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Abstract Anisotropic finite elements and the Crank—Nicolson scheme are considered to
solve the time dependent transport equation. Anisotropic a priori and a posteriori error esti-
mates are derived. The sharpness of the error indicator is studied on non-adapted meshes and
time steps. An adaptive algorithm in space and time is then designed to control the error at
final time. Numerical results show the accuracy of the method.
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1 Introduction

Anisotropic adaptive meshes with large aspect ratio have proved to be extremely efficient for
partial differential equations with free boundaries or boundary layers, see for instance [1-3]
for applications in computational fluid dynamics. In most cases, the adaptive criteria are based
on heuristics or interpolation error estimates rather than rigorous a posteriori error estimates.
This is particularly the case when the time dependent transport equation is involved, since
few a posteriori error estimates are available [4].

In [5], anisotropic a posteriori error estimates were derived for the time dependent transport
equation discretized in space only. An adaptive algorithm with meshes having large aspect
ratio was proposed. Since the error due to time discretization was not considered, small time
steps were used. In this paper, the error due to time discretization is taken into account.
More precisely, the order two Crank—Nicolson scheme is used and an appropriate piecewise
quadratic time reconstruction is advocated, as in [6]. The quality of our error estimator is
first validated on non-adapted meshes and constant time steps. An adaptive algorithm is then
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proposed, with goal to build a sequence of anisotropic meshes and time steps, so that the
final error is close to a preset tolerance. Numerical results on adapted, anisotropic meshes
and time steps show the efficiency of the method.

2 Statement of the Problem and Numerical Schemes
2.1 Problem Setting

Given an open set 2 C R2, T >0, B e c! (5_2), divg=0,feC ([0, T]; L? (.Q)) and
ug € C(£2), we are looking for u : £2 x [0, T] —> R satisfying the transport problem

Wy p-Vu=fin2x (7)),
u=0onI""x(0,T), (D
u(-, 0) = ug,

where I'™ = {x € 982 : B - n < 0}, with n being the unit outer normal of £2. With the above
assumptions, the problem (1) has a unique solution u € CY([0, TT; L%(£2)), see for instance
[7]. Throughout this paper, it will be assumed that the data 7, 2, f, § and ug are such that
u is smooth enough to justify all required computations.

It is well known that the classical Galerkin formulation is unsuitable for the transport
equation and that some stabilization techniques are necessary. Assume that §2 is a polygon
and I~ is the union of edges lying on d§2. Forany 2 > 0, let 7 be a conformal triangulation
of 2 into triangles K of diameter /g less than /. Let V}, be the set of continuous piecewise
linear functions on each triangle of 7j, with zero value on I"~. A possible finite element
discretization in space is to search for uy, : £ x (0, T) — R such that u (-, 0) = rpug (ry
is the Lagrange interpolant) and, forall0 <7 < T

/ (aa%h +ﬁ~wh—f> (Wh + 81 Vo) dx =0 Yoy € Vj, @
2

where §; > 0 is a stabilization parameter that will be specified later on. A numerical study
of (2) with anisotropic finite elements has already been proposed in [5], our goal is to take
into account an order two in time discretization, namely the Crank—Nicolson scheme. Let

N be a non-negative integer and consider a partition 0 = ¥ < ! < ... < ¥ = T. We
denote by t"*! = ¢"+1 — (" the time step, n = 1,2, ..., N — 1. Starting from u2 = rpuo,
forn =0,1,..., N — 1, we are looking for uZ'H € Vj, such that

/9 (au’,;“ B VUl f"+‘/2) (n+ 8B -Vo)dx =0 Yo, e Vp,  (3)

where

n+1
Mh —

1
N ekl SN (CUAR R ALY

n+l __
M= 2 2

We will only consider one mesh 7y, for the theoretical analysis of the scheme (3). Comments
are added in the case of dynamic meshes in Sect. 4.2.
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2.2 Anisotropic Finite Elements

In this paper, anisotropic finite elements will be used, that is to say meshes with possibly
large aspect ratio. We will use the notations and results of [8—10], see also [11] for similar
results. Let K € 7;, and Tk : K —> K be the affine transformation mapping the reference
triangle K into K defined by

x=Tg((X) = Mgx + tk,

with Mg € R?*2 tx e RZ. Observe that Mg is invertible, so it admits a singular value
decomposition My = RIT<AK Pk, where Rg and Pk are orthogonal matrices and

. MK 0
AK—( 0 k) Ak = A2k > 0.

T

,
LK

RK:(T’ )
2.k

where r1 g, r2, k are the unit vectors corresponding to directions of maximum and minimum
stretching, respectively, sothat A1 g, A2, g are the value of maximum and minimum stretching.
With these notations, the following interpolation results holds for the Lagrange interpolant
rn, [8,9]:

We note

2

2 2
T <CL%(v) ve H* ), “

vV —Tpv
v —ravl o =

+33 ¢ IV = )2,
where C > 0 is a constant depending only on the reference triangle K,and

L% (v) :x‘l"K/ (rlT’KH(v)rlyK)zdx—i—)»%’K)\%YK/ (r{ x HW)ry ) dx
K K

+)‘421.K/ (ry x H()ry x)*dx, 5)
K
where H (v) is the Hessian matrix defined by
9%v 9%
ax?  0x19x2
H®) = . 6)
9%v 9%v

0x10x7 @

The considerations that follow require also the use of Clément’s interpolant. Since anisotropic
meshes are considered, we assume that each vertex has a number of neighbours bounded from
above, uniformly with respect to 4. Moreover, we suppose that for each K, the diameter of
AK = Ty ! (AK), where AK is the union of triangles sharing a vertex with K, is uniformly
bounded, independently of the mesh geometry. For more details, we refer again to [8—10].
In this framework, the following estimation holds

2 2 2 2 1
1o = Ruv 122 ) + 4 | VO = Ri) 22 < Coj(v) ve H'(@). (D)

where Ry, is the Clément’s interpolant, C > 0 is a constant depending only on the reference
triangle K, and

g (V) = A g r{ G IrLK) + 23 ¢ (1] Gk (W2 k), (8)
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v \2 dv dv
(W) dx ——dx
AK 1 AK 0X1 0x2
v dv v \?
——dx — ) dx
AK 0x1 9x2 AK \0x2

with

Gg() =

3 Error Estimates
3.1 A Priori Error Estimates

We now prove that the solution of the numerical method (3) converges to that of problem
(1) for anisotropic meshes. This has already been proved for isotropic meshes in [12]. The
stabilization parameter is kept constant in time and space. The key ingredient of the proof

. . . . v . .
consists in taking test functions of the form v + §j, o [12] and to observe that, since B is

divergence free, we have for all v € H'(£2) vanishing on I"~

/ (B - Vv)vdx :/ ldiv(ﬁuz)dx = 1/ (B - n)v2dx > 0. )
7, 2?2 2 Jho

Since P; finite elements and the Crank—Nicolson method are used, it is expected that the
error at final time |u(T) — u}’lv | 2(s2) reduces to O(h*” + 7?) in the isotropic settings.

Theorem 1 Assume that B is not identically zero on §2. Let u be the solution of (1) and let
u,llv be the solution of (3) with a constant &y, defined by

pax Ak
= (10)
21Bll (oo (22
Let
= max 'L
n=0,....N—1
| 5 83uh
Assume that the data T, S2, f, B, ug are such that u € H' (0, T; H*(82)) and TS IS

L%(0, T; L*(2)). Let e(t") = u(1") — up,n=0,..., N. Then, there exists C > 0 indepen-
dent of the data T, $2, f, B, uo, the mesh size, aspect ratio and the time step such that

le(T) 132y + SRlIB - Ve(D 720, < C(ne(O)niz(m + 518 Vel 720,

T 1 6h||/3||2Loc K 2
o (b )
0 ket h 2,K
SpBI?, 9
+ (5,, T ) (al> dz)
3k t

3
9 up
a3

2

T
te <4Tr4 +28,74 + 16Tr25,3) / ‘
0

dt,
LX(£2)

1)
where Lk is defined by (5).
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Remark 1 1In the case of isotropic meshes, A1 x >~ A2 x =~ hg and L%( (u) < Ch‘}< Iuliﬂ(m,

where C is independent of the mesh size but can depend on the mesh aspect ratio. Thus, in
these settings, (11) reduces to

le(T)172q) < CH* + 1 + hout,

where £.0.t. stands for higher order terms.

Remark 2 As already explained in [5], estimate (11) is optimal with respect to the space
discretization parameter for anisotropic meshes. Indeed, assume that the solution u depends
only on one variable and that the mesh is aligned with the solution, then the estimate (11)
reduces to

3
”e(T)HiZ(Q) < C ((max )\-2,K> + T4> + h.o.t.

KeTy
and maxker, A2,k — 0 1is sufficient to ensure the convergence of the numerical method.

Remark 3 'We have not been able to prove that

T
J
is bounded independently of 4 and t. The proof is not obvious, even for parabolic problems
[13], and out of the scope of the present paper. It should be noticed that an a priori error

estimate can also be proved introducing the anisotropic equivalent of the hyperbolic projector
used in [12]. In this case, only derivatives of the exact solutions

2
3uy,

5.3 dt

LX(2)

T 83u 2 T 9% 2 33u 2
3 dt, ~7 dt, sup [— ,
0 ot L2(2) 0 ot L2(0) refo,71 || 9t L2(2)
T a3uh 2
appear in the error bound instead of / a3 dt. We have completed the proof,
0 L2(£2)

which is not presented here since it is significantly longer than the one below.
Remark 4 As in [12], a similar analysis can be performed if div 8 # 0 under restrictions on
h and t, with the price to pay that all the constants involved depends exponentially on the

final time and the divergence of S.

Proof Observe that
/ w(T) — ul)?dx + 53/ (B - Vu(T) —ul))?dx
2 2

< 2/ W(T) — u(T))*dx + 25,2,/ (B Vu(T) = up(T)))*dx
2 Q

I

+ 2/ (up(T) — ul))?dx + 25,3/ (B - V(up(T) — uh))?dx,
2 2

I
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where u, (¢) is the solution of (2). Then we apply Theorem 3.1 of [5] on /; and we obtain

/eZ(T)der(S,%/ (B - Ve(T))*dx
2 2

SnllBIP, o
<C / e (O)dx+/ B Ve(O))zdx+/ > ((1 W) L (u)
KeT, Ak

SIBIZ, o g2 du
+ (o + =2 LK<—> dt | + b, (12)
23k ot

where C > 0 depends on the reference triangle K only. In particular, C is independent of
2, f, B,up,u, T, N, the mesh size and aspect ratio and the time step.
‘We now have to estimate /5. By using several times the Fundamental Theorem of Calculus,
one can derive that
wp (") — (") B (Y A B (1)

on+l = 2 +r ’ (13)

+1 o s ! 83uh
r zrnﬂf (/ f ey (;“)ds“dmrfn+l /t W(;)d;d;) ds

In particular, we observe that

where

n+1

2
P < @ th? f ( Py (r)) (14)

In the sequel, we will note e, = up,(¢") —uj,. By using (2), (3) and (13), the following relation
holds for the numerical error

e et yen
/;Q(W-F,B'V hf (v +8np - Vup) dx

:/ " (v + 8w B - Vo) dx, Y, € V. (15)
2
Choosing
en+l +€n en+l _ ot
h h h h
Uh - 2 + 8’1 ‘L’"+1

and using (9), we therefore obtain

52
n+1 ny2 \V/ n+1 Ve 2
2 n+1 (” ”LZ(Q) ”eh”Lz(Q)> 2 n+l (”/3 e ”LZ(Q) ”ﬂ . eh ||L2(Q))

n+1 n+l 2
- +
+5h/ (eh “% 1 p. v(e”)) dx
0 T 2
n+l n+1 n
+ e e —e
+1 h 2 h h
en+l —e n+1 +e
+5h/ rt ("”+ﬁ V(h dx.
Q Th 2
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Using Cauchy—Schwarz and Young’s inequality yields

n+1 ny2 n+1 ny2
S (|| 220y = 16k 200)) + 5ozt (18- Vel 120y = 18- Vehlia(q))

2
(Sh €Z+l eh e;’ll-i-l +eZ
2 Q<fn+1+ﬁ ViT= ))&
en-‘rl 4 et en—H _ o
h h 2 h h
s tuA VI

Multiplication by 27+! and use of Cauchy—Schwarz, triangle and Young’s inequalities yield
after summing from O to N — 1

O 2
+ 5 ||rn+l “LZ(Q) :
L2(R)

< [t ||L2(.Q)

N2 2 N2
”eh ”LZ(Q) +8h ”:3 : Veh ”LZ(Q)

N—-1 n+1 n n+1 2
et € ¢ + ¢
+ 8y Eor /_;3<r”+1+’3.v(2 dx
n=»

N—1 2
3 2
+1 +1
< Z <2Tr” +8T ”+, + 8"t )”’n 22
n=0
N-1 o 1
1 1
+ AT (”‘3” 172+ SillB - Vet ”i%’z))
n=0
N-—1 'L'n+1

+
[

7 (16413 200) + 818 Vell22 )
n=0
N-—1 82 5

33 ( cr ) g,
n=0

o + n+1 ) ) )
Z (Nef 220, + 8218 - Vel2q)) -

Here we use the fact that eg = 0 and we have set 70 = ¢!

Gronwall’s Lemma (see [14], Lemma 5.1) and we get

N‘l et~ AT ANY
||e{¥||iz(m+a,2,||ﬁ-Ve,7||iz(m+shZr”“/ e A T
n=0

= 0. Finally, we use the discrete

Q
N M N-1 82 )
n +1 +1
< exp <Z 1 —Mn> Z <2T'r" +8T ot + 8" ) ||r” ||L2(A’2)’
n=0 n=0
n n+1
where w, = % < 1. Since 2111\,:0 l’f;ﬂ < 1 and using (14), we obtain
T a3uh 2
L < e(4Tt* + 16T 857> + 26, 77) / — dr. (16)
o Il 97 l2ee)

Estimates (16) and (12) together yield the result. ]
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3.2 A Posteriori Error Estimate

We now prove an a posteriori error estimate involving time and space discretization for
problem (3). As in [5], the following choice for the stabilization parameter &, is advocated.
For all K € 7, if B is not identically zero on K, then

A2 K

=_— ="  VKeT, a7
211Bllzoekyy2

Snik
else 8y, 1s set to zero. As proposed in [6], we introduce a piecewise quadratic reconstruction
of the computed solution in order to recover an O(z2) error estimator. We shall use the
following notation

+1 -1
Wy () —up (%) up(x) —up (x)
.L-n+1 n -
.L_n+l +.L_n
2

Then, forn =1,2,3,..., N — 1, we define

urtt(x) =

upe (X, 1) = ul (x) + (¢ — ") (x)
+ %(t —t"(t — tﬂ+‘)32uz+l(x) (x.1) € £ x [[n’ tn+]], (18)

and for n = 0,
upe (6, 1) = U (0) + (0 = 1)y () (1) € 2 x [1011], (19)

Observe that (18) is a Newton polynomial; for every n > 1, uy, is the unique quadratic
polynomial in time that equals uz_l, uj, uZ'H, at time "1, ¢, g1 respectively.

We first prove the following lemma :

Lemma 1 We have, for all vy, € Vj:

dupy
/ ( Y B Vipe — f) (U + 8B - Vo)dx
Q at

= / O (v +8nB - Vup)dx, (20)
2
where 0 is defined, for (x, 1) € 2 x [t", 1"*1], by
" n+1/2 1 n n+1 2 n+l
O(x, 1) = j(t—t )+§(l—l)(f—f )| B-VoTu ™ (x)

@) =

+ R 4 =R — fl,0), n>1,

fn+l+rn
(1)
and
1 u}l —ul 1
Ox.)y=@—t"™p- V(L) +f"7-f n=0. (22)
T

Proof We start with n = 0. Then
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9
/ (—”’” ny's vuhf> (on + 818 - Vup)dox
Q ot

h h
:/ - + B - Vupe | (v +8pB - Vup)dx,
2

thus using (3), we get

/ (auhf +8 - Vup — f) (v + 8nB - Vop)dx
Q ot

= [ (8- Ve =+ 57 = 1) -+ 808 V.
2

The result is then obtained noticing that

/ (ﬁ - V(upe — u;l/z)> (v + 8,8 - Vup)dx
fos

1.0
=/Q ((I—II/Z),B'V (uhrluh>> (i + 8B - Vup)dx.

Forn > 1, we have

upz wy ™ — uj nt1/2y 02 ntl
/ o+ B Vupe | (vp + 8B - Vop)dx = / s R t —1")o%ul,
2 2

un+l_un 1
+B8-V <u;; + (1 — t")%—l—i(l‘ — ")t — t"“)azug“)) (vn+8nB - Vup)dx,

so that using (3), we have

/ (auhr + B Vup — f) (p + 8nB - Vup)dx
Q at

un+1 —yn
= [ (a=r (pv (M) e ) 4 g
0 T
(vp + 6nB - Vup)dx

+/Q BV (%(r — " — t"+‘)32u;+1> (v + 818 - Vup)dx. (23)

We then take the difference of (3) with superscript n and (3) with superscript n — 1 to obtain

N unJrl _ unfl fn+1 _ fnfl
n v —
/ﬂ(a wy Y )(vh—i—Shﬂ-Vvh)dx_O.

Inserting into (23) yields the result. O

We are now ready to prove our a posteriori error estimate.

Theorem 2 Assume that the data T, $2, f, B, uo are such that u € L2, T; H'(£2) N
H' (0, T; L*(£2)). Let Spx be defined by (17). Let uy; be defined by (18), (19) and set
e = u — upy. Then there exists C > 0, independent of T, $2, f, B, uo, the mesh size, aspect
ratio and the time step such that
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t"+1 a
le(T)1720, < <||e<0)|| (9)+Z > / <<Hf— ;"; — B Vi

n=0 KeT, L2(K)
+ 161 22, >w1<(e) +en 161224, ))dr, 24)
where wg is defined by (8), 8 by (21) and ¢, = oton=0,
ere wi is defined by (8), 6 by ac”_Tnzl'
Proof Lett € (", 1"1), n > 1. Using (9), (1), (3) and Lemma 1, we have
1d 2d</ ae+(ﬂv)d
2dt9e x_Qate e)e | dx
ad
f (f _ —B- Vuhf> edx
auhr
f= —B-Vupe ) (e —vp =8P - Vo) dx
—/ 0 (vp + 8nB - Vup)dx. (25)
Q
The triangle and Cauchy—Schwarz inequalities imply
1d 9
2dx< (<”f_”’"_ﬂ.vuht
2d KET}, LZ(K)
+ 100 2) (e = vall2y + [8mxB - Vol 2gx, )
+ ||‘9||L2(K) ”e”LZ(K))-
Choosing v, = Rye, using estimation (7) and definition of ;g , we have
lle = Rnell 2k + ||Snix B - VRh€||L2(K) < Cwg(e), (26)

see [5] for details. Therefore we have

1 d
T lelfag = C Y (ax +o) k(@) + 3 Ok llell 2, »
KeT, KeT,
where we have set
314;,
oK = Hf - ! _ﬂ . Vuhf and OK = ||9||L2(K),
L2(K)

and where C denotes a positive constant, independent of 7', §2, f, B, uo, the mesh size, aspect
ratio and the time step, which may change from line to line. Using the discrete Cauchy—
Schwarz and Young’s inequalities we therefore obtain

llellwm C > (ax +9K)w,<(e>+— > ox + ||e||Lz(m,
KeT, KeTh
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€

where ¢ is any positive number. Multiplying by 2¢~¢" and integrating between time ¢! and

T, we get
_ S|
le(T) 172y e = Il e 172(g, ¢

—et l 2
e (ag +9K)wK(e)+89K dt.

Finally, we choose ¢ = % so that the exponential growth in time is eliminated:

2
”e(T)”LZ(Q)
e+l

N—1
<cC He<t1)||§z(m+22/t' ((ak +6k) 0k (e) + TOg)dt | . (27)

n=1 KeTp * 1"

. 2 . .
In order to estimate ||e(t1) || 125> We proceed in the same manner to obtain

(£2°

[1
He(zl)Hiz(msc<||e(0>||iz(m+ > /0 (<aK+9K)wK(e)+r19,%)dr>. (28)

KeT,

The desired estimate is obtained plugging (28) into (27). O

Remark 5 Estimate (24) is not a standard a posteriori estimate since the exact solution u is
contained in wg (e). However, post-processing techniques can be applied in order to approx-
imate Gk (e), for instance Zienkiewicz—Zhu (ZZ) post-processing. More precisely, we will
replace the first order partial derivatives with respect to x;

d(u — upr) dupr  Oupe

by IT — , 1=1,2,
0x; Y i 0X; 0x; !

where, for any v, € Vj,, for any vertex P of the mesh

vy
ZKeThPeK”{' i |K

vy,
I, —(P) =
ax; ZK€771PGK|K|

is an approximate L2 (£2) projection of vy, /dx; onto Vj,. Numerical results already presented
in[5,6,15-17] showed the efficiency of ZZ post-processing for anisotropic meshes for elliptic,
parabolic, and hyperbolic problems.

Remark 6 The following a posteriori error estimate can also be proved. Starting form (25),
we have

1d 2 de upe
it = [ (Gres@-vor)ax= [ (72 - Vune ) eax.

Cauchy—Schwarz inequality implies that

ope

2
EEHeHLZ('Q) = ’ f - ot - ﬁ . Vuh‘[ @) ”e”LZ(Q)v
which yields
T d
Upt
le(M 22y < ez +/ f-= =B Vuje dt. (29)
0 Bt LZ(.Q)
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Estimate (29) was already pointed out in [4] and is valid for non-smooth solutions. Numerical
experiments (not reported here) have shown that (29) is suboptimal for smooth solutions, thus
estimate (24) should be preferred for smooth solutions.

Remark 7 'We have not been able to prove a lower bound corresponding to estimate (24), this
being also the case for parabolic problems with anisotropic finite elements [6]. However, for
elliptic problems [16], we have been able to prove a lower bound provided that

M k(T xGr(@ri k) =23 g (r] Gk (e)r2.k),
that is to say that the error is equidistributed in both directions ry g, 12 k.-
Remark 8 Estimate (24) can be generalized in the case div 8 # 0 under the assumptions of

the Theorem 2. In this case, the constant involved in (24) depends exponentially on the final
time 7 and ||div B[ L= (q). Indeed, (25) becomes

1d 2 1d
—— e“dx < —— X
2dt Jo 2dt Jo 2 Lo
1d 2 1 . 2
=—-— | e‘dx+ = dlv(ﬂe )dx
2dt Jo 2 Jo

oe 1 . 2
= /g <§e+ B - V6)6> dx — E/Q(dlv Ble“dx
/ <f _ f’”l _B. Vuhr) edx — 1/ (div B)e*dx.
2)e

We conclude the proof using the same techniques as in Theorem 2, using the Gronwall’s

Lemma to control > / (div ﬂ)ezdx. Therefore, (24) becomes
Q
le(T) 17y < e“d“ﬂ“L°°<9>TC<||e(0)||iz(m

539> /l ((Hf—a”h’—ﬂwhr

n=0 Ke7j

L2(K)
+ 10l 22x)) @K ©) + e 16125, ) )dt,
where C and ¢, are as in Theorem (2).
3.3 A Posteriori Error Indicators
We now define our error indicator
n= ((nA)2 + (nT)z)l/2
Here the anisotropic error indicator in space n* is defined by

12

N-—1
DO k)’

n=0 Ke7j
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with
t"+l 8”
h
(g )° = ‘f - = B Vi wg (e)dt.
L2(K)
The error indicator in time is defined by
N-1 "2
Yo k)]
n=0 Ke7)
with
tlH»]
(U;,n)z =Cn [n ||9”L2(K) (30)

with 6 given in Lemma 1 and ¢, as in Theorem 2. The reader should note that the other
terms in (24) have not been considered since they are of higher order. In order to check the
sharpness of these error indicators, we will compare them to the true errors. To this end, we
introduce the effectivity indices ei and eiZ defined by

T /2
; (1Y = Vuno) 2, 0 )
ei”” =

le(T) 22y (fOT IV (u— ”hf)“mm)dt)

Here ¢i measures the sharpness of our space-time error indicator, whereas e¢i44 measures

the quality of our Zienkiewicz—Zhu post-processing.

4 Numerical Experiments
4.1 Numerical Experiments on Non-adapted Meshes with Constant Time Steps

We now investigate the sharpness of our indicators by performing numerical experiments on
nonadapted meshes with constant time steps. Problem (1) is considered in the unit square
= (0, 1)%, with T = 0.5, f =0, 8 = (1, 0)7, the initial condition is given by the smooth

function
uo(x1, x2) = tanh(—C((x] — 0.25)% — 0.01)), (31)

I"~ is the left boundary of 2, thus the exact solution u(x, x», ) is given by
u(xi, x2,1) = ug(x1 — 1, x2).

The solution is smooth with small variations, except in a thin layer of width controlled by
C, the larger C, the smaller the layer, the larger the error for a given mesh size. Several
experiments have been performed on anisotropic meshes with aspect ratio varying from 50
to 500, where we keep the time step constant. In what follows, hj—h, denotes the mesh size
in the directions x1, x» and 7 is the time step.

We first investigate the sharpness of the anisotropic error indicator in space n*, choosing
T = O(h?) so that the error due to time discretization is negligible, see Tables 1 and 2. It is
observed that the L?(£2) error at final time is > O (h!*®) while the L*(0, T, H'(£2)) error is
=~ O (h). The post-processed ZZ gradient is asymptotically exact, while the effectivity index
ei converges to a value close to 20. These results agree with those of [5].
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Table 1 Convergence results when v = 0(h2) with C = 60 and aspect ratio 50 (rows 1-4) and 500 (rows
5-6)

hi1-=hy T €r2(m) ei’? e(T);2 nA nT ei

0.01-0.5 0.002 0.125 0.99 0.0013 0.0195 0.00078 14.60
0.005-0.25 0.0005 0.067 1.00 0.00046 0.0073 0.000049 15.77
0.0025-0.125 0.000125 0.034 1.00 0.00015 0.0026 0.0000033 17.22
0.00125-0.0625  0.00003125  0.0168 1.00 0.000044 0.00088  0.00000021 20.09
0.001-0.5 0.000125 0.012 1.00 0.0000107  0.00062  0.00000401 58.31
0.0005-0.25 0.00003125  0.0062 1.00 0.00001 0.00023  0.00000026  20.78

Table 2 Convergence results when t = 0(h2) with C = 240 and aspect ratio 50 (rows 1-4) and 500 (rows
5-6)

h1-hy T €r2(Hly ei?? e(T);2 77A WT ei

0.01-0.5 0.002 1.23 0.54 0.023 0.099 0.0094 4.40
0.005-0.25 0.0005 0.50 0.77 0.0062 0.041 0.00078 6.72
0.0025-0.125 0.000125 0.21 0.96 0.0013 0.015 0.000055 11.90
0.00125-0.0625 0.00003125 0.10 1.00 0.00028 0.0053 0.0000036 19.07
0.001-0.5 0.00025 0.072 0.99 0.00013 0.0037 0.000023 27.34
0.0005-0.25 0.0000625 0.037 1.00 0.000065 0.0014 0.000015 21.62

Table 3 Convergence results when 7 = 0(1’2) with C = 60 and aspect ratio 50 (rows 1-4) and 500 (rows
5-7)

h1=hy T er2m) ei’? e(T);2 nA nT ei

0.01-0.5 0.025 0.68 0.18 0.046 0.032 0.095 2.21
0.0025-0.125 0.0125 0.22 0.16 0.013 0.0063 0.028 2.09
0.000625-0.03125 0.00625 0.058 0.14 0.0035 0.0010 0.0072 2.09
0.00015625-0.0078125 0.003125 0.015 0.32 0.00089 0.00045 0.0018 2.13
0.001-0.5 0.025 0.68 0.017 0.046 0.0032 0.096 2.07
0.00025-0.125 0.0125 0.22 0.015 0.013 0.00063 0.028 2.03
0.0000625-0.03125 0.00625 0.058 0.025 0.0036 0.00018 0.0073 2.05

Then, we check that the quadratic reconstruction in (18) and (19) yields an error indicator
of optimal second order in time. We choose /# ~ O(t?2) so that the error due to the space
discretization is negligible. The numerical results presented in the Tables 3 and 4 show that
both the L?(£2) error at final time and the time indicator n” are ~ O(z?). The effectivity
index tends to a value close to 2. Note that in this case, ¢i 2% is away from 1, which implies
that the post-processing included in our error indicator in space n* is not accurate; but this
is unimportant since n* is much smaller than the error indicator in time 1’ .

In order to check that the effectivity index does not depend on £2 and 7', we reproduce
the same experiment on a domain 2 = (0, 10) x (0, 1) for several values of the final time
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Table 4 Convergence results when i = 0(12) with C = 240 and aspect ratio 50 (rows 1-5) and 500 (rows

6-8)
h1=hy T er2(H ei?? e(T);2 UA UT ei
0.01-0.5 0.025 6.18 0.11 0.24 0.15 0.84 3.66
0.0025-0.125 0.0125 4.28 0.047 0.12 0.033 0.38 3.16
0.000625-0.03125 0.00625 2.15 0.048 0.050 0.0059 0.12 2.42
0.00015625-0.0078125 0.003125 0.75 0.039 0.016 0.0026 0.034 2.11
0.0000390625-0.001953125  0.0015625  0.21 0.13 0.042 0.0018 0.0087  2.11
0.001-0.5 0.025 6.37 0.011 0.24 0.015 0.94 39
0.00025-0.125 0.0125 4.30 0.0045  0.12 0.0034 0.39 3.17
0.0000625-0.03125 0.00625 2.15 0.0039  0.051 0.0010 0.12 2.42
0.000015612-0.0078125 0.003125 0.75 0.011 0.016 0.00076  0.034 2.10
Table 5 Convergence results .77 A T .
when 2 = [0,10] x [0, 1]and T L €r2@b) € ey n el
varies; h1 = 0.000625,
hy = 0.03125, 7 = 0.000125 05 0.014 1.00  0.000031 0.00070  0.000015  22.63
1 0.0205 1.00 0.000043  0.00099 0.000019  22.87
1.5 0.024 1.00  0.000052 0.0012 0.000023  23.31
5 0.045 1.00  0.000085 0.0022 0.000041  26.25
9.5 0.073 1.00  0.00013 0.0031 0.000056  23.12
Table 6 Convergence results .77 A T .
when 2 =[0,10] x [0, 1]and 7 | ‘12w ¢ e@pz n e
varies; 11 = 0.000625,
hy = 0.03125, 7 = 0.00625 0.5 0.059 0.24 0.0036 0.0018 0.0073 2.11
1 0.16 0.12 0.0071 0.0025 0.014 2.08
1.5 0.29 0.084  0.011 0.0031 0.021 2.08
5 1.59 0.028  0.032 0.0057 0.073 221
9.5 3.60 0.017  0.057 0.0079 0.14 2.43

T. The corresponding results are presented in Tables 5 and 6 for C = 60 and meshes with

aspect ratio 50. The effectivity index remains close to the values obtained previously.

In order to obtain an effectivity index close to one, we divide the space indicator n* by
20 and the time indicator n7 by 2. We report the result obtain in Tables 7 and 8 where we
consider the normalized error indicator

(n*)?

(n")?

400 4

The corresponding effectivity index is shown to be near a value of 1 when 17?> = O(z?).
In the sequel, we will always consider the normalized indicators without introducing new

notations.
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Table7 Convergence results with the normalized error indicator when W2 = 0(12) with C = 60 and aspect
ratio 50 (rows 1-4) and 500 (rows 5-7)

hi=hy T er2ut ei?Z  e(T);2 7420 nT )2 ei
0.01-0.05 0.005 0.13 096  0.0025 0.001 0.0024 1.02
0.004-0.2 0.0025 0.049 0.98  0.0007 0.00015 0.00060 0.93
0.0016-0.08 0.00125 0.022 1.00  0.00016 0.000077 0.00015 1.03
0.00064-0.032  0.000625 0.0084 1.00  0.000038 0.00002 0.000038 1.12
0.001-0.5 0.0005 0.012 1.00  0.000020 0.000040  0.000027 1.7
0.0004-0.2 0.00025 0.0047 1.00  0.000010 0.0000086  0.0000068  1.16

0.00016-0.08 0.000125 0.0021 1.00 0.00000304  0.0000026  0.0000017 1.01

Table 8 Convergence results with the normalized error indicator when W2 = 0(r2) with C = 240 and
aspect ratio 50 (rows 1-4) and 500 (rows 5-7)

h1-=hy T er2em) ei’? e(T);2 nA/ZO nT/Z ei
0.01-0.05 0.005 1.43 0.47 0.031 0.0053 0.028 0.91
0.004-0.2 0.0025 0.55 0.52 0.010 0.0014 0.01 1.01
0.0016-0.08 0.00125 0.18 0.703 0.0027 0.00045 0.0028 1.03
0.00064-0.032 0.000625 0.06 0.83 0.00069 0.00012 0.00070 1.04
0.001-0.5 0.0005 0.075 0.96 0.00044 0.00020 0.00046 1.12
0.0004-0.2 0.00025 0.029 0.98 0.00012 0.000051 0.00011 1.04
0.00016-0.08 0.000125 0.013 1.00 0.000032 0.000015 0.000029 1.1

4.2 An Adaptive Algorithm in Space and Time

Although the analysis in Sect. 3 is restricted to a single mesh 7;,, we now present an adaptive
space-time algorithm which involves several meshes. Then the question of interpolation
between meshes is discussed.

The goal of the adaptive space-time algorithm is to control [le(T)|l2(g)- Given a pre-
scribed tolerance TOL, we want to ensure that

A2 T 2\ /2
0.75 TOL < (%) < 1.25T0L.
A sufficient condition is to ensure that, forn =0,1,2,..., N — 1
0.752 TOL? "1 1.252 TOL? " +!
= Y k) s (32)
KeTy
and 2 2 _n+l 2 2 _ntl
0.75* TOL~ t" 1.25¢ TOL* t"
= Y k) (33)
KeTy

The main steps of the adaptive algorithm are summarized in Fig. 1. At each time step, a
new mesh is built, whenever needed. Then, the previous finite element approximation, ”Z

has to be interpolated in order to compute the current one, uZH . More precisely, if we denote
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Set T,?O, 1‘?1’ n=0,t=0,7',i=0. Initialization.
while t < T do Time loop
t=t+7rnt! Increment next time step

Compute u}l’Jrl on 7,7,
for K € 7', do

Compute nﬁwn‘ n?n Error estimators
end for
if (32) and (33) are satisfied then Mesh and time step are correct

T}:[)Jrl _ Thyfzv"nJrz — gl

i=0

n=mn+1 Go to next iteration
else

t=1¢t—rntl

if (32) is not satisfied then Mesh adaptation

Build new adapted mesh T,[fwl
if n > 0 then
Up =T U Interpolate the old solution on the new mesh
end if
i=1i+1
end if
if (33) is not satisfied then Time adaptation
If Z (q};m,)z is too big (resp. too small), decrease (resp. increase) 77!
KeTy,
end if
end if
end while

Fig. 1 Adaptive algorithm. The index i denotes the number of remeshing required to build an acceptable
mesh at current time, starting from the mesh accepted at previous time

by 7}1" ; and 7;1”1 41 two successive meshes. generat.ed at tim.e "1, and by Vitis Vitiyy the
associated finite elements spaces, we consider the interpolation operator

n . n n
vt " Vi = Vgt

If a new mesh has to be built, then we interpolate the values of u}, from V;', to V!, 41 and

compute uzﬂ € V.| such that

n+1 n n
/ Wp  — Thit1¥h
2

1
ot t58-V (“ZH + ﬂﬁ,mu’ﬁ) — ") n + 8B - Vo) =0,

(34)
forall v, € V), 41 Five interpolation operators have been considered.

the linear Lagrange interpolation,

the exact L2 projection [5,18],

the conservative algorithm of [19],

the Ritz hyperbolic projection [12],

the modified hyperbolic projection defined below.

We give more details on the last choice. For g € H'(£2), wedefine ”lf,wl HY Q) > V,ﬁ

i+1
by
/Q T i 18Vhdx + /;Z(Shﬂ <V 18P - Vup)dx
= /9 gupdx + /;2(8;,,3 -Vg)(pB - Vup)dx,Yuy, € V/’:l,i+1' 35)
The projection T[;:’ ;41 clearly satisfies the following property
17 1802 ) + 1808 - V7 1810 o) < N8lfagg) + 1818 - Vel T2y (36)
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Stability of the scheme (34) is not guaranteed with the four first interpolation operators.
Stability can be proven when 7y, , is defined by (35) and &), constant.

Lemma 2 Assume that 5y, is constant and f = 0. Let MZ'H be the solution of (34) with n}’l’,i_H
being defined by (35). Then, we have

/(u;'l+1)2dx+5,3/ (/3.vM;+1)2dx§/(ug)zdx+a,%/ (B-Vul)?dx, ¥n=0,...,N
2 2 2 2

Proof Choose

n+1 n n n+1 n n
Uy T U, Up' = Ty,
Vn = 2 + 8 n+l

in (34). Using (9) yields

2
un+l — gy n+l 4 u”
n+1,2 h h,i+1"h hi+1"h
rn_‘_l/(u dx+8h/9< S| +ﬁ.< 5 dx

Jr—zrn+1 82 /Q(ﬁ -Vt dx

1 2 I o 2
=) /;2(”}?,141”2) dx + Sont 5 /g(ﬂ SV qup)Tdx.
We conclude by multiplying on each side by 2¢”*! and using (36). O

This stability result has a little interest in practice since J;, is not constant for adapted meshes.
In the numerical experiments, the best results have been obtained using the conservative
algorithm of [19], the other four interpolation operators are shown to be less accurate.

The BL2D software [20] is used in order to build anisotropic meshes, the indicator (nﬁ)2
being equidistributed in the directions of maximum and minimum stretching 1 g, 2, x . Each
triangle K is aligned with the eigenvectors of the error gradient matrix Gk (e), where ZZ
post-processing is used in order to approximate de/dx;. We shortly describe this remeshing
procedure. Since the BL2D software uses informations about vertices, we need to translate
the error indicator nA from triangles to vertices. We define, for all K € 7p,, the anisotropic
error indicator in direction r; g, by

tn+1

. auh .
(g)” = ‘f - 4 — B - Vup: (A gxrlxGr(@rix)Pdt, i=1,2,
L2(K)
and for all vertex P
1/4
A,i :
nP,n: Z(Kn ’ i=12.
KGZ)
PekK

Then, a sufficient condition to ensure (32) is the following. For all vertex P of the mesh, n;}:;
should satisfy
30.75* TOL* (" 1)?
2 4N?

3 1.25* TOL* (1?2
2 4N2 ’

< (pi)t < =1,2. (37)

Hereabove, the factor 3 is due to the fact that summing over all vertices is equivalent to
summing 3 times over all triangles; the factor 1/2 to the fact that the error is equidistributed
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in both directions 7 x, 12, k. Also, N, denotes the number of vertices of the current mesh.
The remeshing procedure is then the following : for every P, we set

D kK
KeT,
PekK .
Aip=—— =
> !
KeT,
PekK

1,2.

If (37) is not satisfied, we modify A; p by a factor S, else we keep it as is. Based on these
stretching values, a new mesh will be generated by the BL2D software. The results for
example (31) hereafter have been obtained setting 8 = %, while § = % was set for example
(38).

4.3 Numerical Results with Adapted Meshes and Adapted Time Steps

We now analyse the efficiency of the adaptive algorithm of Fig. 1. We first consider example
(31) with C = 60. The initial mesh is an isotropic mesh with mesh size 7 = 0.01, while the
initial time step is taken as ' = 0.002. The mesh and solution at final time are shown in
Figs. 2 and 3 when using conservative interpolation [19], C = 240 and TOL = 0.001.

Fig.2 Example (31). Mesh and solution with C = 240 and TOL = 0.001. Conservative interpolation between
meshesisusedat =0bt=0.5

1.000e+00

05
0
-05

-1.000e+00
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Fig. 3 Example (31). Zoom of Fig. 2 at final time

Table 9 Additional notations for the analysis of the adaptive algorithm

Ny :
N7 :
Np -
Ne¢ :
ar:

ar:

Number of vertices of the mesh at final time

Number of time steps

Number of remeshings

Number of time step changes

Maximum aspect ratio at final time, the aspect ratio on an element K being A1 g /A2 k

Average aspect ratio at final time

We investigate the number of vertices, aspect ratio, number of time steps and remesh-

ings, for various values of the prescribed tolerance TOL. The notations are summarized in
Table 9, the results in Table 10. The observations are the following when using conservative
interpolation.

The error at final time is approximatively divided by 2 when TOL is divided by 2.

Both effectivity indices ei and ei# are close to one,

The number of remeshing depends on the exact solution u (the larger C, the larger N,).
Since the solution depends only on the x variable, the total number of vertices at final
time is only doubled as the tolerance is divided by two (it should be multiplied by four
with isotropic meshes).

The total number of time steps is multiplied by /2 as the tolerance is divided by 2, which
confirms the second order convergence of the error indicator in time 57 .

Linear interpolation, the L? projection, the Ritz hyperbolic projection and the modified
hyperbolic projection (35) yield worse results, for instance the ZZ effectivity index is away
of one. This has already been been observed in [5,17] for hyperbolic problems, whereas
interpolation between meshes seems not to be an issue for parabolic problems [6].

The last test case is the stretching of a circle in a vortex flow. We again set £2 = (0, 1)2, T =

4. The initial condition is given by

uo(x1, x2) = tanh (—C(\/(xl —0.5)2 + (x2— 0.75)% — 0.15)) , (38)
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Fig. 4 Example (38). Mesh and
solution at time t =0, 1, 2, 3, 4,
with C = 240 and TOL = 0.025.
Conservative interpolation
between meshes is used
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where C = 60 or C = 240. No boundary conditions along 952 are prescribed. The velocity
field is defined by

= —2sin(y) cos(mwy) sin? (7 x) cos(0.257 1)
— \ 2sin(ry) cos(my) sin?(rx) cos(0.257t) )°

The exact solution is not known, however, since the flow is reversed at t = 2, we must have
u(xy, x2,4) = uo(xy, x2).

This example is not covered by our our theory, since the velocity field § depends on time.
Although the anisotropic error indicator in space 7 remains valid even for a time dependent
velocity field 8, the error indicator in time nT should be modified. However, this is beyond
the scope of the present study. Nevertheless, the use of the time indicator 57 defined by (30)
yields good results. Several meshes and numerical solutions are presented in Fig. 4 when

i+ ===z e;<act -
TOL=0.1 - - - -

TOL =0.05 - -

TOL =0.025 —-—-—

0.5

-0.5

0 0.2 0.4 0.6 0.8 1

Fig. 5 Example (38). Exact and numerical solutions at time 7" = 4 with C = 60. Plot of uj,; with respect to
x1 along the line xo = 0.75. Conservative interpolation between meshes is used

1+
0.5 -
0+
0.5
p
2 exact
TOL=0.1 - - - -
== TOL = 0.05 «+-eeee
T L ! TOL =0.025 —-—-— 4
0.3 0.32 0.34 0.36 0.38 0.4

Fig. 6 Example (38). Zoom at Fig. 5

@ Springer



J Sci Comput (2018) 75:350-375

373

0.5

e;<act B
TOL=0.1 - ---
TOL = 0.05 --=---eo-
TOL =0.025 —-—-—

0.4 0.6

0.8 1

Fig. 7 Example (38). Exact and numerical solutions at time 7" = 4 with C = 240. Plot of uj,; with respect
to x1 along the line xp = 0.75. Conservative interpolation between meshes is used

Table 11 Exemple 38

Stretching of a circle in a vortex
flow. Convergence results for the
adaptive algorithm with C = 60
(rows 1-4), C = 240, (rows 4-6).
Conservative interpolation
between meshes is used

Table 12 Exemple 38

Stretching of a circle in a vortex
flow. Convergence results with
non-adapted meshes and constant
time steps (12 = 0(h3/2)) with
C =60 (rows 1-3), C = 240,
(rows 4-6)

TOL e(T) )2 Ny Nq

0.1 0.026 928 705
0.05 0.019 2565 1334
0.025 0.01 7259 2366
0.0125 0.0048 23,873 4413
0.1 0.049 1315 2577
0.05 0.02 3779 5951
0.025 0.007 10,040 11,418
h T e(T) 2 Ny Nq

0.01 0.001 0.1 12,191 4000
0.005 0.0004 0.057 48,354 10,000
0.0025 0.00016 0.025 192,657 25,000
0.01 0.001 0.15 12,191 4000
0.005 0.0004 0.1 48,354 10,000
0.0025 0.00016 0.071 192,657 25,000

TOL = 0.025 and conservative interpolation is used. In Figs. 5, 6, 7, and 8 and Table 11
we have checked convergence of the computed solution at final time for several values of
TOL. For comparison, we present in Table 12 results with non-adapted uniform meshes and
constant time steps. In Fig. 9, we compare the solution computed on a non-adapted meshes
with the one obtained with the largest value TOL = 0.1 of the adaptive algorithm. Clearly,
the coarsest adapted solution is more accurate than the finest non-adapted one. Note that the
number of vertices of the non-adapted mesh is 200 larger than that of adapted meshes.
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T T T T
SO
0.5 | B
0 . -
-0.5 -
exact

’ TOL=0.1 - ---

. TOL = 0. -
-1 "" - . TOL=0.(I)25 ——— b

0.3 0.32 0.34 0.36 0.38 0.4

Fig. 8 Example (38). Zoom at Fig. 7

T
exact i
A adapted - ---
;| non adaptated ----------

0.5

-0.5

0 0.2 0.4 0.6 0.8 1

Fig.9 Example (38). Comparison between numerical solutions at time 7 = 4 with C = 60. Plot of u,; with
respect to x| along the line x; = 0.75. The adapted solution is computed with the Fig. 1 with TOL = 0.1. The
non-adapted solution is computed on a fix uniform mesh with constant time steps (2 = 0.0025, T = 0.00016)
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