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Certain brain disorders resulting from brainstem infarcts, traumatic brain injury, cerebral

palsy, stroke, and amyotrophic lateral sclerosis, limit verbal communication despite the

patient being fully aware. People that cannot communicate due to neurological disorders

would benefit from a system that can infer internal speech directly from brain signals. In

this review article, we describe the state of the art in decoding inner speech, ranging from

early acoustic sound features, to higher order speech units. We focused on intracranial

recordings, as this technique allows monitoring brain activity with high spatial, temporal,

and spectral resolution, and therefore is a good candidate to investigate inner speech.

Despite intense efforts, investigating how the human cortex encodes inner speech

remains an elusive challenge, due to the lack of behavioral and observable measures. We

emphasize various challenges commonly encountered when investigating inner speech

decoding, and propose potential solutions in order to get closer to a natural speech

assistive device.
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INTRODUCTION

Neural engineering research has made tremendous advances in decoding motor (Ajiboye et al.,
2017) or visual neural signals (Lewis et al., 2015) for assisting and restoring lost functions in
patients with disabling neurological conditions. An important extension of these approaches is
the development of assistive devices that restore natural communication in patients with intact
language systems but limited verbal communication due to neurological disorder. Several brain-
computer interfaces have allowed relevant communication applications, such as moving a cursor
on the screen (Wolpaw et al., 1991) and spelling letters (Farwell and Donchin, 1988; Gilja et al.,
2015; Jarosiewicz et al., 2015; Vansteensel et al., 2016; Pandarinath et al., 2017). Although this
type of interface has proven to be useful, patients had to learn to modulate their brain activity
in an unnatural and unintuitive way—i.e., performing mental tasks like a rotating cube, mental
calculus, movement attempts to operate an interface (Millán et al., 2009), or detecting rapidly
presented letters on a screen, such as in the P300-speller (see Fazel-Rezai et al., 2012 for a review)
and steady-state visual evoked potentials paradigm(Srinivasan et al., 2006; Nijboer et al., 2008).
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As an alternative, people with speech deficits would benefit
from a communication system that can directly infer inner
speech from brain signals—allowing them to interact more
naturally with the world. Inner speech (also called imagined
speech, internal speech, covert speech, silent speech, speech
imagery, or verbal thoughts) is defined here as the ability
to generate internal speech representations, in the absence of
any external speech stimulation or self-generated overt speech.
While much has been learnt about actual speech perception
and production (see Price, 2000; Démonet et al., 2005; Hickok
and Poeppel, 2007, for reviews), investigating inner speech
has remained a challenging task due to the lack of behavioral
output. Indeed, it remains difficult to study this internal neural
process due to the difficulty to time-lock precise events (acoustic
features, phonemes, words) to neural activity during inner
speech. Therefore, substantial efforts have aimed to develop new
strategies for analyzing these brain signals.

Investigating the underlying neural representations associated
with these different speech features during inner speech is central
for engineering speech neuroprosthetic devices. For instance,
speech processing includes various processing steps—such as
acoustic processing in the early auditory cortex, phonetic, and
categorical encoding in posterior areas of the temporal lobe
and semantic and higher level of linguistic processes in later
stages (Hickok and Poeppel, 2007). One can ask what are the
appropriate speech stimulus-neural response mappings to target
for efficient decoding and designing optimal communication
technologies. For example, a decoding model can target
continuous auditory spectrotemporal features predicted from the
brain activity. Alternatively, decoding discrete phonemes allows
building words and sentences directly.

In this review article, we describe recent research findings
on understanding and decoding the neural correlates
associated with inner speech, for targeting communication
assistive technologies. We focused on studies that have used
electrocorticographic (ECoG) recordings in the human cortex,
as this promising technique allows monitoring brain activity
with high spatial, temporal, and spectral resolution, as compared
to electroencephalographic recordings, and the electrodes
cover broader brain areas compared to intracortical recordings
(Ritaccio et al., 2015). We discuss different decoding and
experimental strategies to deal with common challenges that are
encountered when tackling inner speech decoding. We consider
new avenues and future directions to meet the key scientific and
technical challenges in development of a realistic, natural speech
decoding device.

In the next section, we first briefly present the properties
of electrocorticography, together with its advantages for
investigating the neural representation of human speech. We
next describe several neuro-computational modeling approaches
to neural decoding of speech features.

Electrocorticographic Recordings
Electrocorticography (ECoG), also called intracranial recording
or intracranial electroencephalography (iEEG), is used in
patients with intractable epilepsy to localize the seizure
onset zone, prior to brain tissue ablation. In this procedure,

electrode grids, strips or depth electrodes are temporarily
implanted onto the cortical surface, either above (epidural)
or below (subdural) the dura mater (Figure 1). Because of
its invasiveness, only in rare cases, patients are implanted
with such electrodes, and it remains exclusively for clinical
purposes; nevertheless, the implantation time provides a
unique opportunity to investigate human brain functions,
with high spatial (millimeters), temporal (milliseconds), and
spectral resolution (0–500Hz). In addition, it covers broad
brain areas (typically frontal, temporal, and parietal cortex),
which is beneficial given the complex and widely distributed
network associated with speech. Finally, electrocorticography
is suitable for neuroprosthetic and brain-computer interface
applications (Leuthardt et al., 2004, 2006; Felton et al., 2007;
Schalk et al., 2007; Blakely et al., 2009; Wang et al., 2013;
Kapeller et al., 2014; Moses et al., 2018). Therefore, this
technique is an ideal recording candidate for investigating
speech functions and for targeting speech neuroprosthetic
devices.

ECoG activity contains different signal components (Marshall
et al., 2006; Miller et al., 2007; Buzsáki and Wang, 2012;
Giraud and Poeppel, 2012) that may relate to different
underlying physiological mechanisms, and therefore different
mappings between speech stimulus and neural response.
For example, the neural representation of speech has been
mainly studied using both high frequency (∼70–500Hz) and
low frequency (∼4–8Hz).

High frequency activity (HFA; ∼70–500Hz) has been
correlated with multiunit spike rate and asynchronous post-
synaptic current of the underlying neuronal population
(Manning et al., 2009; Whittingstall and Logothetis, 2009;
Buzsáki et al., 2012; Lachaux et al., 2012; Rich and Wallis, 2017).
In particular, HFA has been shown to robustly encode various
speech representations, such as early spectrotemporal acoustic
features of speech in the superior temporal gyrus (Pasley et al.,
2012; Kubanek et al., 2013)—a region commonly associated
with speech perception. In addition, the superior temporal gyrus
plays an important role in transforming these acoustic cues
into categorical speech units (Chang et al., 2010; Pasley et al.,
2011; Mesgarani et al., 2014). HFA in the ventral sensorimotor
cortex has been shown to encode acoustic (Pasley and Knight,
2013; Martin et al., 2014; Cheung et al., 2016) and phonetic
representations during speech perception, and somatotopically
arranged articulator representations (lips, tongue, larynx, and
jaw) during speech production (Bouchard et al., 2013; Cheung
et al., 2016; Conant et al., 2018).

Low frequencies, such as theta band, have been shown to
track the acoustic envelope of speech, to correlate with syllabic
rate, and to discriminate spoken sentences (Luo and Poeppel,
2007; Ding and Simon, 2012; Giraud and Poeppel, 2012; Zion
Golumbic et al., 2013). In addition, theta rhythms showed
significant power changes in Broca’s area and temporal language
areas during a verb generation task, and showed interactions
with high frequency band, through amplitude-amplitude and
phase-amplitude coupling (Hermes et al., 2014).

The next section briefly introduces neural decoding models,
which have been widely used in the field of speech.
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FIGURE 1 | Electrocorticographic recordings. Example of electrocorticographic grid locations overlaid on cortical surface reconstructions of a subject’s MRI scan (A).

Examples of single trial high frequency activity (HFA) for an electrode highlighted in black in (A). Single trials represent examples of overt speech word repetition

(B) and inner speech word repetition (C).

Decoding Models—General Framework
Traditionally, cognitive functions have been investigated using
a set of stimuli that typically vary along a single dimension of
interest (e.g., attended versus not attended target). Brain activity
evoked by different stimuli are then averaged and compared
in order to provide new insights about the neural mechanisms
under study. Conversely, decoding these cognitive functions
in real-time for targeting brain-machine interfaces requires
more sophisticated predictive modeling. Decoding models allow
researchers to apply multivariate neural features to rich, complex
and naturalistic stimuli or behavioral conditions (Kay et al., 2008;
Kay and Gallant, 2009; Naselaris et al., 2011).

A commonly used modeling approach uses a regression
framework to link brain activity and a stimulus or mental state
representation. For instance, the stimulus features at a given time
can be modeled as a weighted sum of the neural activity, as
follows:

Y (t) =
∑

p

w(p) • X(t, p)

where Y (t) is the stimulus feature at time t, X(t, p) is the neural
activity at time t and feature p, w(p) is the weight for a given
feature p. Classification is a type of decoding model in which
the neural activity is identified as belonging to a discrete event
type from a finite set of choices. Both types of models can
use various machine learning algorithms, ranging from simple
regression techniques, to more complex non-linear approaches,
such as hidden Markov models, support-vector algorithms and
neural networks. Holdgraf et al. (2017) provide a review article
that illustrates best-practices in conducting these analyses, and
included a small sample dataset, along with several scripts in the
form of jupyter notebooks. The general framework is common to
all methods (Figure 2) and consists of the following steps:

1. Feature extraction: input and output features are extracted
from the neural activity and from the stimulus features,
respectively. Examples of speech representations typically
used in decoding models are the auditory frequencies, the
modulation rates, or phonemes for natural speech. For neural
representations, firing rate from single unit spiking activity, or
amplitudes in specific frequency bands are typically extracted
from the recorded electrophysiological signal (for example,
the high gamma band).

2. Model estimation: models are estimated by mapping input
features to output features. The weights are calculated by
minimizing a metric of error between the predicted and actual
output on a training set. For example, in a linear regression
model, the output is a weighted sum of input features.

3. Validation: Once a model is fit, it is then validated on new
unseen data not used for training, in order to avoid overfitting
and aid generalization to new data. To evaluate the accuracy,
the predicted output is compared directly to the original
representation.

In the next section, we review ECoG studies that have employed
decoding models to understand and decode cognitive states
associated with various inner speech representations.

DECODING INNER SPEECH USING
ELECTROCORTICOGRAPHY

A key challenge to understanding the neural representation
of inner speech is to quantify the relationship between neural
response and the imagined stimulus, from low-level auditory
to higher-level speech representations. Several studies have
exploited the advantageous properties of intracranial recordings
to characterize inner speech representations. For instance, a
recent study described the spatiotemporal evolution of high
frequency activity during an overt and covert word repetition
using trial averaging (Pei et al., 2011b; Leuthardt et al., 2012). In
particular, they revealed high frequency changes in the superior
temporal lobe and the supramarginal gyrus during covert speech
repetition. During a covert verb generation task, high frequency
activity (65–95Hz) showed significant brain activity in Broca’s
area, in the middle temporal gyrus, and temporal parietal
junction, and interacted with theta frequency activity (4–8Hz)
through cross-frequency coupling (Hermes et al., 2014). Finally,
a recent study compared the electrocorticographic activity related
to overt vs. covert conditions, and revealed a common network of
brain regions (Brumberg et al., 2016).

To directly quantify the relationship between inner speech and
neural response, the decoding model framework can be applied.
Recently, we used a decoding model approach to reconstruct
continuous auditory features from high gamma neural activity
(70–150Hz) recorded during inner speech (Martin et al., 2014).
Due to the lack of any measurable behavioral output, standard
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FIGURE 2 | Decoding framework. The general framework for fitting a decoding model is depicted. The first step consists in designing a protocol (A) and recording the

data (B). Then, input and output features are extracted (C), and the data are split in training and testing set. The training set is used to fit the weights of the model and

the testing set is used to validated the model (D). Figures adapted from Holdgraf et al. (2017) with permissions.

decoding models (e.g., linear regression) that assume temporal
alignment of input and output data are not immediately
applicable. One simple approach is to take advantage of prior
research demonstrating that speech perception and imagery, to
some extent, share common neural mechanisms (Hinke et al.,
1993; Yetkin et al., 1995; McGuire et al., 1996; Rosen et al.,
2000; Palmer et al., 2001; Aleman, 2004; Aziz-Zadeh et al.,
2005; Hubbard, 2010; Geva and Warburton, 2011; Perrone-
Bertolotti et al., 2014). Under the assumption that perception
and imagery share overlapping neural representations, we
built a decoding model from an overt speech condition, and
applied this decoder to neural data generated during inner
speech. To evaluate performance, the reconstruction in the
inner speech condition was compared to the representation
of the corresponding original sound spoken out loud—using
dynamic time warping (Ellis, 2003)—a temporal realignment
algorithm. Results showed that spectrotemporal features of
inner speech were decoded with significant predictive accuracy
from models built from overt speech data in seven patients
(Figure 3A). These findings provided further support that
overt and inner speech share underlying neural mechanisms.
However, this approach assumes that imagery neural data are
generated from a similar neural process as perception. The
predictive power of this “cross-condition” model is negatively
impacted by discrepancies between perception and imagery
neural mechanisms, and is therefore expected to be less optimal
compared to directly modeling imagery data in train and test
phases.

Beyond relatively low-level acoustic representation, invariant
phonetic information is extracted from a highly variable
continuous acoustic signal at a mid-level neural representation
(Chang et al., 2010). During inner speech, behavioral studies have
provided evidence that phoneme substitution errors occurred
between phonemes sharing similar features (phonemic similarity
effect; Corley et al., 2011), and a similar behavior occurs during
overt speech. In addition, brain imaging studies have revealed
anatomical brain regions involved in silent articulation, such
as the sensorimotor cortex, the inferior frontal gyrus, and

temporo-parietal brain areas (Pulvermuller et al., 2006). Recently,
electrophysiological studies have shown that the neural activity
of a listener that perceives a specific phoneme that has been
acoustically degraded, replaced or masked by noise is grounded
into acoustic neural representations (Holdgraf et al., 2016;
Leonard et al., 2016). This phenomenon, called the phonetic
masking effect shows that even in the absence of a given
speech sound, the neural patterns correlate with those that
would have been elicited by the actual speech sound. These
findings suggest that phonemes are represented during inner
speech in the human cortex. From a decoding perspective,
several studies have succeeded in classifying individual inner
speech units into different categories, such as covertly articulated
vowels (Ikeda et al., 2014), vowels and consonants during covert
word production (Pei et al., 2011a), and intended phonemes
(Brumberg et al., 2011). These studies represent a proof of
concept for basic decoding of individual speech units, but further
research is required to define the ability to decode phonemes
during continuous, conversational speech.

While several studies have demonstrated phoneme
classification during inner speech (Brumberg et al., 2011;
Pei et al., 2011a; Tankus et al., 2012; Ikeda et al., 2014), fewer
results are available for word-level classification. Words have
been decoded during overt speech from neural signals in the
inferior frontal gyrus, superior temporal gyrus, and motor areas
(Kellis et al., 2010; Pasley et al., 2012; Martin et al., 2014). In
recent work, we classified individual words from high frequency
activity recorded during an inner speech word repetition task
(Martin et al., 2016). To this end, we took advantage of the
high temporal resolution offered by ECoG, and classified neural
features in the time domain using a support-vector machine
model. In order to account for temporal irregularities across
trials, we introduced a non-linear time alignment into the
classification framework. Pairwise classification results showed
that the classification accuracy was significant across five
patients. An example of classification accuracy is depicted in
Figure 3B (left panel), where the classification accuracy across
the 15 pairs of word were above chance level (average across
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FIGURE 3 | Decoded inner speech representation. (A) Examples of overt speech and inner speech spectrogram reconstruction using linear regression models.

Original spectrogram of the recorded overt speech sound is displayed (top panel). Reconstruction of the spectrogram for the overt speech condition (middle panel)

and inner speech condition (bottom panel). (B) Examples of word pair classification during inner speech (left panel). Chance level was 50% (diagonal elements),

whereas pairwise classification accuracy (off-diagonal elements) reached 88% and was significantly above chancel level across the 15 pairs of word (mean = 69%).

Discriminant information displayed on the surface reconstruction of the participant’s brain (right panel) for the classification accuracy shown in the left panel. Figures

adapted from Martin et al. (2014, 2016) with permissions.

all pairs = 69%; chance level = 50%). Most of the discriminant
information came from the posterior temporal gyrus (Figure 3B;

right panel). This study represents a proof of concept for basic

decoding of speech imagery, and highlights the potential for
targeting a speech prosthesis that allows to communicate a few
words that are clinically relevant (e.g., hungry, pain, etc.).

Finally, an alternative study that shows further evidence of
acoustic processing during imagery comes from a music imagery
study. In this study, we investigated the neural encoding of
auditory features during imagery using a novel experimental
paradigm that allowed direct modeling of auditory imagery
data (as opposed to cross-condition) (Martin et al., 2017).
This study is not directly related to speech representations,
yet it helps understanding the neural representation of inner
subjective experiences, such as general auditory imagery. In

addition, evidence has shown that music and speech share
common brain networks (Callan et al., 2006; Schön et al., 2010).
This study relied on a rare clinical case in which a patient
undergoing neurosurgery for epilepsy treatment was also an
adept piano player. While previous brain imaging studies have
identified anatomical regions active during auditory imagery
(Zatorre et al., 1996; Griffiths, 1999; Halpern and Zatorre, 1999;
Rauschecker, 2001; Halpern et al., 2004; Kraemer et al., 2005),
underlying neural tuning to auditory frequencies in imagined
sounds was uncharacterized. ECoG activity was recorded during
a task that allowed direct alignment of neural response and
the spectrotemporal content of the intended music imagery.
The patient played two piano pieces with and without auditory
feedback of the sound produced by the electronic piano. The
audio signal from the keyboard was recorded in synchrony

with the ECoG signal, which allowed synchronizing the audio
output with neural activity in both conditions. In this task
design, it is assumed that the patient’s auditory imagery closely

matches the output of the keyboard in both timing and spectral
content. This study therefore provided a unique opportunity
to apply direct (as opposed to cross-condition) receptive field
modeling techniques (Aertsen et al., 1981; Clopton and Backoff,
1991; Theunissen et al., 2000; Chi et al., 2005; Pasley et al.,
2012), which describe neural response properties, for example
auditory frequency tuning. We found robust similarities between
perception and imagery neural representations in both frequency
and temporal tuning properties in auditory areas. Furthermore,
these findings also demonstrated that decoding models, typically
applied in neuroprosthetics for motor and visual restoration,
are applicable to auditory imagery, representing an important
step toward development of algorithms that could be used in
neural interfaces for communication based on auditory or speech
imagery.

CHALLENGES AND SOLUTIONS

An important but challenging step in future research is to
describe the extent to which speech representations, such
as acoustic processing, phonetic encoding and higher level
of linguistic functions apply to inner speech. The lack of
behavioral output during imagery and inability to monitor the
spectrotemporal structure of inner speech represent a major
challenge. Critically, inner speech cannot be directly observed by
an experimenter. As a consequence, it is complicated to time-lock
brain activity to a measurable stimulus or behavioral state, which
precludes the use of standard models that assume synchronized
input-output data. In addition, natural speech expression is
not just operated under conscious control, but is affected
by various factors, including gender, emotional state, tempo,
pronunciation, and dialect, resulting in temporal irregularities
(stretching/compressing, onset/offset delays) across repetitions.
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As a result, this leads to problems in exploiting the temporal
resolution of electrocorticography to investigate inner speech.
In this section, we highlight several additional challenges that
are encountered when investigating inner speech, as well as new
avenues to improve the decoding outcome.

Improving Task Design
The lack of behavioral output and temporal irregularities may
be alleviated by designing tasks that maximize the accuracy
when labeling the content of inner speech, such as cueing the
participants in a rhythmical manner. Despite this, results may
still show inconsistencies between the actual cue and the intended
speech onset/offset. Alternatively, a verb generation task (Hermes
et al., 2014) or picture naming task (Riès et al., 2015) might
improve the signal-to-noise ratio, as the cognitive load is more
demanding than during a simple word repetition task.

Training Participants
In order to improve accuracy, patients should be familiarized
with the tasks before entering in the epilepsy monitoring unit.
Indeed, studies have shown that participants with musical
training exhibited better pitch and temporal acuity in auditory
imagery and enlarged tonotopic maps located in the STG than
did participants with little or no musical training (Pantev et al.,
1998; Janata and Paroo, 2006; Herholz et al., 2008). As such, we
argue it would be beneficial to train subjects on speech imagery,
in order to have an increased signal-to-noise ratio and for them to
be more consistent in the way of performing the mental imagery.
This will improve the performances of any pattern recognition
algorithm.

Finding Behavioral Markers
Finding a behavioral or neural metric that allows marking
more precisely the inner speech time course would reduce
temporal variability during inner speech. This will be increasingly
important when moving toward asynchronous protocols, i.e.,
when patients spontaneously produce inner speech, as opposed
to experimental protocols that generally employ timing cues.
For instance, behavioral and psychology studies rely on indirect
measures to infer the existence and properties of the intended
inner experience (Hubbard, 2010). For example, participants
were instructed to image the pitch of a sine wave tone for a
given instrument, and they had to subsequently judge if the
timber of a second presented tone matched the timber of the
first one (Crowder, 1989). Response times were faster, when the
timbre of the second tone matched the timbre of the first one
they had to imagine (see Hubbard, 2010 for a complete review).
Therefore, objective monitoring of performance and vividness
through external markers may allow certain sources of variability
during inner speech to be estimated and accounted for in the
modeling process.

Incorporating Speech Recognition Models
Recently, electrophysiological studies on speech decoding have
shown promising results by integrating knowledge from the
field of speech recognition (Herff et al., 2015; Moses et al.,
2016, 2018). Speech recognition has been concerned with the

statistical modeling of natural language for many decades,
and has faced many problems that are similar to decoding
neural pattern associated with speech. As such, we argue that
integrating those tools into the field of neuroscience is a
necessary element to succeed in the ultimate goal of a clinically
reliable speech prosthesis. For instance, speech recognition
has developed methodologies that enable the recognition and
translation of spoken language into text. This was achieved
by incorporating extensive knowledge about how speech is
produced and perceived at various phonetic levels (acoustic,
auditory, articulatory features), and from advances in computer
resources and big data management to build now common
applications, such as spellcheck tools, text-to-speech synthesizers,
and machine translation programs. Similarly, advanced machine
learning models might be more adapted in order to deal
with problems associated with speech production temporal
irregularities compared to approach like dynamic time warping,
which is less robust for noisy data.

Increasing the Amount of Data
More complex models with increasing number of parameters
can be used, but require more data to train and evaluate the
models. When using electrocorticographic recordings, available
data are limited. Experimental paradigms usually do not last
long to avoid overloading the patients. As an alternative to
traditional protocols, researchers are slowly moving toward
continuous brain monitoring during the electrode implantation
time. This allows increasing the amount of recorded data and
is less constraining to the participant as he or she is recorded
in the existing hospital environment, e.g., watching television,
interacting with relatives and clinicians, reading, etc. Continuous
monitoring of speech perception and production may provide
sufficient data to develop more complex and robust decoding
models.

Using Unsupervised Learning
The major problem with recording continuous data is how
to label precisely the recordings. Indeed, while it is currently
possible to monitor conversations with a microphone, the
continuous labeling of categories or events during a movie
or a dialogue is a tedious process, and often requires human
intervention. In addition, as mentioned earlier, monitoring and
labeling internal mental states, such as mood, emotions, internal
speech, is problematical. We suggest that unsupervised learning
methods might be adapted in this context, and alleviate issues
associated with speech segmentation. Unsupervised learning is
a type of machine learning algorithms that allows drawing
inferences from unlabeled responses, i.e., the labels of the
observations are not available. This approach has been used in
the field of computer vision, such as to learn the features in order
to recognize objects (e.g., a car or a motorcycle).

Improving the Electrode Design
Although electrocorticography provides the opportunity to
investigate speech neural representation, the configuration,
location and duration of implantation are not optimized for
experiments, but rather solely for clinical purposes. The design
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of the intracranial recording electrodes has been shown to be an
important factor in motor decoding performance. Namely, the
spatial resolution of a cortical surface electrode array depends
on the size and spacing of the electrodes, as well as the volume
of tissue to which each electrode is sensitive (Wodlinger et al.,
2011). Many researchers have attempted to define what the
optimal electrode spacing and size could be (Slutzky et al.,
2010), but this is still an open area of research. Emerging
evidence showed that decoding performance was improved when
neural activity was derived from very high-density grids (Blakely
et al., 2008; Rouse et al., 2013). However, although a smaller
inter-electrode spacing increases the spatial resolution, it poses
additional technical issues related to the electrode grid design.
Higher density grids placed at specific speech locations would
provide higher spatial resolution and potentially enhance the
signal’s discriminability. Ongoing work in many labs is aimed
at increasing the number of recording contacts (Khodagholy
et al., 2014) and using biocompatible materials and wireless
telemetry for transmission of recordings from multiple electrode
implants (Brumberg et al., 2011; Khodagholy et al., 2014).
Finally, long-term implantation capability in humans is lacking,
as compared to non-human primate studies that showed stable
neural decoding for extended periods of time (weeks to months;
Ashmore et al., 2012). Reasons for these technical difficulties are
the increased impedance leading to loss of signal and increase in
the foreign body response to electrodes (Groothuis et al., 2014).
Indeed, device material and electrode-architecture influences the
tissue reaction. Softer neural implants with shape and elasticity
of dura mater increase electrode conductivity and improve the
implant-tissue integration (Minev et al., 2015).

OPPORTUNITIES

Neural decoding models provide a promising research tool
to derive data driven conclusions underlying complex speech
representations, and for uncovering the link between inner
speech representations and neural responses. Quantitative,
model-based characterizations have showed that brain activity is
tuned to various levels of speech representation.

The various types of language deficits exemplify the challenge
in building a specific speech prosthesis that addresses individual
needs. In this regard, the first step is to identify injured neural
circuits and brain functions. Once damaged and healthy brain
functions are identified, decoding models can be used for the
design of effective speech prostheses. In particular, the feasibility
to decode various speech representations during inner speech—
i.e., acoustic features, phonetic representations, and individual
words—suggests that various strategies and designs could be
employed and combined for building a natural communication
device depending on specific, residual speech functions. Every
speech representation has pros and cons for targeting speech
devices. For instance, decoding acoustic features opens the door
to brain-based speech synthesis, in which audible speech is
synthetized directly from decoded neural patterns. This approach
has already been demonstrated, where predicted speech was
synthesized, and acoustically fed back to the user (Guenther et al.,

2009; Brumberg et al., 2010) from intracortical brain activity
recorded from the motor cortex. Yet the understandability of the
produced speech sounds and the best speech parameters tomodel
remain to be demonstrated. Alternatively, decoding units of
speech, such as phonemes or words provides greater naturalness,
but the optimal speech unit size to be analyzed, is still a matter of
debate—i.e., the longer the unit, the larger the database needed to
cover the required domain, while smaller units offermore degrees
of freedom, and can build a larger set of complex utterances, as
shown in Herff et al. (2015) and Moses et al. (2016). A tradeoff
is the decoding of a limited vocabulary of words (Martin et al.,
2016), which carry specific semantic information, and would be
relevant in a basic clinical setting (“hungry,” “thirsty,” “yes,” “no,”
etc.).

An alternative to a speech-interface based solely on brain
decoding is to build a system, which acquires sensor data from
multiple elements of the human speech production system, and
combine the different signals to optimize speech synthesis (see
Brumberg et al., 2010, for a review). For instance, recording
sensors allow characterizing the vocal tract by measuring its
configuration directly or by sounding it acoustically using
electromagnetic articulography, ultra-sound, or optical imaging
of the tongue and lip. Alternatively, electrical measurements can
infer articulation from actuator muscle signals [i.e., using surface
electromyography (EMG)] or signals obtained directly from the
brain (mainly EEG and ECoG). Using different sensors and
different speech representations allow exploiting an individual’s
residual speech functions to operate the speech synthesis.

Unique opportunities for targeting communication assistive
technologies are offered by combining different research
fields. Neuroscience reveals which anatomical locations and
brain signals should be modeled. Linguistic fields support
development of decoding models that incorporate linguistic
and contextual specifications—including segmental elements
and supra-segmental elements. Combining insights from these
research fields with machine learning and speech recognition
algorithms is a key element to improve prediction accuracy.
Finally, the success of speech neuroprostheses depends on
the continuous technological improvements to enhance signal
quality and resolution, and allow developing more portable and
biocompatible invasive recording devices. Merging various fields
together will allow tackling the challenges central to decoding
inner speech.

CONCLUSION

To conclude, we described the potential of using decoding
models to unravel neural mechanisms associated with complex
speech functions. Speech representations during inner speech,
such as acoustic features, phonetic features and individual words
could be decoded from high frequency neural signals. Although,
these results reveal a promising avenue for direct decoding
of natural speech, they also emphasize that performance is
currently insufficient to build a realistic brain-based device.
Accordingly, we highlighted numerous challenges that likely
precluded better performances, such as the low signal-to-noise-
ratio, and the difficulty in monitoring precisely inner speech.
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As such challenges are solved, decoding speech directly from
neural activity opens the door to new communication interfaces
that may allow for more natural speech-like communication in
patients with severe communication deficits.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and
intellectual contribution to the work, and approved it
for publication.

FUNDING

This research was supported byNINDSGrant R3721135, DARPA
D16PC00053.

ACKNOWLEDGMENTS

This article is adapted from the following doctorate thesis:
Understanding and decoding imagined speech using intracranial
recordings in the human brain (Martin, 2017).

REFERENCES

Aertsen, A. M. H. J., Olders, J. H. J., and Johannesma, P. I. M. (1981). Spectro-

temporal receptive fields of auditory neurons in the grassfrog: III. analysis

of the stimulus-event relation for natural stimuli. Biol. Cybern. 39, 195–209.

doi: 10.1007/BF00342772

Ajiboye, A. B., Willett, F. R., Young, D. R., Memberg, W. D., Murphy,

B. A., Miller, J. P., et al. (2017). Restoration of reaching and grasping

movements through brain-controlled muscle stimulation in a person with

tetraplegia: a proof-of-concept demonstration. Lancet 389, 1821–1830.

doi: 10.1016/S0140-6736(17)30601-3

Aleman, A. (2004). The functional neuroanatomy of metrical stress evaluation

of perceived and imagined spoken words. Cereb. Cortex 15, 221–228.

doi: 10.1093/cercor/bhh124

Ashmore, R. C., Endler, B. M., Smalianchuk, I., Degenhart, A. D.,

Hatsopoulos, N. G., Tyler-Kabara, E. C., et al. (2012). Stable online

control of an electrocorticographic brain-computer interface using a

static decoder. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 1740–1744.

doi: 10.1109/EMBC.2012.6346285

Aziz-Zadeh, L., Cattaneo, L., Rochat, M., and Rizzolatti, G. (2005). Covert speech

arrest induced by rTMS over both motor and nonmotor left hemisphere frontal

sites. J. Cogn. Neurosci. 17, 928–938. doi: 10.1162/0898929054021157

Blakely, T., Miller, K. J., Rao, R. P. N., Holmes, M. D., and Ojemann, J. G. (2008).

Localization and classification of phonemes using high spatial resolution

electrocorticography (ECoG) grids. IEEE Eng. Med. Biol. Soc. Conf. 2008,

4964–4967. doi: 10.1109/IEMBS.2008.4650328

Blakely, T., Miller, K. J., Zanos, S. P., Rao, R. P. N., and Ojemann, J. G.

(2009). Robust, long-term control of an electrocorticographic brain-

computer interface with fixed parameters. Neurosurg. Focus 27:E13.

doi: 10.3171/2009.4.FOCUS0977

Bouchard, K. E., Mesgarani, N., Johnson, K., and Chang, E. F. (2013). Functional

organization of human sensorimotor cortex for speech articulation.Nature 495,

327–332. doi: 10.1038/nature11911

Brumberg, J. S., Krusienski, D. J., Chakrabarti, S., Gunduz, A., Brunner, P.,

Ritaccio, A. L., et al. (2016). Spatio-temporal progression of cortical activity

related to continuous overt and covert speech production in a reading task.

PLoS ONE 11:e0166872. doi: 10.1371/journal.pone.0166872

Brumberg, J. S., Nieto-Castanon, A., Kennedy, P. R., and Guenther, F. H. (2010).

Brain–computer interfaces for speech communication. Speech Commun. 52,

367–379. doi: 10.1016/j.specom.2010.01.001

Brumberg, J. S., Wright, E. J., Andreasen, D. S., Guenther, F. H., Kennedy,

P. R. (2011). Classification of intended phoneme production from chronic

intracortical microelectrode recordings in speech-motor cortex. Front.

Neurosci. 5:65. doi: 10.3389/fnins.2011.00065

Buzsáki, G., Anastassiou, C. A., and Koch, C. (2012). The origin of extracellular

fields and currents — EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13,

407–420. doi: 10.1038/nrn3241

Buzsáki, G., and Wang, X.-J. (2012). Mechanisms of gamma oscillations. Annu.

Rev. Neurosci. 35, 203–225. doi: 10.1146/annurev-neuro-062111-150444

Callan, D. E., Tsytsarev, V., Hanakawa, T., Callan, A. M., Katsuhara, M.,

Fukuyama, H., et al. (2006). Song and speech: brain regions involved

with perception and covert production. Neuroimage 31, 1327–1342.

doi: 10.1016/j.neuroimage.2006.01.036

Chang, R. J. W., Johnson, K., Berger, M. S., Barbaro, N. M., and Knight, R. T.

(2010). Categorical speech representation in human superior temporal gyrus.

Nat. Neurosci. 13, 1428–1432. doi: 10.1038/nn.2641

Cheung, C., Hamiton, L. S., Johnson, K., and Chang, E. F. (2016). The auditory

representation of speech sounds in human motor cortex. eLife 5:12577.

doi: 10.7554/eLife.12577

Chi, T., Ru, P., and Shamma, S. A. (2005). Multiresolution spectrotemporal

analysis of complex sounds. J. Acoust. Soc. Am. 118:887. doi: 10.1121/1.1945807

Clopton, B. M., and Backoff, P. M. (1991). Spectrotemporal receptive fields of

neurons in cochlear nucleus of guinea pig. Hear. Res. 52, 329–344.

Conant, D. F., Bouchard, K. E., Leonard, M. K., and Chang, E. F.

(2018). Human sensorimotor cortex control of directly measured vocal

tract movements during vowel production. J. Neurosci. 38, 2955–2966.

doi: 10.1523/JNEUROSCI.2382-17.2018

Corley, M., Brocklehurst, P. H., and Moat, H. S. (2011). Error biases in inner and

overt speech: evidence from tongue twisters. J. Exp. Psychol. Learn. Mem. Cogn.

37, 162–175. doi: 10.1037/a0021321

Crowder, R. G. (1989). Imagery for musical timbre. J. Exp. Psychol. Hum. Percept.

Perform. 15, 472–478. doi: 10.1037/0096-1523.15.3.472

Démonet, J.-F., Thierry, G., and Cardebat, D. (2005). Renewal of the

neurophysiology of language: functional neuroimaging. Physiol. Rev. 85, 49–95.

doi: 10.1152/physrev.00049.2003

Ding, N., and Simon, J. Z. (2012). Emergence of neural encoding of auditory

objects while listening to competing speakers. Proc. Natl. Acad. Sci. U.S.A. 109,

11854–11859. doi: 10.1073/pnas.1205381109

Ellis, D. (2003). Dynamic Time Warping (DTW) in Matlab. Available online

at: http://www.ee.columbia.edu/~dpwe/resources/matlab/dtw/ (Accessed

November 21, 2014).

Farwell, L. A., and Donchin, E. (1988). Talking off the top of your head: toward

a mental prosthesis utilizing event-related brain potentials. Electroencephalogr.

Clin. Neurophysiol. 70, 510–523.

Fazel-Rezai, R., Allison, B. Z., Guger, C., Sellers, E. W., Kleih, S. C., and Kübler, A.

(2012). P300 brain computer interface: current challenges and emerging trends.

Front. Neuroeng. 5:14. doi: 10.3389/fneng.2012.00014

Felton, E. A., Wilson, J. A., Williams, J. C., and Garell, P. C. (2007).

Electrocorticographically controlled brain-computer interfaces using

motor and sensory imagery in patients with temporary subdural

electrode implants. Report of four cases. J. Neurosurg. 106, 495–500.

doi: 10.3171/jns.2007.106.3.495

Geva, S., Correia, M., and Warburton, E. A. (2011). Diffusion tensor

imaging in the study of language and aphasia. Aphasiology 25, 543–558.

doi: 10.1080/02687038.2010.534803

Gilja, V., Pandarinath, C., Blabe, C. H., Nuyujukian, P., Simeral, J. D., Sarma, A. A.,

et al. (2015). Clinical translation of a high-performance neural prosthesis. Nat.

Med. 21, 1142–1145. doi: 10.1038/nm.3953

Giraud, A.-L., and Poeppel, D. (2012). Cortical oscillations and speech processing:

emerging computational principles and operations.Nat. Neurosci. 15, 511–517.

doi: 10.1038/nn.3063

Griffiths, T. D. (1999). Human complex sound analysis. Clin. Sci. Lond. Engl. 1979,

231–234.

Groothuis, J., Ramsey, N. F., Ramakers, G. M. J., and van der Plasse, G. (2014).

Physiological challenges for intracortical electrodes. Brain Stimulat. 7, 1–6.

doi: 10.1016/j.brs.2013.07.001

Frontiers in Neuroscience | www.frontiersin.org 8 June 2018 | Volume 12 | Article 422

https://doi.org/10.1007/BF00342772
https://doi.org/10.1016/S0140-6736(17)30601-3
https://doi.org/10.1093/cercor/bhh124
https://doi.org/10.1109/EMBC.2012.6346285
https://doi.org/10.1162/0898929054021157
https://doi.org/10.1109/IEMBS.2008.4650328
https://doi.org/10.3171/2009.4.FOCUS0977
https://doi.org/10.1038/nature11911
https://doi.org/10.1371/journal.pone.0166872
https://doi.org/10.1016/j.specom.2010.01.001
https://doi.org/10.3389/fnins.2011.00065
https://doi.org/10.1038/nrn3241
https://doi.org/10.1146/annurev-neuro-062111-150444
https://doi.org/10.1016/j.neuroimage.2006.01.036
https://doi.org/10.1038/nn.2641
https://doi.org/10.7554/eLife.12577
https://doi.org/10.1121/1.1945807
https://doi.org/10.1523/JNEUROSCI.2382-17.2018
https://doi.org/10.1037/a0021321
https://doi.org/10.1037/0096-1523.15.3.472
https://doi.org/10.1152/physrev.00049.2003
https://doi.org/10.1073/pnas.1205381109
http://www.ee.columbia.edu/~dpwe/resources/matlab/dtw/
https://doi.org/10.3389/fneng.2012.00014
https://doi.org/10.3171/jns.2007.106.3.495
https://doi.org/10.1080/02687038.2010.534803
https://doi.org/10.1038/nm.3953
https://doi.org/10.1038/nn.3063
https://doi.org/10.1016/j.brs.2013.07.001
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Martin et al. Inner Speech Decoding

Guenther, F. H., Brumberg, J. S., Wright, E. J., Nieto-Castanon, A., Tourville, J. A.,

Panko, M., et al. (2009). A wireless brain-machine interface for real-time speech

synthesis. PLoS ONE 4:e8218. doi: 10.1371/journal.pone.0008218

Halpern, A. R., and Zatorre, R. J. (1999). When that tune runs through your head:

a PET investigation of auditory imagery for familiar melodies. Cereb. Cortex 9,

697–704. doi: 10.1093/cercor/9.7.697

Halpern, A. R., Zatorre, R. J., Bouffard, M., and Johnson, J. A. (2004).

Behavioral and neural correlates of perceived and imagined musical timbre.

Neuropsychologia 42, 1281–1292. doi: 10.1016/j.neuropsychologia.2003.

12.017

Herff, C., Heger, D., de Pesters, A., Telaar, D., Brunner, P., Schalk, G., et al.

(2015). Brain-to-text: decoding spoken phrases from phone representations in

the brain. Front. Neurosci. 9:217. doi: 10.3389/fnins.2015.00217

Herholz, S. C., Lappe, C., Knief, A., and Pantev, C. (2008). Neural basis of music

imagery and the effect of musical expertise. Eur. J. Neurosci. 28, 2352–2360.

doi: 10.1111/j.1460-9568.2008.06515.x

Hermes, D., Miller, K. J., Vansteensel, M. J., Edwards, E., Ferrier, C. H., Bleichner,

M. G., et al. (2014). Cortical theta wanes for language.Neuroimage 85, 738–748.

doi: 10.1016/j.neuroimage.2013.07.029

Hickok, G., and Poeppel, D. (2007). The cortical organization of speech processing.

Nat. Rev. Neurosci. 8, 393–402. doi: 10.1038/nrn2113

Hinke, R. M., Hu, X., Stillman, A. E., Kim, S. G., Merkle, H., Salmi, R., et al. (1993).

Functional magnetic resonance imaging of Broca’s area during internal speech.

Neuroreport 4, 675–678.

Holdgraf, C. R., de Heer, W., Pasley, B., Rieger, J., Crone, N., Lin, J. J., et al. (2016).

Rapid tuning shifts in human auditory cortex enhance speech intelligibility.

Nat. Commun. 7:13654. doi: 10.1038/ncomms13654

Holdgraf, C. R., Rieger, J.W., Micheli, C., Martin, S., Knight, R. T., and Theunissen,

F. E. (2017). Encoding and decoding models in cognitive electrophysiology.

Front. Syst. Neurosci. 11:61. doi: 10.3389/fnsys.2017.00061

Hubbard, T. L. (2010). Auditory imagery: Empirical findings. Psychol. Bull. 136,

302–329. doi: 10.1037/a0018436

Ikeda, S., Shibata, T., Nakano, N., Okada, R., Tsuyuguchi, N., Ikeda,

K., et al. (2014). Neural decoding of single vowels during covert

articulation using electrocorticography. Front. Hum. Neurosci. 8:125.

doi: 10.3389/fnhum.2014.00125

Janata, P., and Paroo, K. (2006). Acuity of auditory images in pitch and time.

Percept. Psychophys. 68, 829–844. doi: 10.3758/BF03193705

Jarosiewicz, B., Sarma, A. A., Bacher, D., Masse, N. Y., Simeral, J. D., Sorice,

B., et al. (2015). Virtual typing by people with tetraplegia using a self-

calibrating intracortical brain-computer interface. Sci. Transl. Med. 7:313ra179.

doi: 10.1126/scitranslmed.aac7328

Kapeller, C., Kamada, K., Ogawa, H., Prueckl, R., Scharinger, J., and Guger,

C. (2014). An electrocorticographic BCI using code-based VEP for control

in video applications: a single-subject study. Front. Syst. Neurosci. 8:139.

doi: 10.3389/fnsys.2014.00139

Kay, K. N., and Gallant, J. L. (2009). I can see what you see. Nat. Neurosci. 12:245.

doi: 10.1038/nn0309-245

Kay, K. N., Naselaris, T., Prenger, R. J., and Gallant, J. L. (2008). Identifying

natural images from human brain activity. Nature 452, 352–355.

doi: 10.1038/nature06713

Kellis, S., Miller, K., Thomson, K., Brown, R., House, P., and Greger, B. (2010).

Decoding spoken words using local field potentials recorded from the cortical

surface. J. Neural Eng. 7:056007. doi: 10.1088/1741-2560/7/5/056007

Khodagholy, D., Gelinas, J. N., Thesen, T., Doyle, W., Devinsky, O., Malliaras, G.

G., et al. (2014). NeuroGrid: recording action potentials from the surface of the

brain. Nat. Neurosci. 18, 310–315. doi: 10.1038/nn.3905

Kraemer, D. J. M., Macrae, C. N., Green, A. E., and Kelley, W. M. (2005).

Musical imagery: Sound of silence activates auditory cortex. Nature 434:158.

doi: 10.1038/434158a

Kubanek, J., Brunner, P., Gunduz, A., Poeppel, D., and Schalk, G. (2013).

The tracking of speech envelope in the human cortex. PLoS ONE 8:e53398.

doi: 10.1371/journal.pone.0053398

Lachaux, J.-P., Axmacher, N., Mormann, F., Halgren, E., and Crone, N. E.

(2012). High-frequency neural activity and human cognition: past, present

and possible future of intracranial EEG research. Prog. Neurobiol. 98, 279–301.

doi: 10.1016/j.pneurobio.2012.06.008

Leonard, M. K., Baud, M. O., Sjerps, M. J., and Chang, E. F. (2016). Perceptual

restoration of masked speech in human cortex. Nat. Commun. 7:13619.

doi: 10.1038/ncomms13619

Luo, H., and Poeppel, D. (2007). Phase patterns of neuronal responses reliably

discriminate speech in human auditory cortex. Neuron 54, 1001–1010.

doi: 10.1016/j.neuron.2007.06.004

Leuthardt, E. C., Miller, K. J., Schalk, G., Rao, R. P. N., and Ojemann, J.

G. (2006). Electrocorticography-based brain computer interface–the Seattle

experience. IEEE Eng. Med. Biol. Soc. 14, 194–198. doi: 10.1109/TNSRE.2006.8

75536

Leuthardt, E. C., Pei, X.-M., Breshears, J., Gaona, C., Sharma, M., Freudenberg,

Z., et al. (2012). Temporal evolution of gamma activity in human cortex

during an overt and covert word repetition task. Front. Hum. Neurosci. 6:99.

doi: 10.3389/fnhum.2012.00099

Leuthardt, S. G., Wolpaw, J. R., Ojemann, J. G., andMoran, D.W. (2004). A brain–

computer interface using electrocorticographic signals in humans. J. Neural

Eng. 1, 63–71. doi: 10.1088/1741-2560/1/2/001

Lewis, P. M., Ackland, H. M., Lowery, A. J., and Rosenfeld, J. V. (2015).

Restoration of vision in blind individuals using bionic devices: a review

with a focus on cortical visual prostheses. Brain Res. 1595, 51–73.

doi: 10.1016/j.brainres.2014.11.020

Manning, J. R., Jacobs, J., Fried, I., and Kahana, M. J. (2009). Broadband shifts in

local field potential power spectra are correlated with single-neuron spiking in

humans. J. Neurosci. 29, 13613–13620. doi: 10.1523/JNEUROSCI.2041-09.2009

Marshall, L., Helgadóttir, H., Mölle, M., and Born, J. (2006). Boosting

slow oscillations during sleep potentiates memory. Nature 444, 610–613.

doi: 10.1038/nature05278

Martin, S. (2017). Understanding and Decoding Imagined Speech using

Electrocorticographic Recordings in Humans. Ecole Polytechnique Fédérale de

Lausanne.

Martin, S., Brunner, P., Holdgraf, C., Heinze, H.-J., Crone, N. E., Rieger, J., et al.

(2014). Decoding spectrotemporal features of overt and covert speech from the

human cortex. Front. Neuroengineering 7:14. doi: 10.3389/fneng.2014.00014

Martin, S., Brunner, P., Iturrate, I., del Millán, J. R., Schalk, G., Knight, R. T.,

et al. (2016).Word pair classification during imagined speech using direct brain

recordings. Sci. Rep. 6:25803. doi: 10.1038/srep25803

Martin, S., Mikutta, C., Leonard, M. K., Hungate, D., Koelsch, S., Shamma, S.,

et al. (2017). Neural encoding of auditory features during music perception and

imagery. Cereb. Cortex 27, 1–12. doi: 10.1093/cercor/bhx277

McGuire, P. K., Silbersweig, D. A., Murray, R. M., David, A. S., Frackowiak, R.

S., and Frith, C. D. (1996). Functional anatomy of inner speech and auditory

verbal imagery. Psychol. Med. 26, 29–38.

Mesgarani, N., Cheung, C., Johnson, K., and Chang, E. F. (2014). Phonetic

feature encoding in human superior temporal gyrus. Science 343, 1006–1010.

doi: 10.1126/science.1245994

Millán, G. F., Vanhooydonck, D., Lew, E., Philips, J., and Nuttin, M.

(2009). Asynchronous non-invasive brain-actuated control of an

intelligent wheelchair. IEEE Eng. Med. Biol. Soc. Conf. 2009, 3361–3364.

doi: 10.1109/IEMBS.2009.5332828

Miller, K. J., Leuthardt, E. C., Schalk, G., Rao, R. P. N., Anderson, N. R., Moran, D.

W., et al. (2007). Spectral changes in cortical surface potentials during motor

movement. J. Neurosci. 27, 2424–2432. doi: 10.1523/JNEUROSCI.3886-06.2007

Minev, I. R., Musienko, P., Hirsch, A., Barraud, Q., Wenger, N., Moraud, E. M.,

et al. (2015). Electronic dura mater for long-termmultimodal neural interfaces.

Science 347, 159–163. doi: 10.1126/science.1260318

Moses, D. A., Leonard, M. K., and Chang, E. F. (2018). Real-time classification

of auditory sentences using evoked cortical activity in humans. J. Neural Eng.

15:036005. doi: 10.1088/1741-2552/aaab6f

Moses, D. A., Mesgarani, N., Leonard, M. K., and Chang, E. F. (2016). Neural

speech recognition: continuous phoneme decoding using spatiotemporal

representations of human cortical activity. J. Neural Eng. 13:056004.

doi: 10.1088/1741-2560/13/5/056004

Naselaris, T., Kay, K. N., Nishimoto, S., and Gallant, J. L. (2011).

Encoding and decoding in fMRI. NeuroImage 56, 400–410.

doi: 10.1016/j.neuroimage.2010.07.073

Nijboer, F., Sellers, E. W., Mellinger, J., Jordan, M. A., Matuz, T., Furdea,

A., et al. (2008). A P300-based brain-computer interface for people

Frontiers in Neuroscience | www.frontiersin.org 9 June 2018 | Volume 12 | Article 422

https://doi.org/10.1371/journal.pone.0008218
https://doi.org/10.1093/cercor/9.7.697
https://doi.org/10.1016/j.neuropsychologia.2003.12.017
https://doi.org/10.3389/fnins.2015.00217
https://doi.org/10.1111/j.1460-9568.2008.06515.x
https://doi.org/10.1016/j.neuroimage.2013.07.029
https://doi.org/10.1038/nrn2113
https://doi.org/10.1038/ncomms13654
https://doi.org/10.3389/fnsys.2017.00061
https://doi.org/10.1037/a0018436
https://doi.org/10.3389/fnhum.2014.00125
https://doi.org/10.3758/BF03193705
https://doi.org/10.1126/scitranslmed.aac7328
https://doi.org/10.3389/fnsys.2014.00139
https://doi.org/10.1038/nn0309-245
https://doi.org/10.1038/nature06713
https://doi.org/10.1088/1741-2560/7/5/056007
https://doi.org/10.1038/nn.3905
https://doi.org/10.1038/434158a
https://doi.org/10.1371/journal.pone.0053398
https://doi.org/10.1016/j.pneurobio.2012.06.008
https://doi.org/10.1038/ncomms13619
https://doi.org/10.1016/j.neuron.2007.06.004
https://doi.org/10.1109/TNSRE.2006.875536
https://doi.org/10.3389/fnhum.2012.00099
https://doi.org/10.1088/1741-2560/1/2/001
https://doi.org/10.1016/j.brainres.2014.11.020
https://doi.org/10.1523/JNEUROSCI.2041-09.2009
https://doi.org/10.1038/nature05278
https://doi.org/10.3389/fneng.2014.00014
https://doi.org/10.1038/srep25803
https://doi.org/10.1093/cercor/bhx277
https://doi.org/10.1126/science.1245994
https://doi.org/10.1109/IEMBS.2009.5332828
https://doi.org/10.1523/JNEUROSCI.3886-06.2007
https://doi.org/10.1126/science.1260318
https://doi.org/10.1088/1741-2552/aaab6f
https://doi.org/10.1088/1741-2560/13/5/056004
https://doi.org/10.1016/j.neuroimage.2010.07.073
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Martin et al. Inner Speech Decoding

with amyotrophic lateral sclerosis. Clin. Neurophysiol. 119, 1909–1916.

doi: 10.1016/j.clinph.2008.03.034

Palmer, E. D., Rosen, H. J., Ojemann, J. G., Buckner, R. L., Kelley, W. M., and

Petersen, S. E. (2001). An event-related fMRI study of overt and covert word

stem completion. Neuroimage 14, 182–193. doi: 10.1006/nimg.2001.0779

Pandarinath, C., Nuyujukian, P., Blabe, C. H., Sorice, B. L., Saab, J., Willett,

F. R., et al. (2017). High performance communication by people with

paralysis using an intracortical brain-computer interface. eLife 6:e18554.

doi: 10.7554/eLife.18554

Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E., and Hoke, M.

(1998). Increased auditory cortical representation in musicians. Nature 392,

811–814. doi: 10.1038/33918

Pasley, B., Crone, N., Knight, R., and Chang, E. (2011). Phonetic encoding by

intracranial signals in human auditory cortex. Front. Hum. Neurosci. 5:287.

doi: 10.3389/conf.fnhum.2011.207.00287

Pasley, B. N., David, S. V., Mesgarani, N., Flinker, A., Shamma, S. A., Crone, N.

E., et al. (2012). Reconstructing speech from human auditory cortex. PLoS Biol.

10:e1001251. doi: 10.1371/journal.pbio.1001251

Pasley, B. N., and Knight, R. T. (2013). “Decoding speech for understanding and

treating aphasia,” in Progress in Brain Research (Elsevier), 435–456. Available

online at: http://linkinghub.elsevier.com/retrieve/pii/B9780444633279000187

(Accessed May 3, 2015).

Pei, B. D. L., Leuthardt, E. C., and Schalk, G. (2011a). Decoding vowels and

consonants in spoken and imagined words using electrocorticographic signals

in humans. J. Neural Eng. doi: 10.1088/1741-2560/8/4/046028

Pei, X., Leuthardt, E. C., Gaona, C. M., Brunner, P., Wolpaw, J. R., and Schalk,

G. (2011b). Spatiotemporal dynamics of electrocorticographic high gamma

activity during overt and covert word repetition. Neuroimage 54, 2960–2972.

doi: 10.1016/j.neuroimage.2010.10.029

Perrone-Bertolotti, M., Rapin, L., Lachaux, J.-P., Baciu, M., and Lœvenbruck, H.

(2014). What is that little voice inside my head? Inner speech phenomenology,

its role in cognitive performance, and its relation to self-monitoring. Behav.

Brain Res. 261, 220–239. doi: 10.1016/j.bbr.2013.12.034

Price, C. J., (2000). The anatomy of language: contributions from

functional neuroimaging. J. Anat. 197, 335–359. doi: 10.1046/j.1469-7580.

2000.19730335.x

Pulvermuller, F., Huss, M., Kherif, F., Moscoso del PradoMartin, F., Hauk, O., and

Shtyrov, Y. (2006). Motor cortex maps articulatory features of speech sounds.

Proc. Natl. Acad. Sci. U.S.A. 103, 7865–7870. doi: 10.1073/pnas.0509989103

Rauschecker, J. P. (2001). Cortical plasticity and music. Ann. N. Y. Acad. Sci. 930,

330–336. doi: 10.1111/j.1749-6632.2001.tb05742.x

Rich, E. L., and Wallis, J. D. (2017). Spatiotemporal dynamics of information

encoding revealed in orbitofrontal high-gamma. Nat. Commun. 8:1139.

doi: 10.1038/s41467-017-01253-5

Riès, S. K., Karzmark, C. R., Navarrete, E., Knight, R. T., andDronkers, N. F. (2015).

Specifying the role of the left prefrontal cortex in word selection. Brain Lang.

149, 135–147. doi: 10.1016/j.bandl.2015.07.007

Ritaccio, A., Matsumoto, R., Morrell, M., Kamada, K., Koubeissi, M., Poeppel,

D., et al. (2015). Proceedings of the seventh international workshop

on advances in electrocorticography. Epilepsy Behav. 51, 312–320.

doi: 10.1016/j.yebeh.2015.08.002

Rosen, H. J., Ojemann, J. G., Ollinger, J. M., and Petersen, S. E. (2000). Comparison

of brain activation during word retrieval done silently and aloud using fMRI.

Brain Cogn. 42, 201–217. doi: 10.1006/brcg.1999.1100

Rouse, A. G., Williams, J. J., Wheeler, J. J., and Moran, D. W. (2013). Cortical

adaptation to a chronic micro-electrocorticographic brain computer interface.

J. Neurosci. 33, 1326–1330. doi: 10.1523/JNEUROSCI.0271-12.2013

Schalk, G., Kubánek, J., Miller, K. J., Anderson, N. R., Leuthardt, E. C.,

Ojemann, J. G., et al. (2007). Decoding two-dimensional movement trajectories

using electrocorticographic signals in humans. J. Neural Eng. 4, 264–275.

doi: 10.1088/1741-2560/4/3/012

Schön, D., Gordon, R., Campagne, A., Magne, C., Astésano, C., Anton, J.-L., et al.

(2010). Similar cerebral networks in language, music and song perception.

Neuroimage 51, 450–461. doi: 10.1016/j.neuroimage.2010.02.023

Slutzky, M. W., Jordan, L. R., Krieg, T., Chen, M., Mogul, D. J., and Miller,

L. E. (2010). Optimal spacing of surface electrode arrays for brain–machine

interface applications. J. Neural Eng. 7:026004. doi: 10.1088/1741-2560/7/2/

026004

Srinivasan, R., Bibi, F. A., and Nunez, P. L. (2006). Steady-state visual evoked

potentials: distributed local sources and wave-like dynamics are sensitive to

flicker frequency. Brain Topogr. 18, 167–187. doi: 10.1007/s10548-006-0267-4

Tankus, A., Fried, I., and Shoham, S. (2012). Structured neuronal encoding

and decoding of human speech features. Nat. Commun. 3:1015.

doi: 10.1038/ncomms1995

Theunissen, F. E., Sen, K., and Doupe, A. J. (2000). Spectral-temporal receptive

fields of nonlinear auditory neurons obtained using natural sounds. J. Neurosci.

20, 2315–2331. doi: 10.1523/JNEUROSCI.20-06-02315.2000

Vansteensel, M. J., Pels, E. G. M., Bleichner, M. G., Branco, M. P., Denison,

T., Freudenburg, Z. V., et al. (2016). Fully implanted brain–computer

interface in a locked-in patient with ALS. N. Engl. J. Med. 375, 2060–2066.

doi: 10.1056/NEJMoa1608085

Wang, W., Collinger, J. L., Degenhart, A. D., Tyler-Kabara, E. C., Schwartz,

A. B., Moran, D. W., et al. (2013). An electrocorticographic brain

interface in an individual with tetraplegia. PLoS ONE 8:e55344.

doi: 10.1371/journal.pone.0055344

Whittingstall, K., and Logothetis, N. K. (2009). Frequency-band coupling in

surface EEG reflects spiking activity in monkey visual cortex. Neuron 64,

281–289. doi: 10.1016/j.neuron.2009.08.016

Wodlinger, B., Degenhart, A. D., Collinger, J. L., Tyler-Kabara, E. C.,

and Wei, W. (2011). The impact of electrode characteristics on

electrocorticography (ECoG). Conf Proc IEEE Eng Med Biol Soc. 2011,

3083–3086. doi: 10.1109/IEMBS.2011.6090842

Wolpaw, J. R., McFarland, D. J., Neat, G. W., and Forneris, C. A. (1991). An EEG-

based brain-computer interface for cursor control. Electroencephalogr. Clin.

Neurophysiol. 78, 252–259.

Yetkin, F. Z., Hammeke, T. A., Swanson, S. J., Morris, G. L., Mueller, W. M.,

McAuliffe, T. L., et al. (1995). A comparison of functional MR activation

patterns during silent and audible language tasks. AJNR Am. J. Neuroradiol.

16, 1087–1092.

Zatorre, R. J., Halpern, A. R., Perry, D. W., Meyer, E., and Evans, A. C. (1996).

Hearing in the mind’s ear: a PET investigation of musical imagery and

perception. J. Cogn. Neurosci. 8, 29–46. doi: 10.1162/jocn.1996.8.1.29

Zion Golumbic, E. M., Ding, N., Bickel, S., Lakatos, P., Schevon, C. A.,

McKhann, G. M., et al. (2013). Mechanisms underlying selective neuronal

tracking of attended speech at a “cocktail party.” Neuron 77, 980–991.

doi: 10.1016/j.neuron.2012.12.037

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018Martin, Iturrate, Millán, Knight and Pasley. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 10 June 2018 | Volume 12 | Article 422

https://doi.org/10.1016/j.clinph.2008.03.034
https://doi.org/10.1006/nimg.2001.0779
https://doi.org/10.7554/eLife.18554
https://doi.org/10.1038/33918
https://doi.org/10.3389/conf.fnhum.2011.207.00287
https://doi.org/10.1371/journal.pbio.1001251
http://linkinghub.elsevier.com/retrieve/pii/B9780444633279000187
https://doi.org/10.1088/1741-2560/8/4/046028
https://doi.org/10.1016/j.neuroimage.2010.10.029
https://doi.org/10.1016/j.bbr.2013.12.034
https://doi.org/10.1046/j.1469-7580.2000.19730335.x
https://doi.org/10.1073/pnas.0509989103
https://doi.org/10.1111/j.1749-6632.2001.tb05742.x
https://doi.org/10.1038/s41467-017-01253-5
https://doi.org/10.1016/j.bandl.2015.07.007
https://doi.org/10.1016/j.yebeh.2015.08.002
https://doi.org/10.1006/brcg.1999.1100
https://doi.org/10.1523/JNEUROSCI.0271-12.2013
https://doi.org/10.1088/1741-2560/4/3/012
https://doi.org/10.1016/j.neuroimage.2010.02.023
https://doi.org/10.1088/1741-2560/7/2/026004
https://doi.org/10.1007/s10548-006-0267-4
https://doi.org/10.1038/ncomms1995
https://doi.org/10.1523/JNEUROSCI.20-06-02315.2000
https://doi.org/10.1056/NEJMoa1608085
https://doi.org/10.1371/journal.pone.0055344
https://doi.org/10.1016/j.neuron.2009.08.016
https://doi.org/10.1109/IEMBS.2011.6090842
https://doi.org/10.1162/jocn.1996.8.1.29
https://doi.org/10.1016/j.neuron.2012.12.037
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Decoding Inner Speech Using Electrocorticography: Progress and Challenges Toward a Speech Prosthesis
	Introduction
	Electrocorticographic Recordings
	Decoding Models—General Framework

	Decoding Inner Speech Using Electrocorticography
	Challenges and Solutions
	Improving Task Design
	Training Participants
	Finding Behavioral Markers
	Incorporating Speech Recognition Models
	Increasing the Amount of Data
	Using Unsupervised Learning
	Improving the Electrode Design

	Opportunities
	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	References


