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Abstract: We propose a physically-consistent Bayesian non-parametric ap-
proach for fitting Gaussian Mixture Models (GMM) to trajectory data. Physical-
consistency of the GMM is ensured by imposing a prior on the component assign-
ments biased by a novel similarity metric that leverages locality and directionality.
The resulting GMM is then used to learn globally asymptotically stable Dynam-
ical Systems (DS) via a Linear Parameter Varying (LPV) re-formulation. The
proposed DS learning scheme accurately encodes challenging nonlinear motions
automatically. Finally, a data-efficient incremental learning framework is intro-
duced that encodes a DS from batches of trajectories, while preserving global
stability. Our contributions are validated on 2D datasets and a variety of tasks that
involve single-target complex motions with a KUKA LWR 4+ robot arm.
Keywords: Bayesian Non-Parametrics, Side-Information, Stable Dynamical Systems

1 Introduction
Learning from Demonstration (LfD) is a paradigm that endows robots with the capabilities of learn-
ing and generalizing from observations of demonstrated tasks [1, 2, 3]. Such tasks are generally
motion plans represented as mapping functions, f(ξ) : RM → RM , that approximate a direct map-
ping from the state observations to the required actions for the demonstrated behavior; i.e. ξ̇ = f(ξ)
with ξ ∈ RM being the state-space variable of the robotic system. From a machine learning perspec-
tive, estimating f(ξ) from data can be framed as a regression problem, where the inputs are the state
variables ξ and the outputs are their first-order derivatives ξ̇. Several statistical methods have been
proposed in the past to approximate f(ξ), such as Locally Weighted Projection Regression (LWPR)
[4], Gaussian Processes (GPR) [5] and Gaussian Mixture Regression (GMR) [6]. Due to its intuitive
nature of representing a non-linear regressive function as a mixture of linear regressors, a great body
of work uses the latter statistical method (GMR) to encode motions from demonstrations. However,
as discussed in [7, 8, 9], solely using any of these techniques cannot ensure convergence to a desired
target. This led to researchers formulating f(ξ) as a first-order, autonomous Dynamical System (DS)
that is globally asymptotically stable (GAS); i.e. converges to a single stable equilibrium point ξ∗
(a target or attractor)[7, 8]. To learn such GAS-DS from demonstrations, [8] proposed the SEDS
approach, approximating f(ξ) as a non-linear combination (or mixture) of linear DS:

ξ̇ = f(ξ) =

K∑
k=1

γk(ξ)(Akξ + bk) (1)

where γk(ξ) is a state-dependent mixing function. Given a set of reference trajectories {Ξ, Ξ̇} =
{ξref
t , ξ̇

ref
t }t=1...TN SEDS parametrizes (1) via GMR. Namely, it estimates a joint density of {Ξ, Ξ̇}

through a K-component GMM, p(ξ, ξ̇|θγ) =
∑K
k=1 πkN (ξ, ξ̇|µk,Σk) where µk ∈ R2M , Σk ∈

R2M×2M are the mean and Covariance of each k-th component and πk are the priors (or mixing
weights) of each Gaussian component, satisfying the constraint

∑K
k=1 πk = 1. θγ = {πk,µk,Σk}Kk=1

is the complete set of parameters. (1) is estimated by computing the expectation over the con-
ditional density ξ̇ = E{p(ξ̇|ξ)}. Via a slight change of variables (1) is parametrized by γk(ξ) =
πkp(ξ|k)∑
j πjp(ξ|j)

,Ak = Σk
ξξ̇

(Σk
ξ)
−1, bk = µk

ξ̇
− Akµ

k
ξ . To ensure convergence, SEDS defines sufficient

conditions for global asymptotic stability on θγ , namely (Ak)T + Ak ≺ 0 ∀k = 1, . . . ,K must hold.
These conditions are derived via Lyapunov’s second method for stability, which states that a DS is
GAS at ξ∗ ∈ RM , if there exists a C1 Lyapunov candidate function V (ξ) : RM → R that is radially un-
bounded and satisfies: (I) V (ξ∗) = 0, (II)V (ξ) > 0 ∀ ξ ∈ RM \ ξ = ξ∗, (III)V̇ (ξ∗) = 0,(IV)V̇ (ξ) <
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0 ∀ ξ ∈ RM \ ξ = ξ∗. In SEDS and its latest extensions [10, 11], V (ξ) is a quadratic Lyapunov
function (QLF); i.e. V (ξ) = (ξ − ξ∗)T (ξ − ξ∗). Though popular in the LfD community, SEDS is
known to suffer from the accuracy vs. stability dilemma, i.e. it performs poorly in highly non-linear
motions that contain high curvatures or are non-monotic (temporarily moving away from the attrac-
tor). This is mainly due to the choice of Lyapunov function; e.g. geometrically, a QLF can only
allow trajectories whose L2-norm (i.e.||ξ − ξ∗||2) distances decrease monotonically [8, 12].
Related Work Several works have sought out to alleviate the limitations of SEDS by proposing
extensions of the approach with less conservative stability conditions. [12] introduced τ -SEDS, a
theoretical framework that embeds complex Lyapunov functions into the SEDS learning scheme via
diffeomorphic transformations. [13] proposed CDSP (Contracting Dynamical System Primitives)
in which partial contraction analysis is used to derive stability conditions. Others have tackled
the problem by proposing alternatives to the SEDS-like formulation. [14] learn ξ̇ = f(ξ) via a
Neural Network (NN) and impose stability by sampling constraints, from a defined workspace,
while learning the weights of the NN. [9, 15] follow a control-stabilization approach, in which an
unstable DS learned via GMR (for [15]) or any other regressive algorithm (for [9]) are stabilized by
a control input that is derived from either a data-driven Lyapunov function [9] or from contraction
theory [15]. These approaches, however, suffer from the risk of over-corrections which might deviate
the DS from the desired non-linear motion. Finally, [16] proposed an approach where ξ̇ = f(ξ) is a
diffeomorphism of a stable linear DS, which is learned via a matching algorithm from the reference
trajectories to a linear motion. From the previously mentioned body of work, τ -SEDS [12], CDSP
[13] and the diffeomorphic matching approach [16] have shown the best performance. Yet, they
have their own drawbacks. For example, τ -SEDS and CDSP remain limited to offline batch learning
settings due to the tying of the individual linear DS parameters Ak, bk to the parameters of the GMM.
When optimizing θγ the locality and geometrical notion of the GMM wrt. reference trajectories is
lost. This is an artifact that is not desirable if one seeks to exploit the generative nature of the GMM
which can potentially be used for recognition or in incremental learning settings. The diffeomorphic
matching approach, is also limited to offline learning, and further it can only learn a single behavior
in the state-space, as the diffeomorphism is assumed to be (and learned) as a global operator. In this
paper, we advocate and present an approach that:

(i) Through a simple re-formulation of the parameters of (1) is capable of outperforming SEDS using stan-
dard Lyapunov stability theory; i.e. without having to rely on diffeomorphisms or contraction analysis.

(ii) Preserves the locality of the Gaussian functions such that recognition and incremental learning is feasible.

Proposed Approach Consider (1) as a polytopic (quasi) Linear Parameter Varying (LPV) sys-
tem [17]; i.e. Ak’s, are linear time-invariant (LTI) and the state-dependent mixing function
γk(ξ) yields a parameter vector γ = [γ1, . . . , γK ] belonging to the convex K-unit polytope.
In LTI systems parametrized QLF (P-QLF) are commonly used to ensure stability, i.e. with
V (ξ) = (ξ − ξ∗)TP(ξ − ξ∗) one can ensure GAS of a linear DS if ATP + PA ≺ 0 holds, as shown
in Appendix A, which can easily be extended for a mixture of linear systems (1), as shown in Ap-
pendix B. The effect of P is a reshaping of the simple QLF to an “elliptical” form, allowing for
trajectories which exhibit high-curvatures and non-monotonicity towards the target. Solving an op-
timization problem for SEDS with such conditions, however, becomes unfeasible. To alleviate this,
we propose to decouple the GMM parameters θγ from the linear DS parameters θf = {Ak, bk}Kk=1,
as introduced in [18, 19]; we will herein refer to this parametrization of (1) as LPV-DS. Due to
this decoupling of parameters, the LPV-DS approach preserves the geometric representation of the
GMM, while accurately representing highly non-linear motions due to the less conservative P-QLF.
Yet, the performance of the LPV-DS approach relies heavily on a “good” estimate of the GMM
parameters θγ . Not only must one find the correct number of Gaussians K that best represent the
reference trajectories, but they should also be aligned with the trajectories such that each Gaussian
represents a local region in the state space that follows a linear DS. Such an estimate is empirically
hard to find, as standard EM estimation or Bayesian Non-parametric approaches, do not optimize for
these properties in the data. Hence, for the LPV-DS approach to achieve comparable performance
to the works mentioned above, a physically-consistent estimate of the GMM parameters is crucial.
Contributions We tackle two main issues involved with fitting GMM to trajectory data for accu-
rate DS estimation: (i) cardinality: automatically estimating the optimal K Gaussian components
(ii) physical-consistency: ensuring that the location and coverage of each Gaussian component
corresponds to a linear DS. To solve (i) we adopt a Bayesian non-parametric approach. When fit-
ting a mixture model, instead of doing model selection to find the optimal K, a Dirichlet process
(DP) prior (or its Chinese Restaurant Process CRP representation) is used to construct an infinite
mixture model. In order to bias the Gaussian fitting (or clustering) of the trajectories in a physi-
cally consistent way, we propose to use a novel similarity measure based on a locally-scaled cosine
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similarity of the velocity measurements of the trajectories as side-information [20]. A prior that
is capable of including such side-information in a Bayesian non-parametric model is the distance-
dependent CRP (dd-CRP) [21]. We adopt this prior and propose a Bayesian non-parametric GMM
that is biased by this measure of physical-consistency as described in Section 2. We then introduce
a generalized formulation of LPV-DS with several optimization variants and prove that using our
physically-consistent GMM yields improved reproduction and generalization accuracy over SEDS
(Section 3). Finally, in Section 5, we propose an incremental approach to learning LPV-DS based
on the approached proposed in Sections 3 and 2 and prove that the resulting estimate is GAS.

2 Physically-Consistent Bayesian Non-Parametric Mixture Model
We begin by re-interpreting the finite GMM as a hierarchical model, where each k-th mixture com-
ponent is viewed as a cluster, represented by a Gaussian distribution N (·|θkγ) with θkγ = {µkγ , θkγ}
and mixing weight πk. Each data-point ξi is assigned to a cluster k via cluster assignment indicator
variables Z = {z1, . . . , zM}, where i : zi = k for M samples. This process is represented as:

zi ∈ {1, . . . ,K}
p(zi = k) = πk

ξi|zi = k ∼ N (θkγ)

(2) p(ξ|θγ) =

K∑
k=1

p(zi = k)N (ξ|µk,Σk) (3)

Via (2), the probability density function of the mixture model is defined by (3) with θγ =
{πk, θkγ}Kk=1. In the finite case, since K is known apriori the marginal distribution over Z is solely
defined by the set of mixing weights π = {πk}Kk=1 and thus the prior probability of the cluster
assignment indicator variable zi is p(zi = k) = πk. In the infinite case, K → +∞ and all parame-
ters are treated as latent variables by placing priors on them. The Normal-Inverse-Wishart (NIW)
distribution can be placed as a prior on the cluster parameters θkγ and the DP is placed as a prior on
the cluster assignment variables p(Z). Since the DP is an infinite distribution over distributions, to
evaluate an infinite mixture model on a finite set of samples, the Chinese Restaurant Process (CRP)
is commonly used to yield a tractable estimation of the prior p(Z). The process is inspired by a culi-
nary metaphor of a Chinese restaurant with an infinite number of tables [22]. It defines a sequence
of probabilities for the incoming customers (i.e. observations ξi) to sit at specific tables (i.e. to be
assigned to a specific cluster) p(zi = k) [22]. Through inference of the CRP-GMM one can jointly
estimate the optimal number of components K and corresponding parameters θγ . While this solves
the cardinality problem, L2 distance-based approaches can perform poorly when the distribution
of the points exhibits idiosyncrasies such as high curvatures, non-uniformities, etc, as shown in Fig-
ure 1. To tackle this physical-consistency issue, rather than using the CRP as a prior on p(Z),
we propose to use the distance-dependent CRP (dd-CRP) introduced in [21], which focuses on
the probability of customers sitting with other customers (i.e. observation ξi being clustered with
ξj) based on an external measure of distance. We thus reformulate the dd-CRP into a physically-
consistent similarity dependent-CRP to bias clustering on a Bayesian non-parametric GMM with
the physically-consistent similarity measure proposed in the following section.

2.1 Physical Consistency via ξ̇-Similarity

In trajectory data, there are two main properties that must hold in order for a cluster of points to
be physically consistent: (i) directionality and (ii) locality. We thus propose a similarity measure
composed of a locally-scaled shifted cosine similarity kernel, which we refer to as ξ̇-similarity,

∆ij(ξi, ξj , ξ̇i, ξ̇j) =

(
1 +

(ξ̇i)
T ξ̇j

||ξ̇i||||ξ̇j ||

)
︸ ︷︷ ︸

Directionality

exp
(
− l||ξi − ξj ||

2
)

︸ ︷︷ ︸
Locality

(4)

The first term measuring directionality is the shifted cosine similarity of pair-wise velocity mea-
surements; i.e. cos(∠(ξ̇i, ξ̇j)) ∈ [0, 2] and is bounded by the angle between the pair-wise veloc-
ities θij = ∠(ξ̇i, ξ̇j). When θij = π (its maximum value), the velocities are in opposite direc-
tion and cos(θij) = 0, when θij = {π/2, 3π/2} the velocities are orthogonal to each other, which
yields cos(θij) = 1 and finally, when θij = {0, 2π} the cosine similarity value is at its maximum
cos(θij) = 2 as the pair-wise velocities are pointing in the same direction. This term would suffice
as a measure of physical-consistency for trajectories that do not include repeating patterns, however
for trajectories such as a sinusoidal wave, cos(θij) can yield its maximum value even if the trajecto-
ries are not close to each other in Euclidean space. Hence, to enforce locality we scale the cos(θij)
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(a) Concentric Circles Dataset
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(b) PC-GMM via Sampling
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(c) Finite GMM via EM
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(d) CRP-GMM via Sampling

Figure 1: Performance of different GMM fitting strategies on concentric trajectory dataset. Arrows in (a) indicate velocity directions.

with a Gaussian kernel on the position measurements, i.e. the second term in (4). Notably, l = 1
2σ2

is a hyper-parameter that can be a nuisance if not set properly. We thus propose to set σ with the fol-
lowing data-driven heuristic: σ =

√
Mo(D)/2 where D ∈ RM×M is a matrix of pairwise squared

Euclidean distances dij = ||ξi − ξj ||2 and Mo is the mode of all entries of D. Intuitively, we are
approximating the length-scale of the trajectories. Such approximation is sufficient, as we solely
use this kernel to scale high cos(θij) values that are ‘far away’ in Euclidean-position space.

2.2 ξ̇-Similarity Dependent-CRP

Our physically-consistent similarity-dependent CRP generates a prior distribution p(C) over cus-
tomer seating assignments C = {c1, . . . , cM} where i : ci = j indicates that the i, j-th customers
(i.e. observations ξi and ξj are clustered together based on an their ξ̇-similarity (4). This is done by
constructing a sequence of probabilities, where the i-th customer (ξi) has two choices, she/he can
sit with the j-th customer (ξj) with a probability proportional to (4), or sit alone with probability
proportional to α. Such sequence yields a prior distribution which is a multinomial over customer
seating assignments C conditioned on ∆ and α; i.e. p(C|∆, α) and can be computed as,

p(C |∆, α) =

M∏
i=1

p(ci = j |∆, α) where p(ci = j |∆, α) =

{
∆ij(·)∑M

j=1 ∆ij(·)+α
if i 6= j

α
M+α

if i = j
(5)

where ∆ ∈ RM×M is the matrix of pairwise similarities computed by (4) between theM customers
and α is the concentration parameter. We refer to this distribution as the ξ̇-SD-CRP prior.

2.3 ξ̇-SD-CRP Mixture Model or PC-GMM
Using (5) and the NIW(λ0) distribution we construct the following Physically-Consistent
GMM (See Appendix C) for graphical model in (6). Where C = {c1, . . . , cN}
are sampled from the ξ̇-SD-CRP prior and then mapped to Z = {z1, . . . , zN},
via a recursive mapping function Z = Z(C) that gathers all linked customers.

ci ∼ ξ̇-SD-CRP(∆, α)

zi = Z(ci)

θkγ ∼ NIW(λ0)

ξi|zi = k ∼ N (θkγ)
(6)

For each k-th cluster, its parameters θkγ are drawn
from a NIW distribution, with hyper-parameters λ0 =
{µ0, κ0,Λ0, ν0}. The optimal number of Gaussian compo-
nents K is given by the number of unique clusters that emerge
from C; i.e. K = |Z(C)|. Due to conjugacy, we can inte-
grate out the model parameters θγ from the posterior distribu-
tion p(C, θγ |Ξ) and estimate solely the posterior of the latent
variableC, p(C|Ξ,∆, α, λ) = p(C |∆,α)p(Ξ|Z(C),λ)∑

C p(C |∆,α)p(Ξ|Z(C),λ) . As this full posterior is intractable, we ap-
proximate it via Collapsed Gibbs sampling, by drawing samples of ci from the following posterior
distribution,

p(ci = j | C−i,Ξ,∆, α, λ) ∝ p(ci = j |∆, α)︸ ︷︷ ︸
Similarities in

Scaled-Velocity Space

p(Ξ | Z(ci = j ∪ C−i), λ)︸ ︷︷ ︸
Observations in
Position Space

(7)

where the first term is given by (5) and the second term is the likelihood of the table assignments that
emerge from the current seating arrangement Z(ci = j ∪ C−i). C−i indicates the customer seating
assignments for all customers except the i-th. Due to conjugacy with the NIW , the likelihood
term has an analytical solution, see Appendix D.1 in the Supplementary Material. (7) holds some
particularities as opposed to the standard collapsed conditionals and mixture models. First, the prior
is represented through the latent variables C, while the likelihood is in terms of Z. Furthermore, the
key component behind what makes this mixture physically-consistent is the fact that the prior uses
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similarity measures from the scaled-velocity space, while the likelihood is computed solely on the
observations which live in the Euclidean-position space. In terms of computation, the likelihood is
computed for all points Ξ, rather than just for the sampled point ξi, this is due to the fact that the
partition of the dataset depends onC and not on Z. A new sample ci affects the overall partition; e.g.
a table could be split or two tables could be merged; all because the customers are not conditionally
independent of the other customers’ assignments. Hence, this effect must be taken into consideration
after each iteration in the sampler. We adapt the Collapsed Gibbs sampler proposed by [21] and
apply it to our mixture model setting. Details are reported in Appendix D.3.
2.4 Estimating the GMM parameters θγ from table assignments Z(C) and NIW
After running the sampler on (7) for a pre-defined number of T iterations, the iteration with the
max log posterior conditional probability is chosen as the optimal partition; i.e. the MAP (Maximum
A Posteriori) estimate. This gives us the MAP estimate of the optimal number of Gaussians K =
|Z(C)| and the observations that are assigned to each Gaussian ΞZ(C)=k. Hence, to estimate the
table parameters (i.e. Gaussian parameters) {µk,Σk}Kk=1 we take ΞZ(C)=k for each k-th cluster
and the set of hyper-parameters λ and sample the Gaussian parameters µk,Σk from the posterior
of the NIW , refer to Appendix D.2 for exact equations. Finally, the mixing weights {πk}Kk=1 are
estimated as πk = Mk/M , where Mk = |ΞZ(C)=k| is the number of observations assigned to the
k-th cluster. In Figure 1 we show the performance of our PC-GMM vs. a CRP-GMM estimated via
Collaped Gibbs Sampling and the finite GMM estimated via EM on two challenging datasets, on an
exemplary dataset of the concentric circular trajectories. Further exemplars of challenging datasets
in which PC-GMM outperforms all approaches are provided in Appendix E1.

3 Physically Consistent GMM-based LPV-DS Learning
To model non-linear motions from demonstrations, we parametrize the mixture of linear DS (1)
in a decoupled manner [18]. Given the set of reference trajectories {Ξ, Ξ̇} = {ξref

t , ξ̇
ref
t }t=1...TN

and the attractor ξ∗ (i.e. the desired target), we begin by learning the GMM parameters θγ =
{πk,µk,Σk}Kk=1 via the approach presented in Section 2. Then, we estimate the parameters for
the individual DS θf = {Ak, bk}Kk=1 by minimizing the velocity error between the approximated
desired velocity given by (1) and the observed velocity from the reference trajectories ξ̇ref. This can
be formulated as minimizing the following objective function:

min
θf

J(θf ) =

Nref∑
n=1

TN∑
t=1

||ξ̇ref
t,m − f(ξref

t,m)||2 (8)

where Nref is the number of reference trajectories, TN is the number of samples in each trajectory
and f(·) is given by (1). Depending on the sufficient stability conditions for the system parameters
Ak, bk, different constrained optimization problems can be formulated.

3.1 Generalized GMM-based LPV-DS Learning
Due to the decoupling of the parameters in the LPV-DS formulation, imposing constraints on the DS
parameters is quite flexible. Following, we propose 3 constraint variants to solve (8) derived from:
(O1) a QLF (like SEDS) [8], (O2) a conservative P-QLF as in [18] and (O3) a less conservative
P-QLF (following the proposition in Appendix B):

min
θ
J(θ) subject to

(O1)
{

(Ak)T + Ak ≺ 0, bk = −Akξ
∗ ∀k = 1, . . . ,K

(O2)
{

(Ak)TP + PAk ≺ 0, bk = ~0 ∀k = 1, . . . ,K; P = PT � 0

(O3)
{

(Ak)TP + PAk ≺ Qk, Qk = QT
k ≺ 0, bk = −Akξ

∗ ∀k = 1, . . . ,K

(9)

(O1) follows the same conditions used in SEDS, yet, instead of it being a non-linear constrained
optimization problem, it is a convex semidefinite optimization problem which can be solved via
standard semi-definite programming solvers such as SeDuMi [23]. This approach is comparable
to SEDS and will be exploited for our incremental learning approach in Section 5. (O2) has non-
convex constraints as P is unknown, yet it can be solved via non-linear semi-definite programming

1MATLAB code for PC-GMM+datasets available at: https://github.com/nbfigueroa/phys-gmm
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Figure 2: (left) PC-GMM. (center) LPV-DS estimated with PC-GMM and (O3) optimization variant. (left) V̇ (ξ).

Figure 3: GMM-based LPV-DS estimated via (O3) on exemplary models learned from the LASA handwriting dataset.

solvers, such as PENLAB [24]. Note that (O2) assumes the attractor is at the origin, hence the
constraint bk = ~0, without this assumption it may converge to unstable solutions. We propose (O3),
where we assume to have a prior estimate of P obtained through the data-driven approach presented
in [25], which learns a weighted sum of asymmetric quadratic functions (WSAQF) from data. Yet,
we simplify the optimization problem by allowing only one P-QLF. Given such prior estimate of P,
we introduce the auxiliary matrices Qk which allow for a wider exploration of the parameter space.
(O3) is also a non-convex semidefinite program, which we solve with PENLAB. In this work we
use the aformentioned solver with the YALMIP MATLAB toolbox [26]. (O2) yields similar results
as (O3) when it finds a feasible solution. Due to the non-linearity of the problem it might converge
to a solution where not all of the constraints are met. (O3) always converges to a feasible solution,
as long as P = PT and has well-balance eigenvalues. In Figure 2 and 3 we show the results of
(O3) on the messy-snake trajectories and four motions from the LASA dataset, respectively. The
latter motions are known to be challenging for QLF-based methods. While the messy-snake dataset
is even more challenging, our method is capable of approximating the highly-curved motion. For
further (O·)-comparisons see Appendix G2.

4 Evaluation and Experiments

Learning Evaluation We quantitatively evaluate the physical consistency of our proposed
methodology on the entire LASA dataset (excluding the multi-model motions); i.e. 26 hand-
written motion sets. Each motion set contains 7 trajectories, 4 are used to train our mod-
els and evaluate reproduction accuracy and the remaining 3 are used to test generaliza-
tion accuracy; i.e. reproduction accuracy of unseen trajectories. We employ three metrics:
(i) prediction RMSE = 1

M

∑M
m=1 ||ξ̇ref

m − f(ξref
m)|| as in [11], (ii) prediction cosine similarity

ė = 1
M

∑M
m=1

∣∣∣1− f(ξref
m)T ξ̇ref

m

||f(ξref
m)||||ξ̇ref

m||

∣∣∣ as in [18] and (iii) dynamic time warping distance (DTWD) as
in [13]. While (i-ii) give an overall similarity of the shape of the resulting DS wrt. the demon-
strations, (iii) measures the dissimilarity between the shapes of the reference trajectories and their
corresponding reproductions from the same initial points. Figure 4 shows the performance of SEDS
(S), EM-based GMM E(·) fitting and PC-GMM PC(·) with (O1− 3) LPV-DS optimization vari-
ants from (9). RMSE is comparable throughout all methods as this metric is not representative of
reproduction accuracy. If we focus on ė and the DTWD on the training set, methods E(O2−3) and
PC(O2 − 3) clearly outperform SEDS with a drastic gap in the DTWD. This is due to motions as
the ones illustrated in Figure 3 where SEDS either diverges or goes directly to the attractor. While
the E(O2− 3) approaches have comparable accuracy on the training set, their error increase on the
testing set. This indicates that theE(O2−3) are over-fitting and only locally shaping the DS, yet the
overall shape of the motion is not being generalized. The relative train/test errors for our approach,
on the other, tend to be in the same range. Further evidence of this behavior on 11 challenging
motions from the LASA dataset is provided in Appendix G.

2MATLAB code for DS-optimization+datasets available at: https://github.com/nbfigueroa/ds-opt
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Figure 4: Overall Performance Metrics on LASA Library. (Left) Performance on the training data. (Right)
Performance on the testing data. Each bar-graph shows the mean (and std.) of the error for every approach.
S=SEDS, E(·)=EM-GMM, PC(·)=PC-GMM and (O1− 3) stands for the type of optimization variants.

Robotic Experiments The proposed approach was used to learn complex motions for three
real-world scenarios involving: (i) an inspection-line task, (ii) a branding-line task and (iii)
a shelf-arranging task, as depicted in Figure 5 for task (i). Videos of the learning and exe-
cution of these tasks are provided in the following link: http://lasa.epfl.ch/files/Nadia/

Figueroa-CoRL2018-Experiments.mp4

Figure 5: Inspection task. (center) PC-GMM. (right) LPV-DS estimated with PC-GMM and (O3) optimization variant.
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Figure 6: Illustration of Incremental PC-GMM-based LPV-DS Learning Approach.

5 Towards Incremental Learning of LPV Dynamical Systems
Problem Setting: Assume we obtained an initial batch, b = 1, of reference trajectories {Ξ, Ξ̇}b =

{ξref
t , ξ̇

ref
t }bt=1...TN

we then learn a DS f b(ξ) on these demonstrations and use it to generate motions.
After a while, we obtain a new batch of reference trajectories {Ξ, Ξ̇}b+1 that we wish to use to
update the DS f b(ξ) → f̃ b+1(ξ), and so on. A naive approach to tackle this problem would be to
simply concatenate the batches of reference trajectories {Ξ, Ξ̇} = {Ξ, Ξ̇}b ∪ {Ξ, Ξ̇}b+1 ∪ · · · ∪
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{Ξ, Ξ̇}b+∞ and learn a new DS every time new data arrives. Such an approach becomes not only
computationally expensive as the number of batches increases, and is data-inefficient as it does not
use the previous batches of data in an efficient way. For example, if a new reference trajectory
arrives, that is overlapping with trajectories from the old batches, learning new parameters θγ and
θf might have no effect on the resulting model, hence there is no need to re-learn the DS. Another
example of such data-inefficiency occurs if the batches of reference trajectories are non-overlapping
as in the example in Figure 6, it is not necessary to learn the DS parameters θbf associated to the
previous batch from scratch. In lieu if these observations, we propose an incremental learning
algorithm that can update a DS f b(ξ) learned on a dataset {Ξ, Ξ̇}b with new incoming reference
trajectories {Ξ, Ξ̇}b+1, while (i) re-using the parameters θbγ and θbf learned from the previous batch,
(ii) solely using the newly arrived batch of data {Ξ, Ξ̇}b+1 and (iii) preserving GAS.

An Incremental Learning Approach for LPV-DS Consider each batch of demonstrations
{Ξ, Ξ̇}b and {Ξ, Ξ̇}b+1 representing two independent DS,

f b(ξ) =

Kb∑
k=1

γbk(ξ)(Ab
kξ + bbk), f b+1(ξ) =

Kb+1∑
k=1

γb+1
k (ξ)

(
Ab+1
k ξ + bb+1

k

)
(10, 11)

The updated DS f̃ b+1(ξ) = f b(ξ)⊕ f b+1(ξ) is constructed by merging (10) and (11), with operator
⊕ denoting the merge operation of two functions. In order for f̃ b+1(ξ) to be globally asymptotically
stable we propose the following sufficient conditions which are derived from a QLF:

Theorem 1 The merged DS f̃ b+1(ξ) = f b(ξ)⊕ f b+1(ξ) composed of individual DS (10) and (11) is globally
asymptotically converging at the attractor ξ∗ iff,

Kb∑
k=1

γbk(ξ) +

Kb+1∑
k=1

γb+1
k (ξ) = 1

(Ab
k)T + Ab

k ≺ 0, bbk = −Akξ
∗ ∀ k = 1, . . . ,Kb

(Ab+1
k )T + Ab+1

k ≺ 0, bb+1
k = −Akξ

∗ ∀ k = 1, . . . ,Kb+1

(12)

Proof: See Appendix F. �

Updating the mixing function θbγ → θb+1
γ from new data Given new data θbγ → θb+1

γ we learn a
new PC-GMM θb+1

γ . We then follow the incremental estimation of GMMs approach for online data
stream clustering approach presented in [27]. However, instead of using multivariate statistical tests
for equality of covariance and mean as a merging strategy, we use the Kullback-Leibler Divergence
DKL(N (µbk,Σ

b
k)||N (µb+1

k ,Σb+1
k )) between each k-th Gaussian component of each GMM. If any

biderectional DKL < τ is less than a threshold τ , normally set to 1, then the Gaussians are deemed
similar and their sufficient statistics are used to update the components. Illustrative results of this
procedure are shown in Figures 16 and Figure 6 for examples that need and don’t need merging of
Gaussians.

Compute DS parameters θbf → θb+1
f for new local components For the new set of Gaussian

components created from the previous step we now compute the DS parameters θb+1
γ on the newly

arrived training data {Ξ, Ξ̇}b+1 by solving the convex optimization problem (9) with variant (O1).

6 Discussion and Future Work

The main contribution of this work is the PC-GMM that is capable of fitting GMM to trajectory
data in a physically consistent way. This enabled us to provide accurate estimations of LPV-DS that
outperform SEDS and further propose an incremental learning strategy for LPV-DS that preserves
global asymptotic stability. One drawback of our approach is the computational complexity of the
Collapsed Gibbs Sampler. As highlighted in [21] at each iteration all points are visited, hence,
making the initial iterations computationally heavy if many points are used. Our future directions
involve optimizing such computations and extending the incremental algorithm such that it can
employ the P-QLF in order to model more complex motions as the offline generalized LPV-DS
approach proposed in Section 3.
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[24] J. Fiala, M. Kočvara, and M. Stingl. PENLAB: A MATLAB solver for nonlinear semidefinite
optimization. ArXiv e-prints, Nov. 2013.

[25] S. M. Khansari-Zadeh and O. Khatib. Learning potential functions from human demonstrations
with encapsulated dynamic and compliant behaviors. Autonomous Robots, pages 1–25, 2015.
ISSN 1573-7527.

[26] J. Lofberg. Yalmip : a toolbox for modeling and optimization in matlab. In 2004 IEEE Interna-
tional Conference on Robotics and Automation (IEEE Cat. No.04CH37508), pages 284–289,
Sept 2004. doi:10.1109/CACSD.2004.1393890.

[27] M. Song and H. Wang. Highly efficient incremental estimation of Gaussian mixture models for
online data stream clustering. In K. L. Priddy, editor, Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series, volume 5803 of Presented at the Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference, pages 174–183, March 2005. doi:10.1117/12.
601724.

[28] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis. Chapman and
Hall/CRC, 2003.

[29] K. P. Murphy. Conjugate bayesian analysis of the gaussian distribution. Technical report, 2007.

10

http://dx.doi.org/10.1109/CACSD.2004.1393890
http://dx.doi.org/10.1117/12.601724
http://dx.doi.org/10.1117/12.601724


Appendix

A Stability of a Linear DS with Parametrized QLF

We wish to prove the following proposition:

Proposition 1 A linear DS of the form ξ̇ = Aξ+ b is globally asymptotically converging at the attractor ξ∗

iff, {
ATP + PA ≺ Q, P � 0, Q ≺ 0

b = −Aξ∗
(13)

where ≺ (and �) refer to negative (and positive) definiteness of a matrix, respectively. Recall that a matrix A

is deemed negative (or positive) definite iff it’s symmetric part Ã = 1
2
(AT + A) has all negative (or positive)

eigenvalues. Both P ∈ RM×M and Q ∈ RM×M are symmetric.

Proof: This can be proven if there exists a continuous and continuously differentiable Lyapunov
function V (ξ) : RN → R such that V (ξ) � 0, V̇ (ξ) ≺ 0 ∀ ξ 6= ξ∗ and V (ξ∗) = 0, V̇ (ξ∗) = 0. By
considering the P-QLF candidate function of the following form:

V (ξ) = (ξ − ξ∗)TP(ξ − ξ∗) (14)

we can ensure V (ξ) > 0 due to its quadratic form. The second condition follows by taking the
derivative of V (ξ) wrt. time, given a symmetric P,

V̇ (ξ) = (ξ − ξ∗)TPf(ξ) + f(ξ)TP(ξ − ξ∗)
= (ξ − ξ∗)TP (Aξ + b)︸ ︷︷ ︸

via (13)

+ (Aξ + b)T︸ ︷︷ ︸
via (13)

P(ξ − ξ∗)

= (ξ − ξ∗)TP(Aξ − Aξ∗︸︷︷︸
via (13)

) + (Aξ − Aξ∗︸︷︷︸
via (13)

)TP(ξ − ξ∗)

= (ξ − ξ∗)TPA(ξ − ξ∗) + (ξ − ξ∗)TATP(ξ − ξ∗)

= (ξ − ξ∗)T
[

PA + ATP︸ ︷︷ ︸
Q≺0 via (13)

]
(ξ − ξ∗) < 0

(15)

with Q = QT ≺ 0. By substituting ξ = ξ∗ in (14) and (15) we ensure V (ξ∗) = 0, V̇ (ξ∗) = 0.
Therefore, the linear DS is globally asymptotically stable with respect to an attractor ξ∗ if conditions
(13) are satisfied. �

B Stability of a Non-Linear DS with Parametrized QLF

We wish to prove the following proposition:

Proposition 2 The nonlinear DS defined in (1) is globally asymptotically converging at the attractor ξ∗ iff,

(Ak)TP + PAk ≺ Qk, Qk = QT
k ≺ 0, bk = −Akξ

∗ ∀k = 1, . . . ,K (16)

Proof: This can be proven if there exists a continuous and continuously differentiable Lyapunov
function V (ξ) : RN → R such that V (ξ) � 0, V̇ (ξ) ≺ 0 ∀ ξ 6= ξ∗ and V (ξ∗) = 0, V̇ (ξ∗) = 0.
By considering a parametrized quadratic Lyapunov candidate function as in (14), we can ensure
V (ξ) > 0 due to its quadratic form. The second condition follows by taking the derivative of V (ξ)

11



wrt. time, given a symmetric P,

V̇ (ξ) = (ξ − ξ∗)TPf(ξ) + f(ξ)TP(ξ − ξ∗)

= (ξ − ξ∗)TP
( K∑
k=1

γk(ξ)(Akξ + bk)
)

︸ ︷︷ ︸
via (16)

+
( K∑
k=1

γk(ξ)(Akξ + bk)T
)

︸ ︷︷ ︸
via (16)

P(ξ − ξ∗)

= (ξ − ξ∗)TP
( K∑
k=1

γk(ξ)(Akξ − Aξ∗︸︷︷︸
via (16)

)
)

+
( K∑
k=1

γk(ξ)(Akξ − Aξ∗︸︷︷︸
via (16)

)T
)
P(ξ − ξ∗)

= (ξ − ξ∗g)TPg

( K∑
k=1

γk(ξ)Ak

)
(ξ − ξ∗) + (ξ − ξ∗)T

( K∑
k=1

γk(ξ)(Ak)T
)
P(ξ − ξ∗)

= (ξ − ξ∗)T
( K∑
k=1

γk(ξ)︸ ︷︷ ︸
>0 via (1)

(PAk + (Ak)TP︸ ︷︷ ︸
≺Qk via (16)

)
)

(ξ − ξ∗) < 0

(17)
with Qk = QT

k ≺ 0. By substituting ξ = ξ∗ in (14) and (17) we ensure V (ξ∗) = 0, V̇ (ξ∗) = 0.
Therefore, (1) is globally asymptotically stable with respect to an attractor ξ∗ if conditions (16) are
satisfied. �

C Graphical Model of Physically Consistent Bayesian Non-Parametric
Gaussian Mixture Model

M

M

KZ
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αZ
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Figure 7: Graph. model of PC-GMM.

D Collapsed Gibbs Sampler and Sampling Equations for Section 2

D.1 Likelihood of Partitions for Z = Z(C)

The likelihood of a partition Z = Z(C) is computed as the product of the probabilities of the
customers Ξ sitting at their assigned tables Z,

p(Ξ|Z(C), λ) =

|Z(C)|∏
k=1

p(ΞZ(C)=k|λ) (18)

where |Z(C)| denotes the number of unique tables emerged from Z(C); i.e. K in a finite mixture
model, and Z(C) = k is the set of customers assigned to the k-th table. Further, each marginal
likelihood in (18) has the following form,

p(ΞZ(C)=k|λ) =

∫
θ

 ∏
i∈Z(C)=k

p (ξi | θ)

 p (θ | λ) dθ. (19)

Since p(ξi | θ) = N (ξi |µ,Σ) and p(θ | λ) = NIW(µ,Σ | λ), (19) has an analytical solution
which can be derived from the posterior p(µ,Σ|Ξ) as presented in Appendix D.2.
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D.2 Sampling from the NIW distribution

The NIW [28] is a four-parameter λ = {µ0, κ0,Λ0, ν0} multivariate distribution generated by
Σ ∼ IW(Λ0, ν0), µ|Σ ∼ and N

(
µ0,

1
κ0

Σ
)

where κ0, ν0 ∈ R>0, and ν0 > P − 1 indicates

degrees of freedom of the P -dimensional scale matrix Λ ∈ RPxP which should be Λ � 0. The
density of the NIW is defined by

p(µ,Σ | λ) = N
(
µ|µ0,

1

κ0
Σ

)
IW(Σ |Λ0, ν0)

=
1

Z0
|Σ|−[(ν0+d)/2+1] exp

{
−1

2
tr(Σ−1Λ0)

}
× exp

{
−κ0

2
(µ− µ0)TΣ−1(µ− µ0)

} (20)

where Z0 = 2ν0d/2Γd(ν0/2)(2π/κ0)d/2

|Λ0|ν0/2
is the normalization constant.

A sample from aNIW yields a mean µ and covariance matrix Σ. One first samples a matrix from an
W−1 parameterized by Λ0 and ν0; then µ is sampled from a N parameterized by µ0, κ0,Σ. Since
N and NIW are a conjugate pair, the term

(∏
i∈Z(C)=k p (ξi | θ)

)
p (θ | λ) in (19) also follows

a NIW [29] with new parameters λn = {µn, κn,Λn, νn} computed via the following posterior
update equations,

p(µ,Σ|Ξ1:n, λ) = NIW(µ,Σ|µn, κn,Λn, νn)

κn = κ0 + n, νn = ν0 + n, µn =
κ0µ0 + nΞ̄

κn

Λn = Λ0 + S +
κ0n

κn
(Ξ̄− µ0)(Ξ̄− µ0)T

(21)

whereNk is the number of samples Ξ1:Nk , whose sample mean is denoted by Ξ̄ and S =
∑Nk
i=1(ξi−

µ)(ξi − µ)T is the matrix of sum of squares, otherwise known as the scatter matrix.

D.3 Collapsed Gibbs Sampler for Physically-Consistent Clustering

The conditional in (7) is sampled via a two-step procedure:

Step 1. The i-th customer assignment is removed from the current partition Z(C). If this causes a
change in the partition; i.e. Z(C−i) 6= Z(C); the customers previously sitting at Z(ci) are split and
the likelihood must be updated via (18).

Step 2. A new customer assignment ci must be sampled, by doing so a new partition Z(ci = j∪C−i)
is generated. This new customer assignment might change (or not) the current partition Z(C−i). If
Z(C−i) = Z(ci = j ∪ C−i), the partition was unchanged and the i-th customer either joined an
existing table or sat alone. If Z(C−i) 6= Z(ci = j ∪ C−i), the partition was changed, specifically
ci = j caused two tables to merge, table l which is where the i-th customer was sitting prior to step
1 and table m is the new table assignment emerged from the new sample Z(ci = j). Due to these
effects on the partition, instead of explicitly sampling from Eq. 7, [21] proposed to sample from the
following distribution,

p(ci = j |C−i,Ξ,S, α, λ) ∝
{
p(ci = j|S, α)Λ(Ξ, C, λ) if cond
p(ci = j|S, α) otherwise,

(22)

where cond is the condition of ci = j merges tablesm and l and Λ(Ξ, C, λ) is equivalent to,

Λ(Ξ, C, λ) =
p(Ξ(Z(C)=m ∪ Z(C)=l)|λ)

p(ΞZ(C)=m|λ)p(ΞZ(C)=l|λ)
. (23)

This procedure is iterated T times for a pre-defined number of iterations. The entire procedure is
summarized in Algorithm 1.
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Algorithm 1 Collapsed Gibbs Sampler for ξ̇-SD-CRP
Input: Ξ, Ξ̇ . Data

α, λ = {µ0, κ0,Λ0, ν0} . Hyper-parameters
Output: Ψ = {K,C,Z,Θ} . Inferred Clusters and Cluster indicators

Compute pair-wise ξ̇-similarity values (Eq.4)
1: procedure GIBBS-SAMPLER(Ξ,S, α, λ)
2: Set Ψt−1 = {C,K,Z} where ci = i for C = {c1, . . . , cN}
3: for iter t = 1 to T do
4: Sample a random perm. τ(·) of integers {1, . . . , N}.
5: for obs i = τ(1) to τ(N) do
6: Remove customer assignment ci from the partition
7: if Z(C−i) 6= Z(C) then
8: Update likelihoods according to Eq. 18
9: Sample new cluster assignment

10: c
(i)
i ∼ p(ci = j|C−i,Ξ−i,S, α) (Eq. 22)

11: if Z(C−i) 6= Z(ci = j ∪ C−i) then
12: Update table assignments Z.

Sample table parameters θγ fromNIW posterior
13: update equations (21).

E Further Illustrations and Comparisons for GMM Learning

Following we provide further comparison of the performance of the proposed GMM fitting approach
on challenging datasets with characteristics specific to trajectory data.

Figure 8: GMM fit on 2D Opposing Motions (Different Targets) Dataset.

Figure 9: GMM fit on 2D Multiple Motions (Different Targets) Dataset.

Figure 10: GMM fit on 2D Multiple Motions (Same Target) Dataset.
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Figure 11: GMM fit on 2D Messy Snake Dataset.

F Stability of Merged DS f̃ b+1(ξ) for Incremental Learning Approach

We wish to prove Theorem 1 that is, that the merged DS f̃ b+1(ξ) = f b(ξ) ⊕ f b+1(ξ) composed
of individual DS (10) and (10) is globally asymptotically stable at the point ξ∗ if there exists a
continuous and continuously differentiable Lyapunov function V (ξ) : RN → R such that V (ξ) �
0, V̇ (ξ) ≺ 0 ∀ ξ 6= ξ∗ and V (ξ∗) = 0, V̇ (ξ∗) = 0. By considering a quadratic Lyapunov candidate
function of the following form:

V (ξ) = (ξ − ξ∗)T (ξ − ξ∗) (24)

we can ensure V (ξ) > 0 due to its quadratic form. The second condition follows by taking the
derivative of V (ξ) wrt. time,

V̇ (ξ) = ∇ξV (ξ)T
d

dt
ξ(t) = (ξ − ξ∗)T f̃ b+1(ξ)

= (ξ − ξ∗)T
( Kb∑
k=1

γbk(ξ)(Ab
kξ + bbk) +

Kb+1∑
k=1

γb+1
k (ξ)(Ab+1

k ξ + bb+1
k )

)

= (ξ − ξ∗)T
( Kb∑
k=1

γbk(ξ) (Ab
k)(ξ − ξ∗)︸ ︷︷ ︸

via (12)

+

Kb+1∑
k=1

γb+1
k (ξ) (Ab+1

k )(ξ − ξ∗)︸ ︷︷ ︸
via (12)

)

= (ξ − ξ∗)T
( Kb∑
k=1

γbk(ξ)Ab
k +

Kb+1∑
k=1

γb+1
k (ξ)Ab+1

k

)
(ξ − ξ∗)

= (ξ − ξ∗g)T
(Kb+Kb+1∑

k=1

γ̃b+1
k (ξ)︸ ︷︷ ︸

>0 via (12)

(
Ãb+1
k

)
︸ ︷︷ ︸
≺0 via (12)

)
(ξ − ξ∗g) < 0

(25)

where
∑Kb+Kb+1

k=1 γ̃b+1
k (ξ) =

∑Kb

k=1 γ
b
k(ξ) +

∑Kb+1

k=1 γb+1
k (ξ) and Ãb+1

k is the k-th matrix in the
set of concatenated matrices Ãb+1 = {Ab

1, . . . ,A
b
Kb ,A

b+1
1 , . . . ,Ab+1

Kb+1}. By substituting ξ = ξ∗

in (24) and (25) we ensure V (ξ∗) = 0, V̇ (ξ∗) = 0. Therefore, f̃ b+1(ξ) is globally asymptotically
stable with respect to an attractor ξ∗ if conditions (12) are satisfied.

G Further Results and Illustrations for DS Learning
G.1 Messy-snake dataset from Section x

In Figure 12 we show the resulting DS and Lyapunov functions from estimating an LPV-DS on the
messy-snake dataset with the three optimization variants.

We further show more exemplars from the LASA Motion library and the computed performance
metrics on training and testing sets in Figure 13, 14, 15.

15



Figure 12: Illustrations of our physically-consistent GMM-based LPV-DS learning variants learned on the
messy-snake dataset. Result of the optimization variant (9) (1st row) (O1), (2nd row) (O2) and (2nd row)
(O3).
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Figure 13: Exemplary models learned from the LASA handwriting dataset. (1st row) PDF of Physically-
Consistent Mixture Model (2nd row) SEDS estimated with J(θγ)=MSE (3rd row) GMM-based LPV-DS
estimated via (O1) (4th row) GMM-based LPV-DS estimated via (O3). (5th row) Performance Metrics on
Training set. (5th row) Performance Metrics on Testing set
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Figure 14: Exemplary models learned from the LASA handwriting dataset. (1st row) PDF of Physically-
Consistent Mixture Model (2nd row) SEDS estimated with J(θγ)=MSE (3rd row) GMM-based LPV-DS
estimated via (O1) (4th row) GMM-based LPV-DS estimated via (O3). (5th row) Performance Metrics on
Training set. (5th row) Performance Metrics on Testing set.
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Figure 15: Exemplary models learned from the LASA handwriting dataset. (1st row) PDF of Physically-
Consistent Mixture Model (2nd row) SEDS estimated with J(θγ)=MSE (3rd row) GMM-based LPV-DS
estimated via (O1) (4th row) GMM-based LPV-DS estimated via (O3). (5th row) Performance Metrics on
Training set. (5th row) Performance Metrics on Testing set.
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H Illustrations for Incremental Approach

Following we provide a second example for the incremental learning framework.
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Figure 16: Illustration of Incremental PC-GMM-based LPV-DS Learning Approach.
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