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Abstract: We study the continuity of many channel parameters and operations under various
topologies on the space of equivalent discrete memoryless channels (DMC). We show that mutual
information, channel capacity, Bhattacharyya parameter, probability of error of a fixed code and
optimal probability of error for a given code rate and block length are continuous under various
DMC topologies. We also show that channel operations such as sums, products, interpolations and
Arıkan-style transformations are continuous.
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1. Introduction

This paper is an extended version of our paper that is published in the International Symposium
on Information Theory 2017 (ISIT 2017) [1].

Let X and Y be two finite sets, and let W be a fixed channel with input alphabet X and output
alphabet Y . It is well known that the input-output mutual information is continuous on the simplex
of input probability distributions. Many other parameters that depend on the input probability
distribution were shown to be continuous on the simplex in [2].

Polyanskiy studied in [3] the continuity of the Neyman–Pearson function for a binary hypothesis
test that arises in the analysis of channel codes. He showed that for arbitrary input and output
alphabets, this function is continuous in the input distribution in the total variation topology. He also
showed that under some regularity assumptions, this function is continuous in the weak-∗ topology.

If X and Y are finite sets, the space of channels with input alphabet X and output alphabet Y can
naturally be endowed with the topology of the Euclidean metric, or any other equivalent metric. It is
well known that the channel capacity is continuous in this topology. If X and Y are arbitrary, one can
construct a topology on the space of channels using the weak-∗ topology on the output alphabet. It was
shown in [4] that the capacity is lower semi-continuous in this topology.

The continuity results that are mentioned in the previous paragraph do not take into account
“equivalence” between channels. Two channels are said to be equivalent if they are degraded from each
other. This means that each channel can be simulated from the other by local operations at the receiver.
Two channels that are degraded from each other are completely equivalent from an operational point
of view: both channels have exactly the same probability of error under optimal decoding for any fixed
code. Moreover, any sub-optimal decoder for one channel can be transformed to a sub-optimal decoder
for the other channel with the same probability of error and essentially the same computational
complexity. This is why it makes sense, from an information-theoretic point of view, to identify
equivalent channels and consider them as one point in the space of “equivalent channels”.

In [5], equivalent binary-input channels were identified with their L-density (i.e., the density of
log-likelihood ratios). The space of equivalent binary-input channels was endowed with the topology
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of convergence in distribution of L-densities. Since the symmetric capacity (the symmetric capacity
is the input-output mutual information with uniformly-distributed input) and the Bhattacharyya
parameter can be written as an integral of a continuous function with respect to the L-density [5],
it immediately follows that these parameters are continuous in the L-density topology.

In [6], many topologies were constructed for the space of equivalent channels sharing a fixed
input alphabet. In this paper, we study the continuity of many channel parameters and operations
under these topologies. The continuity of channel parameters and operations might be helpful in the
following two problems:

• If a parameter (such as the optimal probability of error of a given code) is difficult to compute for
a channel W, one can approximate it by computing the same parameter for a sequence of channels
(Wn)n≥0 that converges to W in some topology where the parameter is continuous.

• The study of the robustness of a communication system against the imperfect specification of
the channel.

In Section 2, we introduce the preliminaries for this paper. In Section 3, we recall the main results
of [6] that we need here. In Section 4, we introduce the channel parameters and operations that we
investigate in this paper. In Section 5, we study the continuity of these parameters and operations
in the quotient topology of the space of equivalent channels with fixed input and output alphabets.
The continuity in the strong topology of the space of equivalent channels sharing the same input
alphabet is studied in Section 6. Finally, the continuity in the noisiness/weak-∗ and the total variation
topologies is studied in Section 7.

2. Preliminaries

We assume that the reader is familiar with the basic concepts of General Topology. The main
concepts and theorems that we need can be found in the Preliminaries Section of [6].

2.1. Set-Theoretic Notations

For every integer n ≥ 1, we denote the set {1, . . . , n} as [n].
The set of mappings from a set A to a set B is denoted as BA.
Let A be a subset of B. The indicator mapping 1A,B : B→ {0, 1} of A in B is defined as:

1A,B(x) = 1x∈A =

{
1 if x ∈ A,

0 otherwise.

If the superset B is clear from the context, we simply write 1A to denote the indicator mapping of
A in B.

The power set of B is the set of subsets of B. Since every subset of B can be identified with its
indicator mapping, we denote the power set of B as {0, 1}B = 2B.

Let (Ai)i∈I be a collection of arbitrary sets indexed by I. The disjoint union of (Ai)i∈I is defined
as ä

i∈I
Ai =

⋃
i∈I

(Ai × {i}). For every i ∈ I, the i-th-canonical injection is the mapping φi : Ai →ä
j∈I

Aj

defined as φi(xi) = (xi, i). If no confusions can arise, we can identify Ai with Ai × {i} through the
canonical injection. Therefore, we can see Ai as a subset of ä

j∈I
Aj for every i ∈ I.

Let R be an equivalence relation on a set T. For every x ∈ T, the set x̂ = {y ∈ T : xRy}
is the R-equivalence class of x. The collection of R-equivalence classes, which we denote as T/R,
forms a partition of T, and it is called the quotient space of T by R. The mapping ProjR : T → T/R
defined as ProjR(x) = x̂ for every x ∈ T is the projection mapping onto T/R.
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2.2. Topological Notations

A topological space (T,U ) is said to be contractible to x0 ∈ T if there exists a continuous mapping
H : T × [0, 1] → T such that H(x, 0) = x and H(x, 1) = x0 for every x ∈ T, where [0, 1] is endowed
with the Euclidean topology. (T,U ) is strongly contractible to x0 ∈ T if we also have H(x0, t) = x0 for
every t ∈ [0, 1].

Intuitively, T is contractible if it can be “continuously shrinked” to a single point x0. If this
“continuous shrinking” can be done without moving x0, T is strongly contractible.

Note that contractibility is a very strong notion of connectedness: every contractible space is
path-connected and simply connected. Moreover, all its homotopy, homology and cohomology groups
of order ≥ 1 are zero.

Let {(Ti,Ui)}i∈I be a collection of topological spaces indexed by I. The product topology on ∏
i∈I

Ti

is denoted by
⊗
i∈I
Ui. The disjoint union topology on ä

i∈I
Ti is denoted by

⊕
i∈I
Ui.

The following lemma is useful to show the continuity of many functions.

Lemma 1. Let (S,V) and (T,U ) be two compact topological spaces, and let f : S× T → R be a continuous
function on S× T. For every s ∈ S and every ε > 0, there exists a neighborhood Vs of s such that for every
s′ ∈ Vs, we have:

sup
t∈T
| f (s′, t)− f (s, t)| ≤ ε.

Proof. See Appendix A.

2.3. Quotient Topology

Let (T,U ) be a topological space, and let R be an equivalence relation on T. The quotient topology
on T/R is the finest topology that makes the projection mapping ProjR continuous. It is given by:

U/R =
{

Û ⊂ T/R : Proj−1
R (Û) ∈ U

}
.

Lemma 2. Let f : T → S be a continuous mapping from (T,U ) to (S,V). If f (x) = f (x′) for every x, x′ ∈ T
satisfying xRx′, then we can define a transcendent mapping f : T/R → S such that f (x̂) = f (x′) for any
x′ ∈ x̂. f is well defined on T/R. Moreover, f is a continuous mapping from (T/R,U/R) to (S,V).

Let (T,U ) and (S,V) be two topological spaces, and let R be an equivalence relation on T.
Consider the equivalence relation R′ on T × S defined as (x1, y1)R′(x2, y2) if and only if x1Rx2 and
y1 = y2. A natural question to ask is whether the canonical bijection between

(
(T/R)× S, (U/R)⊗V

)
and

(
(T × S)/R′, (U ⊗ V)/R′

)
is a homeomorphism. It turns out that this is not the case in general.

The following theorem, which is widely used in Algebraic Topology, provides a sufficient condition:

Theorem 1. [7] If (S,V) is locally compact and Hausdorff, then the canonical bijection between(
(T/R)× S,(U/R)⊗ V

)
and

(
(T × S)/R′, (U ⊗ V)/R′

)
is a homeomorphism.

Corollary 1. Let (T,U ) and (S,V) be two topological spaces, and let RT and RS be two equivalence relations
on T and S, respectively. Define the equivalence relation R on T × S as (x1, y1)R(x2, y2) if and only if x1RTx2

and y1RSy2. If (S,V) and (T/RT ,U/RT) are locally compact and Hausdorff, then the canonical bijection
between

(
(T/RT)× (S/RS), (U/RT)⊗ (V/RS)

)
and

(
(T × S)/R, (U ⊗ V)/R

)
is a homeomorphism.

Proof. We just need to apply Theorem 1 twice. Define the equivalence relation R′T on T× S as follows:
(x1, y1)R′T(x2, y2) if and only if x1RTx2 and y1 = y2. Since (S,V) is locally compact and Hausdorff,
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Theorem 1 implies that the canonical bijection from
(
(T/RT)× S, (U/RT)⊗ V

)
to
(
(T × S)/R′T , (U ⊗

V)/R′T
)

is a homeomorphism. Let us identify these two spaces through the canonical bijection.
Now, define the equivalence relation R′S on (T/RT)× S as follows: (x̂1, y1)R′S(x̂2, y2) if and only

if x̂1 = x̂2 and y1RSy2. Since (T/RT ,U/RT) is locally compact and Hausdorff, Theorem 1 implies that
the canonical bijection from

(
(T/RT)× (S/RS), (U/RT)⊗ (V/RS)

)
to
(
((T/RT)× S)/R′S, ((U/RT)⊗

V)/R′S
)

is a homeomorphism.
Since we identified

(
(T/RT) × S, (U/RT) ⊗ V

)
and

(
(T × S)/R′T, (U ⊗ V)/R′T

)
through the

canonical bijection (which is a homeomorphism), R′S can be seen as an equivalence relation on(
(T× S)/R′T, (U ⊗V)/R′T

)
. It is easy to see that the canonical bijection from

((
(T× S)/R′T

)
/R′S,

(
(U ⊗

V)/R′T
)
/R′S

)
to
(
(T× S)/R, (U ⊗V)/R

)
is a homeomorphism. We conclude that the canonical bijection

from
(
(T/RT)× (S/RS), (U/RT)⊗ (V/RS)

)
to
(
(T× S)/R, (U ⊗V)/R

)
is a homeomorphism.

2.4. Measure-Theoretic Notations

If (M, Σ) is a measurable space, we denote the set of probability measures on (M, Σ) as
P(M, Σ). If the σ-algebra Σ is known from the context, we simply write P(M) to denote the set
of probability measures.

If P ∈ P(M, Σ) and {x} is a measurable singleton, we simply write P(x) to denote P({x}).
For every P1, P2 ∈ P(M, Σ), the total variation distance between P1 and P2 is defined as:

‖P1 − P2‖TV = sup
A∈Σ
|P1(A)− P2(A)|.

• The push-forward probability measure:

Let P be a probability measure on (M, Σ), and let f : M → M′ be a measurable mapping from
(M, Σ) to another measurable space (M′, Σ′). The push-forward probability measure of P by f is
the probability measure f#P on (M′, Σ′) defined as ( f#P)(A′) = P( f−1(A′)) for every A′ ∈ Σ′.

A measurable mapping g : M′ → R is integrable with respect to f#P if and only if g ◦ f is
integrable with respect to P. Moreover,

∫
M′

g · d( f#P) =
∫

M
(g ◦ f ) · dP.

The mapping f# from P(M, Σ) to P(M′, Σ′) is continuous if these spaces are endowed with the
total variation topology:

‖ f#P− f#P′‖TV
(a)
≤ ‖P− P′‖TV ,

where (a) follows from Property 1 of [8].
• Probability measures on finite sets:

We always endow finite sets with their finest σ-algebra, i.e., the power set. In this case,
every probability measure is completely determined by its value on singletons, i.e., if P is a
probability measure on a finite set X , then for every A ⊂ X , we have:

P(A) = ∑
x∈A

P(x).

If X is a finite set, we denote the set of probability distributions on X as ∆X . Note that ∆X is
an (|X | − 1)-dimensional simplex in RX . We always endow ∆X with the total variation distance
and its induced topology. For every p1, p2 ∈ ∆X , we have:
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‖p1 − p2‖TV =
1
2 ∑

x∈X
|p1(x)− p2(x)| = 1

2
‖p1 − p2‖1.

• Products of probability measures:

We denote the product of two measurable spaces (M1, Σ1) and (M2, Σ2) as (M1 ×M2, Σ1 ⊗ Σ2).
If P1 ∈ P(M1, Σ1) and P2 ∈ P(M2, Σ2), we denote the product of P1 and P2 as P1 × P2.

If P(M1, Σ1), P(M2, Σ2) and P(M1×M2, Σ1⊗Σ2) are endowed with the total variation topology,
the mapping (P1, P2)→ P1 × P2 is a continuous mapping (see Appendix B).

• Borel sets and the support of a probability measure:

Let (T,U ) be a Hausdorff topological space. The Borel σ-algebra of (T,U ) is the σ-algebra
generated by U . We denote the Borel σ-algebra of (T,U ) as B(T,U ). If the topology U is known
from the context, we simply write B(T) to denote the Borel σ-algebra. The sets in B(T) are called
the Borel sets of T.

The support of a measure P ∈ P(T,B(T)) is the set of all points x ∈ T for which every
neighborhood has a strictly positive measure:

supp(P) = {x ∈ T : P(O) > 0 for every neighborhood O of x}.

If P is a probability measure on a Polish space, then P
(
T \ supp(P)

)
= 0.

2.5. Random Mappings

Let M and M′ be two arbitrary sets, and let Σ′ be a σ-algebra on M′. A random mapping from
M to (M′, Σ′) is a mapping R from M to P(M′, Σ′). For every x ∈ M, R(x) can be interpreted as the
probability distribution of the random output given that the input is x.

Let Σ be a σ-algebra on M. We say that R is a measurable random mapping from (M, Σ) to
(M′, Σ′) if the mapping RB : M→ R defined as RB(x) = (R(x))(B) is measurable for every B ∈ Σ′.

Note that this definition of measurability is consistent with the measurability of ordinary
mappings: let f be a mapping from M to M′, and let D f : M → P(M′, Σ′) be the random mapping
defined as D f (x) = δ f (x) for every x ∈ M, where δ f (x) ∈ P(M′, Σ′) is a Dirac measure centered at
f (x). We have:

D f is measurable ⇔ (D f )B is measurable, ∀B ∈ Σ′

⇔ ((D f )B)
−1(B′) ∈ Σ, ∀B′ ∈ B(R), ∀B ∈ Σ′

(a)⇔ ((D f )B)
−1({1}) ∈ Σ, ∀B ∈ Σ′

(b)⇔ f−1(B) ∈ Σ, ∀B ∈ Σ′

⇔ f is measurable,

where (a) and (b) follow from the fact that ((D f )B)(x) is either one or zero, depending on whether
f (x) ∈ B or not.

Let P be a probability measure on (M, Σ), and let R be a measurable random mapping from
(M, Σ) to (M′, Σ′). The push-forward probability measure of P by R is the probability measure R#P on
(M′, Σ′) defined as:

(R#P)(B) =
∫

M
RB · dP, ∀B ∈ Σ′.

Note that this definition is consistent with the push-forward of ordinary mappings: if f and D f
are as above, then for every B ∈ Σ′, we have:
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((D f )#P)(B) =
∫

M
(D f )B · dP =

∫
M
(1B ◦ f ) · dP =

∫
M′
1B · d( f#P) = ( f#P)(B).

Proposition 1. Let R be a measurable random mapping from (M, Σ) to (M′, Σ′). If g : M′ → R+ ∪ {+∞} is

a Σ′-measurable mapping, then the mapping x →
∫

M′
g(y) · d(R(x))(y) is a measurable mapping from (M, Σ)

to R+ ∪ {+∞}. Moreover, for every P ∈ P(M, Σ), we have:∫
M′

g · d(R#P) =
∫

M

(∫
M′

g(y) · d(R(x))(y)
)

dP(x).

Proof. See Appendix C.

Corollary 2. If g : M′ → R is bounded and Σ′-measurable, then the mapping:

x →
∫

M′
g(y) · d(R(x))(y)

is bounded and Σ-measurable. Moreover, for every P ∈ P(M, Σ), we have:∫
M′

g · d(R#P) =
∫

M

(∫
M′

g(y) · d(R(x))(y)
)

dP(x).

Proof. Write g = g+ − g− (where g+ = max{g, 0} and g− = max{−g, 0}), and use the fact that every
bounded measurable function is integrable over any probability distribution.

Lemma 3. For every measurable random mapping R from (M, Σ) to (M′, Σ′), the push-forward mapping R#

is continuous from P(M, Σ) to P(M′, Σ′) under the total variation topology.

Proof. See Appendix D.

Lemma 4. Let U be a Polish (This assumption can be dropped. We assumed that U is Polish just to avoid
working with Moore–Smith nets.) topology on M, and let U ′ be an arbitrary topology on M′. Let R be
a measurable random mapping from (M,B(M)) to (M′,B(M′)). Moreover, assume that R is a continuous
mapping from (M,U ) to P(M′,B(M′)) when the latter space is endowed with the weak-∗ topology. Under these
assumptions, the push-forward mapping R# is continuous from P(M,B(M)) to P(M′,B(M′)) under the
weak-∗ topology.

Proof. See Appendix D.

2.6. Meta-Probability Measures

Let X be a finite set. A meta-probability measure on X is a probability measure on the Borel
sets of ∆X . It is called a meta-probability measure because it is a probability measure on the space of
probability distributions on X .

We denote the set of meta-probability measures on X asMP(X ). Clearly,MP(X ) = P(∆X ).
A meta-probability measure MP on X is said to be balanced if it satisfies:∫

∆X
p · dMP(p) = πX ,

where πX is the uniform probability distribution on X .
We denote the set of all balanced meta-probability measures on X asMP b(X ). The set of all

balanced and finitely-supported meta-probability measures on X is denoted asMP b f (X ).
The following lemma is useful to show the continuity of functions defined onMP(X ).
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Lemma 5. Let (S,V) be a compact topological space, and let f : S× ∆X → R be a continuous function on
S× ∆X . The mapping F : S×MP(X )→ R defined as:

F(s, MP) =
∫

∆X
f (s, p) · dMP(p)

is continuous, whereMP(X ) is endowed with the weak-∗ topology.

Proof. See Appendix E.

Let f be a mapping from a finite set X to another finite set X ′. f induces a push-forward mapping
f# taking probability distributions in ∆X to probability distributions in ∆X ′ . f# is continuous because
∆X and ∆X ′ are endowed with the total variation distance. f# in turn induces another push-forward
mapping taking meta-probability measures inMP(X ) to meta-probability measures inMP(X ′).
We denote this mapping as f##, and we call it the meta-push-forward mapping induced by f . Since
f# is a continuous mapping from ∆X to ∆X ′ , f## is a continuous mapping fromMP(X ) toMP(X ′)
under both the weak-∗ and the total variation topologies.

Let X1 and X2 be two finite sets. Let Mul : ∆X1 × ∆X2 → ∆X1×X2 be defined as
Mul(p1, p2) = p1 × p2. For every MP1 ∈ MP(X1) and MP2 ∈ MP(X2), we define the tensor product
of MP1 and MP2 as MP1⊗MP2 = Mul#(MP1×MP2) ∈ MP(X1 ×X2).

Note that since ∆X1 , ∆X2 and ∆X1×X2 are endowed with the total variation topology,
Mul(p1, p2) = p1 × p2 is a continuous mapping from ∆X1 × ∆X2 to ∆X1×X2 . Therefore, Mul# is
a continuous mapping from P(∆X1 × ∆X2) to P(∆X1×X2) =MP(X1 ×X2) under both the weak-∗
and the total variation topologies. On the other hand, Appendices B and F imply that the mapping
(MP1, MP2)→ MP1 ×MP2 fromMP(X1)×MP(X2) to P(∆X1 × ∆X2) is continuous under both the
weak-∗ and the total variation topologies. We conclude that the tensor product is continuous under
both of these topologies.

3. The Space of Equivalent Channels

In this section, we summarize the main results of [6].

3.1. Space of Channels from X to Y

A discrete memoryless channel W is a three-tuple W = (X , Y , pW) where X is a finite set
that is called the input alphabet of W, Y is a finite set that is called the output alphabet of W and
pW : X ×Y → [0, 1] is a function satisfying ∀x ∈ X , ∑

y∈Y
pW(x, y) = 1.

For every (x, y) ∈ X ×Y , we denote pW(x, y) as W(y|x), which we interpret as the conditional
probability of receiving y at the output, given that x is the input.

Let DMCX ,Y be the set of all channels having X as the input alphabet and Y as the output
alphabet.

For every W, W ′ ∈ DMCX ,Y , define the distance between W and W ′ as follows:

dX ,Y (W, W ′) =
1
2

max
x∈X ∑

y∈Y
|W ′(y|x)−W(y|x)|.

We always endow DMCX ,Y with the metric distance dX ,Y . This metric makes DMCX ,Y a compact
path-connected metric space. The metric topology on DMCX ,Y that is induced by dX ,Y is denoted
as TX ,Y .
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3.2. Equivalence between Channels

Let W ∈ DMCX ,Y and W ′ ∈ DMCX ,Z be two channels having the same input alphabet. We say
that W ′ is degraded from W if there exists a channel V ∈ DMCY ,Z such that:

W ′(z|x) = ∑
y∈Y

V(z|y)W(y|x).

W and W ′ are said to be equivalent if each one is degraded from the other.
Let ∆X and ∆Y be the space of probability distributions on X and Y , respectively. Define Po

W ∈ ∆Y

as Po
W(y) =

1
|X | ∑

x∈X
W(y|x) for every y ∈ Y . The image of W is the set of output-symbols y ∈ Y

having strictly positive probabilities:

Im(W) = {y ∈ Y : Po
W(y) > 0}.

For every y ∈ Im(W), define W−1
y ∈ ∆X as follows:

W−1
y (x) =

W(y|x)
|X |Po

W(y)
, ∀x ∈ X .

For every (x, y) ∈ X × Im(W), we have W(y|x) = |X |Po
W(y)W−1

y (x). On the other hand, if x ∈ X
and y ∈ Y \ Im(W), we have W(y|x) = 0. This shows that Po

W and the collection {W−1
y }y∈Im(W)

uniquely determine W.
The Blackwell measure (denoted MPW) of W is a meta-probability measure on X defined as:

MPW = ∑
y∈Im(W)

Po
W(y)δW−1

y
,

where δW−1
y

is a Dirac measure centered at W−1
y . In an earlier version of this work, I called MPW the

posterior meta-probability distribution of W. Maxim Raginsky thankfully brought to my attention the
fact that MPW is called the Blackwell measure.

It is known that a meta-probability measure MP on X is the Blackwell measure of some
discrete memoryless channels (DMC) with input alphabet X if and only if it is balanced and finitely
supported [9].

It is also known that two channels W ∈ DMCX ,Y and W ′ ∈ DMCX ,Z are equivalent if and only if
MPW = MPW ′ [9].

3.3. Space of Equivalent Channels from X to Y

Let X and Y be two finite sets. Define the equivalence relation R(o)
X ,Y on DMCX ,Y as follows:

∀W, W ′ ∈ DMCX ,Y , WR(o)
X ,YW ′ ⇔ W is equivalent to W ′.

The space of equivalent channels with input alphabet X and output alphabet Y is the quotient of
DMCX ,Y by the equivalence relation:

DMC(o)
X ,Y = DMCX ,Y /R(o)

X ,Y .

Quotient topology:

We define the topology T (o)
X ,Y on DMC(o)

X ,Y as the quotient topology TX ,Y/R(o)
X ,Y . We always

associate DMC(o)
X ,Y with the quotient topology T (o)

X ,Y .
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We have shown in [6] that DMC(o)
X ,Y is a compact, path-connected and metrizable space.

If Y1 and Y2 are two finite sets of the same size, there exists a canonical homeomorphism between
DMC(o)

X ,Y1
and DMC(o)

X ,Y2
[6]. This allows us to identify DMC(o)

X ,Y with DMC(o)
X ,[n], where n = |Y|

and [n] = {1, . . . , n}.
Moreover, for every 1 ≤ n ≤ m, there exists a canonical subspace of DMC(o)

X ,[m]
that is

homeomorphic to DMC(o)
X ,[n] [6]. Therefore, we can consider DMC(o)

X ,[n] as a compact subspace

of DMC(o)
X ,[m]

.

Noisiness metric:

For every m ≥ 1, let ∆[m]×X be the space of probability distributions on [m]×X . Let Y be a finite
set, and let W ∈ DMCX ,Y . For every p ∈ ∆[m]×X , define Pc(p, W) as follows:

Pc(p, W) = sup
D∈DMCY ,[m]

∑
u∈[m],
x∈X ,
y∈Y

p(u, x)W(y|x)D(u|y).

The quantity Pc(p, W) depends only on the R(o)
X ,Y -equivalence class of W (see [6]). Therefore,

if Ŵ ∈ DMC(o)
X ,Y , we can define Pc(p, Ŵ) := Pc(p, W ′) for any W ′ ∈ Ŵ.

Define the noisiness distance d(o)X ,Y : DMC(o)
X ,Y ×DMC(o)

X ,Y → R+ as follows:

d(o)X ,Y (Ŵ1, Ŵ2) = sup
m≥1,

p∈∆[m]×X

|Pc(p, Ŵ1)− Pc(p, Ŵ2)|.

We have shown in [6] that (DMC(o)
X ,Y , T (o)

X ,Y ) is topologically equivalent to (DMC(o)
X ,Y , d(o)X ,Y ).

3.4. Space of Equivalent Channels with Input Alphabet X

The space of channels with input alphabet X is defined as:

DMCX ,∗ = ä
n≥1

DMCX ,[n] .

We define the equivalence relation R(o)
X ,∗ on DMCX ,∗ as follows:

∀W, W ′ ∈ DMCX ,∗, WR(o)
X ,∗W

′ ⇔ W is equivalent to W ′.

The space of equivalent channels with input alphabet X is the quotient of DMCX ,∗ by the
equivalence relation:

DMC(o)
X ,∗ = DMCX ,∗ /R(o)

X ,∗.

For every n ≥ 1 and every W ∈ DMCX ,[n], we identify the R(o)
X ,[n]-equivalence class of W with the

R(o)
X ,∗-equivalence class of it. This allows us to consider DMC(o)

X ,[n] as a subspace of DMC(o)
X ,∗. Moreover,

DMC(o)
X ,∗ =

⋃
n≥1

DMC(o)
X ,[n].
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Since any two equivalent channels have the same Blackwell measure, we can define the Blackwell
measure of Ŵ ∈ DMC(o)

X ,∗ as MPŴ = MPW ′ for any W ′ ∈ Ŵ. The rank of Ŵ ∈ DMC(o)
X ,∗ is the size of

the support of its Blackwell measure:

rank(Ŵ) = | supp(MPŴ)|.

We have:
DMC(o)

X ,[n] = {Ŵ ∈ DMC(o)
X ,∗ : rank(Ŵ) ≤ n}.

A topology T on DMC(o)
X ,∗ is said to be natural if and only if it induces the quotient topology

T (o)
X ,[n] on DMC(o)

X ,[n] for every n ≥ 1.
Every natural topology is σ-compact, separable and path-connected [6]. On the other hand,

if |X | ≥ 2, a Hausdorff natural topology is not Baire, and it is not locally compact anywhere [6].
This implies that no natural topology can be completely metrized if |X | ≥ 2.

Strong topology on DMC(o)
X ,∗:

We associate DMCX ,∗ with the disjoint union topology Ts,X ,∗ :=
⊕
n≥1

TX ,[n]. The space

(DMCX ,∗, Ts,X ,∗) is disconnected, metrizable and σ-compact [6].

The strong topology T (o)
s,X ,∗ on DMC(o)

X ,∗ is the quotient of Ts,X ,∗ by R(o)
X ,∗:

T (o)
s,X ,∗ = Ts,X ,∗/R(o)

X ,∗.

We call open and closed sets in (DMC(o)
X ,∗, T

(o)
s,X ,∗) as strongly-open and strongly-closed sets,

respectively. If A is a subset of DMC(o)
X ,∗, then A is strongly open if and only if A ∩DMC(o)

X ,[n] is open

in DMC(o)
X ,[n] for every n ≥ 1. Similarly, A is strongly closed if and only if A ∩DMC(o)

X ,[n] is closed in

DMC(o)
X ,[n] for every n ≥ 1.

We have shown in [6] that T (o)
s,X ,∗ is the finest natural topology. The strong topology is sequential,

compactly generated and T4 [6]. On the other hand, if |X | ≥ 2, the strong topology is not first-countable
anywhere [6]; hence, it is not metrizable.

Noisiness metric:

Define the noisiness metric on DMC(o)
X ,∗ as follows:

d(o)X ,∗(Ŵ, Ŵ ′) := d(o)X ,[n](Ŵ, Ŵ ′) where n ≥ 1 satisfies Ŵ, Ŵ ′ ∈ DMC(o)
X ,[n] .

d(o)X ,∗(Ŵ, Ŵ ′) is well-defined because d(o)X ,[n](Ŵ, Ŵ ′) does not depend on n ≥ 1 as long as Ŵ, Ŵ ′ ∈

DMC(o)
X ,[n]. We can also express d(o)X ,∗ as follows:

d(o)X ,∗(Ŵ, Ŵ ′) = sup
m≥1,

p∈∆[m]×X

|Pc(p, Ŵ)− Pc(p, Ŵ ′)|.

The metric topology on DMC(o)
X ,∗ that is induced by d(o)X ,∗ is called the noisiness topology on

DMC(o)
X ,∗, and it is denoted as T (o)

X ,∗. We have shown in [6] that T (o)
X ,∗ is a natural topology that is strictly

coarser than T (o)
s,X ,∗.
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Topologies from Blackwell measures:

The mapping Ŵ → MPŴ is a bijection from DMC(o)
X ,∗ toMP b f (X ). We call this mapping the

canonical bijection from DMC(o)
X ,∗ toMP b f (X ).

Since ∆X is a metric space, there are many standard ways to construct topologies onMP(X ).
If we choose any of these standard topologies on MP(X ) and then relativize it to the subspace
MP b f (X ), we can construct topologies on DMC(o)

X ,∗ through the canonical bijection.
In [6], we studied the weak-∗ and the total variation topologies. We showed that the weak-∗

topology is exactly the same as the noisiness topology.
The total-variation metric distance d(o)TV,X ,∗ on DMC(o)

X ,∗ is defined as:

d(o)TV,X ,∗(Ŵ, Ŵ ′) = ‖MPŴ −MPŴ ′‖TV .

The total-variation topology T (o)
TV,X ,∗ is the metric topology that is induced by d(o)TV,X ,∗ on DMC(o)

X ,∗.
We proved in [6] that if |X | ≥ 2, we have:

• T (o)
TV,X ,∗ is not natural, nor Baire, hence it is not completely metrizable.

• T (o)
TV,X ,∗ is not locally compact anywhere.

4. Channel Parameters and Operations

4.1. Useful Parameters

Let ∆X be the space of probability distributions on X . For every p ∈ ∆X and every W ∈ DMCX ,Y ,
define I(p, W) as the mutual information I(X; Y), where X is distributed as p and Y is the output of W
when X is the input. The mutual information is computed using the natural logarithm. The capacity of
W is defined as C(W) = sup

p∈∆X
I(p, W).

For every p ∈ ∆X , the error probability of the MAP decoder of W under prior p is defined as:

Pe(p, W) = 1− ∑
y∈Y

max
x∈X
{p(x)W(y|x)}.

Clearly, 0 ≤ Pe(p, W) ≤ 1.
For every W ∈ DMCX ,Y , define the Bhattacharyya parameter of W as:

Z(W) =


1

|X | · (|X | − 1) ∑
x1,x2∈X ,

x1 6=x2

∑
y∈Y

√
W(y|x1)W(y|x2), if |X | ≥ 2

0 if |X | = 1.

It is easy to see that 0 ≤ Z(W) ≤ 1.

It was shown in [10,11] that
1
4

Z(W)2 ≤ Pe(πX , W) ≤ (|X | − 1)Z(W), where πX is the uniform
distribution on X .

An (n, M)-code C on the alphabet X is a subset of X n such that |C| = M. The integer n is the
block length of C, and M is the size of the code. The rate of C is 1

n log M, and it is measured in nats.
The error probability of the ML decoder for the code C when it is used for a channel W ∈ DMCX ,Y is
given by:

Pe,C(W) = 1− 1
|C| ∑

yn
1∈Yn

max
xn

1∈C

{
n

∏
i=1

W(yi|xi)

}
.
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The optimal error probability of (n, M)-codes for a channel W is given by:

Pe,n,M(W) = min
C⊂X n ,
|C|=M

Pe,C(W).

The following proposition shows that all the above parameters are continuous:

Proposition 2. We have:

• I : ∆X ×DMCX ,Y → R+ is continuous, concave in p and convex in W.
• C : DMCX ,Y → R+ is continuous and convex.
• Pe : ∆X ×DMCX ,Y → [0, 1] is continuous, concave in p and concave in W.
• Z : DMCX ,Y → [0, 1] is continuous.
• For every code C on X , Pe,C : DMCX ,Y → [0, 1] is continuous.
• For every n > 0 and every 1 ≤ M ≤ |X |n, the mapping Pe,n,M : DMCX ,Y → [0, 1] is continuous.

Proof. These facts are well known, especially the continuity of I, its concavity in p and its convexity
in W [12]. Since C is the supremum of a family of mappings that are convex in W, it is also convex
in W. For a proof of the continuity of C, see Appendix G. The continuity of Z, Pe and Pe,C follows
immediately from their definitions. Moreover, since Pe,n,M is the minimum of a finite number of
continuous mappings, it is continuous. The concavity of Pe in p and in W can also be easily seen from
the definition.

4.2. Channel Operations

If W ∈ DMCX ,Y and V ∈ DMCY ,Z , we define the composition V ◦W ∈ DMCX ,Z of W and V
as follows:

(V ◦W)(z|x) = ∑
y∈Y

V(z|y)W(y|x). ∀x ∈ X , ∀z ∈ Z .

For every function f : X → Y , define the deterministic channel D f ∈ DMCX ,Y as follows:

D f (y|x) =
{

1 if y = f (x),

0 otherwise.

It is easy to see that if f : X → Y and g : Y → Z , then Dg ◦ D f = Dg◦ f .
For every two channels W1 ∈ DMCX1,Y1 and W2 ∈ DMCX2,Y2 , define the channel sum W1 ⊕W2 ∈

DMCX1 äX2,Y1 äY2 of W1 and W2 as:

(W1 ⊕W2)(y, i|x, j) =

{
Wi(y|x) if i = j,

0 otherwise.

W1 ⊕W2 arises when the transmitter has two channels W1 and W2 at its disposal, and it can use exactly
one of them at each channel use. It is an easy exercise to check that eC(W1⊕W2) = eC(W1) + eC(W2)

(remember that we compute the mutual information using the natural logarithm).
We define the channel product W1 ⊗W2 ∈ DMCX1×X2,Y1×Y2 of W1 and W2 as:

(W1 ⊗W2)(y1, y2|x1, x2) = W1(y1|x1)W2(y2|x2).

W1 ⊗W2 arises when the transmitter has two channels W1 and W2 at its disposal, and it uses both
of them at each channel use. It is an easy exercise to check that C(W1 ⊗W2) = C(W1) + C(W2),
or equivalently eC(W1⊗W2) = eC(W1) · eC(W2). Channel sums and products were first introduced by
Shannon in [13].
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For every W1 ∈ DMCX ,Y1 , W2 ∈ DMCX ,Y2 and every 0 ≤ α ≤ 1, we define the α-interpolation
[αW1, (1− α)W2] ∈ DMCX ,Y1 äY2 between W1 and W2 as:

[αW1, (1− α)W2](y, i
∣∣x) = {αW1(y|x) if i = 1,

(1− α)W2(y|x) if i = 2.

Channel interpolation arises when a channel behaves as W1 with probability α and as W2 with
probability 1− α. The transmitter has no control on which behavior the channel chooses, but on the
other hand, the receiver knows which one was chosen. Channel interpolations were used in [14] to
construct interpolations between polar codes and Reed–Muller codes.

Now, fix a binary operation ∗ on X . For every W ∈ DMCX ,Y , define W− ∈ DMCX ,Y2 and
W+ ∈ DMCX ,Y2×X as:

W−(y1, y2|u1) =
1
|X | ∑

u2∈X
W(y1|u1 ∗ u2)W(y2|u2),

and:
W+(y1, y2, u1|u2) =

1
|X |W(y1|u1 ∗ u2)W(y2|u2).

These operations generalize Arıkan’s polarization transformations [15].

Proposition 3. We have:

• The mapping (W, V)→ V ◦W from DMCX ,Y ×DMCY ,Z to DMCX ,Z is continuous.
• The mapping (W1, W2) → W1 ⊕W2 from DMCX1,Y1 ×DMCX2,Y2 to the space DMCX1 äX2,Y1 äY2

is continuous.
• The mapping (W1, W2)→W1 ⊗W2 from DMCX1,Y1 ×DMCX2,Y2 to DMCX1×X2,Y1×Y2 is continuous.
• The mapping (W1, W2, α) → [αW1, (1− α)W2] from DMCX ,Y1 ×DMCX ,Y2 ×[0, 1] to DMCX ,Y1 äY2

is continuous.
• For any binary operation ∗ on X , the mapping W →W− from DMCX ,Y to DMCX ,Y2 is continuous.
• For any binary operation ∗ on X , the mapping W →W+ from DMCX ,Y to DMCX ,Y2×X is continuous.

Proof. The continuity immediately follows from the definitions.

5. Continuity on DMC(o)
X ,Y

It is well known that the parameters defined in Section 4.1 depend only on the R(o)
X ,Y -equivalence

class of W. Therefore, we can define those parameters for any Ŵ ∈ DMC(o)
X ,Y through the transcendent

mapping (defined in Lemma 2). The following proposition shows that those parameters are continuous
on DMC(o)

X ,Y :

Proposition 4. We have:

• I : ∆X ×DMC(o)
X ,Y → R+ is continuous and concave in p.

• C : DMC(o)
X ,Y → R+ is continuous.

• Pe : ∆X ×DMC(o)
X ,Y → [0, 1] is continuous and concave in p.

• Z : DMC(o)
X ,Y → [0, 1] is continuous.

• For every code C on X , Pe,C : DMC(o)
X ,Y → [0, 1] is continuous.

• For every n > 0 and every 1 ≤ M ≤ |X |n, the mapping Pe,n,M : DMC(o)
X ,Y → [0, 1] is continuous.
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Proof. Since the corresponding parameters are continuous on DMCX ,Y (Proposition 2), Lemma 2

implies that they are continuous on DMC(o)
X ,Y . The only cases that need a special treatment are those of

I and Z. We will only prove the continuity of I since the proof of continuity of Z is similar.
Define the relation R on ∆X ×DMCX ,Y as:

(p1, W1)R(p2, W2) ⇔ p1 = p2 and W1R(o)
X ,YW2.

It is easy to see that I(p, W) depends only on the R-equivalence class of (p, W). Since I is
continuous on ∆X ×DMCX ,Y , Lemma 2 implies that the transcendent mapping of I is continuous
on (∆X × DMCX ,Y )/R. On the other hand, since ∆X is locally compact, Theorem 1 implies that

(∆X ×DMCX ,Y )/R can be identified with ∆X × (DMCX ,Y /R(o)
X ,Y ) = ∆X ×DMC(o)

X ,Y , and the two

spaces have the same topology. Therefore, I is continuous on ∆X ×DMC(o)
X ,Y .

With the exception of channel composition, all the channel operations that were defined in
Section 4.2 can also be “quotiented”. We just need to realize that the equivalence class of the resulting
channel depends only on the equivalence classes of the channels that were used in the operation.
Let us illustrate this in the case of channel sums:

Let W1, W ′1 ∈ DMCX1,Y1 and W2, W ′2 ∈ DMCX2,Y2 and assume that W1 is degraded from W ′1 and
W2 is degraded from W ′2. There exists V1 ∈ DMCY1,Y1 and V2 ∈ DMCY2,Y2 such that W1 = V1 ◦W ′1
and W2 = V2 ◦W ′2. It is easy to see that W1 ⊕W2 = (V1 ⊕V2) ◦ (W ′1 ⊕W ′2), which shows that W1 ⊕W2

is degraded from W ′1 ⊕W ′2. This was proven by Shannon in [16].
Therefore, if W1 is equivalent to W ′1 and W2 is equivalent to W ′2, then W1 ⊕W2 is equivalent

to W ′1 ⊕W ′2. This allows us to define the channel sum for every Ŵ1 ∈ DMC(o)
X1,Y1

and every

W2 ∈ DMC(o)
X2,Y2

as Ŵ1 ⊕W2 = W̃ ′1 ⊕W ′2 ∈ DMC(o)
X1 äX2,Y1 äY2

for any W ′1 ∈ Ŵ1 and any W ′2 ∈ W2,

where W̃ ′1 ⊕W ′2 is the R(o)
X1 äX2,Y1 äY2

-equivalence class of W ′1 ⊕W ′2.
With the exception of channel composition, we can “quotient” all the channel operations of

Section 4.2 in a similar fashion. Moreover, we can show that they are continuous:

Proposition 5. We have:

• The mapping (Ŵ1, W2)→ Ŵ1⊕W2 from DMC(o)
X1,Y1

×DMC(o)
X2,Y2

to DMC(o)
X1 äX2,Y1 äY2

is continuous.

• The mapping (Ŵ1, W2)→ Ŵ1 ⊗W2 from DMC(o)
X1,Y1

×DMC(o)
X2,Y2

to DMC(o)
X1×X2,Y1×Y2

is continuous.

• The mapping (Ŵ1, W2, α)→ [αŴ1, (1− α)W2] from DMC(o)
X ,Y1
×DMC(o)

X ,Y2
×[0, 1] to DMC(o)

X ,Y1 äY2
is continuous.

• For any binary operation ∗ on X , the mapping Ŵ → Ŵ− from DMC(o)
X ,Y to DMC(o)

X ,Y2 is continuous.

• For any binary operation ∗ on X , the mapping Ŵ → Ŵ+ from DMC(o)
X ,Y to DMC(o)

X ,Y2×X is continuous.

Proof. We only prove the continuity of the channel sum because the proof of continuity of the other
operations is similar.

Let Proj : DMCX1 äX2,Y1 äY2 → DMC(o)
X1 äX2,Y1 äY2

be the projection onto the R(o)
X1 äX2,Y1 äY2

-

equivalence classes. Define the mapping f : DMCX1,Y1 ×DMCX2,Y2 → DMC(o)
X1 äX2,Y1 äY2

as
f (W1, W2) = Proj(W1 ⊕W2). Clearly, f is continuous.

Now, define the equivalence relation R on DMCX1,Y1 ×DMCX2,Y2 as:

(W1, W2)R(W ′1, W ′2) ⇔ W1R(o)
X1,Y1

W ′1 and W2R(o)
X2,Y2

W ′2.

The discussion before the proposition shows that f (W1, W2) = Proj(W1 ⊕W2) depends only on
the R-equivalence class of (W1, W2). Lemma 2 now shows that the transcendent map of f defined on
(DMCX1,Y1 ×DMCX2,Y2)/R is continuous.
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Notice that (DMCX1,Y1 ×DMCX2,Y2)/R can be identified with DMC(o)
X1,Y1

×DMC(o)
X2,Y2

. Therefore,

we can define f on DMC(o)
X1,Y1

×DMC(o)
X2,Y2

through this identification. Moreover, since DMCX1,Y1 and

DMC(o)
X2,Y2

are locally compact and Hausdorff, Corollary 1 implies that the canonical bijection between

(DMCX1,Y1 ×DMCX2,Y2)/R and DMC(o)
X1,Y1

×DMC(o)
X2,Y2

is a homeomorphism.

Now, since the mapping f on DMC(o)
X1,Y1

×DMC(o)
X2,Y2

is just the channel sum, we conclude that the

mapping (Ŵ1, W2)→ Ŵ1 ⊕W2 from DMC(o)
X1,Y1

×DMC(o)
X2,Y2

to DMC(o)
X1 äX2,Y1 äY2

is continuous.

6. Continuity in the Strong Topology

The following lemma provides a way to check whether a mapping defined on (DMC(o)
X ,∗, T

(o)
s,X ,∗)

is continuous:

Lemma 6. Let (S,V) be an arbitrary topological space. A mapping f : DMC(o)
X ,∗ → S is continuous on

(DMC(o)
X ,∗, T

(o)
s,X ,∗) if and only if it is continuous on (DMC(o)

X ,[n], T
(o)
X ,[n]) for every n ≥ 1.

Proof.

f is continuous on (DMC(o)
X ,∗, T

(o)
s,X ,∗) ⇔ f−1(V) ∈ T (o)

s,X ,∗ ∀V ∈ V

⇔ f−1(V) ∩DMC(o)
X ,[n] ∈ T

(o)
X ,[n] ∀n ≥ 1, ∀V ∈ V

⇔ f is continuous on (DMC(o)
X ,[n], T

(o)
X ,[n]) ∀n ≥ 1.

Since the channel parameters I, C, Pe, Z, Pe,C and Pe,n,M are defined on DMC(o)
X ,[n] for every

n ≥ 1 (see Section 5), they are also defined on DMC(o)
X ,∗ =

⋃
n≥1

DMC(o)
X ,[n]. The following proposition

shows that those parameters are continuous in the strong topology:

Proposition 6. Let UX be the standard topology on ∆X . We have:

• I : ∆X ×DMC(o)
X ,∗ → R+ is continuous on (∆X ×DMC(o)

X ,∗,UX ⊗ T
(o)

s,X ,∗) and concave in p.

• C : DMC(o)
X ,∗ → R+ is continuous on (DMC(o)

X ,∗, T
(o)

s,X ,∗).

• Pe : ∆X ×DMC(o)
X ,∗ → [0, 1] is continuous on (∆X ×DMC(o)

X ,∗,UX ⊗ T
(o)

s,X ,∗) and concave in p.

• Z : DMC(o)
X ,∗ → [0, 1] is continuous on (DMC(o)

X ,∗, T
(o)

s,X ,∗).

• For every code C on X , Pe,C : DMC(o)
X ,∗ → [0, 1] is continuous on (DMC(o)

X ,∗, T
(o)

s,X ,∗).

• For every n > 0 and every 1 ≤ M ≤ |X |n, the mapping Pe,n,M : DMC(o)
X ,∗ → [0, 1] is continuous on

(DMC(o)
X ,∗, T

(o)
s,X ,∗).

Proof. The continuity of C, Z, Pe,C and Pe,n,M immediately follows from Proposition 4 and Lemma 6.
Since the proofs of the continuity of I and Z are similar, we only prove the continuity for I.

Due to the distributivity of the product with respect to disjoint unions, we have:

∆X ×DMCX ,∗ = ä
n≥1

(
∆X ×DMCX ,[n]

)
,
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and:

UX ⊗ Ts,X ,∗ =
⊕
n≥1

(
UX ⊗ TX ,[n]

)
.

Therefore, (∆X ×DMCX ,∗,UX ⊗ Ts,X ,∗) is the disjoint union of the spaces (∆X ×DMCX ,[n])n≥1.
Moreover, I is continuous on ∆X ×DMCX ,[n] for every n ≥ 1. We conclude that I is continuous on
(∆X ×DMCX ,∗,UX ⊗ Ts,X ,∗).

Define the relation R on ∆X ×DMCX ,∗ as follows: (p1, W1)R(p2, W2) if and only if p1 = p2 and

W1R(o)
X ,∗W2. Since I(p, W) depends only on the R-equivalence class of (p, W), Lemma 2 shows that

the transcendent map of I is a continuous mapping from
(
(∆X ×DMCX ,∗)/R, (UX ⊗ Ts,X ,∗)/R

)
to

R+. On the other hand, since ∆X is locally compact and Hausdorff, Theorem 1 implies that
(
(∆X ×

DMCX ,∗)/R, (UX ⊗Ts,X ,∗)/R
)

can be identified with
(
∆X × (DMCX ,∗ /R(o)

X ,∗),UX ⊗ (Ts,X ,∗/R(o)
X ,∗)

)
=

(∆X ×DMC(o)
X ,∗,UX ⊗ T

(o)
s,X ,∗). Therefore, I is continuous on (∆X ×DMC(o)

X ,∗,UX ⊗ T
(o)

s,X ,∗).

It is also possible to extend the definition of all the channel operations that were defined in
Section 5 to DMC(o)

X ,∗. Moreover, it is possible to show that many channel operations are continuous in
the strong topology:

Proposition 7. Assume that all equivalent channel spaces are endowed with the strong topology. We have:

• The mapping (Ŵ1, W2)→ Ŵ1 ⊕W2 from DMC(o)
X1,∗×DMC(o)

X2,Y2
to DMC(o)

X1 äX2,∗ is continuous.

• The mapping (Ŵ1, W2)→ Ŵ1 ⊗W2 from DMC(o)
X1,∗×DMC(o)

X2,Y2
to DMC(o)

X1×X2,∗ is continuous.

• The mapping (Ŵ1, W2, α) → [αŴ1, (1 − α)W2] from DMCX ,∗×DMC(o)
X ,Y2
×[0, 1] to DMC(o)

X ,∗
is continuous.

• For any binary operation ∗ on X , the mapping Ŵ → Ŵ− from DMC(o)
X ,∗ to DMC(o)

X ,∗ is continuous.

• For any binary operation ∗ on X , the mapping Ŵ → Ŵ+ from DMC(o)
X ,∗ to DMC(o)

X ,∗ is continuous.

Proof. We only prove the continuity of the channel interpolation because the proof of the continuity
of other operations is similar.

Let U be the standard topology on [0, 1]. Due to the distributivity of the product with respect to
disjoint unions, we have:

DMCX ,∗×DMCX ,Y2 ×[0, 1] = ä
n≥1

(DMCX ,[n]×DMCX ,Y2 ×[0, 1]),

and:
Ts,X ,∗ ⊗ TX ,Y2 ⊗U =

⊕
n≥1

(
TX ,[n] ⊗ TX ,Y2 ⊗U

)
.

Therefore, the space DMCX ,∗×DMCX ,Y2 ×[0, 1] is the topological disjoint union of the spaces
(DMCX ,[n]×DMCX ,Y2 ×[0, 1])n≥1.

For every n ≥ 1, let Projn be the projection onto the R(o)
X ,[n]äY2

-equivalence classes, and let in be

the canonical injection from DMC(o)
X ,[n]äY2

to DMC(o)
X ,∗.

Define the mapping f : DMCX ,∗×DMCX ,Y2 ×[0, 1]→ DMC(o)
X ,∗ as:

f (W1, W2, α) = in(Projn([αW1, (1− α)W2])) = [αŴ1, (1− α)W2],

where n is the unique integer satisfying W1 ∈ DMCX ,[n]. Ŵ1 and W2 are the R(o)
X ,[n] and

R(o)
X ,Y2

-equivalence classes of W1 and W2, respectively.
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Due to Proposition 3 and due to the continuity of Projn and in, the mapping f is
continuous on DMCX ,[n]×DMCX ,Y2 ×[0, 1] for every n ≥ 1. Therefore, f is continuous on
(DMCX ,∗×DMCX ,Y2 ×[0, 1], Ts,X ,∗ ⊗ TX ,Y2 ⊗U ).

Let R′ be the equivalence relation defined on DMCX ,∗×DMCX ,Y2 as follows: (W1, W2)R′(W ′1, W ′2)

if and only if W1R(o)
X ,∗W

′
1 and W2R(o)

X ,Y2
W ′2. Furthermore, define the equivalence relation R on

DMCX ,∗×DMCX ,Y2 ×[0, 1] as follows: (W1, W2, α)R(W ′1, W ′2, α′) if and only if (W1, W2)R′(W ′1, W ′2)
and α = α′.

Since f (W1, W2, α) depends only on the R-equivalence class of (W1, W2, α), Lemma 2 implies that
the transcendent mapping of f is continuous on (DMCX ,∗×DMCX ,Y2 ×[0, 1])/R.

Since [0, 1] is Hausdorff and locally compact, Theorem 1 implies that the canonical bijection
from (DMCX ,∗×DMCX ,Y2 ×[0, 1])/R to

(
(DMCX ,∗×DMCX ,Y2)/R′

)
× [0, 1]) is a homeomorphism.

On the other hand, since (DMCX ,∗, Ts,X ,∗) and DMC(o)
X ,Y2

= DMCX ,Y2 /R(o)
X ,Y2

are Hausdorff and

locally compact, Corollary 1 implies that the canonical bijection from DMC(o)
X ,∗×DMC(o)

X ,Y2
to

(DMCX ,∗×DMCX ,Y2)/R′ is a homeomorphism. We conclude that the channel interpolation is

continuous on (DMC(o)
X ,∗×DMC(o)

X ,Y2
×[0, 1], T (o)

s,X ,∗ ⊗ T
(o)
X ,Y ⊗U ).

Corollary 3. (DMC(o)
X ,∗, T

(o)
s,X ,∗) is strongly contractible to every point in DMC(o)

X ,∗.

Proof. Fix Ŵ0 ∈ DMC(o)
X ,∗. Define the mapping H : DMC(o)

X ,∗×[0, 1] → DMC(o)
X ,∗ as H(Ŵ, α) =

[αŴ0, (1− α)Ŵ]. H is continuous by Proposition 7. We also have H(Ŵ, 0) = Ŵ and H(Ŵ, 1) = Ŵ0 for
every Ŵ ∈ DMC(o)

X ,∗. Moreover, H(Ŵ0, α) = Ŵ0 for every 0 ≤ α ≤ 1. Therefore, (DMC(o)
X ,∗, T

(o)
s,X ,∗) is

strongly contractible to every point in DMC(o)
X ,∗.

The reader might be wondering why channel operations such as the channel sum were not
shown to be continuous on the whole space DMC(o)

X1,∗×DMC(o)
X2,∗ instead of the smaller space

DMC(o)
X1,∗×DMC(o)

X2,Y2
. The reason is because we cannot apply Corollary 1 to DMCX1,∗×DMCX2,∗

and DMC(o)
X1,∗×DMC(o)

X2,∗ since neither DMC(o)
X1,∗, nor DMC(o)

X2,∗ is locally compact (under the
strong topology).

One potential method to show the continuity of the channel sum on
(DMC(o)

X1,∗×DMC(o)
X2,∗, T

(o)
s,X1,∗ ⊗ T

(o)
s,X2,∗) is as follows: let R be the equivalence relation on

DMCX1,∗×DMCX2,∗ defined as (W1, W2)R(W ′1, W ′2) if and only if W1R(o)
X1,∗W

′
1 and W2R(o)

X2,∗W
′
2.

We can identify (DMCX1,∗×DMCX2,∗)/R with DMC(o)
X1,∗×DMC(o)

X2,∗ through the canonical bijection.
Using Lemma 2, it is easy to see that the mapping (Ŵ1, W2) → Ŵ1 ⊕W2 is continuous from(

DMC(o)
X1,∗×DMC(o)

X2,∗, (Ts,X1,∗ ⊗ Ts,X2,∗)/R
)

to (DMC(o)
X1 äX2,∗, T

(o)
s,X1 äX2,∗).

It was shown in [17] that the topology (Ts,X1,∗ ⊗ Ts,X2,∗)/R is homeomorphic to κ(T (o)
s,X1,∗ ⊗

T (o)
s,X2,∗) through the canonical bijection, where κ(T (o)

s,X1,∗ ⊗ T
(o)

s,X2,∗) is the coarsest topology that is both

compactly generated and finer than T (o)
s,X1,∗ ⊗ T

(o)
s,X2,∗. Therefore, the mapping (Ŵ1, W2) → Ŵ1 ⊕W2

is continuous on
(

DMC(o)
X1,∗×DMC(o)

X2,∗, κ(T (o)
s,X1,∗ ⊗ T

(o)
s,X2,∗)

)
. This means that if T (o)

s,X1,∗ ⊗ T
(o)

s,X2,∗ is

compactly generated, we will have T (o)
s,X1,∗ ⊗ T

(o)
s,X2,∗ = κ(T (o)

s,X1,∗ ⊗ T
(o)

s,X2,∗), and so, the channel sum will

be continuous on (DMC(o)
X1,∗×DMC(o)

X2,∗, T
(o)

s,X1,∗ ⊗ T
(o)

s,X2,∗). Note that although T (o)
s,X1,∗ and T (o)

s,X2,∗ are

compactly generated, their product T (o)
s,X1,∗ ⊗ T

(o)
s,X2,∗ might not be compactly generated.

7. Continuity in the Noisiness/Weak-∗ and the Total Variation Topologies

We need to express the channel parameters and operations in terms of the Blackwell measures.
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7.1. Channel Parameters

The following proposition shows that many channel parameters can be expressed as an integral
of a continuous function with respect to the Blackwell measure:

Proposition 8. For every Ŵ ∈ DMC(o)
X ,∗, we have:

∀p ∈ ∆X , I(p, Ŵ) = H(p)− |X | ·
∫

∆X

 ∑
x∈X

p(x)p′(x) log
p(x)p′(x)

∑
x′

p(x′)p′(x′)

 · dMPŴ(p′),

∀p ∈ ∆X , Pe(p, Ŵ) = 1− |X |
∫

∆X
max
x∈X

{
p(x)× p′(x)

}
· dMPŴ(p′),

if |X | ≥ 2, Z(Ŵ) =
1

|X | − 1 ∑
x,x′∈X ,

x 6=x′

∫
∆X

√
p(x)p(x′) · dMPŴ(p),

For every code C ⊂ X n, Pe,C(Ŵ) = 1− |X |
n

|C|

∫
∆n
X

max
xn

1∈C

{
n

∏
i=1

pi(xi)

}
dMPn

Ŵ(pn
1 ),

where H(p) is the entropy of p and MPn
Ŵ is the product measure on ∆n

X obtained by multiplying MPŴ with
itself n times. Note that we adopt the standard convention that 0 log 0

0 = 0.

Proof. By choosing any representative channel W ∈ Ŵ and replacing W(y|x) by |X |Po
W(y)W−1

y (x) in
the definitions of the channel parameters, all the above formulas immediately follow. Let us show how
this works for Pe:

Pe(p, Ŵ) = Pe(p, W)
(a)
= 1− ∑

y∈Im(W)

max
x∈X
{p(x)W(y|x)}

= 1− ∑
y∈Im(W)

max
x∈X

{
p(x) · |X | · Po

W(y)W−1
y (x)

}
= 1− |X | ∑

y∈Im(W)

max
x∈X
{p(x)W−1

y (x)} · Po
W(y)

= 1− |X |
∫

∆X
max
x∈X
{p(x)p′(x)} · dMPW(p′)

= 1− |X |
∫

∆X
max
x∈X
{p(x)p′(x)} · dMPŴ(p′),

where (a) is true because W(y|x) = 0 for y /∈ Im(W).

Proposition 9. Let UX be the standard topology on ∆X . We have:

• I : ∆X ×DMC(o)
X ,∗ → R+ is continuous on (∆X ×DMC(o)

X ,∗,UX ⊗ T
(o)
X ,∗) and concave in p.

• C : DMC(o)
X ,∗ → R+ is continuous on (DMC(o)

X ,∗, T
(o)
X ,∗).

• Pe : ∆X ×DMC(o)
X ,∗ → [0, 1] is continuous on (∆X ×DMC(o)

X ,∗,UX ⊗ T
(o)
X ,∗) and concave in p.

• Z : DMC(o)
X ,∗ → [0, 1] is continuous on (DMC(o)

X ,∗, T
(o)
X ,∗).

• For every code C on X , Pe,C : DMC(o)
X ,∗ → [0, 1] is continuous on (DMC(o)

X ,∗, T
(o)
X ,∗).

• For every n > 0 and every 1 ≤ M ≤ |X |n, the mapping Pe,n,M : DMC(o)
X ,∗ → [0, 1] is continuous

on (DMC(o)
X ,∗, T

(o)
X ,∗).
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Proof. We associate the spaceMP(X ) with the weak-∗ topology. Define the mapping:

I : ∆X ×MP(X )→ R+

as follows:

I(p, MP) = H(p)− |X | ·
∫

∆X

 ∑
x∈X

p(x)p′(x) log
p(x)p′(x)

∑
x′

p(x′)p′(x′)

 · dMP(p′),

Lemma 5 implies that I is continuous. On the other hand, Proposition 8 shows that I(p, Ŵ) =

I(p, MPŴ). Therefore, I is continuous on (∆X ×DMC(o)
X ,∗,UX ⊗ T

(o)
X ,∗). We can prove the continuity of

Pe and Z similarly.
Now, define the mapping C :MP(X )→ R as:

C(MP) = sup
p∈∆X

I(p, MP).

Fix MP ∈ MP(X ), and let ε > 0. Since MP(X ) is compact (under the weak-∗ topology),
Lemma 1 implies the existence of a weakly-∗ open neighborhood UMP of MP such that |I(p, MP)−
I(p, MP′)| < ε for every MP′ ∈ UMP and every p ∈ ∆X . Therefore, for every MP′ ∈ UMP and every
p ∈ ∆X , we have:

I(p, MP) < I(p, MP′) + ε ≤ C(MP′) + ε,

hence,
C(MP) = sup

p∈∆X
I(p, MP) ≤ C(MP′) + ε.

Similarly, we can show that C(MP′) ≤ C(MP) + ε. This shows that |C(MP′) − C(MP)| ≤ ε

for every MP′ ∈ UMP. Therefore, C is continuous. However, C(Ŵ) = C(MPŴ), so C is continuous

on (DMC(o)
X ,∗, T

(o)
X ,∗).

Now for every 0 ≤ i ≤ n, define the mapping fi : ∆i
X ×MP(X ) → R backward-recursively

as follows:

• fn(pn
1 , MP) = max

xn
1∈C

{
n

∏
i=1

pi(xi)

}
.

• For every 0 ≤ i < n, define:

fi(pi
1, MP) =

∫
∆X

fi+1(pi+1
1 , MP) · dMP(pi+1).

Clearly fn is continuous. Now, let 0 ≤ i < n, and assume that fi+1 is continuous. If we let
S = ∆i

X ×MP(X ), Lemma 5 implies that the mapping Fi : ∆i
X ×MP(X )×MP(X ) defined as:

Fi(pi
1, MP, MP′) =

∫
∆X

fi+1(pi+1
1 , MP) · dMP′(pi+1)

is continuous. However, fi(pi
1, MP) = Fi(pi

1, MP, MP), so fi is also continuous. Therefore, f0 is

continuous. By noticing that Pe,C(Ŵ) = 1− |X |
n

|C| f0(MPŴ), we conclude that Pe,C is continuous on

(DMC(o)
X ,∗, T

(o)
X ,∗). Moreover, since Pe,n,M is the minimum of a finite family of continuous mappings, it is

continuous.

It is worth mentioning that Proposition 6 can be shown from Proposition 9 because the noisiness
topology is coarser than the strong topology.
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Corollary 4. All the mappings in Proposition 9 are also continuous if we replace the noisiness topology T (o)
X ,∗

with the total variation topology T (o)
TV,X ,∗.

Proof. This is true because T (o)
TV,X ,∗ is finer than T (o)

X ,∗.

7.2. Channel Operations

In the following, we show that we can express the channel operations in terms of Blackwell
measures. We have all the tools to achieve this for the channel sum, channel product and channel
interpolation. In order to express the channel polarization transformations in terms of the Blackwell
measures, we need to introduce new definitions.

Let X be a finite set, and let ∗ be a binary operation on a finite set X . We say that ∗ is uniformity
preserving if the mapping (a, b) → (a ∗ b, b) is a bijection from X 2 to itself [18]. For every a, b ∈ X ,
we denote the unique element c ∈ X satisfying c ∗ b = a as c = a/∗b. Note that /∗ is a binary operation,
and it is uniformity preserving. /∗ is called the right-inverse of ∗. It was shown in [11] that a binary
operation is polarizing if and only if it is uniformity preserving and its inverse is strongly ergodic.

Binary operations that are not uniformity preserving are not interesting for polarization theory
because they do not preserve the symmetric capacity [11]. Therefore, we will only focus on polarization
transformations that are based on uniformity preserving operations.

Let ∗ be a fixed uniformity preserving operation on X . Define the mapping C−,∗ : ∆X × ∆X →
∆X as

(C−,∗(p1, p2))(u1) = ∑
u2∈X

p1(u1 ∗ u2)p2(u2).

The probability distribution C−,∗(p1, p2) can be interpreted as follows: let X1 and X2 be two
independent random variables in X that are distributed as p1 and p2, respectively, and let (U1, U2) be
the random pair in X 2 defined as (U1, U2) = (X1/∗X2, X2), or equivalently (X1, X2) = (U1 ∗U2, U2).
C−,∗(p1, p2) is the probability distribution of U1.

Clearly, C−,∗ is continuous. Therefore, the push-forward mapping C−,∗
# is continuous from

P(∆X × ∆X ) to P(∆X ) = MP(X ) under both the weak-∗ and the total variation topologies (see
Section 2.6). For every MP1, MP2 ∈ MP(X ), we define the (−, ∗)-convolution of MP1 and MP2 as:

(MP1, MP2)
−,∗ = C−,∗

# (MP1 ×MP2) ∈ MP(X ).

Since the product of meta-probability measures is continuous under both the weak-∗ and the
total variation topologies (Appendices B and F), the (−, ∗)-convolution is also continuous under
these topologies.

For every p1, p2 ∈ ∆X and every u1 ∈ supp(C−,∗(p1, p2)), define C+,u1,∗(p1, p2) ∈ ∆X as:

(C+,u1,∗(p1, p2))(u2) =
p1(u1 ∗ u2)p2(u2)

(C−,∗(p1, p2))(u1)
.

The probability distribution C+,u1,∗(p1, p2) can be interpreted as follows: if X1, X2, U1 and U2 are
as above, C+,u1,∗(p1, p2) is the conditional probability distribution of U2 given U1 = u1.

Define the mapping C+,∗ : ∆X × ∆X → P(∆X ) =MP(X ) as follows:

C+,∗(p1, p2) = ∑
u1∈supp(C−,∗(p1,p2))

(C−,∗(p1, p2))(u1) · δC+,u1,∗(p1,p2)
,

where δC+,u1,∗(p1,p2)
is a Dirac measure centered at C+,u1,∗(p1, p2).

If X1, X2, U1 and U2 are as above, C+,∗(p1, p2) is the meta-probability measure that describes the
possible conditional probability distributions of U2 that are seen by someone having knowledge of
U1. Clearly, C+,∗ is a random mapping from ∆X × ∆X to ∆X . In Appendix H, we show that C+,∗ is
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a measurable random mapping. We also show in Appendix H that C+,∗ is a continuous mapping from
∆X × ∆X toMP(X ) when the latter space is endowed with the weak-∗ topology. Lemmas 3 and 4
now imply that the push-forward mapping C+,∗

# is continuous under both the weak-∗ and the total
variation topologies.

For every MP1, MP2 ∈ MP(X ), we define the (+, ∗)-convolution of MP1 and MP2 as:

(MP1, MP2)
+,∗ = C+,∗

# (MP1 ×MP2) ∈ MP(X ).

Since the product of meta-probability measures is continuous under both the weak-∗ and the
total variation topologies (Appendices B and F), the (+, ∗)-convolution is also continuous under
these topologies.

Proposition 10. We have:

• For every Ŵ1 ∈ DMC(o)
X1,∗ and W2 ∈ DMC(o)

X2,∗, we have:

MPŴ1⊕W2
=

|X1|
|X1|+ |X2|

MP′Ŵ1
+

|X2|
|X1|+ |X2|

MP′W2
,

where MP′Ŵ1
(respectively MP′Ŵ2

) is the meta-push-forward of MPŴ1
(respectively MPŴ2

) by the canonical
injection from X1 (respectively X2) to X1 äX2.

• For every Ŵ1 ∈ DMC(o)
X1,∗ and W2 ∈ DMC(o)

X2,∗, we have:

MPŴ1⊗W2
= MPŴ1

⊗MPW2
.

• For every α ∈ [0, 1] and every Ŵ1, Ŵ2 ∈ DMC(o)
X ,∗, we have:

MP[αŴ1,(1−α)Ŵ2]
= αMPŴ1

+ (1− α)MPŴ2
.

• For every uniformity preserving binary operation ∗ on X , and every Ŵ ∈ DMC(o)
X ,∗, we have:

MPŴ− = (MPŴ , MPŴ)−,∗.

• For every uniformity preserving binary operation ∗ on X and every Ŵ ∈ DMC(o)
X ,∗, we have:

MPŴ+ = (MPŴ , MPŴ)+,∗.

Proof. See Appendix I.

Note that the polarization transformation formulas in Proposition 10 generalize the formulas
given by Raginsky in [19] for binary-input channels.

Proposition 11. Assume that all equivalent channel spaces are endowed with the noisiness/weak-∗ or the total
variation topology. We have:

• The mapping (Ŵ1, W2)→ Ŵ1 ⊕W2 from DMC(o)
X1,∗×DMC(o)

X2,∗ to DMC(o)
X1 äX2,∗ is continuous.

• The mapping (Ŵ1, W2)→ Ŵ1 ⊗W2 from DMC(o)
X1,∗×DMC(o)

X2,∗ to DMC(o)
X1×X2,∗ is continuous.

• The mapping (Ŵ1, W2, α) → [αŴ1, (1 − α)W2] from DMCX ,∗×DMC(o)
X ,∗×[0, 1] to DMC(o)

X ,∗
is continuous.

• For every uniformity preserving binary operation ∗ on X , the mapping Ŵ → Ŵ− from DMC(o)
X ,∗ to

DMC(o)
X ,∗ is continuous.
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• For every uniformity preserving binary operation ∗ on X , the mapping Ŵ → Ŵ+ from DMC(o)
X ,∗ to

DMC(o)
X ,∗ is continuous.

Proof. The proposition directly follows from Proposition 10 and the fact that all the meta-probability
measure operations that are involved in the formulas are continuous under both the weak-∗ and the
total variation topologies.

Corollary 5. Both (DMC(o)
X ,∗, T

(o)
X ,∗) and (DMC(o)

X ,∗, T
(o)

TV,X ,∗) are strongly contractible to every point

in DMC(o)
X ,∗.

Proof. We can use the same proof of Corollary 3.

8. Discussion and Conclusions

Sections 5 and 6 show that the quotient topology is relatively easy to work with. If one is
interested in the space of equivalent channels sharing the same input and output alphabets, then using
the quotient formulation of the topology seems to be the easiest way to prove theorems.

The continuity of the channel sum and the channel product on the whole product space
(DMC(o)

X1,∗×DMC(o)
X2,∗, T

(o)
s,X1,∗ ⊗ T

(o)
s,X2,∗) remains an open problem. As we mentioned in Section 6,

it is sufficient to prove that the product topology T (o)
s,X1,∗ ⊗ T

(o)
s,X2,∗ is compactly generated.
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Appendix A. Proof of Lemma 1

Fix ε > 0, and let (s, t) ∈ S× T. Since f is continuous, there exists a neighborhood Os,t of (s, t) in
S× T such that for every (s′, t′) ∈ Os,t, we have | f (s′, t′)− f (s, t)| < ε

2 . Moreover, since products of
open sets form a base for the product topology, there exists an open neighborhood Vs,t of s in (S,V)
and an open neighborhood Us,t of t in T such that Vs,t ×Us,t ⊂ Os,t.

Since (S,V) and (T,U ) are compact, the product space is also compact. On the other hand,
we have

⋃
(s,t)∈S×T

Vs,t ×Us,t = S × T, so {Vs,t ×Us,t}(s,t)∈S×T is an open cover of S × T. Therefore,

there exist s1, . . . , sn ∈ S and t1, . . . , tn ∈ T such that
n⋃

i=1

Vsi ,ti ×Usi ,ti = S× T.

Now, fix s ∈ S, and define Vs =
⋂

1≤i≤n,
s∈Vsi ,ti

Vsi ,ti . Since Vs is the intersection of finitely many open sets

containing s, Vs is an open neighborhood of s in (S,V). Let s′ ∈ Vs and t ∈ T. Since
n⋃

i=1

Vsi ,ti ×Usi ,ti =

S× T, there exists 1 ≤ i ≤ n such that (s, t) ∈ Vsi ,ti ×Usi ,ti ⊂ Osi ,ti . Since s ∈ Vsi ,ti , we have Vs ⊂ Vsi ,ti ,
and so, s′ ∈ Vsi ,ti . Therefore, (s′, t) ∈ Vsi ,ti ×Usi ,ti ⊂ Osi ,ti , hence:

| f (s′, t)− f (s, t)| ≤ | f (s′, t)− f (si, ti)|+ | f (si, ti)− f (s, t)| < ε

2
+

ε

2
= ε.
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However, this is true for every t ∈ T. Therefore,

sup
t∈T
| f (s′, t)− f (s, t)| ≤ ε.

Appendix B. Continuity of the Product of Measures

For every subset A of M1 × M2 and every x1 ∈ M1, define Ax1
2 = {x2 ∈ M2 : (x1, x2) ∈ A}.

Similarly, for every x2 ∈ M2, define Ax2
1 = {x1 ∈ M1 : (x1, x2) ∈ A}. Let P1, P′1 ∈ P(M1, Σ1) and

P2, P′2 ∈ P(M2, Σ2). We have:

‖P1 × P2−P′1 × P′2‖TV = sup
A∈Σ1⊗Σ2

|(P1 × P2)(A)− (P′1 × P′2)(A)|

≤ sup
A∈Σ1⊗Σ2

{∣∣(P1 × P2)(A)− (P′1 × P2)(A)
∣∣+ ∣∣(P′1 × P2)(A)− (P′1 × P′2)(A)

∣∣}
= sup

A∈Σ1⊗Σ2

{ ∣∣∣∣∫M2

P1(Ax2
1 ) · dP2(x2)−

∫
M2

P′1(Ax2
1 ) · dP2(x2)

∣∣∣∣
+

∣∣∣∣∫M1

P2(Ax1
2 ) · dP′1(x1)−

∫
M1

P′2(Ax1
2 ) · dP′1(x1)

∣∣∣∣
}

≤ sup
A∈Σ1⊗Σ2

{ ∫
M2

∣∣P1(Ax2
1 )− P′1(Ax2

1 )
∣∣ · dP2(x2) +

∫
M1

∣∣P2(Ax1
2 )− P′2(Ax1

2 )
∣∣ · dP′1(x1)

}

≤
∫

M2

(
sup

A1∈Σ1

∣∣P1(A1)− P′1(A1)
∣∣) dP2 +

∫
M1

(
sup

A2∈Σ2

∣∣P2(A2)− P′2(A2)
∣∣) dP′1

= ‖P1 − P′1‖TV + ‖P2 − P′2‖TV .

This shows that the product of measures is continuous under the total variation topology.

Appendix C. Proof of Proposition 1

Define the mapping G : M→ R+ ∪ {+∞} as follows:

G(x) =
∫

M′
g(y)d(R(x))(y).

For every n ≥ 0, define the mapping gn : M′ → R+ as follows:

gn(y) =
1
2n

⌊
2n ×min{n, g(y)}

⌋
.

Clearly, for every y ∈ M′ we have:

• gn(y) ≤ g(y) for all n ≥ 0.
• gn(y) ≤ gn+1(y) for all n ≥ 0.
• lim

n→∞
gn(y) = g(y).

Moreover, for every fixed n ≥ 0, we have:

• gn is Σ′-measurable.

• gn takes values in
{

i
2n : 0 ≤ i ≤ n2n

}
.

For every 0 ≤ i ≤ n2n, let Bi,n = {y ∈ M′ : gn(y) = i
2n }. Since gn is Σ′-measurable, we have

Bi,n ∈ Σ′ for every 0 ≤ i ≤ n2n. Now, for every n ≥ 0, define the mapping Gn : M → R ∪ {+∞}
as follows:
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Gn(x) =
∫

M′
gn(y)d(R(x))(y) =

∫
M′

(
n2n

∑
i=0

i
2n1Bi,n(y)

)
d(R(x))(y)

=
n2n

∑
i=0

i
2n (R(x))(Bi,n) =

n2n

∑
i=0

i
2n RBi,n(x).

Since the random mapping R is measurable and since Bi,n ∈ Σ′, the mapping RBi,n is Σ-measurable
for every 0 ≤ i ≤ n2n. Therefore, Gn is Σ-measurable for every n ≥ 0. Moreover, for every x ∈ Σ,
we have:

lim
n→∞

Gn(x) = lim
n→∞

∫
M′

gn(y)d(R(x))(y)
(a)
=
∫

M′
g(y)d(R(x))(y) = G(x),

where (a) follows from the monotone convergence theorem. We conclude that G is Σ-measurable
because it is the point-wise limit of Σ-measurable functions. On the other hand, we have:

∫
M′

gn · d(R#P) =
n2n

∑
i=0

i
2n (R#P)(Bi,n) =

n2n

∑
i=0

i
2n

∫
M

RBi,n(x) · dP(x)

=
n2n

∑
i=0

i
2n

∫
M
(R(x))(Bi,n) · dP(x) =

n2n

∑
i=0

i
2n

∫
M

(∫
M′
1Bi,n(y) · d(R(x))(y)

)
dP(x)

=
∫

M

(∫
M′

(
n2n

∑
i=0

i
2n1Bi,n(y)

)
d(R(x))(y)

)
dP(x)

=
∫

M

(∫
M′

gn(y)d(R(x))(y)
)

dP(x) =
∫

M
Gn · dP.

Therefore, ∫
M′

g · d(R#P)
(a)
= lim

n→∞

∫
M′

gn · d(R#P) = lim
n→∞

∫
M

Gn · dP
(b)
=
∫

M
G · dP,

where (a) and (b) follow from the monotone convergence theorem.

Appendix D. Continuity of the Push-Forward by a Random Mapping

Let R be a measurable random mapping from (M, Σ) to (M′, Σ′). Let P1, P2 ∈ P(M, Σ). Define the
signed measure µ = P1 − P2, and let {µ+, µ−} be the Jordan measure decomposition of µ. It is easy to
see that ‖P1 − P2‖TV = µ+(M) = µ−(M). For every B ∈ Σ′, we have:

(R#(P1))(B)− (R#(P2))(B) =
∫

M
RB · dP1 −

∫
M

RB · dP2 =
∫

M
RB · d(P1 − P2)

=
∫

M
RB · d(µ+ − µ−) ≤

∫
M

RB · dµ+ ≤ ‖RB‖∞ · µ+(M)

(a)
≤ µ+(M) = ‖P1 − P2‖TV ,

where (a) follows from the fact that |RB(x)| = |(R(x))(B)| ≤ 1 for every x ∈ M. We can similarly
show that:

(R#(P2))(B)− (R#(P1))(B) ≤ ‖RB‖∞ · µ−(M) ≤ ‖P1 − P2‖TV .
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Therefore,

‖R#(P1)− R#(P2)‖TV = sup
B∈Σ′
|(R#(P1))(B)− (R#(P2))(B)| ≤ ‖P1 − P2‖TV .

This shows that the push-forward mapping R# from P(M, Σ) to P(M′, Σ′) is continuous under
the total variation topology. This concludes the proof of Lemma 3.

Now, assume that U is a Polish topology on M and U ′ is an arbitrary topology on M′. Let R
be measurable random mapping from (M,B(M)) to (M′,B(M′)). Moreover, assume that R is
a continuous mapping from (M,U ) to P(M′,B(M′)) when the latter space is endowed with the
weak-∗ topology. Let (Pn)n≥0 be a sequence of probability measures in P(M,B(M)) that weakly-∗
converges to P ∈ P(M,B(M)).

Let g : M′ → R be a bounded and continuous mapping. Define the mapping G : M → R
as follows:

G(x) =
∫

M′
g(y) · d(R(x))(y).

For every sequence (xn)n≥0 converging to x in M, the sequence (R(xn))n≥0 weakly-∗ converges
to R(x) in P(M′,B(M′)) because of the continuity of R. This implies that the sequence (G(xn))n≥0

converges to G(x). Since U is a Polish topology (hence, metrizable and sequential [20]), this shows
that G is a bounded and continuous mapping from (M,U ) to R. Therefore, we have:

lim
n→∞

∫
M′

g · d(R#Pn)
(a)
= lim

n→∞

∫
M

G · dPn
(b)
=
∫

M
G · dP

(c)
=
∫

M′
g · d(R#P),

where (a) and (c) follow from Corollary 2, and (b) follows from the fact that (Pn)n≥0 weakly-∗
converges to P. This shows that (R#Pn)n≥0 weakly-∗ converges to R#P. Now, since U is Polish,
the weak-∗ topology on P(M,B(M)) is metrizable [21]; hence, it is sequential [20]. This shows
that the push-forward mapping R# from P(M,B(M)) to P(M′,B(M′)) is continuous under the
weak-∗ topology.

Appendix E. Proof of Lemma 5

For every s ∈ S, define the mapping fs : ∆X → R as fs(p) = f (s, p). Clearly fs is continuous for
every s ∈ S. Therefore, the mapping Fs :MP(X )→ R defined as:

Fs(MP) =
∫

∆X
fs · dMP

is continuous in the weak-∗ topology ofMP(X ).
Fix ε > 0, and let (s, MP) ∈ S×MP(X ). Since Fs is continuous, there exists a weakly-∗ open

neighborhood Us,MP of MP such that |Fs(MP′)− Fs(MP)| < ε

2
for every MP′ ∈ Us,MP. On the other

hand, Lemma 1 implies the existence of an open neighborhood Vs of s in (S,V) such that for every
s′ ∈ Vs, we have:

sup
p∈∆X

| f (s′, p)− f (s, p)| ≤ ε

2
.
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Clearly Vs ×Us,MP is an open neighborhood of (s, MP) in S×MP(X ). For every (s′, MP′) ∈
Vs ×Us,MP, we have:

|F(s′, MP′)− F(s, MP)| ≤ |F(s′, MP′)− F(s, MP′)|+ |F(s, MP′)− F(s, MP)|

=

∣∣∣∣∫∆X

(
f (s′, p)− f (s, p)

)
· dMP′(p)

∣∣∣∣+ |Fs(MP′)− Fs(MP)|

<

(∫
∆X
| f (s′, p)− f (s, p)| · dMP′(p)

)
+

ε

2

(a)
≤ ε

2
+

ε

2
= ε,

where (a) follows from the fact that MP′ is a meta-probability measure and | f (s′, p)− f (s′, p)| ≤ ε

2
for

every p ∈ ∆X . We conclude that F is continuous.

Appendix F. Weak-∗ Continuity of the Product of Meta-Probability Measures

Let (MP1,n)n≥0 and (MP2,n)n≥0 be two sequences that weakly-∗ converge to MP1 and MP2 in
MP(X1) andMP(X2), respectively. Let f : ∆X1 × ∆X2 → R be a continuous and bounded mapping.
Define the mapping F : ∆X1 ×MP(X2) as follows:

F(p1, MP′2) =
∫

∆X2

f (p1, p2)dMP′2(p2).

Fix ε > 0. Since f (p1, p2) is continuous, Lemma 5 implies that F is continuous. Therefore,
the mapping p1 → F(p1, MP2) is continuous on ∆X1 , which implies that it is also bounded because
∆X1 is compact. Therefore,

lim
n→∞

∫
∆X1

F(p1, MP2)dMP1,n(p1) =
∫

∆X1

F(p1, MP2)dMP1(p1)

because (MP1,n)n≥0 weakly-∗ converges to MP1. This means that there exists n1 ≥ 0 such that for
every n ≥ n1, we have:∣∣∣∣∣

∫
∆X1

F(p1, MP2)dMP1,n(p1)−
∫

∆X1

F(p1, MP2)dMP1(p1)

∣∣∣∣∣ < ε

2
.

On the other hand, since F is continuous and since MP(X2) is compact under the weak-∗
topology [21], Lemma 1 implies the existence of a weakly-∗ open neighborhood UMP2 of MP2 such that

|F(p1, MP′2)− F(p1, MP2)| ≤
ε

2
for every MP′2 ∈ UMP2 and every p1 ∈ ∆X1 . Moreover, since MP2,n

weakly-∗ converges to MP2, there exists n2 ≥ 0 such that MP2,n ∈ UMP2 for every n ≥ n2.
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Therefore, for every n ≥ max{n1, n2}, we have:∣∣∣∣∣
∫

∆X1

(∫
∆X2

f (p1, p2)dMP2,n(p2)

)
dMP1,n(p1)−

∫
∆X1

(∫
∆X2

f (p1, p2)dMP2(p2)

)
dMP1(p1)

∣∣∣∣∣
≤
∣∣∣∣∣
∫

∆X1

(∫
∆X2

f (p1, p2)dMP2,n(p2)

)
dMP1,n(p1)−

∫
∆X1

(∫
∆X2

f (p1, p2)dMP2(p2)

)
dMP1,n(p1)

∣∣∣∣∣
+

∣∣∣∣∣
∫

∆X1

(∫
∆X2

f (p1, p2)dMP2(p2)

)
dMP1,n(p1)−

∫
∆X1

(∫
∆X2

f (p1, p2)dMP2(p2)

)
dMP1(p1)

∣∣∣∣∣
=

∣∣∣∣∣
∫

∆X1

(F(p1, MP2,n)− F(p1, MP2)) dMP1,n(p1)

∣∣∣∣∣
+

∣∣∣∣∣
∫

∆X1

F(p1, MP2)dMP1,n(p1)−
∫

∆X1

F(p1, MP2)dMP1(p1)

∣∣∣∣∣
<
∫

∆X1

|F(p1, MP2,n)− F(p1, MP2)| dMP1,n(p1) +
ε

2

(a)
≤
∫

∆X1

ε

2
· dMP1,n(p1) +

ε

2
= ε,

where (a) follows from the fact MP2,n ∈ UMP2 for every n ≥ n2. Therefore,

lim
n→∞

∫
∆X1
×∆X2

f · d(MP1,n ×MP2,n)
(a)
= lim

n→∞

∫
∆X1

(∫
∆X2

f (p1, p2)dMP2,n(p2)

)
dMP1,n(p1)

=
∫

∆X1

(∫
∆X2

f (p1, p2)dMP2(p2)

)
dMP1(p1)

(b)
=
∫

∆X1
×∆X2

f · d(MP1 ×MP2),

where (a) and (b) follow from Fubini’s theorem. We conclude that (MP1,n × MP2,n)n≥0

weakly-∗ converges to (MP1 ×MP2)n≥0. Therefore, the product of meta-probability measures is
weakly-∗ continuous.

Appendix G. Continuity of the Capacity

Since the mapping I is continuous and since the space ∆X ×DMCX ,Y is compact, the mapping I is
uniformly continuous, i.e., for every ε > 0, there exists δ(ε) > 0 such that for every (p1, W1), (p2, W2) ∈
∆X ×DMCX ,Y , if ‖p1 − p2‖1 := ∑

x∈X
|p1(x)− p2(x)| < δ(ε) and dX ,Y (W1, W2) < δ(ε), then

|I(p1, W1)− I(p2, W2)| < ε.

Let W1, W2 ∈ DMCX ,Y be such that dX ,Y (W1, W2) < δ(ε). For every p ∈ ∆X , we have ‖p− p‖1 =

0 < δ(ε), so we must have |I(p, W1)− I(p, W2)| < ε. Therefore,

I(p, W1) < I(p, W2) + ε ≤ sup
p′∈∆X

I(p′, W2) + ε = C(W2) + ε.

Therefore,

C(W1) = sup
p∈∆X

I(p, W1) ≤ C(W2) + ε.

Similarly, we can show that C(W2) ≤ C(W1)+ ε. This implies that |C(W1)−C(W2)| ≤ ε; hence, C
is continuous.



Entropy 2018, 20, 330 28 of 33

Appendix H. Measurability and Continuity of C+,∗

Let us first show that the random mapping C+,∗ is measurable. We need to show that the mapping
C+,∗

B : ∆X × ∆X → R is measurable for every B ∈ B(∆X ), where:

C+,∗
B (p1, p2) = (C+,∗(p1, p2))(B), ∀p1, p2 ∈ ∆X .

For every u1 ∈ X , define the set:

Au1 = {(p1, p2) ∈ ∆X × ∆X : (C−,∗(p1, p2))(u1) > 0}.

Clearly, Au1 is open in ∆X × ∆X (and so it is measurable). The mapping C+,u1,∗ is defined on Au1 ,
and it is clearly continuous. Therefore, for every B ∈ B(∆X ), (C+,u1,∗)−1(B) is measurable. We have:

C+,∗
B (p1, p2) = (C+,∗(p1, p2))(B) = ∑

u1∈supp(C−,∗(p1,p2)),
C+,u1,∗(p1,p2)∈B

(C−,∗(p1, p2))(u1)

= ∑
u1∈X ,

(p1,p2)∈Au1 ,
C+,u1,∗(p1,p2)∈B

(C−,∗(p1, p2))(u1)
(a)
= ∑

u1∈X
(C−,∗(p1, p2))(u1) · 1(C+,u1,∗)−1(B)(p1, p2),

where (a) follows from the fact that (p1, p2) ∈ (C+,u1,∗)−1(B) if and only if (p1, p2) ∈ Au1 and
C+,u1,∗(p1, p2) ∈ B. This shows that C+,∗

B is measurable for every B ∈ B(∆X ). Therefore, C+,∗ is
a measurable random mapping.

Let (p1,n, p2,n)n≥0 be a converging sequence to (p1, p2) in ∆X × ∆X . Since C−,∗ is continuous,
we have lim

n→∞
(C−,∗(p1,n, p2,n))(u1) = (C−,∗(p1, p2))(u1) for every u1 ∈ X . Therefore, for every

u1 ∈ supp(C−,∗(p1, p2)), there exists nu1 ≥ 0 such that for every n ≥ nu1 , we have C−,∗(p1,n, p2,n) > 0.
Let n0 = max{nu1 : u1 ∈ supp(C−,∗(p1, p2))}. For every n ≥ n0, we have supp(C−,∗(p1, p2)) ⊂
supp(C−,∗(p1,n, p2,n)). Therefore, for every continuous and bounded mapping g : ∆X → R, we have:

lim
n→∞

∫
∆X

g · d(C+,∗(p1,n, p2,n)) = lim
n→∞ ∑

u1∈supp(C−,∗(p1,n ,p2,n))

g(C+,u1,∗(p1,n, p2,n)) · (C−,∗(p1,n, p2,n))(u1)

(a)
= lim

n→∞ ∑
u1∈supp(C−,∗(p1,p2))

g(C+,u1,∗(p1,n, p2,n)) · (C−,∗(p1,n, p2,n))(u1)

(b)
= ∑

u1∈supp(C−,∗(p1,p2))

g(C+,u1,∗(p1, p2)) · (C−,∗(p1, p2))(u1)

=
∫

∆X
g · d(C+,∗(p1, p2)),

where (b) follows from the continuity of g and C−,∗ and the continuity of C+,u1,∗ on Au1 for every
u1 ∈ X . (a) follows from the fact that:
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lim
n→∞ ∑

u1∈supp(C−,∗(p1,n ,p2,n)),
u1 /∈supp(C−,∗(p1,p2))

∣∣g(C+,u1,∗(p1,n, p2,n)) · (C−,∗(p1,n, p2,n))(u1)
∣∣

≤ ‖g‖∞ lim
n→∞ ∑

u1∈supp(C−,∗(p1,n ,p2,n)),
u1 /∈supp(C−,∗(p1,p2))

(C−,∗(p1,n, p2,n))(u1)

= ‖g‖∞ lim
n→∞

1− ∑
u1∈supp(C−,∗(p1,p2))

(C−,∗(p1,n, p2,n))(u1)


= ‖g‖∞

1− ∑
u1∈supp(C−,∗(p1,p2))

(C−,∗(p1, p2))(u1)

 = 0.

We conclude that the mapping C+,∗ is a continuous mapping from ∆X × ∆X toMP(X ) when
the latter space is endowed with the weak-∗ topology.

Appendix I. Proof of Proposition 10

Let Ŵ1 ∈ DMC(o)
X1,∗ and W2 ∈ DMC(o)

X2,∗. Fix W1 ∈ Ŵ1 and W2 ∈ W2, and let Y1 and Y2 be
the output alphabets of W1 and W2, respectively. We may assume without loss of generality that
Im(W1) = Y1 and Im(W2) = Y2.

Let y ∈ Y1. We have:

Po
W1⊕W2

(y) =
1

|X1 äX2| ∑
x∈X1 äX2

(W1 ⊕W2)(y|x)

=
1

|X1|+ |X2| ∑
x∈X1

W1(y|x) =
|X1|

|X1|+ |X2|
Po

W1
(y) > 0.

For every x ∈ X1, we have:

(W1 ⊕W2)
−1
y (x) =

(W1 ⊕W2)(y|x)
(|X1|+ |X2|)Po

W1
(y)

=
W1(y|x)
|X1|Po

W1
(y)

= (W1)
−1
y (x).

On the other hand, for every x ∈ X2, we have:

(W1 ⊕W2)
−1
y (x) =

(W1 ⊕W2)(y|x)
(|X1|+ |X2|)Po

W1
(y)

= 0.

Therefore, (W1 ⊕W2)
−1
y = φ1#(W1)

−1
y , where φ1 is the canonical injection from X1 to X1 äX2.

Similarly, for every y ∈ Y2, we have Po
W1⊕W2

(y) =
|X2|

|X1|+ |X2|
Po

W1
(y) > 0 and (W1 ⊕W2)

−1
y =

φ2#(W2)
−1
y , where φ2 is the canonical injection fromX2 toX1 äX2. For every B ∈ B(∆X1 äX2), we have:
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MPW1⊕W2(B) = ∑
y∈Y1 äY2,

(W1⊕W2)
−1
y ∈B

Po
W1⊕W2

(y)

=

(
∑

y∈Y1,
φ1#(W1)

−1
y ∈B

|X1|
|X1|+ |X2|

Po
W1

(y)

)
+

(
∑

y∈Y2,
φ2#(W2)

−1
y ∈B

|X2|
|X1|+ |X2|

Po
W2

(y)

)

=
|X1|

|X1|+ |X2|
MPW1

(
(φ1#)

−1(B)
)
+

|X2|
|X1|+ |X2|

MPW2

(
(φ2#)

−1(B)
)

=
|X1|

|X1|+ |X2|
(φ1##MPW1)(B) +

|X2|
|X1|+ |X2|

(φ2##MPW2)(B).

Therefore,

MPŴ1⊕W2
=

|X1|
|X1|+ |X2|

φ1##MPŴ1
+

|X2|
|X1|+ |X2|

φ2##MPW2
.

This shows the first formula of Proposition 10.
For every y = (y1, y2) ∈ Y1 ×Y2, we have:

Po
W1⊗W2

(y) = ∑
(x1,x2)∈X1×X2

1
|X1 ×X2|

(W1 ⊗W2)(y1, y2|x1, x2)

= ∑
x1∈X2,
x2∈X2

W1(y1|x1)

|X1|
· W2(y2|x2)

|X2|
= Po

W1
(y1)Po

W2
(y2) > 0.

For every x = (x1, x2) ∈ X1 ×X2, we have:

(W1 ⊗W2)
−1
y (x) =

(W1 ⊗W2)(y|x)
|X1 ×X2|Po

W1⊗W2
(y)

=
W1(y1|x1)

|X1|Po
W1

(y1)
· W2(y2|x2)

|X2|Po
W2

(y2)

= (W1)
−1
y1

(x1) · (W2)
−1
y2

(x2) =
(
(W1)

−1
y1
× (W2)

−1
y2

)
(x).

For every B ∈ B(∆X1×X2), we have:

MPW1⊗W2(B) = ∑
y∈Y1×Y2,

(W1⊗W2)
−1
y ∈B

Po
W1⊗W2

(y) = ∑
y∈Y1×Y2,

(W1)
−1
y1
×(W2)

−1
y2
∈B

Po
W1

(y1)Po
W2

(y2)

= ∑
y∈Y1×Y2,

Mul
(
(W1)

−1
y1

,(W2)
−1
y2

)
∈B

Po
W1

(y1)Po
W2

(y2) = (MPW1 ×MPW2)(Mul−1(B))

=
(
Mul#(MPW1 ×MPW2)

)
(B) = (MPW1 ⊗MPW2)(B).

Therefore,
MPŴ1⊗W2

= MPŴ1
⊗MPW2

.

This shows the second formula of Proposition 10.
Now, let α ∈ [0, 1] and Ŵ1, Ŵ2 ∈ DMC(o)

X ,∗. Fix W1 ∈ Ŵ1 and W2 ∈ Ŵ2, and let Y1 and Y2

be the output alphabets of W1 and W2, respectively. We may assume without loss of generality
that Im(W1) = Y1 and Im(W2) = Y2. Let W = [αW1, (1− α)W2]. If α = 0, then W is equivalent
to W2 and MPW = MPW2 = α MPW1 +(1 − α)MPW2 . If α = 1, then W is equivalent to W1 and
MPW = MPW1 = α MPW1 +(1− α)MPW2 .
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Assume now that 0 < α < 1. For every y ∈ Y1, we have:

Po
W(y) =

1
|X | ∑

x∈X
W(y|x) = 1

|X | ∑
x∈X

α ·W1(y|x) = αPo
W1

(y) > 0.

For every x ∈ X , we have:

W−1
y (x) =

W(y|x)
|X |Po

W(y)
=

αW1(y|x)
|X |αPo

W1
(y)

= (W1)
−1
y (x).

Similarly, for every y ∈ Y2, we have Po
W(y) = (1− α)Po

W2
(y) > 0 and W−1

y = (W2)
−1
y . Therefore,

MPW = ∑
y∈Y1 äY2

Po
W(y) · δW−1

y
=

(
∑

y∈Y1

αPo
W1

(y) · δ(W1)
−1
y

)
+

(
∑

y∈Y2

(1− α)Po
W2

(y) · δ(W2)
−1
y

)
= αMPW1 + (1− α)MPW2 .

Therefore,
MP[αŴ1,(1−α)Ŵ2]

= αMPŴ1
+ (1− α)MPŴ2

.

This shows the third formula of Proposition 10.
Now, let Ŵ ∈ DMC(o)

X ,∗, and let ∗ be a uniformity preserving binary operation on X . Fix W ∈ Ŵ,
and let Y be the output alphabet of W. We may assume without loss of generality that Im(W) = Y .

Let U1, U2 be two independent random variables uniformly distributed in X . Let X1 = U1 ∗U2

and X2 = U2. Send X1 and X2 through two independent copies of W, and let Y1 and Y2 be the
output, respectively.

For every (y1, y2) ∈ Y2, we have:

Po
W−(y1, y2) = PY1,Y2(y1, y2) = PY1(y1)PY2(y2) = Po

W(y1)Po
W(y2) > 0.

For every u1 ∈ X , we have:

(W−)−1
y1,y2

(u1) = PU1|Y1,Y2
(u1|y1, y2) = ∑

u2∈X2

PU1,U2|Y1,Y2
(u1, u2|y1, y2)

= ∑
u2∈X2

PX1,X2|Y1,Y2
(u1 ∗ u2, u2|y1, y2) = ∑

u2∈X2

PX1|Y1
(u1 ∗ u2|y1)PX2|Y2

(u2|y2)

= ∑
u2∈X2

W−1
y1

(u1 ∗ u2)W−1
y2

(u2) =
(
C−,∗(W−1

y1
, W−1

y2
)
)
(u1).

For every B ∈ B(∆X ), we have:

MPW−(B) = ∑
y∈Y2,

(W−)−1
y ∈B

Po
W−(y) = ∑

(y1,y2)∈Y2,
C−,∗(W−1

y1
,W−1

y2
)∈B

Po
W1

(y1)Po
W2

(y2)

= (MPW ×MPW)
(
(C−,∗)−1(B)

)
=
(
C−,∗

# (MPW ×MPW)
)
(B) = (MPW , MPW)−,∗(B).

Therefore,
MPŴ− = (MPŴ , MPŴ)−,∗.

This shows the forth formula of Proposition 10.
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For every (y1, y2, u1) ∈ Y2 ×X , we have:

Po
W+(y1, y2, u1) = PY1,Y2,U1(y1, y2, y1) = PY1,Y2(y1, y2)PU1|Y1,Y2

(u1|y1, y2)

= Po
W(y1)Po

W(y2) ·
(
C−,∗(W−1

y1
, W−1

y2
)
)
(u1).

Therefore,
Im(W+) =

⋃
(y1,y2)∈Y2

{(y1, y2)} × supp(C−,∗(W−1
y1

, W−1
y2

)).

For every (y1, y2, u1) ∈ Im(W+), we have:

(W+)−1
y1,y2,u1

(u2) = PU2|Y1,Y2,U1
(u2|y1, y2, u1) =

PU1,U2|Y1,Y2
(u1, u2|y1, y2)

PU1|Y1,Y2
(u1|y1, y2)

=
PX1|Y1

(u1 ∗ u2|y1)PX2|Y2
(u2|y2)(

C−,∗(W−1
y1 , W−1

y2 )
)
(u1)

=
W−1

y1
(u1 ∗ u2)W−1

y2
(u2)(

C−,∗(W−1
y1 , W−1

y2 )
)
(u1)

=
(
C+,u1,∗(W−1

y1
, W−1

y2
)
)
(u2).

For every B ∈ B(∆X ), we have:

MPW+(B) = ∑
(y1,y2)∈Y2

∑
u1∈supp(C−,∗(W−1

y1
,W−1

y2
),

C+,u1,∗(W−1
y1

,W−1
y2

)∈B

Po
W(y1)Po

W(y2) ·
(
C−,∗(W−1

y1
, W−1

y2
)
)
(u1)

= ∑
(y1,y2)∈Y2

Po
W(y1)Po

W(y2) ∑
u1∈supp(C−,∗(W−1

y1
,W−1

y2
),

C+,u1,∗(W−1
y1

,W−1
y2

)∈B

(
C−,∗(W−1

y1
, W−1

y2
)
)
(u1)

= ∑
(y1,y2)∈Y2

Po
W(y1)Po

W(y2)
(
C+,∗(W−1

y1
, W−1

y2
)
)
(B)

= ∑
(y1,y2)∈Y2

Po
W(y1)Po

W(y2)(C
+,∗
B (W−1

y1
, W−1

y2
)

=
∫

∆X×∆X
C+,∗

B (p1, p2) · d(MPW ×MPW)(p1, p2)

=
(
C+,∗

# (MPW ×MPW)
)
(B) = (MPW , MPW)+,∗(B).

Therefore,
MPŴ+ = (MPŴ , MPŴ)+,∗.

This shows the fifth and last formula of Proposition 10.
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10. Şaşoğlu, E.; Telatar, E.; Arıkan, E. Polarization for Arbitrary Discrete Memoryless Channels. In Proceedings
of the IEEE Information Theory Workshop, Taormina, Italy, 11–16 October 2009; pp. 144–148.

11. Nasser, R. An Ergodic Theory of Binary Operations, Part II: Applications to Polarization. IEEE Trans.
Inf. Theory 2017, 63, 1063–1083. [CrossRef]

12. Cover, T.; Thomas, J. Elements of Information Theory, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006.
13. Shannon, C. The zero error capacity of a noisy channel. IRE Trans. Inf. Theory 1956, 2, 8–19. [CrossRef]
14. Mondelli, M.; Hassani, S.H.; Urbanke, R.L. From Polar to Reed-Muller Codes: A Technique to Improve the

Finite-Length Performance. IEEE Trans. Inf. Theory 2014, 62, 3084–3091.
15. Arıkan, E. Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric

Binary-Input Memoryless Channels. IEEE Trans. Inf. Theory 2009, 55, 3051–3073. [CrossRef]
16. Shannon, C. A Note on a Partial Ordering for Communication Channels. Inform. Contr. 1958, 1, 390–397.

[CrossRef]
17. Steenrod, N.E. A convenient category of topological spaces. Michigan Math. J. 1967, 14, 133–152. [CrossRef]
18. Nasser, R. An Ergodic Theory of Binary Operations, Part I: Key Properties. IEEE Trans. Inf. Theory 2016,

62, 6931–6952. [CrossRef]
19. Raginsky, M. Channel Polarization and Blackwell Measures. In Proceedings of the IEEE International

Symposium on Information Theory (ISIT), Barcelona, Spain, 10–15 July 2016; pp. 56–60.
20. Franklin, S. Spaces in which sequences suffice. Fundam. Math. 1965, 57, 107–115. [CrossRef]
21. Villani, C. Topics in Optimal Transportation; Graduate studies in mathematics, American Mathematical

Society: Madison, WI, USA, 2003.

c© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIT.2016.2548470
http://dx.doi.org/10.1109/TIT.2016.2617958
http://dx.doi.org/10.1109/TIT.1956.1056798
http://dx.doi.org/10.1109/TIT.2009.2021379
http://dx.doi.org/10.1016/S0019-9958(58)90239-0
http://dx.doi.org/10.1307/mmj/1028999711
http://dx.doi.org/10.1109/TIT.2016.2616642
http://dx.doi.org/10.4064/fm-57-1-107-115
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Set-Theoretic Notations
	Topological Notations
	Quotient Topology
	Measure-Theoretic Notations
	Random Mappings
	Meta-Probability Measures

	The Space of Equivalent Channels
	Space of Channels from X to Y
	Equivalence between Channels
	Space of Equivalent Channels from X to Y
	Space of Equivalent Channels with Input Alphabet X

	Channel Parameters and Operations 
	Useful Parameters
	Channel Operations

	Continuity on `3́9`42`"̇613A``45`47`"603ADMCX,Y(o)
	Continuity in the Strong Topology
	Continuity in the Noisiness/Weak- and the Total Variation Topologies
	Channel Parameters
	Channel Operations

	Discussion and Conclusions
	Proof of Lemma 1
	Continuity of the Product of Measures
	Proof of Proposition 1
	Continuity of the Push-Forward by a Random Mapping
	Proof of Lemma 5
	Weak- Continuity of the Product of Meta-Probability Measures
	Continuity of the Capacity
	Measurability and Continuity of C+,
	Proof of Proposition 10
	References

