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Abstract

Cross-slip of screw dislocations is a dislocation process involved in dislocation structuring, work hardening, and fatigue. Cross-slip
nucleation in FCC solid solution alloys has recently been shown to be strongly influenced by local fluctuations in spatial arrangement
of solutes, leading to a statistical distribution of cross-slip nucleation barriers. For cross-slip to be effective macroscopically, however,
small cross-slip nuclei (~40b) must expand across the entire length of typical dislocation segments (0>~103b). Here, a model is
developed to compute the relevant activation energy distribution for cross-slip in a random FCC alloy over arbitrary lengths and
under non-zero Escaig and Schmid stresses. The model considers cross-slip as a random walk of successive flips of adjacent 15
segments, with each flip having an energy consisting of a deterministic contribution due to constriction formation and stress effects,
plus a stochastic contribution. The corresponding distribution is computed analytically from solute-dislocation and solute-solute
binding energies. At zero stress, the probability of high activation energies increases with dislocation length. However, at stresses of
just a few MPa, these barriers are eliminated and lower barriers are dominant. For increasing segment length, the effective energy
barrier decreases according to a weak-link scaling relationship and good analytic predictions can be made using only known material
properties. Overall, these results show that the effective cross-slip barrier in a random alloy is significantly lower than estimates
based on average elastic and stacking fault properties of the alloy.
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1. Introduction

In many engineering alloys, some fraction of the alloying el-
ements remain in solution as substitutional solutes. The average
effect of solutes leads to changes in the bulk material properties,
especially the lattice constant, elastic constants, and stacking
fault energies. Solutes also interact with dislocations to inhibit or
modify dislocation motion. For non-diffusive solutes, solute/dis-
location interactions lead to solute strengthening. For solutes
that diffuse readily, solute/dislocation interactions can lead to
solute drag and the associated creation of Cottrel atmospheres,

dynamic strain aging, and Suzuki segregation to stacking faults.

Understanding the role of solutes, and especially the interactions
between solutes and dislocations is useful for development of

new engineering alloys with specific performance requirements.

One of the fundamental processes of dislocation motion is
cross-slip of screw dislocations, i.e. the change of dislocation
slip plane. Cross-slip is a versatile mechanism. It enables the
dislocation to bypass obstacles, to form new sources on adja-
cent planes, or to annihilate other dislocations. In FCC metals,
in particular, cross-slip plays a role in, for example, disloca-
tion structuring [1, 2], and work hardening and recovery [3-5].
Mobile screw dislocations in FCC are dissociated into pairs of
Shockley partial dislocations with mixed character, so that the
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partial dislocations are not able to cross-slip. Cross-slip mech-
anisms for FCC crystals are thus more complex than in BCC
crystals where dislocations do not dissociate. Many previous
studies focused on the mechanism and energy of cross-slip in
pure metals, see for instance the review [ 6] and Refs. [ 7-10].
The most prominent mechanism is the Friedel-Escaig [11, 12]
mechanism. The first step of this mechanism is the formation
of a point constriction of the two partials. The dislocation then
re-dissociates onto the cross-slip plane, and expands to create
a lenticular segment on that plane. Fig. 1a) shows the typical
transition state as found using an atomistic transition path calcu-
lation [13]; note that the segment on the cross-slip plane (blue)
is bounded by two constrictions. The segment then grows by
lateral movement of the constrictions.

Cross-slip is a thermally activated mechanism and it has
been shown [9, 14] that the rate of cross-slip can be described
by an Arrhenius expression,

_ AEu
kgT

r(T) = vexp , (1)
where T is temperature, kp is Boltzmann’s constant, vis a pref-
actor and AE, is the activation energy. Analytic models [12] of
this process in elemental FCC metals show that the energy bar-
rier for cross-slip scales as u>b*/ yrlog (3 ub/8 mysr) where p
is the shear modulus, %y is the stacking fault energy, and b is
the ma‘grlitude of the Burgers vector of a a/2hl10i dislocation,
i.e.a/ 2, abeing the lattice parameter. For materials like Cu
and Ni, with low ¥, the activation barriers from atomistic calcu-
lations and analytical models are very large, > 1.5 eV, making
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cross-slip very slow at room temperature. Since experimental
observations of cross-slip indicate that it is more prevalent than
such barriers suggest, there have been recent analyses of “het-
erogeneous’” cross-slip mechanisms initiating at, for example,
jogs [15, 16] or forest dislocations [17-19].

In contrast, there are few studies of solute effects on cross-
slip [20-24]. Thus, we recently performed a comprehensive
atomistic study of cross-slip in Al-Mg, Cu-Ni and Ni-Al solid
solutions [13]. Using atomistic transition path calculations, we
demonstrated that cross-slip nucleation, which occurs over scales
of = 400, is strongly influenced by the fluctuations in the spa-
tial distribution of solutes over the scale of the critical nucleus.
While the average barrier is comparable to that computed using
the average modulus and stacking fault energy, there is a broad
distribution of activation energies around the average. Since
cross-slip is thermally-activated, nucleation can thus occur in
regions where the local activation energy is significantly below
the average value. The nucleation of screw dislocations on the
cross-slip plane is thus much faster than expected based on aver-
age material properties. However, it is not sufficient to consider
only nucleation of cross-slip. In order to meaningfully impact
plastic deformation, the nucleus either has to expand laterally,
so that eventually the whole dislocation cross-slips, or the initial
cross-slip event must enable some other transformation of the
dislocation, e.g. formation of a source by bow-out on an adja-
cent plane. In the former case, the cross-slipped length increases
from the nucleation length of ca. 40b to the typical length of
dislocations in the network, which is on the order of 10005 for
a deformed metal with a dislocation density 2of 10'* m™2. In
the latter case, the cross-slipped length is shorter, but must still
be on the order of ub/ T, where Tis the applied stress, so that
the bow-out in the adjacent plane is stable. In Ref. [13], we
speculated that lateral expansion could occur without difficulty,
but this is incorrect — the expanding cross-slipped dislocation
could encounter energetically unfavorable environments that
require further thermal activation. Therefore, the fundamental
work of Ref. [13] must be extended to encompass the full pro-
cess from nucleation at the scale of = 40b to full cross-slip over
scales > 1000b. The purpose of this paper is to make such an
extension and draw meaningful conclusions about the true role
of solutes in controlling cross-slip in random FCC alloys. This
is achieved using a random-walk-like model. We view the cross-
slip process as a discrete sequence of flips of successive unit
dislocation segments from the glide to the cross-slip plane. The
energy change upon cross-slip of each segment has a random
and a deterministic part. The former reflects the random change
in solute binding energies, and the latter the energy needed for
constriction formation, as well as stress effects. We provide
expressions for these energy changes, which then allows us to
calculate distributions of energy barriers for cross-slip of long
dislocations.

The rest of the paper is structured as follows. In Sec. 2,

2 A standard estir\}zate for the average dislocation spacing L at dislocation
density pis L =1/ [25, p. 20]. For a cellular or mesh-like dislocation
microstructure, L is also an estimate for the typical segment length. For example,
in Ni b =2.48 A, hence L/b = 1270 at p=10'3 m™2.
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Figure 1: a) Cross-slip transition state in a Ni-15at.% Al average alloy, from an
atomistic transition path calculations reported in Ref. [ 13]; only atoms that don’t
have regular FCC coordination are shown; gray: segment on the glide plane;
blue: cross-slip plane; atoms visualized using O VITO [26]. b) Simplified picture
of the process, as used in the random walk model; the dislocation is partitioned
into N, segments of 15 length; cross-slip is the discrete process of moving the

segments one by one from the glide to the cross-slip plane.

we briefly summarize Ref. [ 13] and the important underlying
analysis of changes in solute/dislocation binding energies dur-
ing cross-slip, extending the results beyond those presented in
Ref. [13]. In Sec. 3 we then introduce the random walk model
for studying the nucleation and lateral expansion of a nucleated
cross-slip segment, for zero stress and for non-zero Escaig and
Schmid stresses. In Sec. 4, we validate the random walk model
predictions of the activation barrier by comparisons with fully
atomistic results at the short nucleation length of = 405 for zero
stress and non-zero stresses. In Sec. 5, we then use the validated
random walk model to study long dislocations, which cannot
be treated using atomistic calculations, again for zero stress and
non-zero stresses. Finally, in Sec. 6, we summarize the broad
general findings and discuss their implications for cross-slip
processes in metal alloys.

2. Cross-slip barriers in random alloys; correlation with so-
lute/dislocation interactions

In numerical studies of cross-slip in both elemental FCC
metals and homogeneous “average alloy” representations that
eliminate all stochastic features [27, 28], cross-slip is observed
to occur by the Friedel-Escaig model with an activation energy
barrier AE,; controlled by the elastic modulus and stacking fault
energy. However, in explicit random alloys, the variations in
local spatial arrangement of solutes create local variations in the
cross-slip barriers, leading to a statistical distribution of activa-
tion barriers around the average value found in the homogeneous
representation. Since cross-slip is thermally activated, those bar-
riers below the average value enable the nucleation of cross-slip
at rates far exceeding the average rate. It is thus crucial to un-
derstand both the statistical distribution of activation barriers



and whether cross-slip segments at the typical nucleation size
(= 40b) can expand laterally to create fully cross-slipped long
segments.

In our previous work [13], we addressed the statistical dis-
tribution of AE, at the length scale of 40b. We found that
there is a correlation between the values of AE,. and the en-
ergy difference AE,,4 between the initial and final states, i.e. the
dislocation segment fully dissociated on the glide or cross-slip
plane, respectively. The correlation was

AEact = AEact,avg +0-5AEend' (2)

A typical example of the correlation is shown in Fig. 2, for the
Ni-15%Al alloy. Therefore, an understanding of the statistical
distribution of AE.p4 can provide direct information on the sta-
tistical distribution of AE,.;. We note now that the random walk
model developed in this paper actually reproduces the above
correlation with no assumptions; Eq. 2 is an outcome of the
physical model for evolution of the cross-slip nucleation, as seen
also in Fig. 2. Basic considerations, and the random walk model,
show that the correlation only holds for the nucleated segment
(= 40b), and not for much longer segments. Thus, the previous
work uncovered a key feature of cross-slip in random alloys but
did not present a full picture. However, both the correlation
and the random walk model rely on understanding the statistical
distribution of energies of AE,4. The correlation requires the
distribution of AE.yq at the scale of 40b while the random walk
model requires only the distribution of energies per unitb, which
is the fundamental unit of the random walk model as described
in Sec. 3. Therefore, an accurate prediction of the distribution
of AE.pq is needed.

In Ref. [13], the distribution of AE.,q was predicted as a
function of the underlying solute-dislocation and solute-solute
binding energies in binary alloys. Good but not excellent agree-
ment with simulations was obtained by including only near-
neighbor solute pairs. We thus start this paper by extending the
earlier model to include solute pairs out to eight neighbors, and
demonstrate excellent agreement with simulation results. The
analysis is further generalized to multiple solutes (beyond binary
alloys) for future applications to more complex alloys including
High Entropy Alloys [29].

In the absence of any Escaig stresses, the average energies
of the initial and final dislocation are equal since both are screw
dislocations differing only in the plane of dissociation. Thus,
in the random alloy, the energy difference AE. g between the
initial and final states is due only to the differences in solute-
dislocation and solute-solute binding energies for the specific
spatial arrangement of solutes around the cross-slipping segment.
For a given arrangement of solutes, cross-slip causes changes of
the relative position of the solute with respect to the dislocation.
During cross-slip, the stacking fault ribbon is destroyed on the
glide plane and then re-formed on the cross-slip plane. In both
steps, the relative position of some pairs of atoms changes. For
example, a first-nearest neighbor pair of solutes may become
separated or formed in the process. However, only solute pairs
where one solute lies above the fault and the other below are
affected.
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Figure 2: Joint plot of the distribution of activation energy AFE,. and end state
energy difference AE¢pg for Ni+15 at.% Al and N, = 40; hexagonal bins: random
walk data, color indicates frequency, see marginal distributions; "+": atomistic
data; lines: linear regression

The change in solute-dislocation binding energies during
cross-slip follows the analysis of solute strengthening in ran-
dom alloys given by Varvenne et al. B0O] following the original
work by Leyson and Curtin [31, 32]. Consider a slice of ma-
terial perpendicular to the dislocation line. Define a Cartesian
coordinate system with origin at the center of the dislocation,
direction x in the glide direction, y normal to the glide plane,
and z along the dislocation line, see Fig. 1¢). Define a similar
coordinate system for the cross-slipped dislocation. We label
atomic sites with indices (i, j, k), and define the occupation vari-
able s; ,x = 1 if a solute of type X exists at site (i, j, k) and
sijkx = 0 otherwise. The spatial positions of solute (i, j, k) in
the initial and final configuration are (x;, y;, z¢) and (xg y?, zg),
respectively. The solute-dislocation binding energy is then de-
noted as Us g x (x;,y j,zk); this is the energy change associated
with moving a solute from infinity to the position  (x;,y;, zx).
The total energy change of the system due to cross-slip is the
sum over all the individual changes in solute-dislocation binding
energies of each solute,

— 0.0 0
AEcnd,s—d,X = Zsijk Us-d,X (x,'r Yijr Zk) _Us—d,X (xir Yj» Zk) , 3)
i jk

For a random alloy, the s; jx are Bernoulli random variables. The
average change in energy is thus the average of Eq. 3, and the av-
erage is taken only over thes; j x, yielding ;5 x = cx where
cx is the overall concentration of solute X. Recall that the ini-
tial and final state of cross-slip are symmetrically equivalent in
a pure metal or an average alloy. Hence, for each atomic site
(xi, j, z) there is a symmetry-equivalent site(x), y4, z-) with op-
posite contribution in Eq. 3. Therefore,Y; j[Us.q,x (x9 ylo., ) -



Us.a,x (xi,yj,2x)] =0, and the average energy change is zero. Ef-
fects due to discrete solutes thus arise only due to local statistical
fluctuations in the actual solute distribution in the alloy. The
quantity of interest is thus the standard deviation of the energy
change. The solute energies are independent of coordinate z and
so for line length C there are {/b identical sites and the statisti-
cal quantity HZijksijk,X 2 s HZijksijk,X 2 = cx (1 —cx) %
The standard deviation of the energy change AEepq-q,x is then

55 [AEend,s-d,X 1=

c #2
2
ex (I=ex) 2} Usa x (0 y9,x0) —Usax(xi, ), 20) ,
ij
“)

and the standard deviation of the total solute-dislocation binding

energy change is
S

Nr

9 [AEend,s—d] = Z ( G[AEend,s—d,X ] )2-
X

&)

The change in solute-solute binding energies due to the cross-
slip process is also zero on average, so that it is again the standard
deviation in the energy change that sets the scale of energy
changes during cross-slip. A model of the standard deviation is
derived in Appendix A. We take into account cutting/formation
of the first eight nearest neighbor pairs of the perfect FCC lattice.
In a faulted lattice, one can also identify pairs whose distance is
not found in the perfect FCC lattice, but these are ignored. Let
Us.s,xy,n be the binding energy of anth order pair of solutesXand
Y. For convenience, write the pair energies of different order as
a vector Ussxy,i.e. Uy xy = Wssxv,1,Ussxy2s - - Ussxrs),
where the superscript ! indicates transposition. In Appendix
A, it is shown that the standard deviation of the contribution to
AE¢pq from cutting/formation of XY pairs can be written using
matrix-vector notation,

1
—CxCy =

AEcnds- =
O[AEcnass,xy ] » 3 (14 &v)

1
2

XUy [C1+Calex +ey) — €1 +2C) exey Ussxy
©)

where cx and cy are the average concentrations of atom types X
and Y, respectively; d is the width of the stacking fault ribbon;
and C; and C; are matrices of constant coefficients, see Eq. A.15.
The form above accounts for the fact that pairs XY and Y X are
equivalent. Thus, the total standard deviation of the solute-
dislocation binding energy for an alloy with N7 atom types is

the double sum
Vv

G[AEcnd,s—s ] =F

Nr

Z ( G[AEend,s-s,XY ])2

X,
Y=X

CC

)

Combining the two sources of energy change upon cross-
slip, the total standard deviation of energy changes from solute-
dislocation and solute-solute-interactions is

G[AEend] = ( G[AEend,s-d])z + (G[AEend,s—s])z- (8)

To verify the model, we compare predictions for G[AE.ng]in
Ni-Al, Al-Mg and Cu-Ni alloys to results from atomistic cal-
culations reported in our previous publication [13], where the
dislocation lengtlvg was 40b, the radius of the (cylindrical) con-
figuration was 10 3a, and 100 (Ni-Al and Al-Mg alloys) or 120
(Cu-Ni alloys) statistical realizations were studied. For a few
alloygy we have recomputed the energies using a larger radius
of 13 3a, and we only report these new results. The Ni-Al, Al-
Mg, and Cu-Ni alloys were modeled using the Embedded Atom
Method (EAM) [33] potentials in Refs. [34-36]. Note that EAM
potentials are many-bodied, i.e. non-pairwise. Therefore, usage
of the term “solute pairs” in this paper should not be misunder-
stood as indication that simple pairwise interatomic potentials
were used. The solute-dislocation and solute-solute binding ener-
gies in Eq. 3 and Eq. 6 were calculated as described in Ref. [13],
using the same interatomic potentials, and the average-atom
approximation [27, 28] for the matrix atoms.

Predictions are made with increasing number of solute-solute
interactions, starting from first neighbor interactions. The pre-
dicted standard deviations in energy change are shown in Fig. 3
for successive sets of neighbors up to fifth neighbors, and the
atomistic simulation data from Ref. [13] is also shoer. The
error bars show the standard error estimate 6[AE¢q]/ 2n [37],
where n is the number of realizations and normality is assumed.
Additionally, histograms of the distributions are provided in
Sec. S1 of the supplementary materials. In the Ni-Al alloys
(Fig. 3a)), the first neighbor pairs dominate due to the very
strong Al-Al near-neighbor repulsion. Further-neighbor inter-
actions are, however, important in Al-Mg (Fig. 3b)) at higher
Mg concentrations and in the Cu-Ni alloys (Fig. 3c)). In Cu-Ni,
the full model correctly predicts the peak in standard deviation
energy at ca. 68 at.% Ni, which is not seen if only first-nearest
neighbor pairs are taken into account. The maximum absolute
difference between prediction and simulation is—0.084 eV, in
Al+14 at.% Mg. Overall, contributions from sixth to eighth order
pairs are typically less than 0.01 eV. These results demonstrate
that the standard deviation in energy change due to cross-slip can
be computed with high accuracy using only atomistic informa-
tion on solute-dislocation and solute-solute interaction energies,
which can be obtained/estimated using first-principles methods
for any system of interest. See for example Refs. [31, 32, 38] for
first-principles calculation of solute-dislocation binding energies.
The analysis of G[AE.,q]is thus not limited to systems for which
interatomic potentials are available; we have simply used such
systems to establish the phenomena and to demonstrate the high
accuracy of the theory.

3. Random walk model

While the correlation of the activation barrier with the end-
state energy difference is powerful, its exact origin is unclear
and it is valid only for segments at the critical cross-slip length.
The analysis of AE¢pg above shows that it depends on the length
C of the cross-slipped segment. While the correlation at { = 40b
allows us to make contact with the simulations, and = 405b is the
critical nucleation length for all the materials studied by simula-
tion, nucleation at the critical length does not imply cross-slip
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Figure 3: Standard deviation of AE.q4 for a 40b long dislocation; note that AE.;q
includes solute-solute and solute-dislocation binding energy changes; colored
bars: predictions made with Eq. 8; the different colors indicate the maximum
order of neighbor pairs included in the calculation. Black bars: observations from
atomistic calculations reported in [ 13] and from additional atomistic calculations
described in Appendix B.1; number of realizations # is 100, except in the case of
Cu+22 at. % Ni and Cu+90 at.% Ni, where it is 120; errorbars show the estimate
G[AE,q]1 / 2n for the standard error of G[AEpq]

along the entire length of the typical dislocation segments in real
materials (5000 — 50000). Once nucleated, the critical cross-
slipped segment must expand laterally, and it will encounter
successive statistically-distributed solute configurations. Some
of these configurations may be energetically costly (favoring
the initial state). The operative cross-slip is thus the maximum
barrier encountered during the expansion, which is related to the
accumulated energy change plus a deterministic energy corre-
sponding to the formation of the initial constriction. The overall
process of nucleation and expansion thus suggests a random-
walk type model where each unit of lateral expansion of the
cross-slipped portion has an associated random energy change.
We now present such a model in detail, including the effects of
Escaig and Schmid stresses that are well-established to affect
the activation barrier in elemental metals.

Consider a screw dislocation with a length of N,b. We
partition the dislocation into N}, unit segments’of length 15. We
view cross-slip as a discrete process consisting of N, steps. On
each step, one unit segment is flipped from the glide to the cross-
slip plane, as shown schematically in Fig. 1. Note that there is
no notion of rate or time in this process. Each unit segment is
either fully dissociated on the glide plane or fully dissociated on
the cross-slip plane, and the current cross-slip segment consists
of a contiguous set of Ny, flipped unit segments, each of length
b. Cross-slip can nucleate starting in any one of the NV, segments.
After the first flip, the nucleus grows by successively flipping the
left or right neighboring unit segment at either end of the current
cross-slipped segment. Associated with each flip is a random
change in binding energy selected from the normal distribution
with standard deviation 6[AEeyq] (EqQ. 8), zero mean, and unit
segment length { = 1b. The unit segment (left or right) chosen
for the next flip is the unit segment with the lower random energy
change, see Fig. 4. This rule reflects that the lower out of the two
energy barriers is more likely to be overcome first by thermal
activation. During the initial growth of the cross-slip nucleus
(Ngiip < N, where N.b is the total length of the two constrictions),
the deterministic energy cost to form a constriction must also be
introduced. This energy and additional deterministic energies
under stress are discussed in Sec. 3.1 and Sec. 3.2, respectively.
For a given starting point, the total energy after Np;p flips is the
sum of deterministic and random contributions. The process
is continued until Ng;, = N, i.e. until the entire dislocation
has cross-slipped. The activation energy AE, is the maximum
energy encountered in the process. The process is repeated for
all N, possible starting points, using the same set of random
energies for the segments. We thus obtain N, possible paths. We
select the one with the lowest AE,, for the same reason that
we prefer low energy steps during lateral expansion. The lowest
AFE, is most likely to be overcome first by thermal activation,
hence the corresponding path is the most likely operative cross-

3 Note that 15 is the length of a unit cell in the Al 10/ direction, i.e. the
dislocation line direction. 1/ is thus the length of the shortest lattice vector with
which we can measure the growth of the nucleus. As for a standard random
walk, taking longer steps does not properly for statistics. One cannot execute a
random walk by moving by =n steps in eagh increment (n > 1). After N steps
of unit 1, the mean squarevdEplaceVl@ is  N; after N steps of unit n, the mean
square displacementis n N, not Nn.



slip path for the given set of random energies.

Due to the selection of low energy steps and paths, our pro-
cess is not a standard random walk. Nevertheless, we think that
the term random walk describes our process reasonably because
the evolution of the cross-slip by one step length in either di-
rection is not unlike a random walk and each step involves an
additional energy chosen from a pre-determined random distri-
bution.

red: next segment
selected for cross-slip

blue: cross-slipped segments
/ (first is randomly chosen)
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Figure 4: Step selection in the random walk; cross-slip can nucleate in any of
the 1b segments; subsequently, however, low-energy steps are preferred

3.1. Constriction energy

In pure metals at zero stress, the activation energy of FE-
cross-slip is approximately the formation energy of two point
constrictions, i.e. AEyctavg = 2E, [39]. This total energy is dis-
tributed over a physical length N.b; that is, the full two-point-
constriction energy builds gradually over some physical length,
as seen in directly atomistic models of the transition path. In this
section, we present a simple model of the constriction energy as
a function of the number of cross-slipped segments. We note at
the outset that AE,c(avg and N, need to be known.

The first unit segment on the cross-slip plane cannot nu-
cleate without the formation of a full constriction on the glide

plane. Thus, there is an additional energy cost for the first flip
of E. = AEaC[,avg/ 2. The two half-constrictions on the cross-slip

plane then grow as the cross-slipped segment becomes longer.
At alength N, b, the half-constrictions are well-separated and the
total energy cost of forming the constrictions has been accumu-
lated. To model this, we assume that the additional constriction
energy per flip decreases linearly as the segment length grows
from b to N.b. The total energy thus increases quadratically. At
flip i of the nucleation process, the total deterministic energy is

thus given as

Edet(i) =
1 i(1—i+2N,)
—+—————— AE i€ [,N, 9
) 2N. (Nc+1) actavg ! E ] ‘ ©)]
§ AEact,avg i€ Wc:Nb =N+ 1)

For simulations, we use periodic boundary conditions to
eliminate end effects. Thus, when the cross-slip process is nearly
complete, the constrictions should annihilate, and the energy
regained. Thus, the deterministic energy is modified as follows
for i in the range [N, =N, +1,Np):

(i—=Np+N.) 0 +i—Ny,+N,)
2N, (N.+1)

7

(10)

Edet(i) =AEact,avg 1-

and Edet(Nb) =0.

Fig. 5 shows the energy vs. cross-slipped length from an
atomistic transition path calculation for Ni+15 at.% Al as com-
pared to the deterministic energy of Eq. 9 using the atomistic
activation energy and N, = 10. The length of the cross-slipped
segment in the atomistic calculation was measured using the
dislocation analysis (DXA) algorithm implemented in Ovito
[26]. Atomistically, the constriction forms at zero length, but
this energy must be assigned to the first unit segment of lengthb.
The use of AEyctave/ 2 for the first flip underestimates the atom-
istic energy by approximately 0.19 eV on the first step. Larger
errors are seen in the region of constriction annihilation. This
may explain later results in which there are small ( < 0.1 eV)
differences between the median values of activation energy dis-
tributions from atomistic and random walk calculations, but the
model of annihilation is only of importance for comparing to
the simulation results at short total lengths ¢V, = 40). Overall,
the model for constriction formation and annihilation is in good
qualitative agreement with the atomistic simulation, and is fully
satisfactory for the purposes of this paper.

3.2. Incorporation of Escaig and Schmid stresses

Escaig stresses that lower the energy of the final state relative
to the initial state will facilitate cross-slip. Net Schmid stresses
acting on the cross-slip plane will also facilitate cross-slip. Both
types of stresses will also help to overcome very high activation
barriers that can arise in the random walk under zero stress. The
work done by such external stresses is deterministic and hence
can be included in the random walk model by modifying the
deterministic energy contribution in Eq. 9.
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Figure 5: Relative energy as a function of length of the cross-slipped segment
from an atomistic transition path calculation with average Ni+15 at.% Al (black
circles) and the corresponding approximate profile Ege used in random walk
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correspond to formation of the constriction on the glide plane.

We first address Escaig stresses, which couple to the edge
components of the partial dislocations of the dissociated screw
dislocation in FCC materials. These stresses change the width of
the partial separation. Let ‘%":l?ge and T be the Escaig stresses
on the glide and cross-slip plane, respectively. These stress
have two effects. First, they do work on the system when the
splitting width changes from its equilibrium value on the glide
plane to its equilibrium value on the cross-slip plane. We assume
that these equilibrium widths are the same for all1b segments,
hence the same amount of work E (l;‘estc is done on each segment,
and the total work after cross-slip of i segments is iELSS. EESC
can be computed in atomistic simulations, but models using
anisotropic elasticity are more general. When comparing with
atomistic simulations, the atomistic result for Eg;f was used, see
Appendix B.4. In other cases, an anisotropic-elastic estimate*
was used,

%ff,g
Edet 8T K, 3 IOg Yete ’
where K, and Kj are the energy prefactors of the edge and screw
dislocation, respectively, [41, Equ. 13.149b] and s, and g,
are the effective stacking fault energies on the glide and cross-

slip plane,

(1)

I

bt sc
¥g = W lge ;o Bffe = R b2 (gs . (12)
Second, the Escaig stresses change the constriction energy. Ac-
cording to Piischl and Schoeck [6, 39] E.. = log (2d/b) d/ b, thus
we scale the energy of the constriction on the glide plane by the
ratio (log (2d* b) /log(2d/b))(d* d), where d*is the stressed
equilibrium dissociation width. Using the anisotropic-elastic
solution for d*[41, pp- 361], this ratio can be written as

_ ¥ log (K;—K./3)b/ 4 TYeft, g
7 e log((Ky —Ko/3) b/ (4myy))

(13)

4Equ. 5.7 in Ref. [ 40] with dy = d and splitting widths from anisotropic
elasticity [41, Equ. 13.149b]

Accounting for the effect of 55, on the constriction on the cross-
slip plane is more complicated, because the stress also changes
the constriction size and hence N.. Thus, we neglect this energy
contribution. Nevertheless, we obtain good agreement between
predicted activation energies and atomistic data, see Appendix
C.

Net Schmid stresses on the cross-slip plane couple to the
screw parts of the partial dislocations, which causes bowing out
of the cross-slipped segment between the two constrictions. We
consider two energy changes associated with the bow-out. First
of all, it causes an increase of the total dislocation length, which,
in turn, increases the energy of the configuration. This cost is
represented by a line tension parameter 7. Second, the external
stress does work over the swept area A. If the cross-slipped
segment is sufficiently long, the latter dominates and the energy
of the configuration is further reduced when the bow-out grows.
In this way, a bow-out can drive cross-slip. We assume that
the bow-out takes the shape of a circular arc with radius R and
arc-length s. Within isotropic linear elasticity, the total energy
of bowing out can be described analytically §#2]. For a size ib
of cross-slipped segment, the total energy due to bowout is

ESN(i) =T (i) =S bA(D),

where
ib
s(i) = 2R sin”! 2lTe —ib
s (14)
. ib ib

A()) =R*sin™! 2’—R 1— ;—R )

oo T

Tehsb

and T is an effective dislocation line tension representing the
cost of creating additional dislocation line length.

The value of T is guided by the work of Kang et al. [8],
who compared the stress dependence of the cross-slip activation
energy in the Friedel-Escaig model and in atomistic simulations.
They suggested T = opb?/2, where [43]

r

WEK, = (Cn1 —C12)C44,

> 15)

and o = 0.45. However, the FE-model overestimated the ac-
tivation energy. We thus use a rather smaller value of T =
0.075 ub*/2, which yields activation energies in our model that
are much closer to the atomistic results of Kang et al. than the
predictions of the FE-model. Additional random energy fluctua-
tions during slip from the straight to the bowed-out configuration
due to solute-dislocation interactions (essentially solute strength-
ening) are neglected.

In total, in the presence of Escaig and/or cross-slip Schmid
stress, the deterministic energy profile for the random walk
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Under periodic boundary conditions for comparison to atomistic
simulations, the constriction is annihilated in the manner used at
zero stress; this is only relevant for pure Escaig stresses.

In summary, a dislocation line of lengthh, is first envisioned
to consist of a set oflb segments. Each 15 segment has an energy
change for cross-slip, due to the local random arrangement of
solutes, that is chosen from a normal distribution with mean
zero and standard deviation given by Eq. 8. The cross-slip starts
by nucleation of a 15 segment at some position along the line.
The cross-slip segment grows by the sequential cross-slipping
of the individual 15 segments at either end of the growing cross-
slipped segment. The energy change upon cross-slip of each
1b segment involves the pre-assigned random energy plus a
deterministic energy. The deterministic energy accounts for
the initial constriction and separation of the two constrictions
occurring over the first N, steps (Eq. 9 and Fig. 5). In the
presence of applied Escaig and/or Schmid bow-out stresses,
there are additional deterministic energies associated for every
segment (Egs. 11, 13 and 14). The cross-slip energy barrier
is then the maximum energy along the path starting from the
initially-chosen 15 segment and ending at the total length Nj.
All N, possible 15 segments are then considered as the starting
point for cross-slip. The lowest energy barrier among all starting
points is the energy barrier for the specific realization of theN,,
pre-assigned random energies.

4. Validation against atomistic simulations

Here, we compare predictions of the random walk model
against the full atomistic transition state simulations atN;, = 40
using periodic boundary conditions, for both zero stress and
applied Escaig stresses. The results demonstrate that the random
walk model captures all major features of the simulations with
very good quantitative accuracy, justifying its application to long
dislocation lines (N,  40) in the next section of this paper.

Materials studied are the Ni-Al, Al-Mg, and Cu-Ni alloys
modeled using the EAM [ 33] potentials in Refs. [ 34-36] and
studied previously [13], These materials cover a wide range of
scenarios. In Ni-Al, the Al-Al pair energy is high and dominates
AEcpg. In Al-Mg, AE¢p4s.q provides the main contribution to
AEcphq at low to medium concentrations. In Cu-Ni, high concen-
trations are considered and beyond near-neighbor solute-solute
interactions are important (see Figure Fig. 3). The quantities
AE, ¢t avg and the standard deviaton of the random energy per
unit step for each material are listed in Tab. 1.

4.1. Zero stress
At zero Escaig stresses, a total of 100 realizations were used
to generate the atomistic results and a total of 10000 realizations

Table 1:  Average-alloy cross-slip activation energy AFEctayg and standard
deviation of the random energy per 15 step, as calculated with Eq. 8

alloy AEyctavg (€V) 6[AEnq] l;:lb V)
Ni+02%Al 1.73 0.033
Ni+15%Al 1.89 0.189

Al+02%Mg 0.73 0.032
Al+06%Mg 0.69 0.054
Al+22%Mg 0.63 0.088
Cu+22%Ni 1.65 0.047
Cu+33%Ni 1.64 0.062
Cu+79%Ni 1.51 0.054

were used in the (much faster) random walk calculations. Fig. 6
shows a box plot of the activation energy distributions at zero
stress for a number of alloys. The line in each box indicates
the median, while the lower and upper edges show the first and
third quartile, respectively. Histograms of the distributions are
presented in Sec. S2 in the supplementary materials.

Atomistic and random walk results are typically similarly
distributed. The difference in median values is always less than
0.07 eV (in Ni+15 at.% Al) and the largest relative difference is
12% (in Al+22 at.% Mg). The largest relative difference in vari-
ance is 78% (in Ni+02 at.% Al) but the actual difference is very
small (0.007 eV higher than the atomistic value). The similitude
of the distributions is assessed by the two-sided Kolmogorov-
Smirnov (K-S) [44, 45] statistic. We test the Null hypothesis
[46] that both the atomistic and random walk samples are drawn
from the same distribution. It can only be rejected at significance
level 0.05 in the case of Al+02 at.% Mg and Ni+02 at.% Mg. If
the random walk samples are shifted to eliminate the difference
in median values, the Null hypothesis cannot be rejected in any
case. Thus, the random walk model typically yields distributions
very similar to those obtained from the atomistic calculations.

Small differences in median values are likely caused by de-
viations of Eg4e; from the true deterministic energy profile. For
example, in the case of Ni+02 at.% Al, E4. overestimates the
true energy at the end of constriction formation and during anni-
hilation, see Fig. 5. However, these are also the regions where the
total energy, i.e. the sum of deterministic and random energies,
frequently achieves its maximum value, see Fig. 7. Therefore,
random walk calculations tend to yield higher activation ener-
gies than atomistic calculations in the case of Ni+02 at.% Al.
For completeness, we note that a similar distribution of the loca-
tion of the maximum energy is obtained for other alloys — see
the results for Ni+15 at.% Al in Fig. 7 — and longer disloca-
tions. In general, the maximum energy frequently occurs near
the beginning or end of the walk.

Furthermore, the random walk model predicts the corre-
lation between the activation energy AE,y and the end-state
difference AE.n4 that was empirically found in the atomistic
simulations at length 406 [13]. For example, Fig. 2 shows AE,
versus AE.pq from the atomistic and random walk calculations
for Ni+15 % Al. Linear regression of both data sets yields slopes
of 0.5 and 0.54, respectively. Slopes of 0.53-0.54 are obtained
from the random walk calculations in other materials. Therefore,
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Figure 6: Distributions of cross-slip activation energies in solid solution alloys for N, =40 with periodic boundary conditions, from atomistic (A) and random walk
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indicate the median. The number of realizations in atomistic calculations was 100, except in the case of Cu+22 at.% Ni and Cu+79 at.% Ni at finite stress where only
50 realizations were used; 10000 random walk realizations are used in all cases; for histograms of the distributions see Sec. S2 in the supplementary materials.
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Figure 7: Frequency with which the total energy achieves its maximum value
AE, at a particular step in random walk simulations; note that the dislocation
length is 40b here; AE, frequently occurs near the beginning or the end of the
walk; data from calculations with Ni+02 at.% Al and Ni+15 at.% Al (10000
realizations per alloy); the same trend is seen for other alloys and dislocation
lengths

the random walk model, with only the average barrier height
and solute-solute and solute-dislocation interaction energies as
inputs, reproduces a major empirical feature of the atomistic

simulations.

4.2. Non-zero Escaig stresses

Using the same atomistic methods as in our previous work,
transition state calculations were carried out for Escaig stresses
of Tjig. = 150 MPa and 1555, = 150 MPa for several alloys.
For Cu+22 at.% Ni and Cu+79 at.% Ni, only 50 realizations
were simulated. In applying the random walk model, the value
of Egesf was taken from the average of the end-state difference
obtained in the atomistic simulations. Box plots of the results
are shown in Fig. 6. For histograms of the data see Sec. S2 in
the supplementary materials. The difference in median values
is typically small, with a maximum relative difference of 10%
(0.14 eV) in Cu+33 at.% Ni with stress on the cross-slip plane.
The widths of the distributions are typically similar. However,
in Al+06 at.% Mg there is a comparatively large relative dif-
ference in the variances, —68% and —78% for stresses on the
glide and cross-slip plane, respectively, but only small absolute
differences (—0.008 eV and —0.012 eV). The K-S statistical
analysis shows that the Null hypothesis that the samples are
drawn from the same continuous distribution can be rejected at
significance 0.05 for all alloys and stresses except in the case
of Cu+79 at.% Ni. However, if the difference in median values
is subtracted, then the hypothesis can only be rejected in the
case of Al+06 at.% Mg. Thus, most of the error comes from the



difference in median values, which is likely a consequence of

errors in the deterministic energy profile, as discussed in Sec. 4.

5. Cross-slip of long dislocations

The dislocation length of 405, which we considered in the
previous section, is a typical length for cross-slip nucleation in
atomistic calculations with elemental metals [ 13]. The close
agreement between random walk calculations and atomistic cal-
culations at this length scale indicates that the random walk
model correctly samples the random energy fluctuations dur-
ing cross-slip. Thus, we can use the random walk model to
study full cross-slip of long dislocations, with lengths up to
10005, corresponding to the typical length of dislocations in a
deformed metal with a dislocation density of 10'3 m™2. Simu-
lations were performed at lengths N, = 40, 100,200, 500, 1000
with no periodic boundary conditions, so the constrictions were
not annihilated at the end of the process, and results effectively
corresponding to cross-slip of a slightly longer segment or a
segment pinned by obstacles.

5.1. Zero stress

For zero applied stresses, Fig. 8 shows box plots of the dis-
tributions of AE, for lengths between 40b and 1000b. For
histograms of the data see Sec. S3 in the supplementary materi-
als. A clear trend is seen: with increasing length, the frequency
of high activation energies increases. Eor the third quartile, we
observe a trend AEyciavg + G[AEcnqlx N,/2 with x = 1.2. The
scaling of higher percentile levels follows the same form, but
with larger x. On the other hand, the lower tail of the distri-
bution does not change significantly. The decrease of the first
quartile is much less pronounced than the increase of the third
quartile. Accordingly, the median values increase by several
tenths of an electron volt, in the case of Ni+15 at.% Al even by
more than one electron volt. The minimum barrier, however,
barely changes. The increasing frequency of high activation en-
ergies with increasing dislocation length arises naturally through
statistics. Note that there is a correlation between the value of
AE, and the step on which it is realized. At some point, the
cross-slipping dislocation must overcome all the barriers along
its entire length. However, the random walk process enables the
dislocation to defer encountering the highest barriers until near
the very end of the process. Thus, the high activation barriers
occur predominantly in the last few steps. Fig. D20 in Appendix
D shows an example of the correlation between the step at which
AE, 1s realized and the value of AE,; for Cu+33 at.% Ni and
N, =200. The consequence of the increasing frequency of high
activation energies is that cross-slip of long dislocations is much
harder and less frequent in solid solutions. However, this result
pertains only to zero stress. As shown next, the high barriers
are easily overcome by fairly modest applied stresses, leading to
much lower activation energies.

5.2. Non-zero stress

Schmid and Escaig stresses in the range 1-200 MPa were
applied to dislocations with length N;, = 500. The constrictions
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Figure 8: Distributions of activation energies for different alloys and dislocation
lengths N,,; the upper and lower edge of each box represent the third and second
quartile of the data, i.e. 50% of all values lie in this range; horizontal lines
indicates the median; the dot marks the minimum value; for histograms of the
distributions see Sec. S3 in the supplementary materials.

were not annihilated at the end of the process and no periodic
boundary conditions were used. In contrast to the calculations
with short segments in Sec. 4.2, we did not use the atomistic
value for EE¢, but rather the elastic estimate according to Eq. 11.
Fig. 9 shows energy distributions for Cu+33 at.% Ni. The
other alloys exhibit similar behavior, see Fig. 10. Applied
stresses tend to eliminate the high energy barriers because the
high AE, tend to occur near the end of the random walk, where
the cross-slip segment length is very long such that the total
work done by the applied stress is then also large. The work
done is then more than sufficient to overcome these large bar-
riers. Under stress, the distribution of barriers then collapses
toward the lower values of AE,;, which occur at short cross-slip
lengths and which are less strongly affected by the applied stress.
A Schmid stress on the cross-slip plane is particularly effective,
with the third quartile being reduced by 1.1 eV upon increasing
the Schmid stress from 1 MPato 5 MPa. Such low Schmid
stress could easily be reached in real materials due to long range
stresses and stress fluctuations caused by the local dislocation
network. Escaig stresses, by comparison, are less effective in
that higher stresses in the range of 25 — 50 MPa are required to
eliminate the high activation barriers. Nonetheless, such stress
levels remain moderate. Note that the observed stress effects are
more complicated than in elastic or atomistic models for pure

metals. Usually, 153, is expected to be the most effective stress

for reducing the activation energy while £ is supposed to be

least effective [8]. Fig. 9 shows that this is only true at higher
stresses.
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The characteristic stress required to eliminate high activation
energies can be estimated as follows. As noted above, the maxi-
mum barrier is unlikely to occur at the end of the random walk
if the magnitude of work performed by the external stress after
N, steps is likely to exceed the accumulated random energy con-
tributions. As shown in Fig. 8, a majority of the activatﬁ)n ener-
gies have an energy of less than AE ;¢ av + GFgAEend]ll Np/2.
Thus, the work should exceed G[AEenall.2 Np/2. The work
is represented by three terms in Eq. 16. The scaling factor fc,
which accounts for the fact that a stress ‘l‘;‘ﬁgc changes the energy
of the constriction on the glide plane, can be ignored. It only con-
tributes an offset to the total energy and thus has no influence on
the position of the maximum. The remaining work by Escaig and

Schmid stresses is iEESC( TS, Bits) HELM(Beh, ). Setting

i = N, and requiring that the work equals G[AEeq]11.2° Np/2,
we obtain the conditon

«/ Es P——r1
NoEget (Tgider Trows) FEget'( Trotss No) +0[AEena]1.27 Np/2 =0.
amn

Assuming pure Escaig and Schmid stresses, one obtains char-
acteristic stresses of TS, = 21.3 MPa, §S = 20.7 MPa, and

©h ' =2.1 MPa for Cu+33 at.% Ni at N}, = 500, consistent with
the results in Fig. 9.

In summary, moderate applied stresses that act to facilitate
cross-slip are sufficient to eliminate high barriers and drive the
entire distribution of activation barriers to much lower values
than the mean value at short lengths.

5.3. Weakest-link scaling

The previous observations motivate us to treat cross-slip
under stress as a weakest-link problem. At sufficiently large
stress, most maxima occur early in the random walk. Thus, the
activation energy distribution at a long length N, can be inferred
from the corresponding distribution for a much shorter length
Nreg by accounting for the number n = N,/ Nyt of approximately
statistically-independent segments of size Ny.r at which cross-
slip can initiate. The appeal of weakest-link scaling is that it
avoids the need for random walk calculations and thus facilitates
the prediction of the distribution of AE,. for different segment
lengths based on accessible inputs (e.g. smaller atomistic simula-
tions; analytic models based on solute/dislocation energies, etc.).
Weak-link scaling enables the use of such reduced-order mod-
els to make on-the-fly predictions for cross-slip probabilities in
higher-scale simulations such as Discrete Dislocation Dynamics
models.

Let P(AE,ct, Neet, T) be the cumulative distribution of AE
for length Ni.r at the given stress T. The probability that all of
the n = Np/ Nrer segments have an activation energy greater than
AEye is (1 = P(AEyct, Neet, 7)) M/ Neet) - Therefore, the cumula-
tive probability P(AE,, N, 7) for length N}, is

P(AEactrNbr T) =1- ( _P(AEactrNrefl T))(Nb/NRf)l (18)

This analysis follows standard weakest-link analysis, see for
example Ref. [47]. To test this hypothesis, we carried out further
random walk calculations with lengths N, = 5000 and N, =



10000. We then used the random walk data from calculations at
N, =500 as reference, i.e. Ner = 500. Calculations were carried
out for Cu+33 at.% Ni, Al+06 at.% Mg and Ni+15 at.% Al.

Fig. 11 shows the cumulative distribution functions for the
cross-slip activation energy for 5 MPa Schmid stress on the
cross-slip plane, and also 50 MPa for Cu+33 at.% Ni, for N, =
500, N, = 5000, and N, = 10000. The figure also shows the
predictions for N, = 5000 and N, = 10000 as obtained from
weak-link scaling. The weak-link scaling is very accurate, within
fractions of a percent, in all cases. The agreement is achieved
because, even at the lower stress level, all large barriers have
been eliminated within the length N}, = 500.

Fig. 12 shows the cumulative distribution functions for the
cross-slip activation energy at both 5 MPa Escaig stress, for
Cu+33 at.% Ni and Ni+15 at.% Al. As can be expected from
Fig. 9 and Fig. 10, the weakest-link prediction is not accurate at
this low stress because the largest barriers can be encountered at
lengths larger than the reference length N, = 500. Thus, higher
activation energies are underestimated. The error is smaller
in Cu+33 at.% Ni because the characteristic stress calculated
with Eq. 17 is only £, = 6.6 MPa for N}, = 5000 and T3 =
4.7 MPa for N, = 10000, close to 5 MPa. Nevertheless, the
differences in median values are only —0.12 eV and —0.08 eV,
respectively, and so the weak-link scaling captures much of the
shift of the activation barriers to lower values, but overestimates
the shift.

At 50 MPa Escaig stress, the prediction of weak-link scaling
is excellent. At this stress level, all large barriers are overcome
well within the length of N, = 500, making the weak-link model
applicable. This is consistent with the estimates for the character-
istic stresses of T.5¢ = 20.8 MPa and 14.8 MPa for N;, = 5000

TOSS

and N, = 10000, respectively, in Ni+15 at.% Al.

5.4. Predictions based on zero stress data

At sufficiently high stresses, Eq. 18 allows for the prediction
of the activation energy distributions of very long dislocations
based on knowledge of the distribution at lengthN,.s. However,
the reference distribution needs to be calculated at the given
applied stress, and this distribution is not readily accessible.
Making predictions would be easier if the reference distribution
at zero stress could be used, because this distribution is com-
putable from the underlying solute/dislocation and solute/solute
interaction energies. At zero stress, however, N must then be
small so that the reference distribution does not have a large
tail at high energy barriers. This suggests using the distribution
at the length scale of cross-slip nucleation, i.e. N, = 40. This
length is also accessible by atomistic simulations if suitable
potentials are available.

The effect of stress can then be approximated by shifting
the reference distribution to lower energies before scaling. To
capture the average stress effect, we shift the distribution by the
deterministic change of AFEuctavg, 1.6. AEactave(T) —AEactave,
which can be obtained from Eq. 16. However, not all energy lev-
els should be shifted by the same amount. Low barriers typically
correspond to paths where the energy barrier occurs at small
cross-slip segment lengths, see Appendix D. These barriers are
relatively insensitive to the work done by the stress in extending
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or bowing out the dislocation on the cross-slip plane. Conversely,
energy barriers equal to AE,c( v or higher likely correspond to
paths where the maximum occurs later, and these see the full
stress effect. To approximate this difference in sensitivity, we
make the shift a linear function of AE,¢ for AE,; < AEscqave,
ie. P(AEactr Nref, T) - P(AEact — AEhitt, Nret 0) with

fc -1
2
ABacravg(1)  fe+1

i AEact,avg 2
AEact,avg( ) —AEqctavg

AEact,avg"'

AE, < AEact,avg
AEghife = ,

AE&C[

AEact 2AE‘ZIC[,ZIVg
19)

where AE,cavg( T) is the average-alloy activation energy at stress
T, i.e. the maximum of Ege. The first term for AE,q < AE;cqave
is the contribution from the change of energy of the constriction
on the glide plane, which applies to all paths, and the second term
is the contribution from the work on the cross-slip plane, which
has only limited effect for paths with low AE,, as explained
above. Note that paths with AE,¢; = AE,ciavg see the full stress
effect.

Using the activation energy distribution 0f40b long lines as
reference data, we predicted the corresponding activation energy
distributions at a dislocation length of 10005 under Schmid or
Escaig stresses of 50, 200 and 600 MPa. Note that N, = 1000
corresponds to a dislocation density of roughly 10'* m™? in the
alloys considered here, typical of the range during deformation
of engineering alloys. The highest stress level is not necessar-
ily relevant for real alloys. For example, reported stresses in
compression tests with Al+3 wt.% Mg at room temperature are
below 300 MPa [48]. Cu-Ni single crystals deform in room-
temperature tensile tests under resolved shear stresses not higher
than 140 MPa [49]. Nevertheless, it is interesting to check the
validity of our approach in the limit of very high stress.

In the following, we discuss predictions for Cu+33 at.% Ni,
Al+06 at.% Mg and Ni+15 at.% Al Note that these alloys have
increasing ratios of G[AEcnq] /AEyctave, meaning that random
fluctuations become more important relative to the determinis-
tic energy. In Fig. 13, the predictions for Cu+33 at.% Ni and
N, = 1000b are compared to the results of full random walk
calculations and the average-alloy activation energies that one
would expect based on Ege. The different stress types T8,
o and 1iqe are considered separately in subfigures a), b) and
c). We see that the predictions (dashed lines) are close to the
direct results (solid lines) at all stress levels (colors). In some
cases, for example at T =200 MPa, AE, is overestimated
by roughly 0.1 eV. Furthermore, the predicted distributions tend
to be slightly broader at 200 MPa and 600 MPa. However, these
errors are small compared to the error one would make by using
only the average-alloy activation energy (shown as the cross
symbols in the figures). At the median value, for example, the
error of the average alloy is typically four to five times larger
than the error of the weakest-link prediction. When predicting
cross-slip rates, this error would be further amplified by the
exponential weighting of AE, in Eq. 1.

In Al+06 at.% Mg, the predictions are satisfactory as well,
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based on shifted zero-stress distributions for N, =40

see Fig. 14. The error is typically less than 0.1 eV. At fﬁge =

50 MPa and ¢, = 50 MPa, the highest 10-15% of energies
are underestimated, because some high barriers have not been
eliminated by the stress in the direct calculations. However,
the other 90-85% of energies are predicted accurately, and it
are these lower energies which are more important, due to the
exponential weighting in Eq. 1.

The mismatch between prediction and direct calculations at
50 MPa Escaig stress is even stronger in Ni+15 at.% Al, see
Fig. 15. AE,. is underestimated above the median value. How-
ever, this error is not surprising, since 50 MPa is just above the
limit stresses of ‘l'gEﬁﬁe =48 MPa and T, = 46 MPa according
to Eq. 17. The prediction is nevertheless useful, since it indicates
that a significant number of paths have an activation energy of
around 0.7 eV, hence thermally activated cross-slip is plausible.
Based on the average-alloy value of 1.89 eV, one would perhaps
rule it out. At the other stress levels, the prediction is much more
accurate.

6. Discussion

We have demonstrated that (i) the standard deviationo[AEcnq]
of random energy fluctuations caused by cross-slip in random al-
loys can be predicted accurately based on solute/dislocation
and solute/solute interaction energies; (ii) the random walk
model captures the accumulation of energy fluctuations dur-
ing cross-slip over long lengths, such that (iii) the distribution
of the cross-slip activation energies AE,.; can be computed for
any dislocation length, including the range of practical interest
(~103b), where direct atomistic calculations are infeasible. We
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based on shifted zero-stress distributions for N;, = 40. The simulated data (solid
lines) shows that a 50 MPa Escaig stress is not sufficient to eliminate all high
energy barriers. The prediction according to Eq. 18 cannot predict high barriers,
hence there is a discrepancy.

find that such long dislocations frequently have very high AE,,

on the order of several electron volts, but that moderate stresses
(10°~10" MPa), especially Schmid stresses, eliminate these bar-
riers and lead to activation barriers that are much lower than the

average value. We have then shown that cross-slip becomes a
weakest-link problem, enabling computation of barriers for long

lengths in terms of barriers computed at shorter lengths. We now
discuss implications of these results and some further aspects of

our model.

First of all, complete cross-slip of long dislocations (10°b)
is unlikely at zero stress, because of the increasing probability
of high activation energies. Due to the exponential weighting of
AE, in Eq. 1, these barriers are exceedingly unlikely to be over-
come by thermal activation alone. However, when these high bar-
riers are eliminated by an external Escaig or Schmid stress, then
AE, is typically much lower than the valueAE,c(avg ( T) that one
would expect based on an average-alloy model. Thus, cross-slip
is much faster than expected. For example, in Cu+33 at.% Ni
with a 50 MPa Escaig stress on the glide plane, the median acti-
vation energy for a 10006 long dislocation is 1.14 eV, whereas
the average-alloy estimate is 1.59 eV. Assuming constant prefac-
tors in Eq. 1, the rate of cross-slip in the random alloy is roughly
7 orders of magnitude faster than expected based on an average-
alloy model. In AI+02 at.% Mg and Ni+15 at.% Al, the rate is
increased by 4 and 16 orders of magnitude, respectively.

Under stress, cross-slip becomes a weakest-link problem
because the cross-slipped segment expands spontaneously after
nucleation. The distribution of AE,; depends on (i) the dis-
tribution of AE, for cross-slip nucleation, which takes place
over a length much shorter than the total length, and (ii) how
many times this distribution is sampled over the total length.
We observed that even small Schmid stresses on the cross-slip
plane, on the order of a few MPa, eliminate high barriers and
make cross-slip a weakest-link problem. As a consequence,
cross-slip of moving dislocations is likely always a weakest-link
problem. In order to make the dislocation move, a Schmid stress
on the glide plane is required. Except in specific load cases, the
applied stress will likely have a Schmid stress component on
both the glide and the cross-slip plane. If the applied stress is
high enough so that the component on the glide plane causes the
dislocation to move, then the component on the cross-slip plane
is likely high enough to make cross-slip a weakest-link problem.

In alloys, one additionally has to consider solute strengthen-
ing. Recall that we have neglected energy fluctuations during
bowing-out, i.e. we have neglected solute strengthening on the
cross-slip plane. However, if we assume that the external stress
is sufficiently high to make dislocations move on the glide plane,
then it is, as before, likely that critical stresses on the cross-slip
plane are sufficient, so that a bow-out can be formed.

Internal stresses have to be considered as well. For example,
the critical stress for weakest-link scaling can be overcome easily
in a pile-up of n dislocations against an obstacle, where the
external stress is amplified by a factor equak [50]. Pile-ups were
proposed early on as likely sites for cross-slip [51]. Dislocations
that do not reside in pile-ups nevertheless experience stresses
from other dislocations, e.g. forest dislocations. A particularly
interesting scenario is cross-slip of a dislocation in a screw



dipole, which can lead to annihilation (see Refs. [ 14, 16, 52] for
atomistic simulations of this process). Here, one would expect
large attractive stresses.

The easier/faster cross-slip implied by our results here would
have several consequences for plastic deformation behavior.
Screw dipole annihilation plays a role in fatigue and may de-
termine the saturation stress [53], hence our observations may
help to interpret fatigue of alloys. Due to the faster annihi-
lation by cross-slip one should expect larger minimum stable
dipole heights as in pure metals, and hence lower saturation
stresses. Discrete [1, 54] and continuum dislocation dynamics
calculations [2, 55, 56] have demonstrated the importance of
cross-slip for dislocation microstructure formation. A cellular
microstructure is only observed if cross-slip is activated in such
calculations. Thus, one would expect to see a well-developed
cellular microstructure in deformed random alloys. Moreover,
this microstructure should form more rapidly with strain than
in pure metals. Considering the results of Xia and coworkers
[56], one would also expect higher yield points and an increased
hardening rate. However, it might be difficult to distinguish
these effects from other solute strengthening effects.

The case of Ni+15 at.% shows that low values of AE,q
can be realized even in alloys with high AE,ciavg if G[AEe4]
is high and moderate stresses are applied.  In High Entropy
Alloys [29], where G[AEeyq] can be expected to be high due
to compositional disorder, cross-slip should therefore be rela-
tively easy. Indeed, Rao et al. [ 57] recently observed sponta-
neous cross-slip in atomistic simulations of regular dislocation
slip in a CogoFe;6.67Niz6.67Ti16.67 random alloy at 300 K, even
though AE ;¢ ave 1s 4.6-4.9 eV. The effective value ofAE, was
estimated to be 0.3 eV. Liu et al. [ 58] observed that twins in
Alp 1 CoCrFeNi were formed by a mechanism which involves
cross-slip of dislocations that were piled up against a stacking
fault. These studies show the potential importance of cross-
slip in HEAs. Somewhat conflicting in this sense is the study
of Cao et al. [59], who performed creep tests with a AlyCoCr-
FeNi (x=0.15, 0.60) HEA and determined activation volumes
of 32-52b%, which are consistent with a cross-slip mechanism
[60], but also high activation energies 3.5—4 eV). Furthermore,
Otto and coworkers [61] observed planar slip in CoCrFeMnNi,
which seems to be in conflict with our suggestion of easy cross-
slip. The authors attributed planar slip to short-range order
(SRO), which might inhibit cross-slip due to glide plane soft-
ening [62]. We have neglected SRO, because we assumed a
completely random solute distribution. However, we believe
that the present model for random alloys provides a basis for the
future investigation of alloys with non-zero SRO. For example,
one may speculate that correlations in the solute distributions
would reduce G[AE,], and hence the frequency and magnitude
of favorable energy fluctuations. Furthermore, we note that our
model contradicts a model of planar slip by Hong and Laird R0].
They argued that solutes create a friction stress on the partial
dislocations, which impedes constriction and hence cross-slip.
The friction stress increases with atomic size misfit and solute
content, hence it would seem that solute addition should gener-
ally impede cross-slip. However, we have shown that one needs
to consider solute binding energy fluctuations, which can be
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positive or negative and thus impede or facilitate cross-slip.

A few other aspects of our model merit discussion. Some
approximations were made when modeling the deterministic
energy Ege(i) (i = 1. . Np). The current model is appealing be-
cause of its simplicity because the energy profile is reduced
to two variables, the energy of a single constriction and the
cross-slipped length at which the constrictions on the cross-slip
plane are approximately fully formed. Both can be determined
using atomistic or elastic models. We obtained a satisfactory
agreement between Eg. and the atomistic data by choosing a
formation length of 10b. Indeed, the relative energy has al-
most reached its final value of AE,.( v, at this point, see Fig. 5.
Strictly, one would have to choose a value of 20b, i.e. half of
the total cell length of 405, which we identified in our previous
publication [13] as the periodic length in Ni at which AE;¢ave
becomes independent of length. However, it is easy to see that
the quadratic energy profile would then underestimate the rela-
tive energy more strongly in the region of constriction formation.
Better approximations of the energy-length profile could be
constructed using a different functional form. For example, in
Piischl and Schock’s anisotropic-elastic model, the energy of
the two half-constrictions on the cross-slip plane varies with
cross-slipped length L and dissociation widthd approximately
as 2/ marctan(pL/d)2E,, where 2E, is the energy of two well-
separated half-constrictions, and p is a numerical factor in the
range 0.8-1.4. The model of Ey. under stress could be improved
by including the effect of T, on the constriction on the cross-
slip plane. This could be done by simultaneously scaling the
length and the energy of this constriction.

We have also assumed that the ideal Friedel-Escaig mecha-
nism is the operative cross-slip mechanism. This means that the
segments on the glide and cross-slip plane are joined by point
constrictions. Oren et al. [9] have recently observed a variation
of this mechanism in molecular dynamics calculations, where
fully constricted segments are formed in the process. Analysis
of our atomistic configurations (at zero stress) with the Disloca-
tion Analysis (DXA) algorithm implemented in OVITO [26, 63],
shows that such segments occur frequently. In random alloys,
lengths of roughly 3b are frequently seen before the transition
state. At the transition state, however, the fully constricted length
is typically only around 1b. Since the length at the transition
state is typically short, it is a fair assumption to use the activation
energy of ideal Friedel-Escaig cross-slip for AE,cq ayg.

Three more subtle assumptions were made when modeling
the random energy. First, by assigning a random energy change
to 1b segments, we associate solute-dislocation binding ener-
gies with such short segments. In reality, however, the binding
energy quantifies the interaction between the solute and an in-
finitely long dislocation. The energy has contributions from
atoms whose distance to the solute atom along the dislocation
line is greater than 1b. However, the interaction energy drops
of rather quickly, due to the 1/7? scaling of the solute stress
field. Moreover, a sufficiently long line is realized after cross-
slip of a few 1b segments. These are the likely reasons why
our approximation does not have a significant effect on the re-
sults. Another approximation was made in the derivation of
G[AE.nq] The contributions to AE.,q from solute-dislocation



and solute-solute binding are sums of energies times occupa-
tion variables, which are Bernoulli random variables. Hence,
these contributions are discrete random variables. Here, we as-
sume that they are normally distributed, even for 15 segments.
In the case of the contribution from solute-solute binding, this
approximation is expected to deteriorate when the number of
contributing pairs is low, in a similar way as the approximation
of a binomial distributionB(n, p) with a normal distribution dete-
riorates at low 7 and p. The slight overestimation of G[AE,¢]of
Ni+02 at.% Al is perhaps an indication of this problem. Further-
more, we have calculated solute-dislocation binding energies
using the dislocation core structure at zero stress. Thus, our
model of G[AE.,q5.4]does not account for a change of dissoci-
ation width d under stress. Since the highest contributions to
AE¢ngs-a come from the immediate core region of the partial
dislocations, the error of approximation should be small, but one
must be careful in alloys where there is significant interaction be-
tween solutes and the stacking fault, and at high Escaig stresses.
Similarly, G[AE.nqs]was calculated using the zero-stress value
of d. However, here one could simply use a stress-dependent
value.

7. Conclusion

In FCC random solid solutions at moderate stresses, the
barriers for cross-slip of long dislocation are much lower than
expected based on average-alloy properties and models appli-
cable to the elemental metals. Therefore, ruling out cross-slip
as an active mechanism on the basis of the average value of the
stacking fault energy alone is likely not valid. The analyses here
provide a means of assessing the realistic/operative barriers in
solid-solution alloys at different levels of approximation. Inde-
pendent of the level of approximation, the fundamental driver for
low activation barriers is due to local fluctuations in solute com-
positions due to solute/dislocation and solute/solute interactions.
There are many implications of these results for interpreting de-
formation behavior in solid-solution alloys, encompassing both
traditional alloys in the dilute-to-moderate concentration regime
as well as the rapidly-emerging High Entropy Alloys.

8. Outlook

We expect that the results of the current work will be useful
for a number of related research areas. For example, our results
could help to improve work hardening models that incorporate
dislocation density as a state variable. Some models use cross-
slip as a dislocation sink mechanism and thus require a value
for AE,, see Refs. [3, 4, 48, 64]. As we have shown, there is
no single value of AE, in solid solution alloys or HEAs, but
a (length- and stress-dependent) distribution. The total rate of
cross-slip at a particular stress level can perhaps be calculated
by integrating contributions from all relevant segment lengths
and energy levels. Weakest-link scaling (Eq. 18 and Eq. 19)
could perhaps simplify this problem. Similarly, our results could
help to revise cross-slip rules for Discrete Dislocation Dynamics
(DDD) models, in order to enable simulation of solid solution
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alloys and HEAs. In some models, screw dislocation segments
of length L cross-slip with a probability P, which has the form
L exp(—AE,./kT) [1, 65]. L in the pre-exponential factor can
be seen as a consequence of the fact that, in a pure metal, cross-
slip could nucleate anywhere along the line. In the case of solid
solution alloys, AE;,; should be sampled from the distribution
for the corresponding length and stress, which could be obtained
on the fly from a reference distribution using Eqs. 18 and 19. L
in the pre-exponential factor should be removed. The rule for
selecting paths that was presented in Sec. 3 implies that there is
a unique cross-slip path for each dislocation in its current solute
environment, i.e. the nucleation point is not arbitrary anymore.

Another direction for further research is the effect of intersti-
tials and vacancies on cross-slip. In particular, the role of inter-
stitials is not clear. On the one hand, they distort the lattice more
strongly than substitutional solutes, hence one would expect a
stronger interaction with the cross-slipping dislocation. On the
other hand, the concentration of interstitials is typically lower.
For example, the maximum concentration of C in austenitic Fe is
about 2%. The role of these defects can perhaps be studied using
a modified version of the random walk model. For a completely
random distribution of vacancies, one could calculate G[AEqq]
as described in Sec. 2. In the case of interstitial atoms, one would
have to repeat the analysis in Appendix A for interstitial sites in
order to derive an equivalent to Eq. 6. However, in both cases,
segregation may have to be considered. The present model is
then not directly applicable, since the solute distribution was
assumed to be completely random.

Furthermore, the random walk approach could be useful
for studying solute effects on other mechanisms of dislocation
motion, e.g. glide by the kink-pair mechanism or cross-slip
in hexagonal close-packed metals. However, some modifica-
tions are required. For the calculation of G[AEendssxy] &b in
Eq. 4 needs to be replaced by the correct unit cell length along
the dislocation line for the given crystal structure. Similarly,
GlAE 4.5, xy ] should be derived for the given crystal structure
and stacking fault using the approach in Appendix A. Further-
more, Eq. 16 needs to be modified to describe different origins
of Eg4et, €.g. from kink-pair formation.

Finally, there are some problems related to cross-slip which
are beyond the current work, but which should be studied to
improve current understanding of this important phenomenon.
For example, there is currently no analytical model for the pre-
exponential factor v of Eq. 1 in alloys, neither has the value of
this factor in alloys been measured directly, for example using
direct atomistic calculations as in Refs. [ 9, 14]. Moreover, it
would be useful to study anharmonic/entropic contributions to
the cross-slip rate. Entropic effects have been observed to be
significant in the case of dislocation nucleation [66] and motion
of a dislocation through a solute field [67]. Finally, we note that
there are still only few experimentally determined values for
AE ¢ of FCC cross-slip.
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Appendix A. Extended solute pair model

Our goal is to calculate the standard deviation of the change
in solute-solute binding energies due to formation and destruc-
tion of solute pairs in the stacking fault ribbon during cross-slip.
In the following, we first briefly recapitulate our previous model
[13], which accounts only for first nearest neighbor pairs, and
then derive a new model that includes first to eight nearest neigh-
bors.

Previously, the standard deviation was approximated as

G[AEend,s—s,XY] =Us—s,XY,1 G[ANS—S] ’ (Al)

where Ui xy,1 is the binding energy of a first nearest neighbor
solute pair, and AN is the change in the number of such pairs

during cross-slip. Pairs are cut and formed in the stacking fault
ribbon of the dissociated dislocation, which is destroyed on the
glide plane and regenerated on the cross-slip plane. Hence, the

variance of AN is approximately two times the variance of the

change in the number of pairs during formation or destruction
of a single stacking fault ribbon. To derive this number, only
the solute occupations of the sites in the upper and lower plane
of the fault need to be taken into account. Considering only

atoms in a unit cell with the orientation given in Fig. A.16a), and
averaging over occupations, one obtains

S

OlAN. ] = 8c2(1— c)ff%, (A2)

where { and d are the length and width of the dislocation, re-
spectively, andc is the solute concentration. We emphasize that
Eq. A.2 is only valid if pair cutting/formation in different unit
cells is assumed to be independent. If not, correlations between
unit cells need to be taken into account. One would then obtain
(1 —c)? instead of (1 —c) in Eq. A.2. Unfortunately, this aspect

of the analysis is not discussed in Ref. [13]. In fact, the correla-
tion terms are mistakenly set to zero, which is then equivalent to
the assumption that unit cells are independent. In the extended

model below, we make this assumption at the outset.

To improve the model, we include higher order neighbor
pairs and correlation between pair changes. For this purpose, we
write the change AE.;qs.sst.xy in solute-solute binding energy
during stacking fault formation in a very general form. Recall
that a stacking fault consists of two{111} planes with hexagonal-
closed packed coordination. In our derivation, we take atoms
below the fault, including those in the lower plane of the fault,
as fixed. The stacking fault is generated by displacing the atoms
above, including those in the upper plane of the fault, by the
Burgers vector of a Shockley partial dislocation.

We consider formation/cutting of pairs whose distance (i) is
found in the perfect FCC lattice and (ii) is less than the ninth
nearest neighbor distance in FCC. The first restriction means that

17

a) unit cell below the stacking fault
y It

stacking fault displacement

Ch

U O U x| [121]
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« magenta/cyan/yellow: site lies 1/2/3 layers above the lower plane of the fault
« fully colored: pair distance found in perfect FCC lattice (included in analysis)
« black/cross: pair distance not found in perfect FCC lattice (ignored pairs)
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Figure A.16: a) Unit cell used in the derivation of the energy fluctuation due to
pair cutting/formation during formation of an intrinsic stacking fault; to form the

fault all atoms above the green plane are displaced by a/6[112]; b) sites below
the stacking fault (red) and their neighbors above (up to eight nearest neighbor
distance), before and after generation of the fault; colors distinguish between
sites in different (111)-planes; fully colored spheres: sites whose distance to
the red atoms is found in the perfect FCC lattice; such pairs are included in the
analysis; black with cross: sites whose distance to the red atoms is not found in
the perfect FCC lattice; such pairs are neglected

we neglect some pairs which can be identified only in the faulted
lattice. The neighbor distances of the pairs that are included in
the analysis are listed in Tab. A.2.

Since we restrict the analysis to eighth nearest neighbor
distance, we need to consider only a subset of atoms below the
fault, namely those in a one unit cell thick layer. Consider a
unit cell in the lower region, see Fig. A.16a). The upper plane
of the cell corresponds to the lower plane of the fault. The
fault can be created by displacing the atoms above by a/6[112F.
For a stacking fault of length { and width d, tl\l/ere are N¢ X Ny

such cells, where Ny = {/b and Ny =d/b/ 3. To get the
total change in solute-solute binding energy, we need to sum



contributions from all atomic sites in these cells. Even lower
planes do not need to be considered if we restrict ourselves to
eight nearest neighbor pairs. Fig. A.16b) indicates which pairs
are included in the analysis. Sites in the unit cell are highlighted
red on the left. Neighbors of these sites above the fault are
indicated on the right, before and after formation of the fault.
Colors distinguish between sites in different (111) planes. Fully
colored spheres indicate sites whose distance to the red atoms
is found in the perfect FCC lattice. Black spheres with a cross
indicate sites whose distance to the red atoms is not found in
the perfect FCC lattice; such pairs are neglected. Note that
the ignored pairs all have distances greater than second nearest
neighbor distance. For a single unit cell, we count 455 distinct
lost and formed pairs which are included in the analysis, and
218 formed pairs which are ignored.

Table A.2: Neighbor distances

\/45 qS \f, q7

neighbor order 1 2 3

q_—
distance (a) % 1

Label the unit cells with indices i j, where i = 1. . N 4 and
Jj=1..Ng. Let Q;; be the set of sites in the unit celli j. There
are three or five sites in each {111} plane of the unit cell. Some
however, lie on a face or in a corner of the cell and are therefore
shared with neighboring unit cells. There are only two full
sites per plane and eight per unit cell. To generate €y,,ij, one
could either associate eight sites with each cell in a consistent
way, or take all sites and introduce extra occupation variables
or weighting factors to account for the fact that some sites are
associated with multiple unit cells. We choose the latter method,
because it allows to take into account more correlations between
pair changes within each unit cell. Furthermore, let Qy; be the

set of sites above the fault, including the upper plane of the fault.

Assign occupation variables sy ; jx, where sx,; x = 1 if there is
a X-solute at site 7 jk, and sx,; jx = 0 otherwise. The sx ; jx are
Bernoulli random variables with probability and expectation
value equal to the concentration ¢y of type X .

The total change in solute-solute binding energies for pairs
formed by X-atoms in Qj,;; and Y-atoms in Cy; is the sum of
contributions from all unit cells, i.e.

N Ny

AEengssstxy = Y, Y AEendssstxv,ije
i

(A3)

To calculate AEenq -5 xv,i j, one sums the changes in solute-
solute binding energies for each site in €y, . Accounting for

5Slightly different results would be obtained with a displacement a/ 6[121],
i.e. parallel to x. The directions [112] and [121] are not equivalent in our model.
As we shall see, we consider only neighbor changes for sites in a single unit
cell as shown in Fig. A.16a). With this particular choice of sites, the threefold
rotation symmetry in the (111) plane (the plane of the paper) is lost, hence [112]
and [121] are not equivalent. However, a/6[112]is the correct displacement
corresponding to a Shockley partial of a 1/2a[101] screw dislocation.

pairs up to order Npax.,

N max

sx,ijiwk Y, Ussxy,i Y, sv,ijmA, j,k,m,1),
1 malhi

AEend,s—s,sf,XY,ij = Z
kEQIO,ij

(A4)

where Ug xy,; is the binding energy of an /-th nearest neighbor
XY pair. The wy are extra occupation variables, which account
for the fact that sites on the face or in the corners of the unit cell
are shared by multiple unit cells, hence we would have associated
only one face or corner site in each plane and unit cell with this
cell. They are Bernoulli random variables with probability 1 for
sites completely inside the cell, 1/2 for sites on the face of the
cell, and 1/4 for corner sites. A(i, j, k,m,1) indicates if a I-th
order neighbor pair is formed, lost, or preserved, i.e.

A(iljlklmll) = b(i/j/k/mrl) _b(lljlklmll)] ’ (AS)

where b(i, j, k,m,1) =1 if the sites are I-th nearest neighbors be-
fore formation of the fault, and zero otherwise; anda(i, j, k, m, 1) =
1 if they are [-th nearest neighbors after formation of the fault,
and zero otherwise.

The variance of AE¢g s-s st,xy 1S

2
AEencl,s—s,sf,)(’Y ’

(A.6)

— 2
Var[AEend,s-s,sf,XY] = AEend,s-s,sf,)(Y -

where h . [ indicates the average with respect to sx,; jx and sy,; ji.
However, a direct calculation would be intractable due to the
large number of terms involved. We simplify the problem by
making A(i, j, k, m, ) independent of i and j. Neighbor changes
are analyzed only once, for all atoms in the unit cell shown in
Fig. A.16a), i.e.

A, j, k,m, 1) =A(k,m,1) = B (k,m,1) =b(k,m,1)], (A.7)

where a superscript ¢ is used to refer to the reference cell. Thus,
we consider only subsets Qf € Qy, ;; and Qf; € Qp,;. By using
A°(k, m, 1) instead of A(i, j, k,m, ) we still capture some correla-
tions. For example, we account for exchange of neighbor sites
between the sites in the reference unit cell. However, we ignore
exchanges between sites in different unit cells with different i
and j. The numbers A°(k, m,[) were determined by finding the
neighbors of sites in a unit cell as shown in Fig. A.16a) before
and after insertion of the fault. The crystals were generated
with LAMMPS and the distance-based selection could be done
conveniently using OVITO [26].

We can now write for the second term in Eq. A.6, noting that
sx,i jk and sy,; jm are independent in a random solid solution,

n
#
5 Ne Ny
AEend,s—s,sf,XY = Z Z AEend,s—s,sf,XY,ij
s i
ES 2,
Ng Ny Nmax a
=AYY Y sxin owi Y, Ussxrs Y svim A°(km,1)R
R 1 =3
ES 2,
Nmax X a
=ANNaexey Y, wi ) Ussxra Y. A°(km, 1)3
&, &,

(A.8)



Define
Nmax
Bliwih) = ) wi Y Ussxra Y, Alkm, 1),  (A9)
kEQE ! 108
then
D E,
ANSSSe = NeNgexey B({wi) (A.10)

The first term in Eq. A.6 involves the square of a sum and
can be expanded as follows. For the sake of brevity we write
(Xij = AEend,s-s,sf,XY,ij- Thus

. Ne vy at
AEeznd,s-s,sf,XY = ZZ O j
* v % +
Ne Ny Ne Ne Ny Ny
ZZ@Z + ZZZZ O Oy
I p6Fj 6%
Ny NC Ny Ne Ny Ny +
+ )Y Yo + YY) oo
i pb# j i j gb6F
(A.11)

The variables ¢;;, 04, 0 ;and O, are independent, hence

Ne Ny Ne No Ny Ny

AEendqsthY —ZZ 092 +ZZZZ Gj  Opg

i p6¥E j qbF
Ne Ny Ny

% *LLY %

j q6F

Ne Nt; Ny

LY %

i pbEj i
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(A.12)
For the last three terms, one obtains

Ne Ne vy Ny

LYYY o

i pbEj qbF

Oy =Ng Ng—1 Ny(Ng—1)
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Ne N N,

LYY o
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(A.13)

Oty _NCNd(

The first term in Eq. A.12 is more cumbersome to resolve, be-
cause 0(,2]- is a sum of terms that may contain squares of oc-
cupation variables, e.g. s)z(li ST, jmSY,i js- Since the occupation
variables are Bernoulli random variables, the averages of their
squares are the same as the averages of the variables themselves,
i.e. cx and cy. Each such product contains at least two indepen-
dent variables, thus the averaged products have the form cx"cy"
with v+w € 2,3, 4] The correct products of concentrations can
be substituted for the products of occupation variables using a
computer algebra program, e.g. Mathematica [68].
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The variance of AEgnqs.5,xy, the change in solute-solute
binding energies during cross-slip, is approximately two times
the variance of AE.pqssr,xy. Combining Eq. A.6, Eq. A.13,
Eq. A.12 and Eq. A.10, one obtains the preliminary result

Ne Ny
AEenassxy =2 NeNg(exey Bliwi))* +Y.Y o
ij
(A.14)

Both terms on the right hand side still contain the extra occu-
pation variables wy. They must be averaged over. Recall that
the wy, are Bernoulli random variables, with probabilities] for
center sites, 1/4 for corner sites, and 1/2 for sites on the face of
the unit cell. Since they are Bernoulli variables, powers of wy
are replaced by the corresponding probabilities. Again, a com-
puter algebra program can be used to make these substitutions in
Eq. A.14. The final result for AE¢pg .6, xy 1s quite long. However,
all terms are of the form AU xy,;Us-s,xy,mcx"cy", where A is
an integer, v,w = 1,2 and I,m =1, . . Nmax. Thus, it can be
written using matrix-vector notation, as in Eq. 6,

1
Var[AEeng s-s,xv ] =4€LCXCY7
p2 37 (1+ &) (6)
XUls-s,xy [C) +Calcx +ey) — €1 +2C2) exey IUs s xys
with coefficient matrices
? 2 =4 0 0 0 0 0 0°
$ 0 6 -8 0 0 0 0 0
0 0 14 0 -8 0 0 0
0 0 0 6 0 0 0 0
Ci=83 09 0 0 0 24 -8 -8 038’
0 0 0 0 0 9 0 0
0 0 0 0 0 0 38 0
0 0 0 0 0 0 0 6
? -16 4 5 5 -6 3 1 o
5 0 —62 8 -—12 37 —-16 —14 2
0 0 34 349 673 157 1309 275
o =L 0 0 0 97 602 114 1280 290
279 0 0 0 0 426 231 2468 652
0 0 0 0 0 —48 603 78
0 0 0 0 0 0 2424 1146
0 0 0 0 0 0 0 96
(A.15)

If only first nearest neighbor pairs of like solutes ( X =7,
¢ = cx = cy) are considered, one obtains

Var[AN,] =8¢*(1 —c)jﬁ%, (A.16)

b2
which is equivalent to our previous solution for this special case,
Eq. A.2.
Appendix B. Atomistic transition path calculations

Cross-slip transition paths in average and random alloys were
determined using similar methods as in [13]. The L AMMPS [69]
package was used for all atomistic calculations.



Appendix B.1. Configurations for transition path calculations

The basic geometry was a cylinder with axis parallel  to
the z-direction of the (rectangular) simulation cell. The [121],
[111]and [101] crystal directions were parallel to the x, y and
z-directions of the cell. The cylinder had a shell with a thickness
greater than two times the cutoff radius of the potential. Atoms
in this region were fixed during simulation runs. The length of
the cylinder was 40b and the radius of the inner region 13 3a.
The radius was chosen based on the following parameter study.
AE, of cross-slip in avgrage N1+\}5 at.% Al was calq,ulated
for rgdii in the range 10 3a-17.5 3a. Between 12.5 3a and
17.5 3a, (;x act increased only by 0.01 eV. At the chosen ra-
dius of 13 3aq, the error in AE, due to boundary conditions
is thus negligible compared to solute effects. A screw dislo-
cation with line direction parallel to [101] and Burgers vector
1/2a[101] was inserted at the center of the cell by imposing the
anisotropic-elastic solution for its displacement field by Stroh
[70]. During a subsequent energy minimization, the dislocation
would dissociate into a pair of Shockley partial dislocations. The
Conjugate Gradient (CG) [ 71] and FIRE [ 72] methods were
used for energy minimization, see Tab. A.1 in [13] for FIRE pa-
rameters. The energy minimization was stopped when the norm
of the 3N-dimensional force vector fell below 107° eV/A. The
plane of dissociation was either (111) (referred to as the glide
plane), or (111) (cross-slip plane). A dissociated dislocation on
the other plane was obtained by making a copy of the pristine
cylinder and inserting the screw dislocation at a position that was
shifted away from the center along [121] or [121]by fractions of
an Angstrém. After insertion of the dislocations, the shell atoms
of the final state were replaced with the corresponding atoms
of the initial state, in order to correct for the small difference in
boundary conditions caused by the shifted center.

252.0pt

Appendix B.2. Transition path calculations with average alloys

In the case of average alloys, transition path calculations
were started with an improved guess for the path, which was con-
structed as follows. First, a guess for the transition state of the
Friedel-Escaig mechanism was generated. A 20b long piece of
the initial state and a 20b long piece of the final state were com-
bined to form a complete 405 long configuration. Smooth con-
strictions were created at the interface between the two parts by
interpolating between the atomic positions of the initial, undis-
sociated, and final state over a length of 30 A along z. The
initial guess for the path was created by linearly interpolating be-
tween atomic positions in the initial, transition and final state.32
images were used in the calculation. The transition paths were
determined using a custom implementation of the Simplified and
Improved String method [73], which is described in Appendix
A of Ref. [ 13]. FIRE was used to move the atoms. The path
was re-parameterized by linear interpolation of the atomic coor-
dinates every 100 iterations of the minimizer. The calculation
was stopped when the norm of the 3N-dimensional vector of
displacements between the current re-parameterized state and
the previous re-parameterized state was less than 1073 A, or
after 600 re-parameterizations (60000 minimization steps).
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Appendix B.3. Transition path calculations with random alloys

Random alloy initial and final states were generated as fol-
lows. The corresponding average alloy configurations were
scaled by the ratio of mean random alloy lattice parameter to
average alloy lattice parameter. Thereafter copies were made
and converted into true random alloys by randomly replacing the
average atom type with real atom types according to the desired
concentration. Subsequently, the energy of the configurations
was minimized using CG and FIRE. During the minimization,
the dislocation could adapt to the random solute environment.
Configurations were discarded if the dislocation slipped more
than 2 A away from the center in this process, in order to avoid
spurious energy changes associated with image forces. In this
way, 100 pairs of initial and final states were created for each
composition. Initial guesses for transition path calculations were
generated by linear interpolation between the initial and the final
state. In contrast to average alloys, no improved initial guess
was used, so as to avoid favoring a specific point along the line
for cross-slip nucleation.

Appendix B.4. Calculations with Escaig stress

By resolving the applied stress tensor & (i, j = 1,2,3) onto
the slip planes and partial Burgers vector components, one ob-
tains the following Escaig (superscript Esc) and Schmid (Sch)
stresses on the glide and cross-slip planes, respectively:

Tiide = Oi2,
l(i:ge = —0a3,
. 1 = B.1
“frﬁcss=§ 7o2+2 2(6ii—on) , (B.1)
1 V-
‘Qgr((:)l;s=§ 2 203~ O3

Using Hooke’s law, one can find a combination of strain com-
ponents that yields a pure Escaig stress fhde on the glide plane

ch — ch — sc —
(‘§lde— ch = &% =), for example

g1 = —&2— 83,

7 1

= 1{ SC ,

@2 8§ 2Cyy e

3, (C11 —=C12—2Cu4)
716 2 (C11—Ciy)Cyy Y€ (B-2)
V_ o4
Y2 =2&= 8 7822—%3 ,

Y3 = Y3 =0.

For a pure Escalg stress £ on the cross-slip plane (’lgﬁge =

ch = = 0), one could impose

ross llde
g1 = —8&2— 83,
j— 1 SC
&2 = g §C44 ross’
o = 3 (C11—C12—2C44)AQESC (B.3)
16, 2 Cas(Ci1 —Cr2) O

Y2 =282 = — 883,

Y3 = iz = 0.



Using the these equations, Escaig stresses in the range 30
to 300 MPa were imposed on the average alloy initial and final
states, as well as the undissociated state. The energy of the initial
and the final state was minimized using CG and FIRE. Note
that the energy difference between the initial and final state gives

Efgtc for Eq. 16,

EESC —

o = (E (final state) —E (initial state)) /N,

(B.4)

where N, =40 in this case. Transition path calculations were
carried out as described above. In the case of the random alloys,
calculations were only performed for 150 MPa Escaig stress
on the glide or cross-slip plane. The input configurations were
generated as described in Appendix B.3, however with the cor-
responding strained average alloy configurations as templates.

Appendix C. Ege under stress

Fig. C.17 compares E4.; according to Eq. 16 with N, = 10,
and . = 150 MPa or 3 = 150 MPa to results from atom-
istic calculations. The cross-slipped length in the atomistic
calculations was measured using the dislocation analysis (DXA)
algorithm implemented in Ovito [ 26, 63]. The best match is
obtained in the case of Ni- 15 at.% Al. In Al-06 at.% Mg and
Cu-33 at.% Ni, Eg4e; underestimates the relative energy, espe-
cially near the center of the curve. In the case of Cu-33 at.% Ni,
the error is larger when the Escaig stress is applied on the cross-
slip plane, which is a consequence of neglecting the stress effect
on the constriction on this plane. However, the difference be-
tween activation energies obtained from the Ege curve and from
atomistic calculations is typically less than 0.1 eV for Escaig
stresses up to 300 MPa, see Fig. C.18.

Our model of the effect of a Schmid stress on the cross-slip
plane can be verified by comparing activation energies predicted
with Eq. 16 to results from atomistic transition path calcula-
tions reported by Kang et al. [8], see Fig. C.19. We also show
their predictions based on the Friedel-Escaig model. Note that
the material is pure Ni. When evaluating Eq. 16 to find the
activation energy, we used the material parameters reported in
their publication (a = 3.52 /OX, C11 =244 GPa, C1» =149 GPa,
Cyq = 119 GPa, AE,¢¢ave = 2.27 €V). The activation energies
predicted using the stress-dependent deterministic energy pro-
file are only about 0.06 eV higher than the atomistic energies.
Qualitatively and quantitatively, a better match is obtained than
with the Friedel-Escaig model. This is not surprising since the
zero-stress average alloy activation energy enters as a parameter
in our model, whereas the Friedel-Escaig model contains a num-
ber of uncertain parameters and is known to not be quantitative
[6, 8, 74].

Appendix D. Correlation between the value of AE,, and

the step at which it is realized

Fig. D.20 shows the frequency with which the maximum
energy (AE,.) was realized on a particular step in random walk
calculations with Cu+33 at.% Ni. Note that N, = 200, hence
there are 200 steps in total. 10000 realizations of the random
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walk were simulated. AE, occurs frequently at the beginning
or end of the walk. The shape of the distribution is reminiscent
of an arcsine distribution, which would be expected for a Wiener
process according to Lévy’s arcsine law [ 75]. The points in

Fig. D.20 indicate the median values of AE, for those cases

where AE, occured on the corresponding steps. Walks where
AE, occurs early on tend to have a low value of AE,(, whereas

walks where AE,; occurs near the end tend to have a high value

of AE,. Thus, walks with late maxima can be identified as the
origin of the tail of high AE, in the corresponding distribution
in Fig. 8.
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Figure C.17: Relative energy during cross-slip under 150 MPa Escaig stress as a function of step, i.e. length of the cross-slipped segment in Burgers vectors. Solid
lines: results from atomistic transition path calculations, see Appendix B.4. Dashed lines: determinisitic energy E 4¢; for random walk calculations (Eq. 16).
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determinisitic energy E 4e¢ for random walk calculations (Eq. 16)
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Figure C.19: Cross-slip activation energies in pure Ni as a function of Schmid
stress on the cross-slip plane. Red: atomistic data reported by Kang et al. [ 8];
gray: values calculated by Kang et al. using their implementation of the Friedel-
Escaig [11, 12] model, shifted by —0.7 eV; blue: maximum of the determinisitic
energy Eqe for random walk calculations (Eq. 16, evaluated with the material
properties reported by Kang et al. ;
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