (101 MHz, CDCl3) 

δ 140.2, 137.4, 132.6, 129.1, 127.8, 126.4, 124.3, 124.2, 123.7, 121.5, 120.4, 119.5, 114.0, 

109.4 (2 aromatic carbon signals overlapped), 103.5, 30.5. IR ν 3106 (w), 2978 (w), 2901 (w), 

1558 (s), 1489 (s), 1371 (s), 1292 (s), 1218 (s), 1054 (m), 818 (s). HR-ESI-MS calcd for 

C19H17N2
+ [M+H]+ 273.1386; found 273.1379. 

 

9b’  Rf: 0.38 (Pentane:EtOAc 9:1). 1H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 8.0 Hz, 1H, 

ArH), 7.30 – 7.18 (m, 7H, ArH), 7.07 (ddd, J = 8.0, 6.9, 1.2 Hz, 1H, ArH), 6.96 (dd, J = 2.9, 

1.8 Hz, 1H, ArH), 6.51 (m, 1H, ArH), 6.49 (s, 1H, ArH), 6.42 (dd, J = 3.5, 2.8 Hz, 1H, ArH), 

3.66 (s, 3H, NMe). 13C NMR (101 MHz, CDCl3) δ 140.8, 136.5, 128.7, 127.4, 127.3, 127.1, 

126.4, 125.7, 122.6, 121.7, 120.4, 119.5, 109.9, 109.1, 109.0, 107.7, 32.7. IR ν 3106 (w), 3045 

(w), 1599 (m), 1499 (s), 1426 (w), 1366 (m), 1321 (m), 1254 (w), 1103 (w), 912 (w), 743 (s). 

HR-ESI-MS calcd for C19H17N2
+ [M+H]+ 273.1386; found 273.1386. 

 

2-(3-Methoxythiophen-2-yl)-1-methyl-1H-indole (10a) 

Following procedure GP8: using commercially available 3-

methoxythiophen (30.0 mg, 0.300 mmol), after 3 hours 2-(3-

methoxythiophen-2-yl)-1-methyl-1H-indole 10a (46.8 mg, 0.192 mmol, 

64% yield) was obtained as a yellow oil. Rf: 0.80 (Pentane:EtOAc 4:1). 1H 

NMR (400 MHz, CDCl3) δ 7.62 (d, J = 7.8 Hz, 1H, ArH), 7.36 (m, 1H, ArH), 7.31 (d, J = 5.5 



S55 

 

Hz, 1H, ArH), 7.24 (m, 1H, ArH), 7.12 (ddd, J = 7.9, 7.0, 1.0 Hz, 1H, ArH), 6.96 (d, J = 5.5 

Hz, 1H, ArH), 6.62 (s, 1H, ArH), 3.85 (s, 3H, NMe), 3.73 (s, 3H, OMe). 13C NMR (101 MHz, 

CDCl3) δ 154.8, 137.9, 131.5, 127.8, 124.7, 121.7, 120.4, 119.6, 116.7, 110.4, 109.4, 103.5, 

58.7, 30.8. IR ν 3108 (w), 2935 (w), 2851 (w), 1583 (w), 1465 (m), 1378 (s), 1337 (m), 1252 

(s), 1103 (w), 1070 (s), 929 (w), 780 (m), 750 (s). HR-ESI-MS calcd for 

C14H14NOS+ [M+H]+ 244.0791; found 244.0787. 

 

2-(2,5-Dimethylthiophen-3-yl)-1-methyl-1H-indole (10b) 

Following procedure GP8: using commercially available 2,5-

dimethylthiophene  (34.0 mg, 0.300 mmol), after 3 hours 2-(2,5-

dimethylthiophen-3-yl)-1-methyl-1H-indole 10b (35.2 mg, 0.146 

mmol, 49% yield) was obtained as a yellow oil. Rf: 0.85 

(Pentane:EtOAc 4:1). 1H NMR (400 MHz, CDCl3) δ 7.65 (d, J = 7.9 Hz, 1H, ArH), 7.35 (m, 

1H, ArH), 7.29 – 7.24 (m, 1H, ArH), 7.14 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H, ArH), 7.03 (s, 1H, 

ArH), 6.85 (d, J = 1.3 Hz, 1H, ArH), 3.84 (s, 3H, NMe), 2.48 (s, 3H, CH3), 2.43 (s, 3H, CH3). 

13C NMR (101 MHz, CDCl3) δ 136.7, 135.2, 131.2, 130.9, 127.6, 127.3, 127.1, 121.7, 120.3, 

119.3, 111.4, 109.2, 32.8, 15.3, 14.2. IR ν 3499 (w), 2919 (s), 2854 (m), 1685 (w), 1484 (m), 

1332 (w), 1218 (m), 1137 (s), 1015 (m), 815 (m). HR-APPI-MS calcd for C15H15NS [M+] 

241.0920; found 241.0926. 
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3.4.4: Scope of trimethoxy(methyl)phenylated-NH-indoles. 

 

 

2-(2,4,6-Trimethoxyphenyl)-1H-indole (14a) 

Following procedure GP9: starting from C2-IndoleDBX 13c (95.5 

mg, 0.200 mmol, 1.00 equiv.), after 3 hours 2-(2,4,6-

trimethoxyphenyl)-1H-indole 14a (43.4 mg, 0.150 mmol, 77% yield) 

was obtained as a grey solid. M.p. 132-137 °C. Rf: 0.55 

(Pentane:EtOAc 8:2). 1H NMR (400 MHz, CDCl3) δ 9.47 (s, 1H, NH), 7.64 (dt, J = 7.8, 1.0 

Hz, 1H, ArH), 7.39 (dd, J = 8.0, 1.2 Hz, 1H, ArH), 7.16 (ddd, J = 8.1, 7.0, 1.3 Hz, 1H, ArH), 

7.11 – 7.07 (m, 2H, ArH), 6.29 (s, 2H, ArH), 3.93 (s, 6H, o-OCH3), 3.88 (s, 3H, p-OCH3). 13C 

NMR (101 MHz, CDCl3) δ 160.1, 158.7, 135.0, 131.2, 128.2, 121.1, 120.0, 119.1, 110.3, 103.7, 

103.6, 91.5, 56.0, 55.3.  IR ν 3434 (w), 2938 (w), 2837 (w), 1605 (m), 1583 (m), 1486 (w), 

1455 (s), 1414 (m), 1330 (m), 1204 (m), 1122 (s) HR-ESI-MS: calcd for C17H18NO3
+ 284.1281 

[M + H]+; found 284.1284.  

NB: when C2-IndoleBX 13a was used, the desired compound 14a was obtained in 67% yield. 

 

 

 

5-Methoxy-2-(2,4,6-trimethoxyphenyl)-1H-indole (14b) 
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Following procedure GP9: starting from C2-IndoleDBX 13e (101 mg, 0.200 mmol), after 3 

hours 5-methoxy-2-(2,4,6-trimethoxyphenyl)-1H-indole 14b (41.7 

mg, 0.130 mmol, 67% yield) was obtained as a green solid. M.p. 

115-120 °C. Rf: 0.45 (Pentane:EtOAc 8:2). 1H NMR (400 MHz, 

CDCl3) δ 9.38 (s, 1H, NH), 7.27 (d, J = 8.6 Hz, 1H, ArH), 7.11 (d, 

J = 2.4 Hz, 1H, ArH), 7.00 (s, 1H, ArH), 6.82 (dd, J = 8.7, 2.4 Hz, 

1H, ArH), 6.28 (s, 2H, ArH), 3.92 (s, 6H, o-OCH3), 3.87 (s, 6H, p-OCH3 ,and 5-OCH3). 13C 

NMR (101 MHz, CDCl3) δ 160.1, 158.6, 153.8, 131.9, 130.3, 128.5, 128.4, 111.5, 111.0, 103.6, 

101.7, 91.5, 56.0, 55.8, 55.3. IR ν 3431 (w), 2937 (w), 2841 (w), 1604 (m), 1580 (m), 1459 

(m), 1204 (s), 1120 (s), 1034 (m), 799 (s). HR-ESI-MS: calcd for C18H20NO4
+ 314.1387[M + 

H]+; found 314.1391. 

6-Methoxy-2-(2,4,6-trimethoxyphenyl)-1H-indole (14c) 

 Following procedure GP9: starting from C2-IndoleDBX 13f 

(101 mg, 0.200 mmol), after 3 hours 6-methoxy-2-(2,4,6-

trimethoxyphenyl)-1H-indole 14c (31.1 mg, 0.100 mmol, 50% 

yield) was obtained as a green solid. M.p 165-168 °C. Rf: 0.51 

(Pentane:EtOAc 8:2). 1H NMR (400 MHz, CDCl3) δ 9.38 (s, 

1H, NH), 7.49 (d, J = 8.6 Hz, 1H, ArH), 6.99 (dd, J = 2.1, 0.9 Hz, 1H, ArH), 6.90 (d, J = 2.3 

Hz, 1H, ArH), 6.76 (dd, J = 8.6, 2.3 Hz, 1H, ArH), 6.28 (s, 2H, ArH), 3.92 (s, 6H, o-OCH3), 

3.87 (s, 3H, OCH3 ), 3.86 (s, 3H, OCH3). 13C NMR (101 MHz, CDCl3) δ 159.8, 158.4, 155.9, 

135.6, 130.0, 122.6, 120.7, 109.2, 103.8, 103.6, 93.9, 91.5, 56.0, 55.6, 55.3. IR ν 3442 (s), 1604 

(s), 1479 (s), 1329 (s), 1303 (s), 1234 (s), 1116 (w). HR-ESI-MS: calcd for C18H20NO4
+ 

314.1387[M + H]+; found 314.1389. 

6-Bromo-2-(2,4,6-trimethoxyphenyl)-1H-indole (14d) 

Following procedure GP9: starting from C2-IndoleDBX 13g (111 

mg, 0.200 mmol), after 3 hours 6-bromo-2-(2,4,6-

trimethoxyphenyl)-1H-indole 14d (68.0 mg, 0.190 mmol, 94% 

yield) was obtained as a colorless solid. M.p. 133-138 °C. Rf: 0.49 

(Pentane:EtOAc 8:2). 1H NMR (400 MHz, CDCl3) δ 9.52 (s, 1H, 

NH), 7.53 (d, J = 1.8 Hz, 1H, ArH), 7.47 (d, J = 8.4 Hz, 1H, ArH), 7.16 (dd, J = 8.4, 1.7 Hz, 

1H, ArH), 7.03 (s, 1H, ArH), 6.28 (s, 2H, ArH), 3.93 (s, 6H, o-OCH3), 3.87 (s, 3H, p-OCH3). 
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13C NMR (101 MHz, CDCl3) δ 160.4, 158.7, 135.7, 132.2, 127.1, 122.4, 121.2, 114.4, 113.2, 

103.7, 102.9, 91.5, 56.0, 55.3. IR ν 3444 (w), 1605 (w), 1581 (w), 1454 (w), 1329 (w), 1205 

(w), 1115 (s), 1067 (m). HR-ESI-MS: calcd for C17H17Br79NO3
+ 362.0386 [M + H]+; found 

362.0388. 

3-Methyl-2-(2,4,6-trimethoxyphenyl)-1H-indole (14e) 

Following procedure GP9: starting from C2-IndoleDBX 13h (98.0 

mg, 0.200 mmol), after 3 hours 3-methyl-2-(2,4,6-trimethoxyphenyl)-

1H-indole 14e (49.0 mg, 0.160 mmol, 82% yield) was obtained as a 

pale yellow solid. M.p. 128-131 °C. Rf: 0.46 (Pentane:EtOAc 8:2). 1H 

NMR (400 MHz, CDCl3) δ 8.15 (s, 1H, NH), 7.68 (ddt, J = 7.5, 1.6, 

0.8 Hz, 1H, ArH), 7.41 (dt, J = 8.0, 1.0 Hz, 1H, ArH), 7.21 (dddd, J = 21.2, 8.2, 7.1, 1.2 Hz, 

2H, ArH), 6.34 (s, 2H, ArH), 3.98 (s, 3H, p-OCH3), 3.85 (s, 6H, o-OCH3), 2.28 (s, 3H, CH3). 

13C NMR (101 MHz, CDCl3) δ 161.5, 159.4, 135.9, 128.9, 127.1, 121.1, 118.5, 118.5, 110.8, 

110.4, 103.1, 90.7, 55.7, 55.3, 9.7. IR ν 3395 (w), 2939 (w), 2840 (w), 1609 (m), 1581 (m), 

1456 (m), 1412 (m), 1224 (m), 1126 (s), 1033 (m), 941 (m), 816 (w). HR-ESI-MS: calcd for 

C18H20NO3
+ 298.1438 [M + H]+; found 298.1440. 

2-(2-(2-(2,4,6-Trimethoxyphenyl)-1H-indol-3-yl)ethyl)isoindoline-1,3-dione (14f) 

 Following procedure GP9: starting from C2-IndoleDBX 13i (110 mg, 

0.200 mmol), after 3 hours 2-(2-(2-(2,4,6-trimethoxyphenyl)-1H-indol-

3-yl)ethyl)isoindoline-1,3-dione 14f (68.1 mg, 0.150 mmol, 75% yield) 

was obtained as an orange solid. M.p. 195-200 °C. Rf: 0.68 

(Pentane:EtOAc 8:2). 1H NMR (400 MHz, CDCl3) δ 8.08 (s, 1H, NH), 

7.90 (dd, J = 6.5, 2.3 Hz, 1H, ArH), 7.79 (dt, J = 7.0, 3.5 Hz, 2H, ArH), 7.68 (dd, J = 5.5, 3.0 

Hz, 2H, ArH), 7.35 (dt, J = 7.3, 2.1 Hz, 1H, ArH), 7.20 – 7.09 (m, 2H, ArH), 6.18 (s, 2H, ArH), 

4.01 – 3.99 (m, 2H, CH2), 3.87 (s, 3H, p-OCH3), 3.75 (s, 6H, o-OCH3), 3.03 – 2.99 (m, 2H, 

CH2). 13C NMR (101 MHz, CDCl3) δ 168.2, 161.6, 159.4, 135.9, 133.5, 132.3, 128.1, 128.0, 

122.9, 121.3, 119.0, 118.8, 111.1, 110.6, 102.4, 90.5, 55.7, 55.3, 37.7, 24.7. IR ν 3392 (w), 

1770 (w), 1704 (s), 1395 (s), 1359 (m), 1127 (m), 1042 (w). HR-ESI-MS: calcd for 

C27H25N2O5
+ 457.1758 [M + H]+; found 457.1766. 

 

2-(2,4,6-trimethoxy-3-methylphenyl)-1H-indole (14g) 
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Following procedure GP9: starting from C2-IndoleDBX 13c (95.5 mg, 0.200 mmol), after 3 

hours 2-(2,4,6-trimethoxy-3-methylphenyl)-1H-indole 14g (27.1 mg, 

90.0 µmol, 46% yield) was obtained as a white solid. M.p. 135-138 

°C. Rf: 0.62 (Pentane:EtOAc 9:1). 1H NMR (400 MHz, CDCl3) δ 9.46 

(s, 1H, NH), 7.64 (dd, J = 7.8, 1.3 Hz, 1H, ArH), 7.40 (d, J = 8.0 Hz, 

1H, ArH), 7.16 (ddd, J = 8.1, 7.0, 1.3 Hz, 1H, ArH), 7.09 (ddd, J = 8.0, 

7.0, 1.1 Hz, 2H, ArH), 6.41 (s, 1H, ArH), 3.92 (s, 3H, OCH3), 3.90 (s, 3H, OCH3), 3.53 (s, 3H, 

OCH3), 2.17 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3) δ 158.2, 157.4, 156.3, 135.3, 131.1, 

128.4, 121.3, 120.2, 119.3, 112.8, 110.4, 107.6, 103.7, 92.3, 60.2, 56.2, 55.6, 8.4. IR ν 3325 

(w), 2960 (w), 1611 (m), 1452 (m), 1201 (m), 1110 (s), 797 (m). HR-ESI-MS: calcd for 

C18H20NO3
+ 298.1438[M + H]+; found 298.1443. 

 

3-Methyl-2-(2,4,6-trimethoxy-3-methylphenyl)-1H-indole (14h) 

Following procedure GP9: starting from C2-IndoleDBX 13h (98.0 

mg, 0.200 mmol), after 3 hours 3-methyl-2-(2,4,6-trimethoxy-3-

methylphenyl)-1H-indole 14h (40.6 mg, 0.130 mmol, 65% yield) was 

obtained as a brown solid. M.p. 164-166 °C. Rf: 0.58 (Pentane:EtOAc 

8:2). 1H NMR (400 MHz, CDCl3) δ 8.18 (s, 1H, NH), 7.63 – 7.61 (m, 

1H, ArH), 7.35 (dt, J = 8.1, 1.0 Hz, 1H, ArH), 7.15 (dddd, J = 21.4, 8.1, 7.1, 1.2 Hz, 2H, ArH), 

6.39 (s, 1H, ArH), 3.92 (s, 3H, OCH3), 3.79 (s, 3H, OCH3), 3.30 (s, 3H, OCH3), 2.24 (s, 3H, 

CH3), 2.15 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3) δ 159.1, 158.3, 156.9, 136.0, 128.9, 

127.4, 121.3, 118.6, 118.5, 111.9, 110.8, 110.4, 107.4, 91.5, 60.0, 55.9, 55.6, 9.7, 8.4. IR ν 3353 

(w), 2935 (w), 1606 (w), 1449 (m), 1434 (m), 1326 (m), 1185 (m), 1111 (s), 1006 (w), 806 (m), 

736 (s). HR-ESI-MS: calcd for C19H22NO3
+ 312.1594 [M + H]+; found 312.1593. 
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3.4.5: Scope of mixed 3’-2-NH-biindoles. 

 

 

6'-Bromo-1H,1'H-2,3'-biindole (15a) 

Following procedure GP9 and using TMSCl as promoter: starting 

from commercially available 6-bromo-1H indole (43.1 mg, 0.200 

mmol), after 3 hours 6'-bromo-1H,1'H-2,3'-biindole 15a (32.0 mg, 

0.103 mmol, 51% yield). was obtained as a brown resin. Rf: 0.41 

(Pentane:EtOAc 7:3). 1H NMR (400 MHz, CD3CN) δ 9.64 (s, 1H, NH), 9.54 (s, 1H, NH), 7.91 

(dd, J = 8.5, 0.6 Hz, 1H, ArH), 7.70 (dd, J = 1.8, 0.6 Hz, 1H, ArH), 7.65 (d, J = 2.7 Hz, 1H, 

ArH), 7.59 – 7.52 (m, 1H, ArH), 7.41 (dd, J = 8.0, 1.0 Hz, 1H, ArH), 7.31 (dd, J = 8.5, 1.8 Hz, 

1H, ArH), 7.11 (ddd, J = 8.1, 7.1, 1.3 Hz, 1H, ArH), 7.04 (ddd, J = 8.1, 7.1, 1.1 Hz, 1H, ArH), 

6.76 (dd, J = 2.2, 0.9 Hz, 1H, ArH). 13C NMR (101 MHz, CD3CN) δ 138.6, 137.3, 134.1, 130.4, 

125.0, 124.4, 124.1, 122.2, 122.1, 120.5, 120.4, 116.2, 115.6, 111.5, 110.3, 99.1. IR ν 3413 (w), 

3395 (w), 1615 (m), 1595 (m), 1454 (s), 1308 (s), 1230 (m), 1103 (m), 894 (s). HR-ESI-MS: 

calcd for C16H12Br79N2
+ 311.0178 [M + H]+; found 311.0173. 

 

6'-Fluoro-1H,1'H-2,3'-biindole (15b) 

 Following procedure GP9 and using TMSCl as promoter: starting 

from commercially available 6-fluoro-1H indole (30.0 mg, 0.200 

mmol), after 3 hours 6'-fluoro-1H,1'H-2,3'-biindole 15b (28.0 mg, 

0.112 mmol, 56% yield) was obtained as a brown oil. Rf: 0.42 

(Pentane:EtOAc 7:3). 1H NMR (400 MHz, Acetone-d6) δ 10.63 (s, 1H, NH), 10.43 (s, 1H, NH), 

8.04 (dd, J = 8.8, 5.3 Hz, 1H, ArH), 7.85 (d, J = 2.5 Hz, 1H, ArH), 7.55 (dd, J = 7.5, 1.3 Hz, 

1H, ArH), 7.37 (dd, J = 7.9, 1.3 Hz, 1H, ArH), 7.25 (dd, J = 9.8, 2.4 Hz, 1H, ArH), 7.13 – 6.93 
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(m, 3H, ArH), 6.86 – 6.71 (m, 1H, ArH) (13C could not recorded due to unstable nature of this 

compound in solution).  HR-ESI-MS calcd for C16H11FN2
+ 250.0901 [M]+ found 250.0903. 

 

6-Bromo-5',6'-dimethoxy-1H,1'H-2,3'-biindole (15c) 

Following procedure GP9: using commercially available 5,6-

dimethoxy-1H-indole (53.2 mg, 0.200 mmol), after 3 hours 6-

bromo-5',6'-dimethoxy-1H,1'H-2,3'-biindole 15c (38.1 mg, 

0.103 mmol, 34% yield) was obtained as a yellow oil. Rf: 0.35 

(Pentane:EtOAc 1:1). 1H NMR (400 MHz, CDCl3) δ 8.21 (br 

s, 1H, NH), 8.16 (br s, 1H, NH), 7.53 (s, 1H, ArH), 7.49 (d, J = 8.4 Hz, 1H, ArH), 7.35 (s, 1H, 

ArH), 7.32 (d, J = 2.6 Hz, 1H, ArH), 7.22 (dd, J = 8.3, 1.7 Hz, 1H, ArH), 6.94 (s, 1H, ArH), 

6.70 (dd, J = 2.0, 0.9 Hz, 1H, ArH), 3.99 (s, 3H, OMe), 3.94 (s, 3H, OMe). 13C NMR (101 

MHz, CDCl3) δ 147.8, 146.0, 136.8, 134.2, 130.8, 128.5, 123.2, 121.0, 119.8, 118.1, 114.6, 

113.3, 109.8, 101.4, 99.0, 94.6, 56.5, 56.2 (the compound spontaneously decompose in acidic 

deuterated solvents, it presents about 9% of decomposed products – grease signal not purified). 

IR ν 2873 (m), 1691 (m), 1349 (m), 1277 (w), 1046 (s), 970 (m), 850 (s), 766 (w), 749 (w). 

HR-ESI-MS calcd for C18H15
79BrN2NaO2

+ [M+Na]+ 393.0209; found 393.0201. 

 

2-(3-Methoxythiophen-2-yl)-1H-indole (16) 

 Following procedure GP9: using commercially available 3-

methoxythiophen (22.8 mg, 0.200 mmol), after 3 hours 2-(3-

methoxythiophen-2-yl)-1H-indole 16 (13.0 mg, 60.0 µmol, 28% yield) 

was obtained as a green oil. Rf: 0.6 (Pentane:EtOAc 9:1). 1H NMR (400 MHz, CDCl3) δ 9.30 

(s, 1H, NH), 7.56 (dq, J = 7.7, 1.0 Hz, 1H, ArH), 7.38 (dt, J = 8.0, 1.0 Hz, 1H, ArH), 7.19 – 

7.04 (m, 3H, ArH), 6.90 (d, J = 5.5 Hz, 1H, ArH), 6.60 (dd, J = 2.1, 0.9 Hz, 1H, ArH), 4.04 (s, 

3H, OCH3). 13C NMR (101 MHz, CDCl3) δ 153.5, 135.8, 131.8, 128.3, 122.3, 121.6, 119.9, 

119.9, 116.3, 112.8, 110.5, 97.9, 58.9. IR ν 3440 (w), 1706 (w), 1588 (w), 1516 (w), 1457 (w), 

1380 (m), 1293 (m), 1069 (s), 776 (s), 747 (s). HR-ESI-MS: calcd for C13H12NOS+ 

230.0634[M + H]+; found 230.0637. 
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4. Working model for the reaction mechanism. 

In order to establish the role of both promoter and fluorinated solvent we performed several 

NMR experiments in deuterated CDCl3 (solvent of characterization) and CD2Cl2 (solvent of 

reaction).We screened different equivalents of HFIP and TMSCl.  As we’ve seen in the control 

experiment, the presence of TMSCl as promoter is essential. When we added 1.0 equiv. of 

TMSCl to reagent 2a in deuterated solvent, we immediately observed decomposition of the 

reagent in its constituents. The observed aromatic peaks corresponds to the ones of iodo-benzoic 

acid.[26] In the carbon it is possible to observe that the hypervalent character of C-I bond is lost, 

as it shift from 78 ppm to 94 ppm. HFIP alone doesn’t promote immediate decomposition but 

shift of peaks; it is possible that it coordinates with the reagent via hydrogen bond-type 

interactions. However, HFIP plays an important role in stabilizing the intermediate form, as the 

sole Lewis Acid would immediately decompose the hypervalent iodine reagent. When we 

mixed both fluorinated solvent and TMSCl we observed decomposition in absence of a suitable 

nucleophile. 

 

 

IndoleBX 2a in CDCl3 0.1 M 

IndoleBX 2a in CDCl3 0.1 M 

+ 1.0 equiv. TMSCl 

IndoleBX 2a in CDCl3 0.1 M 

+ 0.50 equiv. HFIP 

IndoleBX 2a in CDCl3 0.1 M 

+ 1.0 equiv. HFIP 

IndoleBX 2a in CDCl3 0.1 M 

+ 3.0 equiv. HFIP 

IndoleBX 2a in CDCl3 0.1 M 

+ 10 equiv. HFIP 

IndoleBX 2a in CDCl3 0.1 M 

+ 10 equiv. HFIP – 1.0 equiv. 

TMSCl 
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NMR analysis in CD2Cl2 showed the same reactivity pattern as in CDCl3  

 

 

 

IndoleBX 2a in CDCl3 0.1 M 

IndoleBX 2a in CDCl3 0.1 M 

+ 1.0 equiv. TMSCl 

IndoleBX 2a in CDCl3 0.1 M 

+ 0.50 equiv. HFIP 

IndoleBX 2a in CDCl3 0.1 M 

+ 1.0 equiv. HFIP 

IndoleBX 2a in CDCl3 0.1 M 

+ 3.0 equiv. HFIP 

IndoleBX 2a in CDCl3 0.1 M 

+ 10 equiv. HFIP 

IndoleBX 2a in CDCl3 0.1 M 

+ 10 equiv. HFIP – 1.0 equiv. 

TMSCl 

IndoleBX 2a in CD2Cl2 0.1 

M + 1.0 equiv. TMSCl 

IndoleBX 2a in CD2Cl2 0.1 

M + 0.50 equiv. HFIP 

IndoleBX 2a in CD2Cl2 0.1 

M + 1.0 equiv. HFIP 

IndoleBX 2a in CD2Cl2 0.1 

M + 3.0 equiv. HFIP 

IndoleBX 2a in CD2Cl2 0.1 M 

+ 10 equiv. HFIP – 1.0 equiv. 

TMSCl 

IndoleBX 2a in CD2Cl2 0.1 

M + 10 equiv. HFIP 
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We currently hypothetize three possible mechanisms for this transformation, a Path A would 

involve ligand exchange with the nucleophile and reductive elimination to afford the product. 

Path B envisages a SET pathway and Path C a SNAr pathway, in which a iodonium carbene 

resonance structure may play a role (Scheme S1). 

Scheme S1: Three mechanistical hypotheses for the hypervalent iodine-mediated oxidative coupling. 

 

IndoleBX 2a in CD2Cl2 0.1 

M + 1.0 equiv. TMSCl 

IndoleBX 2a in CD2Cl2 0.1 

M + 0.50 equiv. HFIP 

IndoleBX 2a in CD2Cl2 0.1 

M + 1.0 equiv. HFIP 

IndoleBX 2a in CD2Cl2 0.1 

M + 3.0 equiv. HFIP 

IndoleBX 2a in CD2Cl2 0.1 M 

+ 10 equiv. HFIP – 1.0 equiv. 

TMSCl 

IndoleBX 2a in CD2Cl2 0.1 

M + 10 equiv. HFIP 
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As already reported,[27] heteroatom-ligands of the I(III) can exchange with different nucleophiles. 

For Path A, two pathways could be considered: associative and dissociative (Scheme S2). In the 

associative pathway we speculate that the Cl- derived from TMSCl rapidly add to the  C-I σ* 

orbital and form a trans tetracoordinated [12-I-4] iodate I with a square-planar arrangement. 

Rapid isomerization and elimination of the carboxylate form a λ3 -iodane III. The addition-

elimination sequence proceed at a low-energy barrier and is generally reversible. Conversely, 

the dissociative pathway would involve a high-energy dicoordinated [8-I-2] iodonium species, 

possibly stabilized by ionic or hydrogen interaction with the protic fluorinated solvent on apical 

sites to arrive at II. Addition of Cl- would lead to intermediate III. For addition of (hetero)aryl-

H the same mechanisms are considered, but a rearomatization of the nucleophile has also to be 

accounted to get intermediate IV. 

 

Scheme S2:  Associative and Dissociative pathways for the formation of III and IV. 

To explain the regio-distribution of the product, we hypothetize that IV, the C3 regiosisomer 

would exist in equilibrium with V, the C2 one (Scheme S3). When a C3-alkylated indole is used 

as nucleophile, the equilibrium should be shifted towards intermediate IV due to sterical 

hindrance. 
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Scheme S3: Equilibrium of two regioisomers IV and V. 

Finally, the hypervalent λ3 -iodanes IV or V would undergo reductive elimination to afford the 

coupled product and iodo-benzoic acid as monovalent iodide. The process if facile because the 

hypervalent iodine is a hypernucleofuge (hypervalent leaving group better than a super-ion as -

OTf). The process is most probably concerted, (as shown in Scheme S4) and require therefore 

isomerization of the reagent to have the two desired aryl groups in cis relationship. In this step, 

elimination to form the more sterically hindered product may be more difficult, allowing also 

to rationalize the regioselectivity based on kinetics instead of thermodynamics. A stepwise, 

mechanism involving high energy carbo-cation and –anion intermediates is less probable. A 

weak point of pathway A is that it is difficult to rationalize the high selectivity observed for bi-

heteroaryl formation: In fact, at least some reductive elimination to give undesired cross-

products with iodobenzoic acid would have been expected. 

 

Scheme S4: Reductive elimination  

Another proposal involves, as theorized by Kita for the oxidative coupling of arenes and 

heterocycles,[28,29] a radical mechanism. This would be a viable alternative to the ligand 
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exchange proposed in Path A. The TMSCl should induce the formation of Charge-Transfer 

complex VI (CT-complex) between the (hetero)arene and the electrophilic hypervalent iodine 

(Scheme S5). A SET would form the oxidized cationic radical (hetero)arene and transfer one 

electron on the electrophilic iodane. The aromatic cation radical intermediate VII could be 

stabilized by the enamine bond of the indole, with the iodane shifting between the C2-C3 

carbons. Intramolecular deprotonation by either the chlorine moiety or the carboxylate the 

would afford intermediates VIII and IX. Final SET recombination would afford the 

corresponding mixed bi-(hetero)arenes. Alternatively, recombination on iodine would lead 

back to intermediate IV and V, which could then undergo reductive elimination. 

 

Scheme S5: SET pathway 

Finally, Path C takes into account the donating effect of the N-lone pair in stabilizing III via 

its resonance form X. SNAr attack of the nucleophile would form intermediate XI. Finally, 1,2-

proton shift of the C2-proton on the C3-iodo-carbene would afford the desired product (Scheme 

S6). 
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Scheme S6: Vicarious nucleophilic aromatic substitution. 
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5. Further Modifications of the (Hetero)-Arylated Indoles. 

 

All commercially available chemicals were purchased from the suppliers quoted in Paragraph 

1.0 of Supplementary Informations: these chemicals were purified through a short plug of celite 

prior to their use in catalysis.  

Synthesis of  2-bromo-12-methyl-5,12-dihydroindolo[3,2-a]carbazole (18) 

 

Following a reported procedure,[30] in a flame dried vial under nitrogen atmosphere, 5'-bromo-

1-methyl-1H,1'H-2,3'-biindole 8j (32.5 mg, 1.00 mmol, 1.00 equiv.) was dissolved in AcOH (1 

mL, 0.1 M); commercially available 2,2-diethoxy-N,N-dimethylethanamine (20.0 µL, 1.00 

mmol, 1.00 equiv.) 17 was added under vigorous stirring. The reaction mixture was heated up 

to reflux (135 °C) and monitored via TLC (1:1 Pentane/EtOAc). Upon complete consumption 

of the starting material (1 hour), the reaction was cooled to room temperature and the solvent 

removed under reduced pressure. The crude product was purified via flash chromatography 

(gradient 5:1-1:2 Pentane:EtOAc) to afford 2-bromo-12-methyl-5,12-dihydroindolo[3,2-

a]carbazole 18 (28.3 mg, 81.0 µmol, 81% yield) as a yellow oil. Rf 0.4 (Pentane:EtOAc 1:1) 

1H NMR (400 MHz, CDCl3) δ 8.64 (d, J = 1.7 Hz, 1H, ArH), 8.37 (s, 1H, NH), 8.13 (d, J = 8.4 

Hz, 1H, ArH), 8.09 (dt, J = 7.7, 0.9 Hz, 1H, ArH), 7.54 – 7.43 (m, 3H, ArH), 7.37 (d, J = 8.5 

Hz, 1H, ArH), 7.33 – 7.26 (m, 2H, ArH), 4.48 (s, 3H, NMe). 13C NMR (101 MHz, CDCl3) δ 

140.8, 140.4, 137.5, 137.2, 127.1, 125.2, 124.1, 124.1, 123.5, 119.7, 119.6, 118.9, 116.6, 112.3, 

112.1, 108.9, 107.0, 103.5, 34.7. IR ν 3053 (w), 2939 (w), 1619 (w), 1589 (w), 1466 (s), 1369 

(m), 1339 (m), 1272 (m), 1244 (m), 1145 (m), 1092 (w), 830 (m), 790 (s), 748 (a). No high 

resolution mass spectrum could be obtained for this compound due to insufficient ionization. 

 

Synthesis of 2-chloro-5,12-dimethyl-6,7-diphenyl-5,12-dihydroindolo[3,2-a]carbazole (20) 
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Following a reported procedure,[31] Pd(OAc)2 (2.25 mg, 10.0 µmol, 10.0 mol%), K2CO3 (4.15 

mg, 30.0 µmol, 30 mol%), TBAB (16.0 mg, 50.0 µmol, 0.5 equiv.), PivOH (10.2 mg, 0.100 

mmol, 1.00 equiv.), 5'-chloro-1,1'-dimethyl-1H,1'H-2,3'-biindole 8d (29.5 mg, 0.100 mmol) 

and commercially available diphenylacetylene 19 (35.6 mg, 0.200 mmol, 2.00 equiv.) were 

added to a flame dried vial under nitrogen atmosphere. The tube was purged with O2 three times 

before DMF (1.0 mL, 0.1 M) was added. The reaction mixture was stirred at 100 °C under O2 

(1 atm) for 12 h and was monitored by TLC (Pentane:EtOAc 4:1). The solution was then cooled 

to RT, diluted with ethyl acetate (10 mL), washed with H2O (3x10 mL), dried over MgSO4, 

filtered, and dried under vaccum. The crude product was purified by column chromatography 

on silica gel (gradient 10:1 to 4:1 Pentane:EtOAc) to afford 2-chloro-5,12-dimethyl-6,7-

diphenyl-5,12-dihydroindolo[3,2-a]carbazole 20 (35.1 mg, 75.0 µmol, 75% yield). Rf 0.7 

(Pentane:EtOAc 4:1) 1H NMR (400 MHz, CDCl3) δ 8.58 (d, J = 1.9 Hz, 1H, ArH), 7.49 (d, J 

= 8.1 Hz, 1H, ArH), 7.43 (dd, J = 8.7, 2.0 Hz, 1H, ArH), 7.37 (d, J = 7.5 Hz, 1H, ArH), 7.35 – 

7.17 (m, 11H, ArH), 6.92 (t, J = 7.5 Hz, 1H, ArH), 6.51 (d, J = 7.9 Hz, 1H, ArH), 4.50 (s, 3H, 

NMe), 3.26 (s, 3H, NMe). 13C NMR (101 MHz, CDCl3) δ  142.2, 140.1, 139.8, 139.7, 138.4, 

136.7, 136.5, 132.2, 130.2, 127.9, 127.3, 126.7, 124.5, 124.3, 124.3, 124.0, 122.1, 121.9, 121.1, 

119.5, 118.3, 115.2, 110.0, 108.9, 106.5, 35.5, 33.1 (one aromatic Carbon not resolved). IR ν 

2975 (w), 2943 (w), 2903 (w), 1722 (w), 1613 (w), 1468 (s), 1422 (m), 1369 (m), 1338 (m), 

1271 (m), 1247 (m), 1208 (w), 1087 (m), 1045 (m), 880 (w), 787 (m), 750 (s). HR-ESI-MS 

calcd for C32H24ClN2
+ [M+H]+ 471.1623; found 471.1616. 

 

Synthesis of 3-Chloro-2-(2,4,6-trimethoxyphenyl)quinolone (21) 
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With slight modification of a reported procedure[32,33] 50% aqueous KOH (72.0 L, 0.635 

mmol, 7.50 equiv.) was added to a vigorously stirred solution of 2-(2,4,6-trimethoxyphenyl)-

1H-indole 14a (24.0 mg, 85.0 µmol, 1.00 equiv.) and nBu4NHSO4 (2.88 mg, 8.47 μmol, 0.100 

equiv.) in chloroform (1.10 mL) under ice-cooling bath. The reaction mixture was stirred at 0 

°C for 2 h and left overnight at room temperature. After 16 h The aqueous layer was separated 

and extracted with chloroform. The organic layers were dried over MgSO4. After filtration and 

evaporation, the crude was purified by PTLC,and 3-chloro-2-(2,4,6-

trimethoxyphenyl)quinoline 21 (20.0 mg, 60.0 µmol, 72% yield) was obtained as brown 

crystalline solid. M.p. 158-162 °C Rf: 0.35 (25% EtOAc in Pentane). 1H NMR (400 MHz, 

Acetone-d6) δ 8.44 (s, 1H, ArH), 8.09 – 8.02 (m, 1H, ArH), 7.97 (dd, J = 8.1, 1.5 Hz, 1H, ArH), 

7.81 – 7.73 (m, 1H, ArH), 7.65 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H, ArH), 6.37 (s, 2H, ArH), 3.90 (s, 

3H, p-OCH3), 3.70 (s, 6H, o-OCH3). 13C NMR (101 MHz, Acetone-d6) δ 163.1, 159.8, 154.8, 

147.1, 135.4, 131.2, 130.3, 129.8, 128.9, 128.1, 127.8, 110.5, 91.5, 56.1, 55.7. IR ν 2256 (w), 

1728 (m), 1704 (s), 1611 (w), 1340 (w), 1249 (s), 1158 (w), 1131 (w), 1035 (w), 971 (w). HR-

ESI-MS: calcd for C18H17ClNO3
+ 330.0891[M + H]+; found 330.0895. 
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6. Crystal Structures. 
 

 

A single crystal was grown by slow diffusion of the solution of 13h in CDCl3. Supplementary 

crystallographic data for this compound have been deposited at Cambridge Crystallographic 

Data Centre (1824408) and can be obtained free of charge via 

www.ccdc.cam.ac.uk/data_request/cif. 

 

A single crystal was grown by removal of reaction solvent from 14a by evaporation. 

Supplementary crystallographic data for this compound have been deposited at Cambridge 

Crystallographic Data Centre (1824407) and can be obtained free of charge via 

www.ccdc.cam.ac.uk/data_request/cif. 

http://www.ccdc.cam.ac.uk/data_request/cif
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7. Determination of the regio-distribution. 
 

Given the all-aromatic nature of the mixed bi-indole frameworks, NMR studies were required 

to assign the correct regiodistribution of the products. NMR-analysis of bis-methylated bi-

indoles 8a-8h already shown a 3’-2/2’-3 connectivity between the two heterocyclic core. We 

then decide to procede in steps, focusing our attention on mixed bi-indole obtained when a NH-

indole was used as nucleophile in the reaction. 

In Figure 7.1 all four possible regioisomers I-IV are reported: in order to determine the correct 

structure we performed bidimensional NMR analysis of product 8i-8j and their derivatives 35-

36. We concentrated our attention to the 

H-signal at about 6.6 ppm: given the shift 

we postulated its belonging to either C2-

C3 carbons of one of the two indoles. 

HMBC analysis of products 8i-8j  didn’t 

show correlation between the NCH3-

carbon and the H-signal at about 6.6 ppm. 

For this reason we were able to exclude 
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regioisomers of classes I and II and assign the singlet to a C3-carbon.  
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To distinguish between the remaining two regioisomers III and IV, it was not possible to use 

COSY correlation between the NH bond and the C2-H, as the signal was too weak, 

independently of the substitution pattern. We therefore methylated 8i-8j to obtain 35-36.  

Following general procedure GP6: the corresponding biindoles 8i-8j (0.100 mmol, 1.00 equiv.) 

were dissolved in dry THF (1.00 mL, 0.1 M). Sodium hydride (4.00 mg, 1.00 mmol, 1.00 equiv. 

60% suspension in mineral oil) was slowly added under N2 flow at 0 °C. After being stirred at 

0 °C for 15 min,the reaction mixture was allowed to warm to r.t for 1.5 h. It was then cooled 

back to 0 °C and methyl iodide (11.0 µL, 1.00 mmol, 1.00 equiv.) was added. The mixture was 

warmed to r.t. and stirred overnight. After cooling again to 0 °C, the reaction was quenched 

with water (10 mL), extracted with Et2O (3 x 10 mL), the combined organic layers were dried 

over MgSO4, and the solvent removed under reduced pressure. The resulting crude product was 

purified via flash column chromatography (Pentane:EtOAc 4:1) to give methylated bi-indoles 

35-36. 

 

5'-Fluoro-1,1'-dimethyl-1H,1'H-2,3'-biindole (35). 

Following general procedure GP6 on a 0.1 mmol scale and using 1.0 

equiv. of NaH and MeI: starting from 5'-fluoro-1-methyl-1H,1'H-2,3'-

biindole 8i (26.4 mg, 0.100 mmol, 1.00 equiv.), 5'-fluoro-1,1'-

dimethyl-1H,1'H-2,3'-biindole xx (21.3 mg, 77.0 µmol, 77% yield) as 

a yellow oil. Rf 0.4 (Pentane:EtOAc 4:1) 1H NMR (400 MHz, CDCl3) 

δ 7.65 (d, J = 7.7 Hz, 1H, ArH), 7.36 (ddd, J = 11.9, 8.9, 1.7 Hz, 2H, ArH), 7.31 (dd, J = 8.9, 

4.2 Hz, 1H, ArH), 7.26 – 7.22 (m, 2H, ArH), 7.15 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H, ArH), 7.06 

(td, J = 9.0, 2.5 Hz, 1H, ArH), 6.60 (d, J = 0.9 Hz, 1H, ArH), 3.89 (s, 3H, NMe), 3.75 (s, 3H, 

NMe). 13C NMR (101 MHz, CDCl3) δ 158.5 (d, J = 235.7 Hz), 137.9, 134.4, 133.6, 129.8, 

128.3, 128.0 (d, J = 10.1 Hz), 121.1, 120.0, 119.6, 110.8 (d, J = 26.6 Hz), 110.2 (d, J = 9.8 Hz), 

109.3, 107.3 (d, J = 4.6 Hz), 105.2 (d, J = 24.2 Hz), 101.4, 33.3, 30.9.  IR ν 3054 (w), 2929 

(w), 2854 (w), 1626 (w), 1592 (w), 1489 (m), 1467 (w), 1280 (m), 1241 (w), 1194 (w), 1119 

(w), 1013 (w), 913 (m), 748 (s). HR-ESI-MS calcd for C18H16FN2
+ [M+H]+ 279.1292; found 

279.1287. 
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5'-Bromo-1,1'-dimethyl-1H,1'H-2,3'-biindole (36). 

Following general procedure GP6 on a 0.1 mmol scale and using 1.0 

equiv. of NaH and MeI: starting from 5'-bromo-1-methyl-1H,1'H-

2,3'-biindole 8j (32.5 mg, 0.100 mmol, 1.00 equiv.) 5'-bromo-1,1'-

dimethyl-1H,1'H-2,3'-biindole 36 (27.9 mg, 82.0 µmol, 82% yield) 

was obtained as yellow oil. Rf 0.75 (Pentane:EtOAc 4:1) 1H NMR (400 MHz, CDCl3) δ 7.81 

(dd, J = 1.9, 0.5 Hz, 1H, ArH), 7.64 (m, 1H, ArH), 7.38 (dd, J = 4.1, 1.4 Hz, 1H, ArH), 7.36 

(dd, J = 3.6, 1.4 Hz, 1H, ArH), 7.25 – 7.21 (m, 2H, ArH), 7.17 (s, 1H, ArH), 7.14 (ddd, J = 8.0, 

7.1, 1.1 Hz, 1H, ArH), 6.59 (s, 1H, ArH), 3.85 (s, 3H, NMe), 3.72 (s, 3H, NMe). 13C NMR (101 

MHz, CDCl3) δ 137.9, 135.6, 134.0, 129.3, 129.3, 128.2, 125.2, 122.8, 121.2, 120.1, 119.7, 

113.7, 111.0, 109.4, 107.0, 101.7, 33.2, 30.9. IR ν 2957 (w), 2932 (w), 2869 (w), 1718 (s), 1610 

(w), 1537 (w), 1452 (w), 1436 (w), 1385 (m), 1255 (m), 1214 (m), 1162 (m), 1060 (w), 1035 

(w), 880 (w), 803 (w), 721 (m). HR-ESI-MS calcd for C18H16
79BrN2

+ [M+H]+ 339.0491; found 

339.0485.  

 

 

The HMBC analysis showed interaction 

between the H-singlet at 7.25 (35) and 

7.16 (36) and the newly installed NCH3, 

thereby excluding the 2’-2 connection and 

allowing to assign the structure. As 

expected we obtained the 3’-2 connection. 

The structure of the other bi-indoles 

obtained in the scope was assigned by 

analogy, except for compounds 8l-8m. 

The latter compounds were obtained with a C3-alkylated indole as nucleophile and the steric 
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hindrance played an important role in reversing the regio-distribution. An insight on the 

mechanism is given in SI-Par.4. 
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6. DSC studies. 
 

DSC analysis of C2-NBoc-IndoleDBX (13a) 
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8. Spectra of new compounds 
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Potassium trifluoro(1-(tert-butoxycarbonyl)-6-methoxy-1H-indol-2-yl)borate (11c) 
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Potassium trifluoro(1-(tert-butoxycarbonyl)-6-bromo-1H-indol-2-yl)borate (11d): 
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Potassium trifluoro(1-(tert-butoxycarbonyl)-3-methyl-1H-indol-2-yl)borate (11e): 
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Potassium trifluoro(1-(tosyl)-1H-indol-2-yl)borate (11f): 
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Potassium trifluoro(2-(2-(1H-indol-3-yl)ethyl)isoindoline-1,3-dione)borate (11g): 
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1-(Tert-butyl 1H-indole-1-carboxylate)-1H-1λ3 -benzo[b]iodo-3(2H)-one (13a):  
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1-(2-1-(Tosyl)-1H-indol-2-yl)-1H-1λ3 -benzo[b]iodo-3(2H)-one (13b):  
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1-(2-Tert-butyl 1H-indole-1-carboxylate)-3,3-dimethyl-1,3-dihydro-1λ3-

benzo[d][1,2]iodoxol  (13c):  
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1-(2-1-Tosyl-1H-indole)-3,3-dimethyl-1,3-dihydro-1λ3-benzo[d][1,2] iodoxole (13d):  
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1-(2-5-Methoxy-1-tert-butyl-1H-indole-1-carboxylate)-3,3-dimethyl-1,3-dihydro-1λ3-

benzo [d][1,2]iodoxole (13e):  
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1-(2-6-Methoxy-1-tert-butyl-1H-indole-1-carboxylate)-3,3-dimethyl-1,3-dihydro-1λ3-

benzo [d][1,2]iodoxole (13f):  
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1-(2-5-Bromo-1-tert-butyl-1H-indole-1-carboxylate)-3,3-dimethyl-1,3-dihydro-1λ3-benzo 

[d][1,2]iodoxole (13g):  
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1-(2-3-Methyl-1-tert-butyl-1H-indole-1-carboxylate)-3,3-dimethyl-1,3-dihydro-1λ3-benzo 

[d][1,2]iodoxole (13h):  
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1-(2-(1H-Indol-3-yl)ethyl)isoindoline-1,3-dione)-3,3-dimethyl-1,3-dihydro-1λ3-

benzo[d][1,2] iodoxole (13i):  
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1-Methyl-2-(2,4,6-trimethoxyphenyl)-1H-indole (7a) 
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1-Methyl-2,3-bis(2,4,6-trimethoxyphenyl)-1H-indole (8). 
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5-Iodo-1-methyl-2-(2,4,6-trimethoxyphenyl)-1H-indole (7b) and and 5-iodo-1-methyl-

2,3-bis(2,4,6-trimethoxyphenyl)-1H-indole (7b’) 
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1-Methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(2,4,6-trimethoxyphenyl)-1H-

indole (7c)
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1,2-Dimethyl-3-(2,4,6-trimethoxyphenyl)-1H-indole (7d) 
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1,1'-Dimethyl-1H,1'H-2,3'-biindole (8b) 

 

 

5'-Methoxy-1,1'-dimethyl-1H,1'H-2,3'-biindole (8c) and 5'-methoxy-1,1'-dimethyl-

1H,1'H-2,7'-biindole (8c’) 
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5'-Chloro-1,1'-dimethyl-1H,1'H-2,3'-biindole (8d) 
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5'-Iodo-1,1'-dimethyl-1H,1'H-2,3'-biindole (8e) 
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1,1'-Dimethyl-5'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H,1'H-2,3'-biindole (8f) 
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1,1'-Dimethyl-1H,1'H-[2,3'-biindol]-6'-ol (8g) 

 

 

1-Methyl-1H,1'H-2,3'-biindole (8h) 
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5'-Fluoro-1-methyl-1H,1'H-2,3'-biindole (8i) 
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5'-Bromo-1-methyl-1H,1'H-2,3'-biindole (8j) 
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1,1',3-Trimethyl-1H,1'H-2,3'-biindole (8k) 
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2-(1'-Methyl-1H,1'H-[2,3'-biindol]-3-yl)ethanol (8l) 
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5-Iodo-1,1'-dimethyl-1H,1'H-2,3'-biindole (8m) 
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5'-Methoxy-1,1'-dimethyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H,1'H-2,3'-

biindole (8n).
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5'-Nitro-1,1'-dimethyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H,1'H-2,3'-

biindole (8o) 

 

 

1-Methyl-2-(1-methyl-1H-pyrrol-2-yl)-1H-indole (9a) 
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1-Methyl-2-(1-phenyl-1H-pyrrol-2-yl)-1H-indole (9b) 

 

 

1-methyl-2-(1-phenyl-1H-pyrrol-3-yl)-1H-indole (9b’) 
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2-(3-Methoxythiophen-2-yl)-1-methyl-1H-indole (10a) 
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2-(2,5-Dimethylthiophen-3-yl)-1-methyl-1H-indole (10b) 
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2-(2,4,6-Trimethoxyphenyl)-1H-indole (14a)  
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5-Methoxy-2-(2,4,6-trimethoxyphenyl)-1H-indole (14b) 
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6-Methoxy-2-(2,4,6-trimethoxyphenyl)-1H-indole (14c) 
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6-Bromo-2-(2,4,6-trimethoxyphenyl)-1H-indole (14d) 
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3-Methyl-2-(2,4,6-trimethoxyphenyl)-1H-indole (14e)  
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2-(2-(2-(2,4,6-Trimethoxyphenyl)-1H-indol-3-yl)ethyl)isoindoline-1,3-dione (14f) 
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2-(2,4,6-Trimethoxy-3-methylphenyl)-1H-indole (14g)  
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3-Methyl-2-(2,4,6-trimethoxy-3-methylphenyl)-1H-indole (14h)  
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6'-Bromo-1H,1'H-2,3'-biindole (15a)  

 

 

 

  



S134 

 

6'-Fluoro-1H,1'H-2,3'-biindole (15b) 
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6-Bromo-5',6'-dimethoxy-1H,1'H-2,3'-biindole (15c) 
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2-(3-Methoxythiophen-2-yl)-1H-indole (16)  
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2-Bromo-12-methyl-5,12-dihydroindolo[3,2-a]carbazole (18)
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2-Chloro-5,12-dimethyl-6,7-diphenyl-5,12-dihydroindolo[3,2-a]carbazole (20) 
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3-Chloro-2-(2,4,6-trimethoxyphenyl)quinolone (21) 
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5'-Fluoro-1,1'-dimethyl-1H,1'H-2,3'-biindole (35)
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5'-Bromo-1,1'-dimethyl-1H,1'H-2,3'-biindole (36) 
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