Metabolic Engineering 52 (2019) 29-41

Contents lists available at ScienceDirect
METABOLIC

Metabolic Engineering e

e

journal homepage: www.elsevier.com/locate/meteng

Kinetic models of metabolism that consider alternative steady-state R

Check for

solutions of intracellular fluxes and concentrations Upeies

Tuure Hameri, Georgios Fengos, Meric Ataman, Ljubisa Miskovic, Vassily Hatzimanikatis*

Laboratory of Computational Systems Biotechnology (LCSB), Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland

ABSTRACT

Large-scale kinetic models are used for designing, predicting, and understanding the metabolic responses of living cells. Kinetic models are particularly attractive for
the biosynthesis of target molecules in cells as they are typically better than other types of models at capturing the complex cellular biochemistry. Using simpler
stoichiometric models as scaffolds, kinetic models are built around a steady-state flux profile and a metabolite concentration vector that are typically determined via
optimization. However, as the underlying optimization problem is underdetermined, even after incorporating available experimental omics data, one cannot un-
iquely determine the operational configuration in terms of metabolic fluxes and metabolite concentrations. As a result, some reactions can operate in either the
forward or reverse direction while still agreeing with the observed physiology. Here, we analyze how the underlying uncertainty in intracellular fluxes and con-
centrations affects predictions of constructed kinetic models and their design in metabolic engineering and systems biology studies. To this end, we integrated the
omics data of optimally grown Escherichia coli into a stoichiometric model and constructed populations of non-linear large-scale kinetic models of alternative steady-
state solutions consistent with the physiology of the E. coli aerobic metabolism. We performed metabolic control analysis (MCA) on these models, highlighting that
MCA-based metabolic engineering decisions are strongly affected by the selected steady state and appear to be more sensitive to concentration values rather than flux
values. To incorporate this into future studies, we propose a workflow for moving towards more reliable and robust predictions that are consistent with all alternative
steady-state solutions. This workflow can be applied to all kinetic models to improve the consistency and accuracy of their predictions. Additionally, we show that,
irrespective of the alternative steady-state solution, increased activity of phosphofructokinase and decreased ATP maintenance requirements would improve cellular

growth of optimally grown E. coli.

1. Introduction

Over the last decades, advances in genome editing technologies
have allowed the redirection of carbon flow within the organism to-
wards specialty products of interest and desired physiologies (Nielsen,
2017). Identifying candidate enzymes is fundamental for genetic
modifications that have seen applications in metabolic engineering,
basic and applied biology, biotechnology and medical sciences (Alper
and Stephanopoulos, 2009; Li et al., 2017; Blazeck and Alper, 2010).
Increasingly available high-throughput sequencing data has enabled the
construction of stoichiometric genome-scale metabolic models (GEMs)
that describe mathematically the balanced metabolic fluxes within an
organism (Thiele and Palsson, 2010). Metabolic models such as these
GEMs have been extensively used to characterize overall network be-
havior of organisms, which can provide guidance about the genes that
can be modified to improve a desired product biosynthesis. Improved
guidance for metabolic engineering and basic biology will be achieved
with kinetic models of the reactions/networks in GEMs.

The construction of a kinetic model of metabolism requires knowl-
edge of steady states and/or dynamics of metabolic fluxes and meta-
bolite concentrations that can be used to estimate the unknown kinetic
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parameters that describe these data. However, there are many sources
of uncertainty in metabolic fluxes and metabolite concentrations that
hamper the accurate estimation of kinetic parameters. Advances in C13
isotopomer techniques facilitated the measurement of fluxes across
cellular reactions and promoted the development of metabolic flux
analysis (MFA) (Zamboni et al., 2009). One main uncertainty in fluxes
is the flux directionality as reactions can be thermodynamically bidir-
ectional (Ataman and Hatzimanikatis, 2015). Metabolomics and ther-
modynamics can be used as it is done in thermodynamic-based flux
analysis (TFA) (Ataman and Hatzimanikatis, 2015; Soh and
Hatzimanikatis, 2014; Salvy et al., 2018) to constrain the direction of
some of these fluxes. But even when information about the direction-
ality of all the reactions and fluxomics from labeling experiments are
used, there is still a great uncertainty on exact estimation of fluxes as
the degrees of freedom remain high, especially as we increase the size
of the networks. The addition of constraints based on measured gene
expression data (Ebrahim et al., 2016; Lerman et al., 2012) and enzy-
matic data (Sanchez et al., 2017) can reduce the degrees of freedom.
However, the system remains underdetermined, resulting in multiple
alternative steady-state flux distributions corresponding to the phy-
siology under study. Different steady-state solutions could directly
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affect the predictions of kinetic models, leading towards very distinct
conclusions and guidance for metabolic engineering.

Several promising methods exist for constructing kinetic models
around representative steady states of metabolic fluxes and metabolite
concentrations (Chen et al., 2017; Miskovic et al., 2015). The Optimi-
zation and Risk Analysis of Complex Living Entities (ORACLE) work-
flow (Chakrabarti et al., 2013; Miskovic and Hatzimanikatis, 2010;
Wang et al., 2004) and frameworks built around ensemble modeling
(Khodayari and Maranas, 2016; Tran et al., 2008) have made significant
strides towards genome-scale kinetic modeling of metabolism. These
methods generate populations of non-linear kinetic models around a
selected reference steady state (RSS) that is chosen based on its ability
to characterize the observed physiology. Methods commonly used for
selecting a RSS include using the computed optimal solution to an ob-
jective function that defines physiological tasks (Schuetz et al., 2007),
fitting the data from MFA (Zamboni et al., 2009), or performing prin-
cipal component analysis (PCA) on a sampled solution space
(Chakrabarti et al., 2013). Once a RSS is established, kinetic models are
constructed around it, which allows the study and prediction of cellular
metabolic response to perturbations (Almquist et al., 2014). These po-
pulations of kinetic models can be studied using statistical procedures
to identify target enzymes, sensitively analyze kinetic parameters, and
design experiments (Andreozzi et al., 2016a, 2016b). There is no un-
ique and evident approach for selecting a RSS for such an under-
determined system. To our knowledge, the impact of alternative RSSs
describing a physiology using the kinetic parameters and the outputs of
these kinetic models have not been studied.

Hereby, we examine how uncertainty in intracellular flux solutions
and metabolite concentrations influences the metabolic control analysis
(MCA) of populations of non-linear kinetic models built around alter-
native steady states. We integrated physiological data from E. coli
grown aerobically in a batch cultivation (McCloskey et al., 2014) into a
reduced core model derived from the iJO1366 E. coli GEM (Orth et al.,
2011; Ataman and Hatzimanikatis, 2017; Ataman et al., 2017) and
found that the data were not sufficient to uniquely determine the steady
state metabolic flux distribution as several reactions could operate in
either the forward or reverse direction. These so-called bi-directional
reactions result in the existence of multiple feasible flux directionality
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profiles (FDPs) that represent the same physiology, because in any FDP,
reactions operate only in one direction (Soh and Hatzimanikatis, 2014).
We constructed populations of kinetic models for 4 selected FDPs to
demonstrate how significantly MCA outputs and metabolic engineering
decisions are affected.

2. Results and discussion

The procedure for characterization and analysis of steady-state
multiplicities arising from the underdetermined nature of the system is
a constitutive part of the ORACLE workflow (Chakrabarti et al., 2013;
Miskovic and Hatzimanikatis, 2010; Wang et al., 2004; Andreozzi et al.,
2016b; Soh et al., 2012; Wang and Hatzimanikatis, 2006a, 2006b). The
workflow assists with more reliable and robust MCA-based metabolic
engineering decisions that will enable the identification of study-spe-
cific target enzymes, independent of the steady state. Various types of
biological data are combined into a thermodynamically feasible stoi-
chiometric model of a given physiology (Fig. 1). We follow this work-
flow to discuss our results. At first, we identify the bi-directional re-
actions and determine feasible flux directionality profiles (FDPs). We
discuss how alternative FDPs affect the conclusions of kinetic models.
We then consider how the flux values and the metabolite concentration
levels within a FDP affect kinetic model predictions. The MCA outputs
of the kinetic models are studied to systematically derive metabolic
engineering decisions. For further information on the methodologies
used, we refer the reader to the methods section of the manuscript.

2.1. Multiplicity of flux directionality profiles

To derive a reduced E. coli metabolic model from the iJO1366 GEM
(Orth et al., 2011), we used the redGEM and lumpGEM algorithms as
they provide a systematic and modular way for reducing GEMs, whilst
preserving growth and gene essentiality (Ataman and Hatzimanikatis,
2017; Ataman et al., 2017). The obtained core stoichiometric model of
the E. coli metabolism consisted of 277 reactions and 160 metabolites
distributed over the cytosol and the extracellular space (Methods). To
constrain the model and derive alternative steady states, we integrated
fluxomics and metabolomics data (McCloskey et al., 2014) (S1 Table)
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Fig. 2. Multiple operational configurations for the same observed physiology of aerobically grown E. coli. (A) Representation of E. coli network. The fluxomics
data that were integrated are indicated as uptake, secretion and growth rates. The bidirectional reactions are colored: phosphoglucose isomerase, (PGI, magenta) and
fumarase, (FUM, red). (B) Representation of the four FDPs for the physiology under study. (C) Flux and thermodynamic displacement distributions of PGI and FUM
reactions for each of the four generated FDPs. The boxplots show distributions for 5000 samples. The central red line indicates the median, and the bottom and top
edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers correspond to approximately + 2.7 o, which is the standard deviation, or 99.3%
coverage if the data are normally distributed. Outliers are the points not covered by the range of the whiskers and are plotted individually using the '+' symbol. The
black diamond is the RSS value. Full metabolite names are given in Supplementary materials (Supp. 2).

within the thermodynamic formulation of the stoichiometric model for
aerobically grown E.coli. Hence, we set the glucose uptake to
7.54 mmol/gDW/h, the growth rate to 0.61 /h and, the excretions of
acetate, formate and succinate to 3.5 mmol/gDW/h, 0.5 mmol/gDW/h
and 10* mmol/gDW/h, respectively (Fig. 2A). We made assumptions
about reaction directionalities based on available literature (McCloskey
et al., 2014; Cooper, 1984; Nelson and Kennedy, 1972; Rosenberg et al.,
1977; Kumble et al., 1996) (Methods). Thermodynamic-based varia-
bility analysis (TVA) (Henry et al., 2007) suggested the presence of
seven bi-directional reactions in our model: fumarase (FUM), triose-
phosphate isomerase (TPI), ribulose-5-phosphate 3-epimerase (RPE),
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transaldolase (TALA), transketolase 1 (TKT1), transketolase 2 (TKT2),
and glucose-6-phosphate isomerase (PGI). All combinations of these
seven reactions operating in one or the opposite direction could theo-
retically lead to up to 128 (27) FDPs. However, due to the stoichio-
metric and thermodynamic coupling in the network, only 25 out of 128
FDPs were feasible.

Some of these reactions such as PGI and FUM are commonly con-
sidered as unidirectional. However, Rabinowitz and coworkers reported
that these seven identified reactions are bi-directional in E.coli, yeast,
and immortalized baby mouse kidney cells (Park et al., 2016). This
suggests that, for previously uncharacterized physiologies and/or for
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reactions with no fluxomics data, we should consider all feasible re-
action directionalities. This is a way of ensuring that we account for the
flexibility of cellular metabolism. For simplicity and clarity of further
discussion, we wanted to analyze four FDPs with the most distinct
physiologies out of 25 feasible ones. We assumed that changing the
directionality of reactions with the largest TVA flux range would result
in the most distinct FDPs. PGI and FUM had the largest feasible TVA
flux ranges from the seven bi-directional reactions. Hence, to generate
these four distinct FDPs, we were changing the directionality of both
PGI and FUM in either the forward or backward direction while keeping
the directionalities fixed for the 5 remaining bi-directional reactions
(Fig. 2A). The directionality of these 5 bi-directional reactions (other
than PGI and FUM) was determined as follows. We first defined and
calculated the flux variability score for each of the 25 FDPs (Methods).
A higher flux variability score suggests that the reactions of the FDP are
on average more flexible and can operate in relatively wider flux
ranges. We then took the directionalities of the remaining five bi-di-
rectional reactions from the FDP with the highest score. In this study,
we assessed the model predictions and their implications on metabolic
engineering decisions around these four FDPs. Nevertheless, different
study-dependent criteria for selecting the FDPs could be devised.

2.2. Comparative analysis of alternative flux directionality profiles

2.2.1. Reference steady states (RSSs) of FDPs

In building kinetic models, we typically must have steady state flux
values and metabolite concentrations around which we construct them.
We sampled steady states for the flux values and the metabolite con-
centrations for each FDP and used principal component analysis (PCA)
to select their RSSs (Methods and Supp 4). There were considerable
differences in the RSS values for the fluxes and thermodynamic dis-
placements of reactions across the network, particularly for
Triosephosphate isomerase (TPI), enolase (ENO), phosphogluconate
dehydrogenase (GND), and aconitase A (ACONTa) in the central carbon
metabolism (Fig. 3). This is because the relative activity of the oxidative
tricarboxylic acid (TCA) cycle, the glyoxylate shunt, and both the oxi-
dative and the non-oxidative pentose phosphate pathway (PPP) change
between FDPs. Since PGI and FUM are the only two reactions changing
directionalities amongst the four FDPs, it is reasonable to expect the
most affected fluxes of reactions to be in their topological vicinity,
which is true for GND, TPI, ACONTa, and succinate dehydrogenase
(SUCDi) (Fig. 3). However, we found large changes in flux magnitudes
across the FDPs that were associated with reactions farther away from
FUM and PGI, such as the electron transport chain (ETC) reactions,
NADH dehydrogenase (NADH16pp) and NAD transhydrogenase
(NADTRHD). The TVA studies explain this as the ETC compensates in
FDPs 2—4 for producing NADPH (Supp 3 and Supp 4). Additionally, the
RSS flux value for GND was considerably smaller in FDP1 than in the
other FDPs, resulting in reduced NADPH production via the oxidative
branch of the PPP that is coupled with the ETC (Supp 3). For further
comparative TVA studies of the FDPs, we refer the reader to Supporting
information (Supp. 4).

The differences in the RSS concentration vectors across the FDPs
translate into distinctive distributions of the Gibbs free energy across
the networks for each FDP. The metabolite concentration values in the
RSSs varied the most across the FDPs for the reaction cofactors NAD ™",
NADH, NADP, AMP, and ATP (Supp 3). We also noticed significant
differences in some central carbon metabolite RSS concentrations, such
as: 6-phospho-D-gluconate, p-glucose-6-phosphate, p-fructose-6-pho-
phate, p-xylulose 5-phosphate, sedoheptulose 7-phosphate, p-erythrose
4-phosphate, phosphoenolpyruvate, fumarate, L-malate, citrate, and
oxaloacetate (Supp 3). These metabolites and the aforementioned co-
factors participate in most of the network reactions, causing the ther-
modynamic displacements of reactions including GND, NADH16pp,
SUCDI, adenylate kinase (ADK1), and malic enzyme 2 (ME2) to change
considerably across RSSs of the FDPs (Fig. 3). As observed for the RSS
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fluxes, reactions that were either topologically close to the bidirectional
reactions FUM and PGI and some topologically distant reactions in the
ETC displayed the most considerable changes in thermodynamic dis-
placement (Figs. 2-3). It is particularly important to recognize that the
change in directionality of one reaction between two FDPs can actually
cause thermodynamic displacements to change across the whole me-
tabolic network (Fig. 4). Hence, the FDP affects the Gibbs free energy
distribution across the network, which in turn can affect a greater part
of the network than just the topological neighbors of the bi-directional
reactions that change directionality between FDPs.

2.2.2. Analysis of control patterns

Controlling the levels of various enzymes in a target organism can
help to achieve the desired levels of bioengineered products or meta-
bolites. Determining the degree of control of various enzymes in each
FDP can help find the key locations to target, and we did this by
sampling the kinetic parameter space uniformly (Methods) using the
ORACLE (Chakrabarti et al., 2013; Miskovic and Hatzimanikatis, 2010;
Wang et al., 2004; Andreozzi et al., 2016b; Soh et al., 2012; Wang and
Hatzimanikatis, 2006a, 2006b) workflow, generating a population of
50,000 stable kinetic models for each FDP. The kinetic parameter space
was sampled based on the degree of saturation of the enzyme active
sites, as proposed previously by Hatzimanikatis and colleagues (Wang
et al., 2004). ORACLE verifies the local stability of the model around
the steady state by testing that the Jacobian matrix has no positive real
eigenvalues for the sampled set of parameters. We then calculated, for
the stable models, the flux control coefficients (FCCs), representing the
fold change in a specific flux with respect to the perturbation of an
enzyme's activity, of 275 enzymatic reactions with respect to their en-
zymes. We then compared the differences in FCCs across FDPs for the
populations of stable kinetic models.

If the signs of a FCC are not the same across FDPs, the FCC depends
on the FDP, and making metabolic engineering decisions is ambiguous.
This means that the alternative steady states have a significant impact
on the FCC, and we should be careful when deriving conclusions. FCC
values with an absolute mean value larger than 0.1 across all the FDPs
have significant control over the fluxes in the network (Methods).
Fluxes smaller than 0.01 mmol/gDW/h were not considered, as we fo-
cused our analysis around central carbon metabolism. To investigate
the differences in control patterns for each FDP, we compared the sign
of these FCCs across the FDPs (Fig. 5) because the sign determines the
increase or decrease in magnitude of a flux upon perturbation of an
enzyme level. Hence, the sign can indicate if it may be possible to
overexpress, down-regulate, or even suppress a gene to achieve a target
enzyme level for bioengineering purposes. If the signs of the mean FCCs
are equal across all FDPs, we have consensus, and the FCCs are in-
dependent of the FDP. This indicates that the predictive conclusions
drawn should be valid for all the tested alternative steady states, sug-
gesting that our metabolic engineering conclusions are more robust.
Nearly 75% of the FCCs studied agreed in sign across all the FDPs,
meaning that most metabolic flux response predictions are consistent
(Fig. 5), though the 25% of potentially inconsistent predictions high-
lights the importance of considering alternative steady states. As we
sampled the kinetic parameter space uniformly for the FDPs, differences
in the thermodynamic displacement (Fig. 4) between these FDPs are the
main reason behind these variations in their control pattern. Further
discussions around these differences are in the supplementary docu-
ment (Supp 4).

2.2.3. Ranking target enzymes for flux control

Some of the fundamental biological tasks performed by a cell in-
clude substrate uptake, product excretion, and cellular growth, re-
presented by p. Since we modeled the physiology of optimally grown E.
coli, we first studied what enzymes have control over cellular growth.
These enzymes were considered as attractive target candidates for ge-
netic manipulation to improve cellular growth. We selected the top five
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Fig. 3. Optimally grown aerobic E. coli metabolic network. Each of the 10 reactions labeled in red has an associated graph with the respective flux and
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enzymes with high absolute FCC values for each FDP and computed the
control exerted by these enzymes over cellular growth (Fig. 6). Several
enzymes such as phosphoglycerate mutase (PGM), RPE, TPI, phos-
phoenolpyruvate carboxylase (PPC), and NAD kinase (NADK) had
considerably different control patterns for u across FDPs in terms of
magnitude and sign. Because of the abovementioned differences in the

thermodynamic displacement of enzymes across the FDPs, it was not
surprising to see opposing FCC signs. For instance, TPI is far away from
equilibrium for FDP1 and near equilibrium for FDP2 (Fig. 4), resulting
in different conclusions when considering control coefficients of cel-
lular growth (Fig. 6). In contrast, PGM is always far away from equi-
librium but, due to kinetic coupling, has considerably different levels of
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Fig. 5. General statistics on FCCs across FDPs. Histogram displaying the
fraction of reactions that have FCCs with a certain sign pattern across the FDPs.
There are three main categories of the FCCs: (i) consistent among all FDPs, (ii)
FDP specific, and (iii) two FDPs contradicting two other FDPs. The FCCs were
averaged over the 50,000 samples for each FDP, and the ones selected for
analysis had a mean absolute value larger than 0.1 (10% fold change). For
example, to assist reading the figure, the column “FDP 1 specific” has two
possible scenarios as it contains FCCs that are positive in FDP1 and negative in
the other three FDPs as well as FCCs that are negative in FDP1 and positive in
the three other FDPs.

control over y across FDPs, indicating the importance of considering
alternative steady states. More importantly, we also found enzymes that
agreed in terms of sign across the FDPs. NADTRHD, phospho-
fructokinase (PFK), and ATP maintenance (ATPM) were the top target
enzymes — independent of the FDP - for improving the cellular growth
of optimally grown E. coli.

Because in the studied physiology, growth is based solely on glu-
cose, we decided to study how consistent the FCCs of glucose uptake via
p-glucose transport (GLCptspp) were across FDPs. PGM, PFK, ribose-5-
phosphate isomerase (RPI), and RPE agreed across all the FDPs in terms
of sign and the magnitude of their FCCs, making them attractive me-
tabolic engineering targets for increasing GLCptspp flux (Supp 4, Fig.
S4). Based on a consistent magnitude across all the FDPs, PGM and PFK
were the top two target enzymes that seemed to control the glucose
uptake of optimally grown E. coli. TPI, PPC, NADTRHD, glucose 6-
phosphate dehydrogenase (G6PDH2r), and 6-phosphogluconolactonase
(PGL) control GLCptspp in at least one FDP but not across all. As for the
control of cellular growth, the differences in thermodynamic equili-
brium and kinetic coupling between the FDPs explain these results.

These observations emphasize the importance of considering en-
zyme kinetics and the existence of alternative steady states before
making metabolic engineering conclusions based on kinetic models,
especially given that further similar observations were made for FCCs of
other fluxes. Generally, we noticed that the enzymes whose control
remained unchanged across FDPs were found in the central carbon
metabolism. Inconsistent enzyme control was observed in peripheral
and transport reaction enzymes topologically further away from the
central carbon pathways.

2.2.4. Study of uncertainty in FCCs
To characterize the variability of cellular growth FCCs with respect
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to all central carbon enzymes (i.e., no transporter nor exporter) for the
populations of 50,000 models (Fig. 7), we studied the uncertainty
across the four FDPs using PCA (Methods). The first two principal
components (PCs) covered a majority of the variance, with 93%, 62%,
56%, and 69% for FDP1-4, respectively. For FDP2-4, at least seven,
eight and six PCs, respectively, were required to account for more than
90% of the variance between the FCC populations. This suggests that
the uncertainty in the cellular growth FCCs was considerably more
distributed for FDP2-4 than for FDP1 that required only two PCs.

In PCA, each variable has a score on the PCs that are under con-
sideration, which corresponds to its contribution to the variability de-
scribed by the given PC. In FDP1, the growth FCCs with respect to the
enzymes NADK and NADPPPS corresponded to the highest PC scores in
terms of magnitude along the first PC, suggesting that most of the un-
certainty comes from these ETC enzymes (Fig. 7). Their scores on both
PCs were strongly opposed in terms of sign, suggesting that these FCCs
anti-correlate. In fact, the cellular growth FCCs of NADK and NADP
phosphatase (NADPPPS) had a -1.00 Pearson correlation coefficient,
further indicating that they were exactly anti-correlated. On the other
hand, enzymes PGM and RPM had very similar PC scores, and we note
that the correlation coefficient of these FCCs was 0.91, indicating a
near-perfect correlation.

Similarly to FDP1, we studied FDP2-4 to find underlying covariance
patterns between the cellular growth FCCs (Fig. 7). We noticed that
certain trends were preserved between the FDPs as, for instance, the
PCA scores of NADPPPS and G6PDH2r tended to have an opposing sign
across the four FDPs for at least one of the plotted PCs. In fact,
NADPPPS and G6PDH2r cellular growth FCCs had Pearson correlation
coefficients of -0.81, -0.84, -0.53, and -0.71 for FDP1-4, respectively.
Hence, we can use PCA to explore and unravel covariance patterns in
FCCs to understand their underlying functional relationships. Although
fully describing the relationship between FCCs remains a non-trivial
task, PCA makes strides towards interpreting the various sources of
uncertainty.

NADTRHD, PFK, and ATPM were the top candidates for improving
cellular growth, as determined previously based on absolute means
(Fig. 6). If we had to select one of these three enzymes for genetic
engineering, we want it to be the one with the least uncertainty. We
observed that PFK scores lower than NADTRHD and ATPM on the PCs
across all the FDPs (Fig. 7), demonstrating the least uncertainty and
suggesting that it could be the most prominent target enzyme. A similar
analysis could be performed for FCCs related to other reactions, such as
glucose uptake (Supp 4, Fig. S5). We conclude that to improve growth
of aerobically grown E. coli, PFK would also be a top candidate enzyme
to metabolically engineer, despite the uncertainties.

The uncertainty in the kinetic parameters and its impact on our
studies remains difficult to quantify due to the underdetermined nature
of this highly non-linear solution space but it could be further char-
acterized by methods such as the one developed by Andreozzi et al.
(2016a). For our study, when we next compare the effect of un-
certainties stemming from the flux and the concentration steady-state
solutions, we decided to fix the distributions of the sampled enzyme
saturations to ones obtained from a previous RSS using beta distribu-
tions (Methods). This allowed us to keep the same level of uncertainty
in all the kinetic parameters for our comparisons.

2.3. Impact of flux and concentration profiles

We next assume that we know the directionality of each reaction in
our network but the system still remains underdetermined and we have
multiple feasible flux and concentration steady states within the al-
lowable solution space. Because of this, we then studied how the un-
derlying uncertainty that results in alternative steady states within a
FDP affected the predictions of kinetic models. For this analysis, we
selected FDP1 because it has: (1) reaction directionalities corre-
sponding to the more frequently observed E. coli wildtype operational
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Fig. 6. Flux control across FDPs for cellular growth, . Illustration of the union of the top five enzymes across the FDPs in terms of absolute control over cellular
growth. The whiskers correspond to the upper and lower quartiles of the 50,000 FCC populations, and the bars correspond to the means. Full enzyme names are given

in Supplementary materials (Supp. 2).

state of glycolysis and TCA cycle (Park et al., 2016; Toya et al., 2010;
Crown et al., 2015; Fong et al., 2006), (2) the largest flux variability
score, and (3) the highest specificity in control (Fig. 5). FDP1 was then
more exhaustively sampled with 100,000 vectors of concentrations and
fluxes. We chose RSSs from the flux and concentration samples as
previously done with the four FDPs, and we used PCA to determine four
extreme steady states (ESSs) for the concentrations and four ESSs for
the flux solution spaces (Methods). The ESSs are samples with the most
distant behavior from the “average” displayed by the RSS. An ESS is a
steady state that is located along a PC at one of its extremes and can be
used to characterize the “extreme” behaviors of the FDP1.

To study the impact of flux and concentration ESSs on MCA outputs,
we had to decouple their effects (Methods), so we isolated the effects of
flux and concentration separately in our analysis. Therefore, when we
studied the effect of flux, we kept the same concentration RSS and
paired it with the four flux ESSs, meaning that we had four pairs of flux
ESSs with the same RSS concentration. Similarly, when we decoupled
the effect of concentration, we paired the flux RSS with the four con-
centration ESSs. Therefore, we had a total of eight extreme pairs of flux
and concentration steady states to study. We compared these extreme
pairs to the reference case, where we had the flux and concentration
RSSs paired. For the reference case, we sampled the saturation state
space for 50,000 stable kinetic models. We used the distributions of the
kinetic parameters from this reference case to generate models for the
ESSs (Methods). We sampled 50,000 stable kinetic models for each ESS
and computed the FCCs using MCA. We performed a comparative
analysis like the comparative analysis of the FDPs to assess the degree
of confidence of our conclusions with respect to both the extreme flux
profiles and the extreme concentration profiles.
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2.3.1. Flux uncertainty propagation to control

Like the comparison of FDPs, the ESS flux profile magnitudes mainly
differed in peripheral fluxes, such as glutamate transport, glycogen
metabolism, and ETC reactions (Supp. 3). Noticeable differences in the
central carbon fluxes greater than 1 mmol/gDW/h were seen in pyr-
uvate kinase (PYK), fumarate reductase (FRD3), ME2, NADH17pp,
NADH18pp, and NADTRHD. To assess how this variability in fluxes
affected the degree of confidence in our MCA conclusions, we con-
sidered control over glucose uptake and cellular growth. For glucose
uptake, the top enzymes of the flux ESSs, aspartate transaminase
(ASPTA), PFK, AKGDH, TKT1, ENO, and TPI, are reasonable candidates
for improving uptake because they are all qualitatively in agreement
across the flux ESSs and have a control value larger than absolute 0.1,
indicating significant control over their networks. This excludes PDH
(Fig. 8A). Citrate synthase (CS) and G6PDH2r, may appear to be at-
tractive targets based on some of the ESSs, but since this property is not
in consensus agreement across all ESSs, they are less reliable targets.
The top enzymes controlling cellular growth were sensitive to the ESSs,
as just 47% of them were in agreement sign-wise with each other (Supp
4, Fig. S6). However, we can still find reliable target enzymes, such as
ENO, AKGDH, and glutamate dehydrogenase (GLUDy), mainly in the
central carbon reactions that have a reasonable magnitude and con-
sensus agreement.

2.3.2. Concentration uncertainty propagation to control

We repeated the previous analysis for ESS concentration vectors to
study how they impact MCA outputs. The main concentration differ-
ences between the extreme concentration vectors were for amino acids
(R-glycerate, 1-glutamine, r-lysine, p-alanine, L-proline), inorganics
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PC2, were plotted to study the variance in the FCC samples. The values in brackets correspond to the variance covered by the principal components (PCs). Full

enzyme names are given in Supplementary materials (Supp. 2).

(potassium, iron, and cobalt), cofactors (NAD and AMP), and several
biomass building blocks (Supp 3). We considered the top enzymes for
glucose uptake FCCs and noticed that the MCA conclusions were more
sensitive to concentration values (Fig. 8B) than to variations in flux
values (Fig. 8A). Candidate target enzymes to improve glucose uptake
would be PFK, GAPD, ENO, and RPI, as at least three out of five of the
steady states are consistent and have a control value larger than 0.1
(Fig. 8B). Hence, the metabolic engineering decisions derived from the
MCA outputs appear to be more sensitive to concentration values rather
than flux values. As the biomass building block and amino acid meta-
bolite concentrations were changing between these ESS concentration
vectors, it makes sense that they would have a higher FCC variability.
The concentration values in turn directly impact the thermodynamic
displacements and the enzyme saturation states, which affect the MCA
conclusions. The cellular growth FCCs were very sensitive to the ESS
metabolite concentration vectors because most them were in sign dis-
agreement (Supp 4, Fig. S6). NADTRHD and ATPM were the most ap-
pealing enzymes for controlling cellular growth due to sign and mag-
nitude consistency across the ESSs of their FCCs.

3. Conclusions

This work studied the impact of alternative concentration and flux
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steady states on the conclusions derived from the MCA outputs of the
non-linear kinetic models built around them using the physiology of
optimally grown E. coli. We show that different FDPs can lead to distinct
metabolic engineering conclusions when analyzing output FCCs of the
non-linear models. The ME2, PPC, and PGI examples illustrate how
thermodynamics and kinetic coupling can change the control from one
FDP to another. These enzymatic reactions were topologically close to
the bidirectional reactions that changed between the FDPs, though, less
intuitively, we also noticed that there were changes in thermodynamic
displacements across FDPs in enzymes that were topologically far away
from the bidirectional reactions. We then studied the uncertainty
within a single FDP, and using PCA to study the extremes of the solution
space, found that within a FDP, MCA outputs appeared to be more
sensitive to concentration values rather than flux values. These ob-
servations emphasized the importance of considering alternative solu-
tions when studying a physiology as the steady state affects directly the
decisions for hypothesis generation in basic research and design in
synthetic biology and metabolic engineering. Hence, we propose a
workflow for assessing this uncertainty to make more reliable metabolic
engineering decisions that can be broadly applied to any kinetic model
to improve the predictions resulting from it.

We then used our workflow to pick target enzymes for genetic
modification, identifying NADTRHD, PFK, and ATPM as the top target



T. Hameri et al.

Metabolic Engineering 52 (2019) 29-41

Flux Extremes - CS-CPisPP

0.5
4 Reference
A Max PC1
04l 4 A Min PC1
4 A Max PC2
A Min PC2
0.3
¢ n A
a4 A
0.2 2 e Ay A
A 4
¢ 3 i
01k ¢ i ¥ Ay PO A
i A
i [ 2 ) *
o 4 ¢ L b 4 o
X
N 4
-0.1 * 'S A
& A 2
2
0.2 a
A 2
-0.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
O X A R S VDI AT I9 T I T QT2 8O F L oy
SELO LK SOTEITLIT ISR IF T @LES
G Q SEITLFLTE Y TSI §F Tl S
B § v ¢S g g o &
Concentration Extremes - C G-CPtsPP
0.5
4 Reference
A Max PC1
0.4 Min PC1
A Max PC2
A Min PC2
0.3
s A 4 A A
02 AR 4
: 2 A A A
¢ : A A
01 vt e 2
A 4 4 A £ LI ; * A A A
1 1
o4 + L 4 1 N MK ST . "\
A 4 . A 1
0.1 3 ¢ 2
01+ o
- A
& A
A
0.2 A 1
A
-0.3
-0.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 * 1 1 1 1 1 1 1
O F A S RN T LR T T LD S OF L
GEIEELSELTVEIFS T Fs@e&S
A < 8 & & ¢ ° o
9D (<]

Fig. 8. Flux control patterns across extreme steady-state solutions. Illustration of the union between the top 10 enzymes across the (A) flux and the (B)
concentration ESSs in terms of absolute control over glucose uptake. FCCs were sorted in decreasing order of absolute magnitude of the RSSs (reference). The enzyme
names in black indicate that the FCCs were sign-consistent (in agreement) and red if they were sign-inconsistent (in opposition). Full enzyme names are given in

Supplementary materials (Supp. 2).

enzymes independent of the FDP for improving the cellular growth of
optimally grown E. coli. PFK and PGM were selected as top enzymes
independent of the FDP for improving glucose uptake of optimally
grown E. coli. We stress the importance of selecting target enzymes that
exhibit control across all the FDPs to make more reliable decisions,
highlighting the need to consider alternative steady states when
building non-linear kinetic models for a given physiology, as they have
imminent implications on the conclusions derived from the MCA. The
herein proposed workflow can be used to suggest metabolic engineering
decisions for a given study and can provide insights into the design of
experiments, as the ranking of candidate enzymes can highlight reac-
tions or enzymes that need further characterization and study due to
their variability.
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4. Methods
4.1. Reduced E. coli model

The model stoichiometry for this study was derived from E. coli
iJO1366 (Orth et al., 2011) using redGEM, a systematic framework for
developing core models that are consistent with their genome-scale
counterparts (Ataman and Hatzimanikatis, 2017; Ataman et al., 2017).
The resulting reduced models are context-specific and in the process of
reduction it is important to define the carbon sources, the content of
media and also the metabolic subsystems of interest for the study. We
used a minimal media with glucose as the sole carbon source and the
selected starting subsystems were ones pertaining to central carbon
metabolism (glycolysis/gluconeogenesis, citric acid cycle, pentose
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phosphate pathway, pyruvate metabolism, and glyoxylate metabolism).
Omics data for the physiology of optimally grown E. coli under aerobic
conditions were extracted (Supp 1) from McCloskey et al. (2014). The
data were integrated in the form of constraints into the MILP for-
mulation of the thermodynamics-based metabolic flux analysis (Henry
et al., 2007).

We make the following directionality assumptions for several bi-
directional reactions:

1. Fructose-biphosphate aldolase (FBA) that is part of mid-lower gly-
colysis is set towards catabolism (Cooper, 1984).

2. The bi-directional transports of magnesium and phosphate are both
set towards uptake (Nelson and Kennedy, 1972; Rosenberg et al.,
1977).

3. Acetate kinase (ACKr) and phospho-transacetylase (PTAr) are both
set towards the acetate production, because acetate is one of the
main by-products (McCloskey et al., 2014).

4. The succinyl-CoA synthetase (SUCOAS) is set towards the produc-
tion of succinate (McCloskey et al., 2014).

The polyphosphate kinases (PPK2r, and PPKr) are set towards the
polyphosphate polymerization (Kumble et al., 1996).

For some of intracellular metabolites, a corresponding transport
reaction has not been biochemically characterized and does not appear
in the E. coli iJO1366 and in our reduced model. However, these me-
tabolites, unless they are highly polar or very large, are subject to
passive diffusive transport through the cell membrane. Therefore, we
explicitly added transport reactions for these metabolites that operate
at least at basal level (10"-6 mmol/(gDW*h)).

4.2. Identification of alternative flux directionality profiles

As first step (Fig. 1), in order to identify the reactions that are able
to operate in both directions, flux variability analysis (FVA) was per-
formed (Henry et al. 2007). If the system has a number z of bi-direc-
tional reactions, it could have up to 2% FDPs as in a FDP, reactions can
only operate in a unique direction. We enumerated the FDPs by ad-
justing the boundaries of the bi-directional reaction so that they can
only operate in a unique direction. We define the coefficient of varia-
bility, CV;,, as:

Fﬂux,i

where, UB and LB are the upper and lower bounds respectively of the
flux i derived using thermodynamic-based variability analysis (TVA)
(Ataman and Hatzimanikatis, 2015; Henry et al., 2007). F is the average
of UB and LB. We define the flux variability score of each FDP as the
Euclidean norm of the vector whose entries are the CV of each flux. The
FDP with the highest flux variability score has the highest relative
flexibility in terms of the allowable flux ranges.

4.3. Computation of reference and extreme steady states for alternative
EDPs

For each of the identified FDPs, in step two (Fig. 1), we sample the
solution space of concentrations and fluxes without violating physio-
logical, thermodynamic and directionality constraints. The convexity of
these solution spaces enables us to efficiently generate sets of flux and
concentration samples using the Artificial-Centering Hit-and-Run sam-
pler in the COBRA Toolbox (Schellenberger et al., 2011; Becker et al.,
2007; Kaufman and Smith, 1998). We perform principal component
analysis (PCA) on the generated samples to select reference and ex-
treme samples (Jolliffe, 2014). The first seven principal components
(PC) were used as for the fluxes and the concentrations they covered
above 90% of the sample variance. The reference sample is chosen so

39

Metabolic Engineering 52 (2019) 29-41

that its vector projections onto the seven PCs are minimal. We get the
two extreme samples of a PC, PCmax and PCmin, by respectively
finding the 0.1% top and the 0.1% bottom samples based on their
magnitude of vector projections onto the given PC. Out of the 0.1% top
and the 0.1% bottom samples we chose the samples that have the
smallest magnitude of vector projections onto the other PCs (Supp 4).

4.4. Analysis of alternative solutions between FDPs

4.4.1. Thermodynamic displacement analysis

Within each FDP, in step 3 (Fig. 1), we compute the displacement of
the reactions from thermodynamic equilibrium, I' (Wang et al., 2004;
Miskovic and Hatzimanikatis, 2011; Heinrich and Schuster, 1996). For
a simple uni-uni reaction with a substrate S and a product P, the
thermodynamic displacement, 7', is defined as:

1 [P

e [S]

where, k.q is thermodynamic equilibrium. More specifically, we first use
the vector of the reference steady-state concentrations together with
values of standard Gibbs free energies of reactions to compute /. For
reactions with negative Gibbs free energy, 0 < I' < 1. For reactions
that are far away from equilibrium I" is close to 0, and for reactions near
equilibrium I = 1. We then classify the reactions in terms of I" in the
following four classes: reactions that operate (i) near equilibrium (NE),
0.9 = I' = 1; (ii) near to middle equilibrium (NM), 0.5 < I" < 0.9; (iii)
middle to far from equilibrium (MF), 0.1 < I' < 0.5; and (iv) far from
equilibrium (FE), 0 < I" < 0.1. The information about I" is important, as
it is known that enzymes that operate near equilibrium do not have
control over fluxes and concentrations in the network (Wang et al.,
2004).

Within the MCA framework, Kaeser and Burns (Anon, 1973) define
the concentration control coefficients, CI’,‘, and the flux control coeffi-
cients, C;, as the fracitonal change of metabolite concentrations and
metabolic fluxes, respectively, in response to fractional change of
system parameters. According to the log(linear) formalism
(Hatzimanikatis et al., 1996; Reder, 1988), we can derive C, and C, as:

C¥ = —(NVE)"\NVII

Cy=ECS + 11

where, N is the stoichiometric matrix, V is the diagonal matrix whose
whole elements are the steady-state fluxes, E is the elasticity matrix
with respect to metabolites and I7 is the matrix of elasticities with re-
spect to parameters. If we now consider a uni-uni reaction, i, with a
substrate S and a product P we write its reaction rate v; as follows:

=Tl

st 1P
Rog T K 11

Vi = Vinax

where, V4 is the maximum velocity at enzyme saturation, and, K
and K, are the Michaelis constants of S and P, respectively. We define,
as done previously by Hatzimanikatis and coworkers (Chakrabarti
et al., 2013), the elasticities with respect to S and P, respectively, as:

Is1

S S dv 1 Knmg
STV T aen) | B
v - 2 L
e T gt
1r
E‘f _ Eﬂ - _ r _ Kmp
' vdP a-r) st 1p1
o T Rt

where, ¢, and [ are entries of the elasticity matrix E. Evidently, if the
reaction is at thermodynamic equilibrium (i.e. I = 1), the first terms of
the elasticity terms ¢5 and £/ tend towards infinity and we conse-
quently have no control with respect the considered enzyme. However,
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if the reaction is far away from thermodynamic equilibrium (i.e. I' =
0), the second terms of & and ¢, can have impact on the elasticities,
potentially resulting in control. Hence, it is essential to consider ther-
modynamic displacement with the kinetics in order to understand
control at systems level. The elasticity matrix E is directly affected by I,
and hence the control coefficients C; and C, will also be impacted.

4.4.2. Kinetic parameter sampling

We build populations of kinetic models for the computed vectors of
the reference steady-state fluxes and concentrations. We integrate the
information about the kinetic properties of enzymes available from the
literature (Segel, 1975) and the databases (Schomburg et al., 2013;
Wittig et al., 2012). We use the reversible Hill kinetics (Hofmeyr and
Cornish-Bowden, 1997) and convenience Kkinetics (Liebermeister and
Klipp, 2006) for reactions with unknown kinetic mechanism. For ki-
netic mechanisms with no or partial information about their parameter
values we sample the space of kinetic parameters by direct sampling of
the degree of saturation of the active site of an enzyme considering one
(Wang et al., 2004) or multiple enzymatic steps (Miskovic and
Hatzimanikatis, 2011). We then parameterize a population of kinetic
models (Supp. 5-6), perform consistency verifications (Miskovic et al.,
2015; Miskovic and Hatzimanikatis, 2010; Wang et al., 2004), and
compute the flux and concentration control coefficients (Wang et al.,
2004; Hatzimanikatis and Bailey, 1996). The consistency verifications
include a stability test of the model that verifies the Jacobian matrix has
no eigenvalues with positive real part for the sampled set of parameters.
This test relies on the assumption that the observed RSSs for flux and
metabolite concentration are in a stable steady state at the observed
time point. For more details about the ORACLE workflow for con-
struction of large-scale kinetic models that are consistent both with
thermodynamics and the observed data, the reader is referred to lit-
erature (Chakrabarti et al., 2013; Miskovic and Hatzimanikatis, 2010,
2011; Wang et al., 2004; Andreozzi et al., 2016a, 2016b; Soh et al.,
2012; Wang and Hatzimanikatis, 2006a, 2006b).

4.4.3. General statistics on FCCs across FDPs

We computed FCCs of the 275 enzymatic reactions with respect to
their 275 enzymes as a quantitative output to compare how our MCA
conclusions were consistent across the FDPs. Thus, we calculated the
FCCs

v o_ 6lnv,- _ pkavi
P olnp,  vidpy

where, v; is the flux across a reaction i and, p, is the concentration
perturbation of an enzyme k. We then compute the mean of the FCCs,
C_'; , across the kinetic models for an FDP as shown in Table 1.

We considered the FCCs for fluxes that were larger than 0.01 mmol/
gDW/h across all FDPs because we wanted to focus our study around
the reactions that carry more significant amount of carbon (i.e., central
carbon metabolism fluxes). Only 126 reactions satisfied this condition,
which left us with 34’650 (126 reactions x 275 enzymes) FCCs (Supp
4, Fig. S7). To compare more significant FCCs, we only considered ones
that had more than absolute 0.1 fold change across the 4 FDPs so that
we focus on FCCs with significant control. This meant that we kept
1’263 out of the previous 34’650 FCCs (Supp. 4, Fig. S8).

Table 1
Mean of flux control coefficients of a model.
V1 1 V1 2
! cp cp Com
2 V2 V2 ]
Cpi Cp3 Cp3 Com
3 3 3 2]
CPl CPZ CPS Cpm
n Vn n Vn
Cpy Cp3 Cpy Com
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4.5. Characterizing the distribution of kinetic parameters

4.5.1. Beta distributions

The kinetic parameter solution space is studied in step 4 (Fig. 1) by
sampling uniformly the degree of saturation of an enzyme's active site
as defined by Wang et al. (2004). We obtain distributions of scaled
metabolite concentrations from this sampling and consequently, kinetic
parameter distributions. The degree of saturation of an enzyme's active
site has a well-defined range from zero to one, allowing us to resort to
parametric distributions for their characterization. Beta distributions
provide an efficient way of quantitatively expressing variability over a
fixed range by estimating its two parameters (Hahn and Shapiro, 1994).
These parameters can be obtained and compared for populations of
kinetic parameters generated with different operational configurations.

4.5.2. Implying prior beta distributions for sampling

In this work we compare how alternative steady states describing a
physiology impact metabolic engineering conclusions. It is thus desir-
able to ensure that the sampled degrees of saturation of enzyme active
sites are similar for the populations of kinetic models built around al-
ternative steady states within FDPs in step 5 (Fig. 1). Hence, we com-
pute beta parameters describing the distributions of the kinetic para-
meters of a given RSS. These beta parameters are used to sample
degrees of saturation of enzyme active sites for alternative steady states
from similar density distributions using the prior samples. The Beta
distribution parameters are implied within the ORACLE workflow as
input for sampling degrees of saturations of enzymes when para-
meterizing new kinetic models. Beta distributions hence bias sample
densities for the sampling of degrees of saturation states for an enzyme.

4.6. Analysis of alternative solutions within FDPs

We investigate in step 5 (Fig. 1) how different flux profiles and
metabolite concentration vectors, within FDPs, affect the populations of
control coefficients. We separately studied the effects of the flux profiles
and the metabolite concentration vectors, in order to decouple their
effects on control coefficients. We take the reference steady-state con-
centration vector and we form the pairs with the extreme steady-state
flux profiles computed in step 2 of the procedure (Fig. 1). We then
generate populations of kinetic models as described in step 3. In the
generation of missing kinetic information, we use the distributions of
kinetic parameters that have been characterized in step 4 for this FDP.
This way, we obtain alternative populations of kinetic models that have
in common the reference steady-state concentration and the distribu-
tion of kinetic parameters. We compare these populations of kinetic
models together with the population of kinetic models that was com-
puted in step 3 for the reference steady state of this FDP. This enables
the assessment of the effects of alternative flux profiles within the FDP
onto the control coefficients.

The effects of alternative values of concentrations on control coef-
ficients are estimated in an analogous way, where we take the reference
steady-state flux and we form the pairs with the extreme steady-state
concentrations and we repeat the procedure discussed above. Taken
together these two comparisons of alternative solutions allow us to
identify sets of enzymes within a FDP whose control over the fluxes and
concentrations in the network is robust both with respect to the alter-
native concentrations and fluxes. We also identify enzymes that are
robust only with respect to the alternative concentrations or alternative
fluxes.

4.7. Metabolic engineering and synthetic biology design

We next analyze in step 6 the results obtained in steps 3-5 (Fig. 1) in
the light of metabolic engineering and synthetic biology design. We
single out the enzymes whose control over fluxes and concentrations of
interest is consistent over all FDPs and within FDPs. In this step we can
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also design the experiments that would give sufficient information for
discriminating alternative solutions between FDPs and within FDPs.

Funding sources

M.A was supported through the RTD grant MicroScapesX, no. 2013/
158, within SystemX, the Swiss Initiative for System Biology evaluated
by the Swiss National Science Foundation. T.H., G.F., L.M. and V.H.
were supported by the Ecole Polytechnique Fédérale de Lausanne
(EPFL) and the Swiss National Science Foundation grant
315230_163423.

Acknowledgements

We would like to thank Joana Pinto Vieira for her help with editing
this manuscript.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.ymben.2018.10.005

References

Almgquist, J., Cvijovic, M., Hatzimanikatis, V., Nielsen, J., Jirstrand, M., 2014. Kinetic
models in industrial biotechnology-improving cell factory performance. Metab. Eng.
24, 38-60.

Alper, H., Stephanopoulos, G., 2009. Engineering for biofuels: exploiting innate microbial
capacity or importing biosynthetic potential? Nat. Rev. Microbiol. 7, 715. https://
doi.org/10.1038/nrmicro2186.

Andreozzi, S., Miskovic, L., Hatzimanikatis, V., 2016a. iSCHRUNK-in silico approach to
characterization and reduction of uncertainty in the kinetic models of genome-scale
metabolic networks. Metab. Eng. 33, 158-168.

Andreozzi, S., Chakrabarti, A., Soh, K.C., Burgard, A., Yang, T.H., Van Dien, S., et al,,
2016b. Identification of metabolic engineering targets for the enhancement of 1,4-
butanediol production in recombinant E. coli using large-scale kinetic models. Metab.
Eng. 35, 148-159. https://doi.org/10.1016/j.ymben.2016.01.009. (PubMed PMID:
26855240).

Ataman, M., Hatzimanikatis, V., 2015. Heading in the right direction: thermodynamics-
based network analysis and pathway engineering. Curr. Opin. Biotechnol. 36,
176-182.

Ataman, M., Hatzimanikatis, V., 2017. lumpGEM: systematic generation of subnetworks
and elementally balanced lumped reactions for the biosynthesis of target metabolites.
PLoS Comput. Biol. 13 (7), e1005513.

Ataman, M., Gardiol, D.F.H., Fengos, G., Hatzimanikatis, V., 2017. redGEM: systematic
reduction and analysis of genome-scale metabolic reconstructions for development of
consistent core metabolic models. PLoS Comput. Biol. 13 (7), e1005444.

Becker, S.A., Feist, AM., Mo, M.L., Hannum, G., Palsson, B.O., Herrgard, M.J., 2007.
Quantitative prediction of cellular metabolism with constraint-based models: the
COBRA Toolbox. Nat. Protoc. 2, 727-738. https://doi.org/10.1038/nprot.2007.99.

Blazeck, J., Alper, H., 2010. Systems metabolic engineering: genome-scale models and
beyond. Biotechnol. J. 5 (7), 647-659.

Chakrabarti, A., Miskovic, L., Soh, K.C., Hatzimanikatis, V., 2013. Towards kinetic
modeling of genome-scale metabolic networks without sacrificing stoichiometric,
thermodynamic and physiological constraints (Epub 2013/07/23). Biotechnol. J. 8
(9), 1043-1057. https://doi.org/10.1002/biot.201300091. (PubMed PMID:
23868566).

Chen, P.-W., Theisen, M.K., Liao, J.C., 2017. Metabolic systems modeling for cell factories
improvement. Curr. Opin. Biotechnol. 46, 114-119.

Cooper, R., 1984. Metabolism of methylglyoxal in microorganisms. Annu. Rev. Microbiol.
38 (1), 49-68.

Crown, S.B., Long, C.P., Antoniewicz, M.R., 2015. Integrated 13C-metabolic flux analysis
of 14 parallel labeling experiments in Escherichia coli. Metab. Eng. 28, 151-158.

Ebrahim, A., Brunk, E., Tan, J., O'brien, E.J., Kim, D., Szubin, R., et al., 2016. Multi-omic
data integration enables discovery of hidden biological regularities. Nat. Commun. 7.

Fong, S.S., Nanchen, A., Palsson, B.O., Sauer, U., 2006. Latent pathway activation and
increased pathway capacity enable Escherichia coli adaptation to loss of key meta-
bolic enzymes. J. Biol. Chem. 281 (12), 8024-8033.

Hahn, G.J., Shapiro, S.S., 1994. Statistical Models in Engineering. Wiley.

Hatzimanikatis, V., Bailey, J.E., 1996. MCA has more to say. J. Theor. Biol. 182 (3),
233-242.

Hatzimanikatis, V., Floudas, C.A., Bailey, J.E., 1996. Analysis and design of metabolic
reaction networks via mixed-integer linear optimization. AIChE J. 42 (5), 1277-1292.

Heinrich, R., Schuster, S., 1996. The Regulation of Cellular Systems. Chapman & Hall,
New York; London.

Henry, C.S., Broadbelt, L.J., Hatzimanikatis, V., 2007. Thermodynamics-based metabolic
flux analysis. Biophys. J. 92 (5), 1792-1805.

Hofmeyr, J., Cornish-Bowden, A., 1997. The reversible Hill equation: how to incorporate
cooperative enzymes into metabolic models. Comput. Appl. Biosci. 13, 377-385.

Jolliffe, I., 2014. Principal Component Analysis. Wiley StatsRef: Statistics Reference

)

Metabolic Engineering 52 (2019) 29-41

Online: John Wiley & Sons, Ltd.

Kacser, H., Burns, J., (Eds), 1973. The control of flux. Symp Soc Exp Biol.

Kaufman, D.E., Smith, R.L., 1998. Direction choice for accelerated convergence in hit-
and-run sampling. Oper. Res. 46 (1), 84-95.

Khodayari, A., Maranas, C.D., 2016. A genome-scale Escherichia coli kinetic metabolic
model k-ecoli457 satisfying flux data for multiple mutant strains. Nat. Commun. 7.

Kumble, K.D., Ahn, K., Kornberg, A., 1996. Phosphohistidyl active sites in polyphosphate
kinase of Escherichia coli. Proc. Natl. Acad. Sci. 93 (25), 14391-14395.

Lerman, J.A., Hyduke, D.R., Latif, H., Portnoy, V.A., Lewis, N.E., Orth, J.D., et al., 2012.
In silico method for modelling metabolism and gene product expression at genome
scale. Nat. Commun. 3, 929.

Li, G., Wang, J.-b., Reetz, M.T., 2017. Biocatalysts for the pharmaceutical industry cre-
ated by structure-guided directed evolution of stereoselective enzymes. Bioorganic &
Medicinal Chemistry.

Liebermeister, W., Klipp, E., 2006. Bringing metabolic networks to life: convenience rate
law and thermodynamic constraints. Theor. Biol. Med. Model. 3 (41). https://doi.
org/10.1186/1742-4682-3-41.

McCloskey, D., Gangoiti, J.A., King, Z.A., Naviaux, R.K., Barshop, B.A., Palsson, B.O.,
et al., 2014. A model-driven quantitative metabolomics analysis of aerobic and
anaerobic metabolism in E. coli K-12 MG1655 that is biochemically and thermo-
dynamically consistent. Biotechnol. Bioeng. 111 (4), 803-815.

Miskovic, L., Hatzimanikatis, V., 2010. Production of biofuels and biochemicals: in need
of an ORACLE. Trends Biotechnol. 28 (8), 391-397.

Miskovic, L., Hatzimanikatis, V., 2011. Modelling of uncertainties in biochemical reac-
tions. Biotechnol. Bioeng. 108, 413-423.

Miskovic, L., Tokic, M., Fengos, G., Hatzimanikatis, V., 2015. Rites of passage: require-
ments and standards for building kinetic models of metabolic phenotypes. Curr. Opin.
Biotechnol. 36, 1-8.

Nelson, D.L., Kennedy, E.P., 1972. Transport of magnesium by a repressible and a non-
repressible system in Escherichia coli. Proc. Natl. Acad. Sci. 69 (5), 1091-1093.
Nielsen, J., 2017. Systems biology of metabolism. Annu. Rev. Biochem. 86 (1), 245-275.

https://doi.org/10.1146/annurev-biochem-061516-044757.

Orth, J.D., Conrad, T.M., Na, J., Lerman, J.A., Nam, H., Feist, A.M., et al., 2011. A
comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011.
Mol. Syst. Biol. 7 (1), 535.

Park, J.O., Rubin, S.A., Xu, Y.-F., Amador-Noguez, D., Fan, J., Shlomi, T., et al., 2016.
Metabolite concentrations, fluxes and free energies imply efficient enzyme usage.
Nat. Chem. Biol. 12 (7), 482-489.

Reder, C., 1988. Metabolic control theory: a structural approach. J. Theor. Biol. 135 (2),
175-201.

Rosenberg, H., Gerdes, R., Chegwidden, K., 1977. Two systems for the uptake of phos-
phate in Escherichia coli. J. Bacteriol. 131 (2), 505-511.

Salvy, P., Fengos, G., Ataman, M., Pathier, T., Soh, K.C., Hatzimanikatis, V., 2018. pyTFA
and matTFA: a Python package and a Matlab toolbox for thermodynamics-based flux
analysis. Bioinformatics 1, 3.

Sanchez, B.J., Zhang, C., Nilsson, A., Lahtvee, P.J., Kerkhoven, E.J., Nielsen, J., 2017.
Improving the phenotype predictions of a yeast genome-scale metabolic model by
incorporating enzymatic constraints. Mol. Syst. Biol. 13 (8), 935.

Schellenberger, J., Que, R., Fleming, R.M.T., Thiele, L., Orth, J.D., Feist, A.M., et al., 2011.
Quantitative prediction of cellular metabolism with constraint-based models: the
COBRA Toolbox v2.0. Nat. Protoc. 6, 1290-1307. https://doi.org/10.1038/nprot.
2011.308.

Schomburg, I., Chang, A., Placzek, S., Sohngen, C., Rother, M., Lang, M., et al., 2013.
BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved
disease classification: new options and contents in BRENDA (Database issue)(:D764-
72. Epub 2012/12/04). Nucleic Acids Res. 41https://doi.org/10.1093/nar/gks1049.
(PubMed PMID: 23203881).

Schuetz, R., Kuepfer, L., Sauer, U., 2007. Systematic evaluation of objective functions for
predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3, 119. https://doi.
org/10.1038/msb4100162. (PubMed PMID: PMC1949037).

Segel I.H., 1975. Enzyme Kinetics.

Soh, K.C., Hatzimanikatis, V., 2014. Constraining the Flux Space Using Thermodynamics
and Integration of Metabolomics Data. Metabolic Flux Analysis. Springer, pp. 49-63.

Soh, K.S., Miskovic, L., Hatzimanikatis, V., 2012. From network models to network re-
sponses: integration of thermodynamic and kinetic properties of yeast genome-scale
metabolic networks. FEMS Yeast Res. 12, 129-143.

Thiele, L., Palsson, B.@., 2010. A protocol for generating a high-quality genome-scale
metabolic reconstruction. Nat. Protoc. 5 (1), 93-121.

Toya, Y., Ishii, N., Nakahigashi, K., Hirasawa, T., Soga, T., Tomita, M., et al., 2010.
13C-metabolic flux analysis for batch culture of Escherichia coli and its pyk and pgi
gene knockout mutants based on mass isotopomer distribution of intracellular me-
tabolites. Biotechnol. Prog. 26 (4), 975-992.

Tran, L.M., Rizk, M.L., Liao, J.C., 2008. Ensemble modeling of metabolic networks.
Biophys. J. 95 (12), 5606-5617. https://doi.org/10.1529/biophysj.108.135442.

Wang, L., Birol, I., Hatzimanikatis, V., 2004. Metabolic control analysis under un-
certainty: framework development and case studies. Biophys. J. 87, 3750-3763.

Wang, L.Q., Hatzimanikatis, V., 2006a. Metabolic engineering under uncertainty. I: fra-
mework development. Metab. Eng. 8 (2), 133-141. https://doi.org/10.1016/J.
Ymben.2005.11.003. (PubMed PMID: IS1:000236053000005).

Wang, L.Q., Hatzimanikatis, V., 2006b. Metabolic engineering under uncertainty - II:
analysis of yeast metabolism. Metab. Eng. 8 (2), 142-159. https://doi.org/10.1016/
J.Yinben.2005.11.002. (PubMed PMID: ISI:000236053000006).

Wittig, U., Kania, R., Golebiewski, M., Rey, M., Shi, L., Jong, L., et al., 2012. SABIO-RK-
database for biochemical reaction kinetics. Nucleic Acids Res. 40 (D1), D790-D796.
https://doi.org/10.1093/Nar/Gkr1046. (PubMed PMID: 1S1:000298601300118).

Zamboni, N., Fendt, S.-M., Ruhl, M., Sauer, U., 2009. 13C-based metabolic flux analysis.
Nat. Protoc. 4 (6), 878-892. <http://www.nature.com/nprot/journal/v4/n6/
suppinfo/nprot.2009.58_S1.html)>.


https://doi.org/10.1016/j.ymben.2018.10.005
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref1
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref1
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref1
https://doi.org/10.1038/nrmicro2186
https://doi.org/10.1038/nrmicro2186
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref3
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref3
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref3
https://doi.org/10.1016/j.ymben.2016.01.009
https://doi.org/10.1016/j.ymben.2016.01.009
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref5
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref5
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref5
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref6
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref6
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref6
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref7
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref7
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref7
https://doi.org/10.1038/nprot.2007.99
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref9
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref9
https://doi.org/10.1002/biot.201300091
https://doi.org/10.1002/biot.201300091
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref11
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref11
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref12
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref12
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref13
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref13
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref14
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref14
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref15
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref15
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref15
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref16
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref17
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref17
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref18
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref18
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref19
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref19
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref20
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref20
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref21
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref21
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref22
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref22
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref23
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref23
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref24
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref24
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref25
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref25
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref26
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref26
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref26
https://doi.org/10.1186/1742-4682-3-41
https://doi.org/10.1186/1742-4682-3-41
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref28
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref28
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref28
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref28
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref29
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref29
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref30
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref30
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref31
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref31
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref31
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref32
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref32
https://doi.org/10.1146/annurev-biochem-061516-044757
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref34
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref34
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref34
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref35
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref35
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref35
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref36
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref36
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref37
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref37
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref38
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref38
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref38
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref39
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref39
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref39
https://doi.org/10.1038/nprot.2011.308
https://doi.org/10.1038/nprot.2011.308
https://doi.org/10.1093/nar/gks1049
https://doi.org/10.1093/nar/gks1049
https://doi.org/10.1038/msb4100162
https://doi.org/10.1038/msb4100162
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref43
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref43
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref44
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref44
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref44
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref45
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref45
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref46
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref46
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref46
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref46
https://doi.org/10.1529/biophysj.108.135442
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref48
http://refhub.elsevier.com/S1096-7176(18)30293-3/sbref48
https://doi.org/10.1016/J.Ymben.2005.11.003
https://doi.org/10.1016/J.Ymben.2005.11.003
https://doi.org/10.1016/J.Yinben.2005.11.002
https://doi.org/10.1016/J.Yinben.2005.11.002
https://doi.org/10.1093/Nar/Gkr1046
http://www.nature.com/nprot/journal/v4/n6/suppinfo/nprot.2009.58_S1.html
http://www.nature.com/nprot/journal/v4/n6/suppinfo/nprot.2009.58_S1.html

	Kinetic models of metabolism that consider alternative steady-state solutions of intracellular fluxes and concentrations
	Introduction
	Results and discussion
	Multiplicity of flux directionality profiles
	Comparative analysis of alternative flux directionality profiles
	Reference steady states (RSSs) of FDPs
	Analysis of control patterns
	Ranking target enzymes for flux control
	Study of uncertainty in FCCs

	Impact of flux and concentration profiles
	Flux uncertainty propagation to control
	Concentration uncertainty propagation to control


	Conclusions
	Methods
	Reduced E. coli model
	Identification of alternative flux directionality profiles
	Computation of reference and extreme steady states for alternative FDPs
	Analysis of alternative solutions between FDPs
	Thermodynamic displacement analysis
	Kinetic parameter sampling
	General statistics on FCCs across FDPs

	Characterizing the distribution of kinetic parameters
	Beta distributions
	Implying prior beta distributions for sampling

	Analysis of alternative solutions within FDPs
	Metabolic engineering and synthetic biology design

	Funding sources
	Acknowledgements
	Supporting information
	References




