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LRH-1 agonism favours an immune-islet dialogue
which protects against diabetes mellitus
Nadia Cobo-Vuilleumier1, Petra I. Lorenzo1, Noelia García Rodríguez1, Irene de Gracia Herrera Gómez1,

Esther Fuente-Martin1, Livia López-Noriega1, José Manuel Mellado-Gil1, Silvana-Yanina Romero-Zerbo2,3,

Mathurin Baquié4, Christian Claude Lachaud1, Katja Stifter5, German Perdomo6, Marco Bugliani7,

Vincenzo De Tata8, Domenico Bosco9, Geraldine Parnaud9, David Pozo 10, Abdelkrim Hmadcha 1,3,

Javier P. Florido11, Miguel G. Toscano12, Peter de Haan12, Kristina Schoonjans13, Luis Sánchez Palazón14,

Piero Marchetti7, Reinhold Schirmbeck5, Alejandro Martín-Montalvo1, Paolo Meda15, Bernat Soria1,3,

Francisco-Javier Bermúdez-Silva 2,3, Luc St-Onge16 & Benoit R. Gauthier 1

Type 1 diabetes mellitus (T1DM) is due to the selective destruction of islet beta cells by

immune cells. Current therapies focused on repressing the immune attack or stimulating beta

cell regeneration still have limited clinical efficacy. Therefore, it is timely to identify innovative

targets to dampen the immune process, while promoting beta cell survival and function. Liver

receptor homologue-1 (LRH-1) is a nuclear receptor that represses inflammation in digestive

organs, and protects pancreatic islets against apoptosis. Here, we show that BL001, a small

LRH-1 agonist, impedes hyperglycemia progression and the immune-dependent inflammation

of pancreas in murine models of T1DM, and beta cell apoptosis in islets of type 2 diabetic

patients, while increasing beta cell mass and insulin secretion. Thus, we suggest that LRH-1

agonism favors a dialogue between immune and islet cells, which could be druggable to

protect against diabetes mellitus.
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Type 1 diabetes mellitus (T1DM) is a CD4+ and CD8+ T-
cell-dependent autoimmune disease that targets beta cell
destruction, ultimately leading to hyperglycemia and

insulin dependence. The collapse in tolerance to self-antigens,
such as insulin, is precipitated by genetic and environmental
factors1,2. To date, therapies aimed at inhibiting the immune
system using anti-CD3 monoclonal antibodies or at neutralizing
pro-inflammatory cytokines, have had limited success3,4. One of
the reasons may be that inhibiting the immune and inflammatory
reactions in the pancreas impairs the repairing and regeneration
capabilities of a functional beta cells mass5,6, as observed during
wound healing7. Novel agents that could guide a pro-
inflammatory autoimmune destructive environment toward an
anti-inflammatory milieu facilitating islet regeneration, would
define a novel class of antidiabetic therapies.

The liver receptor homolog-1 (LRH-1, or NR5A2) is a member
of the NR5A family of nuclear receptors, which plays a pivotal
role in early embryonic development, and specifies the endo-
dermal lineage8. In the liver, LRH-1 modulates the expression of
genes involved in cholesterol and bile acid metabolism, as well as
in glucose homeostasis9, attenuates the hepatic acute phase
response, which is triggered upon increases of pro-inflammatory
cytokines, and protects against endoplasmic reticulum stress10,11.
In the intestine, LRH-1, modulates the enterocyte renewal and
regulates the local immune system via production of glucocorti-
coids12. In the pancreas, LRH-1 regulates the expression of genes
involved in digestive functions, and protects the endocrine islets
against cytokine- and streptozotocin-induced apoptosis13,14, while
stimulating the production of enzymes involved in glucocorticoids
biosynthesis14. In view of the above, specifically of the possibility
that LRH-1 could elicit an islet-driven anti-inflammatory micro-
environment, we posited that upregulating LRH-1 activity could
have beneficial therapeutic effects in diabetes mellitus (DM).

Natural phospholipids physiologically stimulates LRH-1
activity15,16, decreasing hepatic steatosis and improving glucose
homeostasis in animal models of insulin resistance17. Given that
LRH-1 can also be activated by smaller, non-polar bicyclic
compounds18, we have synthesized a compound termed BL001,
which we have tested in mouse models of T1DM, as well as in
pancreatic islets from patients affected by Type 2 DM (T2DM).
Here we report that the long-term in vivo administration of
BL001 prevents the development of diabetes in mice, through the
combined maintenance of a functional islet beta cell mass and the
release of anti-inflammatory factors, which contribute to the islet
regeneration effect. We further report that BL001 also protects
human islet cells from apoptosis and improves impaired insulin
secretion as well as beta cell survival in the pancreatic islets of
T2DM patients. The data define LRH-1 as a novel therapeutic
target for the treatment of T1DM.

Results
BL001 activates LHR-1 without cytotoxic or metabolic effects.
The chemical structure of BL001, which specifically binds to and
activates LRH-118, is depicted in Supplementary Fig. 1a. The
effects of the drug on LRH-1 activity, cell viability, and toxicity
are described in Supplementary Fig. 1b–e. Pharmacokinetic and
safety profiling of BL001 were studied in C57BL/6 and RIP-B7.1
mice, respectively. An i.p. injection of 10 mg/kg b.w. BL001 led to
peak plasma concentrations of 3.6 μg/ml (≈8 μM) after 0.2 h, and
a half-life of 9.4 h. Daily injections during 24 weeks did not reveal
macroscopic organ alterations in BL001-treated RIP-B7.1 mice
(Supplementary Fig. 2a, b), which also featured normal plasma
levels of total cholesterol and triglycerides up to 8 weeks of
treatment (Supplementary Fig. 3a, b). Insulin sensitivity was not
altered by this BL001 treatment (Supplementary Fig. 3c).

BL001 blunts apoptosis and attenuates diabetes in mice. To
assess the anti-apoptotic effect of BL001, mouse islets were
exposed to 10 μM BL001 in the presence of 2 ng/ml IL1beta, 28
ng/ml TNFalpha and 833 ng/ml IFNgamma. The drug prevented
the cytokine-induced islet cell death (Fig. 1a). A substantial loss of
LRH-1 transcript and protein by RNAi, sensitized BL001-treated
islets to the cytokine-induced apoptosis (Fig. 1b–d). The anti-
diabetic role of BL001 was next evaluated in animal models of
T1DM. C57BL/6 male mice that received 150mg/kg b.w. strep-
tozotocin (STZ) developed diabetes within 4 weeks (Fig. 1e,
Supplementary Fig. 4a). The incidence of diabetes was decreased
after a 5 day pre-treatment with 10 mg/kg b.w. BL001 (Fig. 1e,
Supplementary Fig. 4a), which decreased the loss of insulin-
containing beta cells (Fig. 1g), and increased the proportion of
cells staining for both insulin and glucagon (Fig. 1h, i). Moreover,
30% of the mice that developed diabetes returned to normogly-
cemia 4 weeks after a daily injection of 10 mg/kg b.w. BL001,
starting 1 week after the STZ injection (Fig. 1f, Supplementary
Fig. 4b).

To evaluate the effect of BL001 against an autoimmune attack,
we studied RIP-B7.1 mice, a model mimicking the etiology of
T1DM19, without gender influence20. Eighty percent of RIP-B7.1
mice immunized against insulin developed diabetes within
8 weeks (Fig. 1j, Supplementary Fig. 4c), when receiving only a
vehicle solution. This proportion dropped to 43% in mice treated
with 10 mg/kg b.w. BL001 for 5 days prior to immunization
(Fig. 1j, Supplementary Fig. 4c). Still, a similar increase in the
proliferation of T cells in response to insulin was also detected in
the splenocytes of mice treated or not with BL001, both 4 and
8 weeks after the insulin immunization (Fig. 1k), confirming that
all mice had mounted an in vivo autoimmune attack. At these
time points, immunostaining showed a near-complete destruction
of beta cells in the islets of the control immunized mice, and the
persistence of sizable numbers of these cells in the immunized
mice treated with BL001 (Fig. 1l). In the presence of
hyperglycemia, the latter animals also featured islets with a
significant increase in the number of PDX1+ cells as compared to
immunized mice (Fig. 1m, n).

Mice in which the BL001 treatment was initiated 5 days after
the immunization, featured an incidence of diabetes similar to
that of controls for the first 5 weeks (Fig. 1o, Supplementary
Fig. 4d). Thereafter, however, the incidence of diabetes was lower
(~30%) in the BL001-treated mice than in immunized controls
(~80%; Fig. 1o, Supplementary Fig. 4d). A similar decrease in
diabetes incidence was observed in female NOD mice treated with
BL001 from week 12 (Fig. 1p), an age at which these animals
feature an ongoing autoimmune attack, and reduced insulin
content. To establish whether the in vivo effects of BL001 were
mediated via LRH-1, we generated mice in which the Lrh1 gene
was selectively disrupted in beta cells. To this end, Lrh1 lox/lox
mice were crossed with RIP-Cre mice. We found that all mice
carrying two deleted alleles (βLRH-1−/−), and 75% of the
progenies carrying one normal allele (βLRH-1−/+) died within
3 weeks of life (Supplementary Fig. 5a). Immunofluorescence
staining of islets from day 1 neonatal pups, showed an atypical
islet morphology, with a normal proportion of insulin-containing
beta cells surrounded by an increased proportion of glucagon-
containing alpha cells in homozygous mice (Supplementary
Fig. 5b–e).

BL001 inhibits insulitis and alters serum cytokine profile. To
unravel the mechanism whereby BL001 impedes the progression
of diabetes, we evaluated the lymphocytic infiltration of islets
(insulitis) in mice pre-treated or not with BL001. Four weeks after
immunization, a sizable insulitis was detected in the pancreas of
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both BL001-treated and control mice (Fig. 2a, b). However,
4 weeks later, the normoglycemic BL001-treated mice were nearly
free of insulitis, in contrast to controls which displayed strong
infiltration (Fig. 2c, d). Accordingly, no CD4+ or CD8+ T cells
were found in the islets of the former animals (Supplementary
Fig. 6), which also showed significantly higher levels of circulating

IL10, IL5, IL6 (Fig. 2e, f), CCL2, CCL4 (Fig. 2g, h), and TGFbeta
(Fig. 2i, j) than immunized controls at 8 but not 4 weeks. In
contrast, no significant differences were observed in levels of
INFgamma (0.6965 ± 0.0931 versus 0.4989 ± 0.0733 p= 0.1072,
unpaired Student’s t test), TNFalpha (5.925 ± 0.815 versus 6.648
± 0.659 p= 0.4982, unpaired Student’s t test), IL1beta (0.5267 ±
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0.0913 versus 0.3461 ± 0.0579 p= 0.1092, unpaired Student’s
t test) and IL2 (1.306 ± 0.181 versus 1.111 ± 0.154 p= 0.4221,
unpaired Student’s t test) between immunized untreated and
BL001-treated mice at 8 weeks.

BL001 elicits a tolerogenic environment within the pancreas.
To analyze how BL001 remodeled the immune cell environment,
we performed flow cytometry studies on pancreatic cell suspen-
sions (gating strategy shown in Supplementary Fig. 7). The pro-
portions of CD4+/CD25+/FoxP3+ Tregs and CD4+/IL4+ Th2
cells were higher in the pancreas of the immunized and BL001-
treated RIP-B7.1 mice than in the cognate controls (Fig. 3a, c),
whereas CD4+/IFN gamma+ Th1 cells were decreased, and CD4
+/IL17+ Th17 cells were unaffected (Fig. 3b, d). Furthermore, the
number of CD103+/IDO+ tolerogenic dendritic cells, F4/80
+/CD11b+ macrophages, and their M2-like anti-inflammatory
subtype (F4/80+/CD11b+/CD206+) were also increased in
BL001-treated mice (Fig. 3e–g). Accordingly, transcriptome
profiling revealed that BL001 significantly increased the expres-
sion of key genes associated with the M2 genetic signature,
including, Clec7a (Dectin-1), Clec10a (CD301), Chst7, Tiam1,
Cd300ld, and Olfm1 (Noelin-1 or Pancortin)21 (Fig. 3h).

BL001 favors a M2 macrophage phenotype via LRH-1. To
further delineate the role of BL001 in promoting a M2 macro-
phage phenotype resulting in increased IL10 secretion, peritoneal
macrophages were isolated and treated in vitro with the com-
pound. BL001 dose-dependently increased transcript levels and
the secretion of IL10 and TGFbeta (Fig. 4a–d). Exposure to LPS,
also enhanced the expression and secretion of IL10, but not of
TGF beta by these cells (Fig. 4e–h). To substantiate that BL001-
mediated M2 polarization was conveyed by direct LRH-1 acti-
vation, the latter receptor was knock down using siRNA. Silen-
cing of LRH-1 transcript and protein levels by ~70% in primary
macrophages (Fig. 4i, j), significantly blunted the BL001-mediated
increase in expression of the M2 signature genes, Clec7a, Clec10a,
and Olfm1 as well as Il10 (Fig. 4k, l, p, q), independent of LPS
treatment. Transcript levels of Chst7, Tiam1, and Cd300ld were
also repressed, albeit in macrophages either treated or not with
LPS (Fig. 4m–o). In contrast, TGFbeta expression was not altered
in LRH-1 silenced cells (Fig. 4r). As IL10 biosynthesis and
secretion in alternatively activated macrophage has been linked to
Clec7a stimulation22,23, secretion levels of this cytokine was next
evaluated in LRH-1 knockdown cells. Accordingly, IL10 secretion
was decreased in BL001-treated macrophages independent of LPS
treatment (Fig. 4s) indicating that LRH-1 is involved in the

BL001-dependent polarization and cytokine secretory function of
M2 macrophages.

BL001 increases the number of bi-hormonal cells in islets. To
assess whether the BL001 treatment favored the survival and
replenishment of islet cells, we morphometrically evaluated the
mass of beta and alpha cells, as well as islet numbers and sizes.
Eight weeks after immunization, all these parameters were
increased in the BL001-treated mice (Fig. 5a–d, Supplementary
Fig. 8a–c). This increase was not associated to enhanced pro-
liferation or decreased apoptosis of beta cells, as assessed using
different methods (Fig. 5e–h, Supplementary Fig. 9a, b). In con-
trast, the immunized mice, which did not receive BL001, featured
higher levels of beta cell proliferation and apoptosis as a result of
the ongoing autoimmune attack (Fig. 5e–h). Eight weeks after
immunization, the mass of alpha cells was also increased in
BL001-treated mice in the absence of enhanced proliferation
(Fig. 5c, d, i, j, Supplementary Fig. 9c). At this time point, islets of
these mice, also contained increased numbers of cells co-
expressing insulin and glucagon, as well as PDX1 and glucagon
(Fig. 5k–n and supplementary Fig. 10). Since the data suggest the
potential activation of a genetic beta cell program in alpha cells,
we investigated whether a 48-h BL001 treatment could suppress
the expression of ARX, whose down-regulation triggers beta-to-
alpha cell trans-differentiation24. Accordingly, a 2-day exposure
to BL001 decreased the expression of ARX, glucagon, and MafB
transcripts in the alpha cell-derived TC1–6 cell line (Fig. 5o).

BL001 protects human islet from apoptosis improving func-
tion. Having validated the proof-of-concept in mice that BL001
protects islets and prevents both chemically and autoimmune-
induced diabetes, we next sought to determine whether these
beneficial effects were translated to human islets under stress
conditions. Ten to twenty μM BL001 did not reveal any cytotoxic
effects on islets obtained from normoglycaemic donors (Supple-
mentary Fig. 11a). In the same islets, the expression levels of
LRH-1 were also unchanged, whereas that of its target gene shp
was increased (Supplementary Fig. 11b). However, 10 μM BL001
decreased the apoptosis of islet beta cells, 24 and 72 h after an
exposure to either cytokines (Fig. 6a, c) or streptozotocin (Fig. 6b,
d). Glucose-stimulated insulin secretion (GSIS) of islets from non
diabetic donors (Supplementary Table 1) was not modified by
BL001 (Fig. 6e). In contrast, GSIS of islets from type 2 diabetic
donors (Supplementary Table 2) was significantly increased after
exposure to BL001 (Fig. 6f). Under these conditions, the pro-
portion of apoptotic beta cells was significantly decreased (Fig. 6g,

Fig. 1 BL001 improves islet survival and blunts development of diabetes in three mouse models. a Exposure to 10 μM BL001 (BL) for 72 h blocked cytokine-
induced apoptosis (CK; 2 ng/ml IL1beta, 28 ng/ml TNFalpha and 833 ng/ml IFNgamma) in mouse islets. Cell death was assessed by ELISA quantification
of mono and oligonucleosomes released by apoptotic cells. This blockade was blunted in islets transfected with siRNAs (d) which decreased LRH-1
transcript (b) and protein levels (LRH1, red; scale bar: 25 µM) (c). Data are means+ s.e.m. values of six independent experiments using six different islet
preparations and performed in triplicates. siSC, pool of siRNAs against scrambled sequence. BL001 (10mg/kg b.w.) also decreased the incidence of
diabetes in C57Bl/6 male mice treated with a single dose of streptozotocin (STZ;150mg/kg b.w.), irrespective of whether the former drug was given prior
to (e) or 1 week after (f) STZ. Values are means ± s.e.m. of n= 5 (STZ)-14 mice (BL/STZ). After these 2 protocols, insulin-containing beta cells (red) and
glucagon-containing alpha cells (green) were preserved in islets of STZ and BL001-treated mice (g), which also featured an increase number of cells
containing both hormones (h, arrowheads). Nuclei were stained with DAPI (blue). Scale bars: 25 µM. i Quantification of insulin- and glucagon-positive
cells. j A 5-day BL001 pre-treatment of RIP-B7.1 mice prior to immunization decreased the diabetes incidence. Values are means ± s.e.m. C (vehicle treated,
n= 26 male and female mice); BL (BL001, n= 26 male and female mice); IMN (immunized, n= 50 male and female mice), and BL IMN (BL001-treated and
immunized, n= 50 male and female mice). k Immunization increased the proliferation of RIP-B7.1 splenocytes, an effect that was not modified by the
BL001 treatment. Values are median (lines in the boxes) ± median errors of 5–12 preparations. l The 8-week-long BL001 treatment preserved insulin- (red)
and glucagon-containing cells (green) in islets of immunized RIP-B7.1 mice (scale bar: 25 µM). m, n BL001-treated and immunized RIP-B7.1 mice that
developed hyperglycemia contained a higher number of PDX1+ cells as compared to untreated and immunized animals (scale bar: 25 µM). o Diabetes
incidence of RIP-B7.1 mice that were immunized at days 0 and 7 and subsequently injected daily, starting at week 1 and for up to 8 weeks, with either
vehicle (IMN, n= 38 male and female mice) or BL001 (BL IMN, n= 38 male and female mice). p Diabetes incidence in female NOD mice receiving (BL, n
= 8) or not (C, n= 14) BL001 from 12 weeks. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, one-way ANOVA (a, d, k, i) or Student’s t test (b, n)
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h) and paralleled by reduced cleaved caspase-3 activity (Fig. 6i, j
and Supplementary Fig. 12).

To assess whether comparable effects could be observed during
an ongoing, in vivo immune attack, mimicking a T1DM
environment, we transplanted human islets under the kidney

capsule of immune competent C57BL/6 mice, treated or not with
BL001. Two days after xenotransplantation, mice were treated
with daily injections of BL001 or vehicle for 7 days. At this time
point, rejection of the human islets is anticipated25,26. Consistent
with the protective effect of BL001, grafts from BL001-treated
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mice showed greater numbers of beta cells than the controls
(Fig. 6k, l).

Immune-related biological processes are targeted by BL001. To
evaluate the effects of BL001 on a larger scale, we profiled gene
expression via DNA microarray analysis in mouse islets exposed

to BL001 for 2 days. We found that 277, 23, and 195 gene
ontology (GO) terms were enriched in islets exposed to 0.1, 1.0,
and 10 µM BL001, respectively (Fig. 7a). Seven of these GO terms
were common to all conditions, whereas no common down-
regulated GO terms was found in the same samples (Fig. 7a). The
seven enriched GO terms were related to genes involved in
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immune functions (Fig. 7b). Heat maps of those genes which
were consistently modified, identified 33 genes (Fig. 7c). Those
encoding for the CCL2, CCL3, CCL7 chemokines, the cytokine
IL6 and the prostaglandin-endoperoxide synthase-2 (PTGS2)
were the most induced by the BL001 exposure, whereas the gene
coding for the IL1 beta receptor (IL1R1) was the most down-
regulated (Fig. 7c). Quantitative PCR of these genes, confirmed
that the CCL2, CCL3, and PTGS2 transcripts were upregulated by
the BL001 exposure (Fig. 7d–f), whereas the IL1R1 transcript was
downregulated under the same conditions (Fig. 7g).

Discussion
In spite of major efforts, the available strategies to restore/pre-
serve a functional beta cell mass through immunomodulation
and/or beta cell regeneration/replacement treatments have so far
shown limited efficacy for the long-term improvement of gly-
caemia in T1DM patients27. This frustrating situation calls for
innovative approaches to this complex problem; identify novel
“druggable” targets that could promote the regeneration of a
functional beta cell mass, while attenuating the autoimmune
attack, and preserving the anti-inflammatory locale that appears
necessary for beta cell renewal. Here, we show that BL001, a small
agonist of the LRH-1 receptor, has such characteristics, which
prevent and revert diabetes in three different mouse models of
T1DM.

Our data first document that, by activating LRH-1, BL001
primes macrophages toward the anti-inflammatory M2 pheno-
type (as revealed by the enhanced M2 genetic signature) resulting
in direct stimulation of IL10 expression and secretion23. BL001-
treated mice also featured increased numbers of pancreatic Tregs,
whose expansion is induced by IL1028, and which are essential in
maintaining self-immune tolerance including in T1DM29. Cir-
culating levels of CCL2 as well as its expression in islets were
increased in BL001-treated and immunized RIP-B7.1 mice.
Although the impact of CCL2 as a pro or anti-inflammatory
chemokine is disease- and cell-dependent30, our results suggest
that in the context of autoimmune diabetes, increased levels of
local CCL2 appears to be associated with the recruitment of
macrophages to the pancreas which, in turn are further polarized
towards the M2-like subtype under the influence of IL10 pro-
duction. CCL2 through enhanced IL4 production also fosters an
environment that favors expansion of Th231, a cell type and
cytokine that were increased in the pancreas and in the circula-
tion of immunized, BL001-treated RIP-B7.1 mice. Immunized
mice treated with BL001 also displayed increased circulating
TGFbeta levels correlating with the presence of a larger number
of CD103+/IDO+ dentritic cells, which convey immunosup-
pressive and tolerogic functions32,33. Given that the adoptive

transfer of M2 macrophages as well as the upregulation of CCL2
enhance beta cell survival in NOD mice34,35 and that the auto-
logous transfer of Tregs improves islet survival and function in
T1DM patients36, the immune changes we observed converge to
demonstrate that BL001 significantly inhibits the aggressive
autoimmune process favoring tolerance, which presumably con-
tributes to its beneficial effects. In this context, BL001-treated and
immunized mice that develop diabetes retained islets with a sig-
nificant number of PDX1+ cells and reduced insulitis at 8 weeks
as compared to immunized mice. Although speculative, the latter
results indicate that BL001 dosage or activity was suboptimal in
favoring an anti-inflammatory and tolerogenic environment
resulting in beta cell destruction and hyperglycemia in these
animals.

Blood analysis further showed that BL001 increased circulating
levels of the IL5 and IL6 cytokines, and of the chemokine CCL4,
which have anti-inflammatory actions. IL6 enhances insulin
secretion via the release of GLP1 by alpha cells37,38 while IL5 and
CCL4 shift pro-inflammatory Th1 cells towards the anti-
inflammatory Th2 subset and stimulate expansion of Tregs39,40.
Accordingly, we found reduced numbers of Th1 cells but
increased numbers of Th2 and Tregs cells in the pancreas of the
immunized and BL001-treated mice. In contrast, circulating levels
of IFNgamma, TNFalpha, IL1beta and IL2 remained constant
suggesting that production of these cytokines were not directly
impacted by the compound. BL001 treatment also stimulated the
islet expression of PTGS2, an inducible prostaglandin synthase,
whose PGE2 metabolite also inhibits Th1 cells and protects
against T1DM41–43. In addition, IL6 and the potential secretion of
PTGS2-derived PGE2 by islets along with IL4 and IL10 released
by Th2 as well as Tregs, will further contribute to M2 polarization
within the pancreas independent of the direct activation of LRH-1
in macrophages by BL00144–47. These data highlight that, in
addition to a direct sizable action on the immune system, BL001
also promotes the release of pancreatic islet-derived factors
favoring an anti-inflammatory environment that will further
induce tolerogenecity. Future work will focus on dissecting the
mechanism whereby the BL001/LRH-1 signaling pathway
achieves these beneficial effects.

Our study further documents that the LRH-1 receptor is
essential for the proper organization of pancreatic islets. Thus,
the beta cell loss of the LHR-1 receptor modifies the proportion
of islet cells characterized by an increase in the number of alpha
cells, and the retention of a sizable beta cell mass, which
associate with a rapid, post-natal death of transgenic mice. Our
parallel experiments also show that BL001-mediated activation
of LRH-1 stimulates the regeneration of beta cells, in the islets
of both control and diabetic mice, an effect which is not attri-
butable to a change in the proliferation and apoptosis of these

Fig. 5 BL001 promotes beta and alpha cell mass expansion in immunized RIP-B7.1 mice. The control (C) mass of beta (a, b) and alpha cells (c, d) of RIP-
B7.1 mice was decreased after immunization (IMN), an alteration that was prevented by 10mg/kg b.w. BL001 daily treatment for 8 weeks (BL IMN). Dot
plots show the results from 8 (4 weeks) and 16 (8 weeks) pancreas per group, each dot corresponding to the cell mass of an entire pancreatic section. e–j
Representative immunofluorescence images of islets co-stained and quantified for e, f insulin (INS, red) and Ki67 (green), g, h insulin (red) and Tunel
(green), i, j glucagon (GLUC, red) and Ki67 (green). All values are means of 5 mice per group. Scale bars: 25 µM. Right panels are enlargements of boxed
area, and arrow heads point to example of cells simultaneously stained for 2 proteins. k Representative confocal images showing the distribution of the
insulin- (red) and glucagon-bihormonal cells (green) as well as l quantification in islets of the different animal groups. Nuclei were stained with DAPI
(blue). Scale bar: 25 µM. Right panel show enlargements of boxed areas. Arrow heads point to cells co-stained for the two depicted markers. m A
representative image depicting co-immunostaining of PDX1 (red) and glucagon (green) in a pancreas of a normoglycemic immunized BL001-treated
mouse, and n quantification of such cells in the various groups. Bottom left panels are enlargements of boxed area. Bottom right panels, are without DAPI
staining. White arrows point to PDX1+/GLUC+ cells, # identifies a PDX1-/GLUC+ cell and * highlights a PDX1+/GLUC- cell. n= 15 pancreatic slices
obtained from five independent mice per group. Scale bar: 25 µM. o After a 24-h exposure to 10 μM BL001 (BL), alpha TC-1.6 cells featured decreased
expression of the Arx, glucagon (Ggc) and MafB transcripts. Six independent experiments were performed and subsequent QT-PCR conducted in
triplicates. Values are means+ s.e.m. (f, h, j, l, n, o). *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, one-way ANOVA (a–d, f, h, j, l, n) and the
Student’s t test as compared to control (o)
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cells. The underlying mechanism may or may not directly target
beta cells, and remains to be ascertained. A possible explanation
may be an alpha-to-beta cell trans-differentiation48, as sug-
gested by (1) the frequent occurrence of cells containing both
insulin and glucagon after the BL001 administration, (2)
repression of the alpha genetic program by BL001, and (3)
increased alpha cells subsequent to LRH-1 beta cell-specific
deletion. However, this possibility still needs to be validated by
specific lineage tracing studies. The fact that BL001 and STZ-
treated mice displayed fewer bi-hormonal cells suggest that
such trans-differentiation may be facilitated by the increase in

Tregs and M2 macrophages and/or by IL6 and IL1049,50.
Antecedents for such immune-regenerative mechanism have
been described in salamander and zebrafish51,52. Furthermore,
Tregs and M2 macrophages are key remodeling players in
mouse tissue repair (muscle, bone and vasculature) promoting
cell differentiation and expansion53,54.

In summary, our data define LRH-1 as a novel target for the
treatment of diabetes, which can be modulated by BL001. The
inhibitory effect of the drug on the immune system, its tolero-
genic action and its effects on beta cells survival and regeneration
combine to account for the beneficial effects observed in rodent
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models (Fig. 8). The finding that the drug also decreases beta cell
apoptosis in islets from patients with T2DM, and improves their
insulin secretion as well as improves beta cell survival in xeno-
transplantation, opens the exciting perspective that it could be of
value also in the human clinic. In this perspective, the develop-
ment of new LRH-1 agonists, more stable than BL001 and
adapted to oral administration is an urgent need.

Methods
BL001 synthesis and formulation. BL001 [(3aS,6aR)-1,2,3,3a,6,6a-hexahydro-4-
(3-methoxyphenyl)-5-((E)-oct4-en-4-yl)-N-phenylpentalen-3a-amine] was syn-
thesized by Sreeni Labs Private Limited (India), at a HPLC purity >98%. The semi-
solid compound was dissolved in 100% DMSO, at 0.5 mg/ml and 100 μg/ml stock
concentrations for in vitro and in vivo studies, respectively. The optimal for-
mulation for in vivo administration (hereafter referred to as vehicle) was: 1%
DMSO, 40% WellSolve (Celeste Corporation, Japan) and 59% water. In vitro
pharmacology activity assay and ADME-Tox studies were outsourced to Cerep/
Eurofins (http://www.cerep.fr); pharmacokinetic studies were performed by GVK
Biosciences Pvt. Ltd. (http://www.gvkbio.com/).

Mice. RIP-B7.119, LRH-1 Lox/Lox (kindly provided by Dr. K. Schoonjans, EPFL,
Switzerland), RIP-Cre55, C57BL/6 mice (purchased from Janvier Labs, France), and
NOD mice (Charles River, Calco Italy) were housed in ventilated plastic cages
under a 12-h light/dark cycle, and were given food and water ad libitum. Mice
experimentations were approved by the CABIMER Ethics Committee for Animal
Experimentation, and performed in accordance with the Spanish law on animal use
RD 53/2013. NOD mice studies were carried out in strict accordance with the
recommendations in the Guide for the Care and Use of Laboratory Animals of the
German Federal Animal Protection Law. Protocols were approved by the Com-
mittee on the Ethics of Animal Experiments of the University of Ulm (Tier-
forschungszentrum Ulm, Oberberghof) and the Regierungspräsidium Tübingen
(Permit Numbers: 1199 and 1327 to R.S.). Mice were randomly distributed for all
experiments and not subject to blind analysis. Seven- to eight-week-old males and
females RIP-B7.1 mice were injected daily i.p. with 10 mg/kg b.w. BL001, starting
either 5 days prior to or after immunization. Immunization was achieved by
injection of 50 μg preproinsulin (ppINS) expression plasmid (PlasmidFactory
GmbH, Germany) into the two anterior tibialis muscles. Mice were euthanized 4
and 8 weeks after immunization, and pancreases and spleens were extracted for
immunocytochemistry and proliferation assays, respectively. In addition, 8-week-
old male C57BL/6 mice were treated with BL001 for 5 days prior or after an i.p.
injection of 150 mg/kg b.w. streptozotocin (STZ) prepared in 0.01 M sodium citrate
at pH 4.5. Twelve-week-old female NOD mice were injected daily i.p. with 10 mg/
kg b.w. BL001, for up to 25 weeks. Circulating glucose levels were measured from
tail vein blood samples using an Optium Xceed glucometer (Abbott Scientifica SA,
Barcelona, Spain). Non-fasting blood glucose ≥13.8 mmol/l for two consecutive
measurements was considered to indicate overt diabetes. For insulin tolerance tests
(ITT), animals were fasted for 5 h, and then i.p. injected with 0.5 U/kg b.w.
Actrapid Insulin. Glycemia was measured at 0, 30, 60, 90, and 120 min after this
injection. Cytokine levels were assessed in blood and culture media using the
mouse V-PLEX ProInflammatory Panel 1 kit 10-Plex (Meso Scale Discovery,
Rockville, USA). Detection was performed by electrochemiluminescence technol-
ogy, and data acquired on a MSD MESOTM QuickPlex SQ120. Blood triglyceride
and cholesterol levels were measured using an Accutrend Plus apparatus (Roche
Diagnostics, Mannheim, Germany), using the appropriate strips. Temporal MRI
scan of mice were acquired using a Bruker BioSpec 9.4 T/20 animal MRI system,
equipped with 400 mT/m gradients and a 40 mm quadrature resonator. Images
were acquired using a Turbo-RARTE sequence with respiratory gating (TEeff= 24

ms, TR= 1400 ms, Rare Factor= 4, slice thickness= 0.75 mm, in-plane resolution
= 78 × 78 μm).

Mouse islet isolation. Mouse islets were isolated by collagenase dissociation,
handpicked, and maintained in 11.1 mM glucose/RPMI-1640 (ThermoFisher Sci-
entific, Madrid, Spain) supplemented with 10% fetal bovine serum (FBS; Sigma-
Aldrich, Madrid, Spain), 100 U/ml penicillin (Sigma-Aldrich) and 100 mg/ml
streptomycin (Sigma-Aldrich)56.

Human islet isolation, procuration and treatment. Human islets were either
obtained from The Cell Isolation and Transplantation Center (Department of
Surgery, Geneva; Switzerland) or purchased from Tebu-Bio (Barcelona, Spain).
Islets from non-diabetic or T2DM organ donors were obtained in Pisa or pur-
chased from Tebu-Bio (Barcelona, Spain). Signed informed consents were obtained
from the families of organ donors. The ethical and investigation committee of the
University Hospital of Virgen Macarena and Virgen del Rocio approved all pro-
cedures (#2013-04398 to B.R.G.). Human islet preparations were washed, hand-
picked, and subsequently maintained in CMRL-1066 (ThermoFisher Scientific)
containing 5.6 mM glucose, and supplemented with 10% FCS, 100 U/ml penicillin,
100 μg/ml streptomycin, and 100 μg/ml gentamycin (all purchased from Sigma-
Aldrich). Human and mouse islets were either untreated or exposed to various
concentrations of BL001 for 24–48 h prior to (1) addition of 2 ng/ml IL1beta, 28
ng/ml TNFalpha and 833 ng/ml IFNgamma; (2) addition of 1 mM streptozotocin;
(3) assessment of glucose-induced insulin secretion; (4) measurement of apoptosis.
In some experiments, LRH1 was repressed in mouse islets and primary peritoneal
macrophages by RNA interference. To this end, On-target plus NR5A2 siRNA-
smart pool (Dharmacon, cat number L-047044-01) along with either control on-
target plus non-targeting pool (Dharmacon, cat number D00181010) for islets or
siLuciferase (5′-CGUACGCGGAAUACUUCGA-3′) for macrophages were used in
these studies. Fifty nM of siRNAs were pre-mixed with Lipofectamine (Thermo-
Fisher Scientific) and subsequently added to cells for 24 h. Fresh medium was then
added and cells cultured under various treatments. Apoptosis was measured at 24
and 72 h using the Roche Cell Death Detection ELISA kit (Roche Diagnostics,
Mannheim, Germany). This assay is based in the quantitative sandwich-enzyme
immunoassay principle using monoclonal antibodies against DNA and histones,
respectively, that allow specific detection of mono- and oligonucleosomes in
apoptotic cells. Islet viability was assessed using the MTT assay, according to the
manufacturer’s recommendations (Roche, Spain). In some instance, protein
extracts were prepared from T2DM islets and cleaved-caspase-3 activity was
assessed by western blot analysis57.

Human islet transplantation. Human islet transplantations were performed using
a modified protocol from Robertson and Szot58,59. Briefly, 10-week-old immuno-
competent C57BL/6 male mice were anesthetized by an i.p. injection of 100 mg/kg
ketamine and 10 mg/kg xylazine, 150–200 islets were collected without cen-
trifugation in a minimum of medium, and transplanted under the kidney capsule
using flame-polished borosilicate glass capillaries (Harvard Apparatus, GC100T-
10). Upon termination of the experiment, animals were sacrificed and transplanted
kidneys extracted, fixed and embedded for further histology analysis. In order to
accurately assess transplant reject/engraftment the entire kidney was sectioned and
insulin/glucagon co-immunostaining for was performed at every 15th slice, an
interval of ~75–150 µm that corresponds to the median size of the majority of
islets.

Cell culture and assays. The mycoplasma-free alpha TC1–6 cell line was pur-
chased from ATCC (CRL-2934; Barcelona), and maintained in DMEM (Ther-
moFisher Scientific) supplemented with 10% FBS, 15 mM HEPES, 0.1 mM non-
essential amino acids, 0.02% BSA, 2 g/l glucose, 1.5 g/l sodium bicarbonate and 5

Fig. 6 BL001 protects human islets against apoptosis and rescues insulin secretion in islets of type 2 diabetic donors. a A 24 and 72 h exposure to cytokines
(CTK) or b streptozotocin (STZ) increased cell death in human islets. This effect was prevented by 10 μM BL001 (BL). n= 10 independent islet
preparations, performed in either duplicates or triplicates. Double immunostaining for insulin (INS) and cleaved PARP (Cl.PARP) in sections from human
isolated islets exposed to either c cytokine (CTK) or d streptozotocin (STZ) and treated or not with 10 μM BL001 (BL). Scale bars: 25 µM. Right panels of
each time point are enlargements of boxed area in left panel. e After a 24-h exposure to 0 (C) −1 μM BL001, islets from normoglycemic donors (n= 5
independent donors) were similarly stimulated by glucose to release insulin. f In contrast 0.1–1 μM BL001 increased glucose-stimulated insulin secretion in
islets of type 2 diabetic donors (n= 8 independent donors). Data are means+ s.e.m. g Electron micrographs show apoptotic beta cells in islets of type 2
diabetic donors (T2DM), which were unfrequent when these islets were exposed to 1 μM BL001 (T2DM BL). Scale bars: 2 µM. h Quantification shows that
the percentage of apoptotic beta cells decreased after exposure to 1 μM BL001, in three independent donors. i Western blot of cleaved caspase-3 (Cl.C3)
and actin in protein extracts isolated from control (T2DM) and BL001 treated T2DM islets (T2DM BL) along with j densitometric analysis. n= 3
independent donors. k 10-week-old C57BL/6 male mice were transplanted with 150–200 human islets under the kidney capsule. Two days after
transplantation, mice were treated daily with BL001 or vehicle for seven days. Kidneys were harvested and processed for immunofluorescence. Two
independent representative image sets of kidney sections immunostained with sera against insulin (red) and glucagon (green). DAPI nuclear
counterstaining is used. Scale bar: 25 µM. Right panels correspond to the white squares indicated in the left panels. Rc Renal cortex. l Quantification of
insulin-positive cells in islets transplanted under the kidney capsule. n= 5 independent transplantations. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p <
0.0001, two-way ANOVA (a, b) and Student’s t test (e, f, h, j, l)
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Fig. 7 BL001 potentiates islet genes involved in immunomodulation. Isolated mouse islets were treated with 0.1–10 μM BL001 for 24 h and RNA isolated
for DNA microarray analysis (n= 3 independent islet preparations per BL001 concentrations). a Venn diagram depicting the number of GO terms
significantly enriched after three different BL001 treatment. b Enrichment plot for the seven GO terms common to all three BL001 concentrations. c
Heatmaps displaying logFC values of transcripts modulated by BL001, and their association with common GO processes. Blue cells reflect the membership
of a gene to a given GO BP term. Validation by QT-PCR of d Ccl2, e Ptgs2, f Ccl3, g Il1r1, h Ccl7, and i Il6 transcript levels in mouse islets treated with
BL001. n= 5 independent islet preparations. *p < 0.05 and **p < 0.01, Student’s t test versus control untreated (C)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03943-0

12 NATURE COMMUNICATIONS |  (2018) 9:1488 | DOI: 10.1038/s41467-018-03943-0 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


µM beta mercaptoethanol (all purchased from Sigma-Aldrich). The proliferation of
splenocytes isolated from mouse spleens was assessed after a 3-day culture in RPMI
1640 medium supplemented with 8% FBS, 20 mM L-glutamine, 1% sodium pyr-
uvate, 1% nonessential amino acids, and 1% penicillin/streptomycin (all from
Invitrogen), in the presence or absence of the insulin peptide SLYQLENYCA. Cells
were pulsed with [3H]-thymidine for the last 24 h of culture, harvested and lysed
onto membranes prior to liquid scintillation counting using a Beckman Coulter LS
6500 counter. Mouse primary macrophages were isolated from the peritoneal
cavity, and cultured in DMEM/F12–10 (ThermoFisher Scientific) supplemented
with 10% FBS, 2 mM L-glutamine, 100 U/ml penicillin, 100 μg/ml streptomycin (all
purchased from Sigma-Aldrich). Cells were stimulated with 1 μg/ml LPS (in
DMSO), in the absence or presence of 0.1, 1, or 10 μM BL001 for 24 h. The
secretion of cytokines was measured in the culture medium by electro-
chemiluminescence technology from MesoScale Discovery (Rockville, USA), and
RNA was extracted from cells.

Flow cytometry. Subpopulations of T helper cells extracted from mouse pancreas,
were characterized by flow cytometry (FACSCalibur, BD Biosciences, Madrid,
Spain), using the following antibodies (Supplementary Table 3): FITC-conjugated
anti-mouse CD4; Alexa fluor 647-conjugated anti-mouse IL17; Alexa fluor 647-
conjugated anti-mouse IL4; PE-Cy7-conjugated anti-mouse IFNgamma. Reg-
ulatory T cells were evaluated using FITC-conjugated anti-mouse CD4, in com-
bination with APC-conjugated anti-mouse CD25, and PE-conjugated anti-mouse
FoxP3 antibodies. Pancreatic macrophage subpopulations were assessed using
Alexa fluor 488 anti-mouse CD45, BV421 anti-mouse CD11b, APC anti-mouse F4/
80 and PE anti-mouse CD206. Dendritic cells were evaluated using Alexa fluor 488
anti-mouse CD45, PE anti-mouse CD103 and Alexa fluor 647 anti-IDO. Data were
analyzed using FlowJo V9 software (Tree Star). Cell sorting was performed using a
FACSAria I (BD).

Immunohistochemistry and electron microscopy. Pancreases and isolated islets
were fixed and embedded as previously detailed56. Primary and secondary anti-
bodies are listed in Supplementary Table 3. Nuclear counterstaining was performed
by DAPI, and sections were mounted using DAKO fluorescent mounting medium.
Islet cell apoptosis was measured using a TUNEL assay (In Situ Cell Death
Detection Kit, Roche, Madrid, Spain). Images were acquired using either a Leica
DM6000B or a Leica TCS SP5 confocal microscope. For the assessment of beta-
and alpha-cell mass, images of pancreatic sections were automatically acquired
using a software (NIS-Elements imaging)-controlled data acquisition Nikon eclipse
Ti-e microscope (Nikon). Morphometric quantification was performed using the
Fiji/ImageJ software. Insulitis was scored in paraffin sections of pancreas, stained
with H&E. Cells with small nuclei were considered of haematopoietic origin.
Insulitis scoring was performed as a grade of 0 to 4 according to percentage of
infiltrated islet area (0, 0%; 1<10%; 10%<2>55%; 55%<3>75%; 4>75%). For elec-
tron microscopy, pancreatic islets were processed using a standard Spurr proto-
col60. Electron microscopy images were acquired with an EMCCD camera (TRS
2kx2k). The number of non-apoptotic and apoptotic (visualized by blebbing and
nuclear condensation) beta cells was counted and the respective percentage of

dying cells was expressed as the number of apoptotic cell type over the total
number of beta cells.

DNA microarray. Labeled cRNA samples were prepared from pools of at least 100
islets isolated from 8-week-old C57BL/6 female mice, treated or not with increasing
concentrations of BL001, and subpopulations of M2-like macrophages (CD45
+/F4/80+/CD11b+/CD206+) purified from the pancreas of either vehicle- or
BL001-treated and immunized C57BL/6 mice. Three independent preparations of
cRNA were prepared per group, and hybridized to the GeneChip Mouse Gene 2.0
ST Array (islets) and to the Clariom S Assay Mouse Array (M2-like macrophages)
(Affymetrix, Santa Clara, CA), using standard protocols of the Genomic Core
Facility of CABIMER. For each microarray experiment, the Robust Multiarray
Analysis (RMA) method was applied on a per-chip basis for background correc-
tion61. Subsequent normalization across arrays, and summarization were per-
formed using a quantile algorithm and median-polish, respectively62, via oligo
package from Bioconductor (http://www.bioconductor.org). A differential gene
expression analysis was then performed using the limma package63. Computed p
values were corrected using the false discovery rate (FDR) method, to harmonize
for the multiple comparisons of all genes64.

For the islet samples, gene set analysis was performed using the logistic
regression model65, while GO annotation for genes in the microarrays were
extracted from Bioconductor GO.db annotation package66. Heatmaps of logFC
values from differential expression analyses (different concentrations of BL001
versus control) were generated for those genes which were expressed in all groups
(raw p-value < 0.05), and associated to the statistically enriched (p-adjusted <0.05)
seven GO terms identified at all drug concentrations.

For the M2-like macrophages, a heatmap of log2 expression values of a subset of
M2 gene signatures21, was generated for the CD45+/F4/80+/CD11b+/CD206+

subpopulation isolated from either untreated (IMN) or BL001-treated immunized
(IMN BL) mice. LogFC values from differential expression analyses (IMN BL
versus IMN) were generated for these genes (raw p-value < 0.05).

RNA isolation and quantitative PCR (QT-PCR). Total RNA was extracted using
the RNeasy Micro Kit (Qiagen). Complementary DNA using 0.5 to 1 µg RNA was
synthesized using the Superscript II (ThermoFisher Scientific). The RT-PCR was
performed on individual cDNAs using SYBR green (Roche)56. Primers can be
obtained upon request.

Statistical analysis. The Ruth Lenth’s power of analysis was applied to the dif-
ferent animal models to ensure that adequate numbers of animals had been studied
to detect significant changes. Results are expressed as mean ± s.e.m. (line plots as a
function of time) or as mean+ s.e.m. (bar graphs). Statistical analysis were per-
formed using the GraphPad Prism software (GraphPad Software, La Jolla, USA).
Statistical differences were estimated by one- or two-way ANOVA, with Bonferroni
post hoc tests, Student’s t test or non-parametric Mann–Whitney test, whichever
was appropriate.
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Fig. 8 Proposed model of BL001/LRH-1 cellular action. Schematic view of the effects of BL001 in changing the pancreas pro-inflammatory immune
environment toward an anti-inflammatory environment, which promotes beta cell regeneration, possibly through alpha-to-beta cell trans-differentiation
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Data availability. The Microarray raw data that support the findings of this study
have been deposited in the Gene Expression Omnibus repository with the super-
series accession number GSE94505 and subseries numbers GSE94505 and
GSE104322.
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