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I. INTRODUCTION

The potential phenomenological applications of scale
(SI) and conformal invariance (CI) in particle physics [1,2]
and cosmology [3–5] have been pointed out long ago.
In the past years there has been a resurgence of interest in
this direction, see for example [6–32].
Both of these symmetries, apart from forbidding the

presence of dimensionful parameters in the action, also
constrain heavily the observables (correlation functions)
of a theory.1 Usually, in unitary theories with symmetry-
preserving vacuum no distinction is made between SI and
CI, since the presence of the former implies the latter (in flat
spacetime) [33–36].
Note that in interacting scale and conformal field

theories (CFTs) with symmetric vacuum there is no particle
interpretation. As a result, a crucial ingredient when it
comes to utilizing SI or CI for constructing theories that
stand a chance of being phenomenologically viable, is to
require that they be spontaneously broken. Now, contrary to
what happens when the invariance under dilatations is
linearly realized, SI need not imply CI [34]. In this case the
ground state is degenerate, as it contains a nontrivial flat
direction which is parametrized by the massless dilaton.
This in turn forces the cosmological constant to be zero
and at the same time enables the theory to accommodate
massive excitations.
To the best of our knowledge, there has not been an

attempt to study generic theories exhibiting spontaneously

broken SI or CI without a known explicit Lagrangian
formulation. In this paper, we will provide a set of
conditions that should be fulfilled by theories with exact,
but spontaneously broken CI. More specifically, we will
derive relations on the CFT data ¼ foperator dimensions;
operator product expansionðOPEÞ coefficientsg in the bro-
ken phase, which are universal and independent of the
specifics of a system. It should be noted that to study
CFTs as a whole and not case by case, we will not rely on
a particular microscopic description; rather we will be
working solely with the OPE and correlators.

II. OPE AND SPONTANEOUS BREAKING
OF CONFORMAL SYMMETRY

Let us start by assuming that the conformal symmetry
is spontaneously broken at a certain mass scale v—the
vacuum expectation value (vev) of the order parameter.
As we already mentioned, this is an important require-
ment if we wish for CI to be a guiding principle for
building realistic theories. We are going to illustrate
that by employing the OPE, it is possible to infer many
general properties of any unitary system that possesses a
flat direction along which the conformal symmetry is
spontaneously broken. More specifically, we will estab-
lish a set of consistency conditions that need to be
satisfied.
Our starting point is the OPE of two scalar primary

operators, which reads2;

OiðxÞ ×Ojð0Þ ∼
X
k

cijk
jxjΔijk

Ok þ � � � : ð2:1Þ

Here cijk are the OPE coefficients, jxj ¼ ffiffiffiffiffiffiffiffiffi
xμxμ

p
, Ol ≡

Olð0Þ, Δijk ≡ Δi þ Δj − Δk, with Δl the dimensions, and
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1Obviously, conformal symmetry is more restrictive than scale
symmetry.

2It should be noted that, in principle, a theory might contain
more than one operator with the same scaling dimension.
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the ellipses stand for operators with nonzero spin, as well
as descendants. For later convenience, let us stress that no
implicit summation over Latin indices is assumed.
Consider a (unitary) four-dimensional CFT in which the

conformal group is spontaneously broken to its Poincaré
subgroup, SOð4; 2Þ → ISOð3; 1Þ.3 This might happen, for
instance, when some of the (scalar) operators of the theory
acquire a nonzero vev. To put it differently, there exists a
Poincaré-invariant ground state, which we denote by j0i,
such that

h0jOij0i≡ hOii ¼ ξivΔi ≠ 0; ð2:2Þ

where ξi’s are dimensionless parameters (and v carries
dimension of mass).
From (2.1), we find that when the OPE is sandwiched

between the symmetry-breaking vacuum j0i, it yields

hOiðxÞOjð0Þi ∼
X
k

cijk
jxjΔijk

hOki ¼
X
k

cijk
jxjΔijk

ξkvΔk : ð2:3Þ

Clearly, the only terms which survive and thus contribute
to the two-point function are the scalar operators. If the
symmetry was not broken, then only the unit operator (1)
would be allowed to acquire nonvanishing vev. Since
Δ1 ¼ 0, the expression above would boil down to

hOiðxÞOjð0Þi ∼
δij

jxjΔiþΔj
; ð2:4Þ

as it should.
Let us now insert a complete set of states in the left-hand

side of (2.3), i.e.

hOiðxÞOjð0Þi ¼
XZ
N

h0jOiðxÞjNihNjOjð0Þj0i: ð2:5Þ

In the limit x → ∞, due to the cluster decomposition
principle [37,38], we will pick up only the vacuum state.
As a result, the above asymptotes to

lim
x→∞

hOiðxÞOjð0Þi ¼ hOiihOji ¼ ξiξjvΔiþΔj : ð2:6Þ

We can then conclude that the two-point function (2.3)
formally yields

ξiξj ¼ lim
z→0

X
k

cijkξkzΔijk ; ð2:7Þ

where we introduced z≡ ðvjxjÞ−1. This constitutes the first
relation that the CFT data must satisfy. It is quite natural to
expect that the OPE will also contain operators whose
scaling dimensionΔk is larger thanΔi þ Δj. In such a case,

and since there is no a priori reason for their corresponding
OPE coefficients to vanish, it is obvious that Δijk < 0;
consequently, zΔijk will appear in the denominator of the
consistency condition (2.7). The presence of such terms
implies that the infrared limit (z → 0) should be taken only
after the series have been summed. It should be stressed that
whether this procedure is mathematically well defined or
not depends on the convergence of the series in the above
equation. Unfortunately, it is not known if this is the case;
the results of [39,40] (see also [41]), according to which the
conformal OPE indeed converges are not applicable here,
for they were derived for CFTs with unbroken vacuum.
Nevertheless, in what follows we will assume that the series
on the right-hand side of (2.7) is convergent at least in some
finite domain of z, say at z≳Oð1Þ, and that the result of
summation can be analytically continued to z → 0.
Interestingly, the consistency relation (2.7) has been

presented previously by El-Showk and Papadodimas [42],
in the context of finite temperature effects on CFTs.
Generally speaking, a rather natural next step for our
considerations would be to relax the requirement of having
a Lorentz-invariant vacuum. If the ground state preserves
spatial rotations only, this situation would be similar to
what happens in thermal CFTs, e.g. in high-temperature
QCD [43,44]. We leave this for future work.
Coming back from this small digression, we note that,

in principle, we can go ahead and use the OPE to construct
higher-order scalar correlators. However, they will not
provide us with further information.4 To make this point
more clear, let us consider for instance the three-point
function,

hOiðxÞOjð0ÞOkðzÞi ∼
X
l

cijl
jxjΔijl

hOlð0ÞOkðzÞi þ � � � ;

ð2:9Þ
where, as before, we use the ellipses to denote terms
involving the derivatives of the operators, etc. Following
the previous logic, once we insert complete sets of states
between the three operators, it is apparent that the above—
upon using (2.6)—boils down to (2.7) in the deep infrared.
It is not difficult to see that this behavior persists in higher-
order scalar functions.
Let us note in passing that the low-energy domain of the

theory contains only one Goldstone boson π associated
with the breaking of (SI and) CI, even though the number
of broken generators is five in total (one related to
dilatations and four to special conformal transformations).

3We will work exclusively in four-dimensional Minkowski
spacetime.

4Three-point functions that involve two scalars and, for
example, the dilatational current Jμ, i.e.

hOiðxÞOjð0ÞJμðyÞi; ð2:8Þ
effectively reduce to the Ward identities and might give extra but
more complicated constraints, since these will involve double
limits.
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This fact does not depend on the details of the symmetry-
breaking mechanism and has been studied extensively in
the literature; the interested reader is referred to [45–49]
for further details. With this in mind, the next step is to
consider the implications of having π in the spectrum.
Assuming that the theory contains no other massless scalar
fields apart from the dilaton, we expect that the vacuum
amplitude of two operators will contain a pole at vanishing
virtuality [37,38].5 This becomes evident by inserting into
the scalar two-point function the “resolution of unity,”
which at the IR due to the domination of the dilaton can be
approximated by

1 ∼
x→∞

j0ih0j þ
Z

d3p⃗
2p0ð2πÞ3

jπðpÞihπðpÞj: ð2:10Þ

A straightforward computation reveals that indeed

hOiðxÞOjð0Þi ∼
x→∞

hOiihOji −
h0jOijπihπjOjj0i

jxj2 : ð2:11Þ

Let us define the matrix element of the operatorOi between
the vacuum and the dilaton as6

h0jOijπi ¼ fivΔi−1; ð2:13Þ

with fi a dimensionless coupling. Consequently, it is easy
to see that (2.11), upon using (2.6) and (2.3), leads to the
second consistency condition

fifj ¼ lim
z→0

�
1

z2

�
ξiξj −

X
k

cijkξkzΔijk

��
: ð2:14Þ

It should be noted that Eq. (2.7) follows from Eq. (2.14).
It is evident that the above includes an infinite number of
new parameters, fi. As we will now show, these can in
general be fixed with the use of the Goldstone theorem.
Let us note that even if a conserved current Jμ associated
with dilatations exists,7 this need not be invariant under
translations; therefore, the conventional proof (e.g. [38,50])
might not be applicable here. The way out is to work
directly with the (improved) energy-momentum tensor
Tμν [51].8

Lorentz invariance and ∂μTμν ¼ 0 dictate that the matrix
element of Tμν between the vacuum and the dilaton π, be
of the following form,9

h0jTμνð0ÞjπðpÞi ¼
1

3
fπvpμpν; ð2:15Þ

with fπ the dimensionless dilaton decay constant and the
factor of 1/3 was added for later convenience. It can then
be shown that the expectation value of the commutator
between the energy-momentum tensor and an operator
reads

h½Tμν;Oi�i ¼
i
3
fπfivΔi∂μ∂νGðxÞ; ð2:16Þ

where GðxÞ is the (massless) Green’s function. Provided
that Jμ ≡ xνTμν, then the charge associated with dilatations
can be written as a particular moment of the energy-
momentum tensor,

D ¼
Z

d3x⃗xμT0μ; ð2:17Þ

while, by definition,

h½D;Oi�i ¼ iξiΔivΔi : ð2:18Þ

Consequently, from the relations (2.16)–(2.18), it easily
follows that

fi ¼
ξiΔi

fπ
: ð2:19Þ

We observe that (2.7), (2.14) and (2.19) constitute a system
of equations for ξi and Δi. If a nontrivial solution exists,
this can serve as an indication that the CFT data describes
a system that exhibits the symmetry breaking pattern
SOð4; 2Þ → ISOð3; 1Þ.
At this point, we would like to turn our attention to the

energy-momentum tensor, an operator of particular impor-
tance as far as CFTs are concerned. The relevant for our
considerations terms in the two-point correlator of Tμν with
itself are

hTμνðxÞTλσð0Þi ¼
X
k

T μνλσ
ξkvΔk

jxj8−Δk
: ð2:20Þ

To keep the expression short, we introduced the most
general Lorentz-covariant structure consistent with the
symmetries of the energy-momentum tensor (see also
[54,55]),

5We need not require that the spin sectors of the system be
gapped: modes with nonzero spin cannot appear in (2.11), since
their matrix element with the stateOij0i vanishes identically [38].6We use the conventional (covariant) normalization for single-
particle states,

hπðpÞjπðp0Þi ¼ 2p0ð2πÞ3δð3Þðp⃗ − p⃗0Þ; ð2:12Þ
with p0 ≡ jp⃗j.

7This assumption implies that the theory is local.
8For an axiomatic approach to the Goldstone theorem for

symmetries whose currents are not translationally invariant,
see [52,53].

9Note that a term proportional to ημνp2 is also admissible in the
matrix element (2.18). However, this contribution vanishes on
shell.
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T μνλσ ¼ aTkAμνλσ þ bTkBμνλσ

þ 1

jxj2 ðc
T
kCμνλσ þ dTkDμνλσÞ þ eTk

Eμνλσ

jxj4 ; ð2:21Þ

where

Aμνλσ ¼ ημνηλσ;

Bμνλσ ¼ ημληνσ þ ημσηνλ;

Cμνλσ ¼ ημνxσxλ þ ηλσxνxμ;

Dμνλσ ¼ ηλμxνxσ þ ημσxνxλ þ ηνσxμxλ þ ηνλxμxσ;

Eμνλσ ¼ xμxνxλxσ; ð2:22Þ

and ημν is the Minkowski metric. From the vanishing of the
divergence

∂μhTμνðxÞTλσð0Þi ¼ 0; ð2:23Þ

we obtain

2dTk − ð5 − ΔkÞcTk − ð8 − ΔkÞaTk ¼ 0;

cTk − ð4 − ΔkÞdTk − ð8 − ΔkÞbTk ¼ 0;

ð10 − ΔkÞðcTk þ 2dTk Þ þ ð5 − ΔkÞeTk ¼ 0; ð2:24Þ

which must hold for each k.
In addition, since Tμ

μ ¼ 0, it immediately follows that
for all k’s

16aTk þ 8bTk þ 8cTk þ 4dTk þ eTk ¼ 0; ð2:25Þ

where we used (2.20)–(2.22). Note that from the
above algebraic equations we can express four of the
coefficients in terms of one, say aTk . Once this is
effectuated, we find that the two-point function (2.20)
boils down to

hTμνðxÞTλσð0Þi ¼
X
k

T̃ μνλσ
α̃kaTk ξkv

Δk

jxj8−Δk
; ð2:26Þ

with α̃k ¼ ð10 − 8Δk þ Δ2
kÞ−1, while

T̃ μνλσ ¼ αð1Þk Aμνλσ − αð2Þk Bμνλσ

þ 1

jxj2 ðα
ð3Þ
k Cμνλσ þ αð4Þk DμνλσÞ − 2αð5Þk

Eμνλσ

jxj4 ;

ð2:27Þ

and we have defined

αð1Þk ¼ 1; αð2Þk ¼ 20 − 12Δk þ
3

2
Δ2

k;

αð3Þk ¼ ð8 − ΔkÞΔk; αð4Þk ¼ 40 − 17Δk þ
3

2
Δ2

k;

αð5Þk ¼ 80 − 18Δk þ Δ2
k: ð2:28Þ

As a sanity check, if the symmetry were linearly realized,
then only the unity would contribute. In such a case,
Eqs. (2.26)–(2.28) dictate that up to irrelevant numerical
factors

hTμνðxÞTλσð0Þiunbroken
∝ aT1

�
1

2
ðIμλIνσ þ IνλIμσÞ −

1

4
ημνηλσ

�
1

jxj8 ; ð2:29Þ

with Iμν ≡ ημν − 2xμxν/jxj2, and aT1 an overall coefficient
setting the scale of the two-point function.10

If we now consider the low-energy limit, we end up with
the following constraints on aTk :

lim
z→0

X
k

αðnÞk α̃kaTk ξkz
8−Δk ¼ 0; n ¼ 1;…; 5: ð2:30Þ

Yet another set of conditions relating the OPE coef-
ficients of Tμν can be obtained by considering its inter-
action with the dilaton. This practically amounts to
plugging (2.10) into the left-hand side of the correlator
(2.26). A (long but) straightforward computation gives

lim
z→0

X
k

αðnÞk α̃kaTk ξkz
2−Δk ¼ CðnÞf2π; n ¼ 1;…; 5; ð2:31Þ

with

Cð1Þ ¼ −Cð2Þ ¼ 8

9
; Cð3Þ ¼ Cð4Þ ¼ −

16

3
; Cð5Þ ¼ −

64

3
:

ð2:32Þ

Like it happened before, Eq. (2.30) is a consequence
of (2.31).
Before moving to the conclusions, let us for complete-

ness discuss briefly what can be deduced by considering
the OPE of (translationally invariant) vector operators. The
OPE contains, among others, the following terms:

Vi
μðxÞ × Vj

νð0Þ ⊃
X
k

�
aVijkημν þ bVijk

xμxν
jxj2

�
Ok

jxjΔijk
: ð2:33Þ

By taking the average in the symmetry-breaking vacuum,
we see that in the IR (x → ∞) the left-hand side must be
zero due to Lorentz invariance. As a consequence, we

10Note that instead of the symbol aT1 , CT is most commonly
used in the literature.
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obtain a set of constraints that the OPE coefficients aVijk and
bVijk—provided that they are not trivial—should satisfy

lim
z→0

X
k

aVijkξkz
Δijk ¼ 0; lim

z→0

X
k

bVijkξkz
Δijk ¼ 0:

ð2:34Þ

As before, z ¼ ðvjxjÞ−1. Note that for higher-spin oper-
ators, owing to the fact that for z → 0 (equivalently,
x → ∞) their vev’s must also vanish, a similar type of
relations can be obtained; see for example the ones we
presented for the energy-momentum tensor.

III. CONCLUSIONS

In the present short paper, we reported on constraints that
the CFT data should satisfy when a system possesses a flat
direction, and thus, exhibits nonlinearly realized conformal
invariance. Our considerations are very general, for they
only require knowledge of the operator spectrum of a
theory, their corresponding anomalous dimensions and the
OPE coefficients. What remains to be seen is if the relations
we presented can be used to identify the allowed regions
of the phase portrait of CFTs with spontaneously broken
symmetry; the main challenge is the convergence of the
OPE and whether it is possible to analytically continue it
into the infrared regime.

An ideal testing ground for our findings would be
theories such as N ¼ 4 super Yang-Mills, which is known
to possess exact but spontaneously broken conformal
invariance at the Coulomb branch. It would be very
interesting to confront our results with the ones for the
full spectrum of the anomalous dimensions for this
theory [56–58].
Although a bit tangent to this paper, let us mention

that on the phenomenological side, spontaneously broken
scale and conformal symmetries have served as a guiding
principle for constructing realistic theories able to describe
our Universe from its very early stages up until the present
day. In their context, the hierarchy and cosmological
constant problems can be viewed from a fresh perspective.
Their potential resolution might be achieved under certain
extra assumptions on the UV dynamics, such as the absence
of new particle thresholds between the electroweak and
Planck scales [8,59,60] (see also [61] for an implementa-
tion of this idea in grand unified theories).
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