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Abstract

Steels combining austenite (fcc) with lath martensite (bcc) in nanolaminate microstructures

are tough, resistant to hydrogen-embrittlement, and inexpensive, making them attractive for

many technological applications. Austenite provides plastic deformation while martensite pro-

vides strength, but the nanoscale processes that control plasticity in the austenite layers are

not fully established. Recent atomistic simulations and crystallographic theory reveal a unified

understanding of the structure and motion of the fcc austenite-bcc (lath) martensite interface

in steels, with transformation strains up to ∼ 90% in Fe-C alloys. In this paper, the atomistic

behavior is connected to the ductility of nanolaminate microstructures. First, the mechani-

cal response of the atomistic fcc/bcc interface under shear loading is analyzed. The interface

motion follows a Schmid-type law for resolved shear stresses in the transformation direction.

Furthermore, the forward fcc-to-bcc transformation is spontaneous while the reverse bcc-to-fcc

transformation requires high stress. The asymmetry correlates well with the Peierls stresses for

fcc and bcc screw dislocations, respectively. Second, the atomistic results guide the formulation

of a two-scale continuum model for the phase transformation. The multi-scale strategy adopted

here accounts for the relevant nano-scale mechanisms and enables modeling the mechanical re-

sponse of real martensite microstructures, up to the scale of tens of micrometers - which would

be untractable with direct atomistic simulations. Multi-scale simulations show that forward

transformation contributes significantly to the apparent plasticity in lath martensite. This

reinforces recent work highlighting the importance of such nanoscale austenite films for achiev-
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ing ductility and toughness in lath martensite. Overall, the present work demonstrates how

atomistic insights can directly inform continuum models of microstructural deformation, and

points toward directions for material control and optimization to achieve enhanced mechanical

performance in these steels.

Keywords: fcc/bcc interface; TRIP-maraging; Quenched and Partitioned; Nanolaminate

austenite-martensite steels; Lath martensite

1. Introduction

Multi-phase steels characterized by fcc austenite/bcc martensite nanolaminate microstruc-

ture (e.g. quenched and partitioned Q&P [1], TRIP-Maraging steels [2, 3], AHSS with chemical

patterning of austenite [4]) are currently the subject of intense research efforts because of their

high toughness and resistance to hydrogen-embrittlement [5]. Due to their technological rel-

evance, it is necessary to understand the physical mechanisms responsible for plasticity and

damage behaviour at small scales, which in turn determine the macroscopic performance. A

key issue is the effect of the austenite phase on the mechanical behaviour, especially when it

is only a few nanometers thick (such as in low C lath martensite [6]). Due to the very small

volume fractions, the thin austenite films are often neglected. Experiments show that, in low C

martensite, localized plasticity occurs at lath boundaries [7, 8]. Recent theory [9–11] shows that

such localized plasticity can be explained by the presence of thin austenite films retained at lath

boundaries, provided they can plastically deform. However, the nanoscale process controlling

plasticity of such thin layers remains unclear.

Recently, an atomistic study of the fcc austenite-bcc lath martensite interface was able to

reproduce all the main experimental features [12], especially the interface defect structure, its

motion, and the resulting transformation strain. This motivated a new crystallographic the-

ory of fcc/bcc martensitic transformations. The theory predicts that the transformation strain

depends on the fcc/bcc lattice parameter ratio, and can reach ∼ 94% shear strain, more than

three times the commonly accepted value (∼ 30%, which was not accurately established [13],

as pointed out in [14]). Such a contribution to deformation is well above any previous expecta-

tions [15]. Furthermore, deformation due to transformation in nanoscale austenite films could

contribute to significant apparent plastic straining at nanoscale sizes where dislocation plastic-

ity requires high stresses. Motivated by these promising aspects, in this work we examine the
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atomistic transformation process under shear in more detail, develop a continuum-level model

for the transformation plasticity, and demonstrate the contributions of nanoscale austenite

transformation to the overall plastic deformation in realistic lath microstructures.

Specifically, we have performed atomistic simulations of shear deformation parallel to the

atomistic fcc-bcc interface of Ref. [12] and clarified the dependence of interface motion (and

hence phase transformation) on the loading direction. The transformation follows a Schmid-

type behaviour, i.e. it is activated at a critical resolved shear stress along the phase trans-

formation plane and direction. The interface defect structure and higher energy of the fcc

phase relative to bcc ensure that the reverse transformation (bcc to fcc) is not spontaneous.

Deformation along the direction transverse to transformation is accommodated by elastic de-

formation up to high stresses. Altogether, interface propagation can be described by a crystal

plasticity-type slip law. The deformation of the martensite/austenite aggregate is then incor-

porated in a standard continuum mechanics framework for transformation-induced plasticity

(TRIP) analogous to [16]. Following the multi-scale approach for the modeling of nanolaminate

austenite-martensite microstructures developed by Maresca et al. [10] and using the new phase

transformation model, we show that phase transformation is a feasible nanoscale mechanism

for the observed plastic behaviour and stress-strain response of real martensitic microstructures

[7]. The new model can be used for the simulation of polycrystals where austenite transforms,

providing new potential for design of steels characterized by nanolaminate austenite-martensite

microstructures [1–5].

The first novel contribution of this paper, compared to previous work [10, 12, 16], is an un-

derstanding of the controlling mechanism for the stress dependence of the transformation. The

Schmid-type activation of the interface and the origin of the asymmetry in forward and reverse

transformation are demonstrated here for the first time. The second novel contribution of this

paper is the demonstration that nanolaminate austenite can provide an essential contribution

to the overall plasticity of martensitic microstructures through phase transformation.

The paper is structured as follows. Section 2 analyzes the mechanical response of the fcc/bcc

interface atomistic model of [12], which clarified the crystallography of the fcc-bcc transforma-

tion but did not address what triggers the transformation mediated by interface glide. Section

3 shows, via multi-scale simulations, that fcc to bcc transformation can contribute to the exper-
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imentally observed plasticity of lath martensite microstructures. To model this phenomenon,

we have first simplified the general framework presented in [16] and then adapted it to the case

of the crystallography of lath martensite. This results in a nanolaminate model having the

same structure as [10], but where inelastic deformation is due to phase transformation rather

than dislocation-mediated plasticity. This whole body of new multi-scale work on nanolami-

nate austenite-martensite microstructures forms a basis for Section 4, which presents a detailed

discussion of how the present findings contribute to understanding multiple unsolved aspects

in the current literature on martensitic steels and austenite to martensite phase transformation

in steels. The paper ends with conclusions summarizing the main results of this work.

2. Mechanical behaviour of the fcc/bcc interface

We consider a fully periodic bcc-fcc bicrystal, thoroughly described and analyzed previ-

ously in [12]. The bicrystal has an fcc-bcc interface characterized by the misorientation θ = 11◦

between crystallographic (111)fcc‖(011)bcc plane and interface orientation (habit plane), which

induces steps along [1̄01]fcc, and by the angle ϕ = 4.75◦ between [1̄01]fcc and [11̄1]bcc around

[111]fcc, defining the orientation relationship. The angles (θ, ϕ) are within the range of exper-

imental observations. Atomistic simulations are performed with the LAMMPS package [17]

using the MEAM-T interatomic potential developed in [18], which captures the essential prop-

erties of fcc and bcc phases for pure Fe. Details on the interatomic potential and the method

for constructing the interface are provided in [12]. We note that the T=0K fcc-bcc energy

difference predicted by this potential is ∼ 10 meV/atom, and that the fcc phase is metastable

(namely a local minimum) with respect to bcc [18]. Both features enable construction of a

metastable fcc-bcc interface and analysis of its structure and motion, which would be unfeasi-

ble if the energy difference between the two phases would be too large, or if the fcc phase would

not be a local energy minimum. Figure 1a shows the bicrystal viewed along [1̄01]fcc. Figure

1b shows a typical interface ledge and reveals the important interface defects as afcc

2
[1̄01] screw

dislocations gliding on (111)fcc and abcc

2
[11̄1] screw dislocations with kinks gliding on (1̄01)bcc.

Here we focus on the mechanical response of the interface under applied shear loading along

different directions. We apply in-plane shear deformation along various angles α ∈ [−180◦, 180◦]

where the angle α is measured on the interface (232)fcc plane starting from [1̄01]fcc in the

clockwise direction, see inset in Figure 2. Appendix A provides details about the method used
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for the application of the shear load on the computational cell. For each loading direction,

the components of the Cauchy stress tensor Σ of the simulation cell are computed [17]. The

resolved shear stress τ is calculated as

τ = Σ : (m⊗ n(1)) (1)

where m is the vector aligned with the loading direction and n(1) is the interface normal. In

Eq. (1) A : B = AijBij with Einstein summation over the repeated indices. The symbol

⊗ indicates a tensor (or dyadic) product between two vectors. Simulations are performed at

T=0K; simulations at finite-T would be limited to short times and unrealistic strain rates,

and thus providing little or no additional useful quantitative information, as it will become

clear from the discussion below. As shown in Figure 1 and detailed in [12], the interface

structure is composed of interface dislocations that carry the transformation by gliding. This

does not require thermal activation since these defects are not nucleated but constitute the

already existing interface structure. Thus, T=0K simulations accurately reveal the important

phenomena. Implications for finite-temperature behaviour are addressed in the Discussion

section.

At a critical resolved shear stress τc, the interface moves carrying the transformation from/to

fcc to/from bcc. Figure 2 shows τ vs the applied displacement of the bicrystal for loads applied

along the transformation direction (αtr = 19.5◦ [12]) and along the transverse direction α⊥ =

−70.5◦. Along αtr, a forward applied load drives the fcc to bcc transformation at less than

1 MPa. The interface propagates in a stick-slip manner, as reflected by the jagged curve,

with negative stresses observed because the simulation is displacement-controlled while the

interface moves in discrete atomic increments. The origin of the stress fluctuations is the

presence of the weak pinning points that make the interface metastable, see Appendix A. The

forward transformation is thus essentially spontaneous. This glissile and athermal nature of

the interface in pure Fe was already shown in [12]. For loading in the opposite direction, the

reverse transformation from bcc to fcc occurs, but at a much higher critical stress of τc ' 340

MPa. For loading applied along the transverse direction α⊥, the material response is elastic up

to stresses above ∼ 1.5 GPa where dislocations are emitted into the bulk phases. There is no

transformation and the material response is similar to that of a typical bimaterial interface or

grain boundary [21].
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The in-plane yield locus, or critical shear stress as a function of loading direction, is shown in

Figure 3. This yield surface is determined using the maximum shear stress at which a displace-

ment of magnitude b is accommodated by inelastic phenomena (either phase transformation or

defect emission) for each loading direction α. Note that, except for loads applied close to αtr,

this inelastic displacement is smaller than the applied displacement since part of the overall

deformation is elastic. The inset in Figure 3 shows the region of the yield surface where the

phase transformation is most active, lying in the cone α ∈ [15◦, 60◦]. Overall, the in-plane yield

surface is highly anisotropic.

We now consider the resolved shear stress τ along the transformation direction s(1) (αtr =

19.5◦) computed as1

τ = Σ : (s(1) ⊗ n(1)) (2)

for applied loads at all angles α where transformation occurs as indicated in Figure 3 (note that

m 6= s(1)). As shown in Figure 4, all stress-displacement curves overlap except for α = 180◦

(at this precise angle, the simulation cell is overconstrained to accommodate shear deformation

along one in-plane direction, see Appendix B, leading to higher stresses). The collapse of all

stress-strain curves along the phase transformation direction indicates that the phase transfor-

mation activates as in Schmid’s law. Therefore, in analogy to crystal plasticity, initiation of

the phase transformation can be described by the Kuhn-Tucker conditions

f = |τ | − τc ≤ 0 ε̇tr ≥ 0 f ε̇tr = 0 . (3)

where f is the transformation criterion, τc the critical resolved shear stress at which trans-

formation starts (with different values for forward and reverse transformation) and ε̇tr is the

transformation rate (superimposed dot indicates the time derivative), which is proportional to

the rate of change of the volume fraction of transforming material, as described in more detail

in Appendix C. The third condition in Eq. (3) means that the interface moves only if the

transformation criterion is satisfied, and vice-versa. Note that Eqs. (2) and (3) are the atom-

istic justification of the widely-used Patel and Cohen criterion for stress-assisted martensitic

transformations [22].

1Here, all quantities related to the “shape deformation” tensor P(1) from the crystallographic theory of

martensite follow the notation in [12].

6

This is a post-print of the following article: Maresca, F.; Kouznetsova, V.G.; Geers, M.G.D.; Curtin, W.A. Acta Materialia 2018,, 463-478..
The formal publication is available at http://dx.doi.org/10.1016/j.actamat.2018.06.028 © 2018. This manuscript version is made available
under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

http://dx.doi.org/10.1016/j.actamat.2018.06.028


Figure 4 also confirms that the asymmetry in the fcc-bcc transformation behaviour is sub-

stantial. While the forward transformation is essentially spontaneous, the critical stress for

driving the reverse bcc-to-fcc transformation (∼ 340 MPa) is much larger than the stress

needed to overcome the thermodynamic driving force (∆E ' 11.25 meV) for the fcc-to-bcc

transformation for the MEAM-T potential at T=0K. The thermodynamic energy difference

can be overcome by the work done by an applied stress of τ∆E = ∆E/Ab ' 130 MPa, where

b = 2.52Å is the magnitude of the fcc Burgers vector and A =
√

3
2
b2 is the surface area per atom

swept by the interface during transformation. The difference between 340 MPa and 130 MPa

indicates that there is an additional energetic barrier inhibiting the reverse transformation.

The asymmetry in critical stress can be understood by considering the Peierls stresses

of the interface dislocations. The interface structure in Figure 1b shows that when forward

transformation occurs, the interface dislocations glide in the existing fcc lattice and transform it

into bcc. Conversely, when the reverse transformation occurs, the interface dislocations glide in

the bcc lattice. There are two sets of dislocations at the interface, namely bcc screws with kinks

and fcc screw dislocations. The bcc screw dislocations with edge kinks move nearly athermally:

the Peierls stress of a bcc edge dislocation at T=0K is 3.25 MPa (±0.25 MPa) for Fe for this

MEAM-T potential. Thus, the interface defect that might move with a non-negligible barrier is

the fcc screw dislocation. This dislocation shares the same glide plane as a bcc dislocation and

has a similar Burgers vector and direction (at an angle ϕ ≤ 5.26◦). We thus hypothesize that

(i) the forward transformation occurs with the interface screw dislocation gliding effectively in

the fcc lattice at a critical stress controlled by the Peierls stress for an fcc screw dislocation and,

conversely, (ii) the reverse transformation occurs when this interface screw dislocation glides in

the bcc lattice at a critical stress controlled by the Peierls stress for a bcc screw dislocation. This

hypothesis quantitatively rationalizes the simulation results. For the MEAM-T Fe potential at

T=0K, an fcc screw dislocation glides at τP,fcc = 90.5 MPa (±0.5 MPa) while the bcc screw

dislocation glides at τP,bcc = 377.5 MPa (±0.5 MPa). According to our hypothesis, the critical

stress for forward transformation, resolved on the habit plane at an angle θ with respect to the

slip plane (111)fcc along the direction of screw dislocation motion, should then be

τfcc→bcc = (τP,fcc − τ∆E) cos θ = −38.4 MPa (4)

indicating that the transformation is spontaneous, i.e. requiring no applied stress. Indeed, the
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interface is stabilized in simulations by introducing undetectable defects to study an interface

which does not move after relaxation (see [12]). Furthermore, the reverse transformation should

require a critical stress, resolved on the habit plane, of

τbcc→fcc = (τP,bcc + τ∆E) cos θ = 497 MPa (5)

Both stresses above are resolved along the screw dislocation direction, not the transforma-

tion direction αtr. These stresses should thus be compared to the simulation stresses for

τα=0◦ = −47 MPa for forward transformation and τα=180◦ = 490 MPa for reverse transformation,

respectively, which agrees well with the above estimate. As noted earlier, the simulations at 180◦

are “anomalous” since shear deformation is constrained to occur only along the fcc screw dislo-

cation direction. This specific boundary condition favours glide of the fcc screw dislocation, and

inhibits the motion of the set of bcc screw dislocations (which glide transverse to the direction

of the applied displacement). For loading conditions away from α = 180◦ the reverse transfor-

mation occurs at ∼ 80% lower τbcc→fcc, as can be readily verified by resolving τα=180◦ along the

transformation direction αtr = 19.5◦, which yields 490 MPa cos(αtr) = 462 MPa > 370 MPa.

The difference can be attributed to the interaction between the bcc screws with kinks and the

fcc interface screws aligned with the steps, which appears to facilitate interface glide. The

interaction between the multiple interface screws on different (111)fcc planes seems to play a

minor role, since it is not visible in the α = 180◦ case.

This atomistic study of the mechanical response of the fcc-bcc interface reveals one origin of

the well known fcc/bcc transformation asymmetry. That is, it is possible to obtain martensite

upon quenching but not always possible to reverse the transformation [2]. This result is inde-

pendent of the interatomic potential used here, since we have demonstrated that it is connected

to glide of screw dislocations in fcc (forward transformation) or bcc (reverse transformation).

While energy barriers for fcc screw glide are not high, it is well established that the energy

barrier associated with bcc dislocation glide can be very large. While the forward transfor-

mation in pure defect-free Fe has a near-zero energy barrier that is overcome easily by the

thermodynamic driving force alone (i.e. it is intrinsically athermal [12]), extrinsic phenomena

such as alloying or pre-existing dislocations can provide some finite barrier to interface motion

so that the fcc phase does not transform at zero stress in actual materials. For the reverse

transformation, it is well-established that the bcc Peierls stress in pure Fe is quite high: DFT
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calculations [23, 24] at T=0K give 1.5-2.0 GPa and experiments at room temperature report

370 MPa [25]. The present model, DFT, and experiments therefore agree on the existence of a

high intrinsic barrier to bcc screw motion, and thus an intrinsically stress- and time-dependent

reverse transformation. As for the forward transformation, the interaction of the interface dis-

locations with solutes and lattice dislocations and other defects would provide further increases

to the barrier for interface motion.

3. Transformation-induced plasticity (TRIP) model for Fe-C lath martensite mi-

crostructures

We now incorporate the atomistic findings into a continuum-scale TRIP model, which will

then be applied to real martensitic microstructures [7]. While TRIP is usually associated with

the plastic (slip) deformation in the surrounding microstructure induced by the transformation

of metastable austenite, here the transformation itself provides an additional apparent plastic

deformation. The passage from MD to continuum modeling is based on the knowledge, coming

from the crystallographic theory of martensite [12], of the strain due to the phase transformation

- the triplet (m(1), s(1),n(1)) - and the insight coming from Section 2, that the interface activates

according to a Schmid law. Thus, the model does not need direct coupling to MD simulations,

which enables the efficient simulation of microstructures at the micrometer scale - largely beyond

MD capabilities.

In spite of the very small volume fractions of interlath austenite films retained between

martensitic laths after quenching [6, 26], the results here will show that phase transformation in

such thin nanoscale austenite can contribute significantly to the apparent macroscopic plasticity

of real microstructures. This complements previous work wherein the contributions of the actual

dislocation plasticity in the nanoscale austenite were evaluated [10]. Given the very limited

thickness of the austenite films (few nm), dislocation-mediated plasticity in the austenite will

not be modelled; instead we assume that any inelastic deformation in the austenite originates

from the austenite to martensite phase transformation only.

3.1. Lamellar model for nanolaminate martensite with films of austenite

The TRIP model for martensite with thin films of austenite is based on the general frame-

work proposed in [10], where lath martensite grains are modeled according to a two-scale
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continuum approach. The framework is based on the observation [27] that lath martensite is

characterized by a hierarchical microstructure consisting of multiple subgrains. Here, the word

“subgrain” refers to all units related by crystallographic orientation relationship that form in

lath martensite: crystallographic packets, blocks, and sub-blocks. All these units are related

to one prior austenite grain. A complete description of the hierarchical microstructure of lath

martensite is provided in [10]. When quenching to room temperature, within one single crys-

tal fcc austenite grain, a polycrystalline microstructure forms which consists of up to 24 bcc

crystallographic variants. The bcc variant spatial configurations are related to the parent fcc

phase by the parallelism relation {111}fcc‖{011}bcc between crystallographic planes and a small

misorientation ϕ ∈ [0◦, 5.26◦] between the close-packed directions 〈1̄01〉fcc and 〈1̄1̄1〉bcc. Each

single variant is not a single crystal, but rather a collection of multiple single crystals. It is

essential to recall that the small martensite crystals (laths) have an elongated, flat shape with

a characteristic thickness approximately 100 nm forming stacks called “sub-blocks”, where all

martensite crystals share the same crystallographic orientation (the bcc variant) with respect

to the austenite. The austenite decorates, in general, all boundaries of the stack in the form

of thin films (down to ∼5 nm thick). Therefore, a “sub-block” of lath martensite is a bcc-fcc

nanolaminate in which the interface normal is the habit plane n(1), which can be predicted with

the crystallographic theory of lath martensite [12]. In lath martensite microstructures, “blocks”

are often observed, which are the regions where laths belonging to two different crystallographic

variants form a single stack. The habit planes of these two variants are slightly different, and

both experiments and crystallographic theory [12, 27] show that the misorientation between

the average block interface and the single variant interface is < 7◦. We therefore also model

the “blocks” as nanolaminates, with a single interface normal that is equal to the average habit

plane of the two constituent variants. Thus, a lath martensite microstructure is modeled as

a collection of “sub-blocks” and “blocks”, namely grains that share the same crystallography

and interface orientation.

Following the above description of the microstructure of lath martensite as a collection of

austenite film-martensite lath nanolaminates, we model the martensite laminate microstructure

with an austenite volume fraction (1 − ξ) by expressing the laminate-level (L) deformation
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gradient tensor FL as

FL = ξFM + (1− ξ)FA (6)

which is the phase average of the total deformation gradient tensors in martensite laths FM and

austenite films FA, respectively. The first Piola-Kirchhoff stress P of the laminate is analogously

expressed as

PL = ξPM + (1− ξ)PA . (7)

The laminate geometry imposes constraints of interface compatibility and traction continuity

at the block or sub-block interface, expressed as

FM · (I− n(1) ⊗ n(1)) = FA · (I− n(1) ⊗ n(1))

PM · n(1) = PA · n(1) .
(8)

This system of equations is completed by specifying the single phase constitutive equations, i.e.

PA = F(FA) and PM = G(FM).

Note that the compatibility condition expressed in Eq. (81) is at the basis of the under-

standing of martensitic transformations: the habit plane n(1) is the compatible, i.e. the common

plane that is left unrotated and undistorted after transformation [28]. As for the traction con-

tinuity equation (8)2, since the continuum viewpoint adopted here envisions the interface at a

much larger scale than the atomistic analysis in Section 2, the average interface tractions in

the neighboring phases have to balance to satisfy equilibrium.

3.2. Phase transformation model for the austenite films

For the austenite phase, we develop a kinematic model in which inelastic deformation arises

from the phase transformation along the transformation direction rather than from fcc disloca-

tion plasticity. This is the key difference between the present model and earlier work [10]. Thus,

including elastic contributions, the total deformation gradient FA of a single thin austenite layer

that undergoes transformation can be split, as in standard plasticity models, into elastic FA,e

and inelastic Ftr contributions as

FA = FA,e · Ftr (9)

In the austenite phase, we assume the standard elastic constitutive law

S̄A = CA : EA,e (10)
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where S̄A is the pull-back of the Kirchhoff stress tensor τA to the intermediate config-

uration, which is the configuration after applying the inelastic deformation. Also EA,e =

1
2

(
FT
A,e · FA,e − I

)
is the elastic Green-Lagrange strain and CA is the fourth order elasticity

tensor.

The “transformation” contribution Ftr to the total deformation is calculated by defining an

evolution law for its velocity gradient Ltr := Ḟtr · F−1
tr

Ltr =
nt∑
α=1

ε̇αtrs
(1),α ⊗ n(1),α (11)

where nt is the number of transformation systems within the austenite film; ε̇αtr is the trans-

formation rate on the αth transformation system, s(1),α is the transformation direction, and

n(1),α the habit (transformation) plane normal, defined on the initial body. Here, we consider

only forward transformation systems, but the formulation is general and reverse transformation

systems can be also included. For the lath martensite nanolaminate microstructure, there is

one transformation system for a sub-block (α = 1), and two for a block (α = 1, 2). In the

sub-block, the transformation plane n(1) normal coincides with the interface normal in Eq. (8),

while in the block the interface normal is the average of n(1),1 and n(1),2.

The transformation rate is

ε̇αtr = ξ̇αtrm
(1) (12)

where ξαtr is the transformed austenite fraction of system α with respect to the original austenite

volume. In this work, to simplify the computational framework, it is assumed that the “trans-

formed” austenite fraction ξαtr does not correspond to an actual new phase but is rather used

as a state variable to track the amount of phase transformation. This introduces a generally

negligible error that scales with the austenite volume fraction 1− ξ0 (less than 5% in the exam-

ples representative microstructures treated below) and with the difference in elastic constants

between austenite and martensite. In the above, m(1), s(1) and n(1) are the shape deformation

(the “in-situ” transformation strain), the transformation direction and the habit plane normal,

respectively, which are computed using the crystallographic theory of martensite [12].

Therefore, unlike previous TRIP models (e.g. [16]), the kinematic description of Equation

(9) treats the transformation system s(1),α ⊗ n(1),α as a“slip system” in the austenite phase.

Since the austenite films have a finite thickness, the apparent plasticity of the austenite evolves
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only until the entire film is transformed. Therefore, for sub-blocks ξtr ≤ ξmax = 1 while for

blocks (assuming that the volume fraction of the two variants is equal) ξαtr ≤ ξmax = 1
2
.

For the evolution of the transformation rate ε̇αtr, we adopt the evolution law

ε̇αtr = ε̇0

(
|τα|
ταtr

) 1
mA

(13)

where ε̇0 is a reference transformation rate, mA a transformation rate sensitivity parameter, ταtr

the critical transformation stress on the αth transformation system, and the resolved stress

τα = 〈(FT
A,e · FA,e · S̄A) : (s(1),α ⊗ n(1),α)〉 (14)

where 〈·〉 denote the Macauley brackets so that the forward transformation is activated only

by a stress resolved along the positive transformation direction. The reference transformation

rate ε̇0 and the transformation rate sensitivity parameter mA have no physical meaning here,

but are adopted for computational convenience. Inverting the flow rule (13) results in τα =

ταtr

(
ε̇trα
ε̇0

)mA
' ταtr as mA → 0 and ε̇αtr > 0, which shows that Eq. (13) is a regularization of the

rate-independent phase transformation criterion expressed by Eq. (3).

Finally, for computational stabilization, we adopt a phenomenological evolution law for the

critical stress for the transformation as

τ̇αtr = hA,0

(
1− ταtr

τA,∞

)aA
|ε̇αtr| (15)

where hA,0 is a “hardening” modulus, τA,∞ is a saturation value of the critical stress, and aA

is a “hardening”-like parameter. These parameters have no physical meaning since there is no

mechanism for hardening; parameters (see below) are thus chosen for numerical purposes. The

key physical parameter is ταc , the initial critical stress for forward transformation.

In summary, the fcc phase is treated as elastic with no dislocation plasticity, but with an

apparent plasticity arising from the transformation. The transformed austenite is not treated

as a new phase (“fresh” martensite) and so retains the austenite elastic properties. This sim-

plification is expected to yield minor errors, scaling with the (small) elastic mismatch between

austenite and martensite and the (very small) total volume fraction of the transforming austen-

ite. Neglecting plasticity in the “fresh” martensite is reasonable since the thin austenite films

are likely to contain more carbon than the surrounding martensite laths, making the “fresh”

martensite stronger than the original martensite.
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3.3. Crystal plasticity model for the martensite laths

The martensite lath phase is modeled as a bcc crystal with the same split of deformation

gradient as

FM = FM,e · FM,p (16)

where FM,e is the elastic deformation of the lath and FM,p the plastic deformation. The elastic

deformation follows Eq. (10) above. The plastic deformation is described using standard crystal

plasticity based on the {110}bcc slip family. Note that both {110}bcc and {112}bcc slip are

observed in Fe alloys [30] but crystallographic analysis in martensite microstructures [7] suggests

that {110}bcc slip is more favourable than {112}bcc. Previous work [10, 29] also demonstrated

that the exact slip activity of martensite laths is less important than the inelastic deformation

of the austenite films. We also do not include non-Schmid effects, based on conclusions in

recent work [30, 31].

The evolution of the plastic deformation FM,p is governed by the plastic velocity gradient

Lp

Lp =
ns∑
α=1

γ̇αPα
0 (17)

where Pα
0 := sα0 ⊗nα0 is the Schmid tensor of the αth slip system, sα0 is the slip direction and nα0

the slip normal, both defined in the initial body; γ̇α is the plastic slip rate on slip system α; and

ns = 12 is the number of slip systems considered here. The plastic slip rate γ̇α is determined

via the visco-plastic slip law [53]

γ̇α = γ̇0

(
|τα|
ταy

) 1
mM

sign(τα) (18)

where γ̇0 is a reference slip rate, mM is a strain rate sensitivity parameter, τα the resolved shear

stress on the αth slip system and ταy the current slip resistance. The resolved shear stress τα is

calculated according to the generalized Schmid law as

τα = (FT
M,e · FM,e · S̄M) : Pα

0 (19)

The current slip resistance ταy follows the hardening law

τ̇αy =
ns∑
β=1

hαβ|γ̇β| (20)
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where

hαβ = hM,0

(
1−

ταy
τM,∞

)aM
qαβ (21)

with qαβ an interaction matrix for self and latent hardening, hM,0 an hardening modulus, τM,∞

the saturation value of the slip resistance, and aM an exponent setting the degree of non-

linearity of the hardening law. We take qαα = 1 and qαβ = qn , α 6= β. τα0 is the initial value

of the slip resistance ταy for γα = 0.

3.4. Lath martensite model configurations

As Figure 5 shows, and as explained in more detail in [10], lath martensite is composed of

different crystallographic variants (indicated by the letter V). Each variant is a parallel stack of

stronger bcc α′ martensitic crystals (the laths) with an approximate average thickness of 100 nm

and thin films of fcc retained austenite of average thickness 5 nm. The crystallographic variants

measured in [7] are labeled according to the Kurdjumov-Sachs (KS) orientation relationship, and

are usually indexed pairwise and thus indicate blocks (see Appendix D). Unless a single variant

is indicated, in which case the KS orientation is adopted for simulations, it is assumed that in

one block the two variants have the same volume fraction, consistent with experiments [27, 32].

Table D.2 in the Appendix D lists the transformation direction and the normal for each variant,

using the average orientation relationship ϕ = 2.5◦ (between KS and Nishiyama-Wasserman

(NW)) [33] and austenite supersaturated with C [26] at the highest fcc/bcc lattice parameter

ratio for which the fcc/bcc interface exists [12]. For this case, the transformation strain is

m(1) = 86.84% where (m(1), s(1),n(1)) are computed using the crystallographic theory of [12]

for this composition and orientation relationship. We account for average sub-block and block

interface orientations. Modeling of other steels with different compositions (e.g. Fe-Ni-Mn)

would use the same crystallographic theory for the relevant alloy composition and orientation

relationship. Note, that the framework adopted here is general: only the initial austenite

volume fraction 1− ξ0 and the triplet (m(1), s(1),n(1)) coming from the crystallographic theory

serve as the input, along with the material model parameters identified in Sections 3.2 and 3.3.

For another alloy and microstructure, these input parameters will need to be determined. The

model configurations are shown in Figure 5 and have been created using the EBSD data reported

in [7]. The boundary conditions for these models are those used in [10]. The microstructure

labeled as MP1 (Figure 5a) is characterized by crystallographic variants with fcc-bcc interfaces
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mostly perpendicular to the loading direction. The microstructure labeled as MP2 (Figure 5b) is

characterized by fcc-bcc interfaces mostly at 45◦ with respect to the loading direction. These two

configurations are selected from among those analyzed in [7] because the mechanical response

of MP1 is expected to be dominated by the bcc lath plasticity having high yield strength

while the response of MP2 is expected to have important contributions from the apparent

plasticity due to the transformation in the austenite films, and hence deform more easily than

MP1. The two model configurations are, therefore, ideal for testing the role of nanolaminate

austenite films on the deformation of lath martensite microstructures. Model dimensions are

H = 20µm, T = 20µm, L1 = 32.14µm and L2 = 26.32µm. Tensile loading simulations are

performed along the X direction at strain rate ε̇XX = 0.01 s−1, with free boundaries in the

Y and Z directions, using the finite element method for these two microstructures. The faces

perpendicular to Y and Z directions are left traction free because the configurations relate to

the gauge section of uniaxial tensile specimens, while an average displacement is prescribed on

the faces perpendicular to X direction.

3.5. Microstructure simulation results

As shown in [10], removing the fcc phase entirely and fitting the bcc parameters to the

MP2 stress-strain curve leads to the wrong predicted trend for the MP1 stress-strain curve, as

shown in the inset of Figure 6. The responses of the two microstructures are nearly identical,

with just a small difference in flow stress, because the two bcc polycrystals have similar overall

grain orientations. The inability to describe both MP1 and MP2 responses motivated the

inclusion of fcc phase plasticity [10]. Here, the plasticity of the austenite is introduced as an

“apparent” plasticity due to the inelastic deformation of the austenite films due to the phase

transformation. The term “apparent” is used, since the phase transformation is not a standard

dislocation-mediated phenomenon.

The constitutive parameters for the nanolaminate austenite/martensite system are chosen as

follows. We use an fcc volume fraction (1−ξ0) = 0.0476 corresponding to 100 nm bcc laths and

5 nm interlath retained austenite. Since the films are very thin, we neglect changes in the overall

martensite volume fraction due to transformation and treat the martensite volume fraction as

a constant (ξ = ξ0). The remaining material model parameters are listed in Table 1. We use

the cubic elastic constants from [10] according to [34]. For the apparent fcc transformation
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plasticity, small “hardening” is used just sufficient to provide computational stability while

still reflecting an (almost) elastic/perfectly-plastic response as in Figure 4. Therefore, the only

unknown fcc parameter is the critical stress for the forward transformation, which presumably

depends on both the intrinsic dislocation Peierls stress for fcc and the interactions of the

interface dislocation with C solutes and other possible defects in fcc. The value of the critical

stress for transformation affects the onset of phase transformation, as detailed in Section 3.2.

We assume that reverse transformation is inactive since it activates at much higher stress, and

so no critical resolved shear stress is reported. For the selected fcc transformation stress, the bcc

plasticity parameters (yield stress and hardening law) are fitted to reproduce the experimental

stress-strain response for microstructure MP2. The overall set of plasticity parameters for fcc

and bcc is not unique, but the values used here are reasonable and reflect the main effects of

inclusion of fcc transformation plasticity.

With the chosen parameters fitted to microstructure MP2, Figure 6 shows the predicted

stress-strain response for both microstructures along with the experimental data. The exper-

imental trend of MP1 being stronger than MP2 is qualitatively reproduced. We have verified

that, as long as the critical stress for the forward transformation τc is lower than the initial slip

resistance in martensite τ0, specific adjustments of τc/τ0 do not affect the qualitative result (i.e.

MP1 is stronger than MP2).

Mismatch between simulations and experiments can be due to inaccurate model parameters,

experimental accuracy (which appears limited, as seen in the elastic regime), and, especially, the

assumption that crystallographic variants have exactly constant geometry along the specimen

thickness. This restriction leads to constraining effects. In reality, FeC martensite shows a

range of orientation relationships within the same material, with the average ϕ̄ = 2.5◦ (adopted

here) and a standard deviation ∆ϕ = ±1◦ [33]. This implies a range of solutions for the habit

planes (∼ 8◦ to 12◦, see Table 3 in [12]) and hence a range of solutions for the transformation

systems. Incorporating a distribution of transformation systems among the different layers

in the microstructure would facilitate transformation for some orientations. In addition, the

present model constrains the “block” transformation to be the average over the transformation

systems. Thus, real materials are subjected to less constraints with a spread of transformation

directions as compared to the idealization here. Here, we fitted parameters to the MP2 response
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Table 1: Material parameters for bcc martensite and fcc austenite single crystals.

Material parameters, bcc

Initial slip resistance τ0 370 MPa

Slip resistance saturation value τM,∞ 1500 MPa

Initial hardening rate hM,0 500 MPa

Reference slip rate γ̇0 0.01 s−1

Strain rate sensitivity mM 0.10

Hardening exponent aM 1.5

Ratio latent/self hardening qn 1.4

Elastic constant CM,11 349 GPa

Elastic constant CM,12 202.5 GPa

Elastic constant CM,44 176.5 GPa

Material parameters, fcc

Initial forward transformation critical stress τc 200 MPa

Transformation resistance saturation value τA,∞ 260 MPa

Initial “hardening” rate hA,0 250 MPa

Reference transformation rate ε̇0 0.01 s−1

Transformation rate sensitivity mA 0.10

“Hardening” exponent aA 1.5

Elastic constant CA,11 268.5 GPa

Elastic constant CA,12 156.0 GPa

Elastic constant CA,44 136.0 GPa

within these constraints. Relaxing them would necessitate use of a stronger bcc phase to

fit the MP2 stress-strain response. This stronger bcc response would then be reflected in

an even stronger response for the MP1 microstructure, which is more dominated by the bcc

behavior. Inclusion of these complex aspects can be addressed in future work, but would

certainly contribute to decreasing the difference between simulated and experimental MP1

responses.

The strengthening of MP1 relative to MP2 is understood through examination of the slip
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and transformation activity. Figure 7 shows the total slip activity in the bcc phase (laths) for

both specimens at 1% global strain, computed as the sum of the absolute values of the slip on

all active slip systems. Figure 8 shows the apparent plasticity due to transformation strain of

the austenite films at the same 1% global strain both MP1 and MP2.

In microstructure MP1, some bcc plasticity occurs in all packets. In about one-third of the

volume, the total slip reaches values close to ∼ 3% strain, which is the value predicted using

the Taylor factor (ratio between total slip activity and applied strain) for bcc polycrystals

featuring {110} slip under tension [35]. The apparent plasticity of the austenite in MP1 is

typically 5 − 10% transformation strain in about 1/4 of the homogenized volume and very

low values or 0% elsewhere. With the austenite volume fraction of only ∼ 5%, the austenite

deformation contributes to less than 0.5% strain to the overall nanolaminate. In microstructure

MP2, the bcc lath plasticity is fairly uniformly distributed throughout the microstructure, but

at levels less than 1%, which is well below the typical Taylor factor prediction. In contrast,

at only 1% global strain, the interlath austenite films accommodate up to ∼ 20% deformation

in over 1/2 of the homogenized volume. The apparent plasticity of the austenite is thus much

more widespread in MP2 as compared to MP1. Overall, these results demonstrate that the

local plastic response of the microstructures strongly depends on the relative orientation of the

fcc-bcc interface with respect to the loading direction, with austenite films transforming, as

expected, when oriented at 45◦ with respect to the loading axis and not transforming when

nearly perpendicular to the loading direction.

We now compare the predicted transformation activity with experiments [7]. In MP2, most

of the apparent austenite plasticity is concentrated in blocks V21-24 and V19-22, consistent with

the scanning white-light interferometry analysis in [7], where it is shown that already at 0.3%

global strain “slip traces appeared in blocks V21 and V24. Protrusions also developed in the

variants V19 and V22 and V20 and V23 in the vicinity of the packet and the block boundaries

as the plastic strain increased”. Although we do not predict much apparent austenite plasticity

in V20-V23, this block is in-between the active blocks and thus our simulations are consistent

with the observation of protrusions in the vicinity of the block boundaries. Simulations also

confirm that the apparent austenite plasticity due to the variants transformed in the most active

blocks starts to be exhausted above 4.0% global strain. At this strain level, about 50% of the
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retained austenite of the active blocks has transformed. Overall, the model predictions agree

qualitatively well with experiments, supporting our contention that a physical mechanism of

austenite transformation observed at the atomic scale can contribute significantly to the overall

deformation.

4. Discussion

Previous work [10] hypothesized that the thin austenite films retained at lath martensite

boundaries contribute significantly to the aggregate lath martensite plastic deformation. Fur-

thermore, it was assumed that the plastic deformation of nano-scale austenite films is due to the

glide of the dislocations nearly parallel to the lath interfaces, since the interface plane is close to

(although not exactly parallel to) a {111}fcc plane. Dislocation plasticity has more slip system

orientations than the transformation systems, enabling a softer response and a higher ductility.

On the other hand, at a film thickness of l ∼ 5 nm [6, 26], and with interface orientations in

FeC martensite at an angle θ ' 10◦ from (111)fcc (habit plane ≈ (575)fcc), fcc dislocation loops

are confined to a width w ' l
sin θ

= 30 nm. Similar to threading dislocations in multilayer

nanoscale semiconductor devices [36], the critical stress required to extend such loops along

the length of the thin austenite layer scales with the limiting loop radius R = w/2 = 15 nm

as τc ∼
µ(111)b

w
' 850 MPa, where µ(111) = 101 GPa is the shear modulus of fcc austenite on

the {111}fcc planes. More precise estimates for the stress to extend such fcc nanolayer loops

depends on the actual line tension, and could be less than 850 MPa. However, the value would

likely remain well above the values of 200 MPa fitted here, the ∼250 MPa fitted in [10] assuming

fcc dislocation slip only, and the ∼300 MPa estimated experimentally [7]. The present model

thus complements the previous plasticity model in providing an additional austenite film in-

elastic deformation mechanism that does not depend on the film thickness and therefore is not

affected by constraints on dislocation glide in the nanoscale structure. Likely, both mechanisms

can contribute, with dislocation plasticity active in thicker layers and apparent plasticity due

to transformation contributing more significantly in thin layers.

The present multi-scale TRIP model is not restricted to the specific FeC alloys studied in

Section 3. It is applicable to a range of alloys including the most recent advanced high strength

steels featuring a nanolaminate microstructure [1–4] with bcc martensite-fcc austenite as well

as bcc bainite-fcc austenite (as demonstrated in [12]). This generality emerges because the
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kinematic model of the transforming austenite is not material-specific, aside from involving

an fcc-bcc transformation, and introduces only three material parameters: the two critical

stresses τc for forward and reverse transformation and a maximum volume fraction (1 − ξ) of

the transforming phase. These material parameters can be evaluated for any given system. For

instance, (1 − ξ) is simply a geometry-dependent quantity measurable by phase mapping in

SEM [3], or - when the austenite layers are few nanometers thin - by XRD experiments and

TEM investigations [37, 38]. The critical stresses τc depend, in general, on alloy composition

and dislocation densities in the two phases. But recall that we have correlated these quantities

with the CRSS for screw dislocations in the fcc and bcc phases, respectively, which in turn

are determined by solutes (interstitials - such as C - or in solid solution - e.g. Ni, Mn, Si, Cr)

and by dislocations in the bulk that act as forest obstacles. Composition and temperature also

contribute in determining the thermodynamic driving force for the fcc-to-bcc transformation,

which also leads to the asymmetry in forward and reverse values of τc. In Section 3, τc for

the forward transformation was based on experiments for a material with specific composition

and properties [7]. Recently, experimental testing techniques have been developed that would

be suitable for measuring τc for a specific alloy in a controlled microstructure with just a

few laths [8]. Recent predictive solute-strengthening theories ([39, 40] for fcc; [41] for bcc)

could be employed to determine τc for low dislocation densities, using first-principles studies of

solute/dislocation interaction energies.

As pointed out in Section 2, this paper reveals one origin of the well known fcc/bcc trans-

formation asymmetry. The work here also shows that the mechanical response of the fcc-bcc

interface is strongly anisotropic, depending on the relative orientation of the stress state with

respect to the transformation systems. This anisotropy underlies different (apparent) plasticity

mechanisms. Therefore, both atomistic simulations and crystal plasticity simulations on con-

figurations MP1 and MP2 show that whether austenite films transform, slip, or twin does not

depend solely on the stacking fault energy (SFE), although the SFE is the determining factor

in other systems such as high-manganese steels [42]. Also, the exact inelastic deformation mode

(transformation, slip or twin) does not only depend on the grain size or film-thickness, as ob-

served in the case of TRIP-maraging steels [3]. Our atomistic simulations have been performed

for one film thickness, no variation of SFE was considered, and only the local loading direction
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has been varied. Nonetheless, we find that the local stress state (at the level of crystallo-

graphic blocks) relative to the interface orientation has a huge effect on the apparent plastic

phenomenon (Figure 3) and should be accounted for in experimental analyses. Furthermore,

when austenite films are very thin (as it is the case for FeC), it is often questioned whether

they transform at all [38]. Hence, the fact that retained austenite can be found after some

plastic strain does not imply that the austenite did not transform anywhere in the specimen:

orientation dependence plays a key role in austenite transformation activity.

The present simulations on FeC lath martensite are also consistent with other experimen-

tal observations based on mechanical testing of lath martensite. Reference [43] reports that

austenite films can no longer be found after 10% cold rolling. Reference [44] reports exhaustion

at 4% average tensile strain. Our simulations show that exhaustion of austenite starts around

4% strain (Section 4.4), consistent with these observations. Our findings are further consistent

with recent experiments on low carbon, lath martensite [8] that reveal high plastic deformation

localized at the lath interfaces in steels having a composition and processing that trigger thin

retained austenite films at lath boundaries [6, 26]. A similar prevalence of plastic deformation

parallel to the lath interface in martensitic steels was also reported in earlier works [45].

Finally, we compare our results on the transformation asymmetry with experiments. Exper-

imentally, austenite reversion from martensite can be obtained by annealing [2, 46, 47], which

makes austenite thermodynamically more favourable than martensite. This drives the reverse

transformation. Our results indeed show that the reverse transformation is controlled by the

high thermally-activated Peierls barrier for bcc screw glide, leading to the thermally-activated

reversion, consistent with the observed time and temperature dependence of reversion. Un-

der annealing at temperature T , the stress driving the transformation is τT = ∆E(T )/Ab

and the transformation rate r would then follow a typical Kocks-Mecking-type form of r =

roe
−∆E0

kT ((1−(τ(T )/τy0)q)p where ∆E0 and τy0 are the zero-temperature energy barrier and flow

stress, respectively, and p and q are parameters associated with the precise flow mechanism of

the dislocations. At typical annealing temperatures, it is expected that τT << τy0, making the

reverse transformation quite slow. Moreover, experiments even show that the transformation

is not always clearly “reversible”. Reversibility is mostly observed for austenite films, rather

than “blocky” austenite islands [46]. In [2], some austenite films grow upon tempering in accor-
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dance with the orientation relationship, while others grow without exhibiting any orientation

relationship with the neighboring martensite laths. Thus, the rate of the thermodynamically-

driven reverse transformation might be such that there is sufficient time for diffusive formation

of austenite.

5. Concluding remarks

This paper has investigated the atomic scale mechanical response of the fcc-bcc interface

having a structure consistent with experiments [12]. Simulations reveal a high anisotropy of the

mechanical response of the fcc-bcc bicrystal with respect to the applied load, with an asymme-

try for loading along the transformation direction that can be rationalized through the motion

of the interface dislocations in the forward and reverse transformation directions as if they are

in the fcc and bcc phase, respectively. Overall, the phase transformation by interface motion is

activated according to a Schmid-type behaviour, confirming the broadly used Patel-Cohen crite-

rion for martensite transformation [22]. The atomistic simulations have guided the formulation

of a two-scale continuum TRIP model for austenite/martensite nanolaminate microstructures,

where the inelastic deformation of the austenite films is described by the kinematics of the

phase transformation via an apparent plasticity model. The nanolaminate model has then

been used to simulate lath martensite microstructures with thin retained austenite films in

Fe-C alloys. The model simulations including the effect of the transformation strain to the

apparent plasticity of the microstructures confirm that the phase transforming films can con-

tribute substantially to the observed plastic response of the overall martensitic microstructure,

complementing the mechanism of austenitic dislocation plasticity envisioned previously in [10].

The present results are also consistent with multiple experimental observations. More broadly,

the model provides a consistent multi-scale framework relating atomistic structure and mechan-

ical response to large-scale microstructural mechanical behavior. The model may thus assist

in the understanding and design of alloy steels having a nanolaminate austenite/martensite

microstructure [1–5].
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Appendix A. Bicrystal construction and applied loading

The bcc-fcc bicrystal of Section 2 has been constructed according to the procedure detailed

in [12], namely by shifting the initial relative configuration of fcc and bcc with respect to an

in-plane 10 x 10 grid, relaxing the system and selecting the minimum energy configuration

(see [12]). Since there is a small energy difference (∼10 meV/atom) that favours bcc over fcc,

some initial configurations would consume the fcc phase by interface glide during the relaxation
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process. Therefore, in order to study the interface structure and mobility, we select the interface

with minimum energy, among those interfaces that do not move spontaneously. This procedure

introduces undetectable defects that pin the interface at T=0K. The effect of these defects

(slight atomic perturbations << b) is minor, as the forward transformation can be activated

by a slight stress perturbation (less than 1 MPa).

The system is loaded under multiple in-plane shear directions, by imposing a global affine

shear deformation to the simulation cell. Strain-controlled loading is used. Shear deformation

is applied parallel to the interface, while preserving a 3 GPa hydrostatic pressure to simulate

growth in constrained environment2. Simulations are performed at T=0K. Strain increments

are applied by tilting (shearing) the simulation box along YZ and XZ, therefore parallel to the

interface plane Z:

tiltYZ = γ0 cosα

tiltXZ = γ0 sinα
(A.1)

with α ∈ [−180◦, 180◦]. The angle α, defining the shear direction, is calculated with reference to

Y‖[1̄01]fcc direction (α = 0◦), and it is positive for clockwise rotations on the Z‖(111)fcc plane,

towards X‖[1̄21̄]fcc. The strain increments are ∆γ = 2.5 ·10−4. The system energy is minimized

at each strain level to achieve the associated equilibrium configuration, and the procedure

(strain increment and minimization) is repeated along each loading direction α until significant

deformation (corresponding to several Burgers vectors) is accommodated inelastically. The

origin of the stress fluctuations in Figures 2 and 4 is the presence of the weak pinning points

that make such interface metastable as discussed above. This Molecular Statics procedure

ensures that the results are not influenced by time/rate dependent effects.

Appendix B. Details on reverse transformation and cyclic loading

This Appendix reports the atomistic details of the reverse transformation treated in Section

2, along with cyclic loading results. We first consider in detail the motion of each inter-

2The value of 3 GPa accounts for the bulk moduli of the phases (close to 200 GPa) and a volume change

due to transformation of approximately 1-2%. It turns out that this hydrostatic pressure does not affect the

interface structure [12], nor the interface activation (which is controlled essentially by shear, namely deviatoric

stress).
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face ledge for the case of bcc to fcc transformation. Like in the forward transformation, the

(111)fcc‖(011)bcc ledges preserve the local symmetry structure while gliding - the reverse trans-

formation mechanism is glissile -. However, the mechanism is not athermal, as it requires a

significant barrier to overcome. Considering the details of the interface, two ledges (out of 6

in the simulation cell) behave differently, as shown in Fig. B.9. On these ledges, the local

interface structure changes: the interface ledge size shrinks about 20% in width (from ∼2nm

to ∼1.6nm, see Fig. B.9 label B), and the core of the bcc edge-character kinks, which can be

compact when getting close to fcc, needs extra energy to spread along [11̄1]bcc direction and

glide into bcc (see Fig. B.9 label A).

The core of the bcc edge-character kinks in the proximity of the interface is compact and

tends to spread on [100]bcc, instead of the [11̄1]bcc slip direction, because these two bcc directions

are close to two fcc slip directions, [01̄1]fcc and [1̄10]fcc respectively. It is therefore the influ-

ence of the neighboring fcc lattice which favors spread of the bcc kink cores along a direction

other than [11̄1]bcc. However, the same kink cores do not rearrange during forward transfor-

mation. This can be understood in terms of defect ordering with respect to transformation.

When forward transformation is activated, the bcc kinks glide towards the interface to restore

compatibility between the fcc and bcc misoriented crystals, and the screws propagate next to

produce the correct (011)bcc stacking sequence. When reverse transformation takes place, the

kinks cannot propagate further into bcc (there is no incompatibility to compensate for in front

of them). Therefore, screws move first until kinks are sufficiently close to the fcc crystal, where

their gliding would contribute to interface compatibility. This mechanism explains both the

anomalous spread of [11̄1]bcc and the observed shrinkage of the interface ledges. The shrinkage

of the screw cores makes them closer to bcc screws, which is consistent with the observation

that the stress controlling reverse transformation is comparable with the Peierls stress of a

screw dislocation in bcc.

After reverse transformation is activated, if the system is further sheared in the opposite

direction (favouring forward transformation) the bicrystal unloads elastically until ∼ 0 MPa

stress is reached. Then, forward transformation occurs. Figure B.10 reports in solid lines the

cyclic stress-strain behaviour of the bicrystal.

The mechanical response is typical one for an elastic-perfectly plastic material, with elastic
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loading/unloading followed by plastic deformation at constant stress. Also shown is the cyclic

response (dashed line) for the case in which the load is applied along α = 180◦. In this case,

reverse transformation kicks in at much higher stress (490 MPa), and subsequently hardens to

an even higher stress > 600 MPa. As analyzed in Section 2, the first critical stress equals the

stress required to move a screw dislocation in bcc. The reason for the subsequent hardening is

that for this case (the only one among all directions probed where bcc to fcc transformation

occurs) the interface kinks start crossing the interface from bcc to fcc, because the screw can

move at its Peierls stress. One ledge where this phenomenon occurs is shown in Figure B.11.

Once the kink defects cross the screws towards fcc phase, they act as pinning sites for

forward transformation, which explains the remarkable stress jump at the end of the elastic

unloading (blue dashed line in Figure B.10). The occurrence of kink crossing and consequent

interface self-pinning is likely due to the specific applied displacement boundary conditions (see

also Appendix A) at α = 180◦, which constrain the bicrystal to deform along [1̄01]fcc without

breaking any symmetry along [1̄21̄]fcc. This explains why kink crossing never happens for all

other load cases, where α 6= 180◦.

Appendix C. Details on the conditions for phase transformation through interface

propagation in laminate microstructures

This Appendix shows the connection between the Kuhn-Tucker conditions for interface prop-

agation, based on atomistic simulation of an actual fcc-bcc interface, and the well established

general continuum-mechanics theory for phase transformations through moving boundaries in

laminate microstructures. This theory was first formulated in the early ’90s within the small

deformation setting by Abeyaratne and Knowles [48, 49] and Gurtin and Struthers [50], who

provided also a finite deformation formulation. Theories [48–50] provided the general frame-

work for the development of all later continuum models of phase transformation in solids (e.g.

[16, 51, 52] to mention only a few).

By expressing the overall dissipation due to the phase transformation for the case of a planar

interface in both small and large strains, we demonstrate the connection between Eq. (3) and

the long-standing continuum theory.
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Appendix C.1. Small strains

In the case of small strains, when ‖F − I‖ << 1, and assuming no dissipative processes

in the bulk, the local dissipation per unit volume is due to the moving interface and reads

[16, 48, 51]

([[ψ]]− 〈σ〉 : [[ε]]) ξ̇ ≥ 0 (C.1)

where the term in parenthesis is the thermodynamic driving force f acting on the interface

[48], and ξ̇ is the rate of formation of new martensite volume fraction in the laminate. In

(C.1), σ is the Cauchy stress tensor, ε = Sym(F − I) is the small strain tensor (Sym is the

symmetrization operator), [[·]] is the jump of a scalar or tensor quantity, 〈·〉 the mean of a tensor

quantity and ψ is the Helmholtz free energy. The jump [[·]] is defined as [[·]] := (·)+ − (·)−, and

the mean as 2〈·〉 := (·)+ + (·)−. Positive quantities are on the side of the positive surface

normal n(1). The latter points also towards the positive direction of the interface velocity.

Thus, the surface normal points in the austenite if the interface propagates in the austenite

(fcc to bcc transformation), while it points in the martensite otherwise. It is also assumed, in

case of forward (reverse) transformation, εA = εe,A (εA = εe,A + εtr,A) and εM = εe,M + εtr,M

(εM = εe,M).

We now develop Eq. (C.1) explicitly for the austenite to martensite transformation (de-

velopments for reverse martensite to austenite transformations are analogous). In the case of

forward transformation, the first term in Eq. (C.1) reads

[[ψ]] = ψA − ψM

= ∆ψcA→M + [[ψe]]
(C.2)

where ∆ψcA→M is the difference in chemical free energy (per unit volume) between austenite and

martensite (A=austenite, M=martensite). For example, in the atomistic simulations of Section

2, ∆ψcA→M is the cohesive energy difference ∆E between fcc and bcc, per unit volume. This

difference is positive if austenite is less stable than martensite (which favours transformation),

and negative otherwise.

In Eq. (C.2), the elastic contribution to energy reads for small strains

ψeI =
1

2
εe,I : CI : εe,I I = A,M (C.3)
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The second term in Eq. (C.1) yields

〈σ〉 : [[ε]] =
1

2
(σA + σM) : (εA − εM)

=
1

2
σA : εA +

1

2
σM : εA −

1

2
σA : εM −

1

2
σM : εM

=
1

2
σA : εe,A +

1

2
σM : εe,A −

1

2
σA : εe,M −

1

2
σA : εtr,M −

1

2
σM : εe,M −

1

2
σM : εtr,M

= ψeA − ψeM −
1

2
(σA + σM) : εtr,M −

1

2
εe,A : CA : εe,M −

1

2
εe,M : CM : εe,A

= [[ψe]]− 1

2
εe,A : [[C]] : εe,M − 〈σ〉 : εtr,M .

(C.4)

Thus, the dissipation expressed by Eq. (C.1) reads

(∆ψcA→M +
1

2
εe,A : [[C]] : εe,M + 〈σ〉 : εtr,M)ξ̇ ≥ 0 . (C.5)

The left hand side of equation (C.5) is again the total driving force f of the transformation.

Note that in general ‖εe‖ << ‖εtr,M‖, and [[C]] : εe,M << 〈σ〉. Hence, the second term in

parentheses of Eq. (C.5), which is the contribution of the elastic mismatch between the phases,

can be neglected.

If the driving force in Eq. (C.5) is negative, the interface cannot propagate (i.e. ξ̇ = 0). In

case no stress is applied, transformation can occur only driven by a positive ∆ψcA→M , namely

when martensite is more stable than austenite. Thus the driving force for transformation

reduces to

f = ∆ψcA→M + 〈σ〉 : εtr,M (C.6)

Atomistic simulations show that phase transformation is achieved if the driving force reaches a

threshold fc. Therefore, like for plasticity, Kuhn-Tucker conditions can be defined as a function

of a “transformation surface” g = f− fc

g = f− fc ≤ 0 ξ̇ ≥ 0 gξ̇ = 0 . (C.7)

The connection with Eq. (3) is obtained by observing that, at the straight interface where

compatibility and equilibrium conditions hold (Eqs. (8)), 〈σ〉 : εtr,M = m(1)σ : (s(1) ⊗ n(1))

and hence ε̄trτ = 〈σ〉 : εtr,M , with τ the stress resolved on the transformation system and

m(1) the magnitude of the transformation strain (which is a positive quantity). Therefore, the
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Kuhn-Tucker conditions in Eq. (C.7) can be reformulated as a function of the surface f = τ−τc

f = τ − τc ≤ 0 ε̇tr ≥ 0 f ε̇tr = 0 .

which is Equation (3).

By assuming like in Section 2, that forward transformation is controlled by the Peierls stress

of fcc screws, and by noticing that the quantity τm(1) is the dissipated plastic work equal to

the work performed to make the interface dislocation glide, we obtain as threshold for glide

τc = τP,fcc − τ∆E, as adopted in the analysis of the critical stress for phase transformation, in

Section 2.

Appendix C.2. Finite deformations

In the finite deformation case, we assume for forward transformation FA = Fe,A and FM =

Fe,M · Ftr,M , with Ftr,M a constant tensor defined by the crystallographic theory of martensite

[12] and hence Ḟtr,M = 0. Therefore, PM : ḞM = PM :
(
Ḟe,M · Ftr,M

)
=
(
PM · FT

tr,M

)
: Ḟe,M ,

and any dislocation plasticity in the bulk phases is neglected. Note, that in this model of a

moving interface, the deformation due to transformation characterizes the deformation of the

new-formed martensite itself, and is not treated as an apparent plastic deformation as done in

Section 3 of the present work (in which the martensite volume fraction is not updated, unlike

e.g. [16]). Furthermore, we define the phase free energy as

ψI = ψcI + ψeI

= ψcI +
1

2
Ee,I : CI : Ee,I I = A,M .

(C.8)

where Ee,I = 1
2
(Ce,I − I) is the Green-Lagrange elastic strain and Ce,I = FT

e,I ·Fe,I is the right

Cauchy-Green strain tensor.

In finite deformations, the local dissipation per unit volume due to the moving interface is

[16]

([[ψ]]− 〈P〉 : [[F]]) ξ̇ ≥ 0 (C.9)

In Equation (C.9)

[[ψ]] = ψA − ψM

= ∆ψcA→M + [[ψe]]
(C.10)
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where

[[ψe]] = ψeA − ψeM

=
1

2
Ee,A : CA : Ee,A −

1

2
Ee,M : CM : Ee,M

=
1

4
Ce,A : S̄A −

1

4
Ce,M : S̄M −

1

4
tr(S̄A) +

1

4
tr(S̄M)

(C.11)

while

〈P〉 : [[F]] =
1

2
(PA + PM) : (FA − FM)

=
1

2
PA : FA +

1

2
PM : FA −

1

2
PA : FM −

1

2
PM : FM

=
1

2
PA : Fe,A +

1

2
PM : Fe,A −

1

2
PA : FM −

1

2
PM : FM

=
1

2
Ce,A : S̄A −

1

2
Ce,M : S̄M +

1

2
(FT

e,M · Fe,A · F−1
tr,M) : S̄M −

1

2
(FT

e,A · FM) : S̄A

(C.12)

Therefore, the term in parenthesis of Eq. (C.9) becomes

[[ψ]]− 〈P〉 : [[F]] =∆ψcA→M −
1

4
Ce,A : S̄A +

1

4
Ce,M : S̄M −

1

4
tr(S̄A) +

1

4
tr(S̄M)

− 1

2
(FT

e,M · Fe,A · F−1
tr,M) : S̄M +

1

2
(FT

e,A · FM) : S̄A

(C.13)

In the small elastic strain limit, which is the case for steels, Ce,I ' I. We can also consider

FT
e,M · Fe,A ' I in small elastic strains, since for this system the components of deformation

tangent to the interface normal n(1) have to be equal, namely Fe,M · (I−n(1)⊗n(1)) = Fe,A · (I−

n(1)⊗n(1)), while the elastic components resolved on the interface relate to the interface stresses

τ , which are equal between austenite and martensite due to interface equilibrium conditions,

and induce a shear strain difference τ
µA
− τ

µM
. Like for the case of small elastic strains, such

shear shear strain difference can be neglected for small elastic phase mismatch. Furthermore,

since Ftr,M = I +m(1)s(1) ⊗ n(1) = I +m(1)Ntr,M , then F−1
tr,M ' I−m(1)Ntr,M due to the small

non-shear components of Ntr,M ; equality holds if m(1) is a pure shear. Therefore, in the small

elastic strain limit and small phase mismatch Eq. (C.13) reads

[[ψ]]− 〈P〉 : [[F]] ' ∆ψcA→M +m(1)〈S̄〉 : Ntr,M . (C.14)

This implies for small elastic strains, in case of straight interface and ξ martensite volume

fraction, the local dissipation

D = ξ̇∆ψeA→M + ξ̇m(1)〈S̄〉 : Ntr,M

= ξ̇∆ψeA→M + 〈S̄〉 : Ltr,M ≥ 0,
(C.15)
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where Ltr,M = ξ̇m(1)Ntr,M is the velocity gradient related to phase transformation.

From Eq. (C.15), it turns out that the driving force for transformation reads:

f = ∆ψcA→M +m(1)〈S̄〉 : Ntr,M (C.16)

By noticing that m(1)〈S̄〉 : Ntr,M = m(1)τ , the same analysis as in the small strain case yields

to Equation (3).

Appendix D. Transformation systems for each crystallographic variant

Table D.2 lists all possible crystallographic variants for fcc/bcc transformation, in case of

KS, NW and the in-situ transformation strain for the case φ = 2.5◦, with fcc/bcc lattice

parameter ratio of FeC alloys [12].
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Figure 1: Interface defect structure of the bcc-fcc bicrystal. a, view from [1̄01]fcc, showing interface

steps due to the misorientation θ. Dashed black lines indicate the simulation cell boundaries. The red rectangle

indicates the portion of (111)fcc‖(011)bcc plane visualized in Figure 1b. b, afcc2 [1̄01] screws and abcc

2 [11̄1] screws

with edge-character kinks viewed on a typical (111)fcc ledge. Crystallographic visualizations use OVITO [19]

and adaptive Common Neighbor Analysis (CNA) [20], to label atoms as fcc (green), bcc (blue), hcp (red) and

other (grey) according to local atomic environments.
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Figure 2: Orientation dependence of the stress-displacement response of the bicrystal. The resolved

shear stress τ is calculated according to Eq. (1) and the displacement, in fcc Burgers vector units, is applied

along αtr = 19.5◦ (blue and red curves) and α⊥ = −70.5◦ (black curve). Inset: sketch of the load directions

considered in simulations. The in-plane shear deformation directions are identified by an angle α ∈ [−180◦, 180◦].

Positive α indicates an angle on the (232)fcc interface plane, starting from [1̄01]fcc along the clockwise direction.

αtr = 19.5◦ is the phase transformation direction.
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Figure 3: Yield surface of the fcc-bcc bicrystal for in-plane shear at T=0K. The yield surface is

constructed by connecting points in the stress diagram where at least 1b displacement is accommodated by

plastic phenomena: dislocation/twinning (stacking fault) emission, forward and reverse transformation. A

zoom of the central part of the diagram is also given.
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a = 180°

Figure 4: Resolved shear stress along the transformation direction αtr. Stress versus applied displace-

ment, resolved along the transformation direction s(1), for all loading directions α where phase transformation

occurs. Note that the case of reverse transformation α = 180◦ does not follow the general trend.
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Figure 5: Model geometry and finite element mesh for the microstructure specimens studied here.

(a) MP1 and (b) MP2, with crystallographic variants (V) (cf. Appendix D) and crystallographic packets (CP)

indicated. The boundaries between variants belonging to different CP are highlighted by thick yellow lines.

Figure 6: Experimental vs numerical flow curves. Simulated (solid lines) and experimental (symbols)

stress-strain curves for microstructures MP1 (blue) and MP2 (red), where the flow parameters in the theory

are identified from the experiments on microstructure MP2. Inset: predictions using only bcc plasticity with

no fcc phase, where bcc flow parameters are identified from experiments on MP2.
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(a) (b)

Figure 7: Simulated slip activity in the bcc laths. Total slip activity (sum of the slip on all active slip

systems) in the bcc laths at 1% global tensile strain for (a) MP1 and (b) MP2 microstructures.

(a) (b)

Figure 8: Simulated transformation strain activity. The apparent plasticity due to the transformation

strain is shown, at 1% global uniaxial tensile strain, in (a) MP1 and (b) MP2 microstructures. Note the factor

of nearly 7 difference in the scale compared to Figure 7.
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Figure B.9: Interface rearrangements during bcc to fcc reverse transformation. a, (111)fcc interface

prior to deformation. b, interface after reverse transformation is activated. Local atomic rearrangements occur

before the transformation can take place, indicated by labels A and B. A refers to the rearrangements of the

[11̄1]bcc bcc edge-character kink cores, while B indicates the shrinking of the interface steps from ∼2 nm to

∼1.6 nm. Colors show local atomic environments according to CNA.
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Figure B.10: Cyclic loading of the bcc-fcc interface. Solid lines refer to a load along αtr = 19.5◦, first

applied in the reverse sense (red) and later on in the forward sense (blue), after some bcc to fcc transformation

has developed. Dashed lines refer to a load along α = 0◦ (reverse in red, forward in blue). This second case also

delivers reverse transformation, but at much higher stresses than αtr due to the bcc kinks crossing the interface

steps from bcc to fcc.
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Figure B.11: Edge defects crossing the interface. a, interface structure before loading and b, interface

structure after loading at α = 180◦. One of the two bcc kinks in the periodic simulation cell has crossed the

interface screw during the reverse transformation. Colors show local atomic environments according to CNA.
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Table D.2: Crystallographic variants classified with respect to KS (label numbering based on [27]). NW variants

(and fcc directions ‖[100]α′)are obtained by clockwise (+) or counter-clockwise (−) rotations ϕNW = ±5.26◦

with respect to the positive KS crystallographic plane axis. All variants are classified by crystallographic

packets (see [27]) and Bain Groups [54]. Habit planes and transformation directions are provided for the

variants considered for modeling FeC, characterized by ϕ = ±2.5◦ (same sign as related NW variant) and

afcc/abcc = 1.274. For this specific orientation and lattice parameter ratio, h = 2.0, k = 2.2054 and l = 3.0125

for the habit planes, while a = 0.1614, b = 0.5673 and c = 0.8075 for the transformation direction.

KS ‖ planes ‖ directions Bain Group NW NW dir. Habit pl. Transf. dir.

V1 [1̄01]γ‖[1̄1̄1]α′ BG1 NW1(+) [11̄0]γ (klh)γ [c̄ab]γ

V2 [101̄]γ‖[11̄1]α′ BG2 NW3(−) [011̄]γ (h̄l̄k̄)γ [b̄āc]γ

V3 (111)γ‖ [011̄]γ‖[1̄1̄1]α′ BG3 NW2(+) [1̄01]γ (l̄h̄k̄)γ [āb̄c]γ

V4 (011)α′ [01̄1]γ‖[11̄1]α′ BG1 NW1(−) [11̄0]γ (lkh)γ [ac̄b]γ

V5 [11̄0]γ‖[1̄1̄1]α′ BG2 NW3(+) [011̄]γ (hkl)γ [bc̄a]γ

V6 [1̄10]γ‖[11̄1]α′ BG3 NW2(−) [1̄01]γ (khl)γ [c̄ba]γ

V7 [101̄]γ‖[1̄1̄1]α′ BG2 NW8(−) [011]γ (h̄lk̄)γ [c̄āb]γ

V8 [1̄01]γ‖[11̄1]α′ BG1 NW7(+) [1̄1̄0]γ (kl̄h)γ [b̄ac]γ

V9 (11̄1)γ‖ [1̄1̄0]γ‖[1̄1̄1]α′ BG3 NW9(−) [101̄]γ (kh̄l)γ [ābc]γ

V10 (011)α′ [110]γ‖[11̄1]α′ BG2 NW8(+) [011]γ (hk̄l)γ [acb]γ

V11 [011]γ‖[1̄1̄1]α′ BG1 NW7(−) [1̄1̄0]γ (lk̄h)γ [bca]γ

V12 [01̄1̄]γ‖[11̄1]α′ BG3 NW9(+) [101̄]γ (l̄hk̄)γ [c̄b̄a]γ

V13 [01̄1]γ‖[1̄1̄1]α′ BG1 NW4(+) [110]γ (l̄kh)γ [āc̄b]γ

V14 [011̄]γ‖[11̄1]α′ BG3 NW6(−) [1̄01̄]γ (l̄hk)γ [b̄c̄a]γ

V15 (1̄11)γ‖ [1̄01̄]γ‖[1̄1̄1]α′ BG2 NW5(+) [01̄1]γ (h̄lk)γ [cba]γ

V16 (011)α′ [101]γ‖[11̄1]α′ BG1 NW4(−) [110]γ (k̄lh)γ [cab]γ

V17 [110]γ‖[1̄1̄1]α′ BG3 NW6(+) [1̄01̄]γ (k̄hl)γ [b̄ac̄]γ

V18 [1̄1̄0]γ‖[11̄1]α′ BG2 NW5(−) [01̄1]γ (h̄kl)γ [ābc̄]γ

V19 [1̄10]γ‖[1̄1̄1]α′ BG3 NW10(−) [101]γ (k̄h̄l)γ [cāb]γ

V20 [11̄0]γ‖[11̄1]α′ BG2 NW12(+) [01̄1̄]γ (h̄k̄l)γ [b̄āc̄]γ

V21 (111̄)γ‖ [01̄1̄]γ‖[1̄1̄1]α′ BG1 NW11(+) [1̄10]γ (l̄k̄h)γ [cb̄a]γ

V22 (011)α′ [011]γ‖[11̄1]α′ BG3 NW10(+) [101]γ (l̄h̄k)γ [ācb]γ

V23 [101]γ‖[1̄1̄1]α′ BG2 NW12(−) [01̄1̄]γ (h̄l̄k)γ [b̄ca]γ

V24 [1̄01̄]γ‖[11̄1]α′ BG1 NW11(−) [1̄10]γ (k̄l̄h)γ [āb̄c̄]γ
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