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Abstract

We study dynamical properties of dissipative XYZ Heisenberg lattices where anisotropic spin-spin
coupling competes with local incoherent spin flip processes. In particular, we explore a region of the
parameter space where dissipative magnetic phase transitions for the steady state have been recently
predicted by mean-field theories and exact numerical methods. We investigate the asymptotic decay
rate towards the steady state both in 1D (up to the thermodynamical limit) and in finite-size 2D
lattices, showing that critical dynamics does not occur in 1D, but it can emerge in 2D. We also analyze
the behavior of individual homodyne quantum trajectories, which reveal the nature of the transition.

1. Introduction

Quantum many-body physics with light has proved to be an extremely rich and interesting field of study, as it
combines the complexity of condensed matter with the intrinsically out-of-equilibrium behavior of optical
systems [1—4]. Collective phenomena among photons, such as Bose—Einstein condensation [5-8] or
superfluidity [9—13], have been observed in planar semiconductor microcavities in the strong light-matter
coupling regime. In these systems, the optical confinement and the nonlinearity of the media give rise to a weak
photon-photon interaction, which allows the many-photon system to behave as a quantum fluid.

The appearance of strongly correlated states of light is even more evident in regimes where the interaction
among photons becomes large. When the nonlinearity of the optical cavity is much larger than its dissipation
rate, the presence of a single photon inside the cavity is able to effectively block the entrance of a second one. This
effect, known as photon-blockade [14, 15], has been observed experimentally at first with optical photons using a
single atom in a cavity [ 16] and is particularly strong in circuit quantum electrodynamics systems in the
microwave domain [17]. Non-trivial phases can also arise when several cavities are coupled together and form a
lattice of resonators [18]. For instance, correlations can lead to a transition from a photonic Mott insulator to a
superfluid [ 19-23], similar to that observed with ultracold atoms confined in optical lattices [24, 25].
Interestingly, a system of coupled resonators in the photon-blockade regime arranged according a lattice
geometry can be mapped into an effective spin model [21, 26, 27]. This class of systems can be realized nowadays
using different experimental platforms, such as superconducting quantum simulators [28] or Rydberg atoms
[29-32].

Among the collective phenomena appearing in coupled photonic lattices, dissipative phase transitions are
nowadays deserving more and more attention. Dissipative processes are usually at odds with the unitary
Hamiltonian evolution of the quantum system and the competition between the incoherent and the coherent
dynamics can give rise to criticality for the steady state in the thermodynamic limit [33]. Dissipative phase
transitions have been discussed theoretically for single cavity photonic systems [34—36], as well as for lattices of
cavities with mean field methods [37-39] or full-size lattice simulations [40, 41]. An experimental observation of
these critical phenomena seems feasible with state-of-the-art techniques, and some remarkable results have
already been obtained [42—44].
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In this context, the dissipative XYZ Heisenberg model [45] has attracted a considerable attention. It
describes a lattice of spins interacting via an anisotropic Heisenberg Hamiltonian coupled to an environment
which forces spins to align along the z-axis. The single-site Gutzwiller mean-field theory predicts a rich phase
diagram for the magnetic properties of the steady state of this model [45]. More refined calculations [46-50],
based on numerical methods including many-body correlations, have confirmed the emergence of a critical
behavior in two-dimensional lattices, while the phase transition disappear when the spins are arranged
according to a one-dimensional geometry. All these works, however, focussed on the calculation of steady-state
properties and a full description of the dynamics of the system is still lacking.

In this work, we explore the dynamical properties of the dissipative XYZ model in the region where a second-
order phase transition from a paramagnetic to a ferromagnetic steady state has been predicted. For finite-size 1D
arrays and 2D lattices, we have performed an exact integration of the master equation using the whole Hilbert
space via the Wave Function Monte Carlo method [51]. Moreover, for 1D arrays of infinite length we have
applied the infinite matrix product operator (iMPO) technique [52, 53].

This article is organized as follows. In section 2 we discuss the theoretical framework and describe the
methods used for the calculations. In section 3 we show the main results of the work. In section 4 we draw our
conclusions and present some perspectives.

2. Mathematical framework

The dissipative XYZ model describes a lattice of spins interacting via an anisotropic Heisenberg Hamiltonian
(h=1)

H =Y 0:5767 + 1,6/ 8/ + 1.6/ 5), M
(i>j)

where 6" (v = x, y, z) represent the Pauli matrices acting on the ith site. The sum runs over the nearest neighbor
sites (i, j). The dissipative part describes incoherent spin-flip processes which tend to align a single spin towards
the negative direction of the z-axis with a rate . The density matrix p (¢) dynamics is obtained from the Lindblad
master equation

a_ﬁZE[A]:_i[p[ bl + Z £ =1 A,+_l S48 = 4 NS tS— 2

o p > P WjUJpo] 2(0]0]/)+p010]), (2
where &ji = (6] + i6{) /2 are the spin raising and lowering operators acting on the jth spin and £ is the
Liouvillian superoperator. The latter is non-Hermitian and has a spectrum of complex eigenvalues, defined by
the equation L[p,] = A/ p,.

The dissipative XYZ model evolves towards a steady state p,., which depends on the parameters in (2) and
corresponds to the zero eigenvalue of £ (9,0, = L[p,] = 0). All the other eigenvalues ), are such that their real
part is negative and describe the relaxation dynamics of p (¢) towards the steady state. Since a dissipative phase
transition is expected to be characterized by a critical slowing down in the dynamics of the system, a particular
relevance has to be given to the so-called Liouvillian gap A = min,| Re(),)|, which is also called asymptotic
decay rate [33]. The emergence of a critical behavior is associated to a closing of the Liouvillian gap in the
thermodynamiclimit[33, 41, 54].

The Lindblad master equation (equation (2)) is invariant under a w-rotation of all the spins around the z-axis
(67 — —67,6) — —8/ Vi).Inthe thermodynamic limit, the Z, symmetry associated to this transformation
may spontaneously break, resulting in the appearance of several magnetic phases for the steady state of the
model. In this work, we will focus on a particular regime where previous calculations have predicted a transition
from a paramagnetic phase with no magnetization in the xy plane (&) = Tr(j,6;) = 0,

(6,) = Tr(p,6]) = 0)toaferromagnetic phase with finite magnetization in the xy plane (&) = 0, (5;) = 0)
[45-50] (see figure 1).

From a computational point of view, the numerical solution of the master equation (2) is a formidable task
when considering extended lattices. The corner-space renormalization method [55], which has shown the
criticality of several steady-state observables in 2D lattices [47], does not give access to the dynamic properties of
the system. For small systems with a number N < 10 spins, the problem can be solved via a standard Runge—
Kutta integration of equation (2). For 10 < N < 16, instead, we have solved the master equation stochastically
via the Wave Function Monte Carlo method [51]. This method describes the time evolution of the open
quantum system in terms of a set of Ny-pure states |Wi(#)) (usually called quantum trajectories), obtained
independently according to a stochastic evolution protocol [56—59]. The density matrix is retrieved by averaging
over the Nysampled trajectories, according to the formula p(t) = 1 /NT ZkN; HU(t)) (Wi (1) |- The
computational advantage of this method is clear, as it allows to study the evolution of the open system dealing
with pure states (which are vectors of size 2V), instead of the density matrix (which has size 2 x 2™).
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Figure 1. Phase diagram of the 2D dissipative XYZ model as a function of the normalized coupling parameter J,,/~, with fixed

J«/v = 0.9and],/y = 1.For], ~ ], the system presents a paramagnetic (PM) steady state. At the critical value ](yc), the system
undergoes a phase transition towards a ferromagnetic (FM) steady state. Different estimations for this critical value are:

J© [y = 1.039 from [45], J© /v = 1.04 & 0.01 from [46], ]\ /v = 1.07 & 0.02 from [47] and ]\ /v = 1.0665 + 0.0005 from
[50]. Atlarger values of J,, the nature of the steady state is still under debate: [46] predicts the existence of a second critical point

] ;”'2) / ~ = 1.40 (dashed blue line in the figure), above which the steady state is paramagnetic, but [47] does not show any evidence of a
phase transition close to this value.

Itis important to notice that quantum trajectories are useful not only to reduce the complexity of the
integration of the Lindblad master equation (2), but their analysis of can also provide insightful results about the
nature of the dissipative phase transition [40, 41]. To this aim, we have investigated the stochastic evolution of
individual quantum trajectories for the dissipative XYZ model, obtained according to the homodyne protocol
described by the following equation:

si(1)?
4

W(t + db)) =4 —idt H + Y ﬁ{aj— - ﬂ}dw;(t) - %{a;a; —5(06; + dt H[T(t)),  (3)
j

2

where s;(t) = (W(t) |?7j‘ |Wi(¢)) and dW are stochastic Wiener increments with zero expectation value, variance

equal to Jdt and uncorrelated among the different spins (the detailed derivation can be found, e.g., in [58]).
Contrarily to the master equation (2), the stochastic equation in (3) does not conserve the Z, symmetry of the
Liouvillian superoperator, due to the presence of the terms s;(t). Therefore, by studying the time evolution of the
magnetic order parameter over an individual quantum trajectory, it is possible to reveal the emergence of
different magnetic phases, when we change the parameters of the system. Nevertheless, the symmetry of the
Liouvillian is restored when we consider the density matrix, obtained by averaging over many trajectories.

Alternative approaches for the simulation of 1D arrays are based on tensor networks techniques [60] making
use of the matrix product operator (MPO) ansatz for the density matrix [61, 62] (see for example [38, 46,
63-66]). The MPO ansatz for the many-body mixed state can be controlled by changing a single parameter, i.e.
the bond-link dimension : the more  increases, the more non-local quantum correlations can be encoded.
The dynamics of the open system is obtained via a time-evolving block decimation scheme [67, 68]. In the case of
translational invariant systems, the MPO ansatz and the time evolution procedure can be further simplified
leading to the iMPO representation [52, 53], which allows to directly access the thermodynamic limit of an
infinite number of sites. Very recently, this technique has been extended to the case of 2D lattices [48] although
with a very reduced bond dimension.

3. Results and discussion

We start our discussion on the dynamics of the dissipative XYZ model by studying the time evolution of the
average lattice magnetization M*(t) = >, Tr[p(#)5;"] /N, N being the number of spins in the lattice. In

figure 2, we plot M (¢) for a fixed choice of the parameters of the Hamiltonian (1) in vicinity of the critical point,
for spin systems of different size, both with 1D (figure 2(a)) and 2D geometry (figure 2(b)). In all these
calculations, the master equation has been solved assuming an initial configuration where all the spins point
along the positive direction of the x-axis (therefore M™(+ = 0) = 1) and imposing periodic boundary conditions
to the finite-size lattice.

For t > 57, all the curves M™(¢) decay exponentially towards the steady-state expectation value M;; = 0
(notice that we have M = 0 for all the values of the parameters since we do not break explicitly the Z,
symmetry of the Liouvillian superoperator in our simulations). The presence of an asymptotic exponential
behavior for M*(¢) indicates that, at large times, the dynamics of the system can be described uniquely in terms of
the eigenstate associated to the Liouvillian gap. The density matrix can be approximated as
p(t) = p, + Ap,e~, where A is a real number depending on the choice of the initial configuration. From our
results, we notice also that the dynamics gets slower when increasing the size of the system, both in 1D arrays and
in 2D lattices (respectively figures 2(a) and (b)). In 1D arrays the decay rate saturates when the size of the system
increases. For an array with 16 sites the decay curve is nearly indistinguishable from what obtained for an array of
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Figure 2. Top panels: time dependence of the averaged magnetization M™(¢) in 1D arrays (panel (a)) and in 2D lattice (panel (b)) of
different size. Parameters: /vy = 1.8,],/v = 2.2and ],/ = 2 for the 1D results in panel (a); J,/y = 0.9,],/y = 1.1andJ,/y = 1 for
the 2D results in panel (b). Lower panels: Liouvillian gap as a function of the coupling parameter ], in 1D arrays (panel (c)) and 2D
lattices (panel (d)). The other parameters are: J,/~y = 1.8 and ],/ = 2 for the 1D results; ],/ = 0.9and J,/y = 1 for the 2D results.

infinite length (obtained via the iMPO technique). Instead, in 2D lattices no saturation of the decay rate is
observed.

By fitting the curves for M*(¢) at large ¢ with a simple exponential, we can extract the value of the Liouvillian
gap A. The results for A obtained with this procedure have been successfully benchmarked against those
calculated with an exact diagonalization of the Liouvillian superoperator in small systems (4 x 1arrayand2 x 2
lattice). In figures 2(c), (d) we plot A as a function of the normalized coupling parameter J,/~y (the other coupling
parameters J,,/and J,/~yare kept fixed). Both in the 1D and in the 2D case, all the curves A(J,) present a
minimum close to the critical value of ], indicating a slowing down in the dynamics of the system. Nevertheless,
we clearly notice that this slowing down is not critical in 1D systems. Indeed, the results for A(J,) in the largest 1D
systems (with N > 12) overlap and are in good agreement with the prediction for the infinite array obtained
withiMPO?, showing a finite value of the Liouvillian gap. Instead, in 2D systems, the minimum of A(J,) becomes
smaller and smaller when the size of the lattice increases. This behavior is consistent with a closure of the
Liouvillian gap in the thermodynamic limit.

In order to better characterize the behavior of the 2D system across the critical point, we study the average
magnetization of the lattice Mg, () = (¥()|Y_; 6};| U(t)) /N alongasingle trajectory | ¥ (¢)). To this extent, we
have computed |¥(¢)) following the homodyne protocol in equation (3) in 2D lattices of different sizes, for
several values of the parameter ], starting from an initial configuration where all the spins are aligned along the
z-axis. Convergence of the time integration of equation (3) has been carefully checked, requiring a time step
dr >~ (10007) .

In the three panels of figure 3, we show the results for Mg (t)ina3 x 3latticefor J, = 0.95+,], = 1.25yand
J, = 1.8y. When the steady state presents a paramagnetic phase (J, = 0.95+, figure 3(a)), the curve for Mg (¢)
presents only small fluctuations around the zero value for the magnetization. The behavior of the quantum
trajectory is strikingly different in the ferromagnetic phase (J, = 1.2, figure 3(b)). In this case, we can clearly

? The accuracy of the iMPO data is checked by increasing the bond-dimension x until the convergence is reached (in our calculation,
convergence is obtained with y = 80).
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Figure 3. Average magnetization Mg calculated for a single homodyne quantum trajectory as a function of time fora3 x 3 lattice.
The three panels refer to different values of the coupling parameter J,,/~ (the other parameters are J,/y = 0.9and J,/y = 1).

distinguish intervals of time where the curve for Mg (t) fluctuates around a positive value of the magnetization
and others where it fluctuates around the opposite value. The duration of these time intervals is of the order

At ~ X! Finally, for large values of the coupling parameter J,, (J, = 1.8, figure 3(c)), Mg (¢) presents yet
another different behavior. It is reminiscent of what observed in the paramagnetic phase (see figure 3(a)), since it
fluctuates around the zero value of the magnetization, but the amplitude of the fluctuations is much larger than
in the regime J,. 2 J,. This peculiar behavior can be ascribed to the strongly mixed character of the steady state in
this regime (see [46, 47] for a calculation of the purity and the von-Neumann entropy). In this case, the stochastic
processes described by the increments dW; in equation (3) would allow the quantum trajectory to explore a
much larger number of quantum states with respect to the case at small anisotropy, where the trajectory
fluctuates weakly around the single pure state dominating in the steady-state density matrix. As a consequence,
the fluctuations of Mg (¢) in the paramagnetic regime of large anisotropy are much stronger than in the regime at
Je =]

To better understand the nature of those three regimes, we studied the probability distribution of Mg (¢)
over many trajectories, which we will call p(M ™), defined as follows. We consider a time #, where the density
matrix of the system has reached the steady state, and statistically collect all the values of Mg (¢) fort > t;over
many trajectories. The results for p(M™) are presented in the top panel of figure 4, as a function of the coupling J,..
We notice that for small P the distribution is monomodal around zero. As Jincreases, one reaches a point
J. > 1.05ywhere p(M~) starts to present two distinct peaks, which are symmetric around the value M™ = 0. If
we continue to increase J,, the two peaks broaden and they move apart, until they reach their maximum distance
for ], =~ 1.2. Above this value of J,, the peaks continues to broaden and they start to approach one to the other,
until they merge again into a single peak for J, 2 1.67. The broadening, the separation and the merging of the
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Figure 4. Top panel: contour plot of the probability distribution p(M™) of the site-averaged magnetization along x versus the coupling
parameter ], fora3 x 3lattice. Lower panels: probability distribution p(M™) for different values of J,.. For each value of J,, the
distributions are obtained collecting the results of M* from N = 16 trajectories with total time #r = 10*/~. Same parameters as in
figure 3.

peaks in the probability distribution is even more evident in the panels in figures 4(a), (f), where we plot the
curves for p(M,) for some values of the coupling parameter J,..

In order to perform a more quantitative analysis of the distribution p(M*), we compute the bimodality
coefficient b [69] that for an even distribution reads:

o (/' amMzpvn)

[ aMMipoy)

4

bisan indicator of the bimodal character of the distribution, which in the present study is related to the
ferromagnetic nature of the steady state. Indeed, when p (M*) presents two narrow peaks, then the quantity b
approaches its maximum value b,,,,, = 1. Instead, unimodal distributions are characterized by smaller values of
b (for instance, a Gaussian distribution centered at M, = 0 would have b = 1/3).
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Figure 5. Bimodality coefficient b (defined in the text) as a function of the coupling parameter J,, for different sizes of the 2D lattice.
The full lines are a guide for the eye. Same parameters as in figure 3.

In figure 5, we plot the value of b as a function of ], for different sizes of the 2D lattice. The emergence of the
phase transition at J,,/~y >~ 1.05 is signaled by a steep increasing of the ratio b, which is almost independent of the
lattice size. Furthermore, the decreasing of b for ],/ > 1.2 indicates the disappearance of the ferromagnetic
order for large anisotropies. In this case, however, the drop of b is not particularly sharp and tends to become
smoother and smoother as the size of the lattice increases.

The study of the behavior of b(J,) is interesting to address the open question about the nature of the steady
state of the dissipative XYZ model for large anisotropies. Several works in literature [46, 48, 49] have predicted a
ferromagnetic to paramagnetic phase transition for J,/y > 1.5. However, the critical value of ], for this second
transition depends strongly on the method used and on the size of the cluster considered in the calculation

[46,48,49]. Moreover, the behavior of the magnetic susceptibility and of the von-Neumann entropy as a
function of ], do not present any feature signaling the emergence of a critical point for J, > 1.2y [47]. Our results
in figure 5, showing a smooth decreasing of b at large J,, together with the absence of a slowing down for
J, > 1.2y (see figure 2(d)), suggest that the disappearance of the ferromagnetic order for large anisotropies
might be due to a crossover and not to another second-order phase transition.

4. Conclusions

In this paper we investigated numerically the dynamics of a dissipative spin—% lattice interacting through an
XYZ-Heisenberg Hamiltonian. This model is particularly relevant in the context of strongly correlated open
quantum systems since it is known to support a second-order dissipative phase transition in two dimensions,
associated with the breaking of the Z, symmetry.

By performing stochastic quantum trajectories simulations on finite-size systems, we determined the
Liouvillian gap from the asymptotic decay rate of the dynamics towards the steady state. When the system is
driven across the critical point, we found that the relaxation exhibits a slowing down. For 1D systems, the
Liouvillian gap remains finite as the length of the chain is increased up to the thermodynamical limit, thus
indicating the absence of a phase transition. Instead, results for 2D lattices do not show a saturation of the
Liouvillian gap, which is consistent with the emergence of critical slowing down. By analyzing individual
stochastic homodyne trajectories in 2D lattices, we characterized the emergence and disappearance of two
metastable states with opposite magnetization. Our predictions might be tested in quantum simulators based on
superconducting quantum circuits or Rydberg atoms. As a perspective, the effects of disorder on the dynamics of
these systems is a very interesting aspect that needs to be investigated in the future, as it is still unclear whether it
can be detrimental to the emergence of the critical behavior [70], or if it may induce some other intriguing

collective phenomena, such as many-body localization [71-75].
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