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Abstract

This paper presents a predictive control scheme for coordinating a set of heterogeneous and complementary

resources at different time scales for the provision of ancillary services. In particular, we combine building

thermodynamics (slow), and energy storage systems (fast resources) to augment the flexibility that can

be provided to the grid compared to the flexibility that any of these resources can provide individually.

A multi-level control scheme based on data-based robust optimization methods is developed that enables

heterogeneous resources at different time scales (slow and fast) to provide fast regulation services, especially

a secondary frequency control (SFC) service. A data-based predictor is developed to forecast the future

regulation signal, and is used to improve the performance of the controller in real-time operation. The

proposed control method is used to conduct experiments, for nine consecutive days, demonstrating the

provision of SFC service fully complying to the Swiss regulations, using a controllable building HVAC

system on the EPFL campus and a grid connected energy storage system. The experimental results show

that optimally combining such slow and fast resources can significantly augment the flexibility that can be

provided to the grid. Moreover, by providing SFC service, the building can reduce its operational costs by

up to 46% on average while maintaining a high level of occupant comfort. To the best of author’s knowledge

this work is the first experimental demonstration of coordinating heterogeneous demand-response to provide

SFC service.

1. Introduction

In proportion to the total amount of electricity that is produced and consumed, very little energy storage

capacity is available across the power grid. This is due to the very large costs of electrical energy storage

devices which prevent their widespread deployment. As a consequence, production and consumption of

electricity must practically be balanced at all times across any power network. However, due to inherently
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unpredictable fluctuations, imbalances between the two are always present and need to be compensated in

real-time to preserve the system frequency at its rated value (50 Hz in Europe) and, by doing so, prevent

blackouts or the need to shed loads or generators from the network. This is typically achieved by keeping a set

of power reserves on standby and ready to absorb any deviation. Depending on regional terminology, these

reserves are called ancillary service providers (ASP), spinning reserves or operating reserves [1, 2]. These

power reserves historically have been provided mainly by highly responsive power plants such as hydro-

power plants, gas or coal stations, etc. However, utilizing these type of resources presents both economic

and environmental issues [3]. Economic issues come from the fact that, in order to be able to respond to the

network’s need, ancillary reserves run at operating points that are not economically optimal, for example

at part load. This incurs a loss-of-opportunity cost for ancillary reserves operators, for example a revenue

deficit if a power plant runs at 90% of its full capacity, or conversely an excess cost when the power plant

has to run while the market price of electricity is too low to cover the price of fuel. Environmental issues

are due to the fact that fuel-based power plants are kept running as spinning reserves even when abundant

renewable production is available. In addition, the increasing penetration of uncertain and uncontrollable

sources of energy production such as solar and wind power have caused an increase in unpredictability and

volatility of energy production.

It is therefore of paramount importance to integrate into the system new type of resources to improve

the overall cost-efficiency of the power network. Potential candidates could be represented by, e.g., electrical

storage systems (ESS) or thermal storage systems by controlling the heating, ventilation and air conditioning

(HVAC) of large commercial buildings. ESSs are very well suited for ancillary services since they are highly

controllable devices that exhibit very fast ramp rates [4]. In a landscape where the overall rotational inertia of

the grid is decreasing, having such fast-responding Ancillary Services Providers (ASPs) could help reducing

the frequency deviations and, thus, better stabilizing the operation of the electric grid. However, the main

challenge when proving AS with ESSs is represented by the management of the State of Charge (SoC) level.

In fact, the control signal to be tracked can exhibit significant biases over prolonged periods of time which

can rapidly lead to the complete charge or discharge of the ESS. For this reason, in recent years different

recharging strategies have appeared to optimize the provision of fast regulating services [3, 5, 6, 7, 8, 9].

All these studies typically focused on primary frequency control due to the smaller energy throughput

that is typically required with respect to, e.g., Secondary Frequency Control (SFC). Nevertheless, due to the

worst-case energy requirements and/or the conservative prequalification rules recently implemented by many

Transmission System Operators (TSOs), even in this case, ESSs do not represent, in general, a economically

viable solution due to very large capital costs [9].

On the other hand, the potential of demand-side resources to offer control reserves has been extensively

recognized by both the academic and industrial community [10]. Buildings are responsible for 40% of the

total energy consumption worldwide with roughly equal share for residential and commercial buildings [11].
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Moreover, buildings are inherently characterized by a large thermal inertia that can be used to store large

amounts of energy in the form of thermal energy. In particular, commercial buildings are good candidates

for providing services to the grid for the following reasons: 1) they are typically characterized by a large

HVAC system with respect to residential buildings. This corresponds to larger energy consumption per

unit which in turn means a smaller cost of acquisition. 2) Most commercial buildings are already equipped

with Building Energy Management Systems (BEMS) that can be readily used to monitor and control the

operation of their HVAC systems [12].

However, the power consumption of a standard HVAC systems cannot be typically modulated at very

high-frequencies due to physical limitations of the equipment. To mitigate this problem, several approaches

have been proposed that typically focus on identifying specific HVAC components that can sustain such fast

power changes. In [13], Su et. al propose a practical control framework to track a filtered version of the

Area Generation Control (AGC) signal for secondary frequency regulation. This is achieved by acting on

the chilled water supply setpoint of a chiller which, in turn, has a quantifiable effect on the electric power

consumption of the HVAC system. A similar approach was also considered in [14, 15] where the power

tracking was provided by adjusting the fan power consumption of the main air handling unit through either

direct fan speed offset or by adjusting the mass flow setpoint. Also in this case, the building receives a

filtered version of the AGC that is tracked in a [1/30s to 1/1min] or [1/1min 1/10min] frequency band,

depending on the considered configuration. Despite displaying very fast response rates that are compatible

with the typical SFC requirements, these methods have also some drawbacks. First, direct control of fan

speed is not readily possible in most BEMS. Thus, this would require some level of retrofitting adding cost

and complexity. Moreover, due to the complex control architecture of commercial buildings, slower control

loops will likely compensate for net changes to supply pressure of mass flow which limits the ability of these

strategies to track reference signals with slow time-scales. To the best of our knowledge, this is the reason

why experiments of duration longer than 1h have not yet been demonstrated. A different approach has been

proposed in [16, 17, 18], where authors propose to track the reference signal by adjusting the thermostat

setpoint offset which has an indirect effect on the fan consumption through the corresponding change in the

room damper and, therefore, the mass flow pressure. The advantages and disadvantages of this method are

opposite of the previous ones. In general only software modifications would be required since thermostat

changes can be done through many BEMS. However, since the electric power of fans is only controlled

indirectly, communication and mechanical latency can significantly impact the tracking performance [18].

From the previous discussion, it is clear how ESSs and buildings are to some extent complementary

resources. On one side ESSs are power-intensive devices with restrictive energy limitations; on the other

side, buildings are energy-intensive devices with restrictive power limitations. Each type of resource could

not provide ancillary services due to respectively economical and technical limitations but they have the

potential to be operated together to provide reserves economically and reliably, and, in turn, improve
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the overall efficiency of the network. Thus, the idea is to overcome the limitations of these resources by

combining them into a single virtual resource. Thus, we would like the ESS to only take care of high-frequency

components of the AGC while the building takes care of slower and more energy-intensive components.

Similar ideas have been recently explored more from a conceptual standpoint rather than technical.

In particular, in [19, 20] the authors propose control frameworks to split the control signal at the TSO

level so that the resulting components better fit the technical capabilities of different resources such as

ESSs, supercapacitors, DR, etc. However, the implementation of these frameworks would require a drastic

modification to the way the power system is currently operated. On the contrary, in the current paper,

we propose to combine complementary resources to provide fast regulating services while complying with

current regulations.

1.1. Contribution of the paper

In this paper, we provide a method to formally assess the aggregated flexibility that a set of heterogeneous

resources such as an ESS and the HVAC system of a commercial building, can offer on the SFC market.

Moreover, we present a multi-rate predictive control strategy to coordinate the two resources during real-time

operation in order to collectively track the regulation signal received according to the contracted service.

The control methodologies are validated in a series of full-day experimental tests considering the aggre-

gation of a fully-occupied office building on the EPFL campus and a grid connected ESS.

The contributions of the presented control framework with respect to existing works in the literature are:

1. By optimally splitting the AGC, the proposed method allows each resource to only track the compo-

nents that best suit its technical capabilities. In particular, this allows virtually any type of building to

participate in the provision of the service irrespective of the particular HVAC system. Conversely, by

tapping the large thermal storage of the building, the method allows to drastically reduce the energy

requirements on the ESS.

2. To better manage the status of the aggregated system, the closed-loop controller also adjusts the

aggregated baseline power consumption on the intraday energy market.

3. The method guarantees at all times a high tracking quality without the need to filter the original

signal. This is obtained by letting the ESS take care mostly of the high-frequency components of the

AGC signal while the slower-frequency components are left to the building and the intraday market.

4. To further improve the closed-loop performance of the controller, a data-driven predictor for the future

power requests has been developed that exploits the time-correlation and strong daily patterns of the

AGC signal.

5. Experiments have been performed over extended periods of time (9 continuous days) which validates

the robustness of the method against a wide range of uncertainty involved. Moreover, the experiments

have been designed so as to be in complete compliance to the current regulation for the provision of
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Name Definition

EPFL École Polytechnique Fédérale de Lausanne
ESS Electrical Storage Systems
TSO Transmission System Operator
AS Ancillary Service
ASP Ancillary Service Providers
AGC Area Generation Control
SFC Secondary Frequency Control
HVAC Heating, Ventilation, Air conditioning
MPC Model predictive controller
SoC State of Charge
BEMS Building Energy Management System
AGC Area Generation Control
HLC High Level Controller
LLC Low Level Controller
HP Heat Pump

Table 1: Acronyms.

SFC in the Swiss market. To the best of authors’ knowledge, this is the first work providing such an

experimental validation over a prolonged period of time of the coordination of a set of heterogeneous

resources proving SFC.

Notation: Throughout the article, Rn denotes the n-dimensional real space, uppercase letters are used

for matrices and lower case for vectors. ak represents the value of vector a at time k, whereas bold letters

are used to denote sequences over time, e.g., a = [aT0 , a
T
1 , . . . , a

T
N−1]T . The notation Pres indicates the

real power flow of the particular resource, res whereas the bracket superscript notation, Pres,(j) stands

for the power trajectory corresponding the j-th scenario. Finally, the expected value operator over the

probability distribution, ε, is denoted by Eε{·}. Please refer to Tables 1 for the list of all acronyms used in

the manuscript.

2. Core Idea - Intuition

Fast regulating services to the electric grid, such as secondary frequency control (SFC), have been

historically provided by traditional power plants such as hydro power plants, coal or gas stations, etc.

The reason for this can be traced back to their relatively fast power responsiveness and to their inherent

capabilities to absorb any energy bias of the regulation signal. The focus of this paper is to provide a control

framework in order to reliably provide these kinds of services by combining ESS and commercial buildings.

In the following section the core idea underpinning the whole proposition is provided.

2.1. Fast and Slow Resources

In this section we provide a qualitative description of the physical capabilities of both the ESS (fast) and

the commercial buildings (slow resources) with respect to the typical requirements for the provision of SFC
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to the grid.

In particular, we focus on a few key aspects that can be broadly categorized as power requirements and

energy requirements. Following the framework proposed in [4], we compare the main characteristics of each

resource with respect to the typical requirements for SFC (in the Swiss case). In particular, we focus on five

key characteristics that are described in the following.

• Energy capacity: the maximum energy that can be shifted or stored by the resource.

• Ramp rate: the maximum rate at which the resource can modify its power production/consumption

from its maximum to its minimum value or viceversa.

• Response granularity: the capability of the resource to implement any power setpoint between its

minimum and maximum operating points.

• Response frequency: how often the power injection of the resource can be modified without wearing

its physical equipment

• Response time: the maximum time elapsed between the power tracking request and the consequent

modification of the power injection of the resource

To analyze the main characteristics of SFC with respect to the considered framework, we considered its

frequency spectrum, shown in Figure 1. The spectrum is obtained from one year of historical realization of

the AGC signal for 2014. A few observations are in order. First of all, high frequency components are quite

damped due to the effect of both the system inertia as well as primary frequency control. Many distinct

peaks are then visible in the medium range of the spectrum which corresponds to particular instants of

the day and are mainly due to the way the market is operated. The highest peaks are at a frequency

corresponding to 60, 30, and 15 minutes. More generally, an overall significant presence of low-frequency

peaks can be observed, that are due to the integral action of SFC. Thus, a resource providing this service

will need to track a signal spanning a wide range of frequency components (from 1/4 seconds to 1/60 min.)

and with significant energy requirements.

Referring to Table 2, ESSs are highly responsive devices that exhibit reaction times and ramp rates

that are only limited by the capabilities of their power inverters. Thus, ESSs not only meet, but even

exceed, most of the requirements for the provision of SFC. However, due to the fact that the AGC signal can

display significant biases over prolonged periods of time, the worst-case based dimensioning of ESSs typically

represents a severe impediment to their widespread deployment. In fact, since the price of ESSs is typically

determined by the required energy capacity and since the provision of SFC is rewarded in proportion to

the power capacity offered, it is desirable to keep the energy/power ration as small as possible. Regarding

commercial buildings, due to the large variety of different HVAC systems, it is difficult to provide a unique
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Figure 1: Spectrum of the AGC signal

identifier for all the considered key characteristics. Nevertheless, general qualitative statements can be

given. First of all, commercial buildings are inherently characterized by a large thermal inertia that can be

exploited to cheaply store energy without perceptibly affecting the occupants’ comfort. On the contrary,

HVAC systems are in general not suitable for fast regulating services [4]. In particular, their response time

can be relatively slow due to the mechanical, control, and communication latencies that are introduced by

complex BEMS [18]. Also strict constraints on ramp rates and response frequency are typically imposed to

prevent an excessive stress and wear of the equipment.

Comparing the characteristics of these two resources, their complementarity is apparent. On one side, the

ESSs are power-intensive devices with restrictive energy limitations; on the other side, buildings are energy-

intensive devices with restrictive power limitations. Each of these resources cannot readily provide ancillary

services due to respectively economical and technical limitations. However, they have the potential to be

operated together to provide reserves economically and reliably, and in turn improve the overall efficiency

of the network.

3. Resource Modeling

This section presents the mathematical models of all considered resources presented in the previous

Section.
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Property SFC requirements ESS Commercial buildings

Energy capacity [kWh] Significant Limited (very expensive) Significant (cheap)
Ramp rate [kW] High Very high Moderate
Response granularity Continuous Continuous Limited
Response frequency [Hz] High Arbitrary Slow to fast
Response time [s] High High Slow to Fast

Table 2: Qualitative description of the technical capabilities of ESSs and Commercial Buildings in relation to the requirements
for the provision of SFC.

3.1. Building dynamics

We consider a commercial building served by an HVAC system that is either fully or partially controllable

through a BEMS system.

3.1.1. Building Thermodynamics

The building thermodynamics are typically characterized by a set of linear equations of the form:

xi+1 = fb(xi, ui, di)

yi = fz(xi, ui, di)
(1)

where xi ∈ Rnx is the state of the system, ui ∈ Rnu is the thermal input to the building, di ∈ Rnd is the

disturbance input (outside temperature, solar radiation, occupancy, etc.), and yi ∈ Rny is the temperature

in different zones of the building at time step i. Typical sampling time is in the range of 15 minutes to 1

hour.

Thus, it is possible to define, over a specified horizon, N , a set of thermal trajectories that the building

can support without violating its dynamics and constraints. More precisely, we define:

U(x0,d) =


u

xi+1 = fb(xi, ui, di)

yi = fz(xi, ui, di)

|yi − Tref| ≤ θi
ui ∈ U

∀i = 0, . . . , N − 1.


(2)

where x0 is the initial state of the building, Tref is a user-defined parameter which defines the ideal room zone

temperature, and θi is the maximum allowed deviation, that can be time-varying, of the zone temperature

from the ideal value. Thus, U is the set defining the physical constraints on the thermal power input to the

building which depends on the current weather prediction d, and initial state.
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3.1.2. HVAC System

The heating, ventilation, and air-conditioning system consumes the electric energy and produces the

required thermal energy to maintain occupants’ comfort in the building.

Phi = fhvac(ui, di) (3)

We also define the set of feasible electrical power consumption profiles over the horizon length N :

Ph(x0,d) =


Ph

Phi = fhvac(ui, di)

ui ∈ U(x0,d)

Phmin ≤ Phi ≤ Phmax
∀i = 0, . . . , N − 1.

TPh = 0


(4)

which is the set of electric power trajectories for the HVAC system for which both thermal and electric

constraints over the prediction horizon are respected.

In the definition of Ph, please notice the presence of a moving-block constraint ( see e.g. [21]), TPh = 0.

This constraint enforces that the electric power of the HVAC system is fixed over a certain number of time

steps and is considered to encode the fact that, in general, it is not possible to adjust the power consumption

too often either due to physical limitations of the equipment or to communication and mechanical latency

that would inject significant fluctuations. Thus, the number of steps for which the power is blocked should

be decided, depending on the particular application, in order to precisely track (on average) any given power

setpoint. To provide an example, consider a building sampled at a 15 minute resolution for which the power

consumption can be modulated only every 30 minutes. Assuming a horizon, N , equal to 6 steps, the matrix

T would have the following form:

T =


1 −1 0 0 0 0

0 0 1 −1 0 0

0 0 0 0 1 −1


3.2. Electrical storage

We consider a grid-connected Electrical Storage System (ESS) for which the power injection can be

modulated through a Battery Management System (BMS). We describe the temporal evolution of the SoC

with the following difference equation.

SOCi+1 = f(SOCi,P
s
i ) (5)

where SOCi represents the SoC of the ESS at time step i, P si its power injection, and f(·) is the map

describing the time evolution of the SoC as a function of the current SoC and its power injection. In

general, f(·) accounts for both conversion as well as temporal losses.
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Both SoC and the power injection are constrained to lay within a feasible operational range at each time

instance, i:

SOCmin ≤ SOCi ≤ SOCmax (6)

P smin ≤ P si ≤ P smax (7)

The set of feasible power of the ESS is defined as

Ps(SOC0) =


Ps

SOCi+1 = f(SOCi,P
s
i )

SOCmin ≤ SOCi ≤ SOCmax

P smin ≤ P si ≤ P smax

∀i = 0, . . . , N − 1.


(8)

3.3. Total Power Consumption

As we are interested in combining these two resources into one single virtual entity, it is useful to

introduce the total electrical power injection at time i, denoted as Pi, which is defined as the sum of the

power injections at the two resources:

Pi = Phi + P si ∀i

Remark : Please note that we consider a passive sign notation, i.e., positive power values denote consumption.

4. Control Architecture

Referring to Figure 2, we provide herein an overview of the overall control architecture and how each

component of it interacts with both the controlled resources as well as all external entities. The outputs

and sampling times of the different modules in Figure 2 are given in Table 3.

Local Control & Measurements: We assume that each resource is already equipped with local sensors

and a control system which monitors and controls the low-level functioning of the resource. In the case of

BESS, this is typically represented by a BMS which provides SoC estimation, management of the individual

cells as well as of local voltage and current constraints. Regarding commercial buildings, for most of them a

BEMS is typically present which provides continuous monitoring and that can be used to control the power

consumption of the HVAC by adjusting a number of user-defined setpoints.

More details for the particular experimental setup considered in this paper can be found in Section 6.

Forecasting Module: Responsible for the prediction of all uncertain quantities that affect the per-

formance of the system. Thus, this module is in charge of obtaining both weather as well as AGC power

requests predictions. These two quantities can be either locally computed, as in the case of the TSO future
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Figure 2: Overview of the control architecture. The modules in blue, red, and green colors operate with a sampling time of
one day, 15 minutes, and 4 seconds, respectively.

power requests, or simply retrieved from external weather stations, as in the case of weather forecasts. The

outputs of this module are sampled with a sampling time of 15 minutes.

More details can be found in Section 5

Planning Module: Activated once each day at a pre-specified time instant. Based on the most recent

information, it solves an economic optimization problem to determine the aggregated power profile (day-

ahead baseline) and the power capacity for the following day of operation. These quantities are then

transmitted by means of an external secured channel to the Energy Market (baseline profile), and to the AS

Market (power capacity) 1.

More information can be found in Section 4.1.

Tracking Module: Activated during the delivery of the service. It is in charge of performing a multi-

time scale coordination of all the resources so as to track the power request coming from the TSO while

ensuring local constraints at all resources. The tracking module consists of two controllers - high level, and

low level. The high level controller operates with a sampling time of 15 minutes and computes the setpoint

for the slow resource (BEMS) and the intraday trades to modify the day-ahead baseline, while the low

level controller operates with a sampling time of 4 seconds and computes the setpoint for the fast resource

(BEMS).

Please refer to Section 4.2 for more information.

1In this paper the power capacity is computed and transmitted daily. Clearly other possibilities can also be encompassed,
e.g. weekly bidding
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Module Output Sampling Time

Planning module baseline power (P̄), and power capacity (γ) 1 day

Tracking Module

High level controller power setpoint for building (Phi ), and intraday transaction (P̂i) 15 minutes
Low level controller power setpoint for battery (P st ) 4 seconds

Forecasting module AGC prediction scenarios (â), and weather prediction (d) 15 minutes

Table 3: Outputs and sampling times of the modules in Figure 2.

4.1. Planning Module

This section presents the Planning Module which is activated at a pre-specified time instant each day to

plan the next day of operation. More precisely, the objective of this module is to determine the day-ahead

baseline which is the power profile that the set of resources should track in the absence of regulation service

(normal operation). The baseline power profile is denoted by the sequence P̄i, where the index i denotes

a 15-minutes interval 2 for the next day of operation. The module also determines a power flexibility, γ,

which represents the maximum allowable deviation around the baseline that the aggregation of resources is

willing to sustain for the next day of operation. This is done by solving the following economic optimization

problem:

Problem 1 (Bidding problem).

minimize
γ,P̄,π

Ph ,πP̂ ,πPs

Ea

{
J(γ, P̄, P̂,a)

}
s.t.

(Building constraints) Ph ∈ Ph(x0,d) ∀a ∈ Ξ (9)

(ESS constraints) Ps ∈ Ps(SOC0) ∀a ∈ Ξ (10)

(Total power) P = Ph + Ps ∀a ∈ Ξ (11)

(Power tracking) ‖P− P̄− P̂− γa‖∞ ≤ me ∀a ∈ Ξ (12)

(Power flexibility) γ ≥ 0 (13)

(Control Policies) Ph = πPh(a), P̂ = πP̂ (a), Ps = πP s(a). (14)

where J represents the economic cost for the next day of operation which will vary depending on the specific

AS regulations and country. In general, it would comprise different components such as the cost for the

purchased baseline, the reward for the provided flexibility, a penalty cost for tracking violations, etc. A full

overview of this cost function for the particular case of the Swiss market can be found in [22].

Equation (9) guarantees the satisfaction of comfort constraints as well as constraints on the HVAC

system as detailed in Section 2.1. Similarly, (10) enforces the satisfaction of all constraints for the ESS. The

2The choice of the duration of this interval depends on the specific regulations for the country of interest. In the Swiss AS
market the baseline must be specified for each 15 minute slot in the day.
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total power consumption for the set of resources is defined in equation (11) whereas equation (12) imposes

a minimum quality of tracking service. More precisely, it states that the aggregated power consumption

during real-time operation, P, should be adapted so as to guarantee a bounded tracking error:

|εi| := |Pi − P̄i − P̂i − γai| ≤ meγ i = 1, . . . , N

where P̄i is the committed baseline and the term P̂i is possible modifications of the committed baseline

through intraday energy transactions (described in the following). Finally, the term meγ, determines the

maximum allowable magnitude of tracking error in proportion to the offered capacity. This quantity is

typically fixed as a participation requirement by the TSO.

The term a, represents the AGC power requests, and it is, therefore, unknown at the time of decision.

Thus, it is considered as an uncertain quantity belonging to the fixed uncertainty set Ξ which is constructed

as detailed in following section. Due to the fact that the signal a is revealed as time progresses, both the

real-time power trajectories of the ESS and the building, as well as the intraday energy transactions are not

determined once for all by the bidding problem. On the contrary, these quantities are encoded as causal

functions of the observed uncertainty, i.e. the control action at each time instant, i, depends on all the past

acquired information up to time i− 1. Finally, due to dependence on the uncertainty, the cost function, J ,

is evaluated in expectation.

Due to the infinite dimensionality of the decision space (policies), the problem as it is posed now cannot be

solved. A scenario-based two-stage approximation scheme, similar to the one proposed in [23], is presented

in Section 4.1.3 together with a specific form of the cost function J , and an explicit expression for the

intraday policy, πP̂ (a).

4.1.1. Uncertainty set construction

To construct the uncertainty set, we consider, as is quite common, a scenario based approach. More

precisely, the uncertainty set, Ξ, is constructed as the convex hull of a finite number Ns of past observed

regulation signals and is given as

Ξ =


Ns∑
j=1

λjaj |
∑
j

λj = 1, λj ≥ 0

 (15)

where aj are the previously observed AGC signal scenarios. [23] discusses the implications of the choice of

Ξ in detail. The key idea is that, thanks to the statistical consistency of the AGC signal, if the controller is

designed against past recorded instances of the AGC it should also be robust to future realizations.

4.1.2. Intraday Control

During real-time operation, the baseline power profile can be adjusted according to the current national

market regulations. To provide an example, in Switzerland, it is possible to modify the baseline up to
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30 minutes before delivery. When dealing with energy-constrained systems such as ESS or buildings, this

is a very useful feature as it can be exploited to remove energy biases of the AGC signal that can have

detrimental effects on the resources. Moreover, this can also be encoded into the bidding problem resulting

in a larger amount of offerable service. To encode this into our bidding problem, we have considered an

offline causal control policy as first introduced in [22]. For the sake of clarity, in the following, we simply

report the policy.

For the combination of the resources offering the service, the residual tracking signal r is the effective

regulation signal with respect to the day-ahead declared baseline, after making the intraday adjustments.

It is defined as the sum of the regulation signal and the normalized intraday control action

r = a + P̂n

where P̂n is the normalized intraday control action, i.e., P̂ = γP̂n. The tracking constraint in (12) can be

written in terms of the residual signal as

‖P− P̄− γr‖∞ ≤ me

The idea of the intraday control policy is to modify the day-ahead baseline in such a way that it

minimizes the energy content (cumulative sum) of the resulting residual tracking signal. A regulation signal

with smaller energy content means that it will have a smaller bias, and will be closer to a zero-mean signal.

It also means that it will require a combination of resources with smaller overall energy capacity to track

the signal. In other words, a given set of resources can provide a higher flexibility when required to track

a regulation signal with a small energy content. For these reasons, the intraday control policy is designed

to reduce the energy content of the residual tracking signal by making appropriate intraday transactions at

each time step. The intraday policy used in this study was developed in [22], and is presented here for the

clarity of the manuscript.

πP̂n(a) =


P̂n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P̂ni+1 =

argmin
P̂n

i+1

| ri0 + P̂ni+1 + Ea[âi+1
i ] |

s.t. ri0 = ri−10 + P̂ni + aii−1

r−10 = 0, P̂n0 = 0, a0−1 = 0

∀i = 0, ..., N − 1.


(16)

where the cumulative sum of a signal r from time step j to k is defined as rkj =
∑k
i=j ri. This causal intraday

control policy is a function of the past received AGC signal and determines the future intraday trades. At

each timestep, it measures the received AGC signal and optimizes the future intraday control action that

minimizes the expected energy content of the future residual tracking signal. Note that the future AGC
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signal is unknown at each time step, therefore an expectation is used in the cost function which can be

evaluated using historic scenarios of the AGC signal.

The causal intraday control policy (16) can be used to compute a trajectory of intraday control actions

corresponding to a given trajectory of AGC signal, and similarly, it can be used to generate scenarios of

residual tracking signal corresponding to given scenarios of the AGC signal.

4.1.3. Bidding solution

The bidding problem can be approximated using the definition of the uncertainty set Ξ (15) by the

following two-stage robust optimization problem:

Problem 2 (Tractable Bidding Problem Formulation).

minimize
γ,P̄

− γ

s.t.

(Building constraints) Ph,j ∈ Ph(x0,d) ∀j = 0, . . . , Ns (17)

(ESS constraints) Ps,j ∈ Ps(SOC0) ∀j = 1, . . . , Ns (18)

(Total power) Pj = Ph,j + Ps,j ∀j = 0, . . . , Ns (19)

(Power tracking) ‖Pj − P̄− γrj‖∞ ≤ me ∀j = 0, . . . , Ns (20)

(Power flexibility) γ ≥ 0 (21)

(22)

Please notice how the intraday control policy has been directly incorporated in the residual signal, rj

as detailed in equation (16). Moreover, the control policies, πPh(a) and πP s(a) have been replaced by an

implicit parametrization, as common for two-stage approximations [24], in which the optimization problem

can select a different aggregated power trajectory (and different power trajectory for the ESS and the

building) for each scenario rj . Finally, the general form of the cost function J introduced in Problem 1 has

been simplified so that the problem only tries to maximize the offered power capacity. This was done mainly

for the sake of simplicity. However, as detailed in [22], this is also desirable from an economic perspective

as most of the economic benefits come from the reward for the offered capacity. We highlight that more

complex cost functions can be easily incorporated.

The solution of the bidding problem results in the optimal value of the baseline power P̄∗, and flexibility

γ∗.

4.2. Tracking Module

Every day at 00:00 the committed baseline and capacity, computed by the Planning Module, is activated

and the set of resources are required to deliver the SFC service every 4 seconds. This is done by means of

a Tracking Module that optimally coordinates the two resources so that their total power consumption is

equal, within the allowed error bounds, to the sum of the total baseline and the AGC signal scaled by the

committed power capacity.
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The Tracking Module is composed of two controllers continuously working at different timescales, one

at 15 minutes and the other one at 4 seconds3. On one side, the High Level Controller (HLC) decides the

setpoints for the slow resource (building) as well as the future energy transactions to place in the intraday

market. On the other side, the Low Level Controller (LLC) computes the power injection of the ESS so

that the set of resources precisely track the received AGC signal. In the following sections the formulation

of the two controllers is detailed.

4.2.1. High-level

The HLC operates at a 15 minutes time step. It is responsible of computing an adequate power setpoint

for the building for the following 15 minutes so as to: 1) respect comfort and operational constraints of the

building 2) guarantee that the ESS will be operated within its operational constraints. Moreover, depending

on the current status of the resources and the current AGC predictions, the HLC can decide to sell or buy

energy in the intraday market so as to either guarantee a high tracking quality and to improve the overall

efficiency of the system. This is done by continuously running the following algorithm at every slow iteration

k:

1. Retrieve the most recent weather forecast over the considered prediction horizon, N .

2. Form the predicted vector of disturbances, d, over the prediction horizon.

3. Retrieve a set of possible scenarios, aj for the AGC signal from the Forecasting Module.

4. Estimate the current state of the building, xk by means of a standard Kalman filter.

5. Retrieve the current state of the battery, SOCk.

6. Solve the following MPC problem:

Problem 3 (Tracking MPC Problem).

maximize
Ph

0 ,P̂
Eâ {Jcomfort}

s.t.

(Building constraints) Ph,j ∈ Ph(x0,d) ∀j = 0, . . . , Ns (23)

(ESS constraints) Ps,j ∈ Ps(SOC0) ∀j = 1, . . . , Ns (24)

(Total power) Pj = Ph,j + Ps,j ∀j = 0, . . . , Ns (25)

(Power tracking) ‖Pj − P̄∗ − P̂− γ∗âj‖∞ ≤ me, ∀j = 1, . . . , Ns (26)

(State update) x0 = xk, SOC0 = SOCk (27)

(Power flexibility) γ ≥ 0 (28)

(29)

7. Send the computed setpoint to the local controller of the building

3These sampling times are specific to the Swiss market and will, in general, depend on the specific regulations for the SFC
provision, and for the intraday market
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8. Wait for the next iteration

In Problem 3, the quantity âj represents the scenarios of the future AGC signal (over the prediction

horizon) as generated by the AGC predictor (Section 5.2), the cost function Jcomfort is user-defined and it

can comprise different metrics as, e.g., the comfort quality for the building occupants.

The solution of the MPC problem is the power setpoint, Ph0 , for the HVAC system which is sent to

the local controller in charge of tracking this for the following 15 minutes. Moreover, the problem also

determines the adjustment of the committed baseline profile, P̂, which are placed as energy trades in the

intraday market. Note that the first few time steps of P̂ are fixed by the previous iteration of the MPC

controller and not an optimization variable to make sure that the appropriate delay of the intraday market

is respected (45 minutes in the Swiss market).

4.2.2. Low-level

The low-level tracking controller computes the control input for the fast resource (ESS). Every 4 seconds,

it measures the actual power consumption of the slow resource which, in general, might have small deviations

with respect to the setpoint as computed by the HLC. Based on this information, the LLC computes the

power setpoint at each fast iteration, t, for the ESS as follows:

P st = P̄ ∗t + P̂ ∗t + γ∗at − Pht (30)

where P̂ ∗t is the intraday trade fixed by the HLC, at is the received AGC signal, and Pht is the measured

power consumption of the slow resource (building) at fast time step t.

The computed power setpoint for the ESS is then transmitted to the BMS controller which will be

responsible to implement this given that all physical constraints of the ESS are respected. If this is not the

case, the power injection is rejected and a tracking error will occur.

5. Forecasting Module

5.1. Weather forecast

Weather forecasts can be typically obtained through available web-services by simply specifying the

geographic location of interest. This requires one to select the closest weather station in the same bioclimatic

zone as the installation. In the experimental demonstrator of Section 6, the weather station was selected

from four available stations in a 3 Km radius, based on the historical quality of the data it provides. (source

MeteoSwiss, meteostation Lausanne freiland , GPS coordinates 6◦38.56′ 46◦33.33′). The forecasting module

retrieves the most updated forecasts every 15 minutes for the next 24h.
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5.2. AGC Predictor

The ability to anticipate future values of the power requests dispatched by the system operator helps

greatly in improving the average economic performance of the controller. We start by highlighting some

characteristics of the AGC:

• The AGC signal follows a periodic pattern with recurring daily and hourly patterns, as already dis-

cussed on the basis of Figure 1.

• The empirical probability distribution of the AGC is non Gaussian, and time-varying

• The AGC signal is strongly correlated over time.

In the view of using forecasts of the AGC to solve the multi-stage real-time MPC Problem 3, the

availability of a probabilistic forecast of the AGC is desirable, as opposed to a simpler point forecast. These

probabilistic forecasts should capture the time-correlated nature of the AGC appropriately. In view of these

elements, a method based on a variation of the non-parametric probabilistic forecasting method presented

in [25] has been adopted and is presented in this section.

We denote with at the AGC power request at time t as the realization of a random variable At. Following

the observation that the mean of the AGC presents a strong daily pattern, its distribution around that mean

is consistent over time, we use the following assumption:

at = āt + ãt, ∀t (31)

where āt ∈ R captures the daily mean, so that āt = āt+k∗24h for all k and ãt originates from a single

generating random variable denoted A. The AGC is therefore generated by the sum of a daily mean and a

single generating random variable A.

We denote with f the probability density function of A and F the corresponding cumulative distribution

function. Assuming F to be strictly increasing, we define the quantile of A at level α as qα = F−1(α).

A forecast of this quantile is denoted q̂α. A non-parametric forecast of the density function is formed by

collecting quantile forecasts as:

f̂ = {q̂αi |0 ≤ α1 < . . . < αm ≤ 1} (32)

Based on m observed realizations (ã(j))j=1,...,n of A, unbiased estimates of the quantiles are formed as

the empirical quantiles of the observed realizations, ie:

q̂αi = min
x

#{ã(j) < x}
n

≥ αi (33)

In turn, F̂ is obtained as the linear interpolation of the empirical cumulative distribution function between

levels (αi)i=1,...,m.
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It is desirable that the estimated and observed quantiles are as close as possible, and should asymp-

totically match exactly. This property is referred to as reliability. When the estimates f̂ are reliable, the

random variable Y whose realization at time t is defined as:

Yt = F̂ (ãt) (34)

is uniform, that is Y ∼ U([0, 1]).

We will exploit the fact that predictions can be made Gaussian using a suitable transformation. We can

obtain a normally distributed variable function X from Y as follows:

Xt = Φ−1(Yt), ∀t (35)

where Φ−1 is the probit function defined as Φ−1 : p→
√

2 erf−1(2p−1) and erf−1 the inverse error function.

This yields Xk ∼ N (0, 1) , Gaussian-distributed with 0 mean and variance 1.

To capture the time correlation of the AGC, we assume for each time t that the random vector Xt−K:t+N−1 =

(Xt−K , . . . , Xt+N−1) follows a multivariate Gaussian distribution N (0,Σt), with K and N a horizon in the

past and future that are long enough to capture the time-correlation of the AGC. It is assumed that N and

K are fixed and we simply refer to Xt−K:t+N−1 as Xt. Once more, it is assumed based on observations that

all Xt’s originate from a single generating multi-variate Gaussian random variable X . We can then estimate

its covariance Σ by using past observations. An unbiased estimate is given by:

Σ̂ =
1

n− 1

n∑
t=1

XtX
>
t (36)

The following procedure is then used to generate scenarios at time t.

1. The observations at−K:t−1 = (at−K , . . . , at−1) for the last K time steps are collected.

2. The corresponding realization of Xτ for τ = t−K, . . . , t− 1 are computed by removing the mean and

transforming the result to normal as:

Xτ = Φ−1(F̂ (aτ − āτ )) (37)

3. The parameters of the multi-variate Gaussian characterizing the prediction (Xt, . . . , Xt+N−1): µ̂t:t+N−1

and Σ̂ are calculated by marginalizing the estimated distribution X̂t with respect to the observation

vector (Xt−k, . . . , Xt−1), which gives:

µ̂N = Σ̂NKΣ̂−1KKXt−K:t−1

Σ̂N = Σ̂NN − Σ̂NKΣ̂−1KKΣ̂>NK

(38)

where Σ̂ =

Σ̂KK Σ̂>NK

Σ̂NK Σ̂NN


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Figure 3: Experimental results on the EPFL campus: One full day of operation emulating the participation to the SFC in the
Swiss Market.

Figure 4: RMSE of the normalized prediction error as a function of lead time of prediction

4. Ns scenarios (X
(i)
t:t+N−1 = (X

(i)
t , . . . , X

(i)
t+N−1))i=1,..,Ns

of this marginal are sampled in an iid fashion.

5. The inverse probit function is applied to each component of the scenarios to obtain Y
(i)
τ = φ(X

(i)
τ ), ∀τ =

t, . . . , t+N − 1, i = 1, . . . , Ns.

6. The inverse of the estimated cumulative distribution function is finally used to compute the final

forecast as â
(i)
τ = F̂−1(Y

(i)
τ ) + āτ

This together provides forecasts for the AGC for the N next steps.

Figure 3 illustrates the performance of the predictor to predict the AGC. A one-day realization is depicted

together with the 15 minutes-averaged prediction generated by the predictor and used in the MPC. We see

that it can capture the trend quite successfully. Figure 3 shows the root mean square of the normalized

prediction error comparing the predictor described in this section with two basic predictors. The mean

Predictor predicts future values of the AGC to be the corresponding daily mean ā. The persistent predictor

predicts that the future value of the AGC is the current observed value, representing the fact the AGC is
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Figure 5: Overview of the experimental setup.

correlated over time. We see that our predictor achieves better predictions over the whole horizon, especially

for horizons below 30 minutes.

6. Experimental setup

The experimental setup is depicted in Figure 5.

6.1. Commercial Building

We run our experiments in a relatively newly constructed building on the EPFL campus. The building

of roughly 600 m2 is used as a large audience/lecture room and is occupied on a regular basis with a

maximum of 200 occupants. The building is served by a forced air-system that works for both cooling

and heating depending on the season. More precisely, a single compressor roof-top heat pump, AERMEC

RTY-04, is installed which accounts for 6kW active power at peak. A proprietary controller inside the heat

pump continuously monitors the return air temperature coming from the building, it compares it with the

reference temperature, and determines the operating point of all its active components (compressor, fan,

etc.). We decided not to overwrite the logic of the controller since this has been specifically designed by

the manufacturer to reduce the stress and wear on mechanical components of the heat pump. Moreover, in

order to re-design this internal controller, a certain level of retrofitting would have been needed as not all

relevant internal parameters are readily available.

Thus, the control input to the system is represented by the reference indoor temperature. This reference

change will be tracked by the internal controller of the HP with a consequent effect on the electric power
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consumption of the HVAC system. A rule-based control routine interfacing the HP controller to the Tracking

Module was developed. The routine receives as input a power setpoint every 15 minutes from the solution of

Problem (3) and returns a sequence (1 minute resolution) of indoor temperature setpoints that are sent to

the internal controller of the HP so as to track the given power setpoint. This has the significant advantage

of requiring, in general, only minor software modifications to the existing BEMS as most of them allow the

remote control of thermostat setpoints.

For the measurements, the building has been retrofitted with three wireless Aeotec Multisensors that

continuously monitor indoor temperature, and presence. Weather data were collected from a nearby weather

station every 5 minutes as explained in Section 5, including measurements for outside temperature, horizontal

global solar irradiance and weather observation. The monitoring and control of the heat pump is done

through the serial communication protocol, Modbus. A central processing unit continuously receives all

measurements and it uploads them into the database, InfluxDB, which is specifically designed to handle

time-series data. The database is stored on the local network and it is connected to the open-source

visualization platform, Grafana, which allows one to continuously supervise the overall functioning of the

system. The Planning, Tracking, and Forecasting Modules are implemented in MATLAB, running on a

computer on the local network that can access the latest measurements from the database and can send the

temperature setpoints to the building and the power injection setpoints to the battery emulator.

6.1.1. Building model identification

The identification of the building model was performed using standard black-box linear identification

techniques. In particular, we performed three weeks of open-loop experiments where, in order to excite

the system dynamics, the temperature setpoint to the HP controller was modified using a mix of step and

PRBS signals within a safe range of temperatures. Regarding the weather, a reasonably varying pattern

was observed over the total duration of the experiments.

The experiments data set was divided into two chunks, one for identification (two weeks), and one for

validation (one week). A linear sub-space identification approach was used [26]. A state space dimension of

order nx = 3 was found to be sufficient to appropriately describe the system dynamics. The model comprises

three inputs, i.e., Ph, the electric power consumption of the HP, Tout, the outside temperature, and Qsun

the global horizontal irradiance. To simplify the notation, we introduce the external perturbation vector,

d := [Tout, Qsun]. The output, y, is the indoor temperature inside the building which is obtained as the

average of all installed sensors. The identified model is of the following form

xk+1 = Axk +BuP
h
k +Bddk +Kek

yk = Cxk + ek

(39)

where the term ek represents the noise component and K the disturbance matrix.
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Figure 6: Validation of the model. The prediction error over one day is typically below 1 C. Upper: The actual measured
indoor temperature (red) vs. the predicted temperature of the identified model. Lower left: The electrical power consumption
of the HP. Lower central: The outside temperature. Lower right: Solar irradiance.

As can be observed in Figure 6, the model shows relatively good performance. For a quantitative

evaluation, we consider the fit of the model which is computed as follows:

FIT := 100 · 1− ||y − ŷ||
||y − ȳ||

where ŷ is the predicted output, y the measured output, and ȳ the mean of the measured output.

The FIT ranges always between 70 and 83 % on a one day prediction horizon for all days in the validation

dataset.

An inspection of the model reveals few key characteristics of the considered building. The impact

of the solar irradiance is significant as the static gain from the solar input to the indoor temperature is

6.67oC/(kW/m2). The static gain from the outside temperature is less significant: 0.2oC/oC. As a three

dimensional state-space model was selected, three different time constants are present: one relatively fast

at 15 minutes and two slower ones at 1 and 1.5 hours respectively. A simple physical interpretation can be
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Quantity Value

Energy capacity 5 kWh

Power limits -5/5 kVA

η 0.95

a 1

Table 4: Technical specifications for the ESS considered in the experimental campaign.

given for this result: the fast time constant corresponds to the fast indoor air dynamics, whereas the slower

dynamics can be associated to the walls and floor temperatures which constitutes for most of the thermal

inertia of the building.

6.2. Electrical battery

In the experiments, a battery emulator was considered to propagate the battery SoC depending on the

power injection as computed by the LL Controller (3).

In particular, at each fast sampling time (4 sec.), Ts the battery was simulated by means of the following

non-linear model:

SOCt+1 = aSOCt + η(Pst )+ +
1

η
(Pst )−

where (Pst )+ represents the power injected in the ESS and (Pst )− power extracted from the ESS. Both

the cycle efficiency coefficient, η, as well as the temporal losses coefficient, a, have been identified based

on experimental data for the Leclanché large-scale ESS on the EPFL campus. More information regarding

the modeling of the battery can be found in [27] whereas all relevant parameters implemented in the ESS

emulator are reported in Table 4.

7. Experiments

In this section we describe the experimental campaign that was conducted in August 2017. To fully

test the robustness and reliability of the controller, we run a set of nine days of continuous experiments

emulating the participation of the combined system (BESS + building) into the Swiss SFC according to the

current regulations. Thus, we consider historic AGC for the year 2013/2014 that was obtained from the

Swiss TSO, Swissgrid. This large set of data is split into two subsets. The first subset is used to construct

the uncertainty set (15) used in the Planning Module as described in Section 4.1.1. The second subset is

used to randomly pick a realization of the AGC signal that is used during the closed-loop operation.

Everyday day at 23:00, the Planning Module collects the most current weather predictions from the near-

est MeteoSuisse weather station. The weather forecasts comprise outside temperature, and solar radiation

over a 24h period. The Planning Module further retrieves the current SoC level of the BESS and the most

24



updated state estimate of the building thermodynamics model from a continuously running Kalman filter.

It then solves the bidding problem (2), and determines the power baseline at a 15-minutes resolution, and

power flexibility for the next 24 hours starting at 00:00 of the following day.

At 00:00 everyday, the delivery begins and the Tracking Module is activated. It receives from the

Planning Module the committed power profile, P̄∗ and capacity γ∗. As described in Section 4.2, at each

slow iteration (15 minutes), it collects the current weather predictions over the prediction horizon together

with the current state for each resource. The Tracking Module also obtains a set of possible AGC scenarios

from the AGC Predictor. It then solves the HL Control problem (3) to determine both the power setpoint

Ph for the controllable building as well as the amount of energy to trade on the intraday market P̂ . Finally,

the LL Controller (30) computes the power injection setpoint for the ESS so as to track the received AGC

signal.

Figure 7 displays one full day of operation. In particular, the topmost plot shows the pre-computed

baseline power profile as computed by the Planning Module, the AGC request scaled by the bid capacity,

and the power realization of the set of resources, i.e., the HP and the ESS, during real-time operation. As

can be observed, the Tracking Module is able to optimally coordinate the two resources so as to perfectly

track the received AGC signal. This is done while, at the same time, respecting the physical limitation at

each resource. In particular, it can be observed in the third and fourth subplot of Figure 7 how both the

SoC and the indoor temperature of the building are within their operational constraints at all times. In

the second subplot, the allocation of the power, as performed by the HL Controller of the Tracking Module,

is displayed. In particular, it can be observed how the HL Controller determines, at the 15 minutes time-

scale, the power setpoint to the local controller of the HP so as to simultaneously preserve comfort inside

the building and reset the SoC of the battery. This is particularly evident, for instance, between minutes

250 and 400 where the SoC is quite close to its upper limitation. At this time, the HL Controller decides

to increase the power consumption of the HP with respect to the baseline profile in order to have a net

discharging effect on the ESS and, therefore, reset its SoC to a safer value.

7.1. Multiplier effect

The statistics of the offered capacity, γ, over all experimental days are reported in Table 5. The compari-

son of the offered capacity between the case of a single ESS and the combination of the ESS and commercial

building is performed. Please note that the offered capacity for the combined system (ESS + HP) depends

on external varying factors affecting the system such as weather, occupancy pattern, etc. For this reason,

the offered capacity displayed in Table 5 has some variability from one day to the next. On the contrary, the

offered capacity with the ESS alone is computed as in Problem 1, where the total power (12) is obviously

modified as P = Ps. Thus, the offerable capacity is only limited by the operational constraints of the bat-

tery and does not depend on other external conditions. This explains why the offered capacity is always the
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Figure 7: Experimental results on the EPFL campus: One full day of operation emulating the participation to the SFC in the
Swiss Market.
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Quantity ESS ESS + HP

Avg. capacity offered 3.4 [kW] 5.96 [kW]

Max. capacity offered 3.4 [kW] 6.72 [kW]

Min. capacity offered 3.4 [kW] 4.38 [kW]

Table 5: Statistics of the offered capacity over a period of 9 continuous days of experiments in August of 2017.

same each day. The results show that an overall substantial improvement is obtained through the proposed

control method when combining a slow energy-intensive and a fast power-intensive resource in terms of the

offered capacity to the grid. The experimental results confirm that exploiting the synergy between the slow

and fast resources can increase the overall flexibility that can be provided to the grid.

7.2. Cost of Operation

We selected two sets of days for comparison, experimental days (SFC experiments), and the normal

operation with no ancillary service provision (normal operation). To have a fair comparison between the

two sets of data, we compare days for which weather conditions are very similar to the experimental days.

In particular, we considered days for which the average outside temperature and solar radiation were in the

same range as the minimum and maximum average values seen during the experiments. The building HVAC

system during the normal operation days is operated using its default controller which is designed to stay

within a small range around the ideal temperature (22 oC).

The building needs to interact with different energy markets while providing SFC. A detailed description

of the energy markets and a comprehensive economic analysis for the provision of SFC was performed in

our previous publication [22]. Therefore, the focus here is not to perform an in-depth economic analysis,

but rather to get an estimate of the operating costs in both cases.

There are five components in the total operational cost when providing SFC service. (1) Baseline cost is

the cost of buying the baseline energy in the day-ahead energy market. (2): Capacity Reward is the reward

for providing the SFC capacity in the ancillary services market. (3): Tracking Penalty is the penalty for the

errors in tracking the AGC signal. (4): Tracking bonus accounts for the fact that the extra energy consumed

during tracking is at a reduced cost. (5): Intraday cost is the cost of modifying the day-ahead baseline by

trading in the intraday energy market.

All the cost components for each experiment day are computed using the average Swiss price data

for August 2014 to get an estimate of the total operating cost. The results are shown in Figure 8. For

comparison, the total operating cost for the normal operation of the building using its default controller is

also computed for several days, and the result is shown in Figure 9. The comparison shows that on average

the operational cost is 5.94 CHF per day while providing SFC, and 11.08 CHF per day during normal

operation. On average providing SFC results in about 46% reduction in the operating costs.
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Figure 8: Break down of all economic costs for the 9 days of the experiment
campaign.
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Figure 10: Cost of operation vs Comfort

7.3. Comfort

We studied the impact of providing SFC service to the grid on occupant comfort. To evaluate the

occupant comfort, we used a standard measure, “Ashrae Likelihood of Dissatisfaction” (ALD) used in

literature [28]. ALD is a function of the absolute difference between the room temperatures and an ideal

(most comfortable) temperature defined by the occupants. It represents the average percentage of people

dissatisfied in an environment. The lower the ALD value, the higher the occupant comfort.

The temperature trajectories of each day in the experimental sets (both SFC and normal operation) are

used to compute the ALD comfort measure for each day. Moreover, the cost of operation is also computed,

as explained in the previous section, taking into account all the cost components in accordance with the

Swiss energy markets.

The results are depicted in Figure 10. Each day is denoted by a marker in the “cost of operation” against

“comfort” plane. The blue markers represent the SFC experimental days, while red markers represent the

normal operation days. The blue markers are always lower than the red ones. Given that each datapoint

represents an entire day of operation, the total number of datapoints is limited and there is significant

scatter in the data. Nevertheless, a clear pattern seems present and it can be concluded from the result

that a similar level of occupant comfort can be provided at a reduced operating cost while providing SFC.

In other words, the provision of SFC not only improves the operational cost of the building but also it does

not affect the comfort level for the occupants.
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8. Conclusion

This paper presented a framework for coordinating heterogeneous resources at multiple time scales to

provide ancillary services to the grid. Particularly, ESS (fast) and building (slow resources) are considered

in this paper, and are combined to utilize the synergy between the resources to maximize the flexibility

provided to the grid. Mathematical models of the ESS, and the building were presented and a multi

level control architecture was developed. The planning problem was formulated as a multi-stage uncertain

optimization problem and was approximated using two-stage robust programming together with an offline

causal intraday control policy. The tracking problem was divided into two levels, and an MPC controller

was developed which at the higher level computed the power setpoint for the building, while a lower level

tracking controller computed the setpoint for the ESS. The presented planning and tracking controllers

were developed to handle the multi-time scale (fast and slow) nature of the resources. We also presented a

data-based AGC predictor which was used in the control scheme.

The developed control method was validated on an experimental setup consisting of a fully-occupied

controllable building on the EPFL campus, and an emulated grid connected ESS. The experimental results

verify the efficacy of the proposed control scheme and shows that the building (slow resource) and ESS (fast

resource) together can augment significantly the flexibility that can be provided to the grid than any of these

resources can provide individually. Furthermore, an economic analysis shows that by providing SFC service,

the building can reduce its cost of operation by up to 46% on average, without having any negative impact on

the occupant comfort. To the best of author’s knowledge this work is the first experimental demonstration

of coordinating heterogeneous demand-response resources to provide secondary frequency control service.
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short-term wind power production, Wind energy 12 (1) (2009) 51–62.

[26] L. Ljung, Ljung L System Identification Theory for User, Vol. 25, 1987. doi:10.1016/0005-1098(89)90019-8.
[27] F. Sossan, E. Namor, R. Cherkaoui, M. Paolone, Achieving the dispatchability of distribution feeders through prosumers

data driven forecasting and model predictive control of electrochemical storage, IEEE Transactions on Sustainable Energy
7 (4) (2016) 1762–1777. doi:10.1109/TSTE.2016.2600103.

[28] S. Carlucci, Thermal comfort assessment of buildings, Springer, 2013.

31


