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Abstract Anisotropic finite elements and the Crank–Nicolson scheme are considered to
solve the time dependent transport equation. Anisotropic a priori and a posteriori error esti-
mates are derived. The sharpness of the error indicator is studied on non-adapted meshes and
time steps. An adaptive algorithm in space and time is then designed to control the error at
final time. Numerical results show the accuracy of the method.

Keywords Anisotropic a posteriori error estimates · Time dependent transport equation

1 Introduction

Anisotropic adaptive meshes with large aspect ratio have proved to be extremely efficient for
partial differential equations with free boundaries or boundary layers, see for instance [1–3]
for applications in computational fluid dynamics. Inmost cases, the adaptive criteria are based
on heuristics or interpolation error estimates rather than rigorous a posteriori error estimates.
This is particularly the case when the time dependent transport equation is involved, since
few a posteriori error estimates are available [4].

In [5], anisotropic a posteriori error estimateswere derived for the time dependent transport
equation discretized in space only. An adaptive algorithm with meshes having large aspect
ratio was proposed. Since the error due to time discretization was not considered, small time
steps were used. In this paper, the error due to time discretization is taken into account.
More precisely, the order two Crank–Nicolson scheme is used and an appropriate piecewise
quadratic time reconstruction is advocated, as in [6]. The quality of our error estimator is
first validated on non-adapted meshes and constant time steps. An adaptive algorithm is then
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proposed, with goal to build a sequence of anisotropic meshes and time steps, so that the
final error is close to a preset tolerance. Numerical results on adapted, anisotropic meshes
and time steps show the efficiency of the method.

2 Statement of the Problem and Numerical Schemes

2.1 Problem Setting

Given an open set Ω ⊂ R
2, T > 0, β ∈ C1

(
Ω̄
)
, div β = 0, f ∈ C

(
[0, T ] ; L2 (Ω)

)
and

u0 ∈ C(Ω̄), we are looking for u : Ω × [0, T ] −→ R satisfying the transport problem

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t + β · ∇u = f in Ω × (0, T ) ,

u = 0 on Γ − × (0, T ) ,

u(·, 0) = u0,

(1)

where Γ − = {x ∈ ∂Ω : β · n < 0}, with n being the unit outer normal of Ω. With the above
assumptions, the problem (1) has a unique solution u ∈ C0([0, T ]; L2(Ω)), see for instance
[7]. Throughout this paper, it will be assumed that the data T , Ω , f , β and u0 are such that
u is smooth enough to justify all required computations.

It is well known that the classical Galerkin formulation is unsuitable for the transport
equation and that some stabilization techniques are necessary. Assume that Ω is a polygon
and Γ − is the union of edges lying on ∂Ω . For any h > 0, let Th be a conformal triangulation
of Ω̄ into triangles K of diameter hK less than h. Let Vh be the set of continuous piecewise
linear functions on each triangle of Th , with zero value on Γ −. A possible finite element
discretization in space is to search for uh : Ω × (0, T ) −→ R such that uh(·, 0) = rhu0 (rh
is the Lagrange interpolant) and, for all 0 ≤ t ≤ T

∫

Ω

(
∂uh
∂t

+ β · ∇uh − f

)
(vh + δhβ · ∇vh) dx = 0 ∀vh ∈ Vh, (2)

where δh > 0 is a stabilization parameter that will be specified later on. A numerical study
of (2) with anisotropic finite elements has already been proposed in [5], our goal is to take
into account an order two in time discretization, namely the Crank–Nicolson scheme. Let
N be a non-negative integer and consider a partition 0 = t0 < t1 < · · · < t N = T . We
denote by τ n+1 = tn+1 − tn the time step, n = 1, 2, . . . , N − 1. Starting from u0h = rhu0,
for n = 0, 1, . . . , N − 1, we are looking for un+1

h ∈ Vh such that

∫

Ω

(
∂un+1

h + β · ∇un+1/2
h − f n+1/2

)
(vh + δhβ · ∇vh) dx = 0 ∀vh ∈ Vh, (3)

where

∂un+1
h = un+1

h − unh
τ n+1 , un+1/2

h = un+1
h + unh

2
, f n+1/2 = f (·, tn+1) + f (·, tn)

2
.

Wewill only consider onemeshTh for the theoretical analysis of the scheme (3).Comments
are added in the case of dynamic meshes in Sect. 4.2.
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2.2 Anisotropic Finite Elements

In this paper, anisotropic finite elements will be used, that is to say meshes with possibly
large aspect ratio. We will use the notations and results of [8–10], see also [11] for similar
results. Let K ∈ Th and TK : K̂ −→ K be the affine transformation mapping the reference
triangle K̂ into K defined by

x = TK (x̂) = MK x̂ + tK ,

with MK ∈ R
2×2, tK ∈ R

2. Observe that MK is invertible, so it admits a singular value
decomposition Mk = RT

KΛK PK , where RK and PK are orthogonal matrices and

ΛK =
(

λ1,K 0
0 λ2,K

)
, λ1,K ≥ λ2,K > 0.

We note

RK =
(
rT1,K
rT2,K

)
,

where r1,K , r2,K are the unit vectors corresponding to directions of maximum and minimum
stretching, respectively, so thatλ1,K , λ2,K are the value ofmaximumandminimumstretching.
With these notations, the following interpolation results holds for the Lagrange interpolant
rh [8,9]:

‖v − rhv‖2
L2

(K )
+ λ22,K ‖∇(v − rhv)‖2

L2
(K )

≤ CL2
K (v) v ∈ H2(Ω), (4)

where C > 0 is a constant depending only on the reference triangle K̂ , and

L2
K (v) = λ41,K

∫

K
(rT1,K H(v)r1,K )2dx + λ21,Kλ22,K

∫

K
(rT1,K H(v)r2,K )2dx

+ λ42,K

∫

K
(rT2,K H(v)r2,K )2dx, (5)

where H(v) is the Hessian matrix defined by

H(v) =

⎛

⎜⎜⎜
⎝

∂2v

∂x21

∂2v

∂x1∂x2

∂2v

∂x1∂x2

∂2v

∂x22

⎞

⎟⎟⎟
⎠

. (6)

The considerations that follow require also the use of Clément’s interpolant. Since anisotropic
meshes are considered, we assume that each vertex has a number of neighbours bounded from
above, uniformly with respect to h. Moreover, we suppose that for each K , the diameter of

K̂ = T−1

K (
K ), where 
K is the union of triangles sharing a vertex with K , is uniformly
bounded, independently of the mesh geometry. For more details, we refer again to [8–10].
In this framework, the following estimation holds

‖ v − Rhv ‖2
L2

(K )
+ λ22,K ‖ ∇(v − Rhv) ‖2

L2
(K )

≤ Cω2
K (v) v ∈ H1(Ω), (7)

where Rh is the Clément’s interpolant, C > 0 is a constant depending only on the reference
triangle K̂ , and

ω2
K (v) = λ21,K (rT1,KGK (v)r1,K ) + λ22,K (rT2,KGK (v)r2,K ), (8)
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with

GK (v) =

⎛

⎜
⎜
⎜
⎝

∫


K

(
∂v
∂x1

)2
dx
∫


K

∂v

∂x1

∂v

∂x2
dx

∫


K

∂v

∂x1

∂v

∂x2
dx
∫


K

(
∂v

∂x2

)2
dx

⎞

⎟
⎟
⎟
⎠

.

3 Error Estimates

3.1 A Priori Error Estimates

We now prove that the solution of the numerical method (3) converges to that of problem
(1) for anisotropic meshes. This has already been proved for isotropic meshes in [12]. The
stabilization parameter is kept constant in time and space. The key ingredient of the proof

consists in taking test functions of the form v + δh
∂v

∂t
[12] and to observe that, since β is

divergence free, we have for all v ∈ H1(Ω) vanishing on Γ −
∫

Ω

(β · ∇v)vdx =
∫

Ω

1

2
div(βv2)dx = 1

2

∫

∂Ω

(β · n)v2dx ≥ 0. (9)

Since P1 finite elements and the Crank–Nicolson method are used, it is expected that the
error at final time ‖u(T ) − uN

h ‖L2(Ω) reduces to O(h3/2 + τ 2) in the isotropic settings.

Theorem 1 Assume that β is not identically zero on Ω . Let u be the solution of (1) and let
uN
h be the solution of (3) with a constant δh defined by

δh =
max
K∈Th

λ2,K

2‖β‖(L∞(Ω))2
. (10)

Let

τ = max
n=0,...,N−1

τ n+1.

Assume that the data T , Ω , f , β, u0 are such that u ∈ H1(0, T ; H2(Ω)) and
∂3uh
∂t3

∈
L2(0, T ; L2(Ω)). Let e(tn) = u(tn)− unh, n = 0, . . . , N. Then, there exists C > 0 indepen-
dent of the data T , Ω , f , β, u0, the mesh size, aspect ratio and the time step such that

‖e(T )‖2L2(Ω)
+ δ2h‖β · ∇e(T )‖2L2(Ω)

≤ C

(
‖e(0)‖2L2(Ω)

+ δ2h‖β · ∇e(0)‖2L2(Ω)

+
∫ T

0

∑

K∈Th

((
1

δh
+

δh‖β‖2
(L∞(K ))2

λ22,K

)

L2
K (u)

+
(

δh +
δ3h‖β‖2

(L∞(K ))2

λ22,K

)

L2
K

(
∂u

∂t

))

dt

)

+ e
(
4T τ 4 + 2δhτ

4 + 16T τ 2δ2h

) ∫ T

0

∥∥∥
∥

∂3uh
∂t3

∥∥∥
∥

2

L2(Ω)

dt,

(11)

where LK is defined by (5).
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Remark 1 In the case of isotropic meshes, λ1,K � λ2,K � hK and L2
K (u) ≤ Ch4K |u|2

H2(K )
,

where C is independent of the mesh size but can depend on the mesh aspect ratio. Thus, in
these settings, (11) reduces to

‖e(T )‖2L2(Ω)
≤ C(h3 + τ 4) + h.o.t.,

where h.o.t. stands for higher order terms.

Remark 2 As already explained in [5], estimate (11) is optimal with respect to the space
discretization parameter for anisotropic meshes. Indeed, assume that the solution u depends
only on one variable and that the mesh is aligned with the solution, then the estimate (11)
reduces to

‖e(T )‖2L2(Ω)
≤ C

((
max
K∈Th

λ2,K

)3
+ τ 4

)

+ h.o.t.

and maxK∈Th λ2,K → 0 is sufficient to ensure the convergence of the numerical method.

Remark 3 We have not been able to prove that

∫ T

0

∥∥∥∥
∂3uh
∂t3

∥∥∥∥

2

L2(Ω)

dt

is bounded independently of h and τ . The proof is not obvious, even for parabolic problems
[13], and out of the scope of the present paper. It should be noticed that an a priori error
estimate can also be proved introducing the anisotropic equivalent of the hyperbolic projector
used in [12]. In this case, only derivatives of the exact solutions

∫ T

0

∥∥∥∥
∂3u

∂t3

∥∥∥∥

2

L2(Ω)

dt,
∫ T

0

∥∥∥∥
∂4u

∂t4

∥∥∥∥

2

L2(Ω)

dt, sup
t∈[0,T ]

∥∥∥∥
∂3u

∂t3

∥∥∥∥

2

L2(Ω)

,

appear in the error bound instead of
∫ T

0

∥∥∥∥
∂3uh
∂t3

∥∥∥∥

2

L2(Ω)

dt . We have completed the proof,

which is not presented here since it is significantly longer than the one below.

Remark 4 As in [12], a similar analysis can be performed if div β �= 0 under restrictions on
h and τ , with the price to pay that all the constants involved depends exponentially on the
final time and the divergence of β.

Proof Observe that
∫

Ω

(u(T ) − uN
h )2dx + δ2h

∫

Ω

(β · ∇(u(T ) − uN
h ))2dx

≤ 2
∫

Ω

(u(T ) − uh(T ))2dx + 2δ2h

∫

Ω

(β · ∇(u(T ) − uh(T )))2dx
︸ ︷︷ ︸

I1

+ 2
∫

Ω

(uh(T ) − uN
h )2dx + 2δ2h

∫

Ω

(β · ∇(uh(T ) − uN
h ))2dx

︸ ︷︷ ︸
I2

,
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where uh(t) is the solution of (2). Then we apply Theorem 3.1 of [5] on I1 and we obtain
∫

Ω

e2(T )dx + δ2h

∫

Ω

(β · ∇e(T ))2dx

≤ C

⎛

⎝
∫

Ω

e2(0)dx +
∫

Ω

(β · ∇e(0))2dx +
∫ T

0

∑

K∈Th

((
1

δh
+

δh‖β‖2
(L∞(K ))2

λ22,K

)

L2
K (u)

+
(

δh +
δ3h‖β‖2

(L∞(K ))2

λ22,K

)

L2
K

(
∂u

∂t

))

dt

)

+ I2, (12)

where C > 0 depends on the reference triangle K̂ only. In particular, C is independent of
Ω, f, β, u0, u, T, N , the mesh size and aspect ratio and the time step.

We nowhave to estimate I2. By using several times the Fundamental Theorem of Calculus,
one can derive that

uh(tn+1) − uh(tn)

τ n+1 = ∂t uh(tn+1) + ∂t uh(tn)

2
+ rn+1, (13)

where

rn+1 = 1

2τ n+1

∫ tn+1

tn

(∫ s

tn

∫ t

tn

∂3uh
∂t3

(ζ )dζdt +
∫ s

tn+1

∫ t

tn

∂3uh
∂t3

(ζ )dζdt

)
ds.

In particular, we observe that

|rn+1|2 ≤ (τ n+1)3
∫ tn+1

tn

(
∂3uh
∂t3

(t)

)2
dt. (14)

In the sequel, we will note enh = uh(tn)−unh . By using (2), (3) and (13), the following relation
holds for the numerical error

∫

Ω

(
en+1
h − enh
τ n+1 + β · ∇

(
en+1
h + enh

2

))

(vh + δhβ · ∇vh) dx

=
∫

Ω

rn+1 (vh + δhβ · ∇vh) dx, ∀vh ∈ Vh . (15)

Choosing

vh = en+1
h + enh

2
+ δh

en+1
h − enh
τ n+1

and using (9), we therefore obtain

1

2τ n+1

(
‖en+1

h ‖2L2(Ω)
− ‖enh‖2L2(Ω)

)
+ δ2h

2τ n+1

(
‖β · ∇en+1

h ‖2L2(Ω)
− ‖β · ∇enh‖2L2(Ω)

)

+ δh

∫

Ω

(
en+1
h − enh
τ n+1 + β · ∇

(
en+1
h + enh

2

))2

dx

≤
∫

Ω

rn+1

(
en+1
h + enh

2
+ δ2hβ · ∇

(
en+1
h − enh
τ n+1

))

dx

+ δh

∫

Ω

rn+1

(
en+1
h − enh
τ n+1 + β · ∇

(
en+1
h + enh

2

))

dx .

123



356 J Sci Comput (2018) 75:350–375

Using Cauchy–Schwarz and Young’s inequality yields

1

2τ n+1

(
‖en+1

h ‖2L2(Ω)
− ‖enh‖2L2(Ω)

)
+ δ2h

2τ n+1

(
‖β · ∇en+1

h ‖2L2(Ω)
− ‖β · ∇enh‖2L2(Ω)

)

+δh

2

∫

Ω

(
en+1
h − enh
τ n+1 + β · ∇

(
en+1
h + enh

2

))2

dx

≤ ∥∥rn+1
∥
∥
L2(Ω)

∥
∥
∥
∥
∥
en+1
h + enh

2
+ δ2hβ · ∇

(
en+1
h − enh
τ n+1

)∥∥
∥
∥
∥
L2(Ω)

+ δh

2

∥
∥rn+1

∥
∥2
L2(Ω)

.

Multiplication by 2τ n+1 and use of Cauchy–Schwarz, triangle and Young’s inequalities yield
after summing from 0 to N − 1

‖eNh ‖2L2(Ω)
+ δ2h ‖β · ∇eNh ‖2L2(Ω)

+ δh

N−1∑

n=0

τ n+1
∫

Ω

(
en+1
h − enh
τ n+1 + β · ∇

(
en+1
h + enh

2

))2

dx

≤
N−1∑

n=0

(

2T τ n+1 + 8T
δ2h

τ n+1 + δhτ
n+1

)
∥∥rn+1

∥∥2
L2(Ω)

+
N−1∑

n=0

τ n+1

4T

(
‖en+1

h ‖2L2(Ω)
+ δ2h‖β · ∇en+1

h ‖2L2(Ω)

)

+
N−1∑

n=0

τ n+1

4T

(
‖enh‖2L2(Ω)

+ δ2h‖β · ∇enh‖2L2(Ω)

)

≤
N−1∑

n=0

(

2T τ n+1 + 8T
δ2h

τ n+1 + δhτ
n+1

)
∥∥rn+1

∥∥2
L2(Ω)

+
N∑

n=0

τ n + τ n+1

4T

(
‖enh‖2L2(Ω)

+ δ2h‖β · ∇enh‖2L2(Ω)

)
.

Here we use the fact that e0h = 0 and we have set τ 0 = τ N+1 = 0. Finally, we use the discrete
Gronwall’s Lemma (see [14], Lemma 5.1) and we get

‖eNh ‖2L2(Ω)
+ δ2h‖β · ∇eNh ‖2L2(Ω)

+ δh

N−1∑

n=0

τ n+1
∫

Ω

(
en+1
h − enh
τ n+1 + β · ∇

(
en+1
h + enh

2

))2

≤ exp

(
N∑

n=0

μn

1 − μn

)
N−1∑

n=0

(

2T τ n+1 + 8T
δ2h

τ n+1 + δhτ
n+1

)
∥∥rn+1

∥∥2
L2(Ω)

,

where μn = τ n + τ n+1

4T
< 1. Since

∑N
n=0

μn
1−μn

≤ 1 and using (14), we obtain

I2 ≤ e
(
4T τ 4 + 16T δ2hτ

2 + 2δhτ
4)
∫ T

0

∥∥∥∥
∂3uh
∂t3

∥∥∥∥

2

L2(Ω)

dt. (16)

Estimates (16) and (12) together yield the result. 
�
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3.2 A Posteriori Error Estimate

We now prove an a posteriori error estimate involving time and space discretization for
problem (3). As in [5], the following choice for the stabilization parameter δh is advocated.
For all K ∈ Th , if β is not identically zero on K , then

δh|K = λ2,K

2 ‖β‖(L∞(K ))2
∀K ∈ Th, (17)

else δh|K is set to zero. As proposed in [6], we introduce a piecewise quadratic reconstruction
of the computed solution in order to recover an O(τ 2) error estimator. We shall use the
following notation

∂2un+1
h (x) =

un+1
h (x) − unh(x)

τ n+1 − unh(x) − un−1
h (x)

τ n

τ n+1 + τ n

2

x ∈ Ω̄, n ≥ 1.

Then, for n = 1, 2, 3, . . . , N − 1, we define

uhτ (x, t) = unh(x) + (t − tn)∂un+1
h (x)

+ 1

2
(t − tn)(t − tn+1)∂2un+1

h (x) (x, t) ∈ Ω̄ × [tn, tn+1] , (18)

and for n = 0,

uhτ (x, t) = u0h(x) + (t − t0)∂u1h(x) (x, t) ∈ Ω̄ × [t0, t1] , (19)

Observe that (18) is a Newton polynomial; for every n ≥ 1, uhτ is the unique quadratic
polynomial in time that equals un−1

h , unh , u
n+1
h , at time tn−1, tn , tn+1, respectively.

We first prove the following lemma :

Lemma 1 We have, for all vh ∈ Vh:
∫

Ω

(
∂uhτ

∂t
+ β · ∇uhτ − f

)
(vh + δhβ · ∇vh)dx

=
∫

Ω

θ(vh + δhβ · ∇vh)dx, (20)

where θ is defined, for (x, t) ∈ Ω̄ × [tn, tn+1
]
, by

θ(x, t) =
(

τ n

2
(t − tn+1/2) + 1

2
(t − tn)(t − tn+1)

)
β · ∇∂2un+1

h (x)

+ f n+1/2(x) + (t − tn+1/2)
f n+1(x) − f n−1(x)

τ n+1 + τ n
− f (x, t), n ≥ 1,

(21)

and

θ(x, t) = (t − t1/2)β · ∇
(
u1h − u0n

τ 1

)

+ f 1/2 − f, n = 0. (22)

Proof We start with n = 0. Then
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∫

Ω

(
∂uhτ

∂t
+ β · ∇uhτ

)
(vh + δhβ · ∇vh)dx

=
∫

Ω

(
u1h − u0h

τ 1
+ β · ∇uhτ

)

(vh + δhβ · ∇vh)dx,

thus using (3), we get
∫

Ω

(
∂uhτ

∂t
+ β · ∇uhτ − f

)
(vh + δhβ · ∇vh)dx

=
∫

Ω

(
β · ∇(uhτ − u

1/2
h ) + f 1/2 − f

)
(vh + δhβ · ∇vh)dx .

The result is then obtained noticing that
∫

Ω

(
β · ∇(uhτ − u

1/2
h )
)

(vh + δhβ · ∇vh)dx

=
∫

Ω

(

(t − t1/2)β · ∇
(
u1h − u0h

τ 1

))

(vh + δhβ · ∇vh)dx .

For n ≥ 1, we have

∫

Ω

(
∂uhτ

∂t
+ β · ∇uhτ

)
(vh + δhβ · ∇vh)dx =

∫

Ω

(
un+1
h − unh
τ n+1 + (t − tn+1/2)∂2un+1

h

+β · ∇
(

unh + (t − tn)
un+1
h −unh
τ n+1 + 1

2
(t − tn)(t − tn+1)∂2un+1

h

))

(vh+δhβ · ∇vh)dx,

so that using (3), we have
∫

Ω

(
∂uhτ

∂t
+ β · ∇uhτ − f

)
(vh + δhβ · ∇vh)dx

=
∫

Ω

(

(t − tn+1/2)

(

β · ∇
(
un+1
h − unn
τ n+1

)

+ ∂2un+1
h

)

+ f n+1/2 − f

)

(vh + δhβ · ∇vh)dx

+
∫

Ω

β · ∇
(
1

2
(t − tn)(t − tn+1)∂2un+1

h

)
(vh + δhβ · ∇vh)dx . (23)

We then take the difference of (3) with superscript n and (3) with superscript n− 1 to obtain
∫

Ω

(
∂2un+1

h + β · ∇ un+1 − un−1

τ n + τ n+1 − f n+1 − f n−1

τ n + τ n+1

)
(vh + δhβ · ∇vh)dx = 0.

Inserting into (23) yields the result. 
�

We are now ready to prove our a posteriori error estimate.

Theorem 2 Assume that the data T , Ω , f , β, u0 are such that u ∈ L2(0, T ; H1(Ω)) ∩
H1(0, T ; L2(Ω)). Let δh|K be defined by (17). Let uhτ be defined by (18), (19) and set
e = u − uhτ . Then there exists C > 0, independent of T , Ω , f , β, u0, the mesh size, aspect
ratio and the time step such that
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‖e(T )‖2L2(Ω)
≤ C

(
‖e(0)‖2L2(Ω)

+
N−1∑

n=0

∑

K∈Th

∫ tn+1

tn

((∥∥
∥
∥ f − ∂uhτ

∂t
− β · ∇uhτ

∥
∥
∥
∥
L2(K )

+‖θ‖L2(K )

)
ωK (e) + cn ‖θ‖2L2(K )

))
dt, (24)

where ωK is defined by (8), θ by (21) and cn =
{

τ 1 n = 0,
T n ≥ 1

.

Proof Let t ∈ (tn, tn+1
)
, n ≥ 1. Using (9), (1), (3) and Lemma 1, we have

1

2

d

dt

∫

Ω

e2dx ≤
∫

Ω

(
∂e

∂t
e + (β · ∇e)e

)
dx

=
∫

Ω

(
f − ∂uhτ

∂t
− β · ∇uhτ

)
edx

=
∫

Ω

(
f − ∂uhτ

∂t
− β · ∇uhτ

)
(e − vh − δhβ · ∇vh) dx

−
∫

Ω

θ (vh + δhβ · ∇vh) dx . (25)

The triangle and Cauchy–Schwarz inequalities imply

1

2

d

dt

∫

Ω

e2dx ≤
∑

K∈Th

((∥∥∥∥ f − ∂uhτ

∂t
− β · ∇uhτ

∥∥∥∥
L2(K )

+‖θ‖L2(K )

) (‖e − vh‖L2(K ) + ∥∥δh|Kβ · ∇vh
∥∥
L2(K )

)

+‖θ‖L2(K ) ‖e‖L2(K )

)
.

Choosing vh = Rhe, using estimation (7) and definition of δh|K , we have

‖e − Rhe‖L2(K ) + ∥∥δh|Kβ · ∇Rhe
∥∥
L2

(K )
≤ CωK (e), (26)

see [5] for details. Therefore we have

1

2

d

dt
‖e‖2L2(Ω)

≤ C
∑

K∈Th

(αK + θK ) ωK (e) +
∑

K∈Th

θK ‖e‖L2(K ) ,

where we have set

αK =
∥∥∥∥ f − ∂uhτ

∂t
− β · ∇uhτ

∥∥∥∥
L2(K )

and θK = ‖θ‖L2(K ) ,

and whereC denotes a positive constant, independent of T ,Ω , f , β, u0, the mesh size, aspect
ratio and the time step, which may change from line to line. Using the discrete Cauchy–
Schwarz and Young’s inequalities we therefore obtain

1

2

d

dt
‖e‖2L2(Ω)

≤ C
∑

K∈Th

(αK + θK ) ωK (e) + 1

2ε

∑

K∈Th

θ2K + ε

2
‖e‖2L2(Ω)

,
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where ε is any positive number. Multiplying by 2e−εt and integrating between time t1 and
T , we get

‖e(T )‖2L2(Ω)
e−εT− ‖ e(t1) ‖2L2(Ω)

e−εt1

≤ C
N−1∑

n=1

∑

K∈Th

∫ tn+1

tn
e−εt

(
(αK + θK ) ωK (e) + 1

ε
θ2K

)
dt.

Finally, we choose ε = 1
T so that the exponential growth in time is eliminated:

‖e(T )‖2L2(Ω)

≤ C

⎛

⎝
∥
∥e(t1)

∥
∥2
L2(Ω)

+
N−1∑

n=1

∑

K∈Th

∫ tn+1

tn

(
(αK + θK ) ωK (e) + T θ2K

)
dt

⎞

⎠ . (27)

In order to estimate
∥
∥e(t1)

∥
∥2
L2(Ω

, we proceed in the same manner to obtain

∥
∥e(t1)

∥
∥2
L2(Ω)

≤ C

(
‖e(0)‖2L2(Ω)

+
∑

K∈Th

∫ t1

0

(
(αK + θK )ωK (e) + τ 1θ2K

)
dt

)
. (28)

The desired estimate is obtained plugging (28) into (27). 
�
Remark 5 Estimate (24) is not a standard a posteriori estimate since the exact solution u is
contained in ωK (e). However, post-processing techniques can be applied in order to approx-
imate GK (e), for instance Zienkiewicz−Zhu (ZZ) post-processing. More precisely, we will
replace the first order partial derivatives with respect to xi

∂(u − uhτ )

∂xi
by Πh

∂uhτ

∂xi
− ∂uhτ

∂xi
, i = 1, 2,

where, for any vh ∈ Vh , for any vertex P of the mesh

Πh
∂vh

∂xi
(P) =

∑
K∈Th P∈K |K | ∂vh

∂xi |K∑
K∈Th P∈K |K |

is an approximate L2(Ω) projection of ∂vh/∂xi onto Vh . Numerical results already presented
in [5,6,15–17] showed the efficiencyofZZpost-processing for anisotropicmeshes for elliptic,
parabolic, and hyperbolic problems.

Remark 6 The following a posteriori error estimate can also be proved. Starting form (25),
we have

1

2

d

dt
‖e‖2L2(Ω)

≤
∫

Ω

(
∂e

∂t
e + (β · ∇e)e

)
dx =

∫

Ω

(
f − ∂uhτ

∂t
− β · ∇uhτ

)
edx .

Cauchy–Schwarz inequality implies that

1

2

d

dt
‖e‖2L2(Ω)

≤
∥∥∥∥ f − ∂uhτ

∂t
− β · ∇uhτ

∥∥∥∥
L2(Ω)

‖e‖L2(Ω),

which yields

‖e(T )‖L2(Ω) ≤ ‖e(0)‖L2(Ω) +
∫ T

0

∥∥∥∥ f − ∂uhτ

∂t
− β · ∇uhτ

∥∥∥∥
L2(Ω)

dt. (29)
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Estimate (29) was already pointed out in [4] and is valid for non-smooth solutions. Numerical
experiments (not reported here) have shown that (29) is suboptimal for smooth solutions, thus
estimate (24) should be preferred for smooth solutions.

Remark 7 We have not been able to prove a lower bound corresponding to estimate (24), this
being also the case for parabolic problems with anisotropic finite elements [6]. However, for
elliptic problems [16], we have been able to prove a lower bound provided that

λ21,K (rT1,KGK (e)r1,K ) = λ22,K (rT2,KGK (e)r2,K ),

that is to say that the error is equidistributed in both directions r1,K , r2,K .

Remark 8 Estimate (24) can be generalized in the case div β �= 0 under the assumptions of
the Theorem 2. In this case, the constant involved in (24) depends exponentially on the final
time T and ‖div β‖L∞(Ω). Indeed, (25) becomes

1

2

d

dt

∫

Ω

e2dx ≤ 1

2

d

dt

∫

Ω

e2dx + 1

2

∫

∂Ω

(β · n)e2dx

= 1

2

d

dt

∫

Ω

e2dx + 1

2

∫

Ω

div
(
βe2
)
dx

=
∫

Ω

(
∂e

∂t
e + (β · ∇e)e

)
dx − 1

2

∫

Ω

(div β)e2dx

=
∫

Ω

(
f − ∂uhτ

∂t
− β · ∇uhτ

)
edx − 1

2

∫

Ω

(div β)e2dx .

We conclude the proof using the same techniques as in Theorem 2, using the Gronwall’s

Lemma to control
1

2

∫

Ω

(div β)e2dx . Therefore, (24) becomes

‖e(T )‖2L2(Ω)
≤ e‖div β‖L∞(Ω)T C

(
‖e(0)‖2L2(Ω)

+
N−1∑

n=0

∑

K∈Th

∫ tn+1

tn

((∥∥∥∥ f − ∂uhτ

∂t
− β · ∇uhτ

∥∥∥∥
L2(K )

+‖θ‖L2(K )

)
ωK (e) + cn ‖θ‖2L2(K )

))
dt,

where C and cn are as in Theorem (2).

3.3 A Posteriori Error Indicators

We now define our error indicator

η =
(
(ηA)2 + (ηT )2

)1/2
.

Here the anisotropic error indicator in space ηA is defined by

ηA =
⎛

⎝
N−1∑

n=0

∑

K∈Th

(ηA
K ,n)

2

⎞

⎠

1/2
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with

(ηA
K ,n)

2 =
∫ tn+1

tn

∥
∥
∥
∥ f − ∂uhτ

∂t
− β · ∇uhτ

∥
∥
∥
∥
L2(K )

ωK (e)dt.

The error indicator in time is defined by

ηT =
⎛

⎝
N−1∑

n=0

∑

K∈Th

(ηTK ,n)
2

⎞

⎠

1/2

,

with

(ηTK ,n)
2 = cn

∫ tn+1

tn
‖θ‖2L2(K )

dt (30)

with θ given in Lemma 1 and cn as in Theorem 2. The reader should note that the other
terms in (24) have not been considered since they are of higher order. In order to check the
sharpness of these error indicators, we will compare them to the true errors. To this end, we
introduce the effectivity indices ei and ei Z Z defined by

ei = η

‖e(T )‖L2(Ω)

, ei Z Z =
(∫ T

0 ‖Πh∇uhτ − ∇uhτ )‖2L2(Ω)
dt
)1/2

(∫ T
0 ‖∇(u − uhτ )‖2L2(Ω)

dt
)1/2 .

Here ei measures the sharpness of our space-time error indicator, whereas ei Z Z measures
the quality of our Zienkiewicz−Zhu post-processing.

4 Numerical Experiments

4.1 Numerical Experiments on Non-adapted Meshes with Constant Time Steps

We now investigate the sharpness of our indicators by performing numerical experiments on
nonadapted meshes with constant time steps. Problem (1) is considered in the unit square
Ω = (0, 1)2, with T = 0.5, f = 0, β = (1, 0)T , the initial condition is given by the smooth
function

u0(x1, x2) = tanh(−C((x1 − 0.25)2 − 0.01)), (31)

Γ − is the left boundary of Ω , thus the exact solution u(x1, x2, t) is given by

u(x1, x2, t) = u0(x1 − t, x2).

The solution is smooth with small variations, except in a thin layer of width controlled by
C , the larger C, the smaller the layer, the larger the error for a given mesh size. Several
experiments have been performed on anisotropic meshes with aspect ratio varying from 50
to 500, where we keep the time step constant. In what follows, h1–h2 denotes the mesh size
in the directions x1, x2 and τ is the time step.

We first investigate the sharpness of the anisotropic error indicator in space ηA, choosing
τ = O(h2) so that the error due to time discretization is negligible, see Tables 1 and 2. It is
observed that the L2(Ω) error at final time is � O(h1.8) while the L2(0, T, H1(Ω)) error is
� O(h). The post-processed ZZ gradient is asymptotically exact, while the effectivity index
ei converges to a value close to 20. These results agree with those of [5].
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Table 1 Convergence results when τ = O(h2) with C = 60 and aspect ratio 50 (rows 1–4) and 500 (rows
5–6)

h1–h2 τ eL2(H1) ei Z Z e(T )L2 ηA ηT ei

0.01–0.5 0.002 0.125 0.99 0.0013 0.0195 0.00078 14.60

0.005–0.25 0.0005 0.067 1.00 0.00046 0.0073 0.000049 15.77

0.0025–0.125 0.000125 0.034 1.00 0.00015 0.0026 0.0000033 17.22

0.00125–0.0625 0.00003125 0.0168 1.00 0.000044 0.00088 0.00000021 20.09

0.001–0.5 0.000125 0.012 1.00 0.0000107 0.00062 0.00000401 58.31

0.0005–0.25 0.00003125 0.0062 1.00 0.00001 0.00023 0.00000026 20.78

Table 2 Convergence results when τ = O(h2) with C = 240 and aspect ratio 50 (rows 1–4) and 500 (rows
5–6)

h1–h2 τ eL2(H1) ei Z Z e(T )L2 ηA ηT ei

0.01–0.5 0.002 1.23 0.54 0.023 0.099 0.0094 4.40

0.005–0.25 0.0005 0.50 0.77 0.0062 0.041 0.00078 6.72

0.0025–0.125 0.000125 0.21 0.96 0.0013 0.015 0.000055 11.90

0.00125–0.0625 0.00003125 0.10 1.00 0.00028 0.0053 0.0000036 19.07

0.001–0.5 0.00025 0.072 0.99 0.00013 0.0037 0.000023 27.34

0.0005–0.25 0.0000625 0.037 1.00 0.000065 0.0014 0.000015 21.62

Table 3 Convergence results when h = O(τ2) with C = 60 and aspect ratio 50 (rows 1–4) and 500 (rows
5–7)

h1–h2 τ eL2(H1) ei Z Z e(T )L2 ηA ηT ei

0.01–0.5 0.025 0.68 0.18 0.046 0.032 0.095 2.21

0.0025–0.125 0.0125 0.22 0.16 0.013 0.0063 0.028 2.09

0.000625–0.03125 0.00625 0.058 0.14 0.0035 0.0010 0.0072 2.09

0.00015625–0.0078125 0.003125 0.015 0.32 0.00089 0.00045 0.0018 2.13

0.001–0.5 0.025 0.68 0.017 0.046 0.0032 0.096 2.07

0.00025–0.125 0.0125 0.22 0.015 0.013 0.00063 0.028 2.03

0.0000625–0.03125 0.00625 0.058 0.025 0.0036 0.00018 0.0073 2.05

Then, we check that the quadratic reconstruction in (18) and (19) yields an error indicator
of optimal second order in time. We choose h � O(τ 2) so that the error due to the space
discretization is negligible. The numerical results presented in the Tables 3 and 4 show that
both the L2(Ω) error at final time and the time indicator ηT are � O(τ 2). The effectivity
index tends to a value close to 2. Note that in this case, ei Z Z is away from 1, which implies
that the post-processing included in our error indicator in space ηA is not accurate; but this
is unimportant since ηA is much smaller than the error indicator in time ηT .

In order to check that the effectivity index does not depend on Ω and T , we reproduce
the same experiment on a domain Ω = (0, 10) × (0, 1) for several values of the final time
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Table 4 Convergence results when h = O(τ2) with C = 240 and aspect ratio 50 (rows 1–5) and 500 (rows
6–8)

h1–h2 τ eL2(H1) ei Z Z e(T )L2 ηA ηT ei

0.01–0.5 0.025 6.18 0.11 0.24 0.15 0.84 3.66

0.0025–0.125 0.0125 4.28 0.047 0.12 0.033 0.38 3.16

0.000625–0.03125 0.00625 2.15 0.048 0.050 0.0059 0.12 2.42

0.00015625–0.0078125 0.003125 0.75 0.039 0.016 0.0026 0.034 2.11

0.0000390625–0.001953125 0.0015625 0.21 0.13 0.042 0.0018 0.0087 2.11

0.001–0.5 0.025 6.37 0.011 0.24 0.015 0.94 3.9

0.00025–0.125 0.0125 4.30 0.0045 0.12 0.0034 0.39 3.17

0.0000625–0.03125 0.00625 2.15 0.0039 0.051 0.0010 0.12 2.42

0.000015612–0.0078125 0.003125 0.75 0.011 0.016 0.00076 0.034 2.10

Table 5 Convergence results
when Ω = [0, 10] × [0, 1] and T
varies; h1 = 0.000625,
h2 = 0.03125, τ = 0.000125

T eL2(H1) ei Z Z e(T )L2 ηA ηT ei

0.5 0.014 1.00 0.000031 0.00070 0.000015 22.63

1 0.0205 1.00 0.000043 0.00099 0.000019 22.87

1.5 0.024 1.00 0.000052 0.0012 0.000023 23.31

5 0.045 1.00 0.000085 0.0022 0.000041 26.25

9.5 0.073 1.00 0.00013 0.0031 0.000056 23.12

Table 6 Convergence results
when Ω = [0, 10] × [0, 1] and T
varies; h1 = 0.000625,
h2 = 0.03125, τ = 0.00625

T eL2(H1) ei Z Z e(T )L2 ηA ηT ei

0.5 0.059 0.24 0.0036 0.0018 0.0073 2.11

1 0.16 0.12 0.0071 0.0025 0.014 2.08

1.5 0.29 0.084 0.011 0.0031 0.021 2.08

5 1.59 0.028 0.032 0.0057 0.073 2.21

9.5 3.60 0.017 0.057 0.0079 0.14 2.43

T . The corresponding results are presented in Tables 5 and 6 for C = 60 and meshes with
aspect ratio 50. The effectivity index remains close to the values obtained previously.

In order to obtain an effectivity index close to one, we divide the space indicator ηA by
20 and the time indicator ηT by 2. We report the result obtain in Tables 7 and 8 where we
consider the normalized error indicator

√
(ηA)2

400
+ (ηT )2

4
.

The corresponding effectivity index is shown to be near a value of 1 when h3/2 = O(τ 2).
In the sequel, we will always consider the normalized indicators without introducing new
notations.
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Table 7 Convergence results with the normalized error indicator when h3/2 = O(τ2)withC = 60 and aspect
ratio 50 (rows 1–4) and 500 (rows 5–7)

h1–h2 τ eL2(H1) ei Z Z e(T )L2 ηA/20 ηT /2 ei

0.01–0.05 0.005 0.13 0.96 0.0025 0.001 0.0024 1.02

0.004–0.2 0.0025 0.049 0.98 0.0007 0.00015 0.00060 0.93

0.0016–0.08 0.00125 0.022 1.00 0.00016 0.000077 0.00015 1.03

0.00064–0.032 0.000625 0.0084 1.00 0.000038 0.00002 0.000038 1.12

0.001–0.5 0.0005 0.012 1.00 0.000020 0.000040 0.000027 1.7

0.0004–0.2 0.00025 0.0047 1.00 0.000010 0.0000086 0.0000068 1.16

0.00016–0.08 0.000125 0.0021 1.00 0.00000304 0.0000026 0.0000017 1.01

Table 8 Convergence results with the normalized error indicator when h3/2 = O(τ2) with C = 240 and
aspect ratio 50 (rows 1–4) and 500 (rows 5–7)

h1–h2 τ eL2(H1) ei Z Z e(T )L2 ηA/20 ηT /2 ei

0.01–0.05 0.005 1.43 0.47 0.031 0.0053 0.028 0.91

0.004–0.2 0.0025 0.55 0.52 0.010 0.0014 0.01 1.01

0.0016–0.08 0.00125 0.18 0.703 0.0027 0.00045 0.0028 1.03

0.00064–0.032 0.000625 0.06 0.83 0.00069 0.00012 0.00070 1.04

0.001–0.5 0.0005 0.075 0.96 0.00044 0.00020 0.00046 1.12

0.0004–0.2 0.00025 0.029 0.98 0.00012 0.000051 0.00011 1.04

0.00016–0.08 0.000125 0.013 1.00 0.000032 0.000015 0.000029 1.1

4.2 An Adaptive Algorithm in Space and Time

Although the analysis in Sect. 3 is restricted to a single mesh Th , we now present an adaptive
space-time algorithm which involves several meshes. Then the question of interpolation
between meshes is discussed.

The goal of the adaptive space-time algorithm is to control ‖e(T )‖L2(Ω). Given a pre-
scribed tolerance TOL, we want to ensure that

0.75TOL ≤
(

(ηA)2 + (ηT )2

T

)1/2

≤ 1.25TOL.

A sufficient condition is to ensure that, for n = 0, 1, 2, . . . , N − 1

0.752 TOL2 τ n+1

2
≤
∑

K∈Th

(ηA
K ,n)

2 ≤ 1.252 TOL2 τ n+1

2
, (32)

and
0.752 TOL2 τ n+1

2
≤
∑

K∈Th

(ηTK ,n)
2 ≤ 1.252 TOL2 τ n+1

2
. (33)

The main steps of the adaptive algorithm are summarized in Fig. 1. At each time step, a
new mesh is built, whenever needed. Then, the previous finite element approximation, unh ,
has to be interpolated in order to compute the current one, un+1

h . More precisely, if we denote
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Fig. 1 Adaptive algorithm. The index i denotes the number of remeshing required to build an acceptable
mesh at current time, starting from the mesh accepted at previous time

by T n
h,i and T n

h,i+1 two successive meshes generated at time tn+1, and by V n
h,i , V

n
h,i+1 the

associated finite elements spaces, we consider the interpolation operator

πn
h,i+1 : V n

h,i −→ V n
h,i+1.

If a new mesh has to be built, then we interpolate the values of unh from V n
h,i to V n

h,i+1 and

compute un+1
h ∈ V n

h,i+1 such that

∫

Ω

(
un+1
h − πn

h,i+1u
n
h

τ n+1 + 1

2
β · ∇

(
un+1
h + πn

h,i+1u
n
h

)
− f n+1/2

)

(vh + δhβ · ∇vh) = 0,

(34)
for all vh ∈ V n

h,i+1 Five interpolation operators have been considered.

– the linear Lagrange interpolation,
– the exact L2 projection [5,18],
– the conservative algorithm of [19],
– the Ritz hyperbolic projection [12],
– the modified hyperbolic projection defined below.

Wegivemore details on the last choice. For g ∈ H1(Ω), we defineπn
h,i+1 : H1(Ω) → V n

h,i+1
by

∫

Ω

πn
h,i+1gvhdx +

∫

Ω

(δhβ · ∇πn
h,i+1g)(δhβ · ∇vh)dx

=
∫

Ω

gvhdx +
∫

Ω

(δhβ · ∇g)(δhβ · ∇vh)dx,∀vh ∈ V n
h,i+1. (35)

The projection πn
h,i+1 clearly satisfies the following property

‖πn
h,i+1g‖2L2(Ω)

+ ‖δhβ · ∇πn
h,i+1g‖2L2(Ω)

≤ ‖g‖2L2(Ω)
+ ‖δhβ · ∇g‖2L2(Ω)

. (36)
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Stability of the scheme (34) is not guaranteed with the four first interpolation operators.
Stability can be proven when πn

h,i+1 is defined by (35) and δh constant.

Lemma 2 Assume that δh is constant and f = 0. Let un+1
h be the solution of (34) with πn

h,i+1
being defined by (35). Then, we have
∫

Ω

(un+1
h )2dx+δ2h

∫

Ω

(β·∇un+1
h )2dx ≤

∫

Ω

(unh)
2dx+ δ2h

∫

Ω

(β·∇unh)
2dx, ∀n = 0, . . . , N .

Proof Choose

vh = un+1
h + πn

h,i+1u
n
h

2
+ δh

un+1
h − πn

h,i+1u
n
h

τ n+1

in (34). Using (9) yields

1

2τ n+1

∫

Ω

(un+1
h )2dx + δh

∫

Ω

(
un+1
h − πn

h,i+1u
n
h

τ n+1 + β ·
(
un+1
h + πn

h,i+1u
n
h

2

))2

dx

+ 1

2τ n+1 δ2h

∫

Ω

(β · ∇un+1
h )2dx

≤ 1

2τ n+1

∫

Ω

(πn
h,i+1u

n
h)

2dx + 1

2τ n+1 δ2h

∫

Ω

(β · ∇πn
h,i+1u

n
h)

2dx .

We conclude by multiplying on each side by 2τ n+1 and using (36). 
�
This stability result has a little interest in practice since δh is not constant for adapted meshes.
In the numerical experiments, the best results have been obtained using the conservative
algorithm of [19], the other four interpolation operators are shown to be less accurate.

The BL2D software [20] is used in order to build anisotropic meshes, the indicator (ηA
K )2

being equidistributed in the directions of maximum andminimum stretching r1,K , r2,K . Each
triangle K is aligned with the eigenvectors of the error gradient matrix GK (e), where ZZ
post-processing is used in order to approximate ∂e/∂xi . We shortly describe this remeshing
procedure. Since the BL2D software uses informations about vertices, we need to translate
the error indicator ηA from triangles to vertices. We define, for all K ∈ Th , the anisotropic
error indicator in direction ri,K , by

(η
A,i
K ,n)

2 =
∫ tn+1

tn

∥∥∥∥ f − ∂uhτ

∂t
− β · ∇uhτ

∥∥∥∥
L2(K )

(λ2i,K r
T
i,KGK (e)ri,K )

1/2dt, i = 1, 2,

and for all vertex P

η
A,i
P,n =

⎛

⎜⎜
⎝
∑

K∈Th
P∈K

(η
A,i
K ,n)

4

⎞

⎟⎟
⎠

1/4

, i = 1, 2.

Then, a sufficient condition to ensure (32) is the following. For all vertex P of the mesh, ηA,i
P,n

should satisfy

3

2

0.754 TOL4 (τ n+1)2

4N 2
v

≤ (η
A,i
P,n)

4 ≤ 3

2

1.254 TOL4 (τ n+1)2

4N 2
v

, i = 1, 2. (37)

Hereabove, the factor 3 is due to the fact that summing over all vertices is equivalent to
summing 3 times over all triangles; the factor 1/2 to the fact that the error is equidistributed
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in both directions r1,K , r2,K . Also, Nv denotes the number of vertices of the current mesh.
The remeshing procedure is then the following : for every P , we set

λi,P =

∑

K∈Th
P∈K

λi,K

∑

K∈Th
P∈K

1
, i = 1, 2.

If (37) is not satisfied, we modify λi,P by a factor β, else we keep it as is. Based on these
stretching values, a new mesh will be generated by the BL2D software. The results for
example (31) hereafter have been obtained setting β = 2

3 , while β = 1
2 was set for example

(38).

4.3 Numerical Results with Adapted Meshes and Adapted Time Steps

We now analyse the efficiency of the adaptive algorithm of Fig. 1. We first consider example
(31) with C = 60. The initial mesh is an isotropic mesh with mesh size h = 0.01, while the
initial time step is taken as τ 1 = 0.002. The mesh and solution at final time are shown in
Figs. 2 and 3 when using conservative interpolation [19], C = 240 and TOL = 0.001.

Fig. 2 Example (31).Mesh and solutionwithC = 240 and TOL = 0.001. Conservative interpolation between
meshes is used a t = 0 b t = 0.5
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Fig. 3 Example (31). Zoom of Fig. 2 at final time

Table 9 Additional notations for the analysis of the adaptive algorithm

Nv : Number of vertices of the mesh at final time

Nτ : Number of time steps

Nm : Number of remeshings

Nc : Number of time step changes

ar : Maximum aspect ratio at final time, the aspect ratio on an element K being λ1,K /λ2,K

ar : Average aspect ratio at final time

We investigate the number of vertices, aspect ratio, number of time steps and remesh-
ings, for various values of the prescribed tolerance TOL. The notations are summarized in
Table 9, the results in Table 10. The observations are the following when using conservative
interpolation.

– The error at final time is approximatively divided by 2 when TOL is divided by 2.
– Both effectivity indices ei and ei Z Z are close to one,
– The number of remeshing depends on the exact solution u (the larger C , the larger Nm).
– Since the solution depends only on the x1 variable, the total number of vertices at final

time is only doubled as the tolerance is divided by two (it should be multiplied by four
with isotropic meshes).

– The total number of time steps is multiplied by
√
2 as the tolerance is divided by 2, which

confirms the second order convergence of the error indicator in time ηT .

Linear interpolation, the L2 projection, the Ritz hyperbolic projection and the modified
hyperbolic projection (35) yield worse results, for instance the ZZ effectivity index is away
of one. This has already been been observed in [5,17] for hyperbolic problems, whereas
interpolation between meshes seems not to be an issue for parabolic problems [6].

The last test case is the stretching of a circle in a vortexflow.Weagain setΩ = (0, 1)2, T =
4. The initial condition is given by

u0(x1, x2) = tanh
(
−C(

√
(x1 − 0.5)2 + (x2 − 0.75)2 − 0.15)

)
, (38)
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Fig. 4 Example (38). Mesh and
solution at time t = 0, 1, 2, 3, 4,
with C = 240 and TOL = 0.025.
Conservative interpolation
between meshes is used
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where C = 60 or C = 240. No boundary conditions along ∂Ω are prescribed. The velocity
field is defined by

β =
(−2 sin(πy) cos(πy) sin2(πx) cos(0.25π t)

2 sin(πy) cos(πy) sin2(πx) cos(0.25π t)

)
.

The exact solution is not known, however, since the flow is reversed at t = 2, we must have
u(x1, x2, 4) = u0(x1, x2).

This example is not covered by our our theory, since the velocity field β depends on time.
Although the anisotropic error indicator in space ηA remains valid even for a time dependent
velocity field β, the error indicator in time ηT should be modified. However, this is beyond
the scope of the present study. Nevertheless, the use of the time indicator ηT defined by (30)
yields good results. Several meshes and numerical solutions are presented in Fig. 4 when

Fig. 5 Example (38). Exact and numerical solutions at time T = 4 with C = 60. Plot of uhτ with respect to
x1 along the line x2 = 0.75. Conservative interpolation between meshes is used

Fig. 6 Example (38). Zoom at Fig. 5
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Fig. 7 Example (38). Exact and numerical solutions at time T = 4 with C = 240. Plot of uhτ with respect
to x1 along the line x2 = 0.75. Conservative interpolation between meshes is used

Table 11 Exemple 38 TOL e(T )L2 Nv Nτ

0.1 0.026 928 705

0.05 0.019 2565 1334

0.025 0.01 7259 2366

0.0125 0.0048 23,873 4413

0.1 0.049 1315 2577

0.05 0.02 3779 5951

0.025 0.007 10,040 11,418

Stretching of a circle in a vortex
flow. Convergence results for the
adaptive algorithm with C = 60
(rows 1–4), C = 240, (rows 4–6).
Conservative interpolation
between meshes is used

Table 12 Exemple 38 h τ e(T )L2 Nv Nτ

0.01 0.001 0.11 12,191 4000

0.005 0.0004 0.057 48,354 10,000

0.0025 0.00016 0.025 192,657 25,000

0.01 0.001 0.15 12,191 4000

0.005 0.0004 0.1 48,354 10,000

0.0025 0.00016 0.071 192,657 25,000

Stretching of a circle in a vortex
flow. Convergence results with
non-adapted meshes and constant
time steps (τ2 = O(h3/2)) with
C = 60 (rows 1–3), C = 240,
(rows 4–6)

TOL = 0.025 and conservative interpolation is used. In Figs. 5, 6, 7, and 8 and Table 11
we have checked convergence of the computed solution at final time for several values of
TOL. For comparison, we present in Table 12 results with non-adapted uniform meshes and
constant time steps. In Fig. 9, we compare the solution computed on a non-adapted meshes
with the one obtained with the largest value TOL = 0.1 of the adaptive algorithm. Clearly,
the coarsest adapted solution is more accurate than the finest non-adapted one. Note that the
number of vertices of the non-adapted mesh is 200 larger than that of adapted meshes.
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Fig. 8 Example (38). Zoom at Fig. 7

Fig. 9 Example (38). Comparison between numerical solutions at time T = 4 with C = 60. Plot of uhτ with
respect to x1 along the line x2 = 0.75. The adapted solution is computed with the Fig. 1 with TOL = 0.1. The
non-adapted solution is computed on a fix uniform mesh with constant time steps (h = 0.0025, τ = 0.00016)
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