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Preface
Surge tanks in high-head power plants ensure safe and flexible transient operation of the

hydraulic machinery. Orifices or throttles in surge tanks are often critical structural elements

in view of the good performance of surge tanks and the stability of the whole waterway sys-

tem combined with hydraulic-mechanical equipment. The design and the dimensioning of

orifices ore throttles placed at surge tanks has to be carried out with great care since a non-

functioning of this critical structural elements can endanger the safe operation of the whole

hydropower scheme. Orifices or throttles have to produce a distinct head loss for flow entering

and leaving the surge tank. In the design, the best geometry has to be found which produces

the desired head losses. The search of the most adapted geometry of the orifice or throttle is

often challenging and has frequently to be complemented by systematic hydraulic model tests.

In order to allow a preliminary design of orifices, Dr. Nicolas Adam studied for the first time

systematically with laboratory experiments and numerical simulations a large number of

different geometries of throttles, i.e. orifices. Based on the extensive catalogue of the orifice

geometries tested and the developed empirical relationships, he could give efficient design

guidelines based on empirical formulae and on a useful expert sheet in order to find efficiently

the appropriate orifice geometry for a wished head loss. Dr. Adam studied also for the first

time systematically the transient head losses through orifices. The systematical experiments

and numerical simulations allowed also a better understanding of the hydraulic behavior of

orifices in view of the influence length of the orifice i.e. the reattachment length of the jet

leaving the orifice and associated risk of cavitation. Finally, Dr. Adam gives helpful practical

recommendation for an efficient and safe design of orifices in surge tanks.

We would like to thank the members of the PhD committee Prof. Leif Lia from NTNU Trond-
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hydropower research program of the Swiss Federal Office of Energy SFOE for their financial

support under project No. SI/501313-01.
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"It’s hard to observe without imposing a theory to explain what we’re seeing, but the trouble

with theories, as Einstein said, is that they explain not only what is observed but what CAN BE

observed. We start to build expectations based on our theories. And often those expectations get

in the way."

— Michael Crichton, Travels





Abstract
High-head power plants are the main pillar of Swiss peak electricity production. With the 2050

Energy Strategy approved by Swiss voters, the annual production of hydroelectricity should

increase by 4%, while about 90% of the technically feasible potential is already used. The flexi-

bility of high-head storage power plants may be improved by increasing the installed capacity

or heightening existing dams in order to concentrate the electricity production on periods

of peak demand and on the critical winter half-year. These upgrades of existing hydropower

plants can lead to more critical mass oscillations between the upstream reservoir and the

surge tank, which is a hydraulic device allowing dampening of the fast change of discharge

and reducing the consequences of water hammer in the pressure tunnel of high-head power

plants. A simple way to reduce the amplitudes of the mass oscillations is to place an orifice at

the entrance of the surge tank.

Three different orifice geometries, chamfered, rounded orifices with a sharp side or two

chamfered orifices, were systematically studied in conduits with laboratory experiments and

numerical simulations in order to gain deeper knowledge of the behavior of orifices such as

the steady and transient head losses, influence and reattachment length and the incipient

cavitation number.

Steady head losses were evaluated with both approaches. A catalog summarizes the produced

head loss coefficients in the two different flow directions as a function of all the geometries.

Furthermore, three different empirical relationships were developed in order to predict the

head loss coefficient for a sharp, chamfer or rounded approach flows and to design orifices as

throttle.

On the one hand, the length of the zone disturbed by the orifice has been experimentally

evaluated and increases with the orifice opening area. On the other hand, reattachment length

has been numerically estimated and does not depend on the presence of a chamfer. Empirical

formulas were derived to predict the two characterizing lengths.

Transient experiments were performed on chamfered orifices and revealed a clear transient

behavior that could account for up to 20% of the steady head losses. The global head losses

were higher for accelerate flow and less for decelerate flow than the corresponding steady

head losses.
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The incipient cavitation number was evaluated for chamfered orifices with single-phase

computational fluid dynamics (CFD) simulations in order to develop predictive empirical

relationships. This allowed for the assessment of the risk of cavitation. A cavitation number

predicting the cavitation of the vena-contracta was also determined. A graphical view of

the cavitation risk is suggested to evaluate the cavitation risk for surge throttles during mass

oscillations.

Finally, one-dimensional (1-D) numerical simulations were conducted with the numerical

software Hydraulic System on an existing high-head power plant to determine the throttling

effects on the whole waterway.

KEYWORDS: High-head and storage power plant, surge tank, mass oscillations, throttle, orifice,

steady head loss, influence length, reattachment length, transient head loss, incipient cavitation
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Zusammenfassung
Hochdruckspeicherwasserkraftwerke sind das wichtigste Standbein der Schweizer Strompro-

duktion. Die vom Stimmvolk angenommen Energiestrategie 2050 sieht vor die jährliche

Stromproduktion von Wasserkraft um 4% zu steigern, wobei etwa 90% des technisch möglichen

Potenzials bereits ausgeschöpft ist. Um die Stromproduktion auf die Spitzenstunden des Ver-

brauchs sowie das für die Versorgung kritische Winterhalbjahr konzentrieren zu können, muss

die Flexibilität der Speicherkraftwerke mit dem Zubau der installierten Leistung oder mit

Erhöhungen von bestehenden Staumauern erhöht werden. Diese Leistungssteigerungen kön-

nen zu verstärkten kritischen Massenschwingungen zwischen dem höhergelegenen Stausee

und dem Wasserschloss führen. Das Wasserschloss ist ein hydraulisches Bauwerk, welches

eine abrupte Änderung des Durchflusses dämpft und somit die Belastung des Druckstosses im

Triebwassersystem verringert. Ein einfacher Ausatz die Amplituden der Massenschwingungen

zu reduzieren ist die Anordnung einer Drosselblende beim Einlass in das Wasserschloss.

Drei verschiedene Drosselgeometrien, nämlich einseitig scharfkantige oder gerundete Blenden

sowie zweiseitig scharfkantige Blenden, wurden systematisch mit Laborexperimenten und

mittels numerischen Simulationen in einer Leitung untersucht. Damit konnten bessere Kennt-

nisse über das Verhalten von Blenden wie stationäre Druckverluste, instationäre Druckverluste,

den Einfluss und die Länge der Ablösezone und der Grenzkavitationszahl gewonnen werden.

Die stationären Druckverluste wurden sowohl experimentell wie auch numerisch untersucht.

Ein Katalog fasst die erhaltenen Druckverlustkoeffizienten in beiden Fliessrichtungen als

Funktion der geometrischen Parameter zusammen. Zusätzlich wurden drei verschiedene em-

pirische Beziehungen entwickelt, um den Druckverlustkoeffizienten für kantige, abgeschrägte

und runde Blenden zu ermitteln und um Blenden als Drosseln zu dimensionieren.

Einerseits wurde die Länge der durch die Drossel im Stollen beeinträchtigten Zone experi-

mentell ausgewertet, die zusammen mit der Blendenöffnung zunimmt. Andererseits wurde

die Länge der Ablösezone numerisch bestimmt, welche nicht von der Abschrägung der Blende

abhängt. Empirische Beziehungen, welche die beiden charakteristischen Längen voraussagen,

konnten entwickelt werden.

Bei abgeschrägten Blenden wurden Experimente mit zeitlich variablen Abflüssen durchge-

führt. Es konnte ein deutliches instationäres Verhalten beobachtet werden, welches bis zu
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20% der stationären Druckverluste ausmachen kann. Der totale Druckverlust ist für einen

beschleunigten Abfluss grösser und für einen verlangsamenden Abfluss kleiner, als der sta-

tionäre Druckverlust.

Für abgeschrägte Blenden wurde die Grenzkavitationszahl mit einphasigen numerischen Sim-

ulationen untersucht. Damit konnten empirische Beziehungen entwickeln werden, welche die

Beurteilung des Kavitationsrisikos ermöglichen. Eine Kavitationszahl, welche die Kavitation

der vena-contracta beschreibt wurde ebenfalls definiert. Es wird eine graphische Darstellung

des Kavitationsrisikos empfohlen, um das Kavitationsrisiko von Wasserschlossdrosseln bei

Massenschwingungen zu beurteilen.

Abschliessend, wurden numerische 1-D Simulationen an einem existierenden Hochdruck-

wasserkraftwerk mit der Software Hydraulic System durchgeführt, um die Drosseleffekte im

gesamten Triebwassersystem zu beurteilen.

SICHWöRTER: Hochdruckspeicherkraftwerke, Wasserschloss, Massenschwingungen, Drossel,

Blende, stationären Druckverluste, beeinträchtigte, Ablösezone, stationären Druckverluste,

Grenzkavitation
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Résumé
Les aménagements hydrauliques à haute chute sont le pilier principal de la production suisse

électrique de pointe. Avec la stratégie énergétique 2050 acceptée par le peuple suisse, la

production annuelle d’hydroélectricité devrait augmenter de 4% alors qu’environ 90% du

potentiel techniquement faisable est déjà utilisé. Afin de pouvoir concentrer la production

d’électricité sur les périodes de pointe et pour l’approvisionnement critique de la demi-année

hivernale, il faut augmenter la flexibilité des aménagements hydrauliques de stockage en

augmentant la capacité de production installée ou en relevant des barrages existants. Ces

modernisations d’aménagements hydroélectriques existant peuvent engendrer des oscilla-

tions de masse plus critiques entre le réservoir amont et la cheminée d’équilibre, qui est un

ouvrage hydraulique permettant de réduire les conséquences du coup de bélier dans la galerie

d’amenée et d’amortir les changements rapides de débits dans l’aménagement. Un moyen

simple de réduire l’amplitude de ces oscillations de masse est de mettre en œuvre un orifice à

l’entrée de la cheminée d’équilibre.

Trois différentes géométries d’orifice, chanfreinée ou arrondie avec un côté tranchant ou avec

deux chanfreins, ont été systématiquement étudiées dans des conduites avec des expériences

en laboratoires et des simulations numériques. Le but est d’améliorer les connaissances sur le

comportement des orifices tel que les pertes de charges en régime stationnaire et transitoire,

les longueurs d’influence et de rattachement ainsi que le nombre d’apparition de la cavitation.

Les pertes de charges en régime stationnaire ont été évaluées avec les deux approches. Un

catalogue résume les coefficients de pertes de charge dans les deux directions d’écoulement

en fonction des différents paramètres géométriques. De plus, trois différentes relations em-

piriques ont été développées pour prédire le coefficient de perte de charge pour des approches

d’écoulement de type : tranchant, chanfreiné ou arrondi. Ces relations empiriques permettent

aussi de dimensionner les orifices utilisés comme des étranglements de cheminée d’équilibre.

D’un côté, la longueur de la zone perturbée par l’orifice a été expérimentalement évaluée et

augmente avec la section ouverte de l’orifice. D’un autre côté, la longueur de rattachement a

été estimée numériquement and ne dépend pas de la présence d’un chanfrein. Des formules

empiriques ont été dérivées pour prédire ces deux longueurs caractéristiques.

Des expériences en régime transitoire ont été réalisées sur des orifices avec un chanfrein et

ont montré un comportement transitoire clair, qui peut aller jusqu’à 20% des pertes de charge
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en régime stationnaire. Les pertes de charge globales sont plus grandes pour des écoulements

accélérés et plus petites pour des écoulements décélérés que les pertes de charge stationnaires

correspondantes.

Le nombre d’apparition de la cavitation a été évalué pour des orifices chanfreinés avec des

simulations CFD à une seule phase de fluide afin de développer des relations empiriques

prédictives. Ceci permet l’évaluation du risque de cavitation. Un nombre d’apparition de la

cavitation dans la veine contractée a aussi été déterminé. Une représentation graphique du

risque de cavitation est proposée pour évaluer ce risque pour des étranglements de cheminée

d’équilibre durant des oscillations de masse.

Finalement, des simulations numériques à une dimension (1D) ont été réalisées avec le logi-

ciel Hydraulic System sur un aménagement hydraulique à haute chute existant pour mettre

en évidence les effets de l’étranglement sur tout l’aménagement

MOTS CLEFS : Aménagements à hautes chutes et à accumulation, cheminée d’équilibre,

étranglement, oscillation de masse, orifice, perte de charge stationnaire, longueur d’influence,

longueur de rattachement, pertes de charges transitoires, apparition de la cavitation.
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1 Introduction

1.1 Overview

The Swiss confederation aims to phase out nuclear power production with its "2050 Energy

Strategy" by increasing the renewable energy contribution to its overall energy generation.

Even if the total electricity consumption does not increase significantly by 2050, nuclear

power production, of which the yearly average production amounted to 33% in 2016, should

end in 2035 (Figure 1.1). This ambitious schedule enforces replacement of a continuous

generation of base load with intermittent renewable electricity generation, e.g. solar or wind

energy, that depends on climatic conditions. Generation could thus not be able to follow the

consumption and new storage schemes, and highly flexible hydropower plants should emerge.

Hydroelectricity may aid in the transfer of excess production from intermittent generation

when there is a need for production based on large-scale consumption.
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Figure 1.1 – Phasing out of nuclear power in Switzerland according to the 2050 prediction as
highlighted by the Swiss Federal Office of Energy (SFOE) for votation accepted by the Swiss on
May, 21st 2017 (adapted from (SFOE, 2015a))
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Chapter 1. Introduction

1.1.1 Hydroelectricity

In Switzerland, hydroelectricity has supplied approximately 60% of the domestic electricity

production for the last 40 years and is the major source of renewable electricity (SFOE, 2015b).

There are two main types of hydroelectric power plants, namely run-of-the-river or storage

power plants that produce 40 and 60%, respectively, of Swiss hydroelectric generation.

With the "Energy Strategy 2050", the yearly expected average production should increase

from approximately 36.0 TWh/year to 38.6 TWh/year, while the technically feasible potential

is approximately 41.0 TWh/year (Hydropower and Dams, 2016). These objective could be

achieved primarily either by refurbishing and extending existing power plants or by building

new ones. New pumped-storage power plants, Veytaux II (Hachem et al., 2013), Nant de Drance

and Limmern, have recently been commissioned to store production surpluses coming from

new renewable energies and transferring it to peak hours.

This challenging strategy could strengthen the role of Swiss hydroelectricity in Central Europe.

Historically, Switzerland has exported electricity to its neighbors during peak hours owing to

storage power plants (including pump-storage plants) but has to import base-load electricity

in the winter (Schleiss, 2007, 2012).

1.1.2 High-head power plant

As mentioned before, 60% of Swiss hydroelectricity is generated by high-head storage plants,

and these can be found in the upstream part of river catchments (steep valleys).

Turbine operations, with start-up or shut-down, result in transient flows within the waterway

system. In order to permit flexible operations of turbines (or pumps) and to protect the

pressure tunnel against water hammer, different types of high-head power plants have been

designed with a surge tank (Figures 1.2 and 1.3), which can be implemented upstream and

downstream of the powerhouse as a free-surface surge tank or as an air-cushion chamber

under very favorable rock conditions with high strength and in situ stress as well as low

permeability. In Switzerland, the most common type is the high-head storage power plant

with an upstream surge tank, the main interest in this study.

Figure 1.2a depicts a schematic view of a typical alpine high-head power plant (Schleiss, 2002).

Generally, high-head power plants are composed of the following elements:

- an upstream reservoir;

- a pressure tunnel (or headrace tunnel) that is normally lined with concrete;

- a surge tank which could be defined as kind of a reservoir. Its role is to protect the

pressure tunnel against the waterhammer coming from fast turbine maneuvers;

- a pressure shaft (or penstock) that is normally lined with steel;
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1.1. Overview

- hydraulic machinery which produces electricity as a function of discharge and head;

and

- a downstream tailrace tunnel.
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(a) Upstream surge tank (typically in alpine valleys) with courtesy of A.J. Pachoud
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(b) Downstream surge tank

max.

min.

Reservoir

Intake

Pressure Tunnel

Pressure 

Shaft

Air Tunnel

Upstream 

Surge Tank

Powerhouse Tailwater Tunnel

max.

min.
Throttle (if exisiting)

(c) Two surge tanks

Figure 1.2 – Schematic view of different waterway systems of high-head power plants
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The waterway has similar elements whether the plants are pumping or turbining (pumped-

storage plants). In actual facts, other design-load cases could be critical based on the pumping

mode.

Reservoir

Intake

Pressure 

Shaft

Air-cushion

Surge Tank

Powerhouse

Tailwater

Throttle 

(if exisiting)

(a) Air-cushion surge tank

Figure 1.3 – Schematic view of different waterway systems of high-head power plants

1.1.3 Surge tank

A surge tank is an excavated shaft that is eventually combined with chambers connected to

the waterway of a hydroelectric power plant, especially a high-head power plant. According to

Chaudhry (2014), the two main roles of a surge tank are:

- Diminish the amplitude of pressure fluctuations in the waterway system. It reflects

incoming pressure waves such as water hammer waves. These waves, which emanate

from the pressure shaft owing to changes in turbine flow, are reflected back at the surge

tank and reduces the pressure transmitted to the pressure tunnel; and

- improve the regulation of hydraulic turbines. The determining length for the water-

starting time is depending on the surge tank and not to the upstream reservoir.

Nevertheless, as a free surface is introduced into the waterway system, a mass oscillation

with the reservoir appears for any changes of discharge within the system, such as the water

hammer, but they are two distinct phenomena (Jaeger, 1933, 1977). However, the mass

oscillation may limit the turbine restart after a shut-down.

There are different types of surge tanks including those with free-water surfaces, e.g. simple,

throttled, differential surge tanks or those with expansions (chambers), as well as pressurized

air like air-cushion surge tanks. Each type is meant to enhance the dampening of mass

oscillations so as to decrease the consequences of its introduction. They can also decrease the

surge tank geometry in order for it to stay within the topography, which is generally the case in

the alpine region (Figure 1.2a) but difficult in other parts of the world (Figure 1.4).
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Figure 1.4 – View of the Wevercé (Eastern Belgium) surge tank from the powerhouse

1.1.4 Throttle and orifice

As stated earlier, throttled surge tanks can thus enhance the dampening of mass oscillations.

This allows for the optimization of surge tank geometry in term of maximum amplitude of

mass oscillations. In this study, a throttle is the generic term for the hydraulic device producing

head losses at the entrance of a surge tank. Different throttle geometries have been highlighted

in the literature, such as orifices, rack or bar-screen and vortex throttles (Adam et al., 2016).

This study focuses on orifices, which facilitates the easy introduction of different head losses

in the two flow directions, i.e. when the water flows into or out of the surge tank.

1.2 Objectives of the study

Throttling a surge tank is an economical measure for adapting existing surge tanks to increased

turbine capacity based on discharge or head increase as the construction of a new surge tank

can be avoided (Adam et al., 2017). Different types of throttling exist, though orifices placed

at the entrance of the surge tank are often employed because of their simplicity. However, as

suggested by Vereide (2016), there is a need for improvement in the design methods pursued

to find an optimal throttle installed at the entrance of the surge tank in an efficient way. This

begins with the hydraulic characterization of throttles and especially of orifices.
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Orifices are commonly used to evaluate the discharge flowing through or producing head

losses. Nevertheless, most studies that have utilized them have focused only on one flow

direction and did not consider their possible asymmetrical behavior, which is an important

characteristics in the case of a throttling device.

The present research study aimed to fill in these gaps of knowledge by means of an experimen-

tal and numerical study to improve the knowledge of orifices’ behavior as a throttle. The study

objectives can be synthesized by answering the following questions:

- Which geometrical parameters influence the head loss coefficients and how to identify

an orifice with a certain asymmetry ratio ?

- How long is the reattachment length at the downstream end of the orifice and what is

the influence zone of the orifice conduit ?

- Is there a transient behavior of head losses at orifices?; and

- How can the cavitation risk be assessed to provide guidelines for the choice of orifice

geometry ?

1.3 Organization of the report

The report is divided into twelve chapters (Figure 1.5).

Chapters 1, 2 and 3 introduce the framework of this research as well as the state of the art re-

garding the steady and transient head losses produced by orifices, influence and reattachment

lengths at the downstream of orifices and cavitation risk. Chapters 4 and 5 present the experi-

mental modeling and numerical simulations with the purpose of evaluating systematically

the behavior of an orifice.

Chapter 6 discusses the steady head losses produced by orifices using the experimental and

numerical results, while Chapter 7 covers the effect of the orifice geometry on the disturbed

zone and reattachment length. Chapter 8 highlights the transient behaviors of the head losses

produced by the orifices. Chapter 9 describes a new way to take into account cavitation and

avoid incipient cavitation. Chapters 6 to 9 were prepared as publications.

Chapter 10 offers the main findings of the work presented herein and design guidelines

applicable to throttles and orifices. Then, in Chapter 11, different case studies on various steps

in the analysis of orifices and throttling devices are featured.

Finally, Chapter 12 summarizes the conclusions of this research and provides a number of

outlooks for future investigations.
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1.3. Organization of the report

Figure 1.5 – Structure of the report
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2 Theoretical bases1

2.1 Transient flow within the waterway systems of hydroelectric power

plants

2.1.1 Fundamental equations

Turbine operations, in order to satisfy grid demand, induce transient flows in pressure conduits

of hydropower schemes. Consequently, water hammer occurs in conduits when the flow

discharge changes abruptly. The greatest water hammer arises when the maneuver duration

is less than the time taken by a pressure wave to transit back and forth within the conduit

(reflexion time).

Many authors (Popescu et al., 2003; Boillat and de Souza, 2004; Nicolet, 2007; Chaudhry, 2014)

have proposed the continuity (Eq.(2.1)) and momentum (Eq.(2.2)) equations for pressurized

conduits.

The continuity equation Eq.(2.1) is applied to a control volume of the conduit and was de-

veloped for slightly compressible fluid and elastic conduit walls. Furthermore, the flow is

assumed to be 1D and with uniform pressure across the pipe cross-section.

∂p

∂t
+ v

∂p

∂x
+ρa2 ∂v

∂x
= 0 (2.1)

where: p is the pressure, v the flow velocity, ρ the fluid density, a the wave celerity and x the

conduit axis

The momentum equation, Eq.(2.2), is for the same control volume and obtained by applying

1This Chapter is based on a submitted scientific paper: "Adam, N.J. De Cesare,G. & Schleis, A.J. (under revision).
Throttles in surge tanks to reduce mass oscillations. Submitted to the Canadian Journal of Civil Engineering". The
work and analysis presented hereafter is original and was performed by the author.
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Chapter 2. Theoretical bases

Newton’s second law of motion:

∂v

∂t
+ v

∂v

∂x
+ 1

ρ

∂p

∂x
+ g sinφ+ f

v |v |
2D

= 0 (2.2)

where: g is the gravitational constant, φ the angle between the conduit axis and the horizontal,

f the Darcy-Weisbach friction factor and D the conduit diameter

Chaudhry (2014) assumed that transient head losses are equal to steady head losses of the

momentum equation for transient flows in closed conduits (this assumption is discussed

in Section 3.5). With this simplification, a system of hyperbolic partial differential equa-

tions (Eq.(2.1) and (2.2)) is obtained. Different resolution methods can be carried out, such

as the arithmetic method (Allievi, 1913), graphical method (Bergeron, 1950), the method

of characteristic (Chaudhry, 2014; Boillat and de Souza, 2004) or by employing the Finite-

Difference method and analogous to electrical schemes (Nicolet, 2007). These methods all

enable conducting numerical simulations for studying transient flows within the waterways

of hydroelectric power plants, such as the water hammer (Section 2.1.2) or mass oscillations

(Section 2.2.2).

2.1.2 Water hammer

A water hammer is a surge pressure wave with a succession of overpressure and under pressure.

The amount of pressure produced in a pipe depends on a variety of parameters, such as pipe

geometry, pipe wall rigidity and the duration and shape of closure (or opening). As explained

in Jaeger (1933) and Stucky (1950), the main goal of a surge tank is to prevent the water hammer

coming from the valve into the long pressure tunnel to avoid heavy linings, like steel liner, in

the pressure tunnel. When an overpressure starts at the downstream valve, it propagates up

the pressure shaft to the surge tank. This overpressure is divided into both the pressure tunnel

and the surge tank as a function of each section. Normally, the surge tank section is much

larger than the pressure tunnel and thus any water hammer is avoided in the pressure tunnel.

As demonstrated in Stucky (1950) and Nicolet (2007) by applying the mass and momentum

conservation to the pipe during a valve closure, the overpressure, ∆Hwh , for an instantaneous

closure or opening, is a function of the wave speed, a, and the velocity change, ∆v , in the

tunnel as shown in Eq.(2.3). The main assumption is made based on transient energy losses,

which are assumed to be equal to steady losses.

∆Hwh =−a ·∆v

g
(2.3)

where: ∆Hwh is the variation of head owing to the variation of flow velocity, ∆v
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2.2. Surge tank

For a full closure of the valve, the maximum overpressure is given by (2.4):

Hwh,max = a · v0

g
(2.4)

where v0 is the initial flow velocity prior to closure.

By studying the temporal resolution of both governing equations, the momentum and con-

servation of mass, and by applying the method of characteristic (Stucky, 1950; Nicolet, 2007),

this maximum overpressure observed to take place only when the closure time is less than a

critical time as given by (2.5):

tcr i t =
2L f sd

a
(2.5)

where L f sd is the distance between the valve and the first free surface (free-surface distance)

such as the surge tank, or, if not existent, the upstream reservoir.

2.2 Surge tank

2.2.1 Purpose

According to Section 2.1.1, the implementation of a surge tank enables decreasing the duration

of closure for the same overpressure within the pressure shaft or decreasing the overpressure

for the closure time. It analogously leads to underpressure for an opening. In other words,

a surge tank reduces the amplitude of pressure fluctuations. The pressure waves, induced

by a discharge variation within the waterway, are reflected in the pressure shaft and, thus,

decreases the pressure entering in the pressure tunnel.

However, a consequence of surge tank implementation is that the pressure wave energy is

transfered via a mass oscillation between the surge tank and reservoir. These mass oscillations

are much slower than the water hammer pressure fluctuations.

2.2.2 Mass oscillations

Mass oscillation in a surge tank occurs every time the discharge from the plant is changed. A

mass oscillation is a transient event that takes place between a first equilibrium level and a

second because of a change of flow within the system. This phenomenon is critical for full

closure or for consecutive operations.

From Jaeger (1933) and Stucky (1950), it is known that the water hammer and mass oscillation

are interconnected and must be studied simultaneously in the case of a throttle (Schleiss, 2002).
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While a water hammer is an elastic phenomenon, a mass oscillation follows the principle

of communicating reservoirs, where the water can be considered incompressible. Based on

the different time scales (a few seconds for a water hammer and a few minutes for a mass

oscillation), these phenomena are often studied separately.

Simplified governing equations can be found in the literature (e.g. in (Stucky, 1950; Zicman,

1953; Jaeger, 1977; Boillat and de Souza, 2004; Popescu et al., 2003)). Different assumptions,

described as follows, have been made by relevant authors:

- water is considered incompressible and pipe walls are infinitely rigid;

- water inertia in the surge tank is small compared to the inertia of the pressure tunnel;

- water levels in the surge tank are always horizontal and kinetic energy can be neglected;

- major and minor losses can be expressed according to the unsteady regime with the

same relation as in the steady regime;

- system is always entirely filled with water; and

- all parameters, variables, i.e. geometric and hydraulic, are continuous and differentiable.

The two main relations are: (i) Newton’s second low applied to the pressure tunnel (2.6) ; and

(ii) The conservation of mass locally under the surge tank (2.7):

LPT

g
· d v

d t
+ z +∆H = 0 (2.6)

v = AST

APT
· d z

d t
+ QT

a
(2.7)

where v is the velocity in the pressure tunnel, LPT the length of the pressure tunnel, z the dif-

ference between the level in the surge tank and the reservoir level (counted positive when the

level in the surge tank is higher than the upstream level), ∆H the total amount of head losses,

AST the surge tank cross-section, APT the pressure tunnel cross-section and QT the discharge

going through the turbines. This term, ∆H , can be divided into two main components such as

major losses (head loss because of friction in the pressure tunnel) and secondary losses (head

loss at the entrance of the surge tank).

The evolution of the free surface in the surge tank can be found by combining Eq. (2.7) and

(2.6).
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2.2. Surge tank

2.2.3 Types of surge tanks

According to Giesecke et al. (2014), Figure 2.1 portrays the four main types of surge tanks.

Yet another type is the air-cushion surge tank (Figure 1.3a). The main goal of more complex

surge tanks is to improve the oscillation dampening caused by a discharge change within the

waterway, just as mentioned earlier. Gardel (1956) showed that the main effect of the more

complex surge tanks, for example those with throttle, with expansion(s) or differential, is that

the pressure in the pressure tunnel at the entrance the surge tank rises faster than in the case

of a simple surge tank.

(a) Simple shaft (b) Throttled shaft

(c) Shaft with chamber(s) or expan-

sion(s)

(d) Differential surge shaft

Figure 2.1 – Different types of surges tanks

Simple surge tank This is the simplest surge tank due to its cylindrical shape, though it can

be inclined or vertical. Inclined surge tanks feature a larger surface and, thus, higher stability.

Nowadays, simple surge tanks are mostly employed for low and middle heads and Francis

turbines. Nevertheless, their simple shape permits the development of and understanding the

major phenomena (Stucky, 1950; Gardel, 1956; Boillat and de Souza, 2004).
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Surge tank with expansions Expansions permit diminishing total construction costs by

saving excavation volume while ensuring waterway stability (Jaeger, 1977). There are two

predominant forms of expansion, i.e. widening of the main surge shaft and chambers with

tunnels. According to Jaeger (1977), the reduced area of the intermediate shafts have to be as

small as possible to more rapidly accelerate (or decelerate) the flow in the pressure tunnel. Put

another way, for the same water volume flowing within the pressure tunnel, the level in a surge

tank with expansions would be higher than that in a simple surge tank. Thus, the pressure

under the surge tank is higher and the dampening effect would be more quick (Vereide et al.,

2015b). However, this reduced area should not be smaller than a certain limit that would cause

excessive oscillations (Thoma, 1910). The unsteady waves of the expansion chambers have to

be evaluated during filling and emptying of the surge tank (Montes and Delphin, 1983; Vereide

et al., 2015b). Throttles may be placed either at the entrance of the surge tank (Hachem et al.,

2013; Giesecke et al., 2014; De Cesare et al., 2015) or between the expansions (Steyrer, 1999;

Vereide et al., 2015b).

Throttled surge tank Placing a throttle, at the entrance of surge tanks assists in ensuring

there are similar effects as those from expansion chambers (by accelerating the dampening

effect of the surge tank). When the water is flowing in (or out) the surge tank through the

orifice, it is set up a higher (or lower) pressure that dampens the mass oscillations more

effectively. Furthermore, the implementation of throttle fosters, without modifications of the

surge tank volume, a moderate rise in the installed capacity of existing plants (Alligne et al.,

2014; De Cesare et al., 2015). The orifice may produce either symmetric or asymmetric head

losses (Steyrer, 1999; Gabl, 2012). The main disadvantage of a throttle is that the proportion of

water hammer pressure entering in the pressure tunnel increases, and this is mainly because of

the restriction of the area that stops a fraction of the water hammer before reaching the surge

tank. Schleiss (2002) proposed that the presence of a throttle or surge tank orifice requires

investigating both mass oscillation and water hammer together, as these two phenomena are

always interconnected (Jaeger, 1933).

Differential surge tank This type of surge tank is often composed of a shaft and a larger

chamber. In the case of total closure, the water level within the shaft rises rapidly until

discharge into the main chamber. This permits there to be maximum levels with a minimum

volume so as to reduce the discharge within the pressure shaft (Stucky, 1950).

Air-cushion surge tank This surge tank is constructed in a rock cavern filled with pressurized

air and mainly found in Norway (Vereide et al., 2015b; Goodall et al., 1988). For the design and

analysis of mass oscillations, the thermodynamic behavior of the pressurized air has to be

considered (Vereide et al., 2015a; Vereide, 2016). Air-cushion surge tanks necessitate highly

resistant rock with low permeability or a steel-lined chamber.
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2.2. Surge tank

2.2.4 Stability criteria

Thoma’s cross-section area: A third equation, following Eq. (2.6) and (2.7), could be arrived

at if output power is assumed as a constant. This assumption was made by Thoma (1910). In

this scenario, any variation in levels within the surge tank is counterbalanced by a variation of

flow discharge of the system to produce exactly the same power.

Thoma (1910) developed a criterion for hydraulic stability of surge tanks with a integration

of small oscillations from Eq.(2.6) and (2.7). Thoma’s area ensures that small oscillations are

stable. Indeed, if the level drops, the discharge rises. The level has to decrease again to elevate

the discharge, etc. At the end, this first small oscillation can empty the surge tank, which

cannot be acceptable. Thoma’s area is defined as

AT H = LPT · APT

2g ·k ·Hn
(2.8)

where LPT is the length of the pressure tunnel, APT the cross-section area of the pressure

tunnel , k the head losses coefficient between the reservoir and surge tank and Hn the net

head between the surge tank and the downstream reservoir of the equilibrium (steady) state

(Thoma, 1910; Stucky, 1950)

Practical recommendations: This stability criterion is widely used to design surge tanks all

around the world, even if certain authors have doubted its validity (Jaeger, 1943; Stucky, 1950;

Anderson, 1984). Evangelisti showed that, if the pressure shaft length is important compared

to the pressure tunnel, Thoma’s cross-section has to be multiplied by a correction factor (2.9)

(Schleiss, 2002).

αEV =
1+ LPT+PS · APT

LPT · Atot

1− ∆Htot

H −∆H

(2.9)

where APT is the cross-section of the pressure tunnel, atot the total cross-section of the

pressure tunnel and shaft, ∆Htot the total head losses between the upstream reservoir and the

plant and ∆H the head losses within the pressure tunnel.

Furthermore, Jaeger (1960) and Schleiss (2002) posited that the minimal cross-section of the

surge tank has to be increased by a safety factor γT H , from 1.5 to 2.0.

Note that other stability criterion exist, such as the Svee criteria including the velocity head

that Thoma (1910) neglected (Leknes, 2016).
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2.3 Throttled surge tanks2

For throttle surge tanks, taking into account the local head losses introduced at the entrance

of the surge tank, Eq.(2.7) and (2.6) become Eq.(2.10).

LPT

g APT

(
AST

d 2z

d t ′2
+ dQT

d t

)
z + (kPT +1)

v |v |
2g

+kST
vST |vST |

2g
= 0 (2.10)

where: v is the flow velocity in the pressure tunnel, APT the pressure tunnel cross-section,

LPT the pressure tunnel length, z the difference between the water level within the surge tank

and the upstream reservoir level (counted positive when the level in the surge tank is higher

than in the reservoir), ∆HPT the total amount of head losses (frictional and local) between the

reservoir and surge tank, AST the surge tank cross-section, QT the discharge flowing through

the turbine and ∆HST = kST
v2

ST
2g is the head losses produced by the surge tank throttle.

Concerning surge tank stability, Piccolier (1966) and Montes (1980) theoretically demonstrated

that the area of a throttled surge tank should not be smaller than the area required by Thoma’s

criterion. However, An et al. (2013b) numerically found that a throttle at the entrance can

reduce Thoma’s criterion . They introduced a correction factor for throttle surge tank, which

is not equal to unity when there is not a throttle or an orifice at the surge tank entrance.

Furthermore, according to Vereide et al. (2017), the placement of a throttle enhances the

turbine power control.

2.3.1 Classifications of throttles

There are different ways to generate head losses at the entrance of surge tanks. The overall

general denomination is throttle, but they are composed by different local geometrical devices:

- Orifices (Figure 2.2) are local geometry restrictions which may be circular, square, etc.

with the same expansion conditions in all directions (see Section 3.1). However, asym-

metrical orifice shapes permit the introduction of different head losses in the two flow

directions. An orifice is mainly characterized by its contraction ratioβ ( Figure 2.2(right) ,

β= 0.53) and its chamfer angle θ. Table 2.1 features the different existing orifice throttles.

The asymmetry of an orifice is defined case-by-case generally with higher head losses

when the water flows out of the surge tank.

- Racks or bar-screen throttles are composed by a frame of spaced bars or beams that

2This section is based on a published conference paper: "Adam, N.J., De Cesare,G. & Schleis, AJ.(2016). Surge
tank throttles for safe and flexible operation of storage plants. Hydro Conference 2016. Montreux, Switzerland"
and a scientific paper accepted for publication “Adam, N. J., De Cesare, G., Nicolet, C., Billeter, P., Angermayr,
A., Valluy, B., and Schleiss, A. J. (2017). Design of a throttled surge tank for the refurbishment by power increase
of a high-head power plant (accepted for publication). Journal of Hydraulic Engineering.”. The work presented
hereafter is original and was performed by the author.
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2.3. Throttled surge tanks

Figure 2.2 – (left) Picture of the orifice in the Forces Motrices Hongrin-Léman (hereafter,
FMHL+) pumped-storage power plant (Hachem et al., 2013) and (right) drawing of the orifice
of La Grande Dixence

Table 2.1 – Examples of existing orifice throttles

Symmetric orifices Asymmetric orifices

Acaray (Paraguay) Atdorf (Austria) (Schneider et al., 2014)
Etzelwerk (Switzerland) Guadalami (Italy)
FMHL+ (Switzerland) La Grande Dixence (Switzerland)
Lavey+ (Switzerland) Obervermunt II (Austria) (Richter et al., 2015; Gomsrud, 2015)

Wassen I (Switzerland)

are parallel or cross each other. Expansions interact and vary across either direction.

This type of throttle was used in Amsteg (Billeter et al., 1996) or in Gondo (Figure 2.3,

(De Cesare et al., 2015; Adam et al., 2017)).

- Vortex throttles, as defined in Steyrer (1999), are mostly utilized in Austria. As portrayed

in Figure 2.4, this type of throttle is very complex with many different pipes and a

rotating flow. Owing to its complexity and space requirements, it is not suitable for an

extension or adaptation of an existing surge tank. Haakh (2003) carried out numerical

simulations in order to study the water level evolution during mass oscillations for such

a vortex throttle. Wójtowicz and Kotowski (2009) highlighted the influencing parameters

of vortex throttles and presented empirical formulas evaluating head losses produced

by them.
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D 6000mm

2100mm

600mm

Lower chamber

of the 

surge tank

Figure 2.3 – Gondo power plant rack throttle (Adam et al., 2017): (left) picture before the
on-site installation and (right) cross-section

Intermediate

shaft Lower chamber
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Aeration pipe
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d

Figure 2.4 – Longitudinal section of a typical vortex throttle between the lower and upper
chamber (adapted from Steyrer (1999))

2.3.2 Throttle location

At least three different locations have been underscored in the literature (Figure 2.5):

- At the surge tank bottom (entrance) (De Cesare et al., 2015);

- In the connecting tunnel between two expansions chambers (Steyrer, 1999; Vereide

et al., 2015b); and

- In a connecting tunnel between the surge tank and the pressure tunnel (Billeter et al.,

1996; Hachem et al., 2013)

The throttling effect is instantaneous in the case that the throttle is placed at the bottom (Figure

2.5a) and within a connecting tunnel (Figure 2.5c) even for small oscillations in the lower part
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Throttle 

location

(a) At the surge tank entrance

Throttle location

(b) Between two expansion chambers

Throttle

location

Pressure

tunnel

(c) In the connecting tunnel

Figure 2.5 – Schematic views of different locations of throttles according to the literature and
existing power plants

of the surge tank. However, if the throttle is placed in an intermediate shaft connecting two

expansions (Figure 2.5b), there is no impact from throttling on the lower expansion.

2.3.3 Previous studies performed on surge-tank throttles

Many studies have been performed on throttled surge tanks (Table 2.2). Throttling a surge

tank, and thus implementing distinct head losses, might help handle extreme water levels

(Chaudhry, 2014; De Martino and Fontana, 2012; Jaeger, 1977). Vereide et al. (2015b) and

Gabl et al. (2014) noted there are at least three tools, i.e. physical scale models, 1D numerical

simulations (Cao et al., 2013; Kim, 2010; Chaudhry, 2011; De Martino and Fontana, 2012)

or 3D numerical simulations, to investigate the effects of throttle geometry on head losses.

The required head losses of the throttle are often evaluated with 1D numerical simulations

while geometry optimization is determined by either physical scale models, 3D numerical

simulations or both. Table 2.2 lists several studies performed over the last few years on
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throttled surge tanks and throttle optimization. The majority of studies used physical scale

models but a few performed prototype measurements to validate the physical model. For the

numerical simulations, Table 2.2 indicates that either 1D transient models or 3D CFD models

were utilized (only one single study used both forms of modeling).
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Table 2.2 – Existing studies on throttled surge tanks: goal of the study and means of investigation (+: Done; o: not presented in the paper and
–: not done)

Numerical
Goal(s) Physical scale 1-D 3-D (CFD) Prototype validation

Klasinc and Bilus (2009) Geometry optimization and flow visualization + - + -
Huber (2010) Comparison + - + -
Kim (2010) Throttle optimization - + - -
Gabl et al. (2011) Throttle optimization - - + -
Nabi et al. (2016) Throttle optimization - + - -
Richter et al. (2012) Flow visualization + o - -
An et al. (2013b) Geometry optimization - - + -
Hachem et al. (2013) Geometry optimization + + - -
Kendir and Ozdamar (2013) Geometry optimization + + - -
Alligne et al. (2014) Geometry optimization and flow visualization + + + -
Schneider et al. (2014) Geometry optimization and flow visualization + - + -
Meusburger (2015) Geometry optimization and flow visualization + - + -
Adam et al. (2017) Geometry optimization + + - +
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2.4 Previous studies performed at the Laboratory of Hydraulic Con-

structions at EPFL

The Laboratory of Hydraulic Constructions (hereafter, LCH) has performed several physical

model tests for surge-tank throttles. The main studies are reported in the following sections.

2.4.1 Kárahnjúkar (2007) (throttle in a pressure-tunnel branch)

This throttle, installed at the Kárahnjúkar hydropower plant (Middle-East of Iceland), is shown

in Figure 2.6. The main characteristics of the throttle, which is a succession of sudden and

gradual contractions (or expansion), are:

- diameter of the main pipe: D = 6m,

- smaller diameter of the throttle: d = 2.1m and, thus, a contraction ratio β= 0.35,

- thickness of the throttle: t ≈ 48.8m and, thus, a thickness ratio α≈ 8,

Based on the large thickness of the throttle, it can be classified as a plug and not as an orifice.

The head losses are higher in the normal than in the reverse flow condition (Figure 2.6). The

major proportion of head loss production in the reverse flow condition is logically created

through the sudden expansion. The asymmetry ratio, which is the ratio between the smallest

and the largest head loss coefficients, of this throttle is 0.19. For the physical modeling, a

geometrical scale of 1 : 20 was used with a Froude similarity. This scale ensured a minimum

Reynold number of 105 in order to be independent from it. Seven discharges were employed

to determine the head loss coefficients.

2.4.2 Lavey + (2011)

The throttle placed at the entrance of the surge tank of the Lavey hydropower plant is com-

prised of a local contraction of the surge-tank entrance, however, there is no blockage at the

bottom of the throttle. Even if the throttle is symmetric, the local configuration, between the

pressure tunnel, pressure shaft and the surge tank, induces asymmetric behavior. The head

losses are higher for the water flowing out of the surge tank with an asymmetry ratio of around

0.7. The main characteristics of the throttle were:

- area of the main pipe (connection gallery to the surge tank): Ath,r ≈ 47.8m2,

- area of the throttle: Ath,o = 16.8m2 and, thus, an equivalent contraction ratio of βeq =
0.59,

- thickness of the throttle: t = 0.5m and, hence, α≈ 0.064.
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Figure 2.6 – Throttle of the Kárahnjúkar hydropower plant

Figure 2.7 – Throttle at the entrance of the surge tank of the Lavey hydropower plant

For the physical modeling, a geometrical scale of 1 : 32.2 was used with a Froude similarity

that ensured an independence of the Reynold number as its minimum value is at 105.
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2.4.3 FMHL + (2012)

The Forces Motrices Hongrin Léman (FMHL) decided to double the installed generation ca-

pacity of the power plant located along the shore of Lake Geneva. A new surge tank connected

to the former one was added to this pumped-storage plant, with a net head of 883m. An orifice

was placed into the connecting tunnel (Figure 2.8) so as to improve the behavior of these two

surge tanks. The experimental design of the orifice was performed at LCH of EPFL (Figure 2.8).

The main characteristics of the orifice were:

- diameter of the connecting tunnel: D = 2.2m;

- inner diameter of the throttle: d = 1.69m and, thus, a contraction ratio of β= 0.77; and

- thickness of the throttle: t ≈ 0.09m and, hence, a thickness ratio of α≈ 0.04.

Figure 2.8 – Physical model of the new FMHL surge tank at LCH in EPFL (Hachem et al., 2013)

For the physical modeling, a geometrical scale of 1 : 18.2 was used with a Froude similarity.

This scale ensured a minimum Reynold number of 105 in order to be independent of it.

24



2.4. Previous studies performed at the Laboratory of Hydraulic Constructions at EPFL

2.4.4 Gondo (2014)3

The refurbishment of the existing Gondo hydropower plant would facilitate an increase in the

existing installed generation capacity with the renewal of the third turbine installed during the

1980s. This would result in an increase within the discharge flowing in the headrace system

from 12 m3/s up to 14.7 m3/s, with a 470 m head between the upstream reservoir and the

Gondo power plant. The existing headrace system had to be carefully verified with regards to

the dynamic pressure by means of a 1-D numerical transient model.

This numerical transient model was the result of a throttle producing a head loss coefficients

of 40 for the water flowing in and 30 for the water flowing out of the surge tank. Physical

experiments were performed on two different throttle geometries, i.e. a gate and a rack throttle

(Figure 2.9). It was necessary to distribute the head loss on the height as the gate throttle did

not produce enough head losses. Nine different throttle geometries, i.e. three gate throttles

and six rack throttles were tested.

The main characteristics of the final throttle (Figure 2.3) are:

- area of the entrance section of the surge tank: Ath,r = 3.94m2;

- opening area of the throttle: Ath,o = 0.735m2 and, thus, an equivalent contraction ratio

of βeq = 0.43;

- thickness of the throttle: t ≈ 0.32m and, thus, a thickness ratio of α≈ 0.143; and

- angle of θ = 12◦.

The asymmetry ratio between the water flowing in and out of the surge tank is 0.75.

For the physical modeling, a geometrical scale of 1 : 12 is used with a Froude similarity. The

minimum Reynold number in the reference cross-section is 105 to ensure an independence of

it.

3This subsection is based on a scientific paper accepted for publication “Adam, N. J., De Cesare, G., Nicolet,
C., Billeter, P., Angermayr, A., Valluy, B., and Schleiss, A. J. (accepted for publication). Design of a throttled surge
tank for the refurbishment by power increase of a high head power plant. Journal of Hydraulic Engineering.”. The
experimental work presented hereafter is original and was performed by the author.
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Figure 2.9 – The two different Gondo throttle geometries (Adam et al., 2017)
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As seen in Section 2.3.1, there are at least three different types of throttle used in throttled

surge tanks. In this thesis, we focus on orifices used as throttles. Orifices have the simplest

throttle geometry, allowing the perform of different analyses to highlight systematically the

influence of all the geometrical parameters.

3.1 Use of orifices

Orifices introduce a sudden and local variation of the pipe cross-section. The discharge

flowing through orifices, with a shape that was defined by ISO (2003) is deduced with the

pressure drop between the upstream orifice pressure and the vena contracta pressure.

3.1.1 Flow meters

Orifices have largely been studied for the application of flowmeters, e.g. Reader-Harris (2015);

ISO (2003); Reader-Harris et al. (1995) with the geometrical or flow limitations shown in Table

3.1. Different types of pressure tappings exist for the evaluation of the discharge as depicted in

Figure 3.1.

ISO (2003) determined Equ. (3.1), which yields the discharge related to the differential pressure

in the limitations given of Table 3.1.

Q = CD√
1−β4

ερ
π

4
d 2

√
2∆p (3.1)

where: Q is the discharge flowing through the orifice, CD the discharge coefficient, β= d/D the

contraction ratio (Figure 3.1), ε the expansion factor taking into account the compressibility

of the fluid (ε= 1 for incompressible flow), ρ the water density, d the inner orifice diameter,

and ∆p the differential pressure (Figure 3.1).
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Flow direction D/2

d/2

D D/2

Flow direction D/2

d/2

1" 1"

D and D/2 
pressure tappings

Flange tappings

Flow direction D/2

d/2

Corner tappings

Figure 3.1 – The three different pressure tappings covered by the ISO (2003) (adapted from ISO
(2003)).

Table 3.1 – Limitations of flowmeter orifices defined by the ISO (2003)

Parameter Corner or D and D/2 pressure tappings Flange tapping

Inner orifice diameter d ≥ 12.5mm
Pipe diameter 50mm ≤ D ≤ 1000mm

Contraction ratio 0.1 ≤β≤ 0.75
Reynolds number ReD ≥ 5000 for 0.1 ≤β≤ 0.56 ReD ≥ 5000 and ReD ≥ 170β2D

or ReD ≥ 16000β2 for β> 0.56

For standard orifices, the discharge coefficient, CD , is given in ISO (2003) for different pipe

diameter, D, Reynolds number, Re, and contraction ratios, β. Reader-Harris et al. (1995)

developed experimentally empirical equations for the discharge coefficient, CD , depending

on the contraction ratio, β, and the Reynolds number, ReD .

3.1.2 Throttling device or producer of head losses

As explained in Chapter 2, the implementation of an orifice is an efficient way for throttling

an existing surge tank, which protects pressure tunnels from pressure waves produced by

discharge variations in hydroelectric power plants (Hachem et al., 2013; Alligne et al., 2014;

Gabl et al., 2011). Orifices could have different shapes, such as those defined by ISO (2003) or

other shapes tested either with physical (Gabl et al., 2014; Gabl, 2012; Huber, 2010; Malavasi

and Messa, 2011; Malavasi et al., 2015) or numerical experiments (Malavasi and Messa, 2011;

Gabl, 2012; Huber, 2010).
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3.2. Different flow types through orifices

Urner (1997) linked this pressure drop with the total produced head losses.

3.2 Different flow types through orifices

Figure 3.2 depicts the various possible types of flow through an orifice depending on its

thickness.

D d

t
(a) Orifice Flow, α<αc

D d

tc
(b) Critical flow, α=αc

D d

t
(c) Plug Flow, α>αc

Figure 3.2 – Different flow types depending on the orifice thickness ratio
α (defined in Figure 3.3)

The critical thickness, tc (and the corresponding dimensionless parameter, αc ) is the required

thickness for which the orifice jet reattaches at the end of the orifice. For small thicknesses,

the contraction before and the expansion of streamlines after the orifice are interdependent

and influence each other. On the contrary, for plug flow, there is an attachment point where

the water jet is connected to the inner orifice wall. Tian et al. (2009) and Fossa and Guglielmini

(2002) defined a plug flow when t > 0.5D while Wu and Ai (2010) performed numerical

simulations to fit an empirical function depending on β, α and Re. Wu and Ai (2010) showed

that αc increases with Re when β decreases.
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Gan and Riffat (1997) showed that the thinner an orifice is, the higher the head losses are.

However, the minimum head losses seem to be around α/β= 1. . .1.5 (Gan and Riffat, 1997;

Fratino and Pagano, 2011). The head losses drop to approximately 25% from α/β= 0.5 to 1.5.

Fratino and Pagano (2011) demonstrated that for thick plug orifices the total head losses have

to take into account friction losses along the plug orifice, as evaluated using Darcy friction, f ,

and the equivalent sand roughness, εi (Brown, 2002).

3.3 Head loss coefficient

The head loss coefficient, k, is the ratio between the head losses, ∆H , produced by an orifice

(or any changes in geometry or flow direction) and the kinetic energy, v2

2g , in a reference section.

This reference section is usually the surrounding cross-section; hereafter the reference cross-

section is the main pipe cross-section.

∆H = k · v2
D

2g
(3.2)

Figure 3.3 features the two main orifice geometries, used in this research study. Each chamfer

orifice (Figure 3.3a) is characterized by four geometrical parameters: β the contraction ratio,

α, the thickness ratio, αi , the inner thicknes ratio and the chamfer angle, θ. Each rounded

orifice (Figure 3.3b) is also characterized by four geometrical parameters : β, the contraction

ratio, αi , the inner thickness ratio and the elliptical semi-axes, αa and βb .

β

α
D

αi=
ti

D

D d

t

ti
d

D

θ

Sharp approach
Chamfered
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tθ

αθ=
tθ

D

AB BA

A B

(a) Chamfer orifice

D d

t

ti

Sharp approach

a
r

b
r

b=
D

a=
D

α
a
r

b
r

BA

A B

Rounded approach

(b) Rounded-edged orifice

Figure 3.3 – Chamfer and rounded orifices with a sharp side employed in this research study

The contraction ratio, β, is the most critical parameter impacting the head losses produced

by an orifice (Idel’cik, 1969; Blevins, 1984; Şahin, 1989). The head loss coefficient is inversely

proportional to β4 and α (Jianhua et al., 2010; Blevins, 1984). Many authors have put forth

empirical relationships for the estimation of the head loss coefficient.
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Idel’cik (1969) offered different head losses evaluations as a function of β, α and the orifice

shape for both flow directions. Idel’cik (1969) defined head loss coefficients either for upstream,

orifice or downstream cross-sections. Herein, the reference cross-section is always defined as

the upstream one. The following points are a summary of the empirical formulas provided by

Idel’cik (1969):

- Eq.(3.3) presents a formula of head loss coefficient for an orifice plate and plug orifice

respectively, which is valid for a symmetric device (θ = 0◦) and for Red > 105:

k =

(
k ′+τ

√
1−β2

)
· (1−β2)+ (1−β2)2 +ki

β4 (3.3)

where k ′ depends on the upstream orifice shape (k ′ = 0.5 for a square-edged orifice or

k ′ ≈ 0.4 for a 45-degree-chamfer orifice), τ depends on α (τ= 1.35 for a thin orifice of

α<< 1 or τ≈ 0 for a thicker orifice of α> 2) and ki represents friction losses evaluated

with the Darcy-Weisbach equation for the inner orifice pipe, ki = f ·αi , where f depends

on the inner orifice roughness, εi .

- For chamfer orifices, Eq.(3.4) generates head loss coefficients for the sharp and chamfer

flow approaches. The formula is valid for thin orifices (α/β ≤ 0.015 and αi = 0) and

for Red > 105. For the shape approach with an angle, only angles, θ, between 20◦ and

30◦ were taken into account. No information was given on the radius for the rounded

approach.

k = (1+τ
√

1−β2 −β2)2

β4 (3.4)

where τ= 0.707 for sharp approach and, for shape approach, τ varied from 0.678 to 0.4

as a function of α and τ varied from from 0.663 to 0.245 as a function of α.

Blevins (1984) gave a simplified relation for a thin square-edged orifice that is valid for ReD >
104 and α ∈ [0.01,0.02]:

k = η

C 2

1−β4

β4 (3.5)

where η is a function of β (η= 0.93 for β= 0.2 and η= 0.38 for β= 0.8) and C depends on β

and Re(C = 0.6 for ReD > 105)
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Urner (1997) found equation (3.6) for standard orifices by developing a head loss evaluation

for an ideal nozzle. The field of application was the same as defined by ISO (2003) (see Table

3.1).

k =
[√

1−β4(1−C 2)

CDβ2 −1

]2

(3.6)

where: k is the head loss coefficient (ξ in Urner (1997)), β the contraction ratio and CD the

discharge coefficient.

Jianhua et al. (2010) fit a new equation depending on α and β (equation (3.7)), which is valid

for α ∈ [0.05,0.25],β ∈ [0.4,0.8] and ReD > 105.

k = 0.7418

α0.1142

(3.196

β4 − 5.646

β2 +2.45
)

(3.7)

Other authors, e.g. Malavasi et al. (2012); Zeghloul et al. (2017); Malavasi and Messa (2011);

Roul and Dash (2012), have evaluated the maximum pressure drop in the vena-contracta, that

Urner (1997) linked to the head loss coefficient as shown with Eq.(3.8). Theoretically, the head

loss coefficient could be found from the pressure drop under the assumption of a standard

discharge coefficient (defined by ISO (2003))

∆H

∆p
=

√
1−β4(1−C 2

D )−CDβ
2√

1−β4(1−C 2
D )+CDβ2

(3.8)

where: ∆H is the head losses, ∆p the pressure drop in the vena contracta, β the contraction

ratio and CD the discharge coefficient.

3.4 Recirculation or influence length

A minimum straight pipe length upstream and downstream of an orifice should be ensured

to decrease the uncertainties of the discharge coefficient of a standard orifice (ISO, 2003).

According to ISO (2003), the downstream straight should be longer than 4D if β= 0.2 to 8D for

β= 0.75 in order to have no additional uncertainties. This length could be diminished by 2 if a

5% uncertainty is accepted. Furthermore, these values are 60% higher than those provided by

the American Petroleum Institute (Reader-Harris, 2015). These lengths can be taken only as an

order of magnitude of the zone that influences an orifice.
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3.5. Transient head losses

Jianhua et al. (2010) showed that the recirculation length does not depend on the Reynolds

number Re (for Re ∈ [1.8 ·105,2.76 ·106]). Figure 3.4, created by Jianhua et al. (2010), depicts

the evolution of lr as a function of the contraction ratio, β, and the thickness ratio, α. The

recirculation length, lr , increases if α or β decreases. The recirculation length, lr , tends

logically to 0 when β tends to 1, a pipe without an orifice.

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Contraction ratio,  [-]
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0.5
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 = 0.05
=0.10
=0.15
=0.20

Figure 3.4 – Recirculation length, lr , as a function of the contraction ratio, β, and the thickness
ratio, α (adapted from Jianhua et al. (2010))

3.5 Transient head losses

For fast transient flows, the behaviour of losses, in general friction losses, is often non-linear

(Ferràs Segura, 2016). However, the approximation with steady losses seems to be still suf-

ficient, with a 1-D modeling, for the first oscillation that yield the maximum and minimum

pressures (Chaudhry, 2014). However, the pressures for other oscillations or obtained for mul-

tiple operations, e.g. an emergency shut-down following a turbine start or a restart following a

load rejection, are less reliable.

Many investigations, which have been performed on unsteady head (friction) losses during

water hammer, have employed several methods taking into account these effects in transient

flow computations. They can be classified into three (Chaudhry, 2014), four (Ferràs Segura,

2016) or six (Bergant et al., 2001) categories. A decomposition between steady and transient

head losses, as in Eq.(3.9), is frequently adopted in the literature.

∆H =∆Hs +∆Ht (3.9)
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According to Bergant et al. (2001) and Chaudhry (2014), the transient head losses, ∆Ht , is

modeled by either instantaneous-acceleration-based (IAB) model, i.e. the instantaneous

mean flow velocity v or with the instantaneous acceleration, ∂v
∂t , and/or with the convective

acceleration ∂v
∂x ; or convolution methods employing instantaneous mean flow velocity and

weighted past flow velocity changes; or quasi-two-dimensional (2D) model, which provides

accurate results but is time-consuming. The typical expression for ∆Ht evaluated with IAB

methods are shown in Eq.(3.10). This research project focused only on local head losses. Thus,

in Eq.(3.10), the partial derivative, ∂v
∂x , can be neglected.

∆Ht = 1

g

[
kt ,t

∂v

∂t
+kt ,x

v |v |
v2

∣∣∣∣a ∂v

∂x

∣∣∣∣] (3.10)

where: kt ,t and kt ,x should be equal or different.

Schönfeld (1949) assessed the transient effects of head losses produced in fully turbulent flows

in pipes or in open canals. This resulted in a correction of the inertial term, dQ
d t (Similar to

Eq.(3.11)).

Concerning orifices, Yamaguchi (1976) gave an evaluation of the term, le , based on the concept

of equivalent length for air flows.

∆H = ks ·
v2

d

2g
+ le

g Ad

dQ

d t
(3.11)

where: ks refers to the steady head losses relative to the orifice area, vd the average flow

velocity in the orifice and te the equivalent thickness of the orifice defined as in Eq.(3.12).

le = t +d · (
8

3
π−1.06 ·β) (3.12)

where d is the orifice diameter and β the contraction ratio.

3.6 Cavitation

When the discharge flowing through an orifice increases, the head losses produced by the

orifice cover three main regions (Malavasi and Messa, 2011). In the first region (ReD < 104),

the Reynolds number in the pipe, ReD , have a large influence on head losses (Idel’cik, 1969).

In the second region (ReD > 104), for fully turbulent flows (Idel’cik, 1969; Blevins, 1984), the

head losses do not depend on the Reynolds number. Finally, for high ReD , the head losses

increase because of cavitation.
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Figure 3.5 – Pressure line for water flowing through orifice

As defined in Tullis (1989):

"Cavitation consists of rapid vaporization and condensation of a liquid. [...] It nor-

mally occurs when liquid at constant temperature is subjected to vapour pressure

either by a static or a dynamic pressure"

Cavitation can cause damage to the structures of the throttle itself or to the pipe but also can

significantly increase head losses. This sudden rise could have the same effect as valve closure

and induce a water hammer within the pressure tunnel.

3.6.1 Cavitation number

According to Malavasi et al. (2015), there are various definitions for the cavitation number

as shown in Eq.(3.13) (Ferrarese et al., 2015), (3.14) (Tullis, 1989) and (3.15) (Yan and Thorpe,

1990) :

σ= pu −pv g

pu −pd
(3.13)

where: pu is the upstream pressure, pd the downstream pressure and pv g the vapour pressure.

σd = pd −pv g

pu −pd
=σ−1 (3.14)
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σv g = pu −pv g

1
2ρv2

= Eu ·σ (3.15)

where: ρ is the fluid density, v the mean pipe velocity and Eu the Euler number defined as

follows: Eu = pu−pd

1/2ρv2

In Eqs.(3.13) to (3.15), the positions of the upstream and downstream pressures have varying

definition:

- pu is the upstream pressure taken at just upstream of the orifice (Tullis, 1989), at 1D

upstream (Yan and Thorpe, 1990) or at 2D upstream (Ferrarese et al., 2015)

- pd is the downstream pressure taken at 6D downstream of the orifice (Ferrarese et al.,

2015), at 10D downstream (Numachi et al., 1960; Tullis, 1989) or at 15D downstream

(Yan and Thorpe, 1990).

In this study, the definition given by Ferrarese et al. (2015) was used. The values coming from

other authors (Numachi et al., 1960; Tullis, 1989; Yan and Thorpe, 1990; Maynes et al., 2013)

will be transformed with the relation from Eqs.(3.14) and (3.15).

3.6.2 Cavitation regimes

There are different cavitation regimes (Figure 3.6) (Tullis, 1989; Instrument Society of America,

1995):

- Regime I: No cavitation;

- Regime II: Incipient cavitation number σi commences the regime till light cavitation,

which ends at the critical cavitation number, σc . According to Numachi et al. (1960),

small cavitation bubbles appear in the flow and are visible with human eyes;

- Regime III: Covers light till the maximum intensity of cavitation, where there is large

acceleration of the sound pressure levels and cavitation takes place from the orifice

edges (Numachi et al., 1960). It ends with the maximum vibration (or choking) cavitation

number, σmv ; and

- Regime IV: Choking cavitation with a drop in intensity where the pipe is almost filled

with cavitation bubbles.

According to Tullis (1989), limiting the flow of regime I is very conservative. The life of an

orifice in regime II would not decrease. However, in the work presented here, the goal is to
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3.6. Cavitation

make a comparison between orifice geometries producing the same amount of head losses

in each flow direction rather than study the effect of cavitation on head loss coefficients (see

explanation in Chapter 8).

Figure 3.6 – Identification of the cavitation regimes and limits (adapted from Instrument
Society of America (1995) by Malavasi et al. (2015))

3.6.3 Incipient cavitation

As described in Section 3.6.2, the incipient cavitation is the limit between no cavitation and

light cavitation. As explained in Section 3.6.1, there are different definitions of the cavitation

number. The values of the incipient cavitation number are adapted to the definition given by

Eq.(3.13).

Figure 3.7 portrays the relation of the incipient cavitation numbers, σi , evaluated in previous

studies (Numachi et al., 1960; Tullis, 1989; Yan and Thorpe, 1990; Maynes et al., 2013; Ferrarese

et al., 2015) and the contraction ratio, β.

The incipient cavitation number, σi , seems globally to increase when β increases. Depending

on the author, there is major variation in σi for a given β. Tullis (1989) stated that cavitation

can be highly affected by scale effects. However, here, it does not seem to be the cause of the

discrepancies as the pipe diameter is more or less the same (Figure 3.7). Moreover, the two

external diameters give more or less the same σi (Numachi et al., 1960; Yan and Thorpe, 1990).
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Figure 3.7 – Comparison of previous studies focusing on the evaluation of the incipient
cavitation number σi as a function of the contraction ratio β

3.6.4 Prediction of the incipient cavitation number

Method based on physical characteristics A variety of authors have developed methods

based on the physical characteristics of orifices, such as the contraction ratio, β, the discharge

coefficient, CD , or the orifice contraction coefficient CC (Kuroda et al., 1978; Sánchez et al.,

2008; Malavasi et al., 2015).

Method based on CFD simulations Ferrarese et al. (2015) proposed a new method for the

prediction of the incipient cavitation number, σi . The pressure involved in the evaluation of

σ is based on numerical simulations of single-phase incompressible flow. They showed that

a single discharge CFD simulation is sufficient to predict σi . However, the three discharges,

which are defined in Section 4.1.3, are utilized in this study to predict σi . Eq.(3.16) defines the

incipient cavitation number, σi , with the position of each section in Figure 3.8:

σi =
pu −pv g

pu −pd
(3.16)

where: pu is the upstream pressure, pd the downstream pressure and pv g the vapour pressure.

In a single-phase incompressible flow simulation, without any model of cavitation, the pres-

sure field, p∗, is always defined by imposing a fixed pressure somewhere in the computed

domain, generally in the downstream section. In other words, a constant, pc , can be added

or subtracted from the domain without changing the value of the other flow variables, e.g.
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3.6. Cavitation

velocities. Eq.(3.17) reflects the infinite possibilities of a pressure field, p̃.

p̃ = p∗+pc (3.17)

With the method developed by Ferrarese et al. (2015), the constant, pc , was chosen in order

to have the minimal pressure of the pressure field equal to the vapor pressure, pv g . This

condition leads to having the apparition of cavitation regime II (Section 3.6.2) and the first

bubbles of cavitation. This transformation is therefore given by Eq.(3.18). The incipient

cavitation number, σi , can thus be predicted by Eq.(3.19) as shown in Ferrarese et al. (2015).

2D 6D

D

t

d

Pressure in 

the pipe

Pipe axisU v.c. D

Figure 3.8 – Flow through an orifice and localization of the different section used in the
evaluation of σi and σvc

p̃ = p∗+pv g −p∗
m (3.18)

where p∗
m is the minimal pressure in the computed domain.

σi =
p̃u −pv g

p̃u − p̃d
=

(
p∗

u +pv g −p∗
m

)−pv g(
p∗

u +pv g −p∗
m

)− (
p∗

d +pv g −p∗
m

) = p∗
u −p∗

m

p∗
u −p∗

d

(3.19)

where pu is the upstream pressure, pd the downstream pressure and pv g the vapour pressure.

Furthermore, in this research project, by assuming that the pressure drop in the vena contracta

is relatively unaffected by the incipient cavitation, the cavitation number characterizing the
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cavitation of the vena contracta is evaluated by Eq.(3.20).

σvc =
p∗

u −p∗
vc

p∗
u −p∗

d

(3.20)

where p∗
vc is the vena-contracta pressure
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4 Experimental and numerical model-
ing

4.1 Experimental modeling

4.1.1 Description of the experimental set-up

The experimental work was carried out in a straight pipe located at the LCH of EPFL (Figures

4.1 and 4.2). The main pipe was made of two polyvinyl chloride (PVC) translucent pipes and

an acrylic orifice box. The inner diameter of the main pipe was D = 0.216m and the length was

L = 4m between the two expansion devices linking the experimental pipe to the laboratory

supply conduits.

Figure 4.1 – Overview of the experimental facility at LCH-EPFL
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Figure 4.2 – Sketch top view of the experimental facility at LCH-EPFL

(a) PVC crosses (b) Honey comb in the divergent pipe

Figure 4.3 – Flow straighteners placed in the piping system

Laboratory water supply

The main pipe was connected to the pump through a 150 mm supply conduit (DLS). As shown

in Figure 4.2, two 90-degree bends were located 2.7m (≈ 18DLS) far from the starting section

of the main pipe.

Two types of flow straighteners are used to improve the hydraulic flow conditions in the

pipe: (1) two PVC crosses (Figure 4.3a) are placed inside the laboratory supply to prevent the

development of swirling flows because of the bends; and (2) honey combs (Figure 4.3b with

a thickness of 0.1m and single-hole openings of ≈ 2.6 ·10−4 m2) were placed in the gradual

divergent pipe to eliminate the possibility of small flow recirculations in the main pipe.

ISO (2003) lists the influences of the surrounding pipe waterway on the evaluation of the

discharge coefficient, which is related to the head loss coefficient (Urner, 1997), of a standard

orifice. Hence, in order to limit the uncertainties on the evaluation of the discharge (or head

losses), the length upstream of the orifice should be higher than:

- 25D, at least following two 90-degree bends without any flow straightener (for β ∈
[0.2...0.67]); and

- from 8 to 14D (for β ∈ [0.2...0.67]) following concentric expanders with an expanding

ratio of 2, while the expanding ratio of our experimental setup was 1.44.
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In the same way, in order to mitigate any additional uncertainty, the length downstream of the

orifice should be higher than 7D .

The experimental set-up fulfilled the criteria of the upstream and downstream lengths from

ISO (2003) as two different types of flow straighteners were placed before the experimental

pipe to improve flow conditions.

Orifice box

A special orifice box (Figure 4.4) was designed for testing efficiently numerous orifice thick-

nesses (Tables 4.1). An inner pipe was placed inside the box to ensure the same inner diameter

within the main pipe and box. The orifice box and the inner pipes were made of Plexiglas for

clear visibility of the flow. The watertightness between all parts was made certain by O-rings.

Main pipe
Orifice box

Orifice Inner pipe

Pressure taps

Figure 4.4 – Orifice box within the orifice and the inner pipe

4.1.2 Dimensional analysis

Dimensional analysis allows determination of the main influencing dimensionless parameters

of shape. According to the literature, and particular, ISO (2003), the parameters characterizing

an orifice situated inside a waterway (Figure 4.5) are:
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Q, p, , , g
Dd

t

ti

ks,p

ks,i

Concrete liner

Rock

Figure 4.5 – Detailed view of an orifice in a waterway system and definition of parameters

- fluid (water in the thesis): ρ, µ;

- flow: Q, p;

- orifice: d , t , ti , θ, ks,i , shape; and

- surrounding pipe: D , ks,p

And the dependent results are:

- head losses: ∆H ;

- pressure drop in the vena contracta: ∆pvc ;

- influence orifice length: L j ; and

- reattachment length: Lr

We used the BuckinghamΠ-theorem to emphasize the dimensionless parameters according

to Figure 4.5 (Buckingham, 1915).

∆H ,∆pvc ,L j ,Lr = F (D,d , t , ti ,θ,ks,p ,ks,i ,Q, p,ρ,µ, g ) (4.1)
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4.1. Experimental modeling

Table 4.1 – Range of tested parameters

Parameter name Experimental Numerical

Contraction ratio β= d
D 0.4...0.6 0.2...0.8

Thickness ratio α= t
D 0.05...0.4 0.025...0.8

Inner thickness ratio αi = ti
D 0.025...0.4 0.025...0.8

Angle θ 0◦...90◦ 0◦...90◦

Shape Sharp or rounded Sharp

As seen in Eq. (4.1), there are 12 parameters pertaining to this problem. According to Bucking-

ham (1915), there are nine possible dimensionless parameters as there are only independent

fundamental units, i.e. meter, second and kilogram. Finally, we find Eq. (4.2) and (4.3).

∆H ,∆pvc ,L j = f

(
d

D
,

t

D
,

ti

D
,θ,

ks,p

D
,

ks,i

D
,

v ·D
µ
ρ

,
v√
g ·D

,
∆p

1
2 ·ρ · v2

)
(4.2)

Eq. (4.2) highlights important numbers characterizing orifice issues. The first four number

are the main geometrical parameters: β = d
D , the orifice diameter ratio, α = t

D , the orifice

thickness ratio, αi = ti
D , the inner thickness ratio and θ, the orifice sharp angle. The next two

dimensionless numbers are the dimensionless roughness for the pipe and the inner orifice

surface εp = ks,p

D and εi = ks,i

D , while the last three numbers are well known in hydraulics as

Reynolds, Froude and Euler number. Note that the Euler number is another definition of the

head loss coefficient. All these parameters are outlined in Eq. (4.3).

∆H ,∆pvc ,L j = f (β,α,αi ,θ,εs,p ,εs,i ,Re,Fr,Eu) (4.3)

4.1.3 Investigated parameters and test program

The nine dimensionless parameters obtained with the dimensional analysis are found in

Figure 4.5. The four geometrical independent parameters characterising an orifice (β, α, αi

and θ), as well as the orifice shape, were systematically tested (see Table 4.1). The experimental

campaign concentrated on three different series of orifices: sharp-edged (Figure 4.6a and Table

4.2), rounded (Figure 4.6b and Table 4.3) and a combination of sharp-edged orifices (Figure

4.6c and Table 4.4). The design of experiments and the experimental results are summarized

in Appendix B.

According to Figure 4.6, the following notations were used to clearly distinguish between the

different flow approaches:
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(a) Sharp-edged orifice

D d

t

ti

Sharp approach

a
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D
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D

α
a
r

b
r

BA
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Rounded approach

(b) Rounded-edged orifice

θRθL

tθ,L

D d

tθ,Rti

A B

t

(c) Combination

Figure 4.6 – Different reference orifice shapes tested with the dimensionless parameters and
notations

- Sharp approach flow (AB) when water flows by the sharp or square-edged side of the

orifice;

- Chamfer approach flow (BA) when water flows according to the sloping-approach owing

to the chamfer (if there are two chamfers, an additional distinction is used by the mean

of the chamfer angle); and

- Rounded -approach flow (BA) when water flows through the rounded approach.

Table 4.5 shows the different discharges for the experiments and numerically and relates the

kinetic energy values, along with the Reynold and Froude numbers. For both approaches,

the Reynold number in the main pipe is higher than 104, thereby ensuring full turbulent flow.

However, the influence of the dimensionless roughness εp and εi was considered in this study.

46
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Table 4.2 – Set of sharp orifices tested during the experimental work

Orifice name Shape Varying parameter β [−] α [−] αi [−] θ [◦] αi /α

EXP_001 sharp Reference 0.50 0.20 0.10 45 0.5
EXP_002 sharp β 0.45 0.20 0.10 45 0.5
EXP_003 sharp β 0.40 0.20 0.10 45 0.5
EXP_004 sharp β 0.59 0.20 0.10 45 0.5
EXP_005 sharp β 0.54 0.20 0.10 45 0.5
EXP_006 sharp θ 0.50 0.20 0.20 0 1.0
EXP_007 sharp θ 0.50 0.20 0.10 15 0.5
EXP_008 sharp θ 0.50 0.20 0.10 30 0.5
EXP_009 sharp θ 0.50 0.20 0.10 67 0.5
EXP_010 sharp αi 0.50 0.20 0.15 45 0.74
EXP_010.5 sharp αi 0.50 0.20 0.00 45 0.00
EXP_011 sharp αi 0.50 0.20 0.05 45 0.26
EXP_012 sharp α 0.50 0.10 0.05 45 0.51
EXP_013 sharp α 0.50 0.05 0.025 45 0.49
EXP_032 sharp α 0.50 0.40 0.20 45 0.50
EXP_026 sharp α, θ 0.50 0.40 0.40 0 1.0

Table 4.3 – Set of rounded orifices tested during the experimental work

Orifice name Shape Varying parameter β [−] α [−] αi [−] βb [−] αi /α

EXP_014 rounded Rounded shape 0.50 0.20 0.04 0.10 0.19
EXP_015 rounded Shape, β 0.45 0.20 0.01 0.14 0.07
EXP_016 rounded Shape, β 0.40 0.20 0.04 0.15 0.19
EXP_017 rounded Shape, β 0.59 0.20 0.06 0.03 0.32
EXP_018 rounded Shape, β 0.54 0.20 0.04 0.07 0.19
EXP_019 rounded Shape, θ 0.50 0.20 0.04 0.21 0.20
EXP_020 rounded Shape, θ 0.50 0.20 0.04 0.16 0.19
EXP_021 rounded Shape, θ 0.50 0.20 0.05 -0.09 0.23
EXP_022 rounded Shape, αi 0.50 0.20 0.12 0.18 0.60
EXP_023 rounded Shape, αi 0.50 0.20 -0.04 0.02 -0.19
EXP_024 rounded Shape, α 0.50 0.10 0.02 0.18 0.19
EXP_025 rounded Shape, α 0.50 0.05 0.01 0.21 0.14
EXP_932 rounded Shape, α 0.50 0.40 0.24 0.10 0.60
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Table 4.4 – Set of sharp orifices tested during the experimental work

Orifice name Right Left β [−] α [−] αi [−] αL [−] θL [◦] αR [−] θR [◦]

EXP_026 SHARP006 SHARP006 0.50 0.40 0.40 0.20 0 0.20 0
EXP_027 SHARP006 SHARP001 0.50 0.40 0.30 0.20 0 0.10 45
EXP_028 SHARP006 SHARP007 0.50 0.40 0.30 0.20 0 0.10 15
EXP_029 SHARP006 SHARP008 0.50 0.40 0.30 0.20 0 0.10 30
EXP_030 SHARP006 SHARP009 0.50 0.40 0.30 0.20 0 0.10 67
EXP_031 SHARP006 SHARP010 0.50 0.40 0.35 0.20 0 0.05 45
EXP_032 SHARP006 SHARP011 0.50 0.40 0.25 0.20 0 0.15 45
EXP_033 SHARP006 SHARP010.5 0.50 0.50 0.20 0.20 0 0.20 45
EXP_034 SHARP012 SHARP006 0.50 0.50 0.25 0.05 45 0.20 0
EXP_035 SHARP013 SHARP006 0.50 0.50 0.23 0.03 45 0.20 45
EXP_036 SHARP001 SHARP007 0.50 0.40 0.20 0.10 45 0.10 15
EXP_037 SHARP001 SHARP009 0.50 0.40 0.20 0.10 45 0.10 67
EXP_038 SHARP001 SHARP011 0.50 0.40 0.15 0.10 45 0.15 45
EXP_039 SHARP012 SHARP001 0.50 0.30 0.15 0.05 45 0.10 45
EXP_040 SHARP007 SHARP008 0.50 0.40 0.20 0.10 15 0.10 30
EXP_041 SHARP007 SHARP010 0.50 0.40 0.25 0.10 15 0.05 45
EXP_042 SHARP007 SHARP010.5 0.50 0.40 0.10 0.10 15 0.20 45
EXP_043 SHARP0013 SHARP007 0.50 0.40 0.20 0.10 45 0.10 15
EXP_044 SHARP008 SHARP009 0.50 0.40 0.20 0.10 30 0.10 67
EXP_045 SHARP008 SHARP011 0.50 0.40 0.15 0.10 30 0.15 45
EXP_046 SHARP012 SHARP008 0.50 0.30 0.15 0.05 45 0.10 45
EXP_047 SHARP009 SHARP010 0.50 0.40 0.25 0.10 67 0.05 45
EXP_048 SHARP009 SHARP010.5 0.50 0.40 0.10 0.10 67 0.20 45
EXP_049 SHARP012 SHARP009 0.50 0.30 0.15 0.05 45 0.10 67
EXP_050 SHARP010 SHARP011 0.50 0.40 0.20 0.05 45 0.15 45
EXP_051 SHARP012 SHARP010 0.50 0.30 0.20 0.05 45 0.05 45
EXP_052 SHARP011 SHARP010.5 0.50 0.40 0.05 0.15 45 0.20 45
EXP_053 SHARP013 SHARP011 0.50 0.25 0.08 0.03 45 0.15 45
EXP_054 SHARP012 SHARP010.5 0.50 0.30 0.05 0.05 45 0.20 45
EXP_055 SHARP013 SHARP012 0.50 0.15 0.08 0.03 45 0.05 45
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Table 4.5 – Range of tested discharges (*discharge tested numerically)

] Q [m3/s] v [m/s] KD [m] Re [−] Fr [−]

0 0 0 0 0 0
1 9.5 ·10−3 0.259 3.43 ·10−3 5.60 ·104 1.78 ·10−1

2* 13.4 ·10−3 0.366 6.82 ·10−3 7.90 ·104 2.51 ·10−1

3 16.4 ·10−3 0.448 1.02 ·10−2 9.67 ·104 3.07 ·10−1

4 19.0 ·10−3 0.519 1.37 ·10−2 1.12 ·105 3.56 ·10−1

5 21.2 ·10−3 0.579 1.71 ·10−2 1.25 ·105 3.97 ·10−1

6* 23.2 ·10−3 0.633 2.04 ·10−2 1.37 ·105 4.35 ·10−1

7 25.1 ·10−3 0.685 2.39 ·10−2 1.48 ·105 4.71 ·10−1

8 26.8 ·10−3 0.731 2.73 ·10−2 1.58 ·105 5.02 ·10−1

9 28.5 ·10−3 0.778 3.08 ·10−2 1.68 ·105 5.34 ·10−1

10* 30.0 ·10−3 0.819 3.42 ·10−2 1.77 ·105 5.62 ·10−1

4.1.4 Instrumentation

Appendix A features additional information surrounding the instrumentation, its calibration

and the definition of the record duration and sampling frequency.

Pressure transducers

12 piezoresistive pressure transmitters of the KELLER - series 25, six G1/4" plugs and six G1/2"

plugs, were utilized to measure the pressure along the pipe.

- The six G1/4" plugs were directly connected to the main pipe with an eight-millimeter

hole at 45 degrees from the top of the pipe (Figure 4.7b). For each test, one plug was

placed upstream and five downstream of the orifice depending on the flow direction.

The position reliant on the flow direction is shown in Figure 4.8 and described in Table

4.6. Air bubbles trapped in the hole were removed at the beginning of each orifice test.

- The six G1/2" plugs (Figure 4.7a) were connected to two by 24 cross-sections distributed

along the pipe (Figure 4.8) through a dispatcher composed of 20 solenoid valves (Figure

4.7c). Six recordings were necessary for recording once per cross-sections as seen in

Table 4.6.

Both type of transmitters were calibrated for pressures between 2mH2O (resp. 19.62kPa) and

0.4mH2O (resp. 3.92kPa) as explained in Appendix A.
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(a) Six piezo-resistive transducers

(b) G1/4" piezo-resitive transducers

(c) Dispatcher

Figure 4.7 – Pressure tansducers used in the experimental campaign and dispatcher
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a1a2a3a4a5 b5b4b3b2b1
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7.506.355.00 8.65

Figure 4.8 – Dimensionless positions of all the control cross-sections along the main pipe for
G1/4" and G1/2" plugs

Table 4.6 – The record sequence for the G1/2" and G1/4" pressure transmitters for each
discharge

Recording G1/2"(1) G1/2"(2) G1/2"(3) G1/2"(4) G1/2"(5) G1/2"(6)

AB1(B A1) A11 A9 A4 B4 B9 B11

AB2(B A2) A11 A8 A3 B3 B8 B11

AB3(B A3) A11 A7 A2 B2 B7 B10

AB4(B A4) A11 A6 A1 B1 B6 B12

AB5(B A5) A10 A6 A1 B1 B6 B11

AB6(B A6) A12 A5 A1 B1 B5 B11

G1/4"(1) G1/4"(2) G1/4"(3) G1/4"(4) G1/4"(5) G1/4"(6)

AB a1 b1 b2 b3 b4 b5

B A a1 b1 a5 a4 a3 a2

Flow meters

The water discharge, Q, was measured by electromagnetic flow meters, Endres + Hauser -

PROMAG 50 W (Figure 4.9) on the laboratory supply conduit (DN 150). The two flow meters

were adjusted to assess discharges up to 0.04m3/s. However, the flowmeter could measure

discharges up to 0.167m3/s for DN 150 conduits. The measurement uncertainty was ±0.5%

of the measured discharge (thus, 2 ·10−4 m3/s). The measured flow meter was always the

flowmeter at the end of the downstream pipe (Figure 4.2)

The flowmeter was calibrated for five discharges (from 0.009 to 0.03m3/s) before the experi-

mental campaign as reported in Appendix A.

4.1.5 Acquisition parameters

The sampling frequency varied from 100 H z (for steady-state measurement) to 1000 H z (for

transient measurement).
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Figure 4.9 – ENDRES + HAUSER - PROMAG 50 W flowmeter

The recording duration was 30 s as indicated in Appendix A.

4.1.6 Test procedure

Each physical test was carried out according to the following this test procedure:

1. The model was prepared with the required orifice with in the box. The six G1/4" pressure

transducers are placed at their positions relative to the first testing flow direction;

2. The model was filled with water from the upstream pipe;

3. The air bubbles were blown away by the internal pressure (higher than the surrounding

air pressure). The bubbles could be drained either by the two box taps or by all the 24

control cross-sections by means of the dispatcher;

4. The G1/4" pressure transducers were tightened after blowing the air away;

5. All the discharges were tested following a rise and a fall of the whole set of discharge;

6. For each discharge, steady flow conditions were reached in order to perform six record-

ings of 30 s each with a sampling rate of 100 H z. This permitted recording, at least once,

each of the 24 control cross-sections. The acquisition of the pinhole pressures, the

four-points-averaged pressures and the discharges were recorded; and

7. For the chosen orifices (Chapter 7), transient recordings were with a sampling rate of

1kH z.
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Table 4.7 – Errors and uncertainties for the physical modeling

Type Unit Standard error σε

Geometrical mm ±0.1
Pressure transmitters % ±0.2

Flow-meter % ±0.5
Pressure fluctuations % ±5

Discharge fluctuations % ±1

4.1.7 Measurement errors and uncertainties

The measurement errors and uncertainties in this research may be divided into three different

classes:

- geometrical errors: All the pieces were built in the EPFL workshop with a tolerance

of ±0.1mm. However, the tolerance for the inner pipe thickness (see Figure 4.4) was

−0.1mm to avoid blockages within the orifice box;

- instrumentation uncertainties: Both types of instrumentation, i.e. flowmeter and pres-

sure transmitters, were submitted to uncertainties, supplied by the manufacturer as

described in Appendix A and summarized in Table 4.7;

- experimental pressure fluctuations: The six-blades pump creates fluctuations in labora-

tory supply. The pressure uncertainties, are independent of the discharge. The average

uncertainties are roughly 5% of the tested discharges; and

- experimental discharge fluctuations: Also based the six-blade pump and the uncertain-

ties regarding discharge are 1%.

The uncertainties of the head losses and kinetic energy are, respectively, 5% and 1%, leading

to an uncertainty of the head loss coefficient at 6%. However, the head loss coefficients are

fitted for 2 x 10 discharges, thus the uncertainty can be divided by
p

N with N = 20. The final

uncertainty is therefore 1.3%.

4.1.8 Scale effects

Various researchers have carried out physical or numerical experiments (see Table 4.8). The

Reynold number in the main pipe is higher than 104 for most of the studies in order to ensure

a fully turbulent behavior of the local head losses produced by the orifice. Hence, the local

head losses are independent of the Reynold number. Furthermore, the primary diameter of

the experiments used in this study is on the same order of magnitude as those shown in Table

4.8.
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The upscaling of the experimental results can be performed according to Froude similitude.

For pressurized flow, there would be a need to conserve the ratio of the inertial forces to

the viscous forces. Nevertheless, the experimental results can indeed be upscaled; as fully

turbulent flow is always facilitated during the experiments.

Finally, it should be noticed that the ratio between the main pipe diameter, D, and existing

diameter of the surge tank entrance are on the same order of magnitude as those of previous

model tests performed at LCH (Section 2.4).

4.2 Numerical simulations

4.2.1 Presentation

The numerical simulations were performed with the CFD software ANSYS CFX (either version

15.0 or 17.1) and using ANSYS Workbench. The numerical model was developed in collab-

oration with Prof. Cécile Munch-Alligné from HES-SO Valais/Wallis. The structure of the

numerical modeling can be summarized as follows (see also Figure 4.10):

1. The design of the numerical experiments gives the geometrical parameters for a larger

set of chamfered orifices than the experimental modelling (Chapter 4.1). The interac-

tions between geometrical parameters could be highlighted;

2. A straight pipe geometry is generated from the orifice geometrical parameters (Section

4.2.2);

3. The geometry is meshed with hexahedron elements (Section 4.2.3);

4. The pre-processing allows the definition of the boundary conditions, the turbulence

model and the parameters of the simulation, e.g. the convergence criteria;

5. The solver of ANSYS CFX;

6. The post-processing where the variables characterizing the orifice flow can be exported;

7. From the exported variables, the orifice flow is analyzed to achieve the goal of numerical

modeling:

- Comparison with the experimental results (validation of the numerical model)

- Simulation of an extended set of chamfered orifices to evaluate the interaction

between the geometrical parameters, to extend and validate the empirical formulae

fitted on the experimental results

- Evaluation of the incipient cavitation number in order to characterize each orifice

in terms of the risk of cavitation
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Table 4.8 – Previous studies performed on various types of orifices

Study Flow Geometry Object ReD [−] D [mm] β[−]

Hobbs and Humphreys (1990) water sharp P C Red ≈ 5 ·105 304.8 [0.4,0.75]
Morrison et al. (1990) air sharp P C [5 ·104,1.23x ·105] 50.4 0.5&0.75
Morrison et al. (1995) air sharp P C 9.1 ·104, 1.2 ·105 52.5 [0.43,0.726]

Gan and Riffat (1997)(1) gas Square-edged N,P k 9.1 ·104, 1.2 ·105 c = 300 βeq = 0.706
Zhang and Cai (1999) water different N,P C ,k, shape - 102 [0.5,0.8]

Fossa and Guglielmini (2002) water orifice P k, 2-phase flow [3 ·104,2 ·105] 40, 60 0.735, 0.845
Singh et al. (2006)(2) water and oil V-cone P C [1.25 ·103,2.6 ·105] 50 0.36

Qing et al. (2006) water Square-edged P, N Jet frequency > 105 90 0.255, 0.335
Jianhua et al. (2010) water Square-edged P,N k,L j 1.8 ·105 210 [0.4,0.8]

(1) Gan and Riffat (1997) performed experiments on orifice and perforated plates in a square duct.
(2) Singh et al. (2006) used another definition for the contraction ratio β= dmax /D instead of the common definition β= dmi n /D .

The author then reverted to the common definition.
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Design of the numerical
scenarios

Orifice geometry
β α αi

ANSYS Workbench
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ANSYS Geometry
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ANSYS CFX-Pre

Physics Pre-processor
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Orifice results
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Boundary conditions
Numerical parameters
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Figure 4.10 – Structure of the numerical modeling for each orifice from the orifice geometry
(INPUT) to the results characterizing the orifice (OUTPUT)

4.2.2 Geometry

For the numerical simulations, the geometry was composed of the main pipe (Figure 4.2 and

4.11). The inner pipe diameter was equal to the experimental diameter, D = 0.216m. The

orifice is placed at the central section of the pipe and both boundary cross-sections were at

10D (2.16 m). All the upstream and downstream experimental installations (Figure 4.2) were

not considered for the numerical model. The influence of the distance of the boundaries

upstream and downstream of the orifice was studied in Section 4.2.7.

The design of the numerical simulations is described in Appendix C. The contraction ratios, β,

and interactions with the other geometrical parameters were evaluated to determine how to

mitigate the lack of results in Chapter 5.
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Figure 4.11 – Geometry of the numerical model (NUM001)

4.2.3 Mesh

The fluid volume was meshed with a structured hexagonal grid. There are four different blocks,

i.e. the upstream pipe, the straight component and the chamfered part of the orifice as well as

the downstream pipe. The cross-section of the pipe of the mesh was of the O-mesh (ANSYS,

2016a) variety so as to enhance mesh quality (Figure 4.12).

There were three different walls (Figure 4.12c), i.e. pipe wall, orifice side wall and orifice wall,

where a near-wall inflation was necessary to model the viscous layer of the flow:

- the pipe wall inflation going from the pipe wall to the pipe axis and finishing with the

O-mesh grid (1, blue in Figure 4.12c);

- the orifice side inflation going from the orifice sides to the boundaries (2, red in Figure

4.12c), and the maximum cell length in this direction was limited to 0.015 m; and

- the orifice wall inflation, which is the most important for capturing flow detachment

and modeling the head losses, from the orifice wall to the pipe core (3, green in Figure

4.12c)

Note that the minimum cell length, excepting inflation, was 0.001m either for the O-mesh

core or within the orifice. The total number of cells were, on average, roughly 1.5 million.

57



Chapter 4. Experimental and numerical modeling

(a) Cross-section of the downstream pipe mesh (b) Cross-section of the orifice mesh

(c) Longitudinal section close to the orifice

Figure 4.12 – Views of the different meshes used for orifice NUM001

4.2.4 Pre-processing

Boundary conditions

ANSYS CFX permits the employment of different types of boundary conditions (ANSYS, 2016b),

i.e. an inflow and outflow, which depends on the flow direction, and a wall condition (Figure

4.11).

- At the upstream boundary cross-section, which depends on the flow direction, an inlet

was utilized with a velocity-specified condition. The average velocity on the whole

pipe cross-section was applied to the boundary cross-section. The influence of the

upstream length was evaluated (see Section 4.2.7). Three discharges, and thus three

average velocities, were tested for each geometry as seen in Table 4.5.

- At the downstream boundary cross-section, which is also reliant on the flow direction,

an opening was used instead of an outlet which can numerically diverge because of

the erection of a temporary wall for avoiding an inflow (ANSYS, 2016c). This generally

results in a failure, though this effect was only based on numerical considerations.

- Along the pipe wall and on the orifice surface, a no slip-wall condition was applied with

a smooth wall (without wall roughness). This eliminates the influence of roughness on

the linear head losses but reproduces the linear head losses generated by the flow, e.g.

by its viscosity.
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Physical properties of the fluid

The fluid in the numerical simulations was water, just as in the experimental modeling. All

properties of water were assessed at 20◦C , while the temperature during the experimental

evaluations were between 15◦C and 20◦C . Even for Chapter 8, which deals with cavitation,

the fluid was continuous, and single phase, while there was no cavitation model for negative

pressures, only relative pressures. Water flowing in the pressurized pipe was driven by the

pressure and not the gravity, like in open-channel flow, and the buoyancy of the fluid was set

with non-buoyant fluid (ANSYS, 2016c).

Turbulence model

Turbulence models predict the effects of all turbulence without solving all the turbulence scales.

Many models are based on turbulence approximations made with Reynolds Averaged Navier-

Stokes (RANS) equations but there are also models that are not based on RANS equations, e.g.

Large Eddy Simulation (LES) or Detached Eddy Simulation (DES) models (ANSYS, 2016c). The

models based on RANS equations can also be divided into eddy-viscosity and Reynolds Stress

(RSM) models:

- Eddy-viscosity models with no additional equation (Smith and Cebeci, 1967; ABSI, 2006);

- Eddy-viscosity models with one additional equation, e.g. Prandtl or Sparlart-Allmaras

(Spalart et al., 1994) model;

- Eddy-viscosity models with two additional equations, e.g. the k-ε models (standard,

realizable or RNG1) or k-ω models (Shear Stress Transport, or SST, model included);

- RSM simulates all the individual components of the Reynolds stress tensor and are more

accurate for flows with high degrees of anisotropy (Craft et al., 1996).

Table 4.9 lists the simulation characteristics of a number of previous studies, wherein per-

formed were numerical simulations on orifices or throttles with similar Reynolds numbers

(fully turbulent, ReD > 104). Many authors have used the k-ε models, however ANSYS (2016c)

has suggested the SST model, which yields better results for flows with boundary layer sep-

aration. According to Table 4.9 and ANSYS (2016c), the SST model was employed as the

turbulence model for this project.

Near-wall treatment: Wall treatments are used to take into account the viscous effects close

to the wall and to solve the rapid variation of flow variables in the boundary layer. ANSYS

(2016c) maintains there are two different approaches, commonly used to model the near-wall

region:

1based on renormalization group analysis of the Navier-Stokes equations (ANSYS, 2016d)
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- wall functions, which are based on empirical formulas, decreasing the necessary com-

putational time; and

- the low Reynolds Number method, which solves the boundary layer profile, via thin

inflation layers close to the walls.

Based on ANSYS (2016c), for the SST model, an automatic near-wall treatment was applied.

4.2.5 Solver

ANSYS CFX features two analysis types (ANSYS, 2016b):

- Steady state for numerical problems that likely results in steady flow solutions. If there

are any unsteady effects, that do not depend on the mesh, a transient analysis should

be performed. All parameters, that have an influence on numerical stability, e.g. the

timestep or the CFL number, are automatically handled by the software; and

- Transient for other numerical problems that lead to unsteady solutions. All the param-

eters influencing numerical stability are defined by the user. An adaptive or constant

timestep can be employed. The maximum or RMS Courant number should be estab-

lished in order to ensure numerical divergence and accuracy.

In the thesis, steady state analysis was preferred. If there was any doubt related to the nu-

merical or real transient phenomena, transient analysis was performed. The convergence

criteria was either when the maximum residual was 1e−7 or for maximal iterations of 1000.

The convergence of the head losses between the upstream and downstream part of the pipe

and the steadiness of the solution was always verified subsequently.

4.2.6 Post-processing

Wall function - y+

ANSYS (2016c) presented various guidelines for ensuring the best accuracy of wall treatment

for mesh generation. As can be seen from Table 4.9, the authors used different values of y+.

Before, when standard wall functions were employed, it was advised to avoid y+ values smaller

than 20, but with automatic wall treatment, these values are only provided for information

pertaining to near-wall resolutions (ANSYS, 2016c).

Figure 4.13 portrays the value of y+ on the pipe wall along the pipe axis for NUM_001. For

all the numerical simulations, the value of y+ was locally limited to 100 and 30 on average.

Furthermore, the maximal value was locally obtained on the edge.
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Table 4.9 – Recent studies performed on a variety of orifice or throttled surge tanks

Study Software Interest Turbulence model Reynolds number ReD [-] y+ [-]

Erdal and Andersson (1997) Phoenics 2.1.3 Orifice: CD k-ε 104 ... 106 /
Huber (2010) Fluent 6.3.26 Throttled ST: k / 4 ·105 ... 4 ·106 2-10

Wu and Ai (2010) / Orifice: αc RNG k-ε 1.75 ·107 ... 3.51 ·107 /
Jianhua et al. (2010) / Orifice: k,lr RNG k-ε 9 ·104 ... 2.76 ·106 7

Gabl et al. (2011) ANSYS CFX 12.1 Orifice: k, λ SST / < 20
Alligne et al. (2012) ANSYS CFX 14.0 Throttled ST: k SST > 105 20...100

Li et al. (2012) ANSYS CFX Orifice: CD k-ε / /
Shah et al. (2012) OpenFOAM 1.6 Orifice: CD k-ε 4.5 ·104 ... 9 ·104 < 5
An et al. (2013a) Fluent Throttled ST: k realizable k-ε / /

Nygård and Andersson (2013) / Orifice flow / 5 ·103 ... 1.5 ·104 ≤ 5
Lancial et al. (2016) Code_Saturne Orifice: k,CD k-ε 8.69 ·105 20, 40, 60

where: k is the head loss coefficient, αc the critical thickness ratio, lr the reattachment length, λ the asymmetry ratio,
and CD the discharge coefficient.
/: No direct information in the article
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(a) Overall

(b) Sharp approach - detail (c) Chamfer approach - detail

Figure 4.13 – NUM_001 - Values of y+ on pipe walls
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4.2. Numerical simulations

Mesh

For all the meshes, the mesh quality was inspected prior to the simulation. Before each

simulation, three criteria, i.e. the mesh orthogonality, the aspect ratio and the expansion factor,

are verified by ANSYS in order to determine if the mesh is good, acceptable or questionable

(as defined in ANSYS (2016b)). The meshes where the quality is insufficient were always

re-meshed in order to be, at the very least, acceptable.

4.2.7 Validation

Validation comparing the numerical and experimental results of the sharp and chamfer ap-

proach flow directions were performed (see Section 5.6.1). However, the effects of the upstream

and downstream lengths, mesh refinement and turbulence models were also evaluated (see

Section 4.2.7). All the numerical simulations for the validation were performed with orifice

EXP_007-NUM_007 (see right margin). The discharge was always equivalent to 30 l/s for the

validation. Furthermore, the boundary conditions were those found in Figure 4.11.
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Figure 4.14 – Influence of the upstream and downstream length on the pressure line along the
pipe axis in the numerical model compared to the experimental results (mean pressure and
95% confidence interval ) for orifice EXP_007 - NUM_007

63



Chapter 4. Experimental and numerical modeling

Influence of upstream and downstream distance

Four different upstream and downstream lengths, from 7.5D to 30D, are tested to evaluate

their influence on the head losses produced by the orifice. Figure 4.14 shows a comparison of

the pressure line for the different lengths. The downstream boundary condition is an opening

anyway. There is no major difference of head losses for all the upstream and downstream

lengths. Consequently, taking the length of the main experimental pipe allows approaching the

experimental conditions and being independent of the boundary conditions of the numerical

model.

Mesh sensitivity

Four mesh refinements were tested as outlined in Table 4.10. Figure 4.10 demonstrates that

when the number of cells is higher than 106, there is solid agreement with the experimental

results for the head losses and minimum pressure in the pipe. For all refinements, the inflation

close to the walls was not modified, leading to comparable values of y+. The Medium-2 mesh

was utilized in this study.

Table 4.10 – Number of cells with the four mesh refinements

Name # of cells

Fine 3.5 M
Medium-1 2.5 M
Medium-2 1.5 M

Coarse 0.7 M
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Figure 4.15 – Influence of mesh refinement on head losses along the pipe axis and the most
negative pressure on the numerical model compared to the experimental results for orifice
EXP_007 - NUM_007
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4.2. Numerical simulations

Turbulence model

Numerical simulations with orifice NUM_007 were performed with four different turbulence

models, i.e. standard k-ε, standard k-ω, SST and the Baseline Explicit Algebraic Reynolds

stress model (BSL EARSM). Figure 4.16 compares the experimental results for orifice EXP_007

(Table 4.2) and the numerical results for orifice NUM_007.

For the sharp approach flow, it can be seen that k-ε underestimates head losses by 10%.

With this, the other turbulence models are in line with the upstream pressure. For the down-

stream component of the flow, the increase in pressure after the vena-contracta is quite

well-approximated by all turbulence models.

For the chamfered approach, the k-ε and k-ω models overestimates the upstream pressure by

almost 10% while the SST model overestimates it by 5%. There is no major difference for the

downstream increase in pressure.
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Figure 4.16 – Influence of the turbulence model on head losses along the pipe axis if the
numerical model compared to the experimental results for orifice EXP_007 - NUM_007
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5 Steady head losses of orifices1

5.1 Introduction

An orifice can be used as a throttling device at the entrance of a surge tank. During the design

phase or in the analysis of a refurbishment, engineers conduct numerical simulations to

simulate the behavior of the surge tank. A throttle introducing head losses can be necessary at

the entrance of the surge tank to optimize its role. The results of this phase are generally a pair

of head losses, i.e. one loss when the water flows in and one when the water flows out of the

surge tank.

This chapter focuses on the evaluation of the pair of head losses for different orifice geometries

(see Section 4.1.3). In a first step, two different orifice shapes, i.e. a chamfered shape defined by

ISO (2003) and rounded orifices, with the shape fitted on the corresponding chamfered orifices,

were experimentally studied. Enhanced empirical formulas for the estimation of head losses,

based on Idel’cik (1969), are given. Then, the effect of an orifice with two chamfers (one on

each side) is also experimentally evaluated. Practically speaking, these two chamfered orifices

are juxtapositions of two single-chamfered orifices. Finally, a larger data set of chamfered

orifice was numerically assessed in order to verify and extend the validity of the empirical

formula derived during the first step.

5.2 Methods

As explained in Chapter 4.1, 10 different discharges were tested twice, in order to examine the

local head losses produced by the orifice of the experimental model. For one discharge, the

global head losses can be evaluated from the pressure line (Figure 5.1).

1This chapter is based on a submitted scientific paper: "Adam, N.J. De Cesare,G. & Schleis, A.J. (under revision).
Influence of geometrical parameters of standard orifices on head losses of standard orifices. Submitted to the
Journal of Hydraulic Research". The experimental and numerical work and the analyses presented hereafter is
original and was performed by the author.
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xpipe

p

p Upstream

averaging zone

Downstream

averaging zone

D
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g  

d

Figure 5.1 – Flow through an orifice with a schematic indication of the pressure evolution
along the pipe

∆p

ρ · g
= k · v2

D

2g
= k ·KD (5.1)

The head loss coefficient, k, was evaluated with Eq.(5.1) based on the kinetic energy in the

main pipe and pressure drop between the upstream and downstream averaging zones:

- Upstream pressure (head): all the 12 control sections were used for the averaging. The

last control section was 1.2D away from the upstream orifice side;

- Downstream pressure (head): only control sections after the jet wake were employed

(Figure 5.1). The first control section was determined case by case. For the contraction

ratio, β= 0.5, the reattachment length was approximately 3.15D according to Jianhua

et al. (2010). Forβ= 0.5, eight control sections were utilized with the closest being 3.25D

from the upstream orifice side.

For both averaging zones, the linear head losses produced by the pipe roughness and flow

viscosity are taken into account even though the linear losses were equal to 0.004m between

the two furthest sections with the greatest discharge according to Darcy-Weisbach.
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5.3. Experimental results for orifices with a sharp side

For a given orifice, the asymmetry number,λ, is the ratio between the two head loss coefficients

defined in Gabl et al. (2011). The value of the asymmetry ratio is always below 1, which means

the head losses are symmetrical.

λ= kcont .

kshar p
(5.2)

5.3 Experimental results for orifices with a sharp side

5.3.1 Performed tests

In this first part of the experimental testing, there are only orifices with one sharp side (Table

4.2 and 4.3). For the analyses, the orifices were split into eight groups (Table 5.1).

Table 5.1 – Set of sharp orifices tested during the experimental work

Group name Varying parameter Interval Orifices

C-R Reference / EXP_001
C-A θ 0◦...67◦ EXP_006, EXP_007, EXP_008, EXP_009
C-B β 0.4...0.6 EXP_002, EXP_003, EXP_004, EXP_005
C-C αi 0...0.2 EXP_010, EXP_0105, EXP_011, EXP_006
C-D α 0.05...0.4 EXP_012, EXP_013, EXP_032, EXP_026

R-R Reference, shape / EXP_014
R-A θ, shape / EXP_019, EXP_020, EXP_021
R-B β, shape 0.4...0.6 EXP_015, EXP_016, EXP_017, EXP_018
R-C αi , shape 0...0.2 EXP_022, EXP_023, EXP_006
R-D α, shape 0.015...0.2 EXP_024, EXP_025, EXP_932

For each orifice, during the experimental campaign, the pressure lines were recorded for

the various assessed discharges. Figure 5.2 portrays the results of orifice EXP_001 (see right

margin) for five different discharges and both flow directions (sharp and chamfer approach

flow). These results were typical for all orifices for which the sharp head losses were higher than

the chamfer head losses. Next, the local head losses produced by the orifice were determined

for each discharge (Section 5.2). Finally, the head loss coefficients of the orifice were evaluated

using the least-squares method as demonstrated in Figure 5.3. The experimental results are

summarized in Appendix B, while the test-sheets (see Appendix D) with the experimental

results are available on-line with the thesis (doi:10.5075/epfl-thesis-8090).
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Chapter 5. Steady head losses of orifices

5.3.2 Asymmetry

As can be seen in Figure 5.4 and as expected, the head losses for the sharp approach flow were

more than those from the contracted approach flow (chamfer and rounded). The contraction

ratio, β, has a large influence on the head loss coefficient in both flow directions. Chamfered

orifices permit producing a large range of asymmetry values, λ, between 0.35 and 1.0 while

rounded orifice shapes have a more or less constant asymmetry value λ between 0.25 and

0.4 for series R-R, R-A, R-B and R-C series. For the R-D series, the asymmetry value varied

from 0.33 to 0.53 while α varied from 0.2 to 0.05. These two orifice shapes cover a large area

of asymmetry with ratios ranging from 1:4 to 1:1. The variation of the chamfered angle, θ (A

series), and the inner thickness ratio, αi (C series), had a higher influence on the asymmetry

value, λ, than β.
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Figure 5.2 – EXP_001 - The pressure lines for five different discharges: (left) sharp approach
flow (AB) and (right) chamfer approach flow (BA)
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0 0.01 0.02 0.03
Kinetic energy in the pipe, K

D
 [m]

0

0.5

1

1.5

H
ea

d 
lo

ss
es

, 
H

 [
m

]

Flow AB

R2 = 0.9947 

(a) Sharp approach flow (kshar p = 29.4)

0 0.01 0.02 0.03
Kinetic energy in the pipe, K

D
 [m]

0

0.2

0.4

0.6

0.8

1

H
ea

d 
lo

ss
es

, 
H

 [
m

H
2
O

]

Flow BA

(b) Chamfer approach flow (kcham f . = 18.2)

Figure 5.3 – EXP_001 - The pair of head loss coefficients for: (a) the sharp approach flow (AB)
and (b) the chamfer approach flow (BA)
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Figure 5.4 – Head loss coefficients for both flow directions and asymmetry: for the chamfered
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θ), C-B (variation of the contraction ratio, β), C-C (variation of the inner thickness ratio, αi )
C-D (variation of the thickness ratio, α); and for rounded orifices from Table 5.1 with R-i , the
corresponding orifices related to the C − i set of standard orifices (i is equal to A,B,C or D)

71



Chapter 5. Steady head losses of orifices

5.3.3 Head losses for sharp flow direction (AB)

The relationship between the inner thickness ratio, αi , and the head losses for the sharp

approach flow is portrayed in Figure 5.5. For chamfered and rounded orifices, head loss coeffi-

cients decrease linearly while αi is increasing. This reduction is greater than that described by

Idel’cik (1969).

Eq.(5.3) is similar to Eq.(3.3) in Idel’cik (1969) for evaluating head loss coefficients correspond-

ing to different orifice geometries (see Eq. (3.3) and (3.4)). Eq. (3.4) shows that only the

parameter τ, which depends on the shape and thickness of the orifice, can be modified. The

present study introduced a new correction factor,Υαi , fitted on the experimental results (Table

5.1) and depending on the inner thickness ratio as given by Eq.(5.4).

kshar p =Υαi ·
(1+τ

√
(1−β2)−β2)2

β4 (5.3)

whereΥαi is given by Eq.(5.4), and τ= 0.745.
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Figure 5.5 – Highest (sharp) head loss coefficients for tested inner thickness ratio (αi ∈ [0...0.2]):
for chamfered and rounded orifices from Table 5.1 with: C(R)-R (reference chamfered and
rounded orifices), C(R)-A (variation of the angle, θ), C(R)-B (variation of the contraction ratio,
β), C(R)-C (variation of the inner thickness ratio, αi ) C(R)-D (variation of the thickness ratio,
α); for a comparison between two formulae from Idel’cik (1969) (Eq. (3.3)) and Jianhua et al.
(2010) (Eq. (3.7)) and an new empirical formula defined in the present study (Eq. (5.3))
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5.3. Experimental results for orifices with a sharp side

Υαi = 1−καi ·αi (5.4)

where καi = 0.9486 is fitted on the experimental results for sharp approach flow

The empirical formula (5.3) is applied to the B series (Table 5.1). Robust agreement between

the results and the predicted head loss coefficient evident in Figure 5.6. A comparison was

performed with the other formulas described in Chapter 3.1. No large discrepancy is appar-

ent. The decrease of head loss coefficients depend mainly on αi and not on α if there is no

interaction between the chamfer edge and flow.
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Figure 5.6 – Comparison of the experimental results (data set C-B and R-B varying the contrac-
tion ratio β), present study equation (Eq. (5.3)) and existing equations (Section 3.3): Idel’cik
(1969) (Eq. (3.3): k , = 0.5 and τ= 1.1 and (3.4): τ= 0.707), Blevins (1984) (Eq. (3.5): C = 0.6),
and Jianhua et al. (2010) (Eq. (3.7): α= 0.5)

5.3.4 Head losses for chamfer approach flow (BA)

Influence of the angle The influence of the chamfer angle, θ, on the chamfer head loss

coefficient can be seen in Figure 5.7. The results show there is a decrease of head loss co-

efficient from 0 to 15 degrees, and a minimum value between 15 and 30 degrees. From 30

degrees onwards, the head loss coefficient rises until the head loss coefficient related to a

90-degrees chamfer angle (constant orifice thickness equivalent to α = 0.1). Furthermore,

there is a variation of head losses for angles between 40 and 60 degrees while Idel’cik (1969)

reported constant losses.
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Chapter 5. Steady head losses of orifices

A new parameter, λθ, representing the asymmetry value, which relies upon the angles and fits

the experimental results, is introduced via Eq.(5.5). This new parameter corrects the sharp

head loss coefficient, Eq.(5.3), without modification.

kcham f er =λθ ·
[
Υαi ·

(1+τ
√

(1−β2)−β2)2

β4

]
(5.5)

where λθ is given by Eq.(5.6) along withΥαi and τ are given by Eq.(5.3) for αi = 0.1.

λθ = sin(θ−θ′
)+e−κθ ·θ (5.6)

where θ
′ = 1

18π and κθ = 3
2π. The angle, θ, must be in radians.
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Figure 5.7 – Influence of the chamfer angle, θ, on the chamfer head loss coefficient for a
data set of standard orifices, R and A, fitted with a new empirical formula (Eq. (5.5)) and a
comparison of the existing formulas from Idel’cik (1969) (Eq. (3.3): k , = 0.5 and τ= 1.285 and
(3.4): τ= 0.361)

Influence of the inner orifice thickness,αi , and the chamfer thickness,αθ Figure 5.8 illus-

trates the influence of the inner orifice thickness, αi , and the chamfer thickness, αθ, on the

head loss coefficient for the chamfer approach flow. Two trends can be distinguished: Firstly,
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5.3. Experimental results for orifices with a sharp side

the asymmetry ratio, λ, decreases withαi for a given angle2 (here, θ = 45◦); Secondly, the asym-

metry ratio, λ, tends to 1 when αθ tends to 0, which is logical because of the disappearance of

the chamfer angle.

It seems to have interactions between the influences of αi and αθ on the contracted head loss

coefficient, and these interactions were evaluated (see Section 5.4).
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Figure 5.8 – Evolution of the asymmetry ratio λ for the chamfer approach as a function of the
inner thickness ratio, αi , and the chamfer thickness ratio, αθ (C-R, C-C and C-R series)

Table 5.2 – Orifices considered for the analysis of the different chamfer angles

Angle θ Right chamfer (θR ) Left chamfer (θL)

0◦ EXP_001 to EXP_035 & EXP_932
15◦ EXP_007, EXP_028, EXP_043 EXP_040, EXP_041 & EXP_042
30◦ EXP_008, EXP_030, EXP_040 & EXP_046 EXP_044 & EXP_045
45◦ EXP_034, EXP_035, EXP_036, EXP_037, EXP_001, EXP_010, EXP_0105, EXP_011,

EXP_038, EXP_039, EXP_043, EXP_046, EXP_012, EXP_013, EXP_027, EXP_031,
EXP_049, EXP_050, EXP_052, EXP_053, EXP_032, EXP_033, EXP_038, EXP_045,

EXP_054 & EXP_055 EXP_047, EXP_050, EXP_051, EXP_052,
EXP_053, EXP_054 & EXP_055

67◦ EXP_009, EXP_030, EXP_044 & EXP_049 EXP_047 & EXP_048

2The point αi = 0.4 and λ= 1 is orifice EXP_026 with two sharp-edged angles (θ = 0◦)
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Chapter 5. Steady head losses of orifices

5.4 Experimental results for orifices with two chamfered angles

Table 4.4 outlines the orifices with two chamfered angles. Those orifices are characterized by

the juxtaposition of two chamfer orifices, which are fixed by their sharp side. In the previous

Section, it could be concluded that the chamfer angle, θ, does not have an influence on the

head loss coefficient for the sharp approach flow. This means that each angle should be

independently taken.

The goal of the present section was to evaluate the influence of the inner thickness ratio on the

head loss coefficient produced in the chamfer (θR (θL) = 15◦, 30◦, 45◦ or 67◦) or sharp (θL = 0◦)

approach flow, upon which the empirical formula (Eq.(5.3)) was verified for the other αi .

The influence of the chamfer thickness ratio, αθ, can be highlighted for the angle 45◦, as there

are different αθ values for this angle.

Note that the distinction between left and right has no influence on the results.

5.4.1 Influence ofαi on the head loss coefficients of orifices with chamfer, θR or θL =
45◦

Figure 5.9 depicts the results for orifices with a chamfer angle, θ = 45◦ (Table 5.2). For this

angle, different chamfer thickness ratios αθ were tested. As can be seen in Figure 5.9, αθ has

little impact on the head losses. When αθ rises, the head loss coefficient diminishes. However,

αθ loses its influence for high ratios (αθ ≥ 0.1) (Figure 5.10). It can be also observed in Figure

5.9 that the head loss coefficients with differentαθ values decrease with almost the same slope

καi . However, for αθ = 0, the value of καi has to be equal to the value defined in Section 5.3.3.

The relationship between the asymmetry ratio, λ0
θ

, created by the chamfer angle, θ = 45◦, is

shown in Figure 5.10 and Eq.(5.7). The superscript 0 means that this asymmetry ratio is relative

toαi = 0. The empirical formula, developed for the chamfer approach flow, is discussed herein

(see Section 5.4.3).

λθ(αθ) =
λ0
θ
·αθ+0.0125

αθ+0.0125
(5.7)
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Chapter 5. Steady head losses of orifices

5.4.2 Influence of αi on the head loss coefficients of orifices with chamfer angle
of 0◦, 15◦, 30◦ or 67◦

The orifices considered for the analysis for each chamfer angle, θ, are located in Table 5.2. In

Figure 5.11, the evolution of the head losses produced by a chamfer of 0◦, 15◦, 30◦ and 67◦ for

different inner thickness ratios, αi , but for the same αθ is portrayed.

For each angle, it is possible to define λ0
θ

and καi , which respectively are the head loss coeffi-

cient for αi = 0 and the slope of the decrease with αi . The least-squares method was used for

all the linear fitting. The relevant observations are as follows:

- for the sharp approach flow (0◦), the fitting performed on the chamfered and rounded

orifices (Section 5.3) was still well-adapted to the extended set of sharp orifices;

- for the chamfer approach flow with the angles producing the smallest head losses, the

head loss coefficient did not really depends on αi . This can be explained by the fact

that, for the small angles (θ = 15◦ or 30◦), the flow did not detach from the orifice wall

(as described in Section 5.7.2); and

- for the highest angles, the behavior had the same shape as the sharp approach flow

(θ = 0◦). However, the slope was higher, thereby indicating a faster decrease in head loss

coefficient than with the sharp approach flow.

5.4.3 Empirical relationship for head loss estimation

Figures 5.9 and 5.11 reveal that two coefficients have an influence on the chamfered head loss

coefficient:

- The asymmetry ratio, λ0
θ

, which varies with αθ and depends on θ as shown in Eq.(5.7),

were taken for αi = 0 in order to separate the influence from αi and αθ. The evolution of

λ0
θ

as a function of θ is depicted in Figure 5.12 for αθ ≥ 0.1. The empirical relationship

(Eq.(5.8)) is more aligned with the experimental results than Eq.(5.5).

λ0
θ(θ) = 1.304θ4 −5.97θ3 +9.054θ2 −4.55θ+1 (5.8)

where: θ is in radians
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Chapter 5. Steady head losses of orifices

- The decreased slope, καi , which describes the linear fall of the head losses with the

increase ofαi . The relationship betweenκαi and θ is shown in Figure 5.12. The empirical

relationship (Eq.(5.9)), fitted on the experimental results, yields the slope for all the

angles(θ ∈ [0◦,90◦]). Furthermore, καi also depends on αθ: if αθ ∈ [0,0.1[, a linear

interpolation is performed between the two values.

καi (θ) = 3.18θ4 −13.88θ3 +18.60θ2 −7.29θ+0.949 (5.9)

where: θ is in radians

Therefore, Eq.(5.10) is an empirical relationship evaluating the chamfered head loss coefficient

for a given orifice geometry. Note that if there is no chamfer angle, the relationship is equivalent

to the empirical relationship found for the sharp head loss coefficient (Eq.(5.3)).

kcham f er =λθ ·Υαi ·
(1+τ

√
(1−β2)−β2)2

β4 (5.10)

where λθ = λ0
θ
·αθ+0.0125
αθ+0.0125 , λ0

θ
given by Eq.(5.8), Υαi = 1−καi ·αi , καi given by Eq.(5.9) and

τ= 0.745.

The fit of the empirical relationship Eq.(5.10) portrayed in Section 5.6.3 (Figure 5.22) for all the

experimental and numerical results.
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Figure 5.12 – Evolution of the coefficients, λ0
θ

and καi , as a function of the chamfer angle, θ
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5.5. Experimental results for rounded orifices

5.5 Experimental results for rounded orifices

In Section 5.3.3, it was demonstrated that there was no difference when evaluating the sharp

head loss coefficients for the chamfered and rounded orifices. However, Figure 5.4 shows that

the head loss coefficients for the rounded approach flow were almost constant and less than

with the chamfer approach flow. The method used for chamfer approach flow (Section 5.4)

was applied to the rounded approach flow. Figure 5.13 shows the evaluation of λa (which is

equivalent to λθ) and the slope, καi , for αθ > 0.1. An empirical relationship similar to Eq.(5.10)

was found as seen in Eq.(5.11). However, for the rounded approach, the coefficients, λa , were

taken as constant. A linear variation was also taken between καi (αa > 0.1) and καi (αa = 0).

kr ounded =λa ·Υαi ·
(1+τ

√
(1−β2)−β2)2

β4 (5.11)

where λa is given by Eq.(5.12),Υαi = 1−καi ·αi , καi comes from Figure 5.13 with τ= 0.745.

λa = λ0
a ·αθ+0.0125

αθ+0.0125
(5.12)

where λ0
a is given by Figure 5.13
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Figure 5.13 – Rounded head loss coefficient, kr ounded , as a function of the inner thickness
ratio αi

Figure 5.14 illustrates the comparison between the experimental and predicted values. It can

be seen that 90% of the predicted values are within the ±20% lines, while 70% are within the

±10% lines.
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Figure 5.14 – Comparison between the experimental and predicted head loss coefficient values
for the rounded orifices with the sharp and rounded approach flows

5.6 Numerical

5.6.1 Comparison between the experimental and numerical results

For the validation of the numerical model, the chamfered orifices, which were tested during

the experimental campaign, were numerically tested and compared to the experimental

pressure lines.

Figures 5.15 to 5.19 depict the comparison between the experimental and numerical results for

the A series (see Table 5.1). For the sharp approach, the numerical model tended to be model

precisely the pressure line and, hence, the head losses. For the chamfer approach flow, there

was a strong accuracy (differences less than 5%) for the low and high angles (θ = 15◦,30◦ and

67◦). However, there were significant discrepancies, equating to roughly 25%, for the middle

angle (θ = 45◦). This can be explained by the intermediate behavior of this angle (Section

5.7.2).

The numerical model fits the pressure well in the orifice jet for both flow direction and for all

tested chamfer angles.
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Figure 5.18 – Orifices EXP_008 and NUM_008 β= 0.5, α= 0.2, αi = 0.1 and (θ = 30◦) - Com-
parison between the experimental results with 95% confidence interval (±1.96σ) and the
numerical results.
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Figure 5.19 – Orifices EXP_009 and NUM_009 (β= 0.5, α= 0.2, αi = 0.1 and θ = 67◦) - Com-
parison between the experimental results with 95% confidence interval (±1.96σ) and the
numerical results.
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Figure 5.20 compares the experimental and numerical head loss coefficients. For the sharp

approach flow, the discrepancies between the experimental and numerical results are within

±10%. For the chamfer approach flow,the orifices, which are outside the ±20%, are orifice

within θ = 45◦.
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Figure 5.20 – Comparison between the experimental and numerical head loss coefficients for
the chamfered orifices for the sharp and chamfer approach flows (Table 4.2)

5.6.2 Sharp approach flow - influence of the orifice inner thickness

An empirical formula (Eq.(5.3)) based on an equation of Idel’cik (1969) was proposed in Section

5.3.3. Figure 5.21 describes the very strong agreement between the formula (Eq.(5.3)) and the

numerical results.

The empirical formula was fitted on the chamfered and rounded orifices for the sharp ap-

proach flow (orifices with β = 0.5 in Tables 4.2 and 4.3). According to Figure 5.21, the use

of these two parameters (τ and καi ) remains acceptable for the different contraction ratios

β (from 0.3 to 0.7), that were numerically tested. For β = 0.6 or 0.7, the slope, καi , seemed

slightly smaller.

The validity of the formula was limited to this fall of head loss with increasing inner thickness

ratio, αi . According to Gan and Riffat (1997), the head loss coefficient was minimal when

αi /β≈ 1...1.5. For higher αi /β, the friction losses in the orifice, which becomes a plug, should

be taken into account and increase the global head losses. The minimum head losses may be

approximated (see Section 5.7).
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Figure 5.21 – Sharp head loss coefficients - comparison between the experimental and numer-
ical results with the empirical formula (Eq.(5.3))

5.6.3 Chamfer approach flow

The same empirical formula (Eq.(5.10)) equivalent to that found for the sharp approach flow

was applied to all the experimental and numerical results. Figure 5.22 suggests that there are

differences between the predicted values with the empirical relationship and the experimental

or numerical head loss coefficients. However, 80% of the predicted values are within the ±20%,

which seems acceptable for a first approximation of the chamfer head loss coefficient.
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Figure 5.22 – Comparison between experimental and numerical head loss coefficients for all
orifices tested either with the experimental or numerical model

5.7 Discussion

5.7.1 Chamfer orifices

As seen in Figure 5.21, the empirical formula (Eq.(5.3)) fits well with the different contraction

ratio, β, and inner thickness ratio, αi , values even if the slope appears to decrease less when β

is reduced. However, as explained in Section 3.2, the head losses diminish only for αi /β values

smaller than 1 to 1.5.

It is possible to estimate the critical thickness, αc , that corresponds to the inner thickness

producing the smallest head losses for a given contraction ratio, β. The smallest sharp head

loss coefficient can be theoretically approximated by considering a sharp sudden contraction

(from 1 to 2) followed by a sharp sudden enlargement (from 2 to 3) of the pipe (Figure 5.23 and

Eq.(5.13)). The critical thickness ratio, αc , can be calculated by equating Eq.(5.3) and (5.13).

The evolution of αc as a function of β is outlined in Figure 5.24.

kmi n(β) = kcontr acti on+kenl ar g ement =
[1

2

(
1−β2)2+(

1−β2)2
]
· v2

d

2g
= 3

2

(1−β2)2

β4 · v2
D

2g
(5.13)
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5.7. Discussion

Even if the head losses decrease until α=αc , the empirical relationships of Eq.(5.3), (5.10) and

(5.11) are limited to the tested ranges, being: α ∈ [0,0.4] and αi ∈ [0,0.4].
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tc

D d

Figure 5.23 – Decomposition of an ideal orifice in a sudden contraction and enlargement with
1© a far upstream pipe section, 2© the most downstream orifice section as well as 3© a far

downstream pipe section

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
 [-]

0

0.2

0.4

0.6

0.8

1

c [
-]

Figure 5.24 – Critical thickness ratio, αc , as a function of the contraction ratio, β, based on the
equality between Eq.(5.3) and (5.13)

5.7.2 Chamfer and rounded approach flow

Chamfered orifices allow introducing different asymmetry ratios λ from 0.33 to 1.0. These

values that vary between the head loss coefficient for the chamfer and sharp approach flows
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can be explained with Figures 5.25 and 5.26:

- without any chamfer angle (θ = 0◦), there is a recirculation zone, with a length that is

comparable to the orifice thickness, close to the orifice wall;

- with θ = 15◦, the recirculation zone is reduced and located on the chamfer edge, the

flow is attached to the orifice wall;

- for θ = 30◦, Figure 5.26a clearly indicates that the recirculation zone within the orifice

wall is small and the flow is almost perfectly contracted;

- if θ rises, the flow is attached to the chamfer wall but a recirculation zone appears close

to the inner orifice wall; and

- finally, for higher θ the flow is not contracted any longer by the chamfer wall and the

flow behavior tends to the behavior of θ = 0◦.

There is a change of behavior when going from a recirculation zone on the chamfer edge to a

recirculation zone on the inner orifice edge. Furthermore, for rounded orifices, the contracted

head loss coefficient is still smaller than for that of a small angle. The flow seems to be perfectly

contracted for this shape.

5.8 Conclusion

It is evident that a chamfer with various angles, fosters the introduction of an asymmetry by

reducing the chamfered approach head losses by up to 35% of sharp approach head losses.

For the sharp approach flow, the head loss coefficient increases with the chamfer as was

highlighted that with how sharp head losses decrease based upon the inner thickness ratio,

αi , regardless of the shape, being chamfered or rounded. With the sharp approach flow, an

equation derived by Idel’cik (1969) was modified to predict the sharp head loss coefficient for

the two orifice geometries via Eq.(5.3) and (5.4).

For the chamfer approach flow, the head loss coefficient is also reduced with αi . However, the

slope of the decrease depends on the chamfer angle, θ, leading to a large range of asymmetry

ratios between 0.35 and 1.0. A correction of the sharp head loss coefficient is suggested to

evaluate the chamfer head loss coefficient by Eq.5.10.

With the rounded approach flow, the asymmetry ratio is less sensitive to the geometry param-

eters, i.e. the two elliptical axes, and varies from 0.25 to 0.4. A correction of the sharp head loss

coefficient is also indicate to assess the rounded head loss coefficient as given by Eq. (5.11).

It could be stated for the two-chamfer orifices, each chamfer angle, θ, leads to a chamfer head

loss coefficient independent of the other chamfer angle, θ. The two head loss coefficients can

be evaluated by the alterations of the chamfer approach flow with Eq.(5.10).
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5.8. Conclusion

Finally, numerical simulations enable to acquisition of flow characteristics, e.g. flow velocities

or pressure, everywhere within the domain. This allows for understanding the different flow

behaviors close to the orifice. The analysis of the velocity field of the orifice for different

angles, θ, shows that the difference in the produced head losses originates from how the flow

is constricted by the orifice geometry. The numerical results were in tight agreement with the

empirical formula developed with the experimental results and could be extended the testing

of the set of geometrical parameters.
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Figure 5.25 – Chamfer approach flow - vector colored by the value of the pipe axis velocity, u,
for β= 0.5, α= 0.2, αi = 0.1 and θ = 0◦,15◦
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5.8. Conclusion

Figure 5.26 – Chamfer approach flow - vector colored by the value of the pipe axis velocity, u,
for β= 0.5, α= 0.2, αi = 0.1 and θ = 30◦,45◦
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6 Influence zone and flow reattachment
lengths of orifice

6.1 Introduction

An orifice is a local restriction in a pipe. Water flowing through it accelerates and creates a

jet. It can be distinguished between two different lengths characterizing this jet, namely the

influence length, L j , and the reattachment length, Lr . Knowing these jet lengths is required

for an appropriate design:

- the recirculation zone is characterized by large turbulences and lower pressures. Know-

ing the reattachment length, Lr , the tunnel can be lined with steel in order to protect it

from high turbulence flow and low pressure in the case of cavitation risk; and

- the upstream and downstream flow conditions have an impact on the head loss coef-

ficient. If the downstream pipe length is at least higher than the recirculation zone, it

can be assumed that the head loss coefficient is not affected by downstream conditions.

Hereafter, the notation influence length, L j , is used to characterize this zone.

In order to determine the influence length, the results of the physical experiments and numer-

ical simulations are employed. The reattachment length can be estimated strictly numerically.

6.2 Methods

6.2.1 Reattachment and influence length

In Figure 6.1, the streamlines underscore the presence of a recirculation zone downstream of

the orifice depicted. On the one hand, it can be seen that the reattachment length, Lr , is the

length between the downstream orifice side and the abscissa where the main flow reattaches

to the pipe wall (Jianhua et al., 2010). On the other hand, Figure 6.2 reveals that the zone,

which is influenced by the presence of the orifice, is longer than the reattachment zone.
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Chapter 6. Influence zone and flow reattachment lengths of orifice

Figure 6.1 – Streamlines through orifice NUM_006, indicating the magnitude of the velocity
(with colour scale), and the presence as well as the length of the reattachment zone

Figure 6.2 – Evolution of the pressure, p, (above), and the axial velocity, u, (below), on the
median plane of the pipe emphasizing to highlight the influence length
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Head in 
the pipe 

dp
dx >0 <0

Pipe axis

dp
dx

Lj

Orifice vena-contracta

Figure 6.3 – Schematic evolution of the pressure head along the pipe

Figure 6.3 offers a schematic view of the pressure line along the pipe through the orifice. The

influence length, L j , is defined as the distance between the upstream orifice side and the

point where the first derivative of the pressure line is equal to zero, as the pressure line must a

local maximum downstream of the orifice. After the vena-contracta, the pressure increases

in the orifice jet as the axial velocity decreases. However, further along the pipe, the pressure

diminishes owing to friction and viscosity losses. The end of the zone influenced by the orifice

is located where the pressure line begins to decrease linearly because of friction losses.

As the pressure is experimentally recorded by pressure transmitters (see Chapter 4.1 and

Appendix A), the first derivative is evaluated by the mean of the first central finite difference

(Eq.(6.1)). Conversely, for the most upstream (or downstream) measured points, the forward

(or backward) difference is utilized.

d p

d x
≈ p(x +∆x)−p(x −∆x)

2∆x
(6.1)

The end of the zone is usually between two discrete points, and the length is calculated with a

linear regression to find the abscissa of the local maximum. An error on the pressure can, thus,

significantly impact the results of the influence length. The same definition is employed for

the numerical results but as ∆x is smaller, the error related to the abscissa may also be less.

The influence length is evaluated only for discharges with ReD > 105. Subsequently, the

influence length does not depend on Re (Table 4.5) and the average value µ±σ of L j is

obtained for the analysis (see Section 6.3.1).

Finally, the experimental results, from evaluating the length of the zone influenced by the

orifice jet L j were compared to those of the numerical results.
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6.2.2 Dimensionless parameters

Eq.(6.2) and (6.3) give, respectively, the definition of the dimensionless influence and reattach-

ment length, l j and lr .

l j =
L j

D
(6.2)

lr = Lr

D
(6.3)
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6.3. Influence length of orifice

6.3 Influence length of orifice

6.3.1 Results from experiments

Treatment of the experimental results Figure 6.4 illustrates the dimensionless pressure line

for orifices EXP_0105 and NUM_0105 (see right margin) according the sharp approach flow.

It can be seen that the influence length L j significantly depends on the discharge. For three

discharges, there is a difference of 26% in terms of the experimental prediction of the influence

length L j , while there is no difference for the two corresponding numerical discharges.
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Experimental results - Q = 29.9 l/s
Experimental results - Q = 26.8 l/s
Experimental results - Q = 23.4 l/s
Numerical results - Q = 23.2 l/s & Q = 30.0 l/s

Figure 6.4 – Dimensionless pressure relative to the upstream pressure, pu , for orifices EXP_0105
and NUM_0105: comparing the experimentally and numerically obtained influence length, L j
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Chapter 6. Influence zone and flow reattachment lengths of orifice

The experimentally obtained influence length depends largely on the uncertainty of the

pressure within the influence zone, just as expected. Therefore, only the values within the

confidence interval ±σ were used for the evaluation of the experimental influence length for a

more accurate estimation. Figure 6.5 shows the extreme neglected value of L j for the sharp

approach flow and orifices EXP_0105 and NUM_0105.
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EXP_0105 and NUM_0105,  sharp approach flow (AB)

Experimental (considered for the average)
Experimental (not considered for the average)
Average over the considered exp. results

 
Numerical results

Figure 6.5 – Orifice EXP_0105 and NUM_0105: comparison between the experimental and

numerical results and evaluation of the end of the influencing zone l j = L j

D as a function of the
Reynolds number (with 68% confidence interval) for the sharp approach flow

Analysis of experimental results Figure 6.6 demonstrates the evolution of l j as a function of

β for the sharp and chamfer approach flows. The orifice series corresponds to the chamfer and

rounded orifices (see Table 5.1) and to the two-chamfer orifices (see Table 4.4). The following

was observed:

- for both approach flow directions, the influence length, L j , increases when β rises and

there is little difference between the chamfered and rounded orifices, which is similar to

the head loss coefficients, that do not depend on the downstream shape. This seems

consistent because, theoretically, for β= 0, there is no perturbation downstream of the

orifice, and for β= 1, the perturbation could be considered to be infinite;

- there were large discrepancies for the contraction ratio β = 0.5. Even if this was not

possible to identify with the experimental results, the other geometrical parameters, e.g.

α or αi , should have a lesser influence on the influence length L j ; and

- the influence length was longer for the chamfer approach flow than for the sharp

approach flow.
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Figure 6.6 – Experimental results of the dimensionless influence length, l j , as a function of the
contraction ratio β for all orifices with a sharp side: chamfer orifices, C − i (square); rounded
orifices R − i (circle) and the two-chamfer orifices (triangle) (Table 4.4)

6.3.2 Results from numerical simulations

Comparison with the experimental results Figure 6.7 gives compares the experimentally

and numerically obtained results of the dimensionless influence length, l j . There are quite

large differences as was expected from the large variation in the experimental results for the

same orifice (see Figure 6.5). The distance between the two sections, where the pressure was

recorded, was at least 0.46D . An error in the pressure recording could thus lead to very major

differences. It should be noted that the differences were, on average, higher for the chamfer

approach than for the sharp approach. This can be explained by the fact that the pressure

drop, downstream of the orifice, is much higher with the sharp approach flow. The same error

regarding pressure has less if an influence on the final results, as the pressure rise was higher.

Owing to the large variability of the results, analysis should be performed on the numerical

results. This is nevertheless a conservative hypothesis as the numerical length was longer than

the physical length (Figure 6.7).

Analysis of the influence length Figure 6.8 describes all the numerically obtained influence

length, L j . It can be seen that L j rises with the contraction ratio, β, and is also longer for the

chamfer approach flow than for the sharp approach flow as already seen with the experimental
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Figure 6.7 – Comparison between the experimental and numerical influence length l j

results (see Figure 6.6). The influence length does not depend on the Reynolds number if ReD

> 105 (see Figure 6.5).

For the sharp approach flow and for each contraction ratioβ, the maximum difference between

all the numerical results was ±5%. This difference can be understood via the small effect of αi .

It can be assumed that β and αi were the geometrical parameters, which have an influence

on l j for the sharp approach flow within the tested range of parameters (β ∈ [0.3 . . .0.7] and

α ∈ [0.05. . .0.4]). However, the contraction ratio, β, has a greater impact than the inner

thickness ratio, αi , on l j . The empirically obtained influence length, l j , may be described with

Eq.(6.4) as a function ofβ andαi for the sharp approach flow. The parameters al , j , bl , j and cl , j

are fitted on the numerical results and shown in Eq.(6.5). Specifically, the fit is demonstrated

in Figure 6.10.

l j ,shar p = L j ,shar p

D
= al , j +bl , j ·β+ cl , j ·αi (6.4)

al , j = 1.47

bl , j = 6.90

cl , j = 0.77

(6.5)

The asymmetrical ratio, λ j , is the ratio between the influence length for the chamfer and for
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Figure 6.8 – The influence length, l j , in the both flow direction as a function of the contraction
ratio β for the numerically tested orifice

the sharp approach flows as derived in Eq.(6.6).

λ j =
L j ,cham f er

L j ,shar p
(6.6)

The influence length increases with αθ, just as can be seen in Figure 6.9 . At the maximum, the

influence length for the chamfer approach flow is 40% higher than with the sharp approach

flow. An empirical relationship is given in Eq.(6.7) for estimating the dimensionless influence

length, l j , based on the numerical simulation results and taking into account the chamfer

angle, θ, and the inner thickness ratio, αi . The parameters al , j , bl , j and cl , j are found in

Eq.(6.5) and dl , j was fitted on the numerical results as per Eq.(6.8). One more, the fit is

exhibited in Figure 6.10.

l j ,cham f er =
[
al , j +bl , j ·β+ cl , j ·αi

] ·λ j (6.7)

where: al , j , bl , j and cl , j are given by Eq.(6.5) and λ j is given by Eq,(6.8).
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Figure 6.9 – The asymmetrical ratio, λ j , given in EQ.(6.6) as a function of the chamfer angle, θ,
for the chamfer approach flow

λ j =
(
1+dl , j · sin2(2θ)

)
dl , j = 0.97 ·αi +0.14

(6.8)

Discussion A comparison between the numerically obtained dimensionless influence length,

l j , and the predicted dimensionless influence length, l̂ j , obtained by Eqs.(6.4) and Eq.(6.7)

is given in Figure 6.10 for the sharp and chamfer approach flow directions. Predictions of

the dimensionless influence length, l j , for the sharp approach flow were better than for the

chamfer approach flow. However, the predicted influence lengths for the sharp approach flow

were within the ± 10 % of the numerical influence length. Further, for the chamfer approach

flow, 80% of l̂ j were within ± 10 %, while only 3% were outside the ±20% limits.

As well, the numerically obtained influence lengths were on the same order of magnitude as

the required downstream length for a standard orifice used as a flowmeter (ISO, 2003).
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Figure 6.10 – Comparison of the numerically obtained influence length and the influence
length predicted by Eqs.(6.4) and (6.7) for the sharp and chamfer approach flows

6.4 Reattachment length

Analysis of the reattachment length The reattachment length of the jet behind the orifice

was smaller than the recirculation zone, which was disturbed by the presence of the orifice

within the pipe (see Figures 6.8 and 6.11). Except for the larger β, the chamfer angle θ did not

have a major effect on the reattachment length. The following observations can be made for

Figure 6.11:

- for β> 0.5, the reattachment length, Lr , decreases linearly while β converges to β= 1

and Lr = 0, where there is no recirculation zone because of the lack of orifices in the pipe.

The other geometrical parameters, namely the inner thickness ratio, αi , the thickness

ratio, α, and the chamfer angle, θ, does not have an influence on Lr ;

- for β< 0.5, the decrease of lr as a function of β is smaller than for β> 0.5. It even seems

that there is a maximum reattachment length with a constant value for β> 0.4;

- unlike the influence length, there was no significant difference between the sharp and

chamfer approach flows. The height of the orifice wall seems to be the main influence.

The same was already observed by Jianhua et al. (2010) for symmetrical orifices.

107



Chapter 6. Influence zone and flow reattachment lengths of orifice

0.3 0.4 0.5 0.6 0.7
Contraction ratio,   [-]

1.5

2

2.5

3

3.5

4

(c
ha

m
fe

r 
ap

pr
oa

ch
 f

lo
w

)

0.3 0.4 0.5 0.6 0.7
Contraction ratio,   [-]

1.5

2

2.5

3

3.5

4

l r [
-]

(s
ha

rp
 a

pp
ro

ac
h 

fl
ow

)

i
 = 0.025

i
 = 0.05

i
 = 0.075

i
 = 0.1

i
 = 0.15

i
 = 0.2

i
 = 0.4

Figure 6.11 – Reattachment length, lr , as a function of the contraction ratio, β

Development of a predictive empirical formula A model characterizing the dimensionless

reattachment length, lr , was found with two lines inspired by the numerical results and those

of Jianhua et al. (2010). The two lines join at β = 0.5 because of the previous observations.

For the understanding of the phenomenon, it is useful to define the orifice height ratio γo

(Eq.(6.9)). The two-line model relies on γo as suggested in Eq.(6.10).

γo = 1−β
2

(6.9)

lr = al ,r ·γo , i f β≥ 0.5(γo ≤ 0.25)

lr = bl ,r ·γo + cl ,r , i f β< 0.5(γo > 0.25)
(6.10)

where: al ,r and bl ,r are the line slopes, that depend on αi , and cl ,r depends on al ,r and bl ,r .

The three parameters al ,r , bl ,r and cl ,r are given in Eq.(6.11).

Figure 6.12 portrays the variation of lr with γo . Logically, it can be observed that there is no

reattachment zone for β = 1 (no orifice). For γo ≤ 0.25, which corresponds to β ≥ 0.5, the
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6.4. Reattachment length

reattachment length, Lr , is directly proportional to γo . The inner thickness ratio, αi , directly

influences the slopes al ,r and bl ,r defined in Eq.(6.10). Eq.(6.11) features the slopes al ,r and

bl ,r as a function of the inner thickness ratio, αi , fitted on the numerical results. For the sake

of continuity, the results at β= 0.5 (γo = 0.25), cl ,r are defined by Eq.(6.11).

al ,r =−5.46 ·αi +14.10

bl ,r = 3.95 ·αi +2.32

cl ,r =
al −bl

4

(6.11)
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Figure 6.12 – The dimensionless reattachment length, lr , as a function of the orifice height
ratio γo and the comparison between the two-line model given in Eqs.(6.10) and (6.11) along
with the graphical results from Jianhua et al. (2010)

Figure 6.12 features a comparison of the results of Jianhua et al. (2010) with those presented

herein. The model developed in this research is quite different with a higher (roughly 10%)

reattachment length that is close to β = 0.5. Moreover, the empirical formulas given by

Eqs.(6.10) and (6.11) enable the direct determination of the reattachment lengths by avoiding

graphical interpolation.
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Discussion The linear decrease for β> 0.5 can be explained by a constant diffusion angle of

the jet within the pipe. The value of this angle is approximately 4 to 5◦.

Figure 6.13 demonstrates there is a good alignment between the numerical reattachment

length and the predicted reattachment length, which were established by Eqs.(6.10) and (6.11).

Most of the predicted reattachment lengths are within ±10% limits. However, the two-line

model developed in this project tends to yield longer reattachment lengths.
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Figure 6.13 – Comparison of the dimensionless reattachment length, lr , with the predicted
value given by the empirical formulas (Eqs.(6.10) and (6.11))

6.5 Conclusions

The disturbance zone, because of the orifice jet, is longer than the recirculation zone, i.e.

reattachment length.

The influence length, L j , characterizing the disturbance zone rises with the contraction ratio,

β, while Lr decreases whenβ is increased. A comparison between the dimensionless influence

length, l j , obtained experimentally and numerically uncovered that the experimental model

was not adequate for this evaluation.

For the sharp approach flow, the numerically obtained influence length, L j , depends mainly

on β and the inner thickness ratio, αi , while L j relies upon the chamfer angle, θ, for the

chamfer approach flow. The influence length, l j , would be valuable for the placement of

serial independent orifices in the tunnel or the implementation of a pressure transmitter in an

undisturbed zone:
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6.5. Conclusions

- for the sharp flow approach, the dimensionless influence length l j ,shar p can be predicted

by the suggested empirical formula Eq.(6.4); and

- for the chamfer flow approach, the dimensionless influence length, l j ,cham f er , can be

acquired with the empirical formulas Eqs.(6.7) and (6.8).

The reattachment length, Lr , does not depend on the chamfer angle of the orifice, θ, and

depends primarily on β and αi . The recirculation zone is characterized by highly turbulent

flows in which cavitation can take place. The estimation of Lr permits the establishment

of where the tunnel should be steel-lined for resisting turbulent flows and low pressures. A

two-line model was developed to predict lr as given by Eqs.(6.10) and (6.11). This model

was then compared with the graphical results of Jianhua et al. (2010) stressing there was the

same variation of lr as a function of β and αi . A large decrease in lr for β≤ 0.5 and an almost

constant value for β< 0.5 was evident.

An application of these two characterizing lengths, namely the influence and reattachment

lengths, through experimental work is found in Chapter 9.2.
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7 Transient head losses through orifices

7.1 Introduction

A number of previous experiments have been performed with different steady discharges.

Chaudhry (2014) assumed that head losses for steady flow (friction in the original text) may be

used to compute transient phenomena. However, steady head losses could be insufficient for

the simulation of multiple operations, e.g. starting the pumps following a power failure. How-

ever, steady head losses may be adequate for an initial approximation of the first amplitude of

a mass oscillation, which is generally restrictive in terms of the design of surge tanks.

Different types of models have been formulated to investigate the unsteadiness of the flow in

transient simulations: quasi-two-dimensional models, convolution integral and instantaneous

acceleration-based methods (IAB) models. These have all focused exclusively on friction losses

and not local head losses (Bergant et al., 2001; Chaudhry, 2014; Ferràs Segura, 2016).

7.2 Performed experiments

7.2.1 Experimental setup and tested configurations

The experimental setup and instrumentation employed are presented in Chapter 4.1 and

Appendix A. The transient experiments were carried out on five orifices, i.e. EXP_001, EXP_002,

EXP_004, EXP_012 and EXP_032 (Figure 7.1),with different contraction and thickness ratios,

β and α (Figure 7.1 and Table 4.2). Figure 7.2 shows a typical schematic evolution of the

discharge during such transient experiments. For the longest duration, specifically 30 s, the

duration of the steady discharge was at least 30 s for the evaluation of the steady head loss

coefficients.

Four rise and fall durations (Table 7.1) were tested three times in order to determine the

transient effect on head losses. The average acceleration of the orifice velocity was from

approximately 0.02m/s2 to nearly 0.4m/s2. The rise (or fall) of discharge is obtained by
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Chapter 7. Transient head losses through orifices

Figure 7.1 – Tested geometries of the orifices of the transient experiments with αi /α= 0.5 and
θ = 45◦

TsTs TsTt,inc. Tt,dec.

steady steady steadytransient transient

t

Q

Qlow

Qhigh

Figure 7.2 – Procedure for the transient experiments

opening (or closing) manually the downstream valve of the experimental set-up. All the

information surrounding the experimental characteristics, e.g. steady discharges or opening

and closure durations are reported in Appendix E.

As per Chapter 5, the pressure and discharge were recorded on the same computer with

the same sampling properties: the sampling frequency, fs , is 1000H z and the sampling

number, Ns , is 150′000 for all orifices and durations. The discharge was always recorded by

the flow meter downstream of the pipe, while the pressure was recorded by the G1/4" pressure

transmitters placed 45◦ from the pipe cap(Chapter 4.1 and Appendix A). For the transient

experiments, G1/4" pressure transmitters were placed as described in Figure 7.3.

7.2.2 Evaluation of head losses

Instantaneous head losses were evaluated between the upstream and downstream transmitters

and compared to the steady head losses from Chapter 5. This comparison highlights the
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7.2. Performed experiments

Table 7.1 – Opening and closure durations downstream for each orifice (note that all these
values are theoretical, experimental results and values are shown in Appendix E)

Orifice Qhi g h Qlow Sharp flow direction (AB) Contracted flow direction (BA)

5 s 10 s 20 s 30 s 5 s 10 s 20 s 30 s

EXP_001 28.2 19.1 X X X X X X X X
EXP_002 28.2 19.1 X X X X X X X X
EXP_004 28.2 19.1 X X X X X X X X
EXP_012 28.2 19.1 X X X X X X X X
EXP_032 28.2 19.1 X X X X X X X X

25.1 19.1 X X X X

a1a11 a5 b5b1

-3.36-8.07 -1.50

Dimensionless position G1/4"

1.50 3.36

b11

8.07

Figure 7.3 – Positions of the G1/4" transmitters for the transient experiments

difference between transient and steady head losses. The head loss coefficients fitted on the

different steady phases can be slightly different from the head loss coefficient found in Chapter

5. The uncertainty of the head loss coefficient can be greater as the fitting is only performed

on two (three for EXP_032) discharges and on four pressure transmitters (three upstream and

one downstream).

As explained in Section 3.5, the local head losses can be obtained by Eq.(7.1), which distinguish

the steady and transient behaviors

∆H =∆Hs +∆Ht = k
v2

2g
+ kt

g

d vd

d t
(7.1)

where: k is the steady head loss coefficient (as in Chapter 5), v the velocity in the surrounding

pipe, kt the transient head loss coefficient and d vd /d t the flow acceleration through the

orifice.

7.2.3 Remarks on momentum and viscoelastic effects

During transient experiments, inertia and water hammer effects are present. On one side,

the inertia effect is obtained by integrating the momentum equation and, on the other side,

the discharge changes lead to a small water hammer in the pipe resulting in overpressure (as

shown in Eq.(2.3)). Seeing that the main pipe was made of PVC, it was important to verify
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whether the viscoelastic effect was small enough to be neglected.

Momentum effect Eq.(2.2) is the momentum equation applied to a control volume. It can

be rewritten as Eq.(7.2) by considering a horizontal pipe and ignoring the friction losses in the

pipe.

∂v

∂t
+ v

∂v

∂x
+ 1

ρ

∂p

∂x
= 0 (7.2)

Eq.(7.2) can be integrated between two random sections of the pipe 1© and 2©. The length

L 1©− 2© is the distance between the two sections. Eq.(7.3) is the result of the integration of

Eq.(7.2) by assuming there is no interaction between this and the effect of the transient head

losses.

∂Q

∂t
= AD

ρL 1©− 2©
(p 1©−p 2©) (7.3)

where AD is the main pipe cross-section, ρ the water density, L 1©− 2© the distance between

the two sections 1 and 2 and p the pressure in the section 1 or 2.

The temporal integration of Eq.(7.3) is the well-known pressure-time method (Adamkowski,

2012; Landry, 2015).

The application of Eq.(7.3) to the experimental set-up (see Figure 7.3) between the two most

distanced cross-sections, a11 and b11, is shown in Eq.(7.4).

∆p

ρg
= pa11 −pb11

ρg
=

L 1©− 2©
g AD

dQ

d t
=

L 1©− 2©
g AD

· Ad

Ad

dQ

d t
=

L 1©− 2©β2

g
· d vd

d t
(7.4)

The value of the coefficient, L 1©− 2©β2, is reported in Table 7.2 for the different contraction

ratios.

Table 7.2 – The inertia coefficient L 1©− 2©β2 (Eq.(7.4)) is a function of the contraction ratio β

β L 1©− 2©β2

0.45 0.706
0.5 0.872

0.59 1.214
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7.3. Results

Table 7.3 – Physical properties of the pipe wall of the experimental set-up

Properties Unit Values

Thickness e [mm] 5
Mean radius rm [mm] 110.5

Yield strength fy [MPa] 35∗

Young modulus E [MPa] 2000∗

Maximum working pressure pw [Mpa] 0.05
∗: Assumption

Viscoelastic effect The pipe wall of the experimental model is composed of PVC. Table

7.3 lists the physical properties of the pipe. By using the formula of the thin-walled tube

(Massonet and Cescotto, 1994), the maximum (failure) pressure was approximately 155mH2O

(see Eq.(7.5), 15.8bar ) while the pressure was limited to 5m during the experiments. For 5 m

pressure head and assuming elastic behavior of the PVC, the radial deformation was roughly

5.6 ·10−4 % of the initial diameter (Eq.(7.6)).

pmax = fy ·e

rm
= 1.58 MPa (7.5)

∆rp=5m = pw r 2
m

Ee
≈ 0.06 ·10−3 m (7.6)

According to these results as well as the low variation of pressure within the experimental

set-up regarding the maximum pressure evaluated with the PVC yield limit, the viscoelastic

effects were not be taken into account in this study.

7.3 Results

7.3.1 Head losses during the steady phases

During each experiment, there were, at least, three phases of 30 s with two different discharges.

By combining all the experiments (at least 36 steady phases for each orifice), it was possible

to evaluate the steady head loss coefficients. Compared to Chapter 5, there were only two

different discharges and a maximum of six control sections. This increased the uncertainty of

the head loss coefficient evaluation.

Figures 7.4 and 7.5 show the linear regression for both flow directions (see Table 7.4 and a

comparison with the head loss coefficients found in Chapter 5). According to Table 7.4, the
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discrepancies between the two values of head loss coefficient was maximum of 13% but 5% on

average. For the analysis during this chapter, the head loss coefficients, which were fitted on

the three steady discharges per experiment, were utilized. However, the difference between

the results was considered to be small enough.
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Figure 7.4 – Sharp approach flow: steady head losses determined with the transient exper-
iments for orifices EXP_001, EXP_002, EXP_004, EXP_012 and EXP_032 compared with the
steady head loss coefficients found in Chapter 5
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7.3. Results

Table 7.4 – Comparison between the steady head loss coefficients found in Chapter 5 and the
head loss coefficient fitted on the head losses during the steady phases with a limited set of
discharges

Orifice Sharp flow direction Contracted flow direction

kexp.
Shapr. k f i t .

Shar p. di f f . kexp.
Cont .. k f i t .

Cont . di f f .

EXP_001 29.4 27.0 −8.2% 18.2 17.9 −1.6%
EXP_002 42.8 44.5 +3.9% 31.7 30.1 −5.0%
EXP_004 11.8 10.2 +13% 6.8 6.7 −1.5%
EXP_012 31.4 29.4 −6.4% 20.1 20.6 +2.5%
EXP_032 26.2 23.4 −10.7% 12.5 12.5 0%
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Figure 7.5 – Chamfer approach flow: steady head losses determined with the transient exper-
iments for orifices EXP_001, EXP_002, EXP_004, EXP_012 and EXP_032 compared with the
steady head loss coefficients found in Chapter 5
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7.3.2 Transient effects on the head losses through orifices

Figure 7.6 shows, for orifice EXP_001, the relationship between the instantaneous local head

losses produced by the orifice and the kinetic energy in the main pipe for the different opening

and closure durations. It can be noticed that the head losses increase (or decrease) faster than

the kinetic energy when the acceleration is positive (or negative). Furthermore, the transient

effects are more significant when the flow acceleration, d vd /d t , increases in the orifice. For

the longest durations, the transient effect becomes negligible and tends to merge within the

steady pressure fluctuations. This observation leads to a suggestion of a faster experimental

method for the evaluation of head loss coefficients (Section 7.4.2).

Figure 7.6 – Orifice EXP_001, sharp approach flow: relationship between the instantaneous
head losses and kinetic energy in the main pipe
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7.3. Results

By stressing the transient effects, the transient head loss coefficient, kt , is defined in Eq.(7.1)

and can be evaluated. For the evaluation of kt , the evolution of the average transient head

losses, ∆Ht , defined in Eq.(7.1), as a function of the orifice acceleration, d vd /d t , as shown

in Figures 7.7 and 7.8. ∆Ht is linearly proportional to the orifice flow acceleration while ∆Hs

rises with the square of the flow velocity (Section 3.3). Table 7.5 summarizes the obtained

values of the transient head loss coefficients for the tested orifices.
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Figure 7.7 – Sharp approach flow - transient head losses determined during the transient
experiments for orifices EXP_001, EXP_002, EXP_004, EXP_012 and EXP_032 compared to the
steady head loss coefficients found in Chapter 5
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Figure 7.8 – Chamfer approach flow - transient head losses determined on the transient
experiments for the orifices EXP_001, EXP_002, EXP_004, EXP_012 and EXP_032 compared to
the steady head loss coefficients found in the Chapter 5
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7.4. Discussion

Table 7.5 – Results for the transient head loss coefficient, kt , for orifices EXP_001, EXP_002,
EXP_004, EXP_012 and EXP_032 and compared to the transient coefficient, le , found by
Yamaguchi (1976) (note: the effect of inertia, Table 7.2, is eliminated in the evaluation of kt )

Orifice Sharp flow direction Chamfered flow direction le (Yamaguchi, 1976)

EXP_001 3.43 2.08 0.89

EXP_002 4.82 2.87 0.90

EXP_004 1.43 1.22 0.88

EXP_012 3.94 2.36 0.86

EXP_032 3.00 1.58 0.93

According to Figures 7.7 and 7.8 along with Table 7.5, the following observations could be

made:

- the transient head loss coefficient, kt , increases when the contraction ratio β increases.

The new coefficient does not seem to be proportional to β4 as is the case for the steady

head loss coefficient; and

- the transient head loss coefficient, kt , diminishes when the inner thickness and thick-

ness ratios, αi and α, increase akin to the steady head loss coefficient.

7.4 Discussion

7.4.1 Transient effect

For all orifices, transient behaviors of head losses were examined. Transient effects depending

on the flow acceleration and the velocity diffusion (d v/d x) are well-known (Ferràs Segura,

2016; Chaudhry, 2014). However, very few studies have been performed on the transient effect

on local head losses (Daily et al., 1955; Yamaguchi, 1976). Yamaguchi (1976) evaluated the

transient head loss coefficient, kt , for air flows based on the concept of the equivalent length of

an orifice. A comparison with the coefficient obtained in this study shows that this coefficient

seems higher in the case of water flows than with air flows (Table 7.5).

Using the 1D numerical simulations performed for the Gondo hydropower plant (Adam et al.,

2017), the maximum flow acceleration related to the entrance of the surge tank was determined

to be roughly 0.13m/s2, which is in the range of the experiments herein.
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7.4.2 Slow transient experiments for the evaluation of the steady head loss coeffi-
cient

The transient effects of head losses decrease with the absolute value of the flow acceleration,

dQ/d t . It should be possible to evaluate the head loss coefficient in one flow direction

with small accelerations leading to negligible additional uncertainties between steady and

unsteady results similar to what Hasmatuchi et al. (2016) performed with respect to the

hydraulic characteristics of turbines.

During this study, the experimental procedure was performed according to Chapter 4.1. The

total recording duration for the experimental setup was 120 minutes for each orifice without

changes to the discharge for flow directions. The real duration of each orifice test was actually

240 minutes from the beginning of the test preparation to the end of the test itself. However,

the evolution of the pressure line along the pipe axis was lost with slow transient experiments

only.

It could be useful to decrease this duration by combining long steady measurements (for

example, three discharges) and two slow transient measurements (for instance, between

the minimum and median discharges and between the median and maximum discharge).

Pressure lines for the three discharges would be recorded and could be compared to the

numerical results while the experimental duration and uncertainty would remain as low as

possible.

7.5 Conclusions

It could be shown that there is a clear influence of flow acceleration on head losses. The total

head losses were thus divided into steady head losses proportional to the flow kinetic energy

and transient head losses proportional to flow acceleration.

An increase (or decrease) in flow velocity leads to more head losses (or less) significantly than

the steady head losses evaluated in Chapter 5. This effect is pronouncedly greater than the

inertial effect evaluated by the integration of the momentum equation; it works as the orifice

temporarily blocks the information originating downstream.

A method for estimating the steady head loss coefficient is suggested in order to decrease the

duration of the experimental tests. Even if the experimental procedure presented in Chapter

4.1 is still relevant, its duration could decrease from 240 minutes to at least 90 minutes without

increasing the uncertainty too much in terms of the steady head loss coefficients. However,

the pressure line information for a given discharge would be lost. An intermediate procedure

testing less steady discharges and various transient tests would be adequate.
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8 Estimation of incipient cavitation
number at orifices

8.1 Introduction

The previous chapters focused on the head losses and influence length of different orifice

geometries. Different combinations of the contraction ratio, β, inner thickness ratios, αi , and

chamfered angle, θ, can produce the same head losses in both directions, i.e. for the water

flowing into or out of a surge tank. Nevertheless, certain geometries are more subjected to

cavitation than others. Hence, the cavitation risk has to be known.

Cavitation may be accepted for certain cases but it should not disturb the hydraulic behavior

of the orifice throttle for which it was designed. As explained in Chapter 2, 1D numerical

simulations are performed to determine the require head losses produced by the throttle. Yet,

these 1D models are not able to reproduce the effect of cavitation.

The cavitation number is defined differently depending on the authors (see Section 3.6.1).

In the following, the definition given by Ferrarese et al. (2015) is used to allow for a com-

parison with previous studies that employ other definitions of cavitation numbers, with the

transformations as given in Section 3.6.1 to accompany them.

A graphical representation of the cavitation risk in the plane discharge - upstream pressure

or discharge - water level in the surge tank is suggested. This representation visualizes the

cavitation risk based on the results, water level and discharge in the surge tank, as per the 1D

numerical simulations.

8.2 Assessment of cavitation

8.2.1 Prediction of the incipient and vena-contracta cavitation number

As described in Section 3.6.4, a method developed by Ferrarese et al. (2015), that predicts

the incipient cavitation number, σi , was employed as in Eq.(8.1). Along with this prediction,

there was another prediction of the vena-contracta cavitation number characterizing the
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appearance of the cavitation in the vena-contracta as in Eq.(8.2). The computed pressure field

is obtained with CFD numerical simulations for chamfered orifices.

σi =
p∗

u −p∗
m

p∗
u −p∗

d

(8.1)

where p∗
u is the upstream computed pressure, p∗

m the minimum computed pressure and p∗
d

the downstream computed pressure

σvc =
p∗

u −p∗
vc

p∗
u −p∗

d

(8.2)

where: p∗
vc is the computed pressure in the vena-contracta

The prediction of the incipient cavitation number, σi , and the vena-contracta cavitation

number, σvc , given by Eqs.(8.1) and (8.2) do not focus on the vapour pressure pv g . This term

is present by the mean of the constant pressure added in the development performed by

Ferrarese et al. (2015) and summarized in Section 3.6.4. Furthermore,σi andσvc are evaluated

under numerical steady flow. The pressure fluctuations are hence not considered even if they

could cause cavitation. However, this effect is less severe for transient flows.

8.2.2 Cavitation risk in pipes

Once the incipient cavitation number has been predicted either by numerical CFD simulations

or by an empirical formula (Section 8.3.2), a graphical representation can assess the risk of

cavitation. Figure 8.1 shows schematically its possible utilization. If the point of utilization

(Q, pu) is in the white area, there is no risk of cavitation while there is indeed risk in the grey

area. In the work presented here, the discharge is positive for the chamfer approach flow.

Eq.(8.3), which was developed from Eq.(8.1), establishes the boundary with the area where

there is a risk of cavitation (grey zone in Figure 8.1) and the area with low or no cavitation risk.

The development of Eq.(8.3) is shown in Appendix F.

pu =σi · 8β4

gπ2d 4 k ·Q2 +pv g (8.3)

where: pu is the upstream pressure, σi the incipient cavitation number, β the contraction

ratio, k the head loss coefficient (Chapter 5), Q the discharge, d the orifice diameter and pv.g .

the vapour pressure.

An application of this formulas is located in Section 9.2.5.
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pu

Q

low or no  risk of cavitation

risk of cavitation
risk of cavitation

Figure 8.1 – Schematic view of a Q-pu plane for an orifice with the different areas of utilization
with or without cavitation risk

8.2.3 Cavitation risk in surge tank throttles

During the design phase of an orifice throttle, the whole waterway is generally simulated with

a 1D numerical model. The results are a temporal evolution of the discharge and water level

in the surge tank. During mass oscillations, the water level and discharge are consistently

changing.

The same approach from Section 8.2.2 can be applied to a surge tank with a throttle during

mass oscillations (see Appendix F). It would be interesting to represent the main numerical

results, i.e. the discharge flowing through the orifice and water level in the surge tank in a new

(Q, Hst ) plane. The water level in the surge tank is thus either the upstream section during

the emptying of surge tank or the downstream section while the surge tank being filled. In

this research study, the discharge is taken as positive during the filling (Eq.(8.5)) and negative

during emptying (Eq.(8.4)).

HST =σi · 8β4

gπ2d 4 k ·Q2 −σi ·κQQ2 +pv g (8.4)

where κQ = 1
2g ·

(
1

A2
ST

− 1
A2

PT

)
is the correction owing to the effect of the difference of kinetic

energy between the surge tank and the pressure tunnel.

HST = (σi −1) · 8β4

gπ2d 4 k ·Q2 − (σi −1) ·κQQ2 +pv.g . (8.5)
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where κQ = 1
2g ·

(
1

A2
PT

− 1
A2

ST

)
is the correction based on the effect of the difference of kinetic

energy between the surge tank and the pressure tunnel.

An application of these formulas is found in Section 9.2.5.

8.3 Results and analysis

8.3.1 Low pressure zones

(a) (b)

Figure 8.2 – Zones with expected low pressures: (a) gray zone where there are the lowest
pressures; (b) white zone representing the vena-contracta

The location of the pressure drops can occur in two different zones as in Figure 8.2:

- close to the orifice walls (gray zones in Figure 8.2), where the water velocity locally

increases because of the flow contraction. It produces the lowest pressure in the pipe

and has different locations depending on flow direction, i.e. sharp or chamfer approach

flow. This is the pressure considered for the evaluation of the incipient cavitation

number, σi (defined in Figure 3.6); Eq.(8.6) defines the lowest pressure coefficient, kmi n ,

analogous to the head loss coefficient, k; and

∆pmi n

ρg
= kmi n · v2

D

2g
(8.6)

- in the vena-contracta (white zones in Figure 8.2), where the velocities are the highest

owing to contraction. The occurrence of cavitation is across the whole of the vena-

contracta when the cavitation number is equivalent to the chocking cavitation number.

Eq.(8.7) defines a vena-contracta pressure coefficient, kvc , analogous to the head loss

coefficient, k.

∆pvc

ρg
= kvc ·

v2
D

2g
(8.7)
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Figure 8.3 – Comparison of the numerical result of the pressure loss coefficient (between the
upstream and vena-contracta pressure) and the experimental formula-obtained values of
Malavasi and Messa (2011) valid for β ∈ [0.39,0.7] and α ∈ [0.25,1.5]

For the estimation of σi , the lowest value of pressure closest to the orifice walls must be used

as was proposed by Ferrarese et al. (2015). The pressure in the vena-contracta characterizes

the σvc .

Malavasi and Messa (2011) put forth an empirical expression of the vena-contracta pressure

coefficient, kvc , as shown in Eq.(8.8) valid for β ∈ [0.39,0.7] and β ∈ [0.25,1.5]. The numerical

results are in fairly strong agreement with Eq.(8.8) even if ones only considers the effect of

the contraction ratio β. However, it can be seen that Eq.(8.8) should not be used outside its

limitation (β ∈ [0.39,0.7] and α ∈ [0.25,1.5]) when taking into account its exponential term.

kvc = 2908 ·e−8.47β (8.8)

8.3.2 Prediction of cavitation number

The incipient cavitation number, σi , is the limit between a flow with and without cavitation.

While the vena-contracta does not cavitate, the flow producing head losses through the orifice

is moderately sensitive to this phase whereas little cavitation produces only small bubbles

(Malavasi et al., 2015). However, if the discharge (or the upstream pressure) continues to rise

(or decreases), the flow reaches the critical cavitation, for which there is still no damage to the

structures (Tullis, 1989). The vena-contracta cavitation number, σvc , is introduced to delve

further into cavitation without damage versus the incipient cavitation number, σi , which is
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Chapter 8. Estimation of incipient cavitation number at orifices

conservative (Tullis, 1989).

Figure 8.4 shows the incipient cavitation number, σi , and the vena-contracta cavitation num-

ber, σvc . Both incipient cavitation numbers tend to increase when β rises. However, the

spreading of the σi for the chamfer approach flow is higher than for the others. The vena-

contracta cavitation numbers, σvc , are more or less the same for the two flow approaches. The

value of σi is, logically, always higher than the corresponding σvc .
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Figure 8.4 – Value of the incipient cavitation number, σi , and the vena contracta cavitation
number, σvc , as a function of the contraction ratio, β

Analysis of incipient cavitation, σi

For the sharp approach flow, it can be seen in Figure 8.6 that σi increases when β and αi

rise. The chamfer angle θ does not have an influence on σi , except for θ = 0◦ (for which

αi increases). The variability of σi is low from 1.29 to 2.40 for the sharp approach flow. An

empirical formula is proposed in Eq.(8.9) in order to predict σi . The fit is shown in Figure 8.9.

σ
shar p
i = 1+2.02 ·β2 +2.50 ·α1.5

i (8.9)

For the chamfer approach flow, Figure 8.7 exhibits how the chamfer angle, θ, has a large-scale

influence with a maximum incipient cavitation number, σi , between 30◦ and 45◦. σi tends

to increase with β and αi as it does for the sharp approach flow. A conservative empirical

formula is proposed in Eq.(8.10) while in Figure 8.5, the envelope curve for different β, αi and
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θ values is displayed.

σ
cham f er
i =σshar p

i ·
[

1+4.15 · (sin(2θ))2
]

(8.10)
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Figure 8.5 – Comparison of the numerical prediction and empirical prediction of the incipient
cavitation number, σi , for the chamfer approach flow

Analysis of vena-contracta cavitation number, σvc

For the sharp and chamfer flow approaches, the variability of the vena-contracta cavitation

number, σvc , is lower than the variability of the incipient cavitation number, σi .

For the sharp flow approach, the contraction ratio, β, and the thickness ratio, αi , are the most

impactful parameters. Another empirical formula (Eq.(8.11)) is also proposed with the same

structure.

σ
shar p
vc = 1+1.47 ·β2 +0.45 ·α1.5

i (8.11)

For the chamfer approach flow, the variability is also lower than for the incipient cavitation

number, σi . However, as portrayed in Figure 8.8, there is no clear influence of the chamfer

angle, θ, and a predicting formula similar to Eq.(8.11) can be fitted onto the numerical results.

σ
cham f er
vc = 1+2.01 ·β2 +0.23 ·α1.5

i (8.12)
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8.4 Discussion

The incipient cavitation number, σi , does not vary significantly for the sharp approach flow

and depends predominantly on the contraction ratio, β, and the inner thickness ratio αi (see

Figure 8.9 for the fit). With respect to the chamfer approach flow, σi , has greater variability.

Chamfer angles between 30 and 50 degrees are characterized by the highest σi but the lowest

head loss coefficients for the chamfer approach flow. As can be seen in Figures 5.25 and 5.26,

the orifice walls gradually guide the flow to less flow contraction and, thus, less flow expansion.

Yet, at the same time, the flow velocities locally increases because of the geometry changes that

the water adheres to, thereby creating a pressure drop. For smaller angles (roughly 15 degrees),

the change of direction is less stark for the same flow contraction leading to equivalent head

losses. For the greatest and smallest angle (θ < 10◦ or > 60◦), the flow streamlines do not

follow the geometry and tend to exhibit the sharp behavior that results in highly contracted

flow at the vena-contracta and to large head losses. In order to predict the chamfer incipient

cavitation, a conservative empirical formula was fitted onto the numerical results (Eq.(8.10)).

Figure 8.9 illustrates the conservative prediction.

For both approach flow directions, the vena-contracta cavitation number, σvc , varies across

small ranges and also depends on β and αi . Two predictive formulas (Eq.(8.11) and (8.12))

were suggested and corroborate the numerical results as seen in Figure 8.10. The almost

constant value of σvc demonstrates that the head loss and the pressure loss coefficients vary

with the same geometrical parameters and on the same order of magnitude.

134



8.5. Conclusions

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10
Sharp approach flow
R2 = 0.8032
RMSE = 0.1043

Numerical - sharp approach flow
Numerical - chamfered approach flow
45° line

 10%
 20%

Figure 8.9 – Comparison of numerical prediction with the empirical prediction of the incipient
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Figure 8.10 – Comparison of numerical prediction and empirical prediction of the vena-
contracta cavitation number, σvc , for the sharp and chamfer approach flows

8.5 Conclusions

The cavitation numbers are based on either the local lower pressures appearing close to the

orifice side because of the sudden constriction or on the low pressure in the vena-contracta.

This numerically obtained low pressure is in solid agreement with a formula of Malavasi and
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Messa (2011). However, this formula should not be used outside its validity range owing to the

observations of large discrepancies for β= 0.3.

For the sharp approach flow, both incipient and vena-contracta cavitation numbers depend

mainly on the contraction ratio, β, and on the inner thickness ratio, αi . For the chamfer

approach flow, the chamfer angle, θ, has more influence on the incipient cavitation number,

σi , than on the vena-contracta cavitation number, σvc .

The incipient cavitation number, σi , can be predicted by the empirical formulas given by

Eq.(9.9) for the sharp approach flow and Eq.(8.10) for the chamfer flow approach.

The vena-contracta cavitation number can be predicted by the empirical formulas given by

Eq.(8.11) for the sharp approach flow and Eq.(8.12) for the chamfer flow approach.

Finally, the definition of the cavitation number was derived in order to be able to evaluate

the risk of cavitation with the upstream pressure and discharge for the pipe along with the

water level and the discharge for a surge tank. An application of the evaluation of this risk of

cavitation is established in Chapter 9.2.
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9 Design guidelines and case studies

9.1 Design guidelines

In this section, the term "orifice" is used but can be replaced by the generic term "throttle"

9.1.1 Introduction

Surge tank orifices can improve the behavior of a surge tank by limiting the maximum and

minimum water levels during mass oscillations as well as in their duration. The introduction

of an orifice take place during or after the construction of a surge tank. An orifice allows,

during the design phase, to limit construction costs by diminishing the required volume of the

surge tank. For upgrading projects with a change of the installed capacity of high-head power

plants, orifices help avoid an extension of the surge tank.

9.1.2 Required basic data

The required inputs are the characteristics of the waterway and the high-head power plant.

The features of the waterway are: geometrical parameters of the pressure tunnel and shaft,

including diameter, roughness and length, different local head losses produced by the change

of tunnel geometry, such as enlargement, contraction and changes of direction, but also the

geometry and the position of the surge tank. The characteristics of the power plant are: design

discharge, net head between the reservoir and turbine, opening or closure time of turbine and

its operation curves.
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9.1.3 Numerical transient analysis

Once all the high-head power plant characteristics are known, a numerical analysis is carried

out to determine the response of the plant to the different load cases (Adam et al., 2017):

- emergency shutdown of all the units;

- simultaneous loading of all units;

- loading followed by emergency shutdown at the worst moment for the upsurge in the

surge tank;

- load rejection followed by a reloading while all units remain connected to the grid; and

- emergency shutdown as well as loading and emergency shutdown leading to the closure

of injectors during penstock reflection time, i.e., the so-called Peak of Michaud (Nicolet

et al., 2012).

The main output of these numerical simulations are the two required head losses characteriz-

ing the orifice at the entrance of the surge tank for inflow and outflow. In the case of upgrading

projects, the structural resistance of the pressure tunnel lining must be verified regarding the

increased pressure waves (water hammer), that are transmitted to the pressure tunnel.

9.1.4 Design of the orifice producing the required head losses

Hereafter, the head loss coefficient for the water flowing out of the surge tank, kOU T , is

considered higher than the head loss coefficient for the water flowing into it, kI N . A catalog of

the experimentally obtained head loss coefficients is located in Appendix B and can be used

instead of the empirical relationships from this section. In addition, there is an expert sheet,

which is described in Appendix G and on-line available (doi:10.5075/epfl-thesis-8090).

Determination of β and αi for certain kOU T

With Eq.(6.3) (defined in Chapter 5, Section 5.3.3) several pairs of contraction and inner

thickness ratios (β,αi ), which produced the required head loss coefficient kOU T , can be

determined.

kshar p =Υαi ·
(1+τ

√
(1−β2)−β2)2

β4 (6.3)

whereΥαi = 1−καi ·αi , καi = 0.9486 and τ= 0.745.

In Figure 9.2, the sharp head loss coefficient is represented as a function of the contraction

ratio, β, and the inner thickness ratio, αi . A certain kOU T can thus lead to a line giving an

infinite number of pairs (β,αi ).

139

doi:10.5075/epfl-thesis-8090


Chapter 9. Design guidelines and case studies

10

15

15
20

20

25

25

30

30

35

35

40

40

45

45

50

50

55

55
60

65
70

75
80

k
sharp

0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
 [-]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

i [
-]

Figure 9.2 – Variation of sharp head loss coefficient for β ∈ [0.4,0.6] and αi ∈ [0,0.4]

Determination of θ and αθ

The contraction ratio, β, and the inner thickness ratio, αi , were selected. Eqs.(6.10) and (6.11)

(see Chapter 5) compute the head loss coefficient of the, respectively, chamfer and rounded

approach flows. Chamfer orifices are preferred for asymmetry ratios, λ, between 0.35 and 1,

while rounded orifices are best for smaller λ.

− Chamfered orifices:

kcham f er =λθ ·Υαi ·
(1+τ

√
(1−β2)−β2)2

β4 (6.10)

where λθ is given by Eq.(6.7),Υαi is given by Eq.(6.4) and τ= 0.745.

λθ =
λ0
θ
·αθ+0.0125

αθ+0.0125
(6.7)

where λ0
θ

is given by Eq.(6.8)

λ0
θ(θ) = 1.304θ4 −5.97θ3 +9.054θ2 −4.55θ+1 (6.8)
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where θ is in radians

Υαi = 1−καi ·αi (6.4)

where καi given by Eq.(6.9)

καi (θ) = 3.18θ4 −13.88θ3 +18.60θ2 −7.29θ+0.949 (6.9)

where: θ is in radians

− Rounded orifices

kr ounded =λa ·Υαi ·
(1+τ

√
(1−β2)−β2)2

β4 (6.11)

where λa is given by Eq.(6.12), ,Υαi is given by Eq.(6.4) with καi = 0.071 and τ= 0.745.

λa = λ0
a ·αθ+0.0125

αθ+0.0125
(6.12)

where λ0
a = 0.271

− Comments In practice, the asymmetry ratio, λ, can be determined with Eq.(9.1). The

easiest way is to assume that αθ is greater than or equal to 0.1. Thereafter λθ (or λa) is

independent of αθ (or αa). In Figure 9.4, it can be seen that λ is a function of θ and αi for

αθ ≥ 0.1.

λ=λθ ·
Υ

cham f er
αi

Υ
shar p
αi

(9.1)
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Assessment of the incipient cavitation number σi

Several orifices depending on the four parameters, (β,α,αi and θ) may be found with the same

required head losses based on the incipient cavitation number, σi , which can be determined

by the empirical relations of Eqs.(9.9) and (9.10) in Chapter 8. An orifice with a higher incipient

cavitation number, σi , should be preferred for the same required head losses.

σ
shar p
i = 1+2.02 ·β2 +2.50 ·α1.5

i (9.9)

σ
cham f er
i =σshar p

i ·
[

1+4.15 · (sin(2θ))2
]

(9.10)

The incipient cavitation number, σi , can be predicted more accurately through employing

the method developed by Ferrarese et al. (2015) via CFD simulations of single-phase flow.

The risk of cavitation could be verified with graphical views (Chapter 8) and the results of the

1-D numerical simulations (see Section 9.2.5). If a risk of cavitation is identified, the design

be further enhanced by assessing whether the cavitation characteristics, e.g. duration and

severity, are acceptable. Figure 9.5 depicts a contour plot of the incipient capitation numbers

for sharp approach flow with various pairs of contraction and inner thickness ratios, β and αi ,

respectively.
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Figure 9.5 – Incipient cavitation number, σi , for the sharp approach flow as a function of
β ∈ [0.4,0.6] and αi ∈ [0,0.4]
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Determination of the influence and reattachment length

−Reattachment length The reattachment length, Lr , is the length between the downstream

orifice side and the pipe where the flow reattaches to the main pipe wall. Lr is independent of

the presence of a chamfer and can be predicted with the empirical relation obtained through

Eq.(7.10) from Chapter 6.

lr = al ,r ·γo , i f β≥ 0.5(γo ≤ 0.25)

lr = bl ,r ·γo + cl ,r , i f β< 0.5(γo > 0.25)
(7.10)

where: γo = 1−β
2

al ,r =−5.46 ·αi +14.10

bl ,r = 3.95 ·αi +2.32

cl ,r =
al −bl

4

(7.11)

Figure 9.6 presents a graphical estimation of the reattachment length, Lr , for different β and

αi values.
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Figure 9.6 – Variation of the dimensionless reattachment length, lr , for the sharp and chamfer
approach flows with β ∈ [0.4,0.6] and αi ∈ [0,0.4]

− Influence length The influence length, L j , is the length between the upstream orifice

side and the pipe cross-section, that is not influenced by the presence of the orifice. It can be
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estimated with the assistance of the two empirical relationships suggested in Chapter 6 and

via Eq.(7.4) and (7.7).

l j ,shar p = 1.47+6.90 ·β+0.77 ·αi (7.4)

l j ,cham f er =
(
1.47+6.90 ·β+0.77 ·αi

)
·
(
1+dl , j · sin2(2θ)

)
dl , j = 0.97 ·αi +0.14

(7.7)

Figure 9.7 presents a graphical estimation of the influence length, L j , for the sharp approach

flow with different β and αi values.
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Figure 9.7 – Influence length of the orifice, l j , for the sharp approach flow as a function of
β ∈ [0.4,0.6] and αi ∈ [0,0.4]

− Uses On one hand, the reattachment length, Lr , fosters evaluation of the needed down-

stream length to facilitate a reliable estimation of the produced head losses. If possible, there

should not have a geometrical change, e.g. pipe expansion or T-junction, before the end of

this length (refer to in Section 9.2.3). Furthermore, low pressures can take place within this

pipe zone and can require a steel liner to protect the pipe from cavitation. On the other hand,

the influence length allows for the assessment of the minimum length between two orifices if

it is needed to generate the required head losses.
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9.1.5 Validation by hydraulic model tests or prototype measurements

The aforementioned empirical design procedure can reduce the iterations needed to find the

required orifice geometry. Nevertheless, the final geometry should be validated in a physical

model, which would ultimately be more precise.

Finally, prototype measurements could confirm the design and reveal scale effects if there are

any.

9.1.6 Conclusion

These design guides describe the different steps for the design of surge tank orifices. The

empirical relationships suggested in this study are summarized to ease practical use. Certain

results are graphically depicted as a function of the orifice geometrical parameters in order to

arrive at first estimations without calculation.

9.2 Case Study

9.2.1 Effects of a throttle on the whole water way system

Numerical simulations of transient pressures and surge tank oscillations were performed with

the Hydraulic System software described by Boillat and de Souza (2004) with the objective of

exhibiting the effect of the throttle placement on the global transient behaviors of a high-head

power plant. Only the contraction ratio, β, and thus head loss coefficients, vary. The orifice

was modeled by local head losses and a short pipe. The diameter of this pipe was equal to the

inner orifice diameter so as to model more reliability the wave transmission at the T-junction

(Table 9.1) during the water hammer.

Simulations of the Cleuson-Dixence high-head power plant (Figure 9.8) consider how the

surge tank is throttled with an orifice (Figure 2.2) in a connecting tunnel with a diameter of 3

m. Such simulations were performed for just a complete linear closure over 90 s and focused

mainly on the first amplitude of the mass oscillation.

The plant characteristics as follows:

- total head, 1883m;

- flow discharge, 75m3/s;

- installed capacity, 1269 MW (3 Pelton turbines);

- only linear closure is studied for a closure time of 90 s; and

- the surge tank had two expansions (Figure 9.9) and an orifice (Table 9.1) that together

created head losses at its entrance. Considering the existing lateral chambers like cylin-
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Figure 9.8 – Hydraulic System model of the Bieudron power house of Grande-Dixene scheme

drical expansions: the diameter of the lower chamber was 23.17m; of the intermediate

shaft was 7.49 m; and the upper chamber had a diameter of 30.44m. The head loss

coefficients taking into account the connecting pipe were (kI N /kOU T ) = (14.70/28.66).

In order to render the analysis more generally applicable, thereby independent from the

existing surge tank geometry (i.e., two expansions with an intermediate shaft), an equivalent

diameter DE q was first determined for the existing surge tank and its throttle leading to the

same maximum measured water level. Next, numerical simulations were conducted with DE q

for all the different cases (Table 9.1) to evaluate the throttling effects. Finally, an optimized

surge tank diameter DOpt was establish for each contraction ratio, β (Table 9.1), where the

higher head loss coefficients were obtained by Eq.(5.3) in Chapter 5. For cases 1 to 9, the head

loss coefficients are given without the head losses produced by the small pipe enabling robust

pressure wave transmission at the T-junction.

Simplified surge tank with equivalent diameter

Figure 9.10 (or Figure 9.11) depicts the temporal evolution of the water level in the surge

tank (or the pressure in the pressure tunnel) for the given closure time and for the existing

surge tank (real geometry) as well as the simplified surge tanks with the equivalent diameter,

DE q = 12.231m. The following observations are relevant:

- the equivalent diameter DE q for the simplified surge tank was determined in order to
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Figure 9.9 – The different equivalent diameters along the surge tank used for modeling with in
Hydraulic System

reach the same maximum water level as the existing surge tank. However, the oscillation

period increases and the maximum pressure in the pressure tunnel decreases;

- the smaller the contraction ratio, β, is (and thus, the greater the head losses are), the

lower the maximum water level in the surge tank is;

- for lower values of β, the water level converges to the static water level without oscilla-

tions. No simulations were performed for contraction ratios below 0.2 (except for the

case with no surge tank, β= 0);

- the behavior of the pressure fluctuations change at β= 0.6. For β> 0.6, the pressure was

influenced by mass oscillations, whereas the maximum pressure results from the higher

transmission of surge waves produced by the closure, for β< 0.6; and

- for the throttle existing real geometry (β= 0.53), the behavior was slightly different due

to the combined effects of the throttling and expansions. The rise of pressure in the

pressure tunnel was more important than without expansions as the rise of water level

in the surge tank was more rapid.

Hence, throttling a surge tank decreases its maximum amplitude of water level oscillations

(Figures 9.10 and 9.12) while the maximum pressure in the pressure tunnel rises (Figures 9.11

and 9.12). However, according to Figure 9.12, for a contraction ratio larger than β> 0.6, the

maximum water level and pressure decreases. This behavior diverges for β < 0.6, whereby

the maximum pressure in the pressure tunnel becomes the higher possible pressure without

surge tank (β= 0). As shown in Figure 9.11, the reason for this difference is based on the higher
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Table 9.1 – Simulation parameters - the contraction ratios β and two of the head loss coeffi-
cients

Case β [-] d [m] Head loss coefficients [-]

Inflow Outflow
Real geometry 0.53 1.6 14.7 28.66

1 1 3 4.8 5.47
2 0.9 2.7 4.98 5.87
3 0.8 2.4 5.48 7.06
4 0.7 2.1 6.74 10
5 0.6 1.8 9.85 17.29
6 0.5 1.5 18.13 36.69
7 0.4 1.2 43.55 96.26
8 0.3 0.9 188.5 330.42
9 0.2 0.6 768.15 1793.9

10 0 – No surge tank / / /

surge wave transmitted in the pressure tunnel from the pressure shaft. For smaller β values,

water levels tend directly to the upstream static water level.

To conclude, a throttle would be beneficial for β > 0.6 even during the design phase of a

new surge tank. The maximum water level and the pressure were indeed lower than without

throttling. Nevertheless, a throttle placement could limit future increases in installed capacity.

Moreover, Figure 9.12 shows that a throttled surge tank with expansions seems to elevate the

pressure transmitted within the pressure tunnel with respect to real geometry as it combines

the effect of the throttle and intermediate shaft.
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Figure 9.10 – Variation of the water level in the surge tank, zST , following a closure (dura-
tion 90s) for the existing surge tank and for the equivalent simple surge tank for different
contraction ratios listed in Table 9.1

Simplified surge tank with optimized diameters

For each contraction ratioβ, an optimized surge tank diameter, DOpt , was determined in order

to obtain the same maximum water level as in the existing surge tank. Figure 9.13 illustrates

the optimized equivalent diameter, DOpt , as a function of β. It is reduced when β decreases

and seems to converge to 0 without a surge tank (β= 0). This reduction is almost linear for β

between 0 and 0.6 (DOpt /β≈ 22.6). DOpt is slightly increasing for β> 0.6, however, DOpt has

to satisfy the required Thoma cross-section,AT
ST , defined as ((Thoma, 1910) see Figure 9.13):

AT
ST > LPT · APT

2g ·kPT ·Hn
(9.2)
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Figure 9.11 – Variation of the pressure in the pressure tunnel close to the surge tank, pPT ,
following a closure (duration 90s) for the existing surge tank and for the equivalent simple
surge tank for different contraction ratios listed in Table 9.1 (the static pressure is relative to
an upstream water level of 2156.6 m a.s.l.)

and thus,

DT
ST = 2

√
AT

ST

π
(9.3)

where APT is the pressure tunnel cross-section, LPT , the pressure tunnel length, kPT , the head

loss coefficient for both friction and local losses in the pressure tunnel related to cross-section

of the pressure tunnel and Hn , the net head between the surge tank and the tail water.

Figure 9.13 shows that the diameter of the existing surge tank (DE xi st i ng
mi n = 7.49) is much higher

than the required Thoma diameter without considering a safety factor.

The decrease of DOpt is significant for β= 0.6...0.7. Furthermore, for β> 0.6, the optimization
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Figure 9.12 – Maximum water level in the surge tank and the maximum pressure in the pressure
tunnel as a function of the contraction ratio β. The reference elevation is the altitude of the
tunnel axis below the surge tank (2156.6 m a.s.l.)

of the surge tank diameter does not have a large influence on the maximal pressure in the

pressure tunnel (Figure 9.14). The reduction of the surge tank diameter, however, results also

in higher costs of construction.
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Figure 9.14 – Maximal pressure in the pressure tunnel as a function of the contraction ratio β
resulting in a maximum water level equivalent to the existing surge tank (2187.6 m a.s.l.)
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Figure 9.13 – Optimized equivalent diameter as a function of the contraction ratio β resulting
in a maximum water level equivalent to the existing surge tank (2187.6 m a.s.l.). Also featured
is a comparison of the required Thoma diameter (Eq.(9.3)), with the smallest diameter of the
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Conclusions

The analysis performed on the case study featuring the Bieudron power plant of the Grande-

Dixence scheme demonstrated that throttles with contraction ratios of β≥ 0.6 are advanta-

geous and can slightly diminish the cost of construction because of the reduction of the surge

tank volume. The transmitted element of the surge waves increases in the pressure tunnel

for β< 0.6. Furthermore, β< 0.3 should be avoided as the pressure amplitudes rise rapidly

within the pressure tunnel. Finally, a throttled surge tank with expansions like the existing

surge tank produces higher pressure in the pressure tunnel than a throttled surge tank without

expansions for the same excavated volume.

9.2.2 Design of throttle geometry

Cleuson-Dixence

− Existing orifice

The orifice (see Figure 2.2 and Section 9.2.1) placed at the entrance of the Grande-Dixence

surge tank produces head losses equal to (14.7 , 28.66). The asymmetry ratio is therefore 0.51.

− Determination of orifice geometries

The highest contraction ratio, β, can be found with Eq.(6.3) for a theoretical orifice with

α=αi = 0: βmax = 0.5385. The smallest contraction ratio, β, is obtained with the theoretical
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approximation of the minimum head loss coefficient according to Eq.(5.23): βmi n = 0.43.

Once βmi n and βmax are known, different combination of (β,αi ) can be found as reported in

Table 9.2. However, in order to stay within the tested range of this research project, αi was

limited to 0.4.

Table 9.2 – Preliminary design of the Grande-Dixence throttle

β[−] αi [−] kout [−] σi ,out [−] αθ[−] θ[◦] ki n σi ,i n[−]

Existing 0.53 0.01 28.66 0.19 30 14.7

Orifice 1 0.5385 0.0 28.66 1.56 0.1 39.91 or 8.4 14.7 7.61 or 2.08
Orifice 2 0.53 0.08 28.66 1.61 0.1 39.92 or 9.2 14.7 7.85 or 2.25
Orifice 2’ 0.53 0.01 30.83 1.55 0.19 30 9.7 6.2
Orifice 3 0.50 0.33 28.66 2.00 0.1 40.04 or 13.25 14.7 9.76 or 3.59
Orifice 4 0.49 0.4 28.66 2.15 0.1 40.27 or 15.07 14.7 10.52 or 4.32

Assuming αθ ≥ 0.1, the chamfer angle, θ, becomes close to 40◦ or stays between 8◦ and 15◦.

Orifice 2 corresponds to the geometrical parameters producing the existing required head

loss coefficients, while the head loss coefficients of orifice 2’ are obtained for the existing

geometrical parameters. The predicted head loss coefficients for orifice 2’ are 7% higher for

the sharp approach flow and 34% lower for the chamfer approach flow.

− Comparison of incipient cavitation numbers σi

For all the orifice geometries given in Table 9.2, the incipient cavitation number, σi , is pre-

dicted by Eqs.(9.9) and (9.10) and the results are found in Table 9.2. The following observations

are relevant:

- for this orifice, the smaller αi , the higher the predicted σi is. This confirms the existing

design with a small inner thickness; and

- for each pair of β and αi , there are two chamfer angles producing the same head losses.

According to σi ,i n , the small angles are better with respect to the cavitation risk.

FMHL +

The experimental campaign that was executed at LCH of EPFL for the orifice placed at the

entrance of the new surge tank of the FMHL pumped-storage power plant was summarized in

Section 2.4.3. The orifice has a symmetrical geometry and is placed in a connecting tunnel

(Figure 2.8). The symmetrical sharp head loss coefficient is 3.3 (Hachem et al., 2013).

The smallest contraction ratio, βmi n = 0.634, was obtained by Eq.(5.13) for kshar p = 3.3, while

the highest contraction ratio βmax = 0.764 was obtained by Eq.(6.10). The existing thickness

ratio αi was equal to 0.04. This results in a predicted contraction ratio, β, equal to 0.760 while

the existing orifice was 0.768.
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Gondo

The experimental campaign executed at LCH of EPFL for the orifice placed at the entrance of

the new surge tank of the FMHL pumped-storage power plant was summarized in Section 2.4.4.

The throttle placed in the Gondo surge tank was not an orifice but a rack throttle (see Section

2.4.4). However, the empirical relationships were tested in order to evaluate the robustness of

the method. The numerical simulations gave a pair of head loss coefficients (kOU T , kI N ) equal

to (40,30). The smallest contraction βmi n = 0.402 was obtained by Eq.(5.13) for kshar p = 40,

while the highest contraction ratio, βmax = 0.504 was yielded with Eq.(6.10).

The throttle of Gondo had an αi = 0. The predicted contraction ratio was equal to 0.504 while

the existing βeq = 0.43. It can be deduced that flow expansions at the throttle affect each

other and have an influence on global head losses. The difference between the predicted and

existing contraction ratio was 16%. As described in Section 2.4.4, αθ was equal to 0.143, which

means that the asymmetry ratio, λ, is independent of αθ. Finally, for λ= 0.75, the chamfer

angle should be 4◦ or 52◦, while the existing angle was 12◦.

Conclusions

The empirical relations and the method proposed in the practical guideline (Chapter 9.1) were

tested on three different throttles, i.e. two orifices and one rack throttle. The method elicited

satisfactory results for the two orifice design. However, for the rack throttle, there were quite

large differences in the contraction ratio, β, and the chamfer angle θ. These differences could

be explained by the varied geometry of the throttle (bar screen), an interaction between the

distributed jets or by the complex connection at the entrance of the Gondo surge tank (Adam

et al., 2017).

9.2.3 Influence and reattachment lengths1

Description Steady head losses were recorded on the physical model of FMHL + at the LCH

of EPFL (see Figure 9.15; Section 2.4.3 and 9.2.2). The position, Pi , and the contraction ratio,

β, of the existing orifice placed in the connecting tunnel were varied in order to evaluate the

influence of the position, and thus the characterizing lengths, on the head loss coefficients.

Hereafter, the head losses were evaluated between the surge tank B and the pressure control

section S6.

Two different orifice contraction ratios, β= 0.70 and 0.73, were tested with four positions from

Pa to Pd . Table 9.3 gives the distance of the positions between the headrace tunnel and the

surge tank. The reattachment and influence lengths (Table 9.4) for the two contraction ratios

1This subsection is based on a published conference paper: "Adam, N.J. & De Cesare,G. (2015). Diaphragm in
pressure pipe: steady head loss evolution and transient phenomena. 5th IAHR International Junior Researcher and
Engineer Workshop on Hydraulic Structures, Spa, Belgium.". The experimental work presented hereafter is original
and was performed by the author.
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Figure 9.15 – Plan view of the new FMHL surge tank at LCH of EPFL with the different orifice
positions

(β) were obtained through Eqs.(6.4) to (6.11) in Chapter 6.

Table 9.3 – The positions of the orifice relative to the headrace tunnel and surge tank B

Pa Pb Pc Pd

Position relative to the headrace tunnel 2.24D 4.97D 7.69D 9.96D
Position relative to the surge tank B 10.56D 7.83D 5.11D 2.84D

Table 9.4 – The influence and reattachment length, l j and lr , for β= 0.70 and β= 0.73 with a
thickness ratio of α= 0.04

Orifice l j lr

β= 0.70 6.33D 2.08D
β= 0.73 6.54D 1.87D
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Results Figure 9.16 depicts the head loss coefficients in both flow directions for the four

positions, Pi , and the two contraction ratios β. The following observations are pertinent:

- there was no influence of the orifice position on the head loss coefficient for β= 0.73 in

both flow directions;

- for β= 0.7, particularly for the two position close to surge tank B (Pc and Pd ), there is no

influence of the position on the head loss coefficients; and

- for the smallest contraction ratio, β= 0.7, the head loss coefficient decreases when the

water flows from the surge tank to the head-race tunnel.
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Figure 9.16 – Head loss coefficients characterizing the orifices as a function of the orifice
position in the connecting tunnel (Pa to Pd in Figure 9.15)

Conclusions It can be stated that the influence length, l j , does not have an influence on

the head losses. However, for position Pa and β = 0.7, the reattachment zone should be in

the T-junction, which seems to raise the head losses generated by the orifice for the BC flow

direction (Figure 9.15).

9.2.4 Determination of the transient head losses for a down-surge (FMHL+)2

− Description

2This subsection is based on a published conference paper: "Adam, N.J. & De Cesare,G. (2015). Diaphragm in
pressure pipe: steady head loss evolution and transient phenomena. 5th IAHR International Junior Researcher and
Engineer Workshop on Hydraulic Structures, Spa, Belgium.". The experimental work presented hereafter is original
and was performed by the author.
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Surge tank emptying was performed on the physical model of FMHL+ at the LCH of EPFL

(see Figure 9.15; Sections 2.4.3 and 9.2.2). For the transient experiment, downstream valve C

(Figure 9.15) was opened (over approximatively 10 seconds). The discharge and the pressure

in the head race and connecting tunnel are recorded in order to evaluate the instantaneous

head losses.

− Results

Figure 9.18 focuses on the time period t ∈ [10s,30s] because of the perturbation from the fast

opening of the downstream valve. Throughout this period, the flow deceleration, d vd /d t ,

was assumed constant and equal to −0.14m/s2. It can be seen in Figure 9.18 that the 0.1-

second average head losses were always smaller than the steady head losses. After 25 s, the

discharge and thus the head losses became small and on the same order as magnitude of the

instrumentation errors (Appendix A).

− Conclusions

By comparing the steady head loss coefficient and transient effects, it is possible to evaluate

the transient head loss coefficient kt , which is in this case is equal to 3.64 with inertial effects.

This value tends to confirm the results that were highlighted in Chapter 7.
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Figure 9.17 – Temporal evolution of the discharge and heads during the emptying of the new
FMHL surge tank
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Figure 9.18 – Evolution of the head loss coefficient during emptying (0s after the end of the
valve opening)

9.2.5 Estimation of the cavitation risk

Straight pipe

A method for the evaluation of the risk of cavitation is proposed in Section 8.2.2. Eq.(8.3) was

applied to the following orifices: NUM_001 (β= 0.5), NUM_002 (β= 0.4), NUM_003 (β= 0.45)

and NUM_004 (β = 0.6). Figure 9.19 portrays the limit of the incipient and vena-contracta

cavitation. It can be seen that the incipient cavitation appears first for the chamfer approach

flow for all the tested contraction ratios β, while the vena-contracta cavitates first for the sharp

approach flow.

For experimental tests, it is possible to evaluate whether the flow would cavitate or not. For

example, if the upstream pressure is equal to 4 mH2O, the discharge should be respectively

smaller than 27, 32 or 39 l/s for contraction ratios of 0.4, 0.45 or 0.5 in order to avoid incipient

cavitation.

Surge tank - Gondo

A method for the evaluation of the risk of cavitation was proposed in Section 8.2.3. This limit

of the risk of cavitation is graphically applied to the Gondo waterway system with throttle

(Adam et al., 2017) (Sections 2.4.4 and 9.2.2).

Table 9.5 summarizes the main geometrical parameters of the Gondo throttle counted as an

orifice. The characteristic cavitation numbers were predicted using the formulas developed in

Section 8.3.2 and are summarized in Table 9.5.
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Figure 9.19 – Graphical representation of the risk of cavitation (water at 20◦C )for a straight
pipe using either the incipient cavitation number,σi , or the vena-contracta cavitation number,
σvc , for four different numerically tested orifices: NUM_001 (β = 0.5), NUM_002 (β = 0.4),
NUM_003 (β= 0.45) and NUM_004 (β= 0.6). The discharge was taken as positive for the sharp
approach flow.

Table 9.5 – Geometrical parameters of an equivalent orifice for the Gondo rack throttle

β α αi θ σ
shar p
i σ

cham f er
i σ

shar p
vc σ

cham f er
vc

0.43 0.143 0 12◦ 1.37 1.62 1.27 1.37

Figure 9.20 portrays the limit of the risk of cavitation for the Gondo throttled surge tank

subjected to an emergency shutdown. It can be seen that there is a risk of cavitation for the

first oscillation. Over the course of the first increase of the water level in the surge tank, only

the incipient cavitation could appear (during almost 17 s). During the first decrease, the

vena-contracta could cavitate (during almost 80 s).

Conclusions

The limit of the risk of cavitation was tested on a straight pipe and a throttled surge tank

subjected to mass oscillations. It can be demonstrated for the Gondo throttled surge tank the

usefulness of the graphical representation of the cavitation for a surge tank subjected to mass

oscillations.
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10 Conclusions and outlook

10.1 Estimation of steady head loss coefficients for orifices

Based on novel systematic tests, it is possible to link geometry and head losses but also to

find geometries producing target head loss coefficients. Three different orifice geometries

were studied and compared in this research, i.e. orifices with a sharp, chamfered side or a

rounded side along with orifices with two chamfered sides. The results indicated that the

different geometrical parameters strongly influence the steady head loss coefficients in both

flow directions. The main conclusions are listed subsequently:

- for the two approach flow directions and all orifice geometries, the most influential

parameter was the contraction ratio, β. The head loss coefficients decreases with

the fourth power of β. The lower the contraction ratio was, the higher the head loss

coefficients were. Furthermore, the head loss coefficients decrease when the inner

thickness ratio, αi , rises. The lowest head loss coefficient was achieved when the flow

reattached the orifice inner wall;

- for the sharp approach flow, the head loss coefficient depended only on β and the inner

thickness ratio, αi . The orifice thickness, α, did not play a primary role if the chamfer

angle, θ, or the curvature of the orifice was high enough. Numerical simulations showed

that a chamfer angle, θ, higher than 15◦ was sufficient;

The sharp head loss coefficient can be obtained either by the empirical relationship

Eq.(6.3), graphically in Figure 9.2 in the design guidelines (Chapter 9.1), by the catalog

of the experimentally obtained head loss coefficients given in Appendix B or with the

expert sheet (see Appendix G), which is available on-line with the thesis (doi:10.5075/

epfl-thesis-8090);

- for the chamfer approach flow, the chamfer angle, θ, had a strong influence on the

asymmetry ratio, λ, defined as the ratio between the chamfer and sharp head loss

coefficients varying from 0.35 to 1. The lowest values of λ were obtained for the angle
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between 15◦ and 40◦. The effect of the angle was reduced when the chamfer thickness

ratio, αθ, decreases. The asymmetry ratio, λ, was independent of αθ if it was higher or

equal to 0.1;

The chamfer head loss coefficient could be obtained via the empirical relationship of

Eq.(6.10) or graphically with the asymmetry ratio,λ, in Figure 9.4 of the design guidelines

(Chapter 9.1), by the catalog of the experimentally obtained head loss coefficients in

Appendix B or with the expert sheet (see Appendix G), which is available on-line with

the thesis (doi:10.5075/epfl-thesis-8090);

- for the two-chamfered orifices, the head loss coefficient relied upon the contraction

ratio, β, the chamfer angles, θR and θL , and the inner thickness ratio, αi . The second

chamfer angle did not influence the head loss coefficient of the opposite approach flow.

However, this type of geometry had a smaller theoretical range of asymmetry ratios as

the highest head loss coefficient was produced for the sharp approach flow. Asymmetry

can be easily achieved with a sharp side producing higher head losses. Using two-

chamfer orifices decreases the value of the contraction ratio β, which is a key parameter

in the transmission of the water-hammer within the pressure tunnel (Section 9.2.1).

The head loss coefficients could be obtained through the empirical relationship of

Eq.(6.10) for the chamfer approach flows; and

- for the rounded approach flow, the head loss coefficient did not vary significantly and

was lower than for the chamfer orifices. The asymmetry ratio, λ, varied from 0.25 to 0.5.

The head loss coefficient for the rounded approach flow could be obtained by the

empirical relationship in Eq.(6.11) from the design guidelines (Chapter 9.1).

10.2 Determination of recirculation and influence lengths of the

orifice

The influence and reattachment lengths were defined by systematic testing that allow the

definition of the undisturbed flow conditions for use of the developed empirical formulas

evaluating the head loss coefficients. The main findings can be summarized in what follows:

- the zone disturbed by the presence of the orifice was longer than the reattachment

length of the jet. The chamfer increases the disturbed zone for the chamfer approach

flow, while it did not affect the reattachment length;

- the influence length depended mainly on the contraction ratioβ. For both approach flow

directions, the influence length rose linearly with β in the tested range (β ∈ [0.3,0.7]).

For the sharp approach flow, the influence length could be estimated with the empirical

relationship of Eq.(7.4) or graphically in Figure 9.7 of the design guidelines (Chapter 9.1).

For the chamfer approach flow, the influence length depended on the chamfer angle, θ,

and could be estimated with the empirical relationship of Eq.(7.7);
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- the chamfer has very little influence on the reattachment length. This reattachment

length increases firstly with β and then tends to be constant for β< 0.4.

For both approach flow directions, the reattachment length could be obtained by the em-

pirical relationship of Eq.(7.10) or graphically with Figure 9.6 from the design guidelines

(Chapter 9.1); and

- the reattachment length seems to have a stronger influence on head losses than the

influence length. A case study (see Section 9.2.3) revealed that a bifurcation in the

reattachment length modified the value of the predicted head losses.

10.3 Transient head losses in orifices

Transient effects have been highlighted and can account for up to 20% of steady head losses.

The following conclusions can be made:

- the head losses produced when the flow accelerates were higher than the steady head

losses evaluated in Chapter 5. For decelerating flows, the transient head losses were

smaller than the steady head losses. A case study focusing on a down-surge of a surge

tank confirmed this behavior in Section 9.2.4;

- the transient component of the head losses was directly proportional to the flow accel-

eration and was higher than the inertial effects;

- the duration of a steady experimental test was almost two hours for each approach flow

direction. The duration could be decreased, in the future, by a continuous range of

discharge with a low flow acceleration. A flow acceleration of 0.05 m/s2 was sufficient

for evaluating the steady head loss coefficient without increasing uncertainty.

10.4 Estimation of the cavitation risk

A method, that predicts the incipient cavitation number, σi , was applied to the orifices tested

numerically. The main conclusions are:

- for the two approach flow directions, the incipient cavitation number, σi , was higher

than the vena-contracta cavitation number σvc ;

- for the sharp approach flow, the incipient cavitation number, σi , increases with the

contraction ratio, β, and the inner thickness ratio, αi . The chamfer angle, θ, and the

thickness ratio, α, did not influence on σi for the sharp approach flow.

The sharp incipient cavitation number could be predicted by the empirical relationship

of Eq.(9.9) or graphically from Figure 9.5 in the design guidelines (Chapter 9.1);
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Chapter 10. Conclusions and outlook

- for the chamfer approach flow, the incipient cavitation number, σi , rose with the con-

traction ratio, β, and the inner thickness ratio, αi , and is influenced as well by the

chamfer angle, θ.

The chamfer incipient cavitation number could be predicted by the conservative rela-

tionship in Eq.(9.10) from the design guidelines (Chapter 9.1);

- for the two approach flow directions, the vena-contracta cavitation number rose with

the contraction ratio, β, and the inner thickness ratio, αi .

The vena-contracta cavitation was predicted by the numerically obtained empirical rela-

tionship in Eq.(8.9) for the sharp approach flow and Eq.(8.10) for the chamfer approach

flow in Chapter 9; and

- a case study of the estimation of the cavitation risk was presented in Section 9.2.5. An

application to a surge tank with mass-oscillations uncovered the relevance of a graphical

estimation of this risk.

10.5 Practical recommendations

- the 1-D numerical analysis still appeared to be essential. It allowed for simulating the

whole high-head power plants, their connection with the electrical network and the

response of the surge tank to different loads. From a hydraulic point of view, the main

results of this phase were the head losses the throttle should produce at the entrance of

the surge tank;

- empirical formulas offered in Chapter 9.1 should be employed in order to improve

design in the preliminary design of the orifice;

- 3-D numerical simulations are useful for determining the effect of each orifice’s geomet-

rical parameter at the local surge tank junction;

- the physical model should be used at the end of all work to confirm and assist selecting

the final orifice design;

- it is possible to assess the risk of cavitation from the discharge flowing into or out of the

surge tank with a characteristic cavitation number and the results of the 1D numerical

analysis of the waterway system; and

- prototype tests with the throttle are quite valuable for feedback on all the previous steps.

10.6 Outlook and future work

This study has mainly focused on chamfered and rounded orifices. The following aspects

should be studied for a better understanding of throttle behavior:
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10.6. Outlook and future work

- other orifice shapes in order to enrich the developed catalog;

- the effect of the upstream and downstream flow conditions, e.g swirling upstream flows,

asymmetric flows because of the T-junction or different downstream diameters should

be assessed. Correction parameters would best be applied to the head loss coefficients

so as to get closer to the existing surge tank junction; and

- an improved experimental set-up could be used to allow for a better understanding of

the transient head losses during mass oscillations. Furthermore, the overall pressure

within the waterway system depends on the time and opening or closure rate of the

downstream valve (or turbine). In Figure 10.1, a future experimental set-up is proposed

that could simulate a mass oscillations with different flow accelerations, amplitudes

and pressures within the tank.

pressurized
 air

water

oscillating
pistonorifice

Figure 10.1 – Proposition of a new experimental testing setup for the assessment of the
transient head losses during mass oscillations
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A Instrumentation

This appendix presents the instrumentation, the calibration and the determination of the

sampling parameters, e.g. frequency and sample number, for the physical recordings.

A.1 Presentation

A.1.1 Pressure transducers

This subsection is based on the supplier’s information that the reader can find here: http:

//www.keller-druck.com/picts/pdf/engl/23e.pdf

During the experimental campaign, two different pressure transducers are used are shown

in Figure A.1: G1/2" piezo-resistive transducers (KELLER - series 25, Figure A.1a) and G1/4"

piezo-resistive transducers (KELLER - series 23, Figure A.1b).

For both types, the pressure range goes from −0.2bar (-2 mH2O) to 0.5bar (5 mH2O) for a

voltage range 0...10V . According to the supplier, the typical error is ±0.2% of the full pressure

range, while the maximum error is ±0.5%. In this experimental campaign, the typical and

maximum errors for each pressure transmitter are respectively ±0.0014bar (± 0.014 mH2O)

and ±0.0035bar (± 0.035 mH2O).

The pressure transmitters are connected to a National Instruments data acquisition card type

NI USB-6259 series M, which records the pressure variations in volts.

A.1.2 Flow-meter

This subsection is based on the supplier’s information that the reader can find here: https:

//www.endress.com/en/.

There is only one type of flow-meter used in this experimental campaign: ENDRESS+HAUSER

PROMAG 50 W with a nominal diameter of 150 mm. As shown in Chapter 4.1, there are two
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Appendix A. Instrumentation

(a) G1/2" piezo-resistive transducers (b) G1/4" piezo-resitive transducers

Figure A.1 – Pressure transducers used in the experimental campaign

flow-meters on the laboratory supply pipes at each end of the main PVC pipe. Each flow-meter

records only positive discharges even if they could theoretically record negative ones.

For both flow-meters, the discharge range goes from 0.0 l/s to 40.0 l/s while the maximum

flowing discharge in the design of experiment is 30.0 l/s. According to the supplier, the

maximum error is ±0.5% of the full discharge range. In this experimental campaign, the

maximum errors is thus ±0.2 l/s.

The flowmeter are connected to a National Instruments data acquisition card type NI USB-

6259 series M, through a 500−Ω electrical resistance to obtain a full voltage range from 0 to

10V .

Note: Two flow-meters are placed at each end of the main pipe recording only positive values.

The utilization of two flow-meters recording a full discharges range (from -40 to +40 l/s) would

theoretically produce a maximum error two times bigger. However, it would be possible to

compare the value of the recorded discharge.

A.2 Calibration

A.2.1 Pressure transducers

The pressure transmitters are separately calibrated, either the G1/2"’s or the G1/4"’s. Fourteen

different pressures are evaluated two times between 2mH2O (resp. 19.62kPa) and 0.4mH2O

(resp. 3.92kPa) with a calibration stand developed by the LCH (Figure A.2).

For each pressure, the output signal is recorded during 15 seconds with a sampling frequency
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A.2. Calibration

Figure A.2 – Calibration stand at LCH (EPFL)

of 100 H z. According to the results and the manufacturer (Figure A.3 and A.4), there is a linear

relation between the output signal in volt and the pressure. The parameter values of the linear

regression are respectively given for G1/2" and G1/4" pressure transmitters in Table A.1 and

A.2.

Table A.1 – Calibrations of the six G1/2" pressure transmitters: Mean values and 5% - 95 %
confidence intervals (CI) of the calibration linear parameters a and b

Transmitter ā [mH2O/V ] C I (a) [mH2O/V ] b [mH2O] C I (b) [mH2O]

G1/2"(1) 0.50915 ±0.00044 −0.69945 ±0.00163
G1/2"(2) 0.50947 ±0.00050 −0.81163 ±0.00199
G1/2"(3) 0.50997 ±0.00136 −0.84416 ±0.00541
G1/2"(4) 0.50845 ±0.00124 −0.75334 ±0.00472
G1/2"(5) 0.50985 ±0.00125 −0.79130 ±0.00484
G1/2"(6) 0.51035 ±0.00070 −0.71403 ±0.00260
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Figure A.3 – Calibrations for the six G1/2" pressure transmitters
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Figure A.4 – Calibrations for the six G1/4" pressure transmitters
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Table A.2 – Calibrations of the six G1/4" pressure transmitters: Mean values and 5% - 95 %
confidence intervals (CI) of the calibration linear parameters a and b

Transmitter ā [mH2O/V ] C I (a) [mH2O/V ] b [mH2O] C I (b) [mH2O]

G1/4"(1) 0.75402 ±0.00456 −2.94060 ±0.02470
G1/4"(2) 0.75816 ±0.00454 −2.95230 ±0.02450
G1/4"(3) 0.76349 ±0.00453 −2.98940 ±0.02400
G1/4"(4) 0.75878 ±0.00455 −2.97940 ±0.02480
G1/4"(5) 0.75837 ±0.00457 −2.97930 ±0.02480
G1/4"(6) 0.75848 ±0.00455 −2.98580 ±0.02480

A.2.2 FLow-meter

There are two electromagnetic flow-meters, ENDRESS+HAUSER PROMAG 50 W, on the experi-

mental set-up. This type of flow-meter allows setting the maximum recorded flowing discharge

for the maximum electric current (20mA). In this study, the maximum flowing discharge was

set at 40 l /s. For the calibration, five different discharges between 9.5 and 40 l /s are used and

directly read on the flow-meter screen during the recording.

For each pressure, the output signal is recorded during 60 seconds with a sampling frequency

of 100 H z. According to the results (Figure A.5), there is a linear relation between the output

signal in volt and the pressure. The parameter values of the linear regression are respectively

given for G1/2" and G1/4" pressure transmitters in Table A.3.
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Figure A.5 – Calibrations for the two flow-meters
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Table A.3 – Calibrations of the two flow-meters: Mean values and 5% - 95 % confidence
intervals (CI) of the calibration linear parameters a and b

Transmitter ā [l/s/V ] C I (a) [mH2O/V ] b [l/s] C I (b) [mH2O]

Q A 4.9284 ±0.0555 −10.0555 ±0.3496
QB 4.9275 ±0.0117 −10.0525 ±0.0731

A.3 Sampling parameters

As explained in the Section 4.1.4, there are 6 G1/2" pressure transmitters connected to 24

cross-sections through a dispatcher. In order to record a least one time each cross-sections, six

recordings should be performed by discharge and by flow direction for a given orifice. It leads

to 240 recordings per orifice. The recording time should be as small as possible to decrease

the time spent for each orifice.

The pressure from both transmitters and the discharge were recorded during 900 s with a

sampling frequency of 1kH z for the maximum discharge of 30.0 l /s. The goal is to define the

required sampling number, which leads to an good compromise between a statistically correct

representation and acceptable duration.

Figure A.6 shows the results for pressure transmitters G/2(1) (the other pressure transmitters

gave same results). The duration of 30 seconds seems adequate as the maximum difference

on the average value is 3% and the 95% confidence interval is below ± 1%.
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Figure A.6 – Error on the mean pressure value compare the average taken on 15 minutes
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Appendix B. Overview table of experiments and measured head losses

Table B.1 – Set of sharp orifices tested during the experimental work

Orifice name Shape Varying parameter β [−] α [−] αi [−] θ [◦] αi /α

EXP_001 sharp Reference 0.50 0.20 0.10 45 0.5
EXP_002 sharp β 0.45 0.20 0.10 45 0.5
EXP_003 sharp β 0.40 0.20 0.10 45 0.5
EXP_004 sharp β 0.59 0.20 0.10 45 0.5
EXP_005 sharp β 0.54 0.20 0.10 45 0.5
EXP_006 sharp θ 0.50 0.20 0.20 0 1.0
EXP_007 sharp θ 0.50 0.20 0.10 15 0.5
EXP_008 sharp θ 0.50 0.20 0.10 30 0.5
EXP_009 sharp θ 0.50 0.20 0.10 67 0.5
EXP_010 sharp αi 0.50 0.20 0.15 45 0.74
EXP_010.5 sharp αi 0.50 0.20 0.00 45 0.00
EXP_011 sharp αi 0.50 0.20 0.05 45 0.26
EXP_012 sharp α 0.50 0.10 0.05 45 0.51
EXP_013 sharp α 0.50 0.05 0.025 45 0.49
EXP_032 sharp α 0.50 0.40 0.20 45 0.50
EXP_026 sharp α, θ 0.50 0.40 0.40 0 1.0

Table B.2 – Set of rounded orifices tested during the experimental work

Orifice name Shape Varying parameter β [−] α [−] αi [−] βb [−] αi /α

EXP_014 rounded Rounded shape 0.50 0.20 0.04 0.10 0.19
EXP_015 rounded Shape, β 0.45 0.20 0.01 0.14 0.07
EXP_016 rounded Shape, β 0.40 0.20 0.04 0.15 0.19
EXP_017 rounded Shape, β 0.59 0.20 0.06 0.03 0.32
EXP_018 rounded Shape, β 0.54 0.20 0.04 0.07 0.19
EXP_019 rounded Shape, θ 0.50 0.20 0.04 0.21 0.20
EXP_020 rounded Shape, θ 0.50 0.20 0.04 0.16 0.19
EXP_021 rounded Shape, θ 0.50 0.20 0.05 -0.09 0.23
EXP_022 rounded Shape, αi 0.50 0.20 0.12 0.18 0.60
EXP_023 rounded Shape, αi 0.50 0.20 -0.04 0.02 -0.19
EXP_024 rounded Shape, α 0.50 0.10 0.02 0.18 0.19
EXP_025 rounded Shape, α 0.50 0.05 0.01 0.21 0.14
EXP_932 rounded Shape, α 0.50 0.40 0.24 0.10 0.60
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Table B.3 – Set of sharp orifices tested during the experimental work

Orifice name Right Left β [−] α [−] αi [−] αL [−] θL [◦] αR [−] θR [◦]

EXP_026 SHARP006 SHARP006 0.50 0.40 0.40 0.20 0 0.20 0
EXP_027 SHARP006 SHARP001 0.50 0.40 0.30 0.20 0 0.10 45
EXP_028 SHARP006 SHARP007 0.50 0.40 0.30 0.20 0 0.10 15
EXP_029 SHARP006 SHARP008 0.50 0.40 0.30 0.20 0 0.10 30
EXP_030 SHARP006 SHARP009 0.50 0.40 0.30 0.20 0 0.10 67
EXP_031 SHARP006 SHARP010 0.50 0.40 0.35 0.20 0 0.05 45
EXP_032 SHARP006 SHARP011 0.50 0.40 0.25 0.20 0 0.15 45
EXP_033 SHARP006 SHARP010.5 0.50 0.50 0.20 0.20 0 0.20 45
EXP_034 SHARP012 SHARP006 0.50 0.50 0.25 0.05 45 0.20 0
EXP_035 SHARP013 SHARP006 0.50 0.50 0.23 0.03 45 0.20 45
EXP_036 SHARP001 SHARP007 0.50 0.40 0.20 0.10 45 0.10 15
EXP_037 SHARP001 SHARP009 0.50 0.40 0.20 0.10 45 0.10 67
EXP_038 SHARP001 SHARP011 0.50 0.40 0.15 0.10 45 0.15 45
EXP_039 SHARP012 SHARP001 0.50 0.30 0.15 0.05 45 0.10 45
EXP_040 SHARP007 SHARP008 0.50 0.40 0.20 0.10 15 0.10 30
EXP_041 SHARP007 SHARP010 0.50 0.40 0.25 0.10 15 0.05 45
EXP_042 SHARP007 SHARP010.5 0.50 0.40 0.10 0.10 15 0.20 45
EXP_043 SHARP0013 SHARP007 0.50 0.40 0.20 0.10 45 0.10 15
EXP_044 SHARP008 SHARP009 0.50 0.40 0.20 0.10 30 0.10 67
EXP_045 SHARP008 SHARP011 0.50 0.40 0.15 0.10 30 0.15 45
EXP_046 SHARP012 SHARP008 0.50 0.30 0.15 0.05 45 0.10 45
EXP_047 SHARP009 SHARP010 0.50 0.40 0.25 0.10 67 0.05 45
EXP_048 SHARP009 SHARP010.5 0.50 0.40 0.10 0.10 67 0.20 45
EXP_049 SHARP012 SHARP009 0.50 0.30 0.15 0.05 45 0.10 67
EXP_050 SHARP010 SHARP011 0.50 0.40 0.20 0.05 45 0.15 45
EXP_051 SHARP012 SHARP010 0.50 0.30 0.20 0.05 45 0.05 45
EXP_052 SHARP011 SHARP010.5 0.50 0.40 0.05 0.15 45 0.20 45
EXP_053 SHARP013 SHARP011 0.50 0.25 0.08 0.03 45 0.15 45
EXP_054 SHARP012 SHARP010.5 0.50 0.30 0.05 0.05 45 0.20 45
EXP_055 SHARP013 SHARP012 0.50 0.15 0.08 0.03 45 0.05 45
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Table B.4 – Overview table sorted with descending highest head loss coefficient

Orifice Highest head loss coefficient Lowest head loss coefficient

EXP016 92.4 29.6
EXP003 89.5 43.5
EXP015 46.7 21.3
EXP002 42.8 31.7

EXP010.5 32.9 18.5
EXP020 32.9 8.6
EXP021 32.7 9.1
EXP019 32.4 8.6
EXP014 31.9 9.0
EXP023 31.5 12.6
EXP011 31.5 18.2
EXP012 31.5 20.1
EXP025 31.3 16.4
EXP009 31.0 24.6
EXP022 30.8 8.0
EXP007 30.6 10.6
EXP008 30.6 10.5
EXP010 30.1 12.7
EXP024 30.0 13.0
EXP001 29.4 18.2
EXP013 29.0 20.5
EXP006 26.9 26.2
EXP048 26.4 16.8
EXP032 26.2 12.5
EXP049 23.9 18.6
EXP033 23.4 10.2
EXP035 22.9 14.6
EXP055 21.8 17.7
EXP053 21.8 17.4
EXP054 21.7 21.2
EXP030 21.2 15.0
EXP034 20.9 13.6
EXP037 20.4 13.7
EXP052 20.4 18.5
EXP044 19.5 11.8
EXP031 19.3 10.8
EXP027 18.9 12.3
EXP047 18.8 11.1
EXP026 18.2 17.2
EXP029 17.6 10.5
EXP005 17.4 12.7
EXP018 17.3 7.5
EXP028 16.6 11.1
EXP039 16.2 13.4
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Orifice Highest head loss coefficient Lowest head loss coefficient

EXP038 14.9 13.1
EXP043 14.6 11.2
EXP046 14.1 9.4
EXP017 13.8 3.5
EXP051 13.7 11.0
EXP050 13.4 10.3
EXP045 12.3 11.5
EXP004 11.8 6.8
EXP036 10.7 10.4
EXP041 10.6 7.6
EXP040 10.6 9.6
EXP042 10.6 12.0
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C Design of the numerical simulations

Name β [–] α [–] αi [–] θ [◦]

NUM_001 0.50 0.20 0.10 45

NUM_002 0.45 0.20 0.10 45

NUM_003 0.40 0.20 0.10 45

NUM_004 0.59 0.20 0.10 45

NUM_005 0.54 0.20 0.10 45

NUM_006 0.50 0.20 0.20 0

NUM_007 0.50 0.20 0.10 15

NUM_008 0.50 0.20 0.10 30

NUM_009 0.50 0.20 0.10 67

NUM_010 0.50 0.20 0.15 45

NUM_011 0.50 0.20 0 45

NUM_012 0.50 0.20 0.05 45

NUM_013 0.50 0.10 0.05 45

NUM_014 0.50 0.05 0.03 45

NUM_015 0.50 0.40 0.20 45

NUM_016 0.50 0.20 0.10 5

NUM_017 0.50 0.20 0.10 10

NUM_018 0.50 0.20 0.10 20

NUM_019 0.50 0.20 0.10 40

NUM_020 0.50 0.20 0.10 50

NUM_021 0.50 0.20 0.10 55

NUM_022 0.50 0.20 0.10 60

NUM_023 0.50 0.20 0.10 90

NUM_024 0.50 0.20 0.200 0

NUM_025 0.50 0.20 0.050 15

NUM_026 0.50 0.20 0.050 30

NUM_027 0.50 0.20 0.050 59.0

NUM_028 0.50 0.20 0.150 15

Name β [–] α [–] αi [–] θ [◦]

NUM_029 0.50 0.20 0.150 30

NUM_030 0.50 0.20 0.150 60

NUM_031 0.50 0.10 0.05 0

NUM_032 0.50 0.10 0.05 15

NUM_033 0.50 0.10 0.05 30

NUM_034 0.50 0.10 0.05 45

NUM_035 0.50 0.10 0.05 60

NUM_036 0.50 0.10 0.025 15

NUM_037 0.50 0.10 0.025 30

NUM_038 0.50 0.10 0.025 45

NUM_039 0.50 0.10 0.025 60

NUM_040 0.50 0.10 0.075 15

NUM_041 0.50 0.10 0.075 30

NUM_042 0.50 0.10 0.075 45

NUM_043 0.50 0.10 0.075 60

NUM_044 0.50 0.40 0.40 0

NUM_045 0.50 0.40 0.20 15

NUM_046 0.50 0.40 0.20 30

NUM_047 0.50 0.40 0.20 45

NUM_048 0.50 0.40 0.40 0

NUM_049 0.50 0.40 0.100 15

NUM_050 0.50 0.40 0.100 30

NUM_051 0.50 0.40 0.300 30

NUM_052 0.50 0.40 0.300 45

NUM_053 0.50 0.40 0.300 60
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Name β [–] α [–] αi [–] θ [◦]

NUM_101 0.40 0.20 0.20 0

NUM_102 0.40 0.20 0.10 45

NUM_103 0.40 0.20 0.10 15

NUM_104 0.40 0.20 0.10 30

NUM_105 0.40 0.20 0.10 60

NUM_106 0.40 0.20 0.05 15

NUM_107 0.40 0.20 0.05 30

NUM_108 0.40 0.20 0.05 45

NUM_109 0.40 0.20 0.15 15

NUM_110 0.40 0.20 0.15 30

NUM_111 0.40 0.20 0.15 45

NUM_112 0.40 0.20 0.15 60

NUM_113 0.40 0.10 0.10 0

NUM_114 0.40 0.10 0.05 45

NUM_115 0.40 0.10 0.05 15

NUM_116 0.40 0.10 0.05 30

NUM_117 0.40 0.10 0.05 60

NUM_118 0.40 0.10 0.025 15

NUM_119 0.40 0.10 0.025 30

NUM_120 0.40 0.10 0.025 45

NUM_121 0.40 0.10 0.025 60

NUM_122 0.40 0.10 0.075 15

NUM_123 0.40 0.10 0.075 30

NUM_124 0.40 0.10 0.075 45

NUM_125 0.40 0.10 0.075 60

NUM_126 0.40 0.40 0.40 0

Name β [–] α [–] αi [–] θ [◦]

NUM_200 0.45 0.20 0.20 0

NUM_201 0.45 0.20 0.10 45

NUM_202 0.45 0.20 0.10 15

NUM_203 0.45 0.20 0.10 30

NUM_204 0.45 0.20 0.10 60

NUM_205 0.45 0.20 0.05 15

NUM_206 0.45 0.20 0.05 30

NUM_207 0.45 0.20 0.05 45

NUM_208 0.45 0.20 0.15 15

NUM_209 0.45 0.20 0.15 30

NUM_210 0.45 0.20 0.15 45

NUM_211 0.45 0.20 0.15 60

NUM_212 0.45 0.10 0.10 0

NUM_213 0.45 0.10 0.05 45

NUM_214 0.45 0.10 0.05 15

NUM_215 0.45 0.10 0.05 30

NUM_216 0.45 0.10 0.05 60

NUM_217 0.45 0.10 0.025 15

NUM_218 0.45 0.10 0.025 30

NUM_219 0.45 0.10 0.025 45

NUM_220 0.45 0.10 0.025 60

NUM_221 0.45 0.10 0.075 15

NUM_222 0.45 0.10 0.075 30

NUM_223 0.45 0.10 0.075 45

NUM_224 0.45 0.10 0.075 60

NUM_225 0.45 0.40 0.40 0
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Name β [–] α [–] αi [–] θ [◦]

NUM_300 0.60 0.20 0.20 0

NUM_301 0.60 0.20 0.10 45

NUM_302 0.60 0.20 0.10 15

NUM_303 0.60 0.20 0.10 30

NUM_304 0.60 0.20 0.10 60

NUM_305 0.60 0.20 0.05 15

NUM_306 0.60 0.20 0.05 30

NUM_307 0.60 0.20 0.05 45

NUM_308 0.60 0.20 0.15 15

NUM_309 0.60 0.20 0.15 30

NUM_310 0.60 0.20 0.15 45

NUM_311 0.60 0.20 0.15 60

NUM_312 0.60 0.10 0.10 0

NUM_313 0.60 0.10 0.05 45

NUM_314 0.60 0.10 0.05 15

NUM_315 0.60 0.10 0.05 30

NUM_316 0.60 0.10 0.05 60

NUM_317 0.60 0.10 0.025 15

NUM_318 0.60 0.10 0.025 30

NUM_319 0.60 0.10 0.025 45

NUM_320 0.60 0.10 0.025 60

NUM_321 0.60 0.10 0.075 15

NUM_322 0.60 0.10 0.075 30

NUM_323 0.60 0.10 0.075 45

NUM_324 0.60 0.10 0.075 60

NUM_325 0.60 0.40 0.40 0

NUM_326 0.60 0.40 0.20 45

NUM_327 0.60 0.40 0.20 15

NUM_328 0.60 0.40 0.20 30

NUM_329 0.60 0.40 0.20 45.0

NUM_330 0.60 0.40 0.100 15

NUM_331 0.60 0.40 0.100 30

NUM_332 0.60 0.40 0.100 45

NUM_333 0.60 0.40 0.300 15

NUM_334 0.60 0.40 0.300 30

NUM_335 0.60 0.40 0.300 45

NUM_336 0.60 0.40 0.300 60

Name β [–] α [–] αi [–] θ [◦]

NUM_400 0.30 0.20 0.20 0

NUM_401 0.30 0.10 0.10 0

NUM_402 0.30 0.40 0.40 0

Name β [–] α [–] αi [–] θ [◦]

NUM500 0.70 0.20 0.20 0

NUM501 0.70 0.10 0.10 0

NUM502 0.70 0.40 0.40 0
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D Example of test sheet

The test sheets of all experiments are available on-line (doi:10.5075/epfl-thesis-8090) with

detailed experimental results for the chamfered, rounded and 2-chamfered orifices.
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Appendix D. Example of test sheet

Orifice : EXP_001

Type : chamfered orifice

Head loss coefficients

kAB 29.4 ±0.46

kB A 18.2 ±0.16

λ 0.64

Jet length

L j ,AB 3.97

L j ,B A 4.47

d t
i

t

AB

BA

D

Geometrical parameters

d 107 [mm] β 0.495 [-]

t 43.0 [mm] α 0.199 [-]

ti 21.5 [mm] αi 0.099 [-]

θ 45 [deg]

-10 -8 -6 -4 -2 0 2 4 6 8 10
-0.5

0
0.5

1
1.5

p/
(

g)
[m

H
2
O

]

Q=13.9 l/s

-10 -8 -6 -4 -2 0 2 4 6 8 10
-0.5

0
0.5

1
1.5

p/
(

g)
[m

H
2
O

]

Q=23.4 l/s

-10 -8 -6 -4 -2 0 2 4 6 8 10
Pipe axis, x/D [-]

-0.5
0

0.5
1

1.5

p/
(

g)
[m

H
2
O

]

Q=NaN l/s

Flow AB 

-10 -8 -6 -4 -2 0 2 4 6 8 10
-0.5

0
0.5

1
1.5

p/
(

g)
[m

H
2
O

]

Q=16.6 l/s

-10 -8 -6 -4 -2 0 2 4 6 8 10
-0.5

0
0.5

1
1.5

p/
(

g)
[m

H
2
O

]

Q=23.1 l/s

-10 -8 -6 -4 -2 0 2 4 6 8 10
Pipe axis, x/D [-]

-0.5
0

0.5
1

1.5

p/
(

g)
[m

H
2
O

]

Q=30 l/s

Flow BA 
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0 0.01 0.02 0.03
Kinetic energy in the pipe, K

D
 [m]

0

0.5

1

1.5
H

ea
d 

lo
ss

es
, 

H
 [

m
]

Flow AB

R2 = 0.9947 

Q [l/s] KD [m] ∆H [m]

9.8 0.004 0.117

9.8 0.004 0.115

13.0 0.006 0.194

13.4 0.007 0.214

16.1 0.010 0.295

16.3 0.010 0.306

18.9 0.014 0.390

18.9 0.014 0.408

20.9 0.017 0.493

22.7 0.020 0.511

23.1 0.020 0.601

23.1 0.020 0.610

24.9 0.024 0.706

25.1 0.024 0.704

26.5 0.027 0.790

26.6 0.027 0.794

28.2 0.030 0.900

28.3 0.030 0.893

29.6 0.033 0.980

29.6 0.033 0.980

0 0.01 0.02 0.03
Kinetic energy in the pipe, K

D
 [m]

0

0.2

0.4

0.6

0.8

1

H
ea

d 
lo

ss
es

, 
H

 [
m

H
2
O

]

Flow BA

Q [l/s] KD [m] ∆H [m]

9.4 0.003 0.049

9.4 0.003 0.064

13.3 0.007 0.128

16.3 0.010 0.171

16.3 0.010 0.189

16.6 0.010 0.183

19.1 0.014 0.239

19.7 0.015 0.259

21.1 0.017 0.312

21.4 0.017 0.308

22.8 0.020 0.363

23.1 0.020 0.359

25.0 0.024 0.431

25.1 0.024 0.428

26.7 0.027 0.490

26.7 0.027 0.498

28.5 0.031 0.567

28.7 0.031 0.564

30.0 0.034 0.623

30.0 0.034 0.624
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E Transient experiments

Tables E.1 to E.5 show the main conditions of the transient experiments. The notation used in

the Tables E.1 to E.5 are explained in Figure E.1 and below :

- Qlow,b : the steady discharge before the rising phase;

- Qhi g h : the steady discharge within the rising and falling phase;

- Qlow,e : the steady discharge after the falling phase;

- Tr (resp. T f ): the duration of the rising (resp. falling) phase;

-
(

d vd
d t

)
t ,i nc.

(resp.
(

d vd
d t

)
t ,dec.

): the average acceleration of the velocity in the orifice

section.

TsTs TsTt,inc. Tt,dec.

steady steady steadytransient transient

t

Q

Qlow

Qhigh

Figure E.1 – Procedure of the transient experiments
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Table E.1 – Transient experiments performed on the orifice EXP_001

Ql ow,b [l/s] Qhi g h [l/s] Qlow,e [l/s] Tt ,i nc. [s]
(

d vd
d t

)
t ,i nc.

[m/s2] Tt ,dec. [s]
(

d vd
d t

)
t ,dec.

[m/s2]

TRANS_001_05(1) 19.27 28.58 19.39 3.48 0.292 3.25 -0.309
TRANS_001_05(2) 19.35 28.57 19.21 5.05 0.199 3.18 -0.321
TRANS_001_05(3) 19.25 28.46 19.35 3.88 0.259 3.14 -0.316

TRANS_001_10(1) 19.20 28.56 19.61 4.55 0.225 9.43 -0.104
TRANS_001_10(2) 19.60 28.59 19.42 9.73 0.101 9.41 -0.106
TRANS_001_10(3) 19.57 28.58 19.26 9.49 0.104 9.64 -0.106

TRANS_001_20(1) 19.31 29.24 19.16 14.81 0.073 17.84 -0.062
TRANS_001_20(2) 19.40 28.44 19.59 17.47 0.057 18.86 -0.051
TRANS_001_20(3) 19.44 28.55 19.33 16.38 0.061 16.83 -0.060

TRANS_001_30(1) 19.06 28.24 19 33 0.030 23.76 -0.042
TRANS_001_30(2) 19.54 28.49 19.29 21.77 0.045 19.31 -0.052
TRANS_001_30(3) 19.28 28.50 19.32 21.53 0.047 23.44 -0.043
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Table E.2 – Transient experiments performed on the orifice EXP_002

Ql ow,b [l/s] Qhi g h [l/s] Qlow,e [l/s] Tt ,i nc. [s]
(

d vd
d t

)
t ,i nc.

[m/s2] Tt ,dec. [s]
(

d vd
d t

)
t ,dec.

[m/s2]

TRANS_002_05(1) 18.97 28.13 19.06 4.37 0.282 3.63 -0.337
TRANS_002_05(2) 19.08 28.12 19.07 3.99 0.306 3.13 -0.389
TRANS_002_05(3) 19.10 28.31 18.94 3.82 0.325 5.14 -0.245

TRANS_002_10(1) 19.09 28.16 18.95 7 0.175 8.228 -0.150
TRANS_002_10(2) 18.95 28.21 19.01 7.13 0.175 10.28 -0.121
TRANS_002_10(3) 18.98 28.21 18.96 6.71 0.185 6.39 -0.195

TRANS_002_20(1) 18.92 28.21 19.17 14.86 0.084 20.51 -0.059
TRANS_002_20(2) 19.17 28.18 19.10 18.91 0.064 23.80 -0.051
TRANS_002_20(3) 19.13 28.08 19.07 20.07 0.060 17.42 -0.070

TRANS_002_30(1) 19.14 28.12 19.04 29.40 0.041 27.08 -0.045
TRANS_002_30(2) 19.03 28.14 19.03 27.18 0.045 25.57 -0.048
TRANS_002_30(3) 19.01 28.07 18.91 28.19 0.043 33.69 -0.037
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Table E.3 – Transient experiments performed on the orifice EXP_004

Ql ow,b [l/s] Qhi g h [l/s] Qlow,e [l/s] Tt ,i nc. [s]
(

d vd
d t

)
t ,i nc.

[m/s2] Tt ,dec. [s]
(

d vd
d t

)
t ,dec.

[m/s2]

TRANS_004_05(1) 19.05 28.98 19.18 4.93 0.153 4.30 -0.173
TRANS_004_05(2) 19.30 28.42 19.40 2.88 0.240 2.26 -0.302
TRANS_004_05(3) 19.36 28.50 19 4.93 0.141 3.23 -0.223

TRANS_004_10(1) 19.50 28.46 19.42 7.57 0.090 7.44 -0.092
TRANS_004_10(2) 19.29 28.30 19.29 6.41 0.107 7.43 -0.092

TRANS_004_20(1) 19.14 27.96 18.87 14.91 0.045 16.13 -0.043
TRANS_004_20(2) 18.86 27.99 19.55 13.31 0.052 15.87 -0.040
TRANS_004_20(3) 19.54 28.42 19.36 14.55 0.046 21.39 -0.032

TRANS_004_30(1) 19.16 28.32 18.81 21.67 0.032 19.95 -0.036
TRANS_004_30(2) 19.09 28.11 18.99 21.48 0.032 27.73 -0.025
TRANS_004_30(3) 19.37 28.10 19.61 27.99 0.024 25.98 -0.025

194



Table E.4 – Transient experiments performed on the orifice EXP_012

Ql ow,b [l/s] Qhi g h [l/s] Qlow,e [l/s] Tt ,i nc. [s]
(

d vd
d t

)
t ,i nc.

[m/s2] Tt ,dec. [s]
(

d vd
d t

)
t ,dec.

[m/s2]

TRANS_012_05(1) 19.19 28.44 19.26 5.68 0.178 5.70 -0.176
TRANS_012_05(2) 19.23 28.50 19.22 4.83 0.210 3.23 -0.314
TRANS_012_05(3) 19.22 28.41 19.12 3.45 0.291 3.47 -0.293

TRANS_012_10(1) 19.06 28.49 19.02 6.72 0.153 11.20 -0.092
TRANS_012_10(2) 19.01 28.53 19.27 12.66 0.082 10.53 -0.096
TRANS_012_10(3) 19.28 28.44 19.21 10.53 0.095 10.21 -0.099

TRANS_012_20(1) 19.37 28.49 19.10 18.33 0.054 22.65 -0.045
TRANS_012_20(2) 19.11 28.54 18.96 23.10 0.045 20.37 -0.051
TRANS_012_20(3) 18.95 28.49 19.03 23.84 0.044 23.53 -0.044

TRANS_012_30(1) 19.25 28.22 19.45 21.18 0.046 24.65 -0.039
TRANS_012_30(2) 19.29 28.47 19.14 20.79 0.048 30.36 -0.034
TRANS_012_30(3) 19.07 28.43 19.39 27.16 0.038 11.60 -0.085
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Table E.5 – Transient experiments performed on the orifice EXP_032

Ql ow,b [l/s] Qhi g h [l/s] Qlow,e [l/s] Tt ,i nc. [s]
(

d vd
d t

)
t ,i nc.

[m/s2] Tt ,dec. [s]
(

d vd
d t

)
t ,dec.

[m/s2]

TRANS_032_05(1) 19.18 28.45 19.23 4.77 0.212 3.78 -0.266
TRANS_032_05(2) 19.22 28.43 19.31 4.19 0.240 2.75 -0.362
TRANS_032_05(3) 19.11 28.40 19.65 3.82 0.265 2.77 -0.344
TRANS_032_05(4) 19.30 25.17 19.40 5.28 0.121 5.53 -0.114
TRANS_032_05(5) 19.19 25.23 19.63 4.54 0.145 4.21 -0.145
TRANS_032_05(6) 19.41 25.26 19.13 4.76 0.134 3.95 -0.169

TRANS_032_10(1) 19.07 28.25 19.24 8.55 0.117 9.20 -0.107
TRANS_032_10(2) 19.28 28.17 19.26 9.19 0.106 8.65 -0.112
TRANS_032_10(3) 18.77 28.21 18.88 8.15 0.126 8.55 -0.119

TRANS_032_20(1) 19.45 28 19.45 20.01 0.047 14.67 -0.064
TRANS_032_20(2) 19.06 28.04 19.29 16.11 0.061 15.96 -0.060
TRANS_032_20(3) 19.14 25.07 19.23 19 0.034 15.41 -0.041
TRANS_032_20(4) 19.02 25.17 19.46 18.03 0.037 22.27 -0.028
TRANS_032_20(5) 19.28 25.11 18.90 17.59 0.036 19.30 -0.035

TRANS_032_30(1) 19.25 28.01 19.46 29.37 0.033 29.78 -0.031
TRANS_032_30(2) 19.41 28.09 19 28.61 0.033 25.15 -0.039
TRANS_032_30(3) 18.99 27.92 19.41 28 0.035 26.41 -0.035
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F Theoretical bases for the cavitation
limit

F.1 Straight pipe

Figure F.1 shows a schematic draw of the streamlines and of the pressure line when water

flows through an orifice. The goal of this appendix is evaluating the cavitation risk of orifice by

knowing the upstream pressure pu , the discharge Q and the incipient cavitation number σi .

2D 6D

D

t

d

Pressure in 

the pipe

Pipe axisU v.c. D

Figure F.1 – Flow through an orifice and localization of the different section used in the
evaluation of σi and σv.c.

Eq.(F.1) reminds the definition of σi in this research project with pu the upstream pressure,

pd the downstream pressure and pv.g . the vapour pressure.

σi =
pu −pv.g .

pu −pd
(F.1)
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Appendix F. Theoretical bases for the cavitation limit

The difference between the upstream and downstream pressure, pu −pd , is equivalent to the

local head losses in the straight pipe by assuming the linear friction losses are negligible. Here,

two relation can be found by highlighting the orifice diameter d (Section F.1.1) or the pipe

diameter D (Section F.1.2).

F.1.1 Reference diameter - orifice diameter d

pu =σi ·∆H +pv.g . (F.2)

↔ pu =σi ·kd
v2

d
2g +pv.g .

↔ pu =σi · kd

(π(d/2)2)2
Q2

2g +pv.g .

↔ pu =σi · 8
gπ2d 4 kd ·Q2 +pv.g .

However, generally, the head loss coefficient k, relative to the pipe diameter D, is generally

used and kd relative to the orifice diameter d (Eq.(F.3)).

∆H = kd · v2
d

2g
= k · v2

D

2g
↔ kd = k ·β4 (F.3)

where β is the contraction ratio, β= d
D .

Finally, Eq.(F.2) becomes Eq.(F.4).

↔ pu =σi · 8β4

gπ2d 4 k ·Q2 +pv.g . (F.4)

F.1.2 Reference diameter - pipe diameter D

From Eq.(F.4) with β= d/D , the E.(F.5) gives the relation depending only on D .

↔ pu =σi · 8

gπ2D4 k ·Q2 +pv.g . (F.5)
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F.2. Surge tank orifices

F.2 Surge tank orifices

Figure F.2 shows the schematic view of the situation during the filling or the emptying of

the surge tank during the mass oscillations. Comparing to the case with a straight pipe,

the pressure and discharge are transient and depend on the time. The construction of the

cavitation limit criteria is assumed time independent for the purpose of simplification. Thus,

the quasi-steady Bernoulli’s law is applied for the head losses without the inertial term.

The discharge is taken positive when the water flows in the surge tank.

HST

U

Reference

zST

(a) Surge tank filling

HST

D

Reference

zST
d

(b) Surge tank emptying

Figure F.2 – View of the idealized surge tank during when water flows in (a) or out (b) the surge
tank

F.2.1 Surge tank emptying

In this case, the cross-section of the upstream (Surge tank) and downstream pipe (pressure

tunnel) are different and, then, the difference of pressure are not equal to the head losses

(Eq.(F.6)).

∆H = (pu −pd )+
( v2

u

2g
− v2

d

2g

)
↔ (pu −pd ) =∆H −

( v2
u

2g
− v2

d

2g

)
=∆H − Q2

2g
·
( 1

A2
u
− 1

A2
d

)
(F.6)

The same relation between the water level in the surge tank, HST , and the discharge can now

be found:

HST =σi · 8β4

gπ2d 4 k ·Q2 −σi ·κQQ2 +pv.g . (F.7)
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Appendix F. Theoretical bases for the cavitation limit

where κQ = 1
2g ·

(
1

A2
ST

− 1
A2

PT

)
is the correction due to the effect of the difference of kinetic energy

between the surge tank and the pressure tunnel.

F.2.2 Surge tank filling

For the filling, HST is equivalent to the downstream pressure, pd . The definition of the

downstream cavitation number σd is thus used as shown in Eq.(F.8). The relation between the

water level in the surge tank and the upstream pressure is consequently reported in Eq.(F.9).

σd
i = pd −pv.g .

pu −pd
=σi −1 (F.8)

HST = (σi −1) · 8β4

gπ2d 4 k ·Q2 − (σi −1) ·κQQ2 +pv.g . (F.9)

where κQ = 1
2g ·

(
1

A2
PT

− 1
A2

ST

)
is the correction due to the effect of the difference of kinetic energy

between the surge tank and the pressure tunnel.

F.3 Conclusions

Cavitation limits have been derived from the definition of the incipient cavitation number σi

for a straight pipe and a throttled surge tank. For the throttled surge tank, the water level is

function of the discharge going into or out of the surge tank and σi . This allows to depict the

limit of cavitation in a plan (HST ,Q) in order to compare with the mass oscillations.
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G Expert sheet for orifice design

An expert sheet (see Figure G.1) is available on-line (doi:10.5075/epfl-thesis-8090), which

summarizes the experimental and numerical results of the orifices. For wished target head

loss coefficients, this expert sheet allows to find the closest tested orifices.

A given range with the target head loss coefficients can be defined. Then, as shown in Figure

G.1, the cells corresponding to experimental or numerical results within the defined range are

highlighted.
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Appendix G. Expert sheet for orifice design

Figure G.1 – Print-screen of the expert-sheet, which is on-line available with the thesis (doi:
10.5075/epfl-thesis-8090)
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