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Abstract—We consider 1D linear inverse problems that are
formulated in the continuous domain. The object of recovery is
a function that is assumed to minimize a convex objective func-
tional. The solutions are constrained by imposing a continuous-
domain regularization. We derive the parametric form of the
solution (representer theorems) for Tikhonov (quadratic) and
generalized total-variation (gTV) regularizations. We show that,
in both cases, the solutions are splines that are intimately related
to the regularization operator. In the Tikhonov case, the solution
is smooth and constrained to live in a fixed subspace that
depends on the measurement operator. By contrast, the gTV
regularization results in a sparse solution composed of only a
few dictionary elements that are upper-bounded by the number
of measurements and independent of the measurement operator.
Our findings for the gTV regularization resonates with the
minimization of the `1 norm, which is its discrete counterpart and
also produces sparse solutions. Finally, we find the experimental
solutions for some measurement models in one dimension. We
discuss the special case when the gTV regularization results in
multiple solutions and devise an algorithm to find an extreme
point of the solution set which is guaranteed to be sparse.

Index Terms—Linear inverse problem, representer theorem,
regularization, spline, total variation, L2, quadratic regulariza-
tion.

I. INTRODUCTION

In a linear inverse problem, the task is to recover an
unknown signal from a finite set of noisy linear measurements.
To solve it, one needs a forward model that describes how
these measurements are acquired. Generally, this model is
stated as the continuous-domain transform of a continuous-
domain signal. For example, MRI data is modeled as the
samples of the Fourier transform of a continuous-domain
signal. The traditional approach to state this inverse problem
is to choose an arbitrary but suitable basis {'

n

} and to write
that the reconstructed signal is

f(x) =

N

X

n=1

f
n

'

n

(x), (1)

where f = (f1, . . . , f
N

) 2 RN . Given the measurements z 2
RM , the task then is to find the expansion coefficients f by
minimizing

f⇤ = arg min
f2RN

0

@kz � Hfk2
2

| {z }

I

+� kLfk2
2

| {z }

II

1

A

, (2)
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where H 2 RM⇥N has elements [H]
m,n

= hh
m

, '

n

i. The
analysis functions {h

m

}M

m=1 specify the forward model which
encodes the physics of the measurement process. Term I in
(2) is the data fidelity. It ensures that the recovered signal
is close to the measurements. Term II is the regularization,
which encodes the prior knowledge about the signal. The
regularization is imposed on some transformed version of the
signal coefficients using the matrix L. Linear reconstruction
algorithms [1], [2] can be used to solve Problem (2). In recent
years, the notion that the real-world signals are sparse in
some basis (e.g., wavelets) has become popular. This prior
is imposed by using the sparsity-promoting `1-regularization
norm [3], [4] and results in the minimization problem

f⇤ = arg min
f2RN

�kz � Hfk2
2 + �kLfk1

�

(3)

which can be efficiently solved using iterative algorithms
[5], [6]. The solutions to (2), (3), and their variants with
generalized data-fidelity terms are well known [7], [8], [9],
[10].
While those discretization paradigms are well studied and used
successfully in practice, it remains that the use of a prescribed
basis {'

n

}, as in (1), is somewhat arbitrary.
In this paper, we propose to bypass this limitation by refor-

mulating and solving the linear inverse problem directly in the
continuous domain. To that end, we impose the regularization
in the continuous domain, too, and restate the reconstruction
task as a functional minimization. We show that this new
formulation leads to the identification of an optimal basis for
the solution which then suggests a natural way to discretize
the problem.
Our contributions are two folds and are summarized as fol-
lows:
a) Theoretical.

• Given z 2 RM , we formalize 1D inverse problem in the
continuous domain as

f

⇤
R = arg min

f2X

�kz � H{f}k2
2 + �R(f)

�

| {z }

JR(f |z)

, (4)

where f is a function that belongs to a suitable function
space X . Similarly to the discrete regularization terms
kLfk2

`2
and kLfk

`1 in (2) and (3), we focus on their
continuous-domain counterparts R(f) = kLfk2

L2
and

R(f) = kLfkM, respectively. There, L and H are the
continuous-domain versions of L and H, while kLfkM is
the proper continuous-domain counterpart of the discrete
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`1 norm. We show that the effect of these regularizations
is similar to the one of their discrete counterparts.

• We provide the parametric form of the solution (repre-
senter theorem) that minimizes JR(f |z) in (4) for the
Tikhonov regularization R(f) = kLfk2

L2
and the general-

ized total-variation (gTV) regularization R(f) = kLfkM.
Our results underline how the discrete regularization
resonates with the continuous-domain one. The optimal
solution for the Tikhonov case is smooth, while it is
sparse for the gTV case. The optimal bases in the two
cases are intimately connected to the operators L and H.

• We present theoretical results that are valid for any
convex, coercive, and lower-semicontinuous data-fidelity
term which is proper in the range of H. This includes
the case when the data-fidelity term is kz � H{f}k2

2. In
this sense, for the gTV case our work extends the results
in [11] which only deals with indicator function over a
feasible convex-compact set as a data-fidelity term.

b) Algorithmic.
• We propose a discretization scheme to minimize JR(f |z)

in the continuous domain. Even though the minimiza-
tion of JR(f |z) is an infinite-dimensional problem, the
knowledge of the optimal basis of the solution makes the
problem finite-dimensional: it boils down to the search
for a set of optimal expansion coefficients.

• We devise an algorithm to find a sparse solution when the
gTV solution is non-unique. For this case, the optimiza-
tion problem turns out to be a LASSO [8] minimization
with non-unique solution. We introduce a combination
of FISTA [12] and the simplex algorithm to find a sparse
solution which we prove to be an extreme point of the
solution set.

The paper is organized as follows: In Sections 2 and 3,
we present the formulation and the theoretical results of the
inverse problem for the two regularization cases. In Section 4,
we compare the solutions of the two cases. We present our
numerical algorithm in Section 5 and illustrate its behavior
with various examples in Section 6. The mathematical proofs
of the main theorems are given in the appendices and the
supplementary material.

A. Related Work
The use of R(f) = kLfk2

L2
goes back to Tikhonov’s theory

of regularization [1] and to kernel methods in machine learning
[13]. In the learning community, representer theorems (RT)
as in [14], [15] use the theory of reproducing-kernel Hilbert
spaces (RKHS) to state the solution of the problem for the
restricted case where the measurements are samples of the
function. For the generalized-measurement case, there are also
tight connections between these techniques and variational
splines and radial-basis functions [16], [17], [18]. These
representer theorems, however, either have restrictions on the
empirical risk functional or on the class of measurement
operators.

Specific spline-based methods with quadratic regularization
have been developed for inverse problems. In particular, [19],
[20] used variational calculus. Here, we strengthen these

results by proving the uniqueness and existence of the solution
of (4) for R(f) = kLfk2

L2
. We revisit the derivation of the

result using the theory of RKHS.
Among more recent non-quadratic techniques, the most

popular ones rely on (TV) regularization which was introduced
as a noise-removal technique in [21] and is widely used in
computational imaging and compressed sensing, although al-
ways in discrete settings. Splines as solutions of TV problems
for restricted scenarios have been discussed in [22]. More
recently, a RT for the continuous-domain R(f) = kLfkM
in a general setting has been established in [11], extending
the seminal work of Fisher and Jerome [23]. The solution has
been shown to be composed of splines that are directly linked
to the differential operator L. Other recent contributions on
inverse problems in the space of measures include [24]–[28].
In particular, in this paper, we extend the result of [11] to
an unconstrained version of the problem. The unconstrained
formulation is useful in devising numerical algorithms which
are one of the main contributions of our paper. In addition our
results are valid for a much larger set of data-fidelity terms
than [11]. This is useful in practical scenarios where one may
use data-fidelity terms depending on factors like distribution
of noise, etc..

B. Notation
Scalar constants, variables, and functions are denoted by

oblique letters. For ex. in f(x) = ax, a is a constant, x is a
variable, and f a function. Vectors are denoted by lowercase
bold letters for ex. a, z. Discrete domain linear operators
(or Matrix) are denoted by uppercase bold letters for ex.
H,L. Continuous domain operators are denoted by uppercase
straight letters for ex. L. Linear and non-linear functionals are
denoted by uppercase straight letters followed by {·} and (·),
respectively. For ex., H{f} and R(f). Function spaces are
typically denoted by uppercase calligraphic letters for ex. X .

II. FORMULATION

In our formulation of a linear inverse problem, the signal f

is a function of the continuous-domain variable x 2 R. The
task is then to recover f from the vector of measurements
z = H{f} + n 2 RM , where n is an unknown noise
component that is typically assumed to be i.i.d. Gaussian.
In the customary discrete formulation, the basis of the re-
covered function is already chosen and, therefore, all that
remains is to recover the expansion coefficients of the signal
representation (1). In this scenario, one often includes matrices
H and L that directly operate on these coefficients. However,
for our continuous-domain formulation, the operations have to
act directly on the function f . For this reason, we also need
the continuous-domain counterparts of the measurement and
regularization operators. The entities that enter our formulation
are described next.

A. Measurement Operator
The system matrix H in (2) and (3) is henceforth replaced

by the operator H : X ! RM that maps the continuous-
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domain functions living in a Banach space X to the linear
measurements z 2 RN . This operator is described as

H{f} = (hh1, fi, . . . , hh
M

, fi) = (z1, . . . , zM

) = z, (5)

where hh, gi =
R

R h(x)g(x) dx, which in the case of gener-
alized functions should be interpreted as the duality product.
Furthermore, the map h

m

: f 7! hh
m

, fi is assumed to be
continuous in X ! R. For example, the components of the
measurement operator that samples a function at the locations
x1, . . . , xM

are represented by h

m

= �(· � x

m

) such that
h�(· � x

m

), fi = f(x
m

). Similarly, Fourier measurements at
pulsations !1, . . . , !M

are obtained by taking h

m

= e�j!
m

·.

B. Data-Fidelity Term

As extension of the conventional quadratic data-fidelity term
kz � Hfk2

2, we consider a general cost functional E(z, ·) :
RM ! R+ [ {1} with some assumptions (see Assumption
2 in Section III), that measures the discrepancy between the
given measurements z and the values H{f} predicted from the
reconstruction. A relevant example is the weighted quadratic
data-fidelity term, which is often used when the measurement
noise is Gaussian with diagonal covariance. Similarly, we can
use kz � H{f}k1, for example, when the additive noise is
Laplacian. Alternatively, when the measurements are noiseless,
we use the indicator function

I(z, H{f}) =

(

0, z = H{f}
1, z 6= H{f},

(6)

which imposes an exact fit.

C. Regularization Operator

Since the underlying signal is continuously defined, we need
to replace the regularization matrix L in (2) and (3) by a
regularization operator L : X ! Y , where X and Y are
appropriate (generalized) function spaces to be defined in
Section II-E. The typical example that we have in mind is
the derivative operator L = D = d

dx

. The continuous-domain
regularization is then imposed on Lf . We assume that the
operator L is admissible in the sense of definition 1.

Definition 1. The operator L : X ! Y is called spline-
admissible if

• it is linear and shift-invariant;
• its null space NL = {p 2 X : Lp = 0} is finite-

dimensional;
• it admits the Green’s function ⇢L : R ! R with the

property that L⇢L = �.

Given that bL is the frequency response of L, the Green’s
function can be calculated through the inverse Fourier

transform ⇢L = F�1

⇢

1

bL

�

. For example, if L = D,

then ⇢D(x) = 1
2 sign(x). Here the Fourier transform,

F : f 7! Ff =

Z

R
f(x)e�jx(·) dx, is defined when the function

is integrable and can be extended in the usual manner to
f 2 S 0(R) where S 0(R) is ‘Schwartz’ space of tempered

distributions. In cases such as ⇢L = F�1

⇢

1

bL

�

when the

argument is non-integrable, the definition should be seen in
terms of generalized Fourier Transform [18, Defintion 8.9]
which treats the argument as a distribution.

D. Regularization Norms
Since the optimization is done in the continuous domain, we
also have to specify the proper counterparts of the `2 and `1

norms, as well as the corresponding vector spaces.
i) Quadratic (or Tikhonov) regularization: R2(f) =

kLfk2
L2

, where

kwk2
L2

=

Z

R
|w(x)|2 dx. (7)

ii) Generalized total variation: R1(f) = kLfkM, where

kwkM = sup
'2S(R),k'k1=1

hw, 'i. (8)

There S(R) is the ‘Schwartz’ space of smooth and
rapidly decaying functions, which is also the dual of
S 0(R). Moreover, M={w 2 S 0(R) | kwkM < 1}. In
particular, when w 2 L1 ⇢ M, we have that

kwkM=

Z

R
|w(x)| dx = kwk

L1 . (9)

Yet, we note that M is slightly larger than L1 since it
also includes the Dirac distribution � with k�kM = 1.
The popular TV norm is recovered by taking kfkTV =
kDfkM [11].

E. Search Space
The Euclidean search space RN is replaced by spaces of
functions, namely,

X2={f : R ! R | kLfk
L2 < +1}, (10)

X1={f : R ! R | kLfkM < +1}. (11)

In other words, our search (or native) space is the largest
space over which the regularization is well defined. It turns out
that X2 and X1 are Hilbert and Banach spaces, respectively.
However, this is nontrivial to see since these spaces contain
the null space which makes kLfk

L2 and kLfkM semi-norms.
This null-space can be taken care off by using an appropriate
inner-product h·, ·iNL (norm k · kNL , respectively) such that
h·, ·iX2 = hL·, L·i + h·, ·iNL (k · kX1 = kL · kM + k · kNL ,
respectively) is the inner-product (norm, respectively) on X2

(X1, respectively). The structure of these spaces has been
studied in [11] and is recalled in the supplementary material.
As we shall see in Section III, the solution of (4) will be
composed of splines; therefore, we also review the definition
of splines.

Definition 2 (Nonuniform L-spline). A function f : R ! R
is called a nonuniform L-spline with spline knots (x1, . . . , xK

)
and weights (a1, . . . , aK

) if

Lf =

K

X

k=1

a

k

�(· � x

k

). (12)
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By solving the differential equation in (12), we find that the
generic form of the nonuniform spline f is

f = p0 +

K

X

k=1

a

k

⇢L(· � x

k

), (13)

where p0 2 NL.

III. THEORETICAL RESULTS

To state our theorems, we need some technical assumptions.

Assumption 1. Let the search space X and the regularization
space Y be Banach spaces such that the following holds.

i) The functionals h

m

for m 2 {1, . . . , M} are linear
continuous over X and the vector-valued functional
H : X ! RM gives the linear measurements f 7!
H{f} = (hh1, fi, . . . , hh

M

, fi).
ii) The regularization operator L : X ! Y is spline-

admissible. Its finite-dimensional null space NL has the
basis p = (p1, . . . , pN0).

iii) The inverse problem is well posed over the null space.
This means that, for any pair p1, p2 2 NL, we have that

H{p1} = H{p2} , p1 = p2. (14)

In other words, different null-space functions result in
different measurements.

In particular, Condition iii) is equivalent to NL\NH = {0},
where NH is the null space of the vector-valued measurement
functional. This property prevents from having a nonzero
f0 2 NL \ NH whose addition to any f 2 X can neither
be detected by the data-fidelity term nor by the regularization
term. This is essential in ensuring the boundedness of the set
of the minimizers.

Assumption 2. For a given z 2 RM , the functional E(z, ·) :
RM ! R+ [ {1} is convex, coercive, and lower semi-
continuous on the whole RM , and is proper (has finite value
for at least one input) in the range of H.
Assumption 2’. For a given z 2 RM , the functional E(z, ·)
satisfies Assumption 2 as well as one of the following.

i) It is strictly convex; or
ii) it is an indicator function I(z, ·).
As we shall see later, stronger results can be derived for the

E(z, ·) that satisfy Assumption 2’.
Two remarks are in order. Firstly, the condition of being

proper in the range of H implies that there exists an f 2
X such that E(z, H{f}) is finite. Secondly, when E(z, ·) is
strictly convex or is such that its range does not include 1,
it is redundant to ensure that it is proper in the range of H.

We now state our two main results. Their proofs are given
in Appendix A and Appendix B, respectively.

A. Inverse Problem with Tikhonov/L2 Regularization
Theorem 3. Let Assumptions 1 and 2 hold with the search
space X = X2 and regularization space Y = L2. Then, the
set

V2 = arg min
f2X2

�

E(z, H{f}) + �kLfk2
L2

�

(15)

of minimizers is nonempty, convex, and such that any f

⇤
2 2 V2

is of the form

f

⇤
2 (x) =

M

X

m=1

a

m

'

m

(x) +

N0
X

n=1

b

n

p

n

(x), (16)

where '

m

= F�1
n

b
h

m

|bL|2

o

, and a = (a1, . . . , aM

), and b =

(b1, . . . , bN0) are expansion coefficients such that
M

X

m=1

a

m

hh
m

, p

n

i = 0 (17)

for all n 2 {1, . . . , N0}. Moreover, if E(z, ·) satisfies Assump-
tion 2’ then the minimizer is unique (the set V2 is singleton).

B. Inverse Problem with gTV Regularization
Theorem 4. Let Assumptions 1 and 2 hold for the search
space X = X1 and regularization space Y = M. Moreover,
assume that H is weak*-continuous (see Supplementary Ma-
terial). Then, the set

V1 = arg min
f2X1

(E(z, H{f}) + �kLfkM) (18)

of minimizers is nonempty, closed-convex, weak*-compact, and
its extreme points are nonuniform L-splines of the form

f

⇤
1 (x) =

K

X

k=1

a

k

⇢L(x � x

k

) +

N0
X

n=1

b

n

p

n

(x) (19)

for some K  (M � N0). The unknown knots (x1, . . . , xK

),
and the expansion coefficients a = (a1, . . . , aK

) and
b = (b1, . . . , bN0) are the parameters of the solution with
kLf

⇤
1 kM = kak1. The solution set V1 is the closed-convex

hull of these extreme points. Moreover, if Assumption 2’ is
satisfied then all the solutions have the same measurement;
i.e., zV1 = H{f}, 8 f 2 V1.

A sufficient condition for weak*-continuity of h

m

is
R

R |h
m

(x)|(1 + |x|)Ddx < 1 ( [11, Theorem 6]), meaning
that h

m

should exhibit some minimal decay at infinity (see
Section A of the supplementary material for more details).
Here D = inf{n 2 N : (ess sup

x2R ⇢L(1 + |x|)n) < +1}.
The ideal sampling is feasible as well, provided that the ⇢L

is continuous; a detailed proof of the weak*-continuity of
�(·�x

n

) for the case L = D2 can be found in [29, Proposition
6].

We remark that [11, Theorem 2] is a special case of
Theorem 4. The former states the same result as Theorem
4 for the minimization problem

V1 = arg min
H{f}2C

kLfkM, (20)

where C is feasible, convex, and compact. Feasibility of C
means that the set CX1 = {f 2 X1 : Hf 2 C} is nonempty.
In our setting, problem (20) can be obtained by using an
indicator function over the feasible set C as the data-fidelity
term. However, Theorem 4 covers other more useful cases of
E; for example, kz�H{f}k1 and kz�H{f}k2

2. Moreover, as
discussed earlier, when data-fidelity terms are strictly convex
or do not have 1 in their range, they are proper in the range of
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H for any z 2 RM . This means that they do not require careful
selection of C in order to satisfy the feasibility condition. This
is helpful in directly devising and deploying algorithms to find
the minimizers.

Also, fundamentally (20) only penalizes the regularization
value, whereas Theorem 4 additionally penalizes a data-
fidelity term that can recover more desirable solutions. In fact,
Theorem 4 also covers cases such as

V1 = arg min
H{f}2C

E(z, H{f}) + �kLfkM, (21)

which allow more control than (20) over the data-fidelity of
the recovered solution.

C. Illustration with Ideal Sampling

Here, we discuss the regularized case where noisy data points
((x1, z1), . . . , (xM

, z

M

)) are fitted by a function. The mea-
surement functionals in this case are the shifted Dirac impulses
h

m

= �(·�x

m

) whose Fourier transform is bh
m

(!) = e�j!x

m .
We choose L = D2 and E = kz � H{f}k2

2 which satisfies
Assumption 2’.i). Here D2 is the generalized second-order
derivative. For the L2 problem, we have that

f

⇤
2 = arg min

f2X2

 

M

X

m=1

|z
m

� f(x
m

)|2 + �kD2
fk2

L2

!

. (22)

As given in Theorem 3, f

⇤
2 is unique and has the basis function

'

m

(x) = F�1
n

e�j(·)x
m

|�(·)2|2

o

(x) = 1
12 |x � x

m

|3. The resulting
solution is piecewise linear. It can be expressed as

f

⇤
2 (x) = b1+b2x +

M

X

m=1

1

12
a

m

|x � x

m

|3, (23)

where b1+b2x 2 ND2 is a linear function.
We contrast (22) with the gTV version

f

⇤
1 = arg min

f2X1

0

B

@

M

X

m=1

|z
m

� f(x
m

)|2 + � kD2
fkM

| {z }

kDfkTV

1

C

A

. (24)

In this scenario, the term kD2
fkM is the total variation of

the function Df . It penalizes solutions whose slope varies too
much from one point to the next.

The Green’s function in this case is ⇢D2 = |x|
2 . Based on

Theorem 4, any extreme point of (24) is of the form

f

⇤
1 (x) = b1+b2x +

1

2

K

X

k=1

a

0
k

|x � ⌧

k

|, (25)

which is a piecewise linear function composed of a linear term
b1+b2x and K  (M �1) basis functions, {|x�⌧

k

|}K

k=1. The
knots (or locations) {⌧

k

}K

k=1 are not fixed a priori and usually
differ from the measurement points {x

m

}M

m=1.
The two solutions and their basis functions are illustrated

in Figure 1 for specific data. This example demonstrates
that the mere replacement of the L2 penalty with the gTV
norm has a fundamental effect on the solution: piecewise-
cubic functions having knots at the sampling locations are
replaced by piecewise-linear functions with a lesser number

0 1 2 3 4 5
x

-0.5

0.5

1.5

2.5 TV

L2

z

(a) f

⇤
1 (x) and f

⇤
2 (x).

-3 -2 -1 0 1 2 3
x

0

1

2

3
TV

L2

(b) ⇢D2(x) and ⇢D2⇤D2(x).

Fig. 1: Reconstructions of a signal from nonuniform samples
for L = D2: (a) Tikhonov (L2) vs. gTV solution, and (b)
Corresponding basis functions ⇢D2 vs. ⇢D2⇤D2 .

of adaptive knots. Moreover, in the gTV case, the regular-
ization has been imposed on the generalized second-order
derivative of the function

�kD2
fkM

�

, which uncovers the

innovations D2
f

⇤
1 =

K

X

k=1

a

0
k

�(· � ⌧

k

). By contrast, when

R2(f) = kD2
fk2

L2
= hD2⇤D2

f, fi, the recovered solution is
such that D2⇤D2

f

⇤
2 =

P

M

m=1 a

m

�(· � x

m

), where D2⇤ = D2

is the adjoint operator of D2. Thus, in both cases, the recov-
ered functions are composed of the Green’s function of the
corresponding active operators: D2 vs. D2⇤D2 = D4.

IV. COMPARISON

We now discuss and contrast the results of Theorems 3
and 4. In either case, the solution is composed of a primary
component and a null-space component whose regularization
cost vanishes.

A. Nature of the Primary Component
1) Shape and Dependence on Measurement Functionals:

The solutions for the gTV regularization are composed of
atoms within the infinitely large dictionary {⇢L(· � ⌧)}, 8⌧ 2
R, whose shapes depend only on L. In contrast, the L2

solutions are composed of fixed atoms {'

m

}M

m=1 whose
shapes depend on both L and H. As the shape of the atoms of
the gTV solutions does not depend on H, this makes it easier
to inject prior knowledge in that case.

2) Adaptivity: The weights and the location of the atoms
of the gTV solution are adaptive and found through a data-
dependent procedure which results in a sparse solution that
turns out to be a nonuniform spline. By contrast, the L2

solution lives in a fixed finite-dimensional space.
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B. Null-Space Component

The second component in either solution belongs to the null
space of the operator L. As its contribution to regularization
vanishes, the solutions tend to have large null-space compo-
nents in both instances.

C. Oscillations

The modulus of the Fourier transform of the basis function
of the gTV case,

�

�

�

n

1
bL

o

�

�

�

typically decays faster than that of

the L2 case,
�

�

�

n

b
h

m

|bL|2

o

�

�

�

. Therefore, the gTV solution exhibits
weaker Gibbs oscillations at edges.

D. Uniqueness of the Solution

Our hypotheses guarantee existence. Moreover, the mini-
mizer of the L2 problem is unique when Assumption 2’ is
true. By contrast, even for this special category of E(z, ·), the
gTV problem can have infinitely many solutions, despite all
having the same measurements. Remarkably, however, when
the gTV solution is unique, it is guaranteed to be an L-spline.

E. Nature of the Regularized Function

One of the main differences between the reconstructions f

⇤
2

and f

⇤
1 is their sparsity. Indeed, Lf

⇤
1 uncovers Dirac impulses

situated at (M � 1) locations for the gTV case, with Lf

⇤
1 =

P

M�1
m=1 a

m

�(· � ⌧

m

). In return, Lf

⇤
2 is a nonuniform L-spline

convolved with the measurement functions, whose temporal
support is not localized. This allows us to say that the gTV
solution is sparser than the Tikhonov solution.

V. DISCRETIZATION AND ALGORITHMS

We now lay down the discretization procedure that translates
the continuous-domain optimization into a more tractable
finite-dimensional problem. Theorems 3 and 4 imply that
the infinite-dimensional solution lives in a finite-dimensional
space that is characterized by the basis functions {'

m

}M

m=1

for L2 and {⇢L(· � ⌧

k

)}K

k=1 for gTV, in addition to {p

n

}N0
n=1

as basis of the null space. Therefore, the solutions can be
uniquely expressed with respect to the finite-dimensional pa-
rameter a 2 RM or a 2 RK , respectively, and b 2 RN0 . Thus,
the objective functional JR

i

(f |z, �), for a given i 2 {1, 2}, can
be discretized to get the objective functional JR

i

(a,b|z, �).
Its minimization is done numerically, by expressing H{f}
and kLfk2

L2
or kLfkM in terms of a and b. We discuss

the strategy to achieve JR
i

(a,b|z, �) and its minima for the
two cases. From now onwards, we will use J

i

for JR
i

where
i 2 {1, 2}.

A. Tikhonov Regularization

For the L2 regularization, given � > 0, the solution

f

⇤
2 = arg min

f2X2

�

E(z, H{f}) + �kLfk2
L2

�

| {z }

J2(f |z,�)

(26)

can be expressed as

f

⇤
2 =

M

X

m=1

a

m

'

m

+

N0
X

n=1

b

n

p

n

. (27)

Recall that L⇤L'

m

= h

m

, so that

L⇤Lf

⇤
2 =

M

X

m=1

a

m

h

m

. (28)

The corresponding J2(z|�, a,b) is then found by expressing
H{f

⇤
2 } and kLf

⇤
2 k2

L2
in terms of a and b. Due to the linearity

of the model,

H{f

⇤
2 } =

M

X

m=1

a

m

H{'

m

} +

N0
X

n=1

b

n

H{p

n

}

= Va + Wb, (29)

where [V]
m,n

= hh
m

, '

n

i and [W]
m,n

= hh
m

, p

n

i. Similarly,

hLf

⇤
2 , Lf

⇤
2 i = hL⇤Lf

⇤
2 , f

⇤
2 i =

*

M

X

m=1

a

m

h

m

, f

⇤
2

+

(30)

= aTVa + aTWb = aTVa, (31)

where (30) uses (28) and where (31) uses the orthogonality
property (17), which we can restate as aTW = 0. By sub-
stituting these reduced forms in (26), the discretized problem
becomes

f

⇤
2 = arg min

a,b

�

E(z,Va + Wb) + �aTVa
�

| {z }

J2(a,b|z,�)=J2(f⇤
2 |z,�)

. (32)

Due to Assumption 2, this problem is convex. If E is differ-
entiable with respect to the parameters, the solution can be
found by gradient descent.
When E(z, H{f}) = kz�H{f}k2

2, the problem is reduced to

arg min
a,b

�kz � (Va + Wb)k2
2 + �aTVa

�

| {z }

J2(a,b|z,�)

(33)

which is very similar to (2). This criterion is convex with
respect to the coefficients a and b. Enforcing that the gradient
of J2 vanishes with respect to a and b and setting the gradient
to 0 then yields M linear equations with respect to the M +
N0 variables, while the orthogonality property (17) gives N0

additional constraints. The combined equations correspond to
the linear system



V + �I W
WT 0

� 

a
b

�

=



z
0

�

. (34)

The system matrix so obtained can be proven to be positive
definite due to the property of Gram matrices generated in
an RKHS and the admissibility condition of the measurement
functional (Assumption 1). This ensures that the matrix is
always invertible. The consequence is that the reconstructed
signal can be obtained by solving a linear system of equa-
tion, for instance by QR decomposition or by simple matrix
inversion. The derived solution is the same as the least-square
solution in [20].
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B. gTV Regularization

In the case of gTV regularization, the problem to solve is

f

⇤
1 = arg min

f2X1

(E(z, H{f}) + �kLfkM)
| {z }

J1(f |z,�)

. (35)

According to Theorem 4, an extreme-point solution of (35) is

f

⇤
1 (x) =

K

X

k=1

a

k

⇢L(x � ⌧

k

) +

N0
X

n=1

b

n

p

n

(x) (36)

and satisfies

Lf

⇤
1 = w1 =

K

X

k=1

a

k

�(· � ⌧

k

) (37)

with K  (M � N0). Theorem 4 implies that we only have
to recover a

k

, ⌧

k

, and the null-space component p to recover
f

⇤
1 .

In our experiments, we shall consider the case of mea-
surement functionals whose support is limited to [0, T ]. We
therefore only reconstruct the restriction of the signal in this
interval. Since we usually know neither K nor ⌧

k

beforehand,
our solution is to quantize the x-axis and look for ⌧

k

in the
range [0, T ] on a grid with N � K points. We control the
quantization error with the grid step � = T/N .

The discretized problem is then to find a 2 RN with fewer
than (M � N0) nonzero coefficients and b 2 RN0 such that

f

⇤
1,�(x) =

N�1
X

n=0

a

n

⇢L(x � n�) +

N0
X

n=1

b

n

p

n

(x) (38)

with K  (M � N0) ⌧ N nonzero coefficients a

n

, satisfies
a computationally feasible variant of (35). In other words, we
solve the restricted version of (35)

min
f2X1,�

(E(z, H{f}) + �kLfkM)
| {z }

J1,�(z|�,f)

, (39)

where

X1,� =

(

N�1
X

n=0

a

n

⇢L(· � n�) +

N0
X

n=1

b

n

p

n

�

�

�

�

(a,b) 2 RN+N0

)

.

Similarly to the L2 case, J1,�(a,b|z, �) is found by ex-
pressing H{f

⇤
1,�} and kLf

⇤
1,�kM in terms of a and b. For

this, we use the properties that L⇢L = �, k�kTV = 1, and
Lp

n

= 0 for n 2 [1 . . . N0]. This results in

H{f

⇤
1,�} = Pa + Qb, (40)

kLf

⇤
1,�kM = kak1, (41)

where a = (a0, . . . , aN�1), [P]
m,n

= hh
m

, ⇢L(· � n�)i for
n 2 [0 . . . N � 1], [Q]

m,n

= hh
m

, p

n

i for n 2 [1 . . . N0],
kak1 =

P

N

n=1 |a
n

|, and where N is the initial number
of Green’s functions of our dictionary. The new discretized
objective functional is

f

⇤
1,� = arg min

a,b
(E(z, (Pa + Qb)) + �kak1)
| {z }

J1,�(a,b|z,�)=J1,�(f⇤
1,�|z,�)

. (42)

Note that (42) is the exact discretization of the infinite-

dimensional problem (39). However, additional theories, such
as ��convergence [30]–[32], are needed to show that the re-
covered signal f

⇤
1,� converges (in the weak sense) to one of the

solution of the original problem (35) when the discretization
step � goes to 0 (or when N is large enough). We leave this
analysis for the future work.

When E is differentiable with respect to the parameters, a
minimum can be found by using proximal algorithms where
the slope of kak1 is defined by a Prox operator. We discuss
the two special cases when E is either an indicator function
or a quadratic data-fidelity term.

1) Exact Fit with E = I(z, H{f}): To perfectly recover
the measurements, we impose an infinite penalty when the
recovered measurements differ from the given ones. In view
of (40) and (41), this corresponds to solving

(a⇤
,b⇤) = arg min

a,b
kak1 subject to Pa + Qb = z. (43)

We then recast Problem (43) as the linear program

(a⇤
,u⇤

,b⇤) = min
a,u,b

N

X

n=1

u

n

subject to u + a � 0,

u � a � 0,

Pa + Qb = z, (44)

where the inequality x � y between any 2 vectors x 2 RN

and y 2 RN means that x

n

� y

n

for n 2 [1 . . . N ]. This
linear program can be solved by a conventional simplex or a
dual-simplex approach [33], [34].

2) Least Squares Fit with E = kz� H{f}k2
2: When E is

a quadratic data-fidelity term, the problem becomes

(a⇤
,b⇤) = arg min

a,b

�kz � (Pa + Qb) k2
2 + �kak1

�

, (45)

which is more suitable when the measurements are noisy.
The discrete version (45) is similar to (3), the fundamental
difference being in the nature of the underlying basis function.

The problem is converted into a LASSO formulation [8] by
decoupling the computation of a⇤ and b⇤. Suppose that a⇤ is
fixed, then b⇤ is found by differentiating (45) and equating
the gradient to 0. This leads to

b⇤ =
�

QTQ
��1

QT (z � Pa⇤). (46)

Upon substitution in (45), we get that

a⇤ = arg min
a

�kQ0z � Q0Pak2
2 + �kak1

�

, (47)

where Q0 =
⇣

I � Q
�

QTQ
��1

QT

⌘

and I is the (M ⇥ M)

identity matrix. Problem (47) can be solved using a variety
of optimization techniques such as interior-point methods
or proximal-gradient methods, among others. We employ
the popular iterative algorithm FISTA [12], which has an
O(1/t

2) convergence rate with respect to its iteration number
t. However, in our case, the system matrices are formed by
the measurements of the shifted Green’s function on a fine
grid. This leads to high correlations among the columns and
introduces two issues.

• If LASSO has multiple solutions, then FISTA can con-
verge to a solution within the solution set, whose sparsity
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index is greater than M . A similar type of limitation has
been discussed in [35].

• If LASSO has a unique solution, then the convergence
to the exact solution can be slow. The convergence rate
is inversely proportional to the Lipschitz constant of the
gradient of a quadratic loss function

�

max Eig
�

HTH
��

,
which is typically high for the system matrix obtained
through our formulation.

We address these issues by using a combination of FISTA
and simplex, governed by the following Lemma 5 and Theo-
rem 6. The properties of the solution of the LASSO problem
have been discussed in [36], [37], [38]. We quickly recall one
of the main results from [36].

Lemma 5 ( [36, Lemma 1 and 11]). Let z 2 RM and H 2
RM⇥N , where M < N . Then, the solution set

↵

�

=

⇢

arg min
a2RN

�kz � Hak2
2 + �kak1

�

�

(48)

has the same measurement Ha⇤ = z0 for any a⇤ 2 ↵

�

.
Moreover, if the solution is not unique, then any two solutions
a(1)

,a(2) 2 ↵

�

are such that their mth element satisfies
n

sign
⇣

a
(1)
m

⌘

sign
⇣

a
(2)
m

⌘

� 0
o

for m 2 [1 . . . M ]. In other
words, any two solutions have the same sign over their
common support.

We use Lemma 5 to infer Theorem 6, whose proof is given
in Appendix 6.

Theorem 6. Let z 2 RM and H 2 RM⇥N , where M < N .
Let z0,�

= Ha⇤
, 8a⇤ 2 ↵

�

, be the measurement of the solution
set ↵

�

of the LASSO formulation

a⇤ = arg min
a2RN

�kz � Hak2
2 + �kak1

�

. (49)

Then, the solution a⇤
SLP (obtained using the simplex algorithm)

of the linear program corresponding to the problem

a⇤
SLP = arg min kak1 subject to Ha = z0,�

(50)

is an extreme point of ↵

�

. Moreover, ka⇤
SLPk0  M .

Theorem 6 helps us to find an extreme point of the solution
set ↵

�

of a given LASSO problem in the case when its solution
is non-unique. To that end, we first use FISTA to solve the
LASSO problem until it converges to a solution a⇤

F. By setting
z0,�

= Ha⇤
F, Lemma 5 then implies that Ha = z0,�

, 8a 2 ↵

�

.
We then run the simplex algorithm to find

a⇤
SLP = arg min kak1 subject to Ha = HaF,

which yields an extreme point of ↵

�

by Theorem 6.
An example where the LASSO problem has a non-unique so-
lution is shown in Figure 2.b. In this case, FISTA converges to
a non-sparse solution with ka⇤

Fk > M , shown as solid stems.
This implies that it is not an extreme point of the solution set.
The simplex algorithm is then deployed to minimize the `1

norm such that the measurement z0 = Ha⇤
F is preserved. The

final solution shown as dashed stems is an extreme point with
the desirable level of sparsity. The continuous-domain relation
of this example is discussed later.
The solution of the continuous-domain formulation is a convex

set whose extreme points are composed of at most M shifted
Green’s functions. To find the position of these Green’s func-
tions, we discretize the continuum into a fine grid and then run
the proposed two-step algorithm. If the discretization is fine
enough, then the continuous-domain function that corresponds
to the extreme point of the LASSO formulation is a good
proxy for the actual extreme point of the convex-set solution
of the original continuous-domain problem. This makes the
extreme-point solutions of the LASSO a natural choice among
the solution set. For the case when there is a unique solution
but the convergence is too slow owing to the high value
of the Lipschitz constant of the gradient of the quadratic
loss, the simplex algorithm is used after the FISTA iterations
are stopped using an appropriate convergence criterion. For
FISTA, the convergence behavior is ruled by the number of
iterations t as

F (a
t

) � F (a⇤)  C

(t + 1)2
, (51)

where F is the LASSO functional and

C = 2ka0 � a⇤k2
2 max Eig

�

HTH
�

(52)

(see [12]). This implies that an ✏ neighborhood of the minima
of the functional is obtained in at most t =

p

C/✏ iterations.
To ensure convergence, it is also advisable to rely on the
modified version of FISTA proposed in [39].

However, there is no direct relation between the functional
value and the sparsity index of the iterative solution. Using the
simplex algorithm as the next step guarantees the upper bound
M on the sparsity index of the solution. Also, F (a⇤

SLP) 
F (a⇤

F). This implies that an ✏-based convergence criterion, in
addition to the sparsity-index-based criterion like a⇤

F  M , can
be used to stop FISTA. Then, the simplex scheme is deployed
to find an extreme point of the solution set with a reduced
sparsity index.

Note that when E(z, ·) is not strictly convex, the solution
set can have non-unique measurements. In that case, it is still
possible to further sparsify a recovered solution by using the
discussed Simplex approach.

C. Alternative Grid-free Techniques
Our proposed method relies on a grid based discretizatoin

of the infinite-dimensional problem. For the sake of complete-
ness, we discuss here alternative techniques for reconstructing
continuous-domain sparse signals which employ grid-free op-
timization. Although elegant, these techniques have a more
restricted range of applicability. The Taut-string algorithm (see
[40]) can fit L-splines for L = Dn but is devised for ideal
sampling only. In [25], [26], [35], [41]–[43] the dual problem
is considered for the optimization with an added emphasis on
recovering the ground-truth signal. These methods, however,
only deal with L = Id and limited measurement operators.

Recently, in [28], motivated from [11], results for more
general L and H have been derived. There the optimization is
carried out in two steps; firstly, a finite dimensional dual prob-
lem involving two infinite-dimensional convex-constraints-sets
is solved; secondly, the support of this solution is identified
which is finally used to solve a finite-dimensional primal
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(a)

a⇤
F and a⇤

SLP

(b)

(c)

Fig. 2: Illustration of inability of FISTA to deliver a sparse
solution : (a) comparison of solutions, f

⇤
F vs. f

⇤
SLP for

continuous-domain gTV problem, (b) signal innovations with
sparsity index 64 (> M ) and 21 (< M ), respectively, and (c)
derivative of the two solutions. The two signal innovations in
(b) are solutions of the same Lasso problem, but only a⇤

SLP

is an extreme point of the solution set. The original signal
is a second-order process (L = D2) and the measurements
are M = 30 nonuniform noisy samples (SNR = 40 dB). The
parameters are � = 0.182, N = 400, and grid step � = 1

80 .

problem. Remarkably, for some specific cases, solving each
of these steps is feasible which results in an exact finite-
dimensional formulation (see for example [28, Section 2.4.2
and 2.4.3]).

VI. ILLUSTRATIONS

We discuss the results obtained for the cases when the
measurements are random samples either of the signal itself

or of its continuous-domain Fourier transform. The operators
of interest are L = D and L = D2. The ground truth (GT)
signal fGT is solution of the stochastic differential equation
LfGT = wGT [44] for the two cases when wGT is

• Impulsive Noise. Here, the innovation wGT is a
compound-Poisson noise with Gaussian jumps, which
corresponds to a sum of Dirac impulses whose ampli-
tudes follow a Gaussian distribution. The corresponding
process fGT has then the particularity of being piecewise
smooth [45]. This case is matched to the regularization
operator kLfkM and is covered by Theorem 4 which
states that the minima f

⇤
1 for this regularization case is

such that

w

⇤
1 = Lf

⇤
1 =

K

X

k=1

a

k

�(· � x

k

), (53)

which is a form compatible with a realization of an
impulsive white noise.

• Gaussian White Noise. This case is matched to the reg-
ularization operator kLfk

L2 . Unlike the impulsive noise,
w

⇤
2 = Lf

⇤
2 is not localized to finite points and therefore

is a better model for the realization of a Gaussian white
noise.

In all experiments, we also constrain the test signals to
be compactly supported. This can be achieved by putting
linear constraints on the innovations of the signal. In Sections
VI-A and VI-C, we confirm experimentally that matched
regularization recovers the test signals better than non-matched
regularization. While reconstructing the Tikhonov and gTV
solutions when the measurements are noisy, the parameter �

in (34) and (45) is tuned using a grid search to give the best
recovered SNR.

A. Random Sampling
In this experiment, the measurement functionals are Dirac

impulses with the random locations {x

m

}M

m=1. The regular-
ization operator is L = D2. It corresponds to ⇢D2(x) = � 1

2 |x|
and 'D2(x) = (⇢L⇤L ⇤ h

m

) (x) = |x � x

m

|3/12. The null
space is ND2 = span{1, x} for this operator. This means
that the gTV-regularized solution is piecewise linear and that
the L2-regularized solution is piecewise cubic. We compare
in Figures 3.a and 3.b the recovery from noiseless samples
of a second-order process, referred to as ground truth (GT).
It is composed of sparse (impulsive Poisson) and non-sparse
(Gaussian) innovations, respectively [46]. The sparsity index—
the number of impulses or non-zero elements—for the original
sparse signal is 9. The solution for the gTV case is recovered
with � = 0.05 and N = 200. The sparsity index of the
gTV solution for the sparse and Gaussian cases are 9 and 16,
respectively. As expected, the recovery of the gTV-regularized
reconstruction is better than that of the L2-regularized solution
when the signal is sparse. For the Gaussian case, the situation
is reversed.

B. Multiple Solutions
We discuss the case when the gTV solution is non-unique.

We show in Figure 2.a examples of solutions of the gTV-
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Fig. 3: Recovery of sparse (a) and Gaussian (b) second-order processes (GT) using L = D2 from their nonuniform samples
corrupted with 40 dB measurement noise.

regularized random-sampling problem obtained using FISTA
alone (f⇤

F ) and FISTA + simplex (linear programming, f

⇤
SLP).

In this case, M = 30, L = D2, and � = 0.182. The
continuous-domain functions f

⇤
F and f

⇤
SLP have basis functions

whose coefficients are the (non-unique) solutions of a given
LASSO problem, as shown in Figure 2.b. The `1 norms of the
corresponding coefficients are the same. Also, it holds that

kD2
f

⇤
F kM = kD2

f

⇤
SLPkM = kDf

⇤
F kTV = kDf

⇤
SLPkTV,

(54)

which implies that the TV norm of the slope of f

⇤
F and f

⇤
SLP

are the same. This is evident from Figure 2.c. The arc-length
of the two curves are the same. The signal f

⇤
SLP is piecewise

linear (21 < M ), carries a piecewise-constant slope, and is by
definition, a non-uniform spline of degree 1. By contrast, f

⇤
F

has many more knots and even sections whose slope appears
to be piecewise-linear.

Theorem 4 asserts that the extreme points of the solution set
of the gTV regularization need to have fewer than M knots.
Remember that f

⇤
SLP is obtained by combining FISTA and

simplex; this ensures that the basis coefficients of f

⇤
SLP are

the extreme points of the solution set of the corresponding
LASSO problem (Theorem 6) and guarantees that the number
of knots is smaller than M .

This example shows an intuitive relationship between the
continuous-domain and the discrete-domain formulations of
inverse problems with gTV and `1 regularization, respectively.
The nature of the continuous-domain solution set and its
extreme points resonates with its corresponding discretized
version. In both cases, the solution set is convex and the
extreme points are sparse.

C. Random Fourier Sampling
Let now the measurement functions be h

m

(x) =
rect

�

x

T

�

e�j!
m

x, where T is the window size. The samples are
thus random samples of the continuous-domain Fourier trans-
form of a signal restricted to a window. For the regularization
operator L = D, the Green’s function is ⇢D(x) = 1

2 sign(x)
and the basis is 'D,m

(x) =
�

1
2 | · | ⇤ h

m

�

(x). Figure 4.a
and 4.b correspond to a first-order process with sparse and
Gaussian innovations, respectively. The grid step � = 0.05,

M = 41, and N = 200. The sparsity index of the gTV solution
for the sparse and Gaussian cases is 36 and 39, respectively.
For the original sparse signal (GT), it is 7. The oscillations
of the solution in the L2-regularized case are induced by the
sinusoidal form of the the measurement functionals. This also
makes the L2 solution intrinsically smoother than its gTV
counterpart. Also, the quality of the recovery depends on the
frequency band used to sample.

In Figures 4.c and 4.d, we show the zoomed version of
the recovered second-order process with sparse and Gaus-
sian innovations, respectively. The grid step is � = 0.05,
M = 41 and N = 200. The operator L = D2 is used for
the regularization. This corresponds to ⇢D2(x) = |x|

2 and
'D2

,m

(x) =
�

1
12 | · |3 ⇤ h

m

�

(x). The sparsity index of the
gTV solution in the sparse and Gaussian cases is 10 and 36,
respectively. For the original sparse signal (GT), it is 10. Once
again, the recovery by gTV is better than by L2 when the
signal is sparse. In the Gaussian case, the L2 solution is better.

The effect of sparsity on the recovery of signals from their
noiseless and noisy (40 dB SNR) Fourier samples are shown
in Table 1. The sample frequencies are kept the same for all
the cases. Here, M = 41, N = 200, T = 10, and the grid step
� = 0.05. We observe that reconstruction performances for
random processes based on impulsive noise are comparable
to that of Gaussian processes when the number of impulses
increases. This is reminiscent of the fact that generalized-
Poisson processes with Gaussian jumps are converging in law
to corresponding Gaussian processes [47].

VII. CONCLUSION

We have shown that the formulation of continuous-domain
linear inverse problems with Tikhonov- and total-variation-
based regularizations leads to spline solutions. The nature of
these splines is dependent on the Green’s function of the
regularization operator (L⇤L) and L for Tikhonov and total
variation, respectively. The former is better to reconstruct
smooth signals; the latter is an attractive choice to reconstruct
signals with sparse innovations. Representer theorems for the
two cases come handy in the numerical reconstruction of the
solution. They allow us to reformulate the infinite-dimensional
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Fig. 4: Recovery of first-order (first row) and second-order (second row) processes from their random noiseless Fourier samples.
In all the cases, M = 41 and N = 200. In the interest of clarity, (c) and (d) contain the zoomed versions of the actual signals.

optimization as a finite-dimensional parameter search. The
formulations and the results of this paper are summarized in
Figure 5. The main aim of this paper was to compare the
solutions of the two regularizations. We expect that similar
results exist in higher dimensions since the theory can be
generalized. However, the computations can also be expected
to be challenging for signals defined over Rd with d > 1, for
example, when considering images rather than signals.

APPENDIX A
PROOF OF THEOREM 3

A. Abstract Representer Theorem

The result presented in this section is preparatory to The-
orem 3. It is classical for Hilbert spaces [18, Theorem 16.1].
We give its proof for the sake of completeness.

Theorem 7. Let X be a Hilbert space equipped with the
inner product h·, ·iX and let h1, . . . , hM

2 X 0 be linear and
continuous functionals. Let C 2 RM be a feasible convex
compact set, meaning that there exists at least a function
f 2 X such that H{f} 2 C. Then, the minimizer

f

⇤ = arg min
f2X

kfk2
X s.t. H{f} 2 C (55)

exists, is unique, and can be written as

f

⇤ =

M

X

m=1

a

m

h

#
m

(56)

for some {a

m

}M

m=1 2 R, where h

#
m

= ⇧h

m

and ⇧ : X 0 ! X
is the Riesz map of X .

Proof. The feasibility of the set C implies that the set CX =
H�1(C) = {f 2 X : H{f} 2 C} 2 X , is nonempty. Since H
is linear and bounded and since C is convex and compact, its
preimage CX is also convex and closed. By Hilbert’s projection
theorem [48], the solution f

⇤ exists and is unique as it is the
projection of the null function onto CX . Let the measurement
of this unique point f

⇤ be z0 = H{f

⇤}.
The Riesz representation theorem states that hh

m

, fi =
hh#

m

, fiX for every f 2 X , where h

#
m

2 X is the unique Riesz
conjugate of the functional h

m

. We then uniquely decompose
f

⇤ as f

⇤ = f

⇤? +
P

M

m=1 a

m

h

#
m

, where f

⇤? is orthogonal
to the span of the h

#
m

with respect to the inner product on X
i.e., H{f

⇤?} = 0. The orthogonality also implies that

kf

⇤k2
X =

�

�

f

⇤?�

�

2

X +

�

�

�

�

�

M

X

m=1

a

m

h

#
m

�

�

�

�

�

2

X

. (57)

This means that the minimum norm is reached when f

⇤? = 0
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a

m

'

m
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K

X
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a

k
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k
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m
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m
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Fig. 5: Summary of the whole scheme. The regularization operator with a given norm {4.a} defines the search space for the
solution{1.a, 4.b}. Representer theorems then give the parametric representation of the solution {1.b}. The numerical solution
is then recovered by optimizing over the parameters to minimize JR(f |z) {1.c}.

No. of D D2

impulses Sparsity TV L2 TV L2

10 Strong 19.60 15.7 52.08 41.54
100 Medium 16.58 16.10 41.91 41.26

2000 Low 14.45 16.14 39.68 41.40
- Gaussian 14.30 16.32 40.05 41.23

No. of D D2

impulses Sparsity TV L2 TV L2

10 Strong 17.06 11.52 25.55 24.60
100 Medium 13.24 10.94 24.44 24.24

2000 Low 10.61 11.13 25.80 26.19
- Gaussian 10.40 11.10 24.95 25.48

TABLE I: Comparison of TV and L2 recovery from their (left table) noiseless and (right table) noisy (with 40 dB SNR)
random Fourier samples. The results have been averaged over 40 realizations.

while keeping H{f

⇤} = z0, implying the form (56) of the
solution.

B. Proof of Theorem 3
The proof of Theorem 3 has two steps. We first show that

if Assumption 2 holds, then there is at least one solution
and, moreover, if Assumption 2’ holds, then the solution is
unique. After this, we use Theorem 7 to deduce the form of
the solution.

Existence of the Solution. We use the classical result
on Hilbert spaces which states that a proper, coercive, lsc,
and convex objective functional over a Hilbert space has a
nonempty and convex set of minimizers [49].

Properness: By Assumption 2, E(z, ·) is proper. The reg-
ularization kLfk2

L2
is proper by the definition of X2. This

means that J2(·|z) is proper in X2.
Lower semi-continuity: E(z, ·) is lsc in RM , and H : X2 !

RM is continuous. Therefore, E(z, H{·}) is lsc over X2.
Similarly, by composition f 7! kLfk

L2 is continuous, hence
lsc over X2. Since J2(·|z) is the sum of two lsc functionals,
it is lsc as well.

Convexity: E(z, ·) and k · k2
L2

are convex, and H and L are
linear. Therefore, J2(·|z) = E(z, H{·}) + kL · k2

L2
is convex

too.

Coercivity: The measurement operator H is continuous and
linear from X2 to RM ; hence, there exists a constant A such
that

kH{f}k2  AkfkX2 (58)

for every f 2 X2. Likewise, the condition H{p} = H{q} )
p = q for p, q 2 NL implies the existence of B > 0 such that
[11, Proposition 8]

kH{p}k2 � BkpkNL (59)

for every p 2 NL. As presented in the supplementary material
(see [11] for more details), the search space X2 is a Hilbert
space for the Hilbertian norm

kfkX2 = kLfk
L2 + kPfkNL (60)

with P being the projector on NL introduced in (74). We set
p = Pf and g = f � p. Then, g 2 X2 satisfies Lg = Lf and
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Pg = 0, and hence

kgkX2 = kLgk
L2 + kPgkNL = kLfk

L2 . (61)

Now consider a sequence of (generalized) functions f

m

2
X2, m 2 N such that kf

m

kX2 ! 1. We set p

m

= Pf

m

and
g

m

= f

m

� p

m

. Assume by contradiction that J2(fm

|z) is
bounded. Then, kLf

m

k
L2 and kH{f

m

}k2 are bounded (for
the latter, we use that E(z, ·) is coercive). However, we have

kH{f

m

}k2 � kH{p

m

}k2 � kH{g

m

}k2 (62)
� Bkp

m

kNL � Akg

m

kX2 (63)
= Bkf

m

kX2 � (A + B)kLf

m

k
L2 (64)

where we used respectively the triangular inequality in (62),
the inequalities (58) and (59) in (63), and the relations
kp

m

kNL = kf

m

kX2 � kLf

m

k
L2 and kg

m

kX2 = kLf

m

k
L2

in (64). Since kLf

m

k
L2 is bounded and kf

m

kX2 ! 1, we
deduce that kH{f

m

}k2 ! 1, which is known to be false.
Finally, we obtain a contradiction, proving the coercivity.

Since, J2(·|z) is proper, lsc, convex, and coercive on X2,
therefore, it has at least one minimizer.

Uniqueness of the Solution. We now prove that if E(z, ·)
satisfies Assumption 2’ then the solution is unique. We first
show this for the case when Assumption 2’.i) is satisfied. We
already know that the solution set is nonempty. It is then clear
that the uniqueness is achieved if J2(·|z) is strictly convex.
We now prove the convex functional J2(·|z) is actually strictly
convex.

For � 2 (0, 1), f

A

, f

B

2 X2, we denote f

AB

= �f

A

+
(1��)f

B

. Then, the equality case J2(fAB

|z) = �J2(fA

|z)+
(1 � �)J2(fB

|z) implies that E(z, f
AB

) = �E(z, f
A

) + (1 �
�)E(z, f

B

) and kLf

AB

k
L2 = �kLf

B

k
L2 + (1 � �)kLf

B

k
L2 ,

since the two parts of the functional are themselves convex.
The strict convexity of E(z, ·) and the norm k·k2 then implies
that

Lf

A

= Lf

B

and H{f

A

} = H{f

B

} (65)

and, therefore, (f
A

� f

B

) 2 NL \ NH. Since NL \ NH = 0
by Assumption 1, therefore, f

A

= f

B

. This demonstrates that
J2(·|z) is strictly convex.

For Assumption 2’.ii), that is when E(z, ·) = I(z, ·), the
solution set can be written as

V2 = arg min
f2H�1{z}

kLfk2
L2

. (66)

where the set H�1{z} = {f 2 X2 : H{f} = z} is nonempty
since we assumed I(z, ·) to be proper in the range of H.

According to [17, Theorem 1.1 and 1.2] given that the range
of L : X2 ! L2 is closed in L2, V2 in (66) is singleton . As
discussed in the supplementary material, given any w 2 L2,
we can always find an f 2 X2 such that Lf = w. This means
that the range of L is the whole L2 which is clearly closed in
L2.

Form of the Minimizer. We first take the case when E

satisfies Assumption 2’. Let f

⇤
2 be the unique solution and

z0 = H{f

⇤
2 }. One decomposes again X2 as the direct sum

X2 = Q � NL, where

Q = {f 2 X2 : hf, piX2 = 0, 8p 2 NL}

is the Hilbert space with norm kL·k
L2 . In particular, we have

that f

⇤
2 = q

⇤ + p

⇤ with q

⇤ 2 Q and p

⇤ 2 NL.
Consider the optimization problem

min
g2Q

kLgk2
L2

s.t. H{g} = (z0 � H{p

⇤}). (67)

According to Theorem 7, this problem admits a unique
minimizer g

⇤ such that ⇧�1
g

⇤ 2 Q0 \ Span{h

m

}M

m=1 where
⇧�1 : X ! X 0 is the inverse of the Riesz map ⇧ : X 0 ! X
and Q

0 = ⇧�1Q. The set Q0\Span{h

m

}M

m=1 is represented by
P

M

m=1 a

m

h

m

, where
P

m

a

m

hh
m

, pi = 0 for every p 2 NL.
However, by definition, the function q

⇤ also satisfies
H{q

⇤} = (z0 � H{p

⇤}). Moreover, kLq

⇤k2
L2

 kLg

⇤k2
L2

;
otherwise, the function f̃ = g

⇤ + p

⇤ 2 X2 would satisfy
J2(f̃ |z) < J2(f

⇤
2 |z), which is impossible. However, since (67)

has a unique solution, we have q

⇤ = g

⇤.
This proves that f

⇤
2 = ⇧

n

P

M

m=1 a

m

h

m

o

+ p

⇤. For any
q

0 2 Q0 the Riesz map ⇧q

0 = q

0⇤⇢L⇤L+p

q

0 for some p

q

0 2 NL

[17], [18]. Here ⇢L⇤L is the Green’s function of the operator
(L⇤L) (see Definition 1). Therefore,

f

⇤
2 = p0 + ⇢L⇤L ⇤

(

M

X

m=1

a

m

h

m

)

(68)

where p0 = (p
q

0 + p

⇤) 2 NL and where
P

m

a

m

hh
m

, pi = 0
for every p 2 NL.

The component ⇢L⇤L ⇤
n

P

M

m=1 a

m

h

m

o

in (68) can be

written as,
P

M

m=1 a

m

'

m

provided that '

m

= ⇢L⇤L ⇤ h

m

=

F�1
n

b
h

m

|bL|2

o

is well-defined. To show that this is the case,
we decompose h

m

= ProjQ0{h

m

} + ProjN 0
L
{h

m

} where
ProjQ0 and ProjN 0

L
are the projection operators on Q0 and N 0

L,
respectively. Since, ProjQ0{h

m

} 2 Q0, as discussed earlier,
⇢L⇤L ⇤ ProjQ0{h

m

} is well-defined.
Now, one can always select a basis {p

n

}N0
n=1 such that N 0

L =
Span{�

n

}N0
n=1 with �

n

= �(· � x

n

) and h�
m

, p

n

i = �[m �
n]. The other component ProjN 0

L
{h

m

} =
P

N0

n=1 c

n

�

n

where
c

n

= hh
m

, p

n

i. Therefore, ⇢L⇤L ⇤ ProjN 0
L
{h

m

} is a linear
combination of shifted Green’s functions, which proves that
'

m

= F�1
n

b
h

m

|bL|2

o

is well defined.
For general case, when Assumption 2 is satisfied, we see

that any solution f

⇤
2 2 V2 also minimizes the following

min
f2H�1{H{f

⇤
2 }}

kLfk
L2 . (69)

As discussed earlier, the minimizer of (69) is unique so that it
is clearly f

⇤
2 . We now use the same reasoning as for the cases

of Assumption 2’ to show that f

⇤
2 takes the form (16). This

concludes the proof.
Note that, even in the absence of convexity of E(z, ·),

results on the form of the solution can still be obtained.

APPENDIX B
PROOF OF THEOREM 4

Similarly to the L2 case, the proof has two steps. We first
show that the set of minimizers is nonempty. We then connect
the optimization problem to the one studied in [11, Theorem
2] to deduce the form of the extreme points. The functional
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to minimize is J1(f |z) = E(z, H{f}) + �kLfkM, defined
over the Banach space X1.

Existence of Solutions. We first show that V =
arg min

f2X1 J1(f |z) is nonempty, convex, and weak*-
compact.

We rely on the generalized Weierstrass theorem presented
in [49]: Any proper, lower semi-continuous (lsc) functional
over a compact topological vector space reaches its minimum,
from which we deduce the following result. We recall that
the dual space B0 of a Banach space B can be endowed with
the weak*-topology, and that one can define a norm kfkB0 =
supkxkBhf, xi for which B0 is a Banach space.

Proposition 8. Let B be a Banach space. Then, a functional
J : B0 ! R+ [ {1} which is proper, convex, coercive,
and weak*-lsc is lower bounded and reaches its infimum.
Moreover, the set V = arg min J is convex and weak*-
compact.

Proof. Let ↵ > inf J. The coercivity implies that there exists
r > 0 such that J(f) � ↵ as soon as kfkB0

> r. The infimum
of J can only be reached on B

r

= {f 2 B0
, kfkB0  r},

hence we restrict our analysis to it. The Banach-Alaoglu
theorem implies that B

r

is weak*-compact. As a consequence,
the functional J is proper and lsc on the compact space B

r

endowed with the weak*-topology. According to the general-
ized Weierstrass theorem [49, Theorem 7.3.1], J reaches its
infimum on B

r

, hence on X 0.
Let V = arg min J and ↵0 = min J. The convexity of J

directly implies the one of V . The set V is included in the ball
B

↵0 which is weak*-compact. Therefore, it suffices to show
that V is weak*-closed to deduce that it is weak*-compact.
Moreover, the weak*-lower semi-continuity is equivalent to
the weak*-closedness of the level sets {f 2 B0 : J(f)  ↵}
are weak*-closed. Applying this to ↵ = ↵0, we deduce that
V = {f 2 B0 : J(f)  ↵0} is weak*-closed, as expected.

We apply Proposition 8 to B0 = X1, which is the dual
of the Banach space B = CL(R) introduced in [11] and
recapped in the supplementary material. One has to show that
the functional J = J1(·|z) is coercive and weak*-lsc over
X1. The coercivity is deduced exactly in the same way as
for Theorem 3. The weak*-lower semi-continuity is deduced
as follows. First, H is weak*-continuous by assumption and
E(z, ·) is lsc; hence, the composition f 7! E(z, H{f}) is
weak*-lsc. Similarly, the norm k·kM is weak*-lsc on M
and L : X1 ! M is continuous, hence f 7! kLfkM is
weak*-continuous, and therefore weak*-lsc over X1. Finally,
J1(·|z) is weak*-lsc over X1 as it is a sum of two weak*-lsc
functionals.

Form of the Extreme Points. Let f

e

be an extreme point of
the set V1 and z

e

= Hf

e

. Then f

e

is also a member of the
solution set

V
e

= arg min
f=H�1{z

e

}
kLfkM. (70)

Since z
e

is convex and compact, and the set H�1{z
e

} is
nonempty, we can apply Theorem 2 of [11] to deduce that

V
e

is convex and weak*-compact, together with the general
form (19) of the extreme-points of V

e

.
Since V

e

✓ V1, and f

e

2 V
e

it can be easily shown that f

e

is also an extreme point of V
e

. This proves that the extreme
points of V1 admit the form (19).

Measurement of the solution set. We now show that in the
case of Assumption 2’ the measurement of the solution set is
unique. We first prove this for the case of Assumption 2’.i).
Let J

⇤
1 be the minimum value attained by the solutions. Let f

⇤
A

and f

⇤
B

be two solutions. Let e

A

, e

B

be their corresponding
E functional value and let r

A

, r

B

be their corresponding
regularization functional value. Since the cost function is
convex, any convex combination f

AB

= �f

⇤
A

+ (1 � �)f⇤
B

is also a solution for � 2 [0, 1] with functional value J

⇤
1 .

Let us assume that H{f

⇤
A

} 6= H{f

⇤
B

}. Since E(z, ·) is strictly
convex and R1(f) = kLfkM is convex, we get that

J

⇤
1 =E(z, H{�f

⇤
A

+ (1 � �)f⇤
B

}) + �R1(�f

⇤
A

+ (1 � �)f⇤
B

)

<�e

A

+ (1 � �)e
B

+ ��r

A

+ �(1 � �)r
B

| {z }

J

⇤
1

.

This is a contradiction. Therefore, H{f

⇤
A

} = H{f

⇤
B

} =
H{f

AB

}.
In the case of Assumption 2’.ii), E(z, ·) is an indicator

function. It is therefore obvious that all the solutions have
the same measurement z.

APPENDIX C
PROOF OF THEOREM 6

We first state two propositions that are needed for the proof.
Their proofs are given in the supplementary material.

Proposition 9 (Adapted from [10, Theorem 5]). Let z 2 RM

and H 2 RM⇥N , where M < N . Then, the solution set ↵

�

of

a⇤ = arg min
a2RN

�kz � Hak2
2 + �kak1

�

(71)

is a compact convex set and kak0  M, 8a 2 ↵

E,�

, where
↵

E,�

is the set of the extreme points of ↵

�

.

Proposition 10. Let the convex compact set ↵

�

be the solution
set of Problem (48) and let ↵

E,�

be the set of its extreme
points. Let the operator T : ↵

�

! RN be such that Ta =
u with u

m

= |a
m

|, m 2 [1, . . . , N ]. Then, the operator is
linear and invertible over the domain ↵

�

and the range T↵

�

is convex compact such that the image of any extreme point
a

E

2 ↵

E,�

is also an extreme point of the set T↵

�

.

The linear program corresponding to (50) is

(a⇤
,u⇤) = min

a,u

N

X

n=1

u

n

, subject to u + a � 0,

u � a � 0,

Pa = z. (72)
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By putting u + a = s1 and (u � a) = s2, the standard form
of this linear program is

(s⇤
1, s

⇤
2) = min

s1,s2

 

N

X

n=1

s1n

+ s2n

!

, s.t. s1 � 0,

s2 � 0,

Ps1 � Ps2  z

�Ps1 + Ps2  �z. (73)

Any solution a⇤ of (72) is equal to (s⇤
1 �s⇤

2) for some solution
pair (73). We denote the concatenation of any two independent
points sr

1, s
r

2 2 RN by the variable sr = (sr

1, s
r

2) 2 R2N .
Then, the concatenation of the feasible pairs sf =

⇣

sf

1 , sf

2

⌘

that satisfies the constraints of the linear program (73) forms
a polytope in R2N . Given that (73) is solvable, it is known
that at least one of the extreme points of this polytope is
also a solution. The simplex algorithm is devised such that
its solution s⇤

SLP =
�

s⇤
1,SLP, s⇤

2,SLP

�

is an extreme point
of this polytope [34]. Our remaining task is to prove that
a⇤

SLP =
�

s⇤
1,SLP � s⇤

2,SLP

�

is an extreme point of the set ↵

�

,
the solution set of the problem (48).

Proposition 9 claims that the solution set ↵

�

of the LASSO
problem is a convex set with extreme points ↵

E,�

2 RN .
As ↵

�

is convex and compact, the concatenated set ⇣ =
{w 2 R2N : w = (a⇤

,u⇤) ,a⇤ 2 ↵

�

} is convex and
compact by Proposition 10. The transformation (a⇤

,u⇤) =
(s⇤

1 � s⇤
2, s

⇤
1 + s⇤

2) is linear and invertible. This means that the
solution set of (73) is convex and compact, too. The simplex
solution corresponds to one of the extreme points of this
convex compact set.
Since the map (a⇤

,u⇤) = (s⇤
1 � s⇤

2, s
⇤
1 + s⇤

2) is linear and
invertible, it also implies that an extreme point of the solution
set of (73) corresponds to an extreme point of ⇣. Proposition
10 then claims that this extreme point of ⇣ corresponds to an
extreme point aSLP 2 ↵

�,E

.
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