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Abstract: From physics to the social sciences, information is now seen as a fundamental component
of reality. However, a form of information seems still underestimated, perhaps precisely because
it is so pervasive that we take it for granted: the information encoded in the very environment we
live in. We still do not fully understand how information takes the form of cities, and how our
minds deal with it in order to learn about the world, make daily decisions, and take part in the
complex system of interactions we create as we live together. This paper addresses three related
problems that need to be solved if we are to understand the role of environmental information: (1)
the physical problem: how can we preserve information in the built environment? (2) The semantic
problem: how do we make environmental information meaningful? and (3) the pragmatic problem:
how do we use environmental information in our daily lives? Attempting to devise a solution to
these problems, we introduce a three-layered model of information in cities, namely environmental
information in physical space, environmental information in semantic space, and the information
enacted by interacting agents. We propose forms of estimating entropy in these different layers,
and apply these measures to emblematic urban cases and simulated scenarios. Our results suggest
that ordered spatial structures and diverse land use patterns encode information, and that aspects of
physical and semantic information affect coordination in interaction systems.

Keywords: information; cities; interaction; environmental information; entropy; scale; enaction

1. Complex Systems in Relation: Minds, Cities and Societies

Look outside your window. You will see differences in shapes and sizes between buildings,
perhaps some taller and more concentrated in certain parts of the city. You will see that these buildings
are connected to streets, and that some of these streets are also likely to be different from one another.
Even if you have never been in this city or area before, you can walk around and find someone or
something you need in a busy street a couple of corners away. You can find your way around it.
When you choose a place, you join a situation that culminates networks of previous interactions
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that you never thought about, but were a condition for you to be there at that moment. All of these
situations are of course part of a larger structure. In fact, you are living within a pattern—the interplay
of recognizable relations and surprising variations, of hierarchy and contingency. As these patterns
involve tangible spaces, social activities and possibilities of action, this is a material, cognitive, and social
interplay—all at once. You are living in the interplay of minds, cities, and societies. Although these
three things are complex systems in their own right, the interesting thing is that they end up relating
to each other. By working together, minds, cities and societies somehow “merge” into one immensely
interactive system.

This article focuses on how humans use information in their environments in order to live
and put their actions together in complex systems of interaction. It does so drawing from different
traditions in information theory, cognitive studies, complexity theories of cities and social systems
theory. It also intends to overcome certain limitations of approaches that deal with these as isolated
systems. For instance, we learn from cognitive science about how humans relate to information in
their environment. In spite of challenges of empirical demonstration, a number of approaches assert
that our minds not only decode information from the environment, but also extend themselves into
it. Our cognitive activity is embodied, situated, and shaped by its continuous interaction with the
environment [1–4]. Theories of the extended mind assert a causal flow as the mind uses resources in
the environment and vice versa, a two-way interaction [5]. The cognitive system is seen as a network
of internal representations (not only of a single person, but several persons) extending into the external
environment, as information structures bring changes to “the face of the city” [6–8]. We wish to
explore other possibilities related to how information is preserved in the built environment, and how
it expresses and supports our interactions.

That means exploring how we deal with environmental information in order to perform, and how
we make the transition from information to interaction. This transition seems to lie at the heart of
a truly systemic problem: how do we put our actions together in a way to create a society? How
can individual actions develop into a coherent system of interactions? Or put another way, how
can we coordinate individual decisions performed by large numbers of people? We will argue that
the way we organize ourselves as societies depends crucially on how we deal particularly with the
information encoded in our environment. One thing that minds, cities and societies have in common
is information. They depend on it. Minds process information; societies exchange information in order
to exist; the built environment contains structures that might be cognized as information. In short,
these systems process, share and preserve information. A step further, they seem to relate to each other
through information. Following previous approaches, we will argue that this relationship begins with
our ability to encode information in the built environment—for instance, producing regularities and
differences in urban space. Minds and agency will cognize and enact this environmental information,
putting it to use.

Approaching these possibilities requires a number of methodological steps. Once the three-layered
conceptual model of information in cities is introduced, we will propose measures of entropy in these
different layers, and apply them to selected, emblematic urban cases from different regions of the
world, and to simulated scenarios. A measure of environmental information in physical space will
allow us to recognize cities with more disordered layouts encoding higher entropy levels. A measure
of environmental information in semantic space will suggest that location patterns associated with
diverse land use encode higher amounts of information. In turn, a measure of the information enacted
by interacting agents will suggest that physical and semantic aspects of space affect coordination in
interaction systems.

2. Introducing the Information-Interaction System

Shannon and Weaver’s [9] seminal book stimulated most discussions on information and probably
is the most important text written on it so far. Interestingly, the way Weaver approached the problem
of communication offers a remarkable way to understand how information bridges physical, cognitive,
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and interaction systems. Essentially, he posed three questions: “(A) How accurately can the symbols
of communication be transmitted? (The technical problem.) (B) How precisely do the transmitted
symbols convey the desired meaning? (The semantic problem). (C) How effectively does the received
meaning affect conduct in the desired way? (The effectiveness problem)” [10] (page 4; cf. [11,12]).
We suggest that the relationship between our minds, environment and actions involves similar issues:

1. The physical problem: how do we encode and decode information from the environment?
2. The semantic problem: how do we make environmental information meaningful?
3. The pragmatic problem: how does environmental information affect our actions?

We will see that information is somehow embedded in tangible spatialities that humans create
as their environment. In turn, semantic information is created in the form of meaningful contents, as
buildings and places associated with certain activities. We seem to recognize places as settings related
to our actions and to a shared idea of what they socially entail. Finally, the pragmatic problem involves
how we use information decoded from the environment to guide our actions and create interactions.
We propose to handle these forms of information in three overlapping, interacting layers (Figure 1).

Figure 1. Environmental information (1) physical space and (2) semantic space, and enacted
information (3): substantive components and measurable properties. Colours mean different land uses
and types of action, i.e., chronically reproduced modalities of work, commerce, leisure and on, usually
materialized as activities occurring in buildings and places (see Figure 8).

Classic spatial theories deal with these forms of information to different extents. For instance,
Lynch’s [13] “image of the city” operates mostly at the level of information 1, as it deals with
paths and physical cues related to cognition and navigation. Hillier’s [14] space syntax grasps
patterns of accessibility in street networks relating to cognition, movement and encounter. Haken and
Portugali’s [7,8] synergetic inter-representation networks bridge Shannon and semantic information as
basis for actions in the city, but without the systemic aspect of social interaction.

Our theoretical model places the physical form at the bottom as it provides an elementary but
fundamental layer of information related to our cognition and navigation in the environment. The
physical layer includes the arrangement of spatial elements like buildings and streets, and the relations
between them. In addition, it is a very stable form of information, changing slowly (cf. [12,15]). In turn,
the semantic layer has to do with how buildings and places support our actions. Its stability depends on
how long actions are performed in those places, and how long their meanings are retained in people’s
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memories, so it changes more easily. Environmental information 1 and 2 are inseparable, but they are
not necessarily intrinsic to each other. Although a building is created to support certain activity, it can
be used for different activities in time, sometimes with not need for physical adaptation (e.g., a house
becomes a shop or an office). Thus, physical information tends to remain, while semantic information
depends on ongoing actions and memories afforded by the building. Finally, the enacted layer of
information includes the effects that places and their meanings have on agents, bringing possibilities of
action [11]. Actions include speech, bodily gestures and the production of signs and objects that carry
meaning, and are therefore understandable by other agents, triggering interactions [16,17]. Enacted
information is created in the transitions between cognition, action and interaction. It produces and
works with environmental information, whenever we use the latter to make individual decisions
and communicate.

Now let us see what each layer individually is and how they interact as a single system putting
minds, cities and societies together (Figure 2). The environment that humans create is composed of
tangible and non-tangible structures, an interplay of physical spaces (environmental information 1) and
meaningful settings of action (environmental information 2). Environmental information encompasses
agents 1 and 2. Agents encode information in and decode information from the environment, and they
relate to it through their perception and situated cognition. In turn, cognition is situated because it
extends into action and emerges from interactions between agents and their environment. Cognition
also emerge from social interactions, as distributed processes in collective operations between agents
themselves [18,19]. As we shall see, this extension of cognition into the environment and into
how agents coordinate their actions is the very definition of ”enaction” [1], what we call enacted
information 3. Enacted information 3 encompasses perception, situated cognition and interactions,
and it is deeply related to its environment. Of course, all of these items and relationships involve
a vast literature and need proper, detailed definitions. Let us address them following the three-layered
conceptual architecture proposed above.

Figure 2. Schematic diagram of a general information-interaction system.

3. Environmental Information 1 (Physical Space)

Since Shannon’s [20] pioneering work on the mathematical theory of communication and
Wiener’s [21] cybernetics, the notion of information took other disciplines by storm in the 1950s
and 1960s [22]. Shannon arrived at a clear description of information through a probabilistic definition
of entropy, also explored by physicist Boltzmann [23] before him. For both, entropy is a measure of
the uncertainty of a system. The greater the number of potentially transmitted messages (Shannon)
or the number of distinct microscopic states of a thermodynamic system (Boltzmann), the higher the
corresponding entropy [24]. Shannon’s definition of information was proposed in the context of the
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problem of transmission of data, noise and channel capacity, from the point of view of engineering ([9],
pages 27, 31). He realized that the probability of different arrangements of signs could account for
the amount of information embedded in them. Despite the enormous impact of Shannon’s idea in
different areas, it has certain implications. Weaver [10] (page 19) himself pointed out that the idea
that “greater uncertainty, greater information go hand in hand” seems deeply counterintuitive. Since
Boltzmann, entropy is associated with disorder [24,25]. Physical arrangements with higher entropy
are characterized by higher levels of randomness, unpredictability or uncertainty. In turn, levels of
predictability may be associated with order. Ordered structures contain correlations such as similarities,
consistencies and associations that are the “substance” of information [26], like pieces of “coherence
above and beyond the bunching and scattering” entities [27] (page 1034). In this sense, information is
the pattern of organization of matter and energy [28] (page 10)—like regularities in the arrangement of
molecules in a piece of glass, organized parts composing a machine, or the pattern of activity location
taking the form of a central business district in a city. A step further, information is a property of
recognizable differences and internal correlations in systems that can be decoded by the system itself
or by other systems. Information does not require a conscious receiver, but it carries transmissible
codes that can guide change in physical processes, behaviour in living systems, and understanding in
conscious entities (cf. [29]). It involves intelligibility, but not necessarily “meaning”, as Shannon and
Weaver [9] correctly asserted.

The idea that physical things can encode information is not new in theories of cities either.
It is at the heart of Lynch’s [13] spatial elements recognized by people, guiding their navigation
in the environment, along with memory and representation, even though he did not quite use
the term “information”. Rapoport [30] (page 19) explicitly asserted that “physical elements of
the environment do encode information that people decode”. Hillier and Hanson [31] thought of
non-representational meaning embedded in physical configurations, as patterns guiding way-finding
correlated with patterns of co-presence. Haken and Portugali [7,8] have seen information latent in
street layouts and built form. Supposing that these theories are right, the fact that information can
be encoded in physical structures is very interesting. Information lasts longer when preserved in
tangible entities [26]. If physical spaces materialize information, we would have a form of expressing
information continuously—as long as these spatialities are out there. We could encode information in
the built environment and decode it while living in it. All these forms of information materialized in
physical space could be contextual resources useful to guide our actions. Such a property would open
extraordinary cognitive and practical possibilities.

In addition, how could humans encode information in the built environment in the first place? At
this point, there seems to be no definite answer to this question. Research in spatial information seems
to mostly focus on how we decode information from the environment, for instance the role of visual
perception, visual variables in navigation, and spatial decision-making (e.g., [32,33]). In turn, empirical
work in neuroscience has confirmed that the memory of an environment may be stored as a specific
combination of place-cell activities [34]. Neural algorithms integrate information about place, distance
and direction, forming a directionally oriented, topographically organized neural map of the spatial
environment. ”Grid cells” in the brain are activated whenever the animal’s position coincides with
any vertex of a hexagonal regular grid spanning the surface of the environment. Grid cells are critical
for vector-based navigation, which can be combined with path-based strategies to support navigation
in challenging environments. In addition, the mental map is anchored to external landmarks, but it
persists in their absence, suggesting that this grid-like position system may be part of a generalized,
path-integration-based map of the spatial environment [35–37].

In this sense, levels of regularity and predictability in spatial arrangements could be cognitively
useful to anchor agents’ internal system of navigation. Agents might capture levels of physical
information by recognizing regularity in frequencies of spatial events in the built environment. If that
is the case, the greater the variation of elements in the environment, the fewer the regularities that
allow inferences about the broader structure. If that is the case, which spatial arrangements contain
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more physical information? Chess experts show greater memory for chess-typical arrangements of
pieces than random arrangements [38]. We suggest that agents create information 1 by engendering
levels of order in the deepest constituents of built form, namely cellular aggregations. Imagine
a two-dimensional space in the shape of an orthogonal cell grid. Cells occupy positions in this grid,
composing different arrangement, like the emblematic cases in Figure 3. These arrangements display
different levels of order, apparent in the frequency of distances between cells. An extreme case is the
orthogonal arrangement (Figure 3, case 1). Perfectly regular arrangements like this are rare events in
the set of possible arrangements, so they seem like drops of order in a sea of disordered states. In most
states, cell distribution tends to contain low internal correlations, like cases 2 and 4. In case 3, positions
follow a patterned distribution. Some order is also visible in case 5, a spiraled pattern. The sixth case
brings deformed rings, like those found in unplanned urban grids. Capable of generalizing contiguity
between cells while keeping permeability, the very formation of such rings is a highly unlikely event.

Figure 3. Information in physical space: emblematic arrangements with different levels of order.
Case 1 is an extreme example of order, rare in the set of possible arrangements. In cases 2 and 4, cell
distributions contain low internal correlations. In case 3, positions follow a patterned distribution,
and in case 5 order is visible as a spiraled pattern. The sixth case shows deformed rings, highly unlikely
events which bring to mind unplanned urban structures.

Measuring Environmental Information 1

Approaches to visual information have adopted measures of information density and entropy
to assess the amount of redundancy and grouping related to cognitive efforts to extract task relevant
information [39,40]. We may pursue such possibility measuring levels of predictability in physical
arrangements using statistical concepts. A measure of information 1 should be able to grasp regularities
and variations in real configurations and different urban situations (Figure 4). For this purpose, we
suggest to measure Shannon entropy. As we have seen, high entropy corresponds to high levels
of randomness or unpredictability. In contrast, the presence of regularities and patterns in urban
structures corresponds to lower entropy. Hypothetically, cities with ordered structures would help
agents understand their environment, allowing them to make predictions about areas beyond their
fields of visibility. Agents can make inferences, memorize layouts and navigate more easily from
one place to another—say, grasping the pattern of blocks and intersections from local streets and
inferring that some blocks away they will still have the same pattern (see [13,14,41,42] on legibility
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and intelligibility in urban structures; References [6,32,33] on pattern recognition and spatial decision
making). A measure of spatial entropy can be explored to characterize and classify urban areas and
cities from different regions of the world. That is what we attempt to do for a number of emblematic
empirical cases. We are certainly aware that a few selected cases do not offer evidence to validate
a model. Nevertheless, these empirical analyses are intended as illustrations of the measures at work,
displaying their potential utility to capture levels of order and information in spatial arrangements.

Figure 4. Spatial distributions in real cities (9, 000, 000 m2 windows, 1000× 1000 cells), extracted from
Google My Maps. These sections of such emblematic cities will be used to compute Shannon entropy
and estimate the degree of disorder in cellular arrangements.

We propose to assess Shannon entropy as a proxy to disorder in cellular arrangements extracted
from public map repositories of cities such as Google My Maps. Background picture bases were
prepared and exported in high resolution, filtering layers and converting entities into solid raster
cells. We proceeded to test and analyze trade-offs between resolution, computation and precision in
results for distinct scales. We finally chose geographic areas of 9, 000, 000 m2. Images that underwent
a resizing process for 10002 cells were converted to a monochrome system through a geographic
information system (GIS), and then into a matrix of size 1000× 1000 cells with binary numerical values.
Then, we employed an approach usually applied for estimating the entropy of sequences of symbols
encoded in one-dimensional strings [43]. This approach has been widely used for different type of
datasets, from natural languages, speech analysis and behavioural sequences to deoxyribonucleic acid
(DNA) and spike emissions in neurons. However, estimating entropy is far from trivial. For datasets
corresponding to one-dimensional strings, the most straightforward method consists of defining the
block entropy of order n by

Hn = −∑
k

pn(k) log2[pn(k)], (1)
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where blocks are string segments of size n, and the sum runs over all the k possible n-blocks.
Equation (1) corresponds to the Shannon entropy of the probability distribution pn(k).

The Shannon entropy of the considered system [43,44] is:

h = lim
n→∞

Hn+1 − Hn = lim
n→∞

Hn/n, (2)

which measures the average amount of randomness per symbol that persists after all correlations and
constraints are taken into account. This approach can be applied to our problem once we have defined
the blocks for a two-dimensional matrix [45]. In this two-dimensional context, the most intuitive idea
is to consider a block of size n as a square which contains n cells. To obtain the sequence of Hn also for
n values that do not correspond to squares, we will consider blocks that interpolate perfect squares,
as described in Figure 5.

Figure 5. Entropy in configurations of different urban areas: Examples of blocks with nine cells are
shown in red for selected areas in Rio and Manhattan, NY (left), and are amplified on the right. Rio
shows a great deal of variation of configurations like (a). In turn, configurations like (b) are frequently
found in Manhattan. Essentially, pn(k) in Equation (1) accounts for the number of times every possible
configuration k appears in the map for a block of size n. A high frequency of certain configurations,
like in Manhattan, brings the entropy measure closer to 0, i.e., to higher levels of physical order. This
procedure for estimating entropy was applied for blocks with different sizes (i.e., number of cells,
below on the right). Here, we show the first nine blocks; other block sizes were generated through
this approach. Note that there is no unique natural way to scan a 2D matrix [45]. Different forms of
interpolating cells do not seem to influence the estimation of Hn.

Relation 2 gives precisely the entropy for a theoretical infinite set of data. In real situations where
the dataset is finite, our method estimates the probabilities of distinct arrangements of cells within
blocks up to a certain size n, counting their frequencies, and then estimates the limit. For example, for
H1, it is sufficient to have knowledge of the symbol distribution p1(2), which is approximated by the
frequency of 0 and 1 present in the dataset. Note that if our data were a purely random set, h would
coincide with H1, and p1(2) would give a full account of the spatial configuration. This is obviously
not true for urban situations, where strong long-range correlations are present. In this case, estimating
entropy is a difficult task, as taking them into account means computing Hn for a large n. In fact,
the estimation of h is good when the spatial range of correlations and memory is smaller than the
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maximum size of the block entropy we are able to compute. This estimation can be rendered difficult
because of the exponential increase of the number of distinct cells arrangements in blocks with n
(k = 2n). For instance, there are 512 different configurations for blocks with only nine cells. Difficulties
in capturing longer correlations lead to the overestimation of h. This is the case if sufficient care is
used in estimating each Hn. Otherwise, as strong fluctuations are already present for moderate block
lengths n, the estimates Hn are usually underestimated. These two concurrent effects may jeopardize
the estimation of entropy.

In our specific case with just two symbols, the estimation of Hn is surely not reasonable when
2n ≈ N, where N is the number of elements in our dataset [44]. Thus, in our situation where we
work with a matrix with 106 cells, this condition is verified for n ≈ 20, which means blocks of squares
with a linear length smaller than 5 cells, which corresponds to 15 meters (m). It follows that, if
a city has internal correlations larger than 15 m, the entropy estimation using block entropy will be
over-estimated. Results for the estimation of Hn/n and the corresponding entropy h for areas in five
selected cities are shown in Figure 6.

Figure 6. Measuring environmental information 1: estimated values of Hn/n for areas in five selected
cities. Continuous lines represent the best fitting of our data using the function: a + b/nc. The fitted
values of a give a reasonable extrapolation of the Shannon Entropy h of the dataset. Values are reported
in the legend. The selected area in Rio de Janeiro shows the highest level of disorder (lower level of
physical information) among areas in five selected cities.

The north area selected in Rio de Janeiro shows the highest level of disorder among selected areas
of cities. To a large extent, these results make empirical sense. However, it is less clear why Manhattan
would have higher disorder than the area selected in Beijing, given the highly regular grid structure
of the former. The reason for this finding can be ascribed to the maximum size of the block of cells
used for estimating entropy in our method, which has a linear size much smaller than the actual urban
blocks in Manhattan. Limited to the considered cell blocks, our measure is only able to capture sections
of Manhattan’s large urban blocks, which consist of very regular alignments of cells on their external
borders, but irregular arrangements on their interior. In turn, Beijing’s urban blocks display more
variations in shapes and sizes, but are very regular on their external border and interior arrangements.

Finally, this approach allows us to use different sizes of cell blocks for measuring physical
information present already at small local scales. Probabilities of empty cells and built cells are similar
for blocks with one cell for all analyzed urban areas, suggesting that such cities, selected from different
regions and spatial traditions, share a similar proportion of empty and built cells. This surprising
finding must be confirmed for larger samples of cities. In turn, block sizes larger than one cell showed
stronger differences in block entropy levels between cities, as expected. Differences in values were
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more pronounced as block sizes increased. These results are consistent with the general expected
behaviour for block entropies dependent on the block size for any system. It is interesting to note how
physical information can be grasped even at small scales and that disorder is shown to decrease as the
size of cell blocks analyzed increases, as larger scales of order and correlation begin to matter.

If we wish to improve the statistical robustness of our analysis by increasing the number of cells
in our dataset, we can follow two paths. The first is increasing map size. However, this is limited by
the size of cities and by the fact that we need relatively continuous urban areas in order to compare
them. Large geographical interruptions like mountains or lakes may interfere with the frequency of
blocks configurations, and should be avoided. The second is increasing map resolution. In this case,
we must increase the maximum value of n. However, the presence of large homogeneous features and
the noise produced by finer resolutions increase fluctuations in the estimation of the block entropy,
leading to a strong underestimation of entropy. Measures of spatial information can also be introduced
through analysis of the fractal dimension of urban structures [46]. Nevertheless, claims of fractality
are often made for data that only represent a limited range of scales [47,48]. The characteristic scale
of the urban block poses challenges to the idea of self-similarity—for instance, between blocks and
the larger spatial structure of Manhattan. A step further, fractal properties are usually found in data
characterized by larger scales than the ones we are analyzing in this paper. Therefore, we choose not
to connect spatial information with an approach to fractals in this work. Finally, the method we use
for estimating Shannon entropy in spatial configurations does not depend on a particular scale. This
condition is based on its very formulation and it is proven by the fact that it has been successfully used
for estimating entropy in systems that present self-similarity [49].

At this stage, our approach takes account of the physical information latent in the arrangements
of cells capturing relations of proximity, but eventually missing some correlations at large distances.
However, cellular growth shapes larger structures and paths as fundamental morphological features
of cities—a subject explored in other works [7,41,50,51]. In addition, there are other forms of
physical information, such as three-dimensional differences between buildings, physical cues and
landmarks [52,53]. Forms of estimating the effects of such aspects of physical information will be
subject for further work. Levels of regularity in physical space seem useful informational features in
cognition and navigation (cf. [7,8,14]). However, are they all that the environment can offer? There
might be a limit to the extent of information that physical space can encode, even if ordered to preserve
information. Environmental information needs to be more differentiated out if it is to get closer to
levels of differentiation found in actions. Thus, how could urban space support more information?

4. Environmental Information 2 (Semantic Space)

A number of theories have attempted to expand Shannon’s pioneering ideas on information
as messages comprising symbols encoded in well-formed strings of signals into different types
of information theory, in a way to deal with the second communication problem pointed out by
Weaver [10] (pages 4, 26). That would be the existence of another aspect to information related to
the interpretation of transmitted signs, or “how precisely do the transmitted symbols convey the
desired meaning”, involving a receiver able to subject the message to a second decoding. Indeed,
the specificity of semantic information requires clarification about its place among different types of
information theory. In this sense, Floridi [54] identifies three fundamental concepts: (i) information
as well-structured data; (ii) information as meaningful well-structured data; and (iii) information as
meaningful and truthful well-structured data. Shannon’s theory falls into the first category, since it
deals messages comprising uninterpreted symbols. The second category consists of theories of weakly
semantic information (TWSI). Finally, theories that place truth as a condition for information fall into
the third category, “strongly semantic information” (TSSI). Our approach to (environmental) semantic
information falls into the second category: one can encode and decode semantic information from the
environment with no resource to statements of truth or untruth. Truth statements do not apply since
environmental information does not depend on them to be cognized by agents.
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Let us look into these theories a little more closely. The first attempt to deal with the semantic
problem of “what symbols symbolise” involving contents or designata of symbols can be found
in Carnap and Bar-Hilliel’s [55] (p. 147) formal theory of semantic information. They connected
a probabilistic notion of information with the contents of statements in language systems. Later on,
Mackay [56] proposed a quantitative theory of qualitative information. Interestingly, Barwise and
Perry [57,58] and Dretske [59] have developed such possibilities into a theory: situation semantics.
“Situations” are limited parts of the world: events and episodes are situations in time, and scenes are
visually perceived situations (Barwise and Perry, 1980). Situation theory is geared to address the way
context facilitates and influences the rise and flow of information [60].

Dretske adapted elements of Shannon’s theory to produce a theory of semantic information in
which semantic content reduces to the intentional content of information, i.e., physical signs used
to transmit encoded symbols produced by a source have intentional content. Furthermore, and also
of great interest to our approach, semantic information in Dretske’s sense can also exist as a feature
independent of a single, individual mind, and can be quantified. Of course, places may hold different
meanings for different people. Like the understanding of words [19], two people probably will not
share a same semantic understanding about a place or an environment. A bar may be special for you
because you met your wife for the first time there, and I will never know that. The reason for this
is that meanings do not lie only in space: they also lie in people’s heads. That means that we could
hardly capture the plurality of meanings recognized by a single person in an environment. However,
even though the meaning of a place is associated with subjective interpretations, we can access its
conventional meaning as a social construction. Meanings are collectively encoded and shared in urban
space. I cannot access the special meaning you hold for that bar, but we both realize that that place is
a bar, encoded with this social meaning by the kind of recursive actions performed there.

This is known as semantic environmental information. Situation theorists require some presence
of information immanent in the environment [54]. The situation supports information: the context
contributes to the meaning performed in that context, and vice versa [16,60–62]. This is a powerful
condition. An environment semanticized by meanings-in-use brings its informational potential to
a direct relationship with action. People can recognize the meaning of a place in traces and artefacts
left by previous or ongoing actions, and associate these traces with their spatial milieu. Space not
only represents the activity, it is also enacted and, as such, laden with meanings. Spaces can “mean”
as much as our actions because they are semanticized by our actions. In addition, because space is
semanticized by our actions and share the same informational nature, at least in part, it finds a level of
differentiation similar to types of actions (see [7,63] on semantic categorization). Semantic information
renders the environment endogenous to action.

The physical environment takes on meaning when spatial elements stand for some social content,
and trigger associations with actions. However, what is the informational potential added by
semantic meanings encoded in the physical environment? We could think of the difference between
environmental information 1 and 2 like the difference between a black and white image and a colour
image. In comparison with tones of grey, colours are more diverse and contrasting. New possibilities
emerge as each colour finds its own palette of tones, leading to an enormous increase in combinatorial
possibilities within such distributions (Figure 7).

Many studies in cognitive science and spatial information theory have asserted associations
between physical features and semantic contents in cities. Certain cognitive processes trigger
associations with elements of the environment through the incorporation of socially acquired
information [64,65]. Information is classified into potentially shared categories [7,60,66]. Non-spatial
information can be integrated or associated with spatial information [67], as semantic categorical
grouping processes relate to spatial features such as roads to organize point-based locations [63,68–70].
Such form of “semantic clustering” can have effects on the memory of spatial locations [71].
The probability of a building or place to evoke a collectively shared mental representation is enhanced
by its physical appearance and visual identity, along with its visibility and location in the environment
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and the social information associated with activities performed there [6,72,73]. In short, in perceiving
a building, we perceive not only its form, but also the potential information enfolded in it [7].
We load the built environment with information. Our knowledge of spatial properties and patterns
can integrate semantic, visual, and configurational aspects projected into an urban environment as
“symbolic off-loading” (cf. [3]). A non-physical thing like meaning may control and change the physical
world [74].

Figure 7. Colours find their own palette of tones, becoming more diverse and contrasting in the
passage from grey to colour scales, leading to an enormous increase in combinatorial possibilities.
Photo: Vincent Laforet.

However, what does semantic environmental information do for our actions? Semantic
associations with places increase the power of the environment to inform us [65,67,71]. For instance,
we recall a restaurant more easily if we know that it is located besides a mall or another restaurant.
Locational patterns like that work cognitively: activities from a same industry will frequently be
located near each other whether they compete or establish forms of complementarity by similarity [75],
either way attracting more potential attention than if they were dispersed and isolated. Importantly,
different forms of specialization frequently overlap within a same area [76–78]. A heightened amount of
semantic information can be found both in the concentration of diverse activities and the specialization
of areas [79]. If an area has more dense and diverse activities, our chances of finding something we
need an increase, and we can guess that from visual and semantic cues. In other words, encoding the
physical world with semantically structured models brings advantages. It enables us to build inferences.
This property is crucial for our actions. Diverse and concentrated activities in urban areas trigger
more possibilities [52]. People can build instructions about such possibilities in the environment in
an indexical form [80]. Agents can find cognitive and practical synergy manifested in the form of
proximity, categorical grouping and clustering [81]. Local adjacencies between different activities may
create interesting complementarities from the point of view of agents in their efforts to perform and
coordinate their actions.

Measuring Environmental Information 2

Semantic similarity has been proposed as a measure to determine the difference between feature
type definitions [81,82]. We argue that a key point is to measure the diversity of social contents in
buildings and places.We propose to deal with such shared meanings through semantic maps [83].
Semantic maps can represent any form of social content in urban space, including kinds of interaction
in activity places. They do not necessarily capture individual interpretations and private memories
of places, but they can capture their social meanings. These meanings are part of the knowledge
of a social world and its environment, and should be enough to support our understanding of the
collective role of places, i.e., their role in supporting actions and interactions. Like any kind of social
and environmental knowledge, it must be built heuristically in situation-based behaviour in our daily
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interactions and context [6,18,84,85]. For simplicity, we choose classic categories in urban studies,
namely land uses varying from public squares to residential buildings, and apply them in the empirical
analysis of two archetypal urban areas (Figure 8, left). Land uses are variables usually employed in
analytical procedures in urban modelling.

Figure 8. Semantic maps: real distribution (top) and fictitious distribution (bottom) of land uses in
Porto Alegre’s central business district (CBD), Brazil. Corresponding Hm

j values are shown on the right.
Values shown on the right (from blue to red) are calculated with Equation 3. Values are calculated for
m = 10, with the cell j corresponding to a pixel of the maps on the left. The calculation is run over
a gray-scale copy of the maps. Source: Authors based on [75].

Semantic information can be measured as levels of diversity found in land use distributions,
analyzing local adjacencies between neighbour cells. In principle, we could do so by measuring
entropy using the same procedure used for information 1. Unfortunately, the fact that now we should
analyze a system characterized by more than two numerical values is an obstacle for a reasonable
estimation of frequencies, which limits the effective possibility of estimating the h values. For this
reason, we suggest a different measure. For each cell j, we define a block of cells correspondent to
a square of linear size m, centered in j. Inside this square, we measure the land use distribution, which
is approximated by the frequency f m(z) of the different z values (types of land use) present in the
block. For instance, in both cases in Figure 8, there are z = 8 types of land use. Then, we estimate the
value of Hm

j for the j-th position, given a neighbour cell of size m:

Hm
j = −∑

z
f m(z)log2[ f m(z)]. (3)
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Note that even though this measure is partly analogous with the previous entropy estimation,
it is indeed different. We are simply measuring an entropy-based scalar index for characterizing the
local distribution of different land uses in a given neighbourhood of j. This process can be run for all
cells present in the matrix, and it is analogous to some algorithms used in image processing. A graphic
analysis representing all the estimated Hm

j values can be produced. Applying this approach to these
two archetypal cases, we obtain results seen in Figure 8 (right).

The graphic analysis identifies cells of high diversity in both maps, corresponding to local
interfaces between land uses, a form of information potentially attractive to agents. However, the
real distribution contains a higher number of spots of cells of diverse semantic information than the
fictitious one. This distinction suggests the potential usefulness of this method to capture levels of
information 2 in different distributions of social contents in cities. Nevertheless, let us see how these
two forms of environmental information can be part of the interaction.

5. Information 3 (Enacted)

Reminding Weaver’s [10] third problem of communication (“How effectively does the received
meaning affect conduct”), we finally reach the problem of how agents use environmental information 1
and 2 to interact. We called this “enacted information” or information 3. The term “enaction” can be
found in a number of approaches, from Bruner’s (1966) description of knowledge as acquired and
manifested through action to Varela’s [1] “paradigm of enaction”. Our use of the term shares aspects
especially with the latter. The approach relates to emerging paradigms based on “embodiment”,
“situatedness”, and the relevance of cognition for action [3,86]. Enaction is “embodied” in the sense that
cognition depends upon the experience of a body with sensorimotor capacities “situated” in a more
encompassing biological, psychological and cultural context [1]. A step further, agents enact their
cognitive domain by actively and asymmetrically regulating the conditions of their exchange with their
environment. Enactive approaches evolved in opposition to computational cognitivism, and reject the
traditional pole of seeing the mind as only responding to environmental stimuli [19]. Instead, enactive
approaches focus on how sensory inputs from the environment guide actions, and actions modify
sensory returns and the environment itself, in perception-action loops. Interaction with the physical
and social environment would make measurable differences in cognition and vice versa [1].

Embodied interaction is also emblematic in enaction research. It is seen as “mutual participatory
sense-making” involving the emergence of roles, values, dispositions to act, and meanings [1]. Meaning
belongs to the relational domain established between the internal dynamics of the agent and elements
in the environment. It is inseparable from the context-dependent, embodied activity, without being
beyond the reach of scientific understanding. Agents “cast a web of significance on their world”:
exchanges with the world are inherently significant for the agent. In turn, meaning is derived from
information processing. Through meaning and interaction, agents extend beyond the strict confines of
their bodies, into the socio-linguistic register [1].

At this point, we reach a key problem in enactive approaches: how coordination emerges between
agents. The emission and reception of signals in language gives rise to the modulation and coordination
of actions. Interestingly, there is communication only if signal-mediated interactions result in
coordination of actions [87]. The semantic layer of information endows the enactive layer with
a fine-grained medium to convey meanings in communication, and vice versa [11]. This inherent
connection is consistent with previous approaches we have seen, namely the idea that agents rely on
environmental information to perform.

However, what exactly is the practical role of environmental information in this coordination of
actions? Does it have to do with interaction and the creation of systems of interaction? We have seen
that buildings and places mediate interactions. A physically and semantically structured space becomes
the referential frame that provides a form of organization to the field where interactions are performed. Places
become nodes in the unfolding connections between actions. These connections end up amounting
to networks of interactions between places, and between people and what they do. Let us see how
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this happens. Think of a place you might go in your daily life—say, in a busy street a couple of
corners away from your home. You will not go there by sheer luck or fate. The physical and semantic
environment has informed you that that the place could exist, and that it was a possibility for your
action, a means to join a social situation and take part in the huge system of interactions that structures
the world around you. The physical and semantic environment plays an active part in how you and
other agents there managed to reach some agreement or do something together, coordinating your
collective actions. In addition, that situation can be extrapolated to other situations. What happens
there tends to have ripple effects, with actions and their outputs connecting to other actions and
places, merging into a system of interactions that unfolds in larger scales through different media,
including the built environment of cities. In short, environmental information becomes a means of social
organization—or, in information theory terms, a means of reducing (social) entropy.

Now, given the enormous number of possibilities of interactions in a city [51], how precisely
can the environment inform us and help us select places and actualize interactions? How much do
different physical patterns (information 1) affect this combinatorial process? Would different levels of
diversity in activities (information 2) have different effects on levels of entropy in people’s actions? We
propose to assess probabilities of combinations of actions in different spatial scenarios, such as those
in Figure 9.

Figure 9. Diagram of agents converging in a fictitious, nearly random distribution (left), and in a real,
patterned one (right).

One way to do this is quantifying the amount of environmental information available for agents in
their decisions. We tested that idea through an “enaction model” able to assess information 3 proposed
in a companion article (Netto et al. [88]). Like situation semantics, our model considers agents, types of
action, spatial and temporal locations, situations (represented by activity places) and parameters able
to capture aspects of the agent’s cognitive behaviour, namely the ability to track and recognize social
situations, make decisions based on their individual orientations, and change their own actions and
the semantic environment. Our agent-based model (ABM) based on a city as a linear structure is able
to represent the minimal sufficient aspects of environmental information 1 (physical distance between
positions representing places) and information 2 (semantic differences in the information contents
of cells). The linear form of this city allows continuous movement across a sequence of locations,
eliminating centrality factors while taking into account periodic boundary conditions in order to reduce
border effects, eliminating the role of topology while isolating the problem of physical distance [89].
Our hypothesis is that as (a) physical proximity latent in environmental information 1 tends to increase
interactions between agents [90–92], its association with (b) environmental information 2 created by
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diversity in locational patterns increases the potential for interactions and the coordination of actions,
leading to reductions in the entropy of action in enacted information 3.

In each time-step, agents select and visit a specific cell within the city. The decision on which
action to perform next may be influenced by three different conditions: namely, (i) latent orientation,
the tendency of a single agent to act around a particular type of action, based on long-term memories
of how to act, shaping (along with short-term memory) current actions. They are initially randomly
distributed, and this condition remains over time. (ii) Current action performed by an agent as she
selects an activity place in order to perform a new action; this means an influence of the current action,
while allowing gradual changes of orientation in time influenced by other agents and activities. (iii)
Activity places where agents perform specific types of action. Agents select activity places closer to their
latent orientations and current actions, while being influenced by those activities. Visiting agents also
influence places, but places change at a slower rate. Agents co-evolve with their semantic environment.

Let us see how action orientations change in time t. Action orientation for agent i—from
a population of N agents—is represented by σi(t); while the type of activity in a place located at
the position x, is represented by σx(t). We quantify and update the action orientations of agents
weighting three variables: (i) latent orientation σin

i , which does not change in time; (ii) current action
σi(t); and(iii) activity place σx(t). Orientations will be updated according to the rule:

σi(t + 1) = ασin
i + βσi(t) + γσx(t), (4)

where α, β and γ are parameters of the model. The activity in places will be updated according to
the rule:

σx(t + 1) = σx(t) + θ ∑
i∈x

σi(t), (5)

where the sum runs for all agents in place x at time t. Parameter θ is a sufficiently small quantity to
grant that changes in activity places will be slower than changes in the actions of agents. In short,
places are less influenced by agents than the other way around. This means that, at every time-step,
a place would have its activity closer to the average of orientations of its visitors. Agent i chooses
a place to visit at time t based on the similarity (i.e., numeric proximity) of her action orientation and
the activity ongoing in a place. A possibility is to consider that agent i chooses to visit a place that
minimizes the function Ei(x, t) = |σi(t)− σx(t)|. Our ABM simulated two scenarios: a first one where
physical space and distances do not matter, or a materially inactive space; and a second one where
physical space matters, or a materially active space. In the first scenario, the agent chooses a place to
visit based only on the similarity between her action orientation and the activity located in space, i.e.,
minimizing Ei(x, t) = |σi(t)− σx(t)|. In the second scenario, the agent will take into account not only
similarity, but the physical distance to the activity located at x, giving preference to closer places of
a similar type. For example, in this scenario, an agent will choose the place that minimizes the function
Ei(x, t) = |(xi − x) · (σi(t)− σx(t))|. Summing up, an agent i selects at time t a particular activity place
located at x that minimizes the function Ei(x, t) (see [88]).

Enacted information is measured as a function of entropy: consider N(σ, t) the number of agents
with an action orientation σ at the time t. The total population is N = ∑σ N(σ, t)). We can compute
the frequency (or density) ρ(σ, t) of this orientation within a population with:

ρ(σ, t) =
1
N

N(σ, t). (6)

The entropy level for any distribution of orientations is:

S(t) = −∑
σ

ρ(σ, t) ln
(

ρ(σ, t)
)

. (7)



Entropy 2018, 20, 834 17 of 22

This describes how uneven the probability is of finding different action orientations. Higher
values mean that different actions have almost the same probability to happen, while lower values
indicate a system with clear action trends. The reduction of entropy implies that the probability of
certain actions increases, that is, actions grow in similarity. In the limit, as entropy falls to zero, all
agents in the system would reach the same action. Differences in the weight of factors over the next
action may lead to quite different levels of social entropy, in interfaces of simplified systems of action,
information, and space. We tested two kinds of scenarios: one where proximity between cells latent in
physical information does not matter to agents in their decisions (blue line) and one where it matters
(red line). Figure 10 shows the probability distribution of actors performing different action types at
the start (left) and at the end (right) of simulations, The scenario where proximity between activity
cells matters increases dramatically the coordination of action. Results are averaged for 30 runs for
each of 125 combinations of parameters.
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Figure 10. Entropy in interactions: histograms of probability distribution of action types show high
levels of entropy at the start of simulations (left) in two kinds of scenarios: where distance between
activity places is not considered (blue line), and where distance is considered (red line). At the end of
simulations (right), scenarios where space is materially active show convergence around certain types
of action, indicating a reduction of entropy in action coordination.

Our results show structure in the relation between selection factors and the reduction of action
entropy. Informational contents in urban space play a key role in the reduction of action entropy
(red lines in Figure 10). Urban space materializes gradients of difference in potential interactions,
from less to more recognizable, costly or likely. Placing simple criteria like proximity as an aspect
of physical information in selecting activities, our model shows that space becomes a means for
producing differences in the probabilities of interaction, increasing chances of certain selections.
Environmental information “contaminates” agents: they are likely to align their actions through the
informational content of places. This general reduction of entropy implies that the probability of
certain interactions increases. In practical terms, this means more alignments between agents. As an
information environment, the physical and semantic environment creates differences in the probabilities of
interaction, helping to solve the combinatorial problem of connecting actions into a system.

6. From Information to Interaction: Concluding Remarks

In this paper, we attempted to understand how humans use information in their environment in
order to live together and create systems of interaction. We did so (a) proposing a three layered model
of information in cities; (b) developing measures for each of the layers and testing them in selected
empirical cases from different regions; (c) exploring an ABM to simulate how aspects of environmental
information affect social entropy. Previous works dealt only with aspects of these relations, like
spatial paths and physical cues related to cognition and navigation [13], patterns in street networks
related to cognition and encounter [14] and synergetic networks as basis for actions in the city [7,8],
but without the systemic aspect of social interaction. In turn, our model of information enacted by
agents (information 3) shows that aspects of environmental information in physical and semantic
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space contribute to increases in coordination in interaction systems. To the best of our knowledge, no
other work integrates cognition, environment and social systems as comprehensively.

More specifically, inspired by Weaver’s [10] levels of communication problems, we addressed
the relation of minds, cities and societies through three questions: (i) How do we encode and decode
information from the physical environment? (ii) How do we make environmental information
meaningful? (iii) How do we use environmental information to coordinate actions? Methodologically,
this implied three problems: measuring information 1 in physical space; measuring information 2 in the
distribution of semantic contents in urban space; and modelling how agents deal with environmental
information 1 and 2 in order to coordinate actions in information 3. Developing a framework to
answer those questions, we explored different strands of information theory and cognitive studies,
from Shannon’s theory of well-structured data to Dretske’s situation semantics and Varela’s concept of
enaction, and did so in the following directions:

1. We measured environmental information 1 in cellular arrangements and assessed order, assumed
to guide navigation, through Shannon entropy.

2. We measured environmental information 2 as a function of semantic diversity in local relations
between urban activities or land uses. Information 2 is highly differentiated, serving as a resource
of great combinatorial power in the process of selection of places and actions to be performed.

3. We modeled the influence of the environment in enacted information 3, simulated as action
types in an ABM. Proximity in physical configurations in information 1 and semantic contents
in information 2 were seen to increase the convergence of action types. Contrary to isolated
systems where order inexorably dissipates in time, the entropy of interaction decreases as the
system of agents is open to and co-evolves with its physical and semantic environment. Aspects
of information 1 and 2 find key roles in solving the combinatorial problem of action coordination.

A number of procedures are underway for further developing this approach. First, we intend
to expand the approach to information 1 looking into broader spatial structures in cities—assessing
measures of visibility [14] and the entropy of angular variation in street networks [42]. We also wish to
go beyond regularity and entropy, and introduce more sophisticated measures of statistical complexity.
Second, we hope to expand the approach to information 2 beyond diversity, looking into the effects
of specialization and concentration of social activities, especially those with power to attract agents
looking for associations based on functional complementarity. Another issue is the integration of
physical and semantic environmental information. Recent approaches have paid attention to this
relationship in different ways [8,81]. Information 1 seems associated with orientation and navigation,
while information 2 seems closer to the perception and selection of performance opportunities. They
also change according to different temporalities. These forms of environmental information are deeply
associated but cannot be reduced to one another. Relations between configuration, physical cues and
semantic references remain a key area for further study.

We also expect to develop a database of environmental information for a large number of cities
from different regions of the world, which will allow us to systematically assess them as informational
resources, an aspect of urban, social and economic performance. We hope to see whether different
cities carrying different levels of environmental information could affect how inhabitants perform and
coordinate their actions. Our hypothesis is that certain environments would ease cognition, navigation
and efforts of interaction.Finally, these three forms of information, particularly information 3, are
hard to assess empirically. In order to validate this model, we hope to explore the heuristics of how
people actually perceive and enact information in the built environment through cognitive experiments
performed in Virtual Geographic Environments (VGE) [84,93].

Interaction systems require a high capacity to access and recombine information into on-going
and future connections. They are ‘information-hungry’. This dependence requires different types of
information. Environmental information seems to play a part in the continuous creation of interactions.
The fact that cities preserve social information in durable space and in soft semantic structures would
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help order grow. Only by means of a structure that restricts the quasi-endless combinatorial possibilities
of interaction, this system can acquire sufficient internal guidance to make its own reproduction
possible. By distributing sufficiently recognizable differences in the probability of interactions, cities
ease the local reproduction of a society. The city helps us convert information into interaction. In fact,
the interfaces of cognition, environment and action reveal a deep connection. Self-organizing in
themselves, they also seem co-dependent—and more. They seem to shape each other andemerge as
an integrated system in its own right. This integration of minds, cities and societies happens through
information. Information is the bridge.
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