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Abstract
Gravity waves are prominent physical features that play a fundamental role in transport 
processes of stratified aquatic ecosystems. In a two-layer stratified basin, the equations 
of motion for the first vertical mode are equivalent to the linearised shallow water equa-
tions for a homogeneous fluid. We adopted this framework to examine the spatiotemporal 
structure of gravity wavefields weakly affected by the background rotation of a single-layer 
system of equivalent thickness h

�
 , via laboratory experiments performed in a cylindrical 

basin mounted on a turntable. The wavefield was generated by the release of a diametral 
linear tilt of the air–water interface, �

�
 , inducing a basin-scale perturbation that evolved 

in response to the horizontal pressure gradient and the rotation-induced acceleration. The 
basin-scale wave response was controlled by an initial perturbation parameter, ∗ = �

0
∕h

�
 , 

where �
0
 was the initial displacement of the air–water interface, and by the strength of the 

background rotation controlled by the Burger number,  . We set the experiments to explore 
a transitional regime from moderate- to weak-rotational environments, 0.65 ≤  ≤ 2 , for 
a wide range of initial perturbations, 0.05 ≤ ∗ ≤ 1.0 . The evolution of �

�
 was registered 

over a diametral plane by recording a laser-induced optical fluorescence sheet and using 
a capacitive sensor located near the lateral boundary. The evolution of the gravity wave-
fields showed substantial variability as a function of the rotational regimes and the radial 
position. The results demonstrate that the strength of rotation and nonlinearities control 
the bulk decay rate of the basin-scale gravity waves. The ratio between the experimentally 
estimated damping timescale, Td , and the seiche period of the basin, Tg , has a median value 
of Td∕Tg ≈ 11 , a maximum value of Td∕Tg ≈ 103 and a minimum value of Td∕Tg ≈ 5 . The 
results of this study are significant for the understanding the dynamics of gravity waves in 
waterbodies weakly affected by Coriolis acceleration, such as mid- to small-size lakes.
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1  Introduction

Wind-driven basin-scale gravity waves mediate a fundamental transport mechanism [36, 
59] and can modulate biogeochemical processes that control the environmental quality 
in lake systems [39–41, 55]. Depending on the size and latitude of the lake, the spati-
otemporal structure of gravity waves may or may not be affected by the local Coriolis 
acceleration caused by the Earth’s rotation. The effect of Coriolis on the basin-scale 
gravity wave dynamics can be quantified by the Burger number,  ≡ R

�
∕R [2], defined 

as the ratio of the Rossby radius of deformation, R
�
= c

�
∕f  , to the relevant horizontal 

length-scale of the waterbody, R (for instance, half the width of the basin or half the 
longest fetch length) [2, 27, 37], where c

�
 is the longwave celerity and f is the iner-

tial frequency. Hence, as  → 0 , the background rotation becomes strongly dominant in 
the flow dynamics. Conventionally, it has been established that when  > 1 the Coriolis 
effect becomes weak and can play a negligible role in the momentum balance [25, 27, 
38, 42, 56].

In the case of large lakes, (e.g., the Laurentian Great Lakes in North America, and 
Lakes Geneva and Constance in West Europe), Coriolis acceleration strongly affects 
large-scale oscillations allowing the existence of two major classes of large-scale grav-
ity waves, widely known as Kelvin and Poincaré waves (rotating gravity waves) [14]. A 
Kelvin wave is a cyclonic sub/super-inertial oscillation trapped along the lateral bound-
ary, whose amplitude, �

�
(t, x) , decays exponentially from the coast to the interior of the 

lake and whose horizontal flow has a strong alongshore component. A Poincaré wave, 
by contrast, is an anti-cyclonic super-inertial oscillation, defined by a cell-like structure 
whose maximum amplitude is located in the centre of the cell, that propagates mainly 
across the interior of the basin. As the basin’s size and/or the latitude decreases, the 
effect of rotation becomes weaker and rotating gravity waves converge to either sur-
face or internal seiches [25, 30, 37]. However, besides basin size and latitude, the back-
ground stratification of the waterbody also plays a role in the rotation effect. Seasonal 
variations in the density structure cause changes in the effect of rotation on large-scale 
internal waves as the celerity of the waves changes [3], which in turn has a direct impact 
on the seasonal variability of physical and biochemical processes in lakes [3, 39].

The dynamics of Kelvin and Poincaré waves has been widely studied in systems 
where rotation plays a first-order role,  ∼ (10−2–10−1) , via field observations in 
large- to mid-size lakes [2, 10, 11, 44, 46]. Additionally, numerical simulations, both 
in real and ideal basins [4, 13, 17, 47, 54], and laboratory experiments [33, 45, 53, 57] 
have provided a robust understanding of the basin-scale wave dynamics in systems with 
rotational regimes characterised by 0.1 ≤  < 1 . In particular, laboratory-scale results 
show that rotational regimes with  ≤ 0.5 are associated with strong degeneration and 
decay of the basin-scale internal gravity waves via the boundary friction and nonlin-
ear processes associated with the gravest sub-inertial Kelvin wave [45, 48, 53, 57]. 
In contrast, the evolution and decay of basin-scale gravity waves in the regime where 
the gravest Kelvin wave is no longer sub-inertial,  > 1∕

√
2 [2, 49], have not been 

explored with particular interest. A few works have reported laboratory experiments in 
this regime, including the works by Wake et al. [57, 58] and Ulloa et al. [53] who per-
formed experiments with Burger numbers  = 0.75, 0.8, 1.0 . In addition to the limited 
number of experiments in the super-inertial regime, the above mentioned experimental 
works [53, 57, 58] focused on rotational regimes characterised by  ≤ 0.5 , in which 
the gravity wavefield is composed of both sub-inertial and super-inertial gravity waves. 
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Characterising gravity wavefields in systems weakly affected by rotation will provide a 
better understanding of physical processes and timescales that govern mid- to small-size 
lakes.

The objective of this experimental study is to examine the evolution and bulk decay 
rate of gravity wavefields in the transitional regime, in which the fundamental Kelvin wave 
becomes super-inertial and the Rossby radius of deformation, R

�
 , becomes comparable or 

larger than the waterbody horizontal length-scale, R. For this purpose, we set the Burger 
number in the range 0.65 ≤  ≤ 2 , allowing us to explore the transition from wavefields 
dominated by sub- and super-inertial waves to wavefields entirely characterised by super-
inertial waves. This particular rotational regime is dynamically relevant, since previous 
studies have shown that the degeneration processes of basin-scale waves are sensitive and 
dependent on the background rotation and the nature of the wave (sub-inertial or super-
inertial waves) [16, 47, 53]. We use a cylindrical basin mounted on a turntable (Fig. 1a–c) 
to generate and register the spatiotemporal structure of gravity wavefields. The experi-
mental conditions are based on the theoretical results of Csanady [15] and Stocker and 
Imberger [49]. The above authors obtained analytical solutions for the evolution of a linear 
and inviscid gravity wavefield and a geostrophic flow resulting from the release of a lin-
early tilted interface in a single- and a two-layer rotating circular basin of constant depth on 
an f-plane. For practical reasons, we adopt a single-layer system to perform the laboratory 
experiments. Notice that the evolution equations for the first vertical mode in a density-
stratified system are equivalent to the equations of a homogeneous fluid [19, 28, 43]. To 
match the rotational regimes between a two- and a single-layer system, one needs to choose 
appropriate equivalent water depths and angular rotations.

The remainder of the paper is outlined as follows. In Sect. 2, we formulate the control-
ling parameters of the basin-scale gravity wavefield. In Sect. 3, we introduce the experi-
mental method and the experimental set. In Sect. 4, we examine the gravity wavefield near 
the lateral boundary and interior zones, and we present the decay rate of the basin-scale 
waves regarding the controlling parameters. Finally, in Sect 5, we discuss the scope of this 
study in the context of gravity waves in lakes, and we summarise the main results.

2 � Formulation

In this section, we introduce the physical parameters that control the basin-scale gravity 
wave dynamics in the rotating system and the theoretical initial value problem of the labo-
ratory experiments.

2.1 � Single‑layer dynamics

In linear theory, the equations of motion for the first vertical mode of a density-stratified 
fluid (in particular a two-layer system) in a flat and shallow basin are equivalent to the lin-
earised equations for a single-layer fluid [19, 28, 43]. For this case, the horizontal spatial 
structure of the internal normal modes is analogous to the barotropic or surface normal 
modes. Thus, a single-layer system (in the inviscid regime) is equivalent to a two-layer 
system with a rigid-lid approximation, assuming that internal modes are negligibly dis-
torted by barotropic modes. Based on this assumption, the longwave celerity is c

�
=
√
gh

�
 , 

where h
�
 is the equivalent depth (the case of air–water density interface). To match the 

desired rotational regime or Burger number, we control the angular velocity of the system, 
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�z . This framework is adopted to design a single-layer experiment, which is substantially 
simpler than a two-layer stratified laboratory experiment.

The linearised equations of motion and the dispersion relations for gravity waves in 
a flat and shallow circular basin on an f-plane have been extensively investigated; for a 
detailed derivation of these equations the readers are referred to Csanady [14] (for the two-
layer case), Shimizu and Imberger [48] (for the general density-stratified case), and John-
son and Grimshaw [28] (in the context of geostrophic adjustment in a homogeneous fluid). 
The spatial structure and the frequency of the Kelvin and the Poincaré waves are obtained 
by solving the eigenvalue problem based on the linearised equations and lateral boundary 
conditions [14]. Here, we denote the Kelvin and Poincaré waves in terms of their radial 
and azimuthal wavenumbers, nr and n

�
 , as K(nr, n�) and P(nr, n�) , and whose dimensional 

frequencies are labelled �K(nr ,n� )
 and �P(nr ,n� )

 , respectively. Similarly, we denote the purely 
radial waves as B(nr, n� = 0) , hereafter Bessel modes. In Sect. 2.3, we further introduce the 
geostrophic component of the ideal initial condition for the laboratory experiments.

2.2 � Dimensionless numbers

Three dimensionless parameters determine the dynamics regime of the shallow, basin-scale 
gravity wavefield:

The first parameter, ∗ , defined by the ratio of maximum initial displacement of the density 
interface, �0 , to the equivalent layer thickness, h

�
 , controls the initial perturbation of the 

basin-scale gravity waves. Indeed, 2
∗
 is a measure of the initial potential energy available 

for exciting the gravity wavefield. As ∗ → 1 (maximum value in this study), the resulting 
basin-scale waves are more energetic and prone to nonlinearities. In contrast, the wavefield 
becomes linear as ∗ → 0 . Hereafter, ∗ is denoted as the perturbation parameter.

The second parameter,  , corresponds to the Burger number (already defined in 
Sect. 1), the ratio of the Rossby radius of deformation, R

�
= c

�
∕f  , and radius of the cylin-

drical basin, R, where f = 2�z is the inertial frequency or Coriolis parameter, and �z is the 
basin angular velocity. Rotation becomes more important in the wave dynamics as  → 0 ; 
on the contrary, rotation effect becomes weaker as  increases. Note that −1 is analogous 
to the Kelvin number defined as K ≡ R∕R

�
 [28].

The third parameter, 
�f  , is the ratio between viscous diffusion and rotation effect, where 

� denotes the kinematic viscosity. 
�f  is interpreted as the ratio of the timescale required by 

vertical diffusion to acts over �0 to the inertial period, Tf = 2�∕f  . This parameter can be 
expressed in terms of the Ekman number, Ek ≡ �Tf∕h

2
�
 , and the perturbation parameter, 

∗ , �f ≡ 2
∗
Ek−1 . High values of 

�f  are associated with low viscous-controlled waves 
affected by rotation. On the contrary, vertical diffusion and viscous damping processes 
become significant as 

�f → 0 . In this work, we denote 
�f  as the inverse Ekman parameter 

(also called rotation number).
A fourth not-independent parameter is adopted to compare nonlinear steepening and 

gravity timescales, sg ≡ Ts∕Tg . Here, the steepening timescale is defined as Ts = 4R∕�c
�
 , 

where �c
�
≡ max

{
c
�
(�0)

}
−min

{
c
�
(�0)

}
 is the maximum difference of long wave celer-

ity in the basin controlled by the initial interface perturbation, ∗ . We denote sg as the 
steepening parameter and is determined by ∗ as sg = 1∕

�√
1 +∗ −

√
1 −∗

�
 . This 

(1)∗ ≡
�0

h
�

,  ≡
R
�

R
=

c
�

fR
, 

�f ≡
T
�

Tf
=

�
2
0
�
−1

Tf
.
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parameter is usually sg ≫ 1 and tends to sg → 1∕
√
2 when ∗ → 1 . Therefore, a stronger 

wave steepening process is expected as sg → 1∕
√
2.

2.3 � Initial value problem

The initial condition consists of a linear interface tilt in a direction �0 with slope C and null 
wavefield: 

where t0 is the initial time, C = h
�
∕
(
R∗

)
 , � is the horizontal transport, which satisfies 

� ⋅ r̂ = 0 on the lateral boundary, and r and � are polar coordinates. Note that by choosing 
�0 = 0 in (2) the interface displacement �

�
 is tilted in the x-direction, r cos (�) . The general 

linear and inviscid rotating long wave solution for (2) is [49]: 

where �nr ≡ �nr
∕f  is the dimensionless frequency of the radial mode nr and azimuthal 

mode n
�
= 1 , �nr ≡ (�2

nr
− 1)1∕2∕R

�
 denotes the radial wavenumber and I1 is the modified 

Bessel function of the first kind [1] that defines the radial modal structure of the first azi-
muthal mode n

�
= 1 . The vertical displacement, �

�
 , in Eq. (3a) is characterised by the lin-

ear superposition of a time-independent term that represents a geostrophic component and 
an infinite sum of normal modes including the cyclonic Kelvin waves and anticyclonic 
Poincaré waves. The first term results from the adjustment between the rotating fluid and 
the initial pressure gradient that relaxes to a steady state geostrophic balance, also denoted 
as a geostrophic mode, G(nr, n�) , which has a frequency of zero [19, 28, 43]. The initial 
displacement defined in Eq. (2a) forces only the fundamental azimuthal mode 1 and all the 
possible radial modes [8, 15, 49]. In our experiments, the angle �0 and the initial time t0 
were set to zero.

Stocker and Imberger [49] investigated the partitioning of energy among the funda-
mental Kelvin wave, Poincaré wave, and the geostrophic component as a function of the 
Burger number. As the Burger number increases, the geostrophic component becomes sub-
stantially weaker relative to the Kelvin and Poincaré waves. In the rotational regime of 
our study, 0.65 ≤  ≤ 2.0 ; although the Kelvin wave stores more energy than the Poin-
caré wave, this energy decreases as a function of  while the energy of the Poincaré wave 
increases. Figure 1d–p show an example of the spatial structure of the initially energised/

(2a)�
�
(t0, r, �)∕�0 ≡ Cr cos(� − �0)∕h� ,

(2b)� ≡ 0,

(3a)�
�
(t, r, �)∕�0 = Qc

−1
∗

cos
(
� − �0

)
−

−1
∗

∞∑

nr=1

anrDnr
Anr

,

(3b)Qc = (r∕R
�
) ,

(3c)Dnr
= − �nr

sin
(
� − �0 − �nr

(
t − t0

)
f
)
,

(3d)anr = (�nr − 1)∕
(
1 + �nr

− 
−2
�
3
nr

)
,

(3e)Anr
= I1(r��,nr )∕I1(R��,nr ),
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non-energised normal modes (gravity waves) and the geostrophic component in the cylin-
drical domain (Fig. 2).

Although the solution (3a) cannot be reproduced via laboratory experiments, this 
defines the linear and inviscid evolution of the initially energised gravity waves. Due to 
nonlinearities and diffusion (degeneration mechanisms), one expects differences between 
the evolution of the air–water interface in the laboratory and the analytical solution (3a).

3 � Method and experimental set

The experiments were carried out on a rotating table whose rotation speed varies from 0 to 
6 r.p.m. A cylindrical transparent acrylic basin, with a diameter of 1.8 m and depth of 0.5 
m, was mounted on the turntable. The turntable has a synchronised hydraulic arm, which 
allows tilting the cylindrical basin and releasing it to the horizontal position, in a cushioned 
form and in a short time ( tr ∼ 1 s). In the interior of the cylindrical basin a layer of water 
thickness h

�
= 5 × 10−2 m and density �

�
= 999 kg m−3 was placed (Fig. 3). The facility is 

located at the F. J. Domínguez Hydraulics Laboratory, University of Chile.
Each experiment was performed in two stages. First, the dimensionless parameters of 

the experiment  and ∗ were fixed.  was set by varying the angular velocity of the rotat-
ing table to obtain the desired inertial frequency, f. ∗ was obtained by measuring the linear 
inclination of the basin from the hydraulic arm with respect to the horizontal base (Fig. 3). 
Second, once the initial condition of the system was reached (see Sect. 2.2), the basin was 
released quickly but damped to the horizontal position. This new configuration of the fluid 
volume induces an adjustment of the water surface in response to the horizontal barotropic 
gradient and the background rotation, ideally exciting all the radial modes and only the fun-
damental azimuthal mode of the gravitational waves of the system. The vertical evolution 
of the free surface was recorded by the combination of an optical method of laser-induced 
fluorescence and a capacitive sensor to measure the water level; both methods mounted on 
the rotational system. For the second method, we used a capacitive sensor (Mark Churchill-
Controls, model Wave Monitor) that recorded the water level at 100 Hz in a single point, 
at the external boundary of the basin, where �0(t = 0, r ≈ 0.98R, � = −�∕2) = 0 , as shown 
in Fig. 3. This sensor was calibrated to measure water height in the range of amplitudes 
expected in the experiments, 0 ≤ �

�
≤ 0.05  m. For the first method, a fluorescent sheet 

(along the diameter of the basin) was created using fluorescein type B to dye the water 
layer and an array of 5 green wavelength lasers, arranged as shown in Fig. 3. The diametri-
cal fluorescent plane was recorded at 25 Hz by a CCD camera of resolution 5184 × 3456 
pixels for an area 1.8 × 0.5 m2 . The optical method was calibrated by relating the gauge 
measure on the lateral boundary with the position of the air–water interface in the pixel-
coordinate system associated to the CCD. It is important to notice that the optical method 
allowed recording the gravity wavefield in the interior, while the capacitive sensor allowed 
registering the gravity wavefield at the near-lateral boundary.

The experimental set considered nine values for the Burger number, 
 ∈ [0.65; 0.70; 0.75; 0.80; 0.85; 0.90; 0.95; 1.0; 2.0] , and six values for the initial per-
turbation, ∗ ∈ [0.05; 0.2; 0.4; 0.6; 0.8; 1.0] , generating a total of 54 experiments. In the 
case of the steepening parameter, the range was sg ∈ [1∕

√
2; 20.0] , while the range of the 

inverse Ekman parameter was 
�f ∈ [0.320; 394] . The magnitude of measurement errors 

was determined for each variable recorded according to the instrumental precision, the 
calibrations performed, and by propagation of uncertainty. The presented results include 
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the quantification of their errors derived from the propagation of errors at their source. The 
strongest rotational regime explored in this study is denoted as moderate-rotational regime 
(from now on M-RR),  = 0.65 , while the weakest rotational regime is denoted as weak-
rotational regime (from now on W-RR),  = 2.0.

4 � Results

In Sects. 4.1 and 4.2, we present a subset of six experiments to illustrate the gravity wave-
field structure as a function of the rotational regime,  , and the initial perturbation, ∗ . 
Table  1 summarises the dimensionless parameters of these experiments. The first three 
experiments are characterised as M-RR,  = 0.65 , with three different initial perturbations, 
∗ = 0.2, 0.4, 1.0 , respectively. The second three experiments are characterised as W-RR, 
 = 2.0 , with the same three initial perturbations, ∗ = 0.2, 0.4, 1.0 , respectively. Here, 
we analyse the wavefields via power spectral densities (PSD) [6] and wavelet spectra (WS) 
[52], computed from time series of the interface displacement, �

�(t)∕h� , in three locations: 
at the near-lateral boundary, r∕R ≈ 0.98 ; at r∕R ≈ 0.5 ; and the centre of the basin, r∕R ≈ 0 . 
We separate the results of the gravity wavefields in two zones. Time series of �

�
∕h

�
 are 

presented in terms of the basin-scale wave period Tg = 4R∕c
�
 , while the frequency in the 

spectra (PSD and WS) is normalised by the respective inertial frequency, f.
We first examine the near-lateral boundary gravity wavefields ( r∕R ≈ 0.98 ) in Sect. 4.1, 

then look at the interior gravity wavefields ( r∕R ≈ 0.5 and r∕R ≈ 0 ) in Sect. 4.2. The lin-
ear wavefield is classified by comparing experimental frequencies obtained from spectral 
energy peaks with the theoretical linear frequencies derived from the solution of the eigen-
value problem in a cylindrical domain [14]. Table 2 summarises the theoretical frequencies 
examined in this work. At the end of this section, we turn our focus to estimating the decay 
rate of basin-scale waves for the whole experimental set (54) in terms of the dimensionless 
parameters introduced in Sect. 2.2.

4.1 � Near‑lateral boundary gravity wavefield

Figure 4 shows the time series and PSD of �
�
 at r∕R ≈ 0.98 for the above-described subset 

of experiments. Each time series includes a close-up of the first five seiche periods, Tg (see 
Fig. 4a–f). PSDs of the M-RR and W-RR are shown in Fig. 4g, h, respectively.

In the M-RR,  = 0.65 , time series of �
�(t)∕h� show that large initial perturbations, 

∗ , are associated with strong nonlinear steepening and wave dispersion of the basin-
scale wave (compare close-up Fig.  4a, c, e). For ∗ = 0.2 , dispersive processes on the 

Table 1   Parameters of subset 
of experiments examined in 
Sects. 4.1 and 4.2

Experiment ∗  sg 
�f

Exp 1.1 0.2 0.65 4.97 15.75
Exp 1.2 0.4 0.65 2.45 63.00
Exp 1.3 1.0 0.65 0.71 393.78
Exp 2.1 0.2 2.00 4.97 5.15
Exp 2.2 0.4 2.00 2.45 20.48
Exp 2.3 1.0 2.00 0.71 128.98
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basin-scale wave are observed in the third wave period (Fig. 4a), while for ∗ = 0.4 , wave 
dispersion is found in the second wave period (Fig. 4c). In the case of ∗ = 1.0 , a strong 
dispersion is observed during the second period, but the first period already shows nonlin-
ear dispersive effects (Fig. 4e). The timescales of the observed steepening and dispersion 
processes are consistent with the expected dynamics in most of the experiments. In the 
case of Exp. 1.1 (Fig. 4a), sg = 4.97 < 

𝜈f = 15.75 , which predicts that the wave steep-
ening starts during the fourth seiche period before viscous effects control the wavefield 
dynamics. However, wave steepening and dispersion were observed during the third seiche 
period. In the case of Exp. 1.2 (Fig. 4c), sg = 2.45 < 

𝜈f = 63.0 , predicting a steepening 
process during the second seiche period, consistent with the observation of the steepening 
and wave dispersion. Similarly, in Exp. 1.3 (Fig. 4e), sg = 0.71 < 

𝜈f = 393.78 , the steep-
ening parameter shows agreement with the start of the steepening process.

In the M-RR, basin-scale Kelvin waves are still characterised by a dominant azimuthal 
propagation with a pseudo-1D structure (along azimuthal axis), similar to the wave propa-
gation observed in non-rotating channels [9, 25]. However, we observe that after a certain 
time, the wavefield loses the regular solitary-type train wave pattern found in the non-rotat-
ing laboratory studies (see for instance time series figures in [9, 25]). Indeed, time series in 
Fig. 4a, c, e show a significant change in the interface-displacement pattern after roughly 
five seiche periods.

We expect that as the basin-scale wave radiates energy to higher azimuthal modes (see 
Fig. 1 initially unexcited modes with n

𝜃
> 1 ), cell-type circulations will enrich the com-

plexity of the wavefield in the near-lateral boundary zone. PSD in Fig. 4g shows that the 
most energetic peak is close to the theoretical sub-inertial Kelvin wave ( ▾ marker) along 
with a broad spectrum of energy peaks associated with super-inertial, sub-azimuthal modes 
of Kelvin and Poincaré waves (triangles and circle markers, respectively). We observe that 
the larger the initial perturbation, ∗ , the higher the energy content in the high-frequency 

Table 2   Theoretical 
dimensionless frequencies, 
�(⋅) ≡ �(⋅)∕f

Dimensionless frequency M-RR W-RR
 = 0.65  = 2.0

�K(1,1) 0.904 3.309
�P(1,1) 1.748 4.154
�K(1,2) 3.573 10.673
�P(1,2) 3.640 10.746
�K(1,3) 5.625 17.088
�P(1,3) 5.651 17.116
�K(2,1) 1.696 5.763
�P(2,1) 2.453 6.514
�K(2,2) 4.425 13.400
�P(2,2) 4.519 13.498
�K(2,3) 6.536 19.943
�P(2,3) 6.577 19.985
�
−
KP

0.844 0.838
�
+
KP

2.651 7.453
�B(1,0) 2.684 7.728
�B(2,0) 4.669 14.067
�B(3,0) 6.688 20.372
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spectrum, �∕f ≥ 10 (compare green line with the blue and red lines in Fig.  4g). In the 
M-RR, the relative error between theoretical and experimental frequencies of the funda-
mental modes is 9%. It is possible that the shifts in peak frequencies in Fig. 4, with respect 
to theoretical frequencies, correspond to nonlinear and viscous detuning [5, 26, 29, 31]. 
The analytical solution (2a) most likely also tells us something about the relative height/
strength of the excited modes, but we will not discuss it here.

Fig. 1   Upper panel. Schematic of the conceptual model: a rotating cylindrical basin of radius R containing 
a fluid layer h

�
 with density �

�
 .  ≡ R

�
∕R is the Burger number, the ratio of the Rossby radius of defor-

mation, R
�
 , to the basin’s radius. b Two-dimensional plane across a diameter of the basin, �

�
 denotes the 

density interface between the layer � and the environmental fluid. ∗ ≡ �
0
∕h

�
 is the perturbation param-

eter, the ratio between the initial maximum air–water interface displacement, �
0
 , and the unperturbed layer 

thickness, h
�
 . c Vertical density profile of the unperturbed density interface. The density of the air is con-

sidered negligible. Panel d–p spatial structure of the density interface �
�
∕�

0
 of the main initially excited 

modes (d–h) and unexcited modes i–p for a Burger number  = 0.65 . Normal modes are classified regard-
ing their radial and azimuthal wave numbers, nr and n

�
 , respectively: Kelvin modes, K(nr , n�) , Poincaré 

modes, P(nr , n�) , Geostrophic mode, G(nr , n�) , Bessel modes, B(nr , n� = 0) . The initially excited modes are 
characterised by nr ≥ 1 and n

�
= 1
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Fig. 2   Power spectra of theoretical time series of �
�
(t)∕h

�
 resulting from Eq.  (3a) for Burger number 

 = 0.65 (M-RR) and  = 2.0 (W-RR), respectively. The spectra identify the gravest Kelvin and Poincaré 
wave frequencies, K(1, 1) and P(1, 1), along with the conjugate modes K(2, 1), P(2, 1) and K(3, 1), P(3, 1) 
forced by the initial condition. Dashed-line denotes the dimensionless inertial frequency

Diametral plane

Ti
m

e

Interface

Fig. 3   Experimental facility: rotating table system. Examples of diametral planes recorded on the laser-
induced optical fluorescence sheet. The air–water interface is found on the upper boundary of the orange 
colour
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We examine the temporal variability of the wavefield via the WS. Figure 5 shows the 
WS of �

�
(t)∕h

�
 for the same subset of experiments. In the case of the M-RR (left panels), 

the WSs show that the energy in the wavefield is initially located in the gravest Kelvin and 
Poincaré waves (see ▾ and ∙ markers). However, after the first period, a continuous range 
of high frequencies is strongly energised (see Fig. 5a–c). This process is observed every 
2.4Tg , which corresponds to the normal mode period, TK(1,1) . The results in Fig. 5a–c sug-
gests that the periodicity of the high-frequency band is the spectral signature of a nonlin-
early steepened wave train passing the observation spot once every TK(1,1).

It is found that both the gravest Kelvin and Poincaré modes lose substantial energy over 
ten wave periods. In the case of the Kelvin mode, the WS shows a robust exponential decay 
structure as a function of time (see blue line in left sub-panels). In contrast, although the 
Poincaré wave energy has a similar but weaker exponential decay signature as a function of 
time, this also shows periodic increments of energy (see red line in left sub-panels). In the 
case of the M-RR, after four periods, most of the energy is contained in high frequencies. 

Fig. 4   a–f Time series of interface displacement, �
�

(
t∕Tg, r∕R ≈ 0.98, � = −�∕2

)
 . (g–h) Power 

spectra of �
�
∕h

�
 . Dash-dotted line: inertial frequency, �∕f = 1 . Gravest Kelvin wave frequency 

( ▾ ∶ �K(1,1)∕f  ), gravest Poincaré wave frequency ( ∙ ∶ �P(1,1)∕f  ), and the Kelvin–Poincaré triad frequencies 
( ★ ∶ �

+
KP
∕f =

(
�P(1,1) + �K(1,1)

)
∕f  , ✩ ∶ �

−
KP
∕f =

(
�P(1,1) − �K(1,1)

)
∕f  ). Triangles and circles to the right 

of the gravest frequencies denote sub-azimuthal Kelvin and Poincaré modes, K(nr = 1, n
�
= 2, 3, 4) and 

P(nr = 1, n
�
= 2, 3, 4) , respectively
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In particular, the energy contained in the potential triad frequency �+
KP

= �K(1,1) + �P(1,1) 
(see ★ marker) shows a periodical structure, remaining energised after ten wave periods. 
The back-and-forth of energy content in the frequency �+

KP
 is attributed to the Poincaré 

wave dynamics. Numerical studies [16, 47] have shown that the Poincaré wave can either 
transfer or receive energy from other modes which lead to a periodic increment of its 
energy contents. The gravest Kelvin wave, contrarily, only transfers its energy to higher 
modes. The degeneration processes of the Kelvin wave lead to a significant change in the 
wavefield structure, which is mostly characterised by sub-azimuthal modes ( K(nr, n𝜃 > 1 ) 
and a periodic signal associated with the Kelvin–Poincaré coupling.

In the W-RR,  = 2.0 , the near-lateral boundary wavefield shows substantial differences 
compared with the M-RR. In the case of Exp. 2.1 (Fig. 4b), the initial perturbation ∗ = 0.2 
leads to sg ≈ 4.97 ≤ 

�f ≈ 5.12 . For this set of parameters, the basin-scale waves do not 
show a clear steepening or dispersive process, and after the third wave period, it is not possi-
ble to distinguish a robust basin-scale wave signature. The increase of the initial perturbation, 
∗ = 0.4 , leads to a substantial separation between the steepening parameters, sg ≈ 2.45 , 
and the inverse Ekman parameter, 

�f ≈ 20.48 . In this scenario (see Exp. 2.2 in Fig.  4d), 

Fig. 5   Wavelet spectra of the interface displacement, �
�

(
t∕Tg, r∕R ≈ 0.98, � = −�∕2

)
∕h

�
 . Left panels 

show M-RR,  = 0.65 . Right panels show weak-rotational regimes,  = 2.0 . Initial perturbations are: a, 
d ∗ ≈ 0.2 ; b, e ∗ ≈ 0.4 ; c, f ∗ ≈ 1.0 . Subplots in the right-up corner on each panel show the tempo-
ral evolution of wavelet spectra at the Kelvin frequency ( ▾ ∶ �K(1,1)∕f  ), Poincaré frequency ( ∙ ∶ �P(1,1)∕f  ), 
and the Kelvin–Poincaré frequency ( ★ ∶ �

+
KP
∕f =

(
�P(1,1) + �K(1,1)

)
∕f  ), respectively. White-dashed line 

denotes the dimensionless frequency of the Bessel mode B(1, 0), �B,0∕f  (see Table 2)
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we observe steepening and wave dispersion during the second seiche period. However, the 
wave-packet structure is different to the solitary-type train of waves found in the M-RR, 
where the amplitude of each solitary-type wave is smaller than the previous. In the W-RR, 
there is a second period characterised by the passing of a wave-packet, but this structure is not 
observed anymore after the third period. The time series of Exp. 2.3 (Fig. 4f) is characterised 
by ∗ = 1.0 , and sg ≈ 0.71 ≤ 

�f ≈ 127.98 . Similar to Exp. 2.2, Exp. 2.3 shows a strong 
steepening and dispersion of the basin-scale wave leading to a wave-packet during the first 
two periods. The structure of this wave-packet has a strong similarity to the ones observed in 
a two-layer non-rotating channel [9, 25]. However, unlike earlier experiments in non-rotating 
systems, here the wave-packet pattern is barely identified in later seiche periods.

Figure 4h shows the PSD of �
�
(t)∕h

�
 in the W-RR. In this rotational regime, the wavefields 

concentrate the spectral energy in the super-inertial frequency band, with robust peaks close to 
the gravest Kelvin and Poincaré modes and at the inertial frequency (dot-dashed line). Similar 
to the M-RR, the energy of the wavefield increases as ∗ increases, especially in the high-fre-
quency range, �∕f ≥ 10 . In the W-RR, the relative error between theoretical and experimental 
frequencies of the fundamental modes is 11% which is larger than the deviation observed in 
the M-RR.

Figure 5 (right panels) shows the temporal variability of spectral energy in the W-RR. We 
observe that the gravest Kelvin and Poincaré frequencies have recurrent increments of energy 
in phase, approximately every 3.75Tg ≈ 19.38 s approximately. This period matches with the 
period associated with the triad �−

KP
= �P(1,1) − �K(1,1) , T−

KP
= 19.39  s, suggesting that the 

waves can be found in phase every T−
KP

 . Additionally, the spectral energy in the high-frequency 
band shows a significant variability as a function of time. After ten wave periods, most of 
the remaining energy is contained in high-frequency modes. This temporal evolution in the 
spectrum suggests that there is a significant transfer of energy from large to smaller scales 
controlled by the degeneration of the basin-scale gravity waves in lateral boundary regions. 
Similar to the M-RR, the potential triad Kelvin–Poincaré frequency, �+

KP
 , is periodically ener-

gised but it remains with lower energy than the parent Kelvin and Poincaré modes (see ★ 
marker in right sub-panels in Fig. 5). We stress that when the parent frequencies ( �K(1,1) and 
�P(1,1) ) reach an energy peak, the frequency �+

KP
 shows a substantial drop of energy (compare 

the red and blue lines with the black line in sub-panels of Fig. 5d–f). However, the nature of 
these signals is not evident.

4.2 � Interior gravity wavefield

We examine the gravity wavefield in two different interior zones. The first position is located 
at r∕R ≈ 0.5 , making sure the signature of trapped boundary Kelvin waves are found in the 
spectral wavefield. The second location is at the centre of the basin, r∕R ≈ 0 , and therefore a 
pivot point for the basin-scale waves. This position was chosen since we expect a significantly 
different wavefield than the observed one at the near-lateral boundary but also because pre-
vious authors [16] have identified via numerical experiments the energisation of a persistent 
standing wave of frequency �+

KP
.

4.2.1 � Wavefield at r∕R ≈ 0.5

Figure 6 shows the interface response, �
�
∕h

�
 and the PSD for the same subset of experi-

ments examined at the near-lateral boundary but now at r∕R ≈ 0.50 ; results for M-RR and 
W-RR are shown on the left and right panels, respectively.
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In the case of the M-RR, although the structure of trains of waves along the time series 
is also observed, the wave-packet is different from the ones found at the near-lateral bound-
ary. In Fig. 6a, the train of waves associated with ∗ = 0.2 shows a beating-like wave pat-
tern similar to the wave-packet found by Grimshaw and Helfrich [20] and Grimshaw  et 
al.  [24]. This beating wave structure remains in the interface signal for roughly seven 
seiche periods, and then its pattern degenerates to a high-frequency wavefield structure, 
along with a weak low-frequency signature. Figure 6c, e show results for higher initial per-
turbations, ∗ = 0.4 and ∗ = 1.0 ; besides the larger wave amplitudes observed in �

�
∕h

�
 , 

the wave pattern is remarkably similar. However, unlike the first case ∗ = 0.2 , the beating 
wave packages and their envelope are geometrically skewed, similar to the solitary-type 
wave trains registered at the near-lateral boundary.

The PSD of the wavefield at r∕R ≈ 0.5 shows that the theoretical basin-scale Kelvin and 
Poincaré frequencies, �K(1,1) and �P(1,1) , are still associated with the largest energy peaks. 
Nevertheless, in this zone, we observe that the energy peak associated with the gravest 
Poincaré mode, P(1,  1), might also be linked to the second-azimuthal Kelvin wave fre-
quency, �K(1,2) . Similarly, the higher azimuthal Kelvin and Poincaré frequencies are indis-
tinguishable from each other in the spectra. However, we expect that Poincaré modes 
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Fig. 6   a–f Time series of interface displacement, �
�

(
t∕Tg, r∕R ≈ 0.50, � = −�∕2

)
∕h

�
 . g–h Power spectra 

of �
�
∕h

�
 . Legends idem to Fig. 4
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contribute substantially to the energy peaks found in interior regions given their spatial 
modal amplitude (see lower panels in Fig. 1). In this zone, the relative error between theo-
retical and experimental frequencies of K(1, 1) and P(1, 1) is 3%, which is significantly 
lower than the relative error estimated at the near-lateral boundary.

Figure 7 (left panels) shows the spectral energy evolution of the wavefield in the M-RR. 
Figure 7a shows the WS of the beating wave-like pattern illustrated in Fig. 6a. In this case, 
the most energetic frequencies are associated with the gravest Kelvin and Poincaré modes 
along with a pulsatile energy signal associated with higher frequencies ( 4 < 𝜔∕f < 7) . 
This pulsating signal has roughly the period of the gravest Kelvin wave, TK(1,1) . The spec-
tral energy of K(1, 1) and P(1, 1) decays significantly after eight seiche periods, and the 
residual energy is mostly stored at high frequencies. In the case of experiments with larger 
initial perturbations (see Fig. 7b, c), there is a substantial amount of energy at high fre-
quencies relative to the energy stored in the gravest modes. However, the high-frequency 
spectrum shows a strong decay after six wave periods.

In the case of the W-RR (see right panels in Fig.  6), we found a complex wavefield 
structure with no regular wave pattern. However, it is observed that two merged waves 
modulate the evolution of the interface displacement. This behaviour is observed in 
Fig. 6b, d, especially after ten seiche periods in Exp. 2.2, and almost along the full time 
series in Exp. 2.1. Weaker rotational regimes lead to K(1, 1) and P(1, 1) becoming closer in 

Fig. 7   Wavelet spectra of the interface displacement, �
�

(
t∕Tg, r∕R ≈ 0.50, � = −�∕2

)
∕h

�
 . Legends idem to 

Fig. 5
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frequency [19, 43]. The two-wave signal pattern is associated with the fundamental super-
inertial Kelvin and Poincaré modes which have the highest spectral energy peaks in the 
PSD (see Fig. 6h). In this region, the relative error between theoretical and experimental 
frequencies of K(1, 1) and P(1, 1) is approximately 1%, which is significantly lower than 
the relative error found in the near-lateral boundary wavefield.

Figure 7 (right panels) shows the temporal evolution spectral energy in the W-RR. We 
observe that the energy stored in the gravest Kelvin and Poincaré modes has a weak but 
detectable periodic structure. This pulsating signal suggests that both waves might be 
transferring and gaining energy either from each other or other higher modes. After the 
second seiche wave period, a substantial part of the spectral energy is found in frequencies 
greater than �∕f ∼ O

(
101

)
.

4.2.2 � Wavefield at r∕R ≈ 0

Figure 8 shows the wavefield at the centre of the basin, r∕R ≈ 0 , for the same subset of 
experiments. In the case of the M-RR, (left panels in Fig. 8), the interface displacement, 
�
�
(t)∕h

�
 , shows small wave amplitudes even for the largest initial perturbation param-

eter, ∗ = 1.0 . In Fig. 8a ( ∗ = 0.2 ), �
�
(t)∕h

�
 is well-characterised by a weakly damped 

periodic wave signal whose frequency is greater than that of the basin-scale frequency 
modes. As the initial perturbation parameter is incremented ( ∗ = 0.2, 0.4 , see Fig. 8c, e), 
higher frequencies constitute the temporal structure of �

�
(t)∕h

�
 (compare close-up panels 

in Fig. 8a, c, e). The fact that the maximum amplitudes reached by �
�
(t)∕h

�
 are similar, 

independent of the value of ∗ , indicates that the centre of the basin is a pivot point for 
basin-scale waves. This result also suggests that most of the energy remains near the lateral 
boundary region even for the M-RR. Indeed, in the PSD of �

�
(t)∕h

�
 (see Fig. 8g), we found 

no energy peaks associated with basin-scale waves. Instead, we found energy peaks asso-
ciated with the potential triad frequency �+

KP
 ( ★ ) and the purely radial mode frequencies, 

here denoted by �B(nr ,0)
 (dashed lines). In the case of the first Bessel mode, B(1, 0), its theo-

retical frequency, �B(1,0) , is significantly close to �+
KP

 [53]. de la Fuente et al. [16] observed 
via numerical experiments that nonlinear dynamics of Kelvin waves were associated with 
the emerging of a standing-like wave in the centre of the basin with frequency �+

KP
 . Moreo-

ver, Ulloa et al. [53] found via laboratory experiments that the frequency �B(1,0) has a spec-
tral signature in the wavefield at the lateral boundaries as well, with a magnitude propor-
tional to the intensity of nonlinearities. Here, the highest spectral energy peaks in Fig. 8g 
are not associated with the initially energised wave base field; therefore, they have to be 
excited via nonlinear dynamics of the wavefield itself. Additionally, the WS of �

�
(t)∕h

�
 

(see left panels of Fig. 9) also show that spectral energy is mostly stored at �+
KP

 and �B(1,0) . 
However, as the initial perturbation is increased, frequencies close to the Bessel modal fre-
quencies �B(2,0) and �B(3,0) are also found energised (see dashed lines in Fig. 8g, h).

In the case of W-RR, there is a significant change in the wavefield pattern at r∕R ≈ 0 
(see right panels in Fig. 8). First, we found larger wave amplitudes and complex dynamics, 
including long-frequency envelope wave patterns for the weak initial perturbation case (see 
Fig. 8b, ∗ = 0.2 ). Similar to the M-RR case, the PSD shows a wavefield characterised 
by high frequencies and negligible signals associated with basin-scale frequencies. In par-
ticular, the WS of �

�
(t)∕h

�
 (see right panels in Fig. 9) show that energy remains stored at 

�
+
KP

 and �B(1,0) during the first ten seiche periods, with significant energy fluctuations as a 
function of time in high-frequency ranges 𝜔∕f > 10 . However, it is unclear how a narrow 
range of frequencies around �+

KP
 and �B(1,0) can be energised. Initially, and while nonlinear 
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dynamics stay strong, a potential triad nonlinear coupling between the gravest Kelvin and 
Poincaré waves can store energy in �+

KP
 and energise the natural modal frequency �B(1,0) . 

yet, near r∕R ≈ 0 , the modes K(1, 1) and P(1, 1) have practically no energy content. There-
fore, if a Kelvin–Poincaré coupling is forcing this range of frequencies, energy should be 
radiated from the near-lateral boundary ( r∕R ≈ 1 ) toward the interior.

4.3 � Decay rate of basin‑scale waves

We examine the bulk decay rate of the basin-scale waves in the near-lateral boundary 
region, where most of the initial potential energy is available for energising gravity 
waves. Here, we compute the e-folding bulk damping rate of the wavefield based on the 
absolute magnitude of the interface displacement, |�

�
(t)|∕h

�
 (see example in Fig. 10a). 

The decay of |�
�
(t)|∕h

�
 is modelled by ∗ exp

(
− −1

dg
t∕Tg

)
 , and for each experiment we 
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Fig. 8   a–f Time series of interface displacement, �
�

(
t∕Tg, r∕R ≈ 0, � = −�∕2

)
∕h

�
 . g–h Power spectra of 

�
�
∕h

�
 . Kelvin wave frequency ( ▾ ∶ �K(1,1)∕f  ), Poincaré wave frequency ( ∙ ∶ �P(1,1)∕f  ), and the Kelvin–

Poincaré triad frequencies ( ★ ∶ �
+
KP
∕f =

(
�P(1,1) + �K(1,1)

)
∕f  , ✩ ∶ �

−
KP
∕f =

(
�P(1,1) − �K(1,1)

)
∕f  ). Trian-

gle and squares to the right of the fundamental frequencies denote sub-radial Kelvin and Poincaré modes, 
K
(
nr = 2, 3, 4, n

�
= 1

)
 and P

(
nr = 2, 3, 4, n

�
= 1

)
 , respectively. Dashed lines denote the frequencies of the 

first three Bessel modes, �B(nr = 1, 2, 3, n
�
= 0)
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fit the exponential model to find the bulk damping rate of the wavefield,  −1
dg

≡ Tg∕Td , 
where Td is the dimensional damping timescale.

In Fig. 10b–e, we summarise the computed damping rates,  −1
dg

 , as a function of the 
dimensionless parameters ∗ ,  , sg , and 

�f  . Our findings are the following: (1) the 
higher initial perturbation ∗ , the higher the bulk damping rate,  −1

dg
 (see Fig.  10b); 

(2) the stronger and faster the nonlinear dynamics start affecting basin-scale waves, the 
stronger the bulk damping rate, df  (see Fig. 10d); (3) the weaker the effect of viscosity 
relative to rotating effects, the higher the bulk decay rate,  −1

dg
 (see Fig. 10e); and (4) 

although the data do not show a robust tendency, we observed that stronger bulk decay 
rates,  −1

dg
 , are associated with stronger rotational regimes (see Fig. 10c).

Figure 10f shows the best fitting for  −1
dg

 in terms of a nonlinear combination of the 
Burger number,  , the steepening parameter, sg , and the inverse Ekman parameter, 

�f  , 
 −1
dg

= c0()
c1
(
sg

)c2(

�f

)c3 , with ci ( i = 0, 1, 2, 3 ) constant coefficients to be solved by 
using a least square minimisation. We obtained c0 = 0.0014 , c1 = 0.2763 , c2 = 0.9340 , 
and c3 = 0.8518 . Hence, the experimental fitting of the e-folding damping timescale 
shows that dg ∼ T1.2

g
T0.58
f

T−0.85
�

T−0.93
s

 . The sign of the exponents of the relevant time-
scales lead to the same findings drawn above. We stress that the steepening timescale 
and the inertial period are inversely proportional to the damping rate of the basin-scale 
waves.

Fig. 9   Wavelet spectra of the interface displacement, �
�

(
t∕Tg, r∕R ≈ 0.0, � = −�∕2

)
∕h

�
 . Legends idem to 

Fig. 5
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5 � Discussion and conclusions

In this study, we have examined the gravity wavefield in weak-rotational environments via 
laboratory experiments in a rotating table. Note that if we neglect diffusion processes, our 
experiments are analogous to the first vertical mode dynamics of a two-layer system with 
a surface rigid-lid hypothesis. Different authors [18, 35, 50] have investigated and formu-
lated the dynamics of nonlinear waves in rotating systems by using an equivalent single-
layer problem in terms of a set of coupled equations. Thus, the experiments can represent 
the wavefield dynamics of the first vertical mode in a rotating and density-stratified fluid, 
obviating diffusion processes associated with miscible stratified fluids. Controlling the ini-
tial perturbation of the interface �

�
 and the background inertial frequency, f, in the basin, 

we have found a significant spatiotemporal variability of the gravity wavefield evolution 
across the radial position.

In the strongest rotational regime here investigated (M-RR,  = 0.65 ), the gravity wave-
field observed in the near-lateral boundary, r∕R ≈ 0.98 , is similar to the internal gravity 
wavefield observed by Ulloa et al. [53], characterised by a strong nonlinear degeneration 
of the basin-scale waves into solitary-type wave trains as the initial perturbation, ∗ , was 
increased. In the M-RR, both nonhydrostatic and rotating-induced dispersion control the 
decay of the gravest Kelvin wave [21–23] and the delay of solitary wave formation [20, 

Fig. 10   a Example of the absolute dimensionless interface displacement, |�
�
(t)|∕h

�
 , as a function of time. 

Experimental decay rate,  −1
dg

 , as a function of b initial perturbation ∗ , c Burger number  , d steepening 
parameter sg , and e inverse Ekman parameter 

�f  . f Data fit for decay rate as a function of the dimension-
less parameters; dashed-line indicates the identity
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24]. In interior regions, r∕R ≈ 0.50 , far from lateral boundaries, the basin-scale gravity 
waves degenerated into a beating-like wave pattern similar to the wave-packet found by 
Grimshaw et al. [24]. In the centre of the basin, the wavefield was dominated by a standing-
like oscillation observed via numerical experiments by de la Fuente et al. [16], whose fre-
quency matches with the resonant triad �+

KP
= �K(1,1) + �P(1,1) and the Bessel mode, �B(1,0).

In the weakest rotational regime here investigated (W-RR), the gravity wavefield was 
characterised by a super-inertial frequency regime. In this regime, the gravest Kelvin and 
Poincaré waves have similar spatiotemporal structures, and both modes exhibit loss and 
gain of energy as a function of time. The transfer of energy towards the gravest Kelvin wave 
from higher modes has not been reported in sub-inertial frequency regimes, 𝜔K(1,1)∕f < 1 
[16, 47], associated with strong to moderate rotational environments,  ≤ 1∕

√
2 . There-

fore, our results show that the W-RR can radically change the behaviour of gravest cyclonic 
Kelvin wave. Similar to the M-RR, the wavefield in the centre of the basin is strongly mod-
ulated by a standing-like wave with frequency �B(1,0) which matches �+

KP
 , but its wavefield 

shows an amplitude significantly larger than the one observed in the M-RR.
Since the Bessel mode B(1, 0) is not initially excited by the initial value problem, stored 

energy near the frequency �B(1,0) should be the result of an energy transfer. Although it is 
not evident the energisation process, nonlinear wave dynamics and a possible Kelvin–Poin-
caré coupling in the near-lateral boundary are possible mechanisms to transfer energy from 
this region toward the interior and to the specific frequency �B(1,0).

As a general observation, the relative error of the theoretical Kelvin and Poincaré wave 
frequencies derived from the linear dispersion relation[14, 49] decreases from the lateral 
boundary to the interior. The substantial mismatch between the theoretical linear frequen-
cies and the experimental results might be related with nonlinear resonant interactions 
[51] and viscous detuning [5, 26, 29, 31]. Therefore, one might expect that the basin-scale 
wavefield in regions closer to the lateral boundary is more susceptible to viscous and non-
linear detuning, since it is subject to stronger nonlinearities (steepening, nonhydrostatic 
and rotating-induced dispersion) than the interior wavefield. Similarly, as the effect of non-
linearities and the lateral wall decreases towards the interior, we might expect that linear 
theory might better predict the experimental frequencies of the interior gravity wavefield.

The decay timescale computed from our experiments can be written as a function of the 
external parameters:

Therefore, we found that the damping timescale of the basin-scale gravity waves is pro-
portional to the strength of background rotation, f, the basin length-scale, R, and the initial 
perturbation amplitude, �0 , and inversely proportional to the phase speed celerity, c

�
 . From 

the laboratory results in weak-rotational environments, we show that nonlinear mechanisms 
play a fundamental role in the decay rate of the gravity wavefield in near-lateral boundary 
zones as well as the regime of the background rotation. In interior zones, in contrast, the 
exponential decay model is not precisely suitable, as is shown in Figs. 6 and 8, especially 
in weak-rotational regimes  → 2 . One could argue that the evolution and decay structure 
of the interior wavefield is strongly modulated by Poincaré waves which can receive and 
transfer energy, leading to a recursive growth and decay of wave amplitude reported by 

(4)

dg ≈ 1.4 × 10−3
(
2�R

c
�

)0.27(
2�

f

)0.58
(
�
2
0

�

)−0.85(√
1 +

�0

h
�

−

√
1 −

�0

h
�

)0.93

.
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[16] and [47]. To quantify the decay rate of the interior gravity wavefield, a more complex 
model is required that accounts for the recursive temporal nature of Poincaré waves.

The rotational regime here explored is relevant for basin-scale hydrodynamic processes 
in mid- to small-size lake systems. One can expect similar gravity wavefields in systems 
such as Lake Kinneret (Israel) during mid summer conditions [3], Mono Lake (California) 
[32], Lakes Sempach, Baldegg and Hallwil (Switzerland) [7, 34] and the Araucanian lakes 
(Chile) [12].
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