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Abstract—Location check-ins contain both geographical and semantic information about the visited venues. Semantic information is
usually represented by means of tags (e.g., “restaurant”). Such data can reveal some personal information about users beyond what
they actually expect to disclose, hence their privacy is threatened. To mitigate such threats, several privacy protection techniques
based on location generalization have been proposed. Although the privacy implications of such techniques have been extensively
studied, the utility implications are mostly unknown. In this paper, we propose a predictive model for quantifying the effect of a
privacy-preserving technique (i.e., generalization) on the perceived utility of check-ins. We first study the users’ motivations behind their
location check-ins, based on a study targeted at Foursquare users (N = 77). We propose a machine-learning method for determining
the motivation behind each check-in, and we design a motivation-based predictive model for the utility implications of generalization.
Based on the survey data, our results show that the model accurately predicts the fine-grained motivation behind a check-in in 43% of
the cases and in 63% of the cases for the coarse-grained motivation. It also predicts, with a mean error of 0.52 (on a scale from 1 to 5),
the loss of utility caused by semantic and geographical generalization. This model makes it possible to design of utility-aware,
privacy-enhancing mechanisms in location-based online social networks. It also enables service providers to implement
location-sharing mechanisms that preserve both the utility and privacy for their users.
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1 INTRODUCTION

U SERS of popular online social networks (OSNs), such
as Facebook, Foursquare, and Twitter, are offered the

possibility to share their location information with other
users. Such a feature, commonly known as location check-
in, enables users to report to their friends that they are
in a particular venue (e.g., a restaurant) and to provide
recommendations and/or comments about it. Many users
take advantage of this feature; it is estimated that around
30% of users attach locations to their posts [2]. The reason
for sharing locations includes the desire to connect with
users’ social circles and to project an interesting image of
themselves [3], [4], thus achieving an objective greater than
simply disclosing geographical information [5], [6].
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By checking-in on so-called location-based social net-
works (LBSNs) about a place or an event, such as a restau-
rant or a gathering, users implicitly accept to reveal the
geographical coordinates and the semantic information of
the place. For example, when they check in at a restaurant,
users reveal the exact location of that restaurant, as well
as its type or category, represented in the form of tags,
such as “burger joint”, as illustrated in Figure 1 (venue
types are usually selected from a pre-defined set of tags,
organized as a hierarchical tree, where the “burger joint”
tag could be a descendant of the “restaurant” tag.). This
can lead to the exposure of additional private information
beyond what they intended to share and can make inference
attacks more powerful [7], much to the detriment of the
users’ privacy. Typical adversaries include other individuals
(users of the social network, social contacts of the user who
shared the information) and service providers (the social
network operator or third-parties); potential threats include
discrimination of all sorts. For instance, a location-based
social network provider can exploit semantic information to
learn activity patterns (e.g., people go to bars after going
to restaurants)1 to better infer the locations of its users
and to profile them. A collection of location check-ins by
a set of users can lead to their re-identification and also to
the inference of more personal information (e.g., complete
location trace, co-travelers, activities) [8], [9], [10]. The risks
are even higher when users share semantic information

1. Foursquare analyzes such patterns across all its users and uses
them to make next-venue recommendations, as illustrated in Figure 1.
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as well. Several works have studied the privacy risks and
the associated protection mechanisms for location semantic
data [11], [12], [13].

Figure 1. Illustration of a location check-in, on a popular location-based
social networks (i.e., Foursquare). Such a check-in contains geograph-
ical (i.e., address) and semantic (i.e., venue category) information. In
addition, the service provider extracts semantic mobility profiles across
its users (i.e., ‘Places people like to go after. . . ’), etc. The most relevant
pieces of information are circled (in red). Source: [7].

To protect their privacy, users can obfuscate their lo-
cation information, both at the geographical and semantic
levels. For instance, a user can generalize2 the semantic
information of the venue by sharing, “restaurant” instead of
“burger joint”. The user can also generalize the geographical
location of the venue by sharing the city instead of the
exact address of the venue. By decreasing the likelihood
that an adversary can track the location and activities of
a user over time, location obfuscation provides users with
better privacy guarantees. However, this could come at the
cost of a reduction in users’ perceived quality of service
(i.e., utility) and possibly prevent users from achieving the
objective they had in mind when they checked-in. It should
be noted that utility is a general and subjective concept: It
heavily depends on the users’ context and perception (hence
the terminology “perceived utility”). In this work, and more
specifically in the user survey on which it is based, we define
perceived utility as “the extent to which the initial [that
is, before location obfuscation by generalization is applied]
purpose of a check-in is still met [after location obfuscation
is applied]”. As our results are based on user data obtained
through the survey, this definition should be retained as the
formal definition of utility for our work, especially when
interpreting the experimental results.

In general, it is difficult for users to estimate the privacy
risks that stem from location sharing (this usually requires
performing statistical inference [9]) and to make rational
privacy-related decisions [15]. Moreover, it would be cum-
bersome for users to manually select the level of obfusca-
tion that they want to apply to every single one of their
check-ins. Therefore, automatic obfuscation mechanisms are
needed (note that automatically generated privacy recom-

2. In this work, we focus on the case of obfuscation by generalization.
The case of obfuscation by addition of fake information, as proposed in the
context of location privacy, is not considered in this work as it raises
complex additional questions about utility. In [14], Wang et al. study
the motivations behind fake check-ins.

mendations are valuable as well [16]). To balance privacy
and utility, such mechanisms must be able to quantify the
effect of obfuscation on both privacy and utility. Formal
frameworks have been proposed to quantify location pri-
vacy, e.g., [9]. Note that privacy depends on the adversary
being considered (other individuals, service providers, etc.)
and on the user’s perception (e.g., perceived sensitivity
of different types of private data). Still, utility is often
an overlooked aspect of the problem: Indeed, only a few
studies address the utility loss due to location obfuscation
for particular location-based services [17], [18], or the utility
loss in a formal framework for finding the optimal balance
between utility and privacy [19]. Despite these studies,
there is no methodology for modeling and predicting the
perceived utility loss that stems from the use of obfuscation
mechanisms in location-based social networks for each in-
dividual check-in (for each individual user). In this paper
we present such a methodology to design automatic and
personalized location-privacy protection mechanisms.

The problem of predicting a user’s perceived utility loss
due to obfuscation is deeply intertwined with the problem
of identifying why the user shares her location in the first
place. In this paper, we propose to first infer the motivation
of the user in sharing her location, and then to predict
the utility implications of a privacy-protection mechanism
on the user’s experience with respect to that particular
motivation.3 Using this approach, we can determine which
level of location obfuscation is acceptable to the user. For
example, a user might only want to convey the message
that she is performing a certain activity, such as “eating” in
a given city, without revealing the exact type or address
of the place where the activity is happening. In another
example, consider a user who checks in to a restaurant in
Hawaii; if her motivation is to invite some friends, then the
full address of the venue is needed, but if she wants to let
her friends know she is having a good time on vacation, then
coarse grain information about the place, e.g., “restaurant in
Hawaii”, suffices.

We rely on machine-learning algorithms to find the right
balance between the level of obfuscation and the utility
requirements of each user. Given some features about a
check-in (and the user’s behavior), our algorithms predict
user’s motivation for this check-in and her perceived utility
loss for each level of (geographical and semantic) location
obfuscation. The result of our algorithms is a personalized
utility function. We implement and test our methodology
on the results of an online survey involving 77 Foursquare
users (with 45 check-ins per user, hence a total of 3,465
check-ins). We predict the fine-grained purpose of the check-
ins (among 13 pre-selected purposes) with a raw correct
classification rate of 43% (63% for the coarse-grained pur-
pose, among 4 pre-selected such coarse-grained purposes)
and the effect of obfuscation on utility (on a scale from
1 to 5) with a mean prediction error of 0.52, significantly
improving the performance of our model compared to the
original version of this work [1].

Our survey’s results also shed light on the effects of
location obfuscation mechanisms on the perceived utility

3. Throughout the paper, we use the equivalent expressions motiva-
tion behind and purpose of check-ins interchangeably.
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by users in location check-in applications. In particular, our
results indicate that semantic obfuscation (e.g., reporting
“restaurant” instead of “burger joint”) has a significantly
larger negative effect on the perceived utility, compared
to geographic obfuscation (e.g., reporting the city instead
of the full address). Beyond helping model the perceived
utility, inferring the purposes of individual location check-
ins can also be useful for creating new features on LBSNs.
For example, users could be offered the “directions to the
venue” feature for check-ins for which the purpose is that
friends join, or be offered to share a group picture for check-
ins for which the purpose is to inform about the people
around them. More generally, the classification of the check-
ins (w.r.t. their purposes) could be used to automatically
adjust the way the check-in history is presented to the users.

In summary, our contributions are as follows:

1) We present the first, to the best of our knowledge,
methodology for inferring the motivations behind
users’ location check-ins and their effect on users’
perceived utility loss that is caused by different
levels of location obfuscation (for both the semantic
and geographical information).

2) We design a utility function that can be used as a
building block for designing usable utility-aware lo-
cation privacy-protection mechanisms. Such mecha-
nisms could automatically choose the optimal obfus-
cation level that matches the users’ preferences in
terms of utility (or simply make suggestions and let
the users choose).

3) We study the trade-off between utility and pri-
vacy in a location-based social network, namely
Foursquare, based on the results of a survey of
Foursquare users.

We make the following additional contributions, with re-
spect to the original version of this work [1]: (1) We study
in more detail the motivations behind location check-ins
by looking at the secondary purposes that the users self-
reported. (2) We analyze the differences between the check-
ins that contain text messages and those that do not. (3) We
propose and use a hierarchical model for the purposes
which enables us to predict, with a higher accuracy, the
coarse-grained purposes behind check-ins.; (4) We update
our predictive model for the perceived utility loss; by replac-
ing a simple regression model with a cost-sensitive multi-
class classifier, we substantially improve the mean error of
the prediction. Moreover, we release a sanitized version
of our dataset, which we describe in detail in Section 7.
Note that we also slightly improved the performance of the
purpose classifier by considering a few additional relevant
features, including the distance between the venue and the
user’s home.

The rest of the paper is organized as follows. After
discussing the related work in Section 2, we present the
methodology of our study in Section 3, which includes an
online survey with Foursquare users, and the definition
of the motivation and utility inference frameworks. Subse-
quently, we present quantitative results, by discussing both
descriptive statistics and performance values of our motiva-
tion classifier and utility model in Sections 4 and 5, respec-
tively. We describe the sanitized version of our dataset of

self-reported purposes and perceived utility for Foursquare
check-ins (our “utility dataset”) in Section 7 (we release it
to the community). We then discuss the limitations of our
study, conclude the paper and give directions for future
work in Section 8.

2 RELATED WORK

From a high-level perspective, there are two broad cate-
gories of study on location-sharing behavior and privacy
that are related to our work: (i) users’ motivations for
sharing location in online social networks, and (ii) location-
obfuscation techniques and their effect on perceived utility.

2.1 Motivations behind Location Sharing

Recently, several works investigated users’ motivations
for disclosing their locations in online social networks.
Patil et al. [3], [4] carried out two online user-studies
(N = 401 and N = 362 participants, respectively) and stud-
ied the users’ motivations for sharing locations on location-
based social networks (in particular on Foursquare). The
results show that users’ main motivations include the desire
to connect with their social circles and to project an inter-
esting image of themselves. In particular, their motivations
for sharing location information included the desire to tell
friends that they like a place, to keep their social circle
informed of where they are, to record their visits and to
appear “cool” and interesting. As a consequence, the pri-
mary reason for “checking in” appears to be related more to
attaining a higher-level objective, such as sharing a positive
experience or appearing “cool”, rather than to pointing to
a specific geographical location. Similarly, results presented
in [5], [6] also show that social connections and impression
management play a cardinal role in users’ location-sharing
activities in Foursquare. Following these results, we adopt
the motivation labels described in [3], [4] as the default
options available to users for selecting the main purposes
of their check-ins. In order to not restrict users to one of
the predefined choices, we also offer them the option of
entering a purpose that is not present in the predefined list.
Cramer et al. [20] performed an in-depth qualitative study
of users’ motivations for checking in on Foursquare (e.g.,
reasons, context, audience), based on interviews (N = 20)
and survey responses (N = 47). The main reasons for
sharing location, which they extracted from their inter-
view responses, match the motivation labels considered in
this paper. One of their findings is that check-ins serve
a utilitarian purpose (e.g., coordinate with friends), which
shows the need for utility models (that we provide in this
paper). The authors also investigate the importance of the
audience of check-ins and the perception of a user’s check-
ins by her friends. Kim et al. [21] study, based on a survey
with college students (N = 255), the relationship between
privacy concerns and motivations behind location check-ins.
Shajung et al. [22] study, based on a survey of Facebook
users (N = 523), the relationship between personality
and check-in behavior. Although related to our work, none
of the aforementioned papers tackles the inference of the
motivation behind check-ins and the design of (motivation-
based) utility models for check-ins when using location
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obfuscation techniques. In the same line as our work, the
system proposed by Zhu et al. [23], for inferring the purpose
of a trip (or the targeted activity at the destination), based on
(semantic) crowdsourced data (i.e., Puget Sound Research
Council survey data enriched with Foursquare venue data)
fed to a SVM classifier. Rachuri et al. [24] propose a system
for inferring a user’s activity, using data from so-called
soft sensors (e.g., app usage); the purpose of making such
predictions is to assist users in writing the text associated
with their location check-ins. For instance, if the system
detects that a user is eating, it would automatically suggests
a message of the form “Eating at. . . ” when she starts a
new check-in. They validate their approach on a real dataset
collected through a field experiment (N = 20). Finally, on a
related topic, Wang et al. [14] study the motivations behind
fake check-ins, and show, using a survey of Facebook users
(N = 23), that the main cause is external rewards provided
by the platform (e.g., badges).

2.2 Location Obfuscation

Location privacy is a well-studied topic in mobile net-
works. Many location obfuscation mechanisms have been
proposed, including reducing the granularity of the location
(generalization), adding noise to the geographical location,
adding fake location information, hiding location informa-
tion, and changing identifiers [17], [25], [26], [27], [28].

Brush et al. [29] study the users’ preferences and con-
cerns for several such algorithms by showing the result
of each of them to the users. Although the evaluation
showed that the users understood the basic effects of the
different algorithms, the authors highlighted a significant
lack of awareness of long-term threats. A related effort by
Tang et al. [30] presents the users with three different visual-
izations of their past shared locations; they study their effect
on the end-user privacy. They show that, depending on
the type of visualization, the users’ self-reported attitudes
diverged in terms of the people with whom they shared
their locations.

There are also targeted studies on the usability of the
proposed location obfuscation techniques for mobile appli-
cations [18], [31]. In particular, Micinski et al. [18] study
the relationship between location obfuscation and appli-
cation utility on the Android platform. By means of an
Android tool, called CloakDroid, they show that providing
applications with location information that is less precise
does not substantially hinder their functionality. A more
encompassing approach, taken by Henne et al. [31], enables
Android users to specify different obfuscation algorithms
for each Android application, including location truncation.

As users are not able to anticipate the privacy threats
against themselves, caused by the information they share,
there were several attempts to formalize the desirable lo-
cation privacy requirements that obfuscation mechanisms
should fulfill and the metrics to quantify them. Examples
of such works are Krumm’s [32], Decker’s [33], and Duck-
ham’s [34]. In a follow-up of these works, Shokri et al.
provide a framework [9] to quantify location privacy, and
a game-theoretic methodology [19] to optimize location
privacy while respecting users’ utility requirements. De-
spite all the efforts to design obfuscation mechanisms and

quantify their effect on users’ location privacy, no method-
ology is proposed for quantitatively estimating the utility
loss caused by different obfuscation mechanisms. Shokri
[35] proposes to optimize utility under privacy constraints
by taking a game-theoretical approach. The framework re-
quires a cost function, which is precisely what we provide,
in order to evaluate the utility loss caused by data pertur-
bation, which is precisely what we provide. The few stud-
ies that include the utility aspects of location-obfuscation
mechanisms reflect only the application dimension of it,
for example, by measuring the fraction of restaurants that
a user misses, the error of traffic information due to location
perturbation [17], [18], the perceived loss of quality-of-
service (quantified through user surveys) for location-based
place finders [36], or the error made by a prediction service
operating on location data (e.g., Yang et al. [37] use the
error from a travel purpose-prediction mechanism [23] as
a metric for the utility loss). Our work completes this line of
studies by providing a methodology to design user-centric
perceived utility functions for location check-ins in location-
based online social networks.

3 SURVEY AND DATA COLLECTION

In this work, we investigate (on a per-check-in basis) the
effect of geographical and semantic location obfuscation
(i.e., generalization) on the perceived utility of (Foursquare)
check-ins. In order to better understand users’ behaviors
and preferences when they check in at venues, we ran a user
study in early 2014. The study consists of a personalized
online survey, where participants are asked to provide addi-
tional information about their past check-ins on Foursquare.
Foursquare is a very popular location-based mobile social
network (unlike Facebook, users can only check-in from
their mobile devices), whose primary feature is to check-
in at venues: From the Foursquare mobile application or
website, users can select a venue close to their current
location (from the Foursquare database) and share their
presence at this venue, possibly together with a text message
and some pictures.4 Each venue is associated with a street
address and a semantic tag (from a predefined set of tags,
organized as a tree).5 Foursquare also provides incentives
(e.g., badges, “mayorship”, and rewards upon check-in) and
gaming features (e.g., treasure hunts in which participants
must check-in at specific venues).

In the survey, we ask the participants to state the purpose
of some of their past Foursquare check-ins, as well as to
specify to what extent the purpose of their check-ins would
still be met if their check-ins were obfuscated at several
levels (both geographical and semantic). Our findings are
then used to evaluate an automated system that predicts
the purpose and the extent to which such a purpose would
still be met, if the original check-in were replaced by an
obfuscated version of it.

In the following subsections, we discuss the details about
the participants and the contents of the survey.

4. We chose Foursquare because of its popularity and because check-
ins constitute its main feature. Moreover, its API enabled us to easily
access all the information required to generate the survey.

5. https://developer.foursquare.com/categorytree. Last visited Dec.
2016.
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3.1 Participants and Remuneration

To recruit participants, we made use of the Amazon Me-
chanical Turk (MTurk) platform; it enabled us to draw can-
didates from a pool of users with diverse backgrounds [38]
and to limit the bias of the results towards academic and stu-
dent behavior, inherent to on-campus surveys. We screened
participants according to the following admission criteria: (i)
aged between 18 and 80 years, (ii) with an active Foursquare
account, (iii) with at least 75 check-ins over the last 24
months,6 (iv) with at least 20 check-ins containing some
text. Furthermore, to ensure a minimal level of diversity
in the check-ins, we allowed only the participants who had
checked-in at, at least, 15 different venues, stemming from at
least 5 different venue types (with at least 2 different venues
for each type). Note that we considered only venues that
have both precise geographic and semantic information,
and that have a non-negligible number of unique visitors.
Moreover, we screened the MTurk participants according to
their past performance on the platform: They had to have
a minimum human intelligence task (HIT) approval rate
of 95% and at least 100 past approved HITs. This was a
preliminary step to preventing inexperienced and sloppy
workers from participating in our survey.

Our survey is based on the participants’ actual check-ins
on Foursquare posted over the last 24 months (we collected
through a specific application we developed), and it requires
a significant amount of time to complete (30-45 minutes). To
encourage the participants to participate in the survey and
to temporarily grant us access to their Foursquare data, we
rewarded them with a fixed amount of money (US $4.5 per
HIT [39], [40]). At the end of the study, the average per-hour
remuneration for the participants was US $8.50.

3.2 Online Survey

The survey, divided into two parts, was composed of a total
of 68 questions. In the first part, participants replied to 18
questions pertaining to general demographics, as well as
technology and location-sharing habits. The remaining 45
questions were constructed by using information collected
from the users’ own Foursquare check-ins.

Before beginning the survey, the participants were pre-
sented with a welcome page that indicated the scope and
purpose of the study. After agreeing with the privacy
and data-use policies7, they were asked to log in to their
Foursquare account and grant us access to their check-ins
and friend lists. After this step, our application verified if
the participants actually fulfilled the admission criteria and,
if so, it allowed them to continue to the first (static) set of
questions.

Following the first part, the participants were presented
with the second (personalized) part of the survey, where
they answered a set of questions for each of the 45 check-ins,

6. In order to prevent survey participants from artificially creating
new check-ins only to match the admission criteria, only the check-ins
made over the 24 months before the starting date of the survey were
taken into account.

7. They approve a data retention and processing agreement, inform-
ing them that all data collected in our study is used solely for the
purpose of our academic research project, and that we will not disclose
or use it in any other way than what is explicitly mentioned.

Figure 2. Screenshot of our online survey website. Participants are
presented with some of their own past Foursquare check-ins and they
are asked some questions about the purpose of their check-ins and
the effect of (geographical and semantic) location obfuscation on their
perceived utility. For privacy reasons, we blurred the name of the partic-
ipant.

totaling 405 personalized questions. For each of their check-
ins, the participants were presented with the time of the
check-in, the venue (its name and its location displayed on a
map), and the associated text message, if any (see Figure 2).8

These questions allowed participants to select one an-
swer per question item, among a set of pre-defined choices.
We asked participants to state (1) the primary and (op-
tionally) secondary purpose of the check-in, (2) whether
the text in the check-in is related to the location, (3) the
extent to which the purpose of the check-in would still be
met if it were replaced by a less detailed check-in (we had
four different versions with varying levels of geographical
and semantic obfuscation), (4) the most important detail in
the check-in and (5) the most similar check-in in terms of
purpose, among two other suggested check-ins present in
the user’s own questions. In particular, for (1) we allowed
users to either select one among a set of 13 proposed choices
(based on [3], [4] and our internal experiment) or to specify
a different one in free-text. In the end, we only made use of
(1) and (3).

We considered two levels of obfuscation (low and high),
both at the geographical and the semantic levels. Geo-
graphic obfuscation reveals only some of the geographic
information (the street number, street name, zip code, city,
state, and country); semantic obfuscation reveals only an
ancestor, in Foursquare’s semantic hierarchy, of the semantic
tag of the venue (in our dataset, semantic tags have 3 to 4

8. Note that we did not include the pictures associated with the
check-ins; in our dataset, only 6% of the check-ins contained pictures.



6 IEEE TRANSACTIONS ON MOBILE COMPUTING

Table 1
Example of alternative check-ins with different combinations of geographical and semantic obfuscation levels.

Obfuscation levels Example
Original check-in The Westin Hotel, 320 N Dearborn St. (Chicago 60654, IL, United States)
Low semantic, Low geographical (Ls-Lg) At a hotel, on Dearborn St. (Chicago 60654, IL, United States)
High semantic, Low geographical (Hs-Lg) At a travel & transport place, on Dearborn St. (Chicago 60654, IL, United States)
Low semantic, High geographical (Ls-Hg) At a hotel, in Chicago (IL, United States)
High semantic, High geographical (Hs-Hg) At a travel & transport place, in Chicago (IL, United States)

ancestors). The four combinations of obfuscation levels are
defined as follows and are illustrated on a sample venue in
Table 1:

1) Low semantic obfuscation, Low geographical obfuscation
(Ls-Lg): Instead of the full venue information, we
show only the immediate ancestor in the semantic
hierarchy of the venue, and we display only the
street name/city/state/country (without the street
number).

2) High semantic, Low geographical (Hs-Lg): We show
the second ancestor, and display the street
name/city/state/country.

3) Low semantic, High geographical (Ls-Hg): We
show the immediate ancestor, and display the
city/state/country.

4) High semantic, High geographical (Hs-Hg): We
show the second ancestor, and display the
city/state/country.

Geographical obfuscation relies on the Google Geocod-
ing API to convert the venue addresses to a structured
format (street number, street name, zipcode, city, state,
country), whereas semantic obfuscation relies on the tree
structure of the set of tags provided by Foursquare. Table 1
shows an example of a check-in with the four alternatives,
where a participant has to state, on a discrete 5-point scale
(where 1 means “Not at all” and 5 means “Perfectly”),
the extent to which her purpose would still be met if her
original check-in were replaced by each of the alternative
ones. As the results presented in this work are based on
the survey data, this definition should be retained as the
formal definition of perceived utility. It can be assumed
that a users’ perceived utility includes both the benefits
she gets by making the check-in and, by transitivity [41],
the benefits her friends get by reading her check-in (as
considered in [42]). Note also that the utility loss caused
by location obfuscation (and the purpose behind a check-
in) might depend on the audience of the check-in. However,
as Foursquare offers only two options for the audience of
a check-in (public or friends), this aspect cannot be studied
through this survey and is therefore left for future work.
Figure 2 shows a lightened screenshot of our survey website
for a sample check-in.

In order to detect and discard sloppy answers, we per-
formed two tests: time analysis and purpose diversity. For
both parts of the survey, we analyzed how long it took
participants to complete them, and we discarded the par-
ticipants whose timings were lower than twice the standard
deviation around the mean time. Regarding the diversity in
the stated purpose, we retained participants who chose at

least two distinct purposes at least twice in their answers.
To avoid wasting participants’ time, we did not include
“dummy” questions in the survey, as our previous expe-
rience showed they were answered correctly, even by the
participants who provided sloppy answers.

3.3 Statistics about the Participants

After filtering out participants who did not meet the admis-
sion criteria, we obtained a total of 77 valid questionnaires.
The average age of the respondents were 29±6 years, where
the oldest and youngest participants were 50 and 19, respec-
tively. 57% were female, and the participants were almost
all based in the US (96%). The other participants came from
Canada (1), Norway (1) and Israel (1). Only 14% of them
were students, whereas the rest of them listed occupational
sectors such as education (12%), medical (8%), and arts and
entertainment (8%). Only 7% of participants stated that they
were unemployed.

When asked about technology usage, all respondents
reported to have been using social networks for more than 2
years, with 67% of them connecting once per week or more
often. With respect to privacy on the Internet, on average
the participants were mildly concerned (average score of 2.9
on a 5-point scale, where 1 means ”not at all” and 5 means
”very much”). A similar result was observed when we asked
about their level of comfort when other people “tag” them
at different locations (score of 2.2 on a 5-point scale, where
1 means “not at all” and 5 means “very comfortable”).

3.4 Purposes of Check-ins

In the second part of the survey, participants were asked to
provide the main purpose for each of their 45 check-ins.

Overall, the 13 purposes that participants could select
from were sufficient to explain, as a primary purpose, 99%
of all 3465 check-ins. Figure 3 shows the distribution over
the participants’ primary and secondary purposes for their
check-ins. We can observe that, among the top four primary
purposes (which account for 63% of all check-ins), there are
only those that are either related to higher-level social goals
(such as informing about their current activity or mood9)
or to personal record-keeping purposes, which corroborates
the results obtained by [3], [4]. The purpose of informing
about the actual location was selected only for less than 9%
of the check-ins. As for the secondary purposes, we observe
a similar trend (note that in 28% of the cases, the survey
participants did not specify a secondary purpose).

9. Recent research has shown that mood is correlated with location
and context in general [43].
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Figure 3. Proportion of primary (left bars) and secondary (right bars)
purposes for the users’ check-ins. The top four primary purposes, which
account for 63% of the total, represent only high-level social and per-
sonal goals. Informing about the actual location is only the 5th most
frequent purpose, selected in less than 9% of the cases. Some check-
ins do not have a secondary purpose (28%).

In spite of such a large difference between the first and
second group of purposes, we are aware of only one major
social network (Facebook) that allows users to share their
mood in a structured way, in addition to the actual post or
check-in. Other providers, such as Twitter or Foursquare, do
not yet provide this possibility; they rely on users to express
their mood in an unstructured way in their messages.
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Figure 4. Proportions of primary purposes for the users’ check-ins, with
(left bars) and without (right bars) text attached to them.

We also compare the distributions of primary purposes,
for check-ins with and without text, depicted in Figure 4.10

10. This is based on the fact that the has_text feature is one of the
most influential, according to our preliminary analysis based on the
information gain metric; we explain this in more detail in Section 4.2.

Check-ins with text account for 68% of our dataset. We
observe a striking difference between the two distributions,
which demonstrate there exists two distinct use-cases for
check-ins. For check-ins without text, the most frequent
purpose, by far, is “Keep track of the places I visit”: People
use such check-ins to keep a record of the venues they are
at and this goal can be met without the need to attach a text
message. For check-ins with text, however, higher-level so-
cial purposes, such as “share mood”, are more represented:
Reporting solely the venue a user is at is clearly not enough
to convey her current mood; a text message is therefore
needed to achieve this purpose.

Finally, in order to analyze the purposes of the check-ins
at a higher level (see Section 4.2.2), we propose a purpose
hierarchy by clustering all the 13 fine-grained purpose la-
bels into 4 coarse-grained purpose labels. Figure 5 depicts
the proposed hierarchy. The corresponding distribution of
coarse-grained purposes (based solely on reported primary
purposes) on the entire dataset is as follows: informa-
tive (40%), utilitarian (22%), personal (33%), gaming (5%).
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Figure 5. Proposed hierarchy for check-in purposes. The 13 fine-grained
purpose labels are clustered into 4 different coarse-grained purpose
labels.

3.5 Utility of Check-ins vs. Obfuscation Levels

Given the aforementioned findings, hereafter we investigate
the effect of the reduction of details in a check-in on its
perceived utility for the user. We define “utility” as the
extent to which the purpose of a check-in is still met after
an obfuscation function (which removes some information
about the check-in, as shown in Table 1) is applied. In our
survey, participants selected the utility value on a discrete
5-point scale, where 1 means “Not at all” and 5 means
“Perfectly”.

First, we study the relationship between obfuscation and
utility in general, where we do not distinguish between the
different purposes of the check-ins. Second, we perform this
analysis on a per-purpose level, showing that the purpose
mediates the effects of obfuscation on the utility. These
findings constitute the basis for the development of our
purpose-inference framework and our utility-obfuscation
model.

3.5.1 Utility vs. Obfuscation (in General)
In order to study the general relationship between util-
ity and obfuscation, we group the check-ins according to
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Figure 6. Proportion of check-ins with their perceived utility, for different
levels of geographical and semantic obfuscation. A utility of 1 means
that the purpose of the check-in is not met at all after the obfuscation,
whereas a utility of 5 means that the purpose is met perfectly after the
obfuscation. Perceived utility decreases with the level of obfuscation;
semantic obfuscation has a stronger (negative) effect on utility.

the four combinations of obfuscation levels, described in
the section ”Survey and Data Collection”, i.e., (Ls-Lg),(Hs-
Lg),(Ls-Hg),(Hs-Hg). The results are depicted in Figure 6.11

We observe that even with the lowest obfuscation level
(Ls-Lg), 38% of all check-ins would still keep a maximum
utility, whereas, for 21% of them, the utility would be
severely affected. When the level of semantic obfuscation
increases (Hs-Lg), there is a sharp increase (+70%) of the
check-ins that would lose all utility, and a significant de-
crease (-50%) of those that have maximal utility. Hence,
semantic obfuscation has a sharp negative effect on the
utility of check-ins. However, in the scenario where it is
the geographical obfuscation that increases instead of the
semantic (Ls-Hg), the results show that there is only a mod-
erate increase (+25%) of check-ins with the lowest utility,
compared to the base case Ls-Lg, and a moderate (-37%)
decrease of the check-ins that would still keep a maximum
utility. Therefore, compared to the geographical obfuscation,
our results indicate that the semantic obfuscation has a
greater negative effect on utility.

3.5.2 Utility vs. Obfuscation (Given the Purpose)

Figure 7 shows the participants’ utility scores for check-
ins, grouped according to their purpose: “inform about
activity” (Figure 7a), “appear cool/interesting” (Figure 7b),
and “wish people to join” (Figure 7c).

For the check-ins with the purpose of informing others
about the user’s activity (which is the most popular purpose
with 22% of total check-ins), we observe an even stronger
effect of semantic obfuscation on the utility, compared to
geographical obfuscation. In particular, compared to the Ls-
Lg scenario, the lowest utility score increases from 19% to
40% (+111%), when the semantic obfuscation is increased;
however, by increasing the geographical obfuscation, the
same utility score increases only from 19% to 21% (+11%).
A similar message is conveyed by the sharp decrease of
the highest utility from 39% to 7% (-83%) for the high
semantic obfuscation, as compared to only a -42% for high
geographical.12

11. The differences among the averages of the four obfuscation levels
are statistically significant, both pairwise and globally (a χ2 test of
homogeneity gives a p-value: p < .01). The p-value is computed from
the data and quantifies the significance of the observed difference.

12. p < .01

For check-ins with the purpose of appearing
cool/interesting (Figure 7b), the utility scores exhibit lower
variations as compared to Figure 7a and more in accordance
with the general motivation-utility results shown in Figure
6.13 An interesting result is shown by Figure 7c, where the
purpose of the check-ins is “wish people to join”. In this
case, we do not observe any significant differences between
semantic and geographical obfuscation on the utility scores;
in fact, the only statistically significant one is between Ls-Lg
vs. Hs-Hg (p < .05). Hence, as expected, it seems that any
kind of strong obfuscation has a largely negative impact
on the utility of this kind of check-ins. Nevertheless, the
presence of 25% of obfuscated check-ins with a maximum
utility score might suggest that, for these users, wishing
people to join them could be interpreted as a wish for other
people to get in touch with the user, in order to obtain more
detailed information about his precise location. Then, the
user could engage with other people in a more interactive
way, through other means (phone call and/or messages).
Further investigation of specific cases is an interesting
objective that we intend to pursue as future work.

The results presented so far show that the purpose of a
check-in can indeed mediate the effect of different types of
obfuscation techniques (semantic and geographical) on the
perceived utility. Using our findings, in the two following
sections, we describe and evaluate (on the data collected in
our survey) an automated purpose-based utility model for
location check-ins on Foursquare. Our solution is split into
two blocks (Figure 8): First, we present a framework to infer
the purpose of check-ins, based on a number of features
extracted from the check-ins (e.g., location, semantic and
textual information). Second, we present a utility model that
uses, among other features, the (inferred) purposes of check-
ins to predict the utility loss caused by the use of different
obfuscation techniques.

4 CHECK-IN PURPOSE INFERENCE

A location check-in usually consists of two parts: The struc-
tured venue information (geographic coordinates and se-
mantic hierarchy) and an (optional) unstructured text input
by the user. In our work, we derive meaningful features for
both parts by taking advantage of techniques from Natural
Language Processing (NLP) and by crafting features specific
to location-sharing on social networks.

4.1 From Check-ins to Features
]Using the check-in information, we extract features that
describe the check-ins and that might encode information
about the user’s motivation for checking-in, having the
Foursquare context in mind (e.g., distance to home, mood
extracted from the text). The different features are combined
in a single feature vector that will be fed to the machine-
learning algorithm (i.e., a classifier), in order to derive the
most likely purpose for each check-in. Hereafter we describe
all the different components of the feature vector. The list of
the features included in our sanitized dataset (described in
Section 7), which constitutes a subset of all the features we

13. All differences are statistically significant at p < .01, except for
Hs-Lg vs. Hs-Hg for which p < .05.
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Figure 7. Proportion of check-ins with their perceived utility, for different levels of geographical and semantic obfuscation, according to their purpose.
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Purpose Inference

Utility Loss 
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Figure 8. Workflow of the utility model framework, including the purpose
inference stage.

used in our evaluation, is given in Table 6 (p. 17). Note that,
for practical reasons, we consider only features that can be
extracted from the information that would be available to
an automatic tool running on the users’ devices. Regarding
the feature selection, it is performed automatically upon
learning the model. Standard techniques include informa-
tion gain-based feature selection (InfoGain) and correlation-
based (CSFSubset) [44] feature subset selection. The former
measures how each feature contributes in decreasing the
overall entropy, and the latter measures the individual
predictive ability of each feature, along with the degree of
redundancy between them. Note that some classifiers (e.g.,
Random Forests) perform this step internally upon training.

4.1.1 Structured Venue and User Features

By using the Foursquare API, we access the following data
about each check-in: venue name and type, number of
check-ins at a venue, and complete address. Moreover, we
extract the user’s age, total number of check-ins, occupation
and gender. Such features enable the classifier to exploit the
fact that users with similar demographic attributes might
exhibit similar behaviors. Finally, in order to enable the
classifier to detect similarities between venues based on the
position of their semantic tags in the tag tree, we include
the ancestors, in the semantic-tag hierarchy, of the venues’
tags: Even though an Italian restaurant and an American
restaurant have different semantic tags, they are somewhat

similar; this can be deduced from the fact that they share the
same parent tags, namely “restaurant”.

4.1.2 Unstructured Text Features
Using prior studies in the analysis of short texts, we ex-
tract the following high-level text-related features from
each check-in: the emotion (such as joy or anger) [45] and
the sentiment (positive or negative) [46]. These features
are determined from other low-level features such as n-
grams, punctuation marks, emoticons, capitals, key words
and character repetitions. We used the Python NLP toolkit
(NLTK 3.0) for the extraction of the low-level textual fea-
tures14, and we used a Naive Bayes classifier (trained on
relevant short-texts [45], [47]) in order to extract the high-
level ones. Such features can help us infer the purposes
of check-ins; typically, it is less likely that the purpose of
a check-in is “say that I like it” or “recommend it” if the
emotion extracted from the associated text is “anger” and
the sentiment is “negative”. Several other pieces of work
focus on the extraction of sentiment at the post/check-in
level [48], [49], [50]. We also include some features that
capture the presence of specific keywords (including punc-
tuation and smileys) in the text associated with the check-
ins. For instance, we capture whether the word “yummy”
appears in the text. Such a feature typically enables the
classifier to identify check-ins with purpose “Say I like it”
(for restaurants).

4.1.3 Hybrid Features
To capture the correlation that might exist between the
users’ text and the venue information, we compute the
longest common substring and, afterwards, the Levenshtein
distance [51] between that substring and each field related
to the venue. For instance, we determine whether the name
and the city of the venue appears in the check-in text.

We also include some hybrid features computed from the
user and venue attributes. For instance, for a given check-
in, we compute the distance between the venue location and
the user’s home location. In addition to the raw distance, we
include binary features that indicate whether the venue loca-
tion and the user’s home are in the same city/state/country.
The rationale behind the inclusion of such features is that
users might exhibit different behaviors depending on how
far they are from home.

14. Available from https://www.nltk.org/. Last visited: Dec. 2016.
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4.2 Inferring Purposes with Machine Learning
After we generate the feature vector for each check-in,
we use it in a multi-class classifier to determine the most
likely purpose of the corresponding check-in. We train the
classifier on the data of all the users (10-fold cross-validation
on the entire dataset). However, we retain the userID as one
of the features. By doing so, we can benefit from a larger
training set (compared to the case where the classifier used
to infer the purpose of a user’s check-in is trained only
on the data of this particular user) while still being able
to distinguish (through the userID feature) the check-ins
made by the user who made the check-in which purpose
is being inferred. This trade-off is discussed and analyzed
in [40], [52]. Figure 8 shows the workflow of the entire
inference process. We experimented with a Random Forest
classifier [53],15 using up to 100 trees of up to 10 features).
Our results are obtained using the well-established WEKA
toolkit [54], based on 10-fold cross validation. In order to
avoid overfitting, we keep the default parameters used in
the implementation of the various classifiers provided in
WEKA. The source used to build the utility model from the
survey data is provided with the sanitized utility dataset
(described in Section 7). We use the data obtained through
our survey as ground-truth to train the classifier (i.e., su-
pervised learning) and to validate the results. We evaluate
the performance of our prediction framework in inferring
the fine-grained purpose of a check-in (among 13 labels,
as described in Section 3.4) and its coarse-grained purpose
(among 4 labels). We use the correct classification rate (CCR)
as a performance metric and compare the performance of
the considered classifier to that of a ZeroR classifier; this
classifier always returns the most frequent label observed in
the training set. The ZeroR classifier is the optimal classifier
when no features are available. Using ZeroR as a baseline
enables us to assess the benefits (and the potential) of using
contextual features to predict the purposes of the check-ins.

For a first experiment, we determine the most influential
features based on the information gain metric. The top
features are, the (pseudo) user identifiers (such as user
ID and hometown; this shows that check-in behaviors are
highly personal), the venue type and location (note that the
venue location might act as a pseudo identifier as our survey
participants live in different cities), whether the check-in
contains text, and whether the check-in contains a badge.

4.2.1 Inferring fine-grained purposes (13 labels)
Table 2 shows the performance of our purpose inference
classifier (Random Forest), in the form of a confusion ma-
trix, for the fine-grained purposes of the check-ins. These
results are obtained from all the check-ins for which the
participants specified a purpose (3435 in total). The cell at
the intersection of row (a) and column (b) shows the number
of check-ins with purpose (a) that are classified as purpose
(b). The diagonal cells thus correspond to the correctly
classified check-ins. For a global performance metric, we
use the Correct Classification Rate (CCR): the proportion of

15. We experimented with various classifiers implemented in WEKA,
with their default parameters. We report the results obtained with
a Random Forest classifier as it is fast and gives, on our dataset,
good prediction performance. Optimizing the performance through
advanced models and parameters is out of the scope of this work.

check-ins for which the inferred purpose matches the actual
one (i.e., the sum of the diagonal cells, normalized by the
total number of check-ins). We obtain a CCR of 43%;16 this
has to be compared to the performance of a classifier that
does not have access to any check-in information. When no
information is available, the optimal classification consists
in assigning the most frequent label to all instances (here,
(c) “Inform about activity”), namely a ZeroR classifier. In
this case, the CCR is the proportion of instances of the
most frequent class (in the training set), that is 22% in
our dataset. We use this as a baseline. Therefore, by using
our features, the CCR is almost two times higher than the
baseline. The relatively high number of possible purposes
(i.e., 13) should be taken into account when interpreting
the performance of the classifier: considering the number
of labels, the CCR is relatively high, and constitutes a signif-
icant improvement compared to a feature-less classifier (i.e.,
ZeroR, our baseline). As explained in the next section, the
CCR increases significantly when considering fewer (coarse-
grained) purpose labels. The results are comparable to the
those obtained in a similar setting [24]; we discuss ways to
improve the performance in Section 6. Note that misclassifi-
cations have different levels of severity (classifying a check-
in with purpose “Recommend it” as “Say I like it” can be
considered closer, in terms of similarity, than classifying it as
“Get a reward”). We relax the notion of correct classification
rate to include the proportion of check-ins for which the
inferred purpose is the self-reported primary or secondary
purpose. In this case, the CCR increases to 48%.

We also look at the precision and the recall for each label
(i.e., purpose). The precision for purpose (a) is defined as
the number of check-ins with purpose (a) that are classified
as purpose (a), normalized by the total number of check-ins
classified as purpose (a), i.e., the diagonal cell divided by the
sum of the cells of the column. The recall for purpose (a) is
the number of check-ins with purpose (a) that are classified
as purpose (a), normalized by the total number of check-ins
with purpose (a), i.e., the diagonal cell divided by the sum
of the cells of the row. Note that the recall corresponds to
the correct classification rate within a class. High values of
the precision and of the recall denote good performances of
the classifier.

It can be observed that for the three most frequent
purposes (i.e., (c) “Inform about activity”, (j) “Keep track of
the place I visit”, and (d) “Appear cool/interesting), which
cover more than half of the check-ins, the precision and the
recall are significantly higher than the baseline, i.e., greater
than 40%. The classifier performs best with check-ins with
purpose (l) “Participate in a game”; this is probably due
to the fact that such check-ins are specific to certain types
of venues and that the text messages are automatically
generated, hence easier to identify (the same applies to
purpose (k) “Get a reward”). The classifier performs worse
for check-ins with purpose (g) “Inform about venue”; this is
probably because this purpose is quite generic, and because
the proportion of such check-ins is too low to efficiently
learn meaningful patterns while training.

Next, we consider the sorted lists of purposes returned

16. We obtain 45% with a Support Vector Machine (SVM) classifier,
40% with a k-Nearest Neighbors (kNN) classifier.
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Table 2
Confusion matrix for the 13-label purpose classifier, with the per-label
precision and recall. The baseline is obtained by always assigning the
most frequent label in our dataset (i.e., (c) “Inform about activity”) to all
the check-ins. Note that the CCR corresponding to the confusion matrix
shown below does not match the average CCR reported in the text: the

first is obtained from a single experiment, whereas the latter is
aggregated over multiple experiments (with different seeds).

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) Prec. Rec.
Inform about location (a) 101 1 97 13 10 17 3 8 10 25 1 1 10 297 (9%) 43% 34%
Recommend it (b) 4 1 19 5 2 13 0 2 1 7 8 0 1 63 (2%) 5% 2%
Inform about activity (c) 38 1 462 45 13 62 7 30 7 76 1 7 3 752 (22%) 46% 61%
Appear cool/interesting (d) 9 0 79 171 17 53 1 24 11 71 5 4 4 449 (13%) 40% 38%
Inform about people around (e) 8 1 45 16 34 17 3 6 8 12 0 1 3 154 (4%) 30% 22%
Share mood (f) 17 3 83 58 9 166 2 22 4 36 1 2 1 404 (12%) 38% 41%
Inform about venue (g) 4 0 22 2 4 6 1 3 1 16 0 0 3 62 (2%) 4% 2%
Say that I like it (h) 7 2 62 33 9 33 1 71 1 44 5 2 3 273 (8%) 35% 26%
Wish people to join me (i) 11 2 15 14 4 8 3 6 37 13 0 3 2 118 (3%) 39% 31%
Keep track of the places I visit (j) 13 2 74 50 6 46 4 22 12 337 4 7 4 581 (17%) 51% 58%
Get a reward (k) 4 5 7 6 0 3 0 1 0 13 39 4 0 82 (2%) 57% 48%
Participate in a game (l) 4 0 7 7 2 3 0 2 1 6 5 54 0 91 (3%) 64% 59%
Inform about location + venue (m) 13 1 32 10 5 7 0 4 3 8 0 0 26 109 (3%) 43% 24%

Total (%)↓ Classified as →

by the classifier (instead of looking at only the first purpose
returned) and we look at the position (or rank) of the actual
purpose of the check-ins in this list. Figure 9 shows the
histogram and the cumulative distribution function of the
rank. It can be observed that, in 61% of the cases, the actual
purpose appears in the first two elements of the sorted list,
and for 80% of the cases it appears in the first four elements.
This implies, if users were to manually select the purpose
of their check-ins from a sorted drop-down list, for 80%
of the cases the output of the classifier would reduce the
user burden (hence increase usability), as they would find
the true purpose in the first four elements of the list.17 In
the baseline scenario, where a (feature-less) classifier simply
returns the list of purposes sorted by decreasing frequencies,
this numbers would drop to 39% (i.e., 22+17) and 64% (i.e.,
22+17+13+12).
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Figure 9. Rank of the actual purposes of the check-ins in the sorted list
of purposes returned by the classifier.

Finally, we compare the raw performance of the purpose
classifier for check-ins with and without text. Note that the
experimental setup (Random Forest classifier, training and
testing sets determined by 10-fold cross-validation, etc.) is
the same as in the previous experiments; only the presen-
tation differs, because we compute the CCRs separately for

17. Rachuri et al. [24] use the same methodology to evaluate their
activity-prediction framework.

Table 3
Confusion matrix for the 4-label coarse-grained purpose classifier, with

the per-label precision and recall.

(A) (B) (C) (D) Prec. Rec.
Informative (A) 1024 101 236 13 1374 (40%) 66% 75%
Utilitarian (B) 207 360 177 18 762 (22%) 60% 47%
Personal (C) 288 119 702 17 1126 (33%) 61% 62%
Gaming (D) 25 21 28 99 173 (5%) 67% 57%

↓ Classified as → Total (%)

the check-ins with and without text. For check-ins with a
text message attached, we obtain a CCR of 41% (for a CCR of
26% for the baseline, namely a ZeroR classifier that returns
the “Inform about activity” purpose label). For check-ins
without text, we obtain a substantially higher CCR of 52%
(for a CCR of 13% for the baseline). A possible explanation is
that, although check-ins with text contain more information
(which can be exploited through carefully selected, NLP-
based, text-related features), check-ins without text are, by
nature, simpler (this can be observed from the baseline
CCRs already); it is therefore “easier” to infer the purpose
behind check-ins without text.

4.2.2 Inferring coarse-grained purposes (4 labels)
Table 3 shows the performance of our purpose inference
classifier, for the coarse-grained purposes based on the
hierarchy presented in Section 3.4. The table has the same
format as the table presented in the previous section and
was generated in the same experimental setup. It can be
observed that, when we cluster the 13 different fine-grained
purposes into 4 coarse-grained purposes, the correct classi-
fication rates increases up to 63% (63% for check-ins with
text and 65% for check-ins without text) for a baseline CCR
of 40% (41% for check-ins with text and 38% for check-
ins without text). Interestingly, even for the coarse-grained
purpose “Gaming”, which is not frequently reported in
the dataset with only 5% of the check-ins, the precision is
reasonable; this can be explained by the fact that such check-
ins are in fact very specific.

Table 4
Summary of the results: performance, in terms of CCR, of the

classifiers and their corresponding baselines.

classifier baseline
all 43% 22%

Fine-grained purpose (13 labels) w/ text 41% 26%
w/o text 52% 13%

all 63% 40%
Coarse-grained purpose (4 labels) w/ text 63% 41%

w/o text 65% 38%

Table 4 summarizes the different experimental results
discussed in this section.

4.3 Discussion
The proposed system enables us to predict the purpose
behind a check-in, based on a number of features extracted
from it. The system is based on a supervised-learning ap-
proach, i.e., it learns from data that is manually labeled by
the user. User check-in behaviors vary across users and vary
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over time [20], [55], [56], therefore the system must cope
with these variations. Regarding the variations across users,
as explained above, for each check-in to be classified the
userID feature enables the classifier to distinguish between
the check-ins in the training set that were made by the
same user and those made by a different user. Regarding
the temporal variations for a given user, a possible solution
(discussed in [40], [52]) is to assign higher weights (during
training) to recent data in the training set or to simply
remove old data from the training set and to re-train the
model regularly.

5 PREDICTIVE UTILITY MODEL

In the previous section we show that a large proportion
of predicted motivation labels are correct. This suggests a
potential for exploiting automated methods for the inference
of users’ purposes for checking in on location-based social
networks. More importantly, we now look at the perceived
utility loss when (geographic and semantic) location ob-
fuscation mechanisms are used; such models are crucial to
designing utility-aware privacy-protection mechanisms.

In this section, we study the relationship between the
purpose of a check-in and the loss of perceived utility, in the
case where some of the details about it are obfuscated or not
revealed. Ultimately, our goal is to define a predictive model
of utility of a check-in, given the purpose (actual or inferred)
of the check-in, the level of (semantic and geographical)
obfuscation and characteristics of the venue and of the user
(i.e., the features presented in the previous section).

5.1 Inferring Perceived Utility

We focus on the core technique for inferring the perceived
utility. A more in-depth analysis of the factors causing
the utility loss is available in the original version of this
article [1]; this analysis is based on linear and non-linear
regression models, which provides only modest accuracy.
In this version, we propose a substantially more accurate
prediction model.

As for the purpose inference, we rely on a multi-class
classifier to decide between 5 different utility labels, specif-
ically a perceived utility of “1”, “2”, “3”, “4”, or “5”. How-
ever, unlike in the purpose inference case, not all prediction
errors are equal: Predicting a utility of “1” when the ac-
tual perceived utility is “3” is worse than predicting “2”.
Therefore, we rely on a cost-sensitive classifier and define
a penalty-matrix; by doing so, when training, the classifier
optimizes the total incorrect classification penalty, instead
of just the total number of incorrect classifications. Because
we want to minimize the prediction error, we simply set the
coefficients of the penalty matrix to the absolute value of the
difference between the predicted utility and the actual util-
ity, as shown in Table 5. As for the purpose inference, we use
the userID as one of the features and train the classifier on
the data of all the users, using 10-fold cross validation. The
workflow is the same as for purpose inference (i.e., feature
extraction, training and prediction–no post-processing). In
fact, the features used in the utility inference are the same
as for the purpose inference plus the obfuscation level and
possibly the predicted purpose.

Table 5
Penalty matrix for the cost-sensitive classifier used for predicting

perceived utility. The coefficients are set to the absolute value of the
difference between the predicted utility and the actual utility (i.e.,

reported by the survey participants).

↓ classified as→ 1 2 3 4 5
1 0 1 2 3 4
2 1 0 1 2 3
3 2 1 0 1 2
4 3 2 1 0 1
5 4 3 2 1 0

Figure 10 shows the distribution of errors for the pre-
diction of the perceived utility. The results are based on
a standard 10-fold cross-validation, with a cost-sensitive
decision tree classifier (i.e., J48 [57]), configured with the
penalty matrix depicted in Table 5. In a nutshell, J48 is
a specific type of decision tree, in which at each node of
the tree, a test is performed on a given feature and the
leaves contain labels. It can be observed that the correct
classification rate (i.e., which corresponds to the cases where
the prediction error is zero) is 65%. The corresponding mean
prediction error is 0.52 (for a baseline error of 1.9); the error
should be interpreted with respect to the size of the utility
range, i.e., [1, 5]. We believe that the error is sufficiently low
to enable the design and implementation of efficient utility-
aware privacy protection mechanisms. The proportion of
cases where the predictor overestimates the perceived utility
is roughly the same as the proportion where the predictor
underestimates it. Note that this could be biased by intro-
ducing asymmetry in the penalty matrix, that is, by varying
the relative cost of overestimation (penalties over the diago-
nal) vs. underestimation (penalties under the diagonal).

error	on	the	utility	prediction	proportion	[%]
0 65%
1 22%
2 8%
3 3%
4 1%

1 2 3 4 5
1 3490 290 162 75 103
2 463 697 343 177 100
3 224 310 1120 442 222
4 144 141 449 1156 416
5 67 76 196 378 2499

↓ Classified as →

0%

20%

40%

60%

80%

100%

0 1 2 3 4
Error on the utility prediction

Figure 10. Distribution of the absolute error for the utility prediction.

5.2 Privacy/Utility Trade-Off

In our study, one straightforward way to take the privacy of
check-ins into account is to quantify it through the different
obfuscation levels. In particular, one can assume that the
lowest level of privacy for a user is achieved when no
information about her check-in is obfuscated; then, a slightly
higher privacy level is achieved when low obfuscation is
used on both the semantic and geographic levels (Ls-Lg).
Then, an even higher privacy level is reached when either
semantic or geographic levels are high (Ls-Hg or Hs-Lg);
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finally, the highest level of privacy is achieved by the highest
level of obfuscation on both the semantic and geographic
levels (Hs-Hg). 3Note that the definition, and thus the quan-
tification, of privacy depends on the considered adversary
(i.e., the entity that has access to the data), typically other
users (social contacts or not) and/or service providers (main
or third-party). Therefore, in order to properly explore the
privacy/utility trade-off, the adversary must be specified.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

2 3 4 5
Utility

None Lg-Ls Hs-Lg Ls-Hg Hs-Lg or Ls-Hg Hg-Hs

Figure 11. Proportion of check-ins that can be obfuscated to the highest
level among the four semantic and geographical combinations, for a
given utility value in the interval {2, . . . , 5}. If no combination of obfus-
cation meets the utility value, the highest obfuscation combination is set
to “None”, i.e., we keep the full details of the check-in.

For each utility value in {2, . . . , 5}, Figure 11 shows the
proportion of check-ins, with respect to the highest obfusca-
tion level that meets it. As the obfuscation levels Ls-Hg and
Hs-Lg are not directly comparable, we distinguish between
the cases where (1) Ls-Hg meets the utility threshold and
Hs-Lg does not, (2) Hs-Lg meets the threshold and Ls-Hg
does not, and (3) both do (that we denote by Ls-Hg or Hs-Lg,
as any of the two levels can be used). If no obfuscation levels
meet the utility threshold, the highest obfuscation level is
set to “None”. For example, a check-in with the following
utility ratings (Ls-Lg: 3, Hs-Lg: 2, Ls-Hg: 3, Hs-Hg: 1) and a
utility value of 5 cannot be obfuscated (hence its category is
“None”), for a value of 3 it is “Ls-Hg”, for a value of 2 it is
“Ls-Hg or Hs-Lg”, and for a value of 1 it is “Hs-Hg”.

From the figure, we observe that even for very conserva-
tive users (who set the utility threshold to 5), 42% of their
check-ins can still be obfuscated, and 13% of their check-
ins can be obfuscated at the highest level (Hs-Hg). It is
interesting to note that, for a relatively high utility value
of 4, more than 60% of the check-ins can still be obfuscated,
including 26% at the highest level. These findings are of
great importance for service providers because they show
that it is possible to find a balance between privacy and
utility in location-based social networks; in fact, a large
majority of check-ins can be obfuscated without incurring
a significant loss of utility, which in turn enables social net-
work providers to put privacy in the design of their systems
with a negligible effect on their usability. For example, the
utility values could be used to select the default obfuscation
levels (semantic and geographic) for a given check-in, and
enable users to change it in case it does not meet her utility
preferences.

Furthermore, as the proposed mechanism can be exe-
cuted entirely on the users’ own device (in terms of purpose
inference and obfuscation levels), there is no need for the
service provider to store additional user information. This,
in turn, provides an additional incentive for users to adopt
it. In terms of execution time of the purpose inference and
estimation parts, the users are not required to train the
purpose classifier remotely, as it can be trained on a large
set of short texts offline; moreover, the time to optimize
the regression coefficients for the non-linear model is also
practical for current mobile devices. Such an optimization
is executed only sporadically by the users, typically when
they feel that the estimation no longer reflects their own
preferences.

The utility (loss) predictive model provides a building
block that enables a tool to automatically select the level
of location obfuscation to be applied to the check-ins. By
predicting the utility loss for different obfuscation levels,
such a tool can optimize the trade-off (i.e., find a sweet spot)
between privacy and utility. As explained above, a straight-
forward solution is to optimize privacy (conversely utility)
under a given threshold on utility (conversely privacy).
Another solution is to optimize a consolidated criterion
that takes into account both privacy and utility, as done
by Olteanu et al. in their game-theoretical framework for
strategic location-sharing [42].

6 DISCUSSION AND LIMITATIONS

The results presented in this work rely on a personalized
user survey, conducted over Amazon Mechanical Turk,
where participants were asked questions about their past
check-ins on Foursquare, and on simple predictive models
implemented in the WEKA toolkit. Although we tried to
obtain unbiased responses from participants with a positive
track-record and a minimum level of check-in diversity and
used standard machine-learning techniques, our study still
presents some limitations.

To start with, we did not perform any obfuscation on
the user-generated text associated to a check-in. Such a
text could contain information that can be used to identify
the exact venue, even if other data is obfuscated on the
semantic and geographic levels. Another limitation comes
from the fact that our population sample included almost
exclusively participants who are US residents, which could
limit the applicability of our results to populations where
information-sharing practices are significantly different. In
addition, the results from our survey, and the features used
in the predictive model, might be specific to Foursquare
and not applicable to other LBSNs. The fact that we asked
participants about their privacy preferences could introduce
a bias towards a more privacy-conscious behavior. On the
temporal dimension, we asked users to recall the purpose
of check-ins that occurred as far as two years in the past
(which makes it difficult for users to recall the context of
their check-ins), thus allowing a judgment error on the
users’ part in case of bad recall due to recency and primacy
effects [58]: Users tend to better recall situations that either
happened recently or far in the past. This issue could be
overcome by considering shorter periods of times (e.g., one
month in the past), or by including additional information
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to help participants remember about the context of their
check-in (e.g., attached pictures). Moreover, the four coarse-
grained purposes and the associated hierarchy, have not
been extensively validated and could, in some cases, not
reflect the actual purpose stated by the participants.

Regarding the performance of the models, which we
believe to be good and promising, it could be further im-
proved. For instance, by considering larger datasets (more
users and more decisions per users; such data would be
available should such a system be deployed), and by using
more advanced models with fine-tuned parameters and
more features. Because the size of the dataset is modest,
the models might be biased; as for over-fitting, we limit
the risks by using simple models with default parameters.
Also, in order to avoid the problem of feature-selection
(and the fact that the features are somewhat specific to
Foursquare) we could use featureless techniques (more
specifically, techniques that do not require the features to be
manually provided), such as deep-learning techniques. But
such techniques can only be used with very large training
sets, making it unsuitable for our dataset and for our prob-
lem. It should be noted that the goal of our work is to show
the feasibility of the approach rather than optimizing the
performance of the models. Such optimizations are therefore
left to future work.

Finally, quantifying utility is a difficult problem and our
approach has some limitations. The fact that the notion
of perceived utility is somewhat subjective could lead to
different interpretations among the participants, despite the
fact that we defined it formally as the “the extent to which
the initial purpose of a check-in is still met” in the text of
our survey. The use of a 5-point scale to quantify utility
(with only the 1 and 5 options annotated) could also, to
some extent, lead to different interpretations.

7 DISSEMINATION OF THE UTILITY DATASET

In order to enable other research groups working on privacy
protection in location check-in-based services to quantify
utility, we release a sanitized version of our utility dataset,
together with the associated predictive model (available
at https://people.unil.ch/kevinhuguenin/datasets#utility).
The sanitization process applied to the original dataset
aims at protecting the privacy of the survey participants
(in accordance with our commitment stated in the consent
form approved by the ethics committee of EPFL). It includes
removing uniquely identifiable survey participants (e.g.,
there was only one survey participant based in Canada),
removing uniquely identifiable attributes (e.g., hometown
of a user, text of a check-in), using broad categories for
sensitive attributes (e.g., we used only three age ranges),
etc. The sanitized utility dataset is available in the Attribute-
Relation File Format (ARFF), an input file format used by
the machine-learning tool WEKA that we employed for
building our predictive models. It contains 13,376 instances
(i.e., data points); each correspond to a survey response
from a participant, for a given check-in and a given level
of obfuscation (for each of her considered check-ins, a
participant was presented with four obfuscated version
and was asked to rate the utility on a scale from 1 to 5,
as illustrated in Figure 2). In addition to the obfuscation

level (Ls-Lg, Hs-Lg, Ls-Hg, Hs-Hg) and the utility rating
(between 1 and 5), each instance contains fourteen features
related to the user, the check-in, and the associated venue
(see Table 6 for the complete description of the features).
Despite the sanitization process, the released dataset still
enables relatively accurate utility prediction: When using
a J48 classifier trained and tested on the sanitized dataset
following a 10-fold cross-validation approach (as shown in
the WEKA-based Java program provided with the dataset),
the mean prediction error is 0.89 (to be compared to an error
of 0.52 for a classifier trained on the full original dataset and
1.9 for the baseline classifier).

8 CONCLUSION

In this paper, we study the users’ motivations for checking
in on a popular platform (Foursquare), and we design an
automated mechanism to infer these motivations, in order
to reduce the amount of unnecessarily disclosed details that
are released by a check-in.

With our insights, we design and evaluate an efficient
automated purpose inference mechanism. Furthermore, we
re-use the output of the inference mechanism to build and
evaluate a predictive model for utility, given the purpose
of the check-in and the level of obfuscation. We show that
a cost-sensitive classifier achieves a small mean prediction
error, and we show that for more than 60% of users’ check-
ins, at least one of the proposed obfuscation methods can
be used without significantly damaging their utility. This
makes it possible for application and system developers,
using generalization techniques, to incorporate privacy-
preserving tools that have a negligible effect on the utility
of the system. For instance, such a tool could choose the
appropriate level of obfuscation (in terms of utility, based
on– among other things –the inferred motivation behind the
check-in) and either directly apply this level of obfuscation
to the shared information or make a suggestion to the user
and let her choose her preferred level of obfuscations.
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Kévin Huguenin is an assistant professor at
HEC Lausanne–UNIL, which he joined in 2016.
Prior to that, he held a permanent researcher
position at LAAS-CNRS, France. He also worked
as a post-doctoral researcher at EPFL and at
McGill University. He earned his Ph.D. in com-
puter science from the Université de Rennes
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Table 6
Description of the attributes present in the sanitized utility dataset.

name description values
user_age age of the user {“[18-26)”, “[26-36)”, “[36-)”}
user_gender gender of the user {“male”, “female”}
checkin_part_of_day time of check-in time {“morning”, “afternoon”, “evening”, . . . }
checkin_day_of_week day of check-in {“Monday”, “Tuesday”, . . . }
checkin_has_text text attached to the check-in {“yes”, “no”}
checkin_has_picture pictures attached to the check-in {“yes”, “no”}
checkin_has_colocation other users tagged in the check-in {“yes”, “no”}
venue_nb_checkins number of check-ins at the venue {“[0-100)”, “[100-500)”, “[500-1000)”, . . . }
venue_distance_home distance between the venue and the user’s home [km] {“[0-100)”, “[100-1000)”, . . . }
venue_same_city venue is in the same city as the user’s home {“yes”, “no”}
venue_same_state venue is in the same state as the user’s home {“yes”, “no”}
venue_same_country venue is in the same country as the user’s home {“yes”, “no”}
venue_type_root1 first ancestor of the venue type (starting from the root5) {“Food”, “Arts & Entertainment”, . . . }
venue_type_root2 second ancestor of the venue type (starting from the root5) {“Burger Joint”, “Movie Theater”, . . . }
obfuscation level of obfuscation {“Ls-Lg”, “Ls-Hg”, “Hs-Lg”, “Hs-Hg”}
utility utility rating {1,2,3,4,5}


