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Abstract

We are living in the era of “Big Data”, an era characterized by a voluminous
amount of available data. Such amount is mainly due to the continuing ad-
vances in the computational capabilities for capturing, storing, transmitting
and processing data. However, it is not always the volume of data that matters,
but rather the “relevant” information that resides in it.

Exactly 70 years ago, Claude Shannon, the father of information theory,
was able to quantify the amount of information in a communication scenario
based on a probabilistic model of the data. It turns out that Shannon’s the-
ory can be adapted to various probability-based information processing fields,
ranging from coding theory to machine learning. The computation of some
information theoretic quantities, such as the mutual information, can help in
setting fundamental limits and devising more efficient algorithms for many
inference problems.

This thesis deals with two different, yet intimately related, inference prob-
lems in the fields of coding theory and machine learning. We use Bayesian
probabilistic formulations for both problems, and we analyse them in the
asymptotic high-dimensional regime. The goal of our analysis is to assess the
algorithmic performance on the first hand and to predict the Bayes-optimal
performance on the second hand, using an information theoretic approach. To
this end, we employ powerful analytical tools from statistical physics.

The first problem is a recent forward-error-correction code called sparse
superposition code. We consider the extension of such code to a large class
of noisy channels by exploiting the similarity with the compressed sensing
paradigm. Moreover, we show the amenability of sparse superposition codes
to perform joint distribution matching and channel coding.

In the second problem, we study symmetric rank-one matrix factorization,
a prominent model in machine learning and statistics with many applications
ranging from community detection to sparse principal component analysis.
We provide an explicit expression for the normalized mutual information and
the minimum mean-square error of this model in the asymptotic limit. This
allows us to prove the optimality of a certain iterative algorithm on a large set
of parameters.

A common feature of the two problems stems from the fact that both



ii Abstract

of them are represented on dense graphical models. Hence, similar message-
passing algorithms and analysis tools can be adopted. Furthermore, spatial
coupling, a new technique introduced in the context of low-density parity-check
(LDPC) codes, can be applied to both problems. Spatial coupling is used in
this thesis as a “construction technique” to boost the algorithmic performance
and as a “proof technique” to compute some information theoretic quantities.

Moreover, both of our problems retain close connections with spin glass
models studied in statistical mechanics of disordered systems. This allows
us to use sophisticated techniques developed in statistical physics. In this
thesis, we use the potential function predicted by the replica method in order to
prove the threshold saturation phenomenon associated with spatially coupled
models. Moreover, one of the main contributions of this thesis is proving that
the predictions given by the “heuristic” replica method are exact. Hence,
our results could be of great interest for the statistical physics community as
well, as they help to set a rigorous mathematical foundation of the replica
predictions for a wide range of Bayesian inference problems.

Keywords: Bayesian inference, channel coding, sparse superposition codes,
machine learning, matrix factorization, dense graphical models, message-passing,
spatial coupling, compressed sensing, distribution matching, statistical physics,
replica method.



Résumeé

Nous vivons a I’ere de “Big Data”, une ere caractérisée par une énorme quantité
de données disponibles. Cette quantité est principalement due aux progres
continus des capacités de calcul permettant de capturer, stocker, transmettre
et traiter les données. Cependant, ce n’est pas toujours le volume de données
qui compte, mais plutot I'information “utile” qui y est contenue.

Il y a exactement 70 ans, Claude Shannon, le pere de la théorie de I'informat-
ion, a réussi de quantifier la quantité d’information dans un contexte de com-
munication basé sur un modele probabiliste des données. Il apparait que la
théorie de Shannon peut étre adaptée a divers domaines de traitement prob-
abiliste de l'information, allant de la théorie du codage au “machine learn-
ing”. Le calcul de certaines quantités de la théorie de I'information, telles que
I'information mutuelle, peut aider a déterminer des limites fondamentales et a
développer des algorithmes plus efficaces pour plusieurs probemes d’inférence.

Cette these traite deux problemes d’inférence différents, mais intimement
liés, dans les domaines de la théorie du codage et du machine learning. Nous
utilisons des formulations probabilistes Bayésiennes pour les deux problemes
et nous les analysons dans le régime asymptotique de grande taille. Le but
de notre analyse est d’évaluer la performance algorithmique d’un coté, et de
prévoir la performance Bayes-optimale de l'autre coté, en utilisant une ap-
proche théorique d’informations. Pour cela, nous employons des outils analy-
tiques puissants issus de la physique statistique.

Le premier probleme est un code récent de correction d’erreurs anticipée
appelé “sparse superposition code”. Nous considérons I'extension d’un tel code
a une vaste classe de canaux bruyants en exploitant la similitude avec le
paradigme de “compressed sensing”. De plus, nous montrons que les codes
de sparse superposition permettent d’effectuer conjointement le “distribution
matching” et le codage de canal.

Dans le deuxieme probleme, nous étudions la factorisation matricielle symé-
trique de rang-un, un modele important dans machine learning et statistiques
avec de nombreuses applications allant de la détection des communautés a
I’analyse en composantes principales éparses. Nous présentons une expres-
sion explicite pour 'information mutuelle normalisée et 'erreur quadratique
moyenne minimale de ce modele dans la limite asymptotique. Cela nous per-
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iv Résumé

met de vérifier 'optimalité d'un certain algorithme itératif pour un large choix
de parametres.

Une caractéristique commune aux deux problemes est due au fait qu’ils
sont tous les deux représentés par des modeéles graphiques denses. Ainsi, on
peut adopter des algorithmes de passage de messages et des outils d’analyse
similaires. De plus, le couplage spatial, une nouvelle technique introduite dans
le contexte des codes “low-density parity-check” (LDPC), peut étre appliqué
aux deux problemes. Le couplage spatial est utilisé dans cette these comme
un “ technique de construction” pour améliorer la performance algorithmique
et comme un “technique de preuve” pour déterminer certaines quantités de la
théorie de I'information.

En outre, nos deux problemes maintiennent des liens tres proches avec
les modeles des wverres de spins étudiés dans la mécanique statistique des
systemes désordonnés. Cela nous permet d’utiliser des techniques sophis-
tiquées développées en physique statistique. Dans cette these, nous utilisons la
fonction potentielle prédite par la méthode des répliques afin de démontrer le
phénomene de saturation du seuil associé aux modeles spatialement couplés.
De plus, 'une des principales contributions de cette these est la preuve que les
prédictions “heuristiques” obtenues par la méthode des répliques sont exactes.
Par conséquent, nos résultats pourraient étre d’'un grand intérét aussi pour
la communauté de la physique statistique, car ils aident a établir une base
mathématique rigoureuse pour les prédictions de la méthode des répliques en
vue d’'un large spectre de problemes d’inférence Bayésienne.

Mots clés: Inférence Bayésienne, codage de canal, codes de “sparse super-
position”, “machine learning”, factorisation matricielle, modeles graphiques
denses, passage de messages, couplage spatial, “compressed sensing”, “distri-
bution matching”, physique statistique, méthode des répliques.
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Introduction

Seventy years before this thesis was written, Claude Shannon founded the field
of information theory in his 1948 celebrated work “A Mathematical Theory
of Communication”. In his landmark paper [1], Shannon established funda-
mental limits for both data compression and transmission. Namely, Shannon
was able to quantify the maximal amount of information that can be reliably
transmitted through a given noisy channel. This quantity was termed channel
capacity. More importantly, Shannon proved the existence of reliable trans-
mission schemes that achieve the channel capacity in the high-dimensional
regime. Although Shannon did not give a practical recipe on how to construct
such schemes, his notion of channel capacity paved the way for generations
of coding theorists to come up with practical transmission schemes, or codes,
that approach the channel capacity limit [2].

The notion of channel capacity, or mutual information, was established
with communication systems in mind. However, this notion is transversal to
many probability-based information processing fields. One of these fields is
machine learning that we are witnessing its “revolution” nowadays. Indeed,
the performance of various algorithms in machine learning and data science is
dictated by the amount of relevant information contained in the data. Hence,
being able to quantify this information and setting up information theoretic
limits can give many insights on designing more efficient machine learning sys-
tems in the future, the same way Shannon’s capacity inspired coding theorists
for the last 70 years.

This thesis addresses two problems in the fields of coding theory and ma-
chine learning. The two problems are intimately related through the adoption
of similar analysis tools, graphical model representations, iterative algorithms
and the spatial coupling technique. Moreover, powerful tools developed in sta-
tistical mechanics of disordered systems are adapted to both problems in order



2 Introduction

to perform the analysis on a rigorous mathematical basis.

In the first part of this thesis, we focus on a channel coding problem
by studying a recent forward-error-correction code called sparse superposi-
tion (SS) code. The decoding task of SS code can be represented via a dense
graphical model, where iterative message-passing algorithms can be applied.
We demonstrate how spatial coupling is employed to boost the algorithmic
performance of SS code. Furthermore, we show that SS code “universally”
achieves Shannon’s capacity over a large class of noisy channels in a proper
high-dimensional regime. Moreover, we illustrate the amenability of SS code
to perform joint source and channel coding.

In the second part, we focus on symmetric rank-one matrix factorization, a
fundamental problem in machine learning with many applications ranging from
community detection to sparse principal component analysis (PCA) and spiked
Wigner model. We provide a probabilistic model for the problem and we tackle
it in a Bayesian inference approach. Our central result is an explicit expres-
sion for the mutual information in the high-dimensional regime. Consequently,
we are able to establish an information theoretic limit that governs the perfor-
mance of any algorithm on this problem. Moreover, we prove the optimality of
message passing algorithm in a large region of system parameters. The spatial
coupling technique is exploited here as well but for a dual-purpose. Besides its
practical implication in boosting the algorithmic performance, spatial coupling
is used as a proof technique to compute some information theoretic quantities
of the original “uncoupled” version of the problem.

A common feature in both problems stems from the existence of a large
number of degrees of freedom interacting in a random environment. In fact,
this is reminiscent of spin glass models studied in statistical physics over the
last century. The central aim of statistical physics is to describe the macro-
scopic behavior of such models in the thermodynamic limit. This includes the
understanding and prediction of some natural phenomena such as nucleation,
clustering of solutions and phase transitions. One of the most powerful, yet
non-rigorous, statistical physics techniques is the replica method, or its alter-
native more probabilistic form known as the cavity method [3, 4]. This thesis is
not only concerned in using the potential function predicted by the “heuristic”
replica method in order to perform the analysis, but also in proving the accu-
racy of this prediction on a rigorous mathematical basis. Hence, our approach
could be of great interest for the statistical physics community as well.

In the remaining of this chapter, we give a brief history of coding theory in
Section 1.1. We then formulate both of our problems in Section 1.2 and Section
1.3 respectively. We also describe the graphical model representation used
for both problems along with variants of the message-passing algorithm and
their associated analysis tools in Section 1.4. In Section 1.5, we introduce the
spatial coupling technique. The connections to statistical physics is illustrated
in Section 1.6. Finally, we outline the main contributions of this thesis in
Section 1.7.
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1.1 Coding Theory

In his seminal work [1], Shannon formalized the data transmission problem.
His fundamental result is the existence of a non-vanishing transmission rate for
reliable communication over noisy channels.! Furthermore, Shannon was able
to quantify the maximal possible rate for reliable communication, over a given
probabilistic model of the channel, using the notion of mutual information
between two random variables. This maximal rate represents the channel ca-
pacity. Moreover, Shannon proved the existence of transmission schemes that
achieve channel capacity. However, Shannon’s proof was rather probabilistic
than constructive. His random coding argument ensures achievability of the
capacity with codes that are far from being practical.

Shannon’s 1948 theory was thenceforth the source of inspiration for gener-
ations of coding theorists. The central objective of coding theory is to meet
Shannon’s challenge using practical codes. This objective can be attained by
first constructing “structured” codes that are potentially capacity-achieving.?
Second, coding theory is concerned in devising low-complexity algorithms that
operate very close to capacity on the constructed codes.

The first family of codes that dominated the early days of coding theory
is the family of algebraic codes. Algebraic coding follows a deterministic ap-
proach to construct block codes. This coding paradigm aims to maximize
the minimum distance between codewords, and hence it is more suitable for
worst-case analysis. This family includes Hamming codes [5], Golay codes [6],
Reed-Muller codes [7, 8], BCH codes [9, 10], and Reed-Solomon codes [11].

A more probabilistic approach for coding theory started with Elias’ con-
volutional codes [12]. However, the real breakthrough in coding theory was
in 1993 after the introduction of turbo codes [13] that initiated a new era
of iterative coding. The low complexity of iterative decoding in turbo codes
led to the “rediscovery” of low-density parity-check (LDPC) codes [14, 15],
which were first introduced in Gallager’s 1963 thesis [16]. This new coding
paradigm, which is based on sparse graphical models with iterative message-
passing decoding, was then coined modern coding theory [17]. The capacity of
the LDPC codes under message-passing decoder was determined in [18]. More-
over, it was shown that LDPC codes with an optimized degree distribution can
operate very close to Shannon’s capacity [19, 20].

An alternative approach to design capacity-achieving codes was introduced
in Arikan’s 2009 celebrated work [21]. Arikan’s codes were then termed polar
codes due to the channel polarization phenomenon induced by the construc-
tion. Polar codes are the first provably capacity-achieving codes under low-
complexity decoding over a large class of channels, namely the binary-input
memoryless symmetric (BMS) channels.

'Being able to communicate with a non-zero rate (bits/sec) while achieving a vanishing
probability of error was itself an astonishing result for the communication society.

2Codes that achieve capacity under optimal algorithm (e.g. exhaustive search algorithm
with exponential time complexity).
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Recently, spatially coupled LDPC codes, originally introduced as convo-
lutional LDPC codes [22, 23, 24], have reinforced the modern coding theory.
Spatial coupling can boost the performance of the LDPC codes and make
these codes capacity-achieving under low-complexity message-passing decoder
(25, 26, 27].

1.2 Sparse Superposition Codes

Sparse superposition (SS) codes constitute a recent class of codes that can
fall under the umbrella of iterative coding schemes. Starting from a struc-
tured sparse message with sparsity ratio 1/B, the codewords of SS codes are
constructed by the superposition of L columns from a given Gaussian coding
matrix (or dictionary). The name of SS codes was inspired by the superposi-
tion principle in the multi-stage decoding [28], yet SS codes use single-stage
decoding for point-to-point coding schemes. The decoding task of SS codes
can be represented on a graphical model as in the LDPC case. However, the
underlying graph for SS codes is dense, as opposed to the sparse® graphical
models for LDPC codes.

SS codes, alternatively known as sparse regression codes, were first in-
troduced by Barron and Joseph in 2010 for the additive white Gaussian noise
(AWGN) channels [29]. Such codes were proven to be capacity-achieving under
optimal, or maximum likelihood (ML), decoding [30, 31, 32]. Moreover, prac-
tical decoding schemes were introduced and proven to be capacity-achieving
under proper power allocation. Such schemes include adaptive successive de-
coding and adaptive successive soft-decision decoding [33, 34, 35].

An iterative decoding approach for SS codes was introduced in [36, 37| by
exploiting the similarity with the compressed sensing paradigm. The decoding
(or inference) task in SS codes is to recover a sparse message, with a certain
structure, based on noisy linear observations (or measurements); a task which
is very similar to signal reconstruction in compressed sensing [38, 39]. Hence,
the same iterative message-passing algorithms used in the compressed sensing
literature can be adapted to decode SS codes. Moreover, the same way LDPC
codes under message-passing require spatial coupling or irregular degree distri-
bution to achieve capacity, SS codes also need spatial coupling or nonuniform
power allocation, an alternative way to introduce irregularity in dense graphs,
in order to achieve capacity.

An SS code is defined in terms of a coding matrix F & made of
i.i.d. Gaussian entries with zero mean and variance 1/L. M represents the
codeword length and we set N = LB. The coding matrix can be seen as
L sub-matrices with B columns each. A codeword is generated by adding

RMXLB

3Not to confuse between the notion of sparsity in the graphical models and the notion
of sparsity in the message. In the first context, it means that each node is connected to few
other nodes in the graph. In the second context, it means that the message has few non-zero
components.
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Figure 1.1: A Gaussian coding matrix F € RY*L5 (left) with B =4 and L = 5.
A codeword of length M is constructed by choosing one column at random from
each of the 5 sub-matrices of F then adding them. This corresponds to multiplying
F by a sparse vector s (right).

uniformly at random L columns from F, such that we have one and only one
column coming from each sub-matrix (see Fig. 1.1). Therefore, a codeword
can be represented as a linear projection of a sparse vector s using the coding
matrix F, where the sparsity in s is structured according to the size of the sub-
matrices. Formally, the message s can be seen as a vector made of L sections,
s = [s1,...,s.]. Each section s;, I € {1,..., L}, is a B-dimensional vector with
a single non-zero component equal to 1. According to this construction, we
end up with B possible codewords, and hence a rate of Llogy(B)/M. The
prior distribution of each message, assuming a uniform distribution over the
codebook and independence between sections, reads

L B-1
1
Py(s) = [ pots) =] B 258”’1 H 055,05 (1.1)
=1 =1 =1 Ve
where s;; is the i component of the I section (here i € {1,...,B} and

le{l,...,L}).

For a given memoryless channel P, (y|F's), the posterior distribution of an
N-dimensional message s given the coding matrix F and the M-dimensional
noisy observation y reads?

P(sly,F) = H1L:1 po(si) Hﬁil Pout(yul[Fs],)
7 [ds HlL:1 Po(sy) nyzl Pout(yu|[]5‘s]“)'

4The integral in the denominator boils down to a sum in our discrete case. However, we
keep it here in the most general form.

(1.2)
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One of the main contributions of this thesis is to extend the analysis of SS
codes beyond the scope of AWGN channel and account for a large class of
memoryless channels P, (y|Fs).

In order to perform bit-decoding, either in the minimum mean-square er-
ror (MMSE) sense or in the maximum a posteriori (MAP) sense, one needs
to find the marginals of the posterior distribution. The calculation of the
marginals is computationally prohibitive, especially in the high-dimensional
regime (N, M — oo with a fixed rate), as it involves an exponential sum. We
will see in Section 1.4 how to alleviate this computational burden by approxi-
mating the marginals using variants of the message-passing algorithm.

The performance of the asymptotic optimal decoder, i.e. using an exhaus-
tive algorithm to compute the exact marginals when N — oo, is characterized
by the point of non-analyticity® of the average normalized mutual information®
in the asymptotic limit. This object is given by

1
]\}1_1& NE[I(S,Y)], (1.3)
where [(+;-) is the well-known mutual information measure evaluated here
on two random vectors. The expectation E[-] is over the ensemble of coding
matrices F. Once again, this is an intractable quantity in our range of interest
where N — o0.

Note that it is equivalent to look for the non-analyticity in the asymptotic
conditional entropy H(S|Y)/N as the prior distribution is independent of the
channel parameter. For the special case of LDPC codes, the non-analyticity
point is defined by the point where the conditional entropy becomes strictly
positive. This is because LDPC codes with proper degrees do not exhibit an
error-floor in the “decodable region”, a property that does not necessarily
apply to all coding schemes.” In this thesis, we will keep the definition of the
optimal performance in the most general form (i.e. in terms of non-analyticity),
which can be used in both coding and estimation problems. In Section 1.6,
we will see how such intractable quantities can be “guessed” using statistical
physics techniques.

1.3 Symmetric Rank-One Matrix Factorization

Rank-one matrix factorization, or rank rank-one matrix estimation, is another
inference problem with many applications in machine learning. These include
community detection [40, 41, 42], sparse PCA [43], Spiked Wigner model [44]
and matrix completion [45, 46]. In this thesis, we provide a probabilistic

5The non-analyticity is w.r.t. the channel parameter.

SNote that this quantity is not the same as Shannon’s capacity. The latter is a generic
quantity that computes the mutual information independent of any specific code construc-
tion. This mutual information is a model specific one for the SS codes.

"Low-density generator-matrix (LDGM) codes, for example, suffer from an error-floor.
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formulation for the symmetric case of the problem and we analyze it in a
Bayesian approach. Hence, similar graphical representations and analysis tools
used for SS codes can be used here.

In the symmetric rank-one matrix factorization, one has access to a noisy
observation w € R¥*¥_ As the name suggests, these observations are coming
from a symmetric rank-one matrix ssT, with s € R, subject to a certain noise.
The entries of s are i.i.d. with a prior distribution Fy. The task is to recover
the vector s from the noisy matrix w. The entries w;;, with 7,5 = 1,..., N,
are observed through a probabilistic noisy channel Py (w;;|s;s;).

The simplest example in the context of community detection is to have a
binary vector s with s; € {—1,1}. This vector represents the “membership” of
each entry to one of two possible communities. The interconnection between
the two communities can be represented by the symmetric rank-one matrix
ssT (the value of the ij™ entry of this matrix dictates whether s; and s; belong
to the same community or not). Indeed, from observing this matrix one can
recover the membership vector s up to a global flip of sign. However, one has
access to a noisy version of ssT, which makes the problem more challenging
[40, 41].

The previous example is perhaps a very simple one but it helps to motivate
the set-up. What is important about symmetric rank-one matrix factorization
is that many interesting problems in machine learning, such as asymmetric
community detection in stochastic block model [42], can be formulated as
such. Yet, more sophisticated prior distributions are used compared to the
previous binary case (see Chapter 4).

The probabilistic channel Py, (w;;|s;s;) can be any complicated (possibly
non-linear) noise model. However, a recent “channel universality” result [42,
47] yielded an equivalent Gaussian model that completely characterizes a large
set of noise models (more details in Chapter 4). Formally, we define the model
as follows

S;S;

where z = (2;;);_ is a symmetric matrix with Z;; ~ N(0,1), 1 <i < j <N,
and s = (s;), has i.i.d components S; ~ Py. Hence, the posterior distribution
of s given w reads

«SZ‘S' 2
o 7A 2i< (253 -ws) 1Y, Po(s:)

P(s|w) = (1.5)

J dse 25 21 () [T, Pols:)

Generally, one is interested in estimating s in the MMSE sense. The algo-
rithmic difficulty in solving this inference problem resides in the computation
of the posterior expectation, an intractable quantity in the high-dimensional
regime. A more fundamental difficulty is to know what is information theoreti-
cally possible to do in such inference problem, regardless of the algorithm being
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used. This requires first to detect the noise region in which the estimation is
possible up to a “low” estimation error.® Second, it requires knowing the value
of the MMSE, which is a priori unknown.? Knowing this will help in assessing
the optimality of any algorithm in terms of both its range of operation and its
estimation error.

Once again, the fundamental quantity that we are looking after is the
asymptotic normalized mutual information

.1
]\}1_{1’;0 N[(S’ W). (1.6)
Note that the only randomness here is in S and W, unlike (1.3) where the
graph itself is random and the ensemble average is needed. Note also that we
are interested in S up to a global flip of sign, and hence it is equivalent to
look for I(S; W) or I(SST; W). Both of these quantities are computationally
intractable in the high-dimensional regime (N — 00).

The non-analyticity point of (1.6) yields the detectability region for the
problem. Moreover, due to the relation between the mutual information of a
Gaussian model and the corresponding MMSE (known as the -MMSE relation
in the scalar case [48]), one can derive the value of the MMSE from (1.6). Thus,
having a closed-form expression for (1.6) sets all our quantities of interest, a
task that we opt to address in this thesis on a rigorous mathematical basis.

1.4 Factor Graph Representation and
Message-Passing

Graphical models constitute a powerful framework to represent the statisti-
cal dependencies between a large number of random variables interacting in a
complex domain. The relationships between these variables can be at a local
or global level. Some of the most prominent graphical models are Markov
random fields, Bayes nets and Factor graphs. Such models are heavily used in
many disciplines such as coding theory, compressed sensing, machine learning,
natural language processing and computer vision. In fact, graphical models
are very effective not only in visualizing the statistical dependencies, but also
in providing insights on how to devise low-complexity algorithms for the re-
spective problems.

Both of our inference problems can be represented via a factor graph, also
known as Tanner graph in some contexts. A factor graph is a bipartite graphi-
cal representation that illustrates the factorization of the posterior distribution

8In our Gaussian model (1.4), this corresponds to know the values of A where the esti-
mation is possible. We expect that as A increases the estimation becomes harder. Moreover,
we expect that there exists a critical value of A in the high-dimensional regime such that
the low-error estimation becomes information theoretically impossible.

9The value of the MMSE is also computationally intractable in the high-dimensional
regime.
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Figure 1.2: Factor graph representation for the posterior distribution (1.7). The
s;'s are sitting on the variable nodes (circles). There are two types of factor nodes:
factor nodes that correspond to the terms ¢;'s in the posterior (plain squares), and
factor nodes that correspond to the terms v,'s (colored squares). Each factor node
a on the right is connected to the variable nodes in the set da. The number of
these connections is denoted by |da| := d,, which stands for the degree of check
node a.

function, and hence enables efficient computation for many quantities of in-
terest such as the marginal distributions. The factor graph consists of two
interconnected!? types of nodes: variable nodes which represent the variables
of interest in the inference problem, and factor nodes which represent the
“constraints” to be satisfied by the connected variable nodes according to the
posterior distribution (see Fig. 1.2).

In general, consider a probability distribution function that takes the fol-
lowing form

p(s) = % [T vlfsui € 0a)) T 650 (1.7)

acC eV

where V' denotes the set of variables, C' the set of factors and da the set of
variables involved in the computation of given factor a (we usually use the
shorthand notation sy, in order to refer to the corresponding variables in this
set). The term Z is a normalization constant. Such probability distribution
can be represented via a factor graph as shown in Fig. 1.2. Note that both of
our posterior distributions (1.2) and (1.5) follow this form.

A factor graph can be random or deterministic. The randomness appears in
different forms: by drawing the edges between variable nodes and check nodes
according to some probability distribution, by assigning a random degree to

10Tn a bipartite graph, an edge exists only between two nodes of different types.
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each node, or by giving a certain random weight to each edge. Furthermore, a
factor graph can be sparse or dense depending on the degree of the nodes (or
the number of edges) relative to the overall number of variable nodes.

Both of our posterior distributions (1.2) and (1.5) are represented on dense
factor graphs. Their respective factor graphs are bipartite complete in the
sense that each factor node is connected to all variable nodes. While the factor
graph of SS code (1.2) is random because of the Gaussian weight assignment
through the coding matrix F, that of symmetric rank-one matrix factorization
(1.5) is deterministic.

1.4.1 Belief Propagation

The factor graph representation of the posterior distribution allows for efficient
computation of the posterior marginals through iterative message-passing al-
gorithms. A prominent algorithm in this family is the sum-product message
-passing algorithm, also known as belief-propagation (BP) algorithm.

For a given posterior distribution of the form (1.7), the BP algorithm in-
volves an exchange of local messages, or beliefs, along the edges between the
variable nodes and the check nodes according to the following update rules

i(si) Hbe@i\a Dp—si(5)

Viosa(s:) = >, 9150 ocona Posi(57) (1.8)
ﬁa—n;(sv;) = Zsaa\i ¢a(saa) Hjeaa\i Vj_m(sj) (1'9)

ZSaa Va(S0a) Hjeaa\i Vj—m(sj) 7

with the letters ¢, j, k used for variable nodes and a, b, ¢ for check nodes.
The set of directly connected nodes is similarly defined for a variable node
i through 0i and for a check node a through da. The “\” operation is the
difference operation defined over sets. We denote by v;_,,(s;) the variable-to-
check messages and by 7,,;(s;) the check-to-variable messages (see Fig. 1.2).

When there is only one relevant solution of the BP equations (1.8) and
(1.9), the set of messages {V; s, Va—yi} can be obtained by an iterative method
and the BP marginals are computed as follows

Pt (si) = disi) ] 2asilsi). (1.10)

a€d

Intuitively speaking, a variable-to-check message v;_,,(s;) represents the
belief variable node ¢ has about its marginal probability of being s;, and this is
based on the information it receives from its neighborhood except from check
node a. Similarly, a check-to-variable message 7, ;(s;) represents the belief
check node a has about the marginal probability of variable ¢ being s;, and
this is based on the information it receives from its neighborhood except from
variable node 1.
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The BP update rules assume that the beliefs are conditionally independent,
e.g. the beliefs advertised by variable node i to its neighborhood are condition-
ally independent given the value of this variable node. When the underlying
factor graph is a tree, this assumption is satisfied and the BP rules are exact
in computing the marginals [49]. Hence, the BP algorithm yields the optimal
performance on a tree.

Clearly, the conditional independence assumption does not always hold for
any factor graph. The more the graph is dense, the more likely this assumption
is violated due to the loops, or cycles, that appear in the factor graph.!
However, BP remains a very efficient algorithm in approximating the marginal
distributions and it retains a strong connection with the optimal performance
even in the presence of loops [50].

There exists a myriad of problems in coding theory [17], artificial intelli-
gence [51], computer science [52] and statistical physics [53] where BP algo-
rithm has been successfully applied. It helps here to note that the BP equations
have two independent origins: in the field of statistical physics where it ap-
peared in the 1935 Bethe-Peierls equations [54], and in the field of artificial
intelligence where it was first introduced in the current form in Pearl’s 1982
work [55].12

One of the most successful applications of BP algorithm in the last three
decades is the decoding of forward-error-correction codes defined on sparse
factor graphs. In particular, the iterative decoding algorithms for both turbo
codes and LDPC codes can be seen as instances of BP algorithm. Besides its
empirical success, the popularity of BP in coding theory stems from the fact
that its behavior can be accurately analyzed and predicted in the asymptotic
block-length limit. This is due to the notion of density evolution introduced
by Richardson and Urbanke [18].

Density evolution is a simple recursion that tracks the performance of BP
at every iteration instant ¢. The justification for density evolution is that
the sparse factor graph boils down to a locally tree-like graph, also known as
the computation graph, in the asymptotic limit.'* Hence, the independence
assumption can be reclaimed in order to evaluate the distribution of the BP
messages. It turns out that predicting the performance of BP algorithm ac-
counts for finding the fixed point solution of the density evolution recursion, a
very important result that allows for rigorous analysis of coding problems on
sparse graphs.

1 Of course loops can exist in very sparse graphs, but this happens with low probability
if we use random construction.

2Note that the similarity of the initials “BP” in belief-propagation and Bethe-Peierls is
a pure coincidence.

13Using density evolution one can predict the BP performance when N — oo then ¢t — oo,
which is not the realistic order of limits. However, it was shown that it is possible to swap
this order of limits in some cases and have the same performance [56].
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1.4.2 Approximate Message-Passing

The success story of message-passing algorithms, mainly the BP algorithm, in
sparse graphical models is due to their accuracy in computing the marginal
distributions in addition to their low-complexity implementation. For example,
for a factor graph of size N and average node degree d: the overall number of
BP messages is O(Nd) while the computational complexity of each message
is exponential in d. Sparse graphs are typically characterized by a small node
degree d = O(1), and hence BP represents a viable solution.

However, for a dense graphical model with d = O(NN), the direct application
of BP is computationally prohibitive for two reasons: i) The computation of
each message, namely the check-to-variable message, requires an exhaustive
sum. Moreover, for real-valued random variables, it is not a priori clear how
to parameterize the messages; i7) The number of messages scales quadratically
in the size of the problem.!4

In the recent years, Donoho, Maleki and Montanari proposed a new iter-
ative message-passing algorithm inspired by BP and suited for dense graphi-
cal models. This algorithm was coined approzimate message-passing (AMP)
[60, 61, 62]. AMP was first introduced for the compressed sensing problem
as an alternative of standard convex optimization solutions [63, 64], which are
not scalable, and fast iterative soft thresholding (IST) solutions [65], which suf-
fer from weak performance. The authors showed that, in the asymptotic limit
and with a proper scaling of the “measurement matrix”, the two computational
difficulties mentioned above can be overcome. This is possible via Gaussian
approximations'® and after adding a proper correction term to account for the
correlation between the messages.

In fact, the curse of high density in the graph turned into a blessing! Due
to the large number of incoming messages, the sum in the check-to-variable
messages can be approximated by a Gaussian random variable via central limit
theorem. Indeed, Gaussian messages can be parameterized by two terms, the
mean and the variance. Hence, the first computational difficulty is alleviated
since it is enough to keep track of only two parameters during the exchange
of messages (See Fig. 1.3). Moreover, the high density ensures that all the
ongoing messages from a given node are almost the same (the contribution
of a single incoming message under a proper scaling of the weights is negligi-
ble). Therefore, the second computational difficulty is also alleviated and the
number of messages is brought down to linear in the number of variables.

The main challenge in the derivation of the AMP algorithm is in the ap-
plication of central limit theorem, which is not straightforward. Of course,
the cycles in the dense graph make the messages correlated. Hence, the appli-

Besides the computational burden, it is not a priori clear whether BP accurately com-
putes the marginal distributions in the presence of many cycles. Yet, BP was proven to be
asymptotically Bayes optimal for cases of our interest which involve dense graphs [57, 58, 59].

5Not to confuse with Gaussian BP. The Gaussian assumption here refers to the density
of the graph and the distribution of the matrix entries, not to the input distribution.
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Figure 1.3: Gaussian approximation in the AMP algorithm. The high density
in the graph simplifies the BP update rules where each node is subject to an
effective Gaussian field. Instead of exchanging messages, the nodes keep track of
the Gaussian parameters y;'s and o;'s.

cation of central limit theorem is not direct. The latter can be applied only
after adding a correction term which, somehow miraculously, decorrelates the
messages in the sum. This term is called the “Onsager” reaction term and it
was first introduced by Onsager in 1936 [66].

It is worth noting that the AMP simplifications starting from the BP up-
date rules are similar to the “TAP equations” introduced in 1977 by Thouless,
Anderson and Palmer [67]. The authors originally derived these equations
for a spin glass model defined on a complete graph, namely the celebrated
Sherrington-Kirkpatrick (SK) model in statistical physics. The so-called On-
sager term was also added to correct for the correlation without a complete
mathematical justification. A rigorous mathematical justification for the use
of Onsager term in the derivation of the AMP equations appeared recently by
Bolthausen [68].

Note that in the context of compressed sensing, the Onsager term is the
only difference between the AMP equations [60] and the IST equations [65].
It turns out that the missing Onsager term is the reason for performance
degradation in IST.

The same way BP algorithm can be tracked on sparse graphs through
density evolution, the performance of AMP algorithm on dense graphs can
be tracked through an analogous tool called state evolution. At the same
time AMP was introduced, extensive empirical simulations showed that state
evolution tracks the performance of AMP in the context of compressed sensing
[60]. Soon after that, Bayati and Montanari provided a rigorous justification
for state evolution on a general basis that can be extended beyond the scope
of compressed sensing [69].

Despite the analogy between density evolution and state evolution, their
mathematical justifications are fundamentally different. While the density
evolution relies on the locally tree-like structure of the sparse graph [18], the
state evolution relies instead on the conditioning techniques introduced by
Bolthausen [70]
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1.5 Spatial Coupling

Spatial coupling was originally developed as an engineering tool to construct
a new class of LDPC codes with better performance. It first appeared under
the name of convolutional LDPC codes [22, 23, 24]. It was observed that the
local coupling of several LDPC ensembles with a proper termination consid-
erably improves the performance under BP decoding.'® The density evolution
analysis was then adapted to track the performance of spatially coupled codes.
Moreover, it was proven that the BP algorithmic performance, or threshold,
can be improved up to the optimal performance.!” This phenomenon was
termed threshold saturation [25, 26, 27].

Spatial coupling was then applied to various graphical models, both sparse
and dense, where it was shown to boost the performance under iterative al-
gorithms. Furthermore, the threshold saturation was shown to be a universal
phenomenon. The problems where spatial coupling was successfully applied
include code division multiple access (CDMA) [71, 72], satisfiability [73], com-
pressed sensing [74, 75, 76], SS codes [77, 78], Curie-Weiss model [79, 80] and
more generally any coupled graphical model tracked by a coupled scalar recur-
sion [81, 82].

Spatial coupling can be represented via a graphical model starting from the
original factor graph. Assume that we have a factor graph of size N. We take
several instances of this factor graph and we place them next to each other on
a chain of length I' . Then, we locally couple the underlying factor graphs with
a coupling window w to obtain a bigger factor graph of size I' x N (see Fig.
1.4). In the resulting factor graph, each variable node is connected to the cor-
responding check nodes of the same underlying factor graph and to the check
nodes of the neighboring factor graphs. This construction creates a spatial
dimension, along the positions of the chain, that will help the algorithm. The
second step in constructing efficient spatially coupled graphs is to introduce
a seed at a certain position of the chain. This seed can be introduced as a
side information which helps the algorithm at the boundaries and initiates a
“wave” that propagates inwards and boosts the performance.

Note that in order to have an efficient spatially coupled scheme, both of
the steps mentioned above should be applied. Having a spatial construction
without a seed makes the resulting spatially coupled model of no advantage
over the underlying “uncoupled” model. Likewise, applying a seed on the
underlying model without constructing a spatial dimension to carry the wave
is of no advantage.

There are several ways to construct the spatially coupled graphs. In the
context of SS codes, for example, a spatially coupled code corresponds to a
band-diagonal coding matrix as explained in Chapter 2. Moreover, the seed

16Spatial coupling modifies the construction of the code, or the graphical model in general,
not the algorithm. The new spatially coupled construction is more robust against noise and
it performs better under the same BP algorithm

1"The performance under optimal algorithm, e.g. ML or exhaustive search algorithm.
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Figure 1.4: Spatial coupling of a dense graphical model. A coupling chain of
length I' = 6 is taken where one factor graph is placed at each position. The
coupling window is w = 1. At each of the 6 positions, the variable nodes (circles)
are connected to the corresponding factor nodes (squares) via solid lines and to the
w-neighbor factor nodes via dotted lines. The seed is illustrated by the elliptical
shape.

can be introduced in different forms. One way is to fix the values of the variable
nodes at a certain position in order to “help” the algorithm (i.e. provide perfect
side information). Based on the application scenario, it is not always possible
to provide such perfect information. Hence, the seed is sometimes introduced
by providing partial side information as illustrated in Chapter 3. The desired
size of the seed and its effect on the speed of the propagation wave was recently
analyzed in [83, 84]. Note that the seed induces a small loss in terms of degrees
of freedom. However, this loss can be amortized by taking a proper asymptotic
regime.

Interestingly, spatial coupling turns out to be a versatile tool. Besides its
practical advantage as an engineering tweak that boosts the performance, spa-
tial coupling can be used as a proof technique to compute many quantities of
interest which are a priori intractable [85]. More precisely, both the underly-
ing model and the spatially coupled one share the same information theoretic
quantities, such as the normalized mutual information and the optimal perfor-
mance. Hence, one can gain some insights about the underlying problem by
studying a spatially coupled version of it.

Therefore, even if the problem at hand does not provide the freedom of
constructing a spatially coupled model in practice,'® one can still use spatial

18In some problems we can not control the design of the factor graph, unlike the coding
problems. Community detection via symmetric rank-one matrix factorization is one example
where the factor graph is dictated by the model.
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coupling for an auxiliary model. Intuitively speaking, since the low-complexity
algorithm on the auxiliary model is optimal by the threshold saturation phe-
nomenon, it is easier to compute the information theoretic quantities on that
model and then apply them to the underlying model. In this thesis, we are
going to benefit from both aspects of spatial coupling, i.e. the engineering and
the theoretical aspects.

1.6 Connection to Statistical Physics

Over the last century or so, statistical physics techniques have developed with
the aim to predict and describe the macroscopic behavior of systems involving
an interaction of a large number of degrees of freedom (possibly in a random
environment). A very common phenomenon that occurs in these systems is
the phase transition phenomenon, which is characterized by an abrupt change
of behavior. Such systems are ubiquitous in nature and they have been the
subject of study in statistical physics of spin glasses [3, 86].

Interestingly, numerous problems in different fields of science and engineer-
ing can be formulated as spin glass models. These include LDPC codes [87],
turbo codes [88], CDMA systems [89], compressed sensing [75], satisfiability
[90] and neural network models in machine learning [91, 92].

Many powerful techniques used in statistical physics have rigorous mathe-
matical justifications such as correlation inequalities [93], decay of correlations
[94] and interpolation methods [95]. However, other techniques are used as
prediction tools to “guess” some quantities of interest which are notoriously
hard to compute. Such heuristic techniques are based on mathematically un-
justified assumptions (or ansatz). One of these techniques is the celebrated
replica method [3]. Despite the lack of rigor, the predictions of the replica
method, which are highly nontrivial, have been extensively applied to many
probability-based information processing fields.

In a certain class of problems coined as the mean-field models,'® the replica
predictions have been proven to be exact on some paradigmatic examples (e.g.
the SK model by Talagrand [96]). Moreover, the replica method has been
able to successfully reproduce many results for problems with already known
solutions [97, 98]. Hence, it is believed that the predictions of the replica
method are accurate for mean-field models.

Over the last decade or so, a plethora of rigorous work has been conducted
in order to prove the exactness of the replica predictions. In many instances,
it was shown that the replica predictions provide tight bounds on many fun-
damental quantities® [99, 100, 101]. Recently, it was proven that the replica
predictions are rather exact, i.e. met with equality, for many interesting prob-
lems [85, 102, 103, 104].

9 Complex models that can be studied by looking at the behavior of a simpler model.
20Namely the asymptotic mutual information or conditional entropy.
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In this thesis, the use of replica method is two-folded: 7) We use the poten-
tial function, which is computed by the heuristic replica method, as an analysis
tool for SS codes in order to prove the threshold saturation phenomenon. Our
analysis in this part does not rest on the rigor of the replica predictions, but
rather on some of the potential function’s properties that we prove.?! i) We
prove that the replica predictions for the symmetric rank-one matrix factoriza-
tion problem are exact. This yields an explicit expression for the asymptotic
mutual information along with major practical implications.

1.6.1 Spin Glass Models

A spin glass system consists of N degrees of freedom, or spins, denoted by
si,i = 1,...N. Every configuration s = [s1,...,sy], or state, of the spins
is associated with a Hamiltonian H(s). This Hamiltonian represents the cost
function of a given state s and reflects the interaction between the spins. When
the system is in equilibrium, statistical physics postulates that the probability
of a given state is related to the Hamiltonian through the Boltzmann distri-
bution??

6_57—[(5)
P(s) = —5—. (1.11)

where Z is the normalization function, known as the partition function in
statistical physics. The parameter [ is defined to be the inverse temperature
in statistical physics language. The precise value of 3 is not relevant to our
discussion, hence we assume that § = 1 in this thesis. Note that both of
our posterior distributions (1.2) and (1.5) can be formulated as a Boltzmann
distribution with a certain Hamiltonian.

The randomness of the spins w.r.t. the Boltzmann distribution is called
annealed randomness in the statistical physics literature. Moreover, given the
value of the spins, the Hamiltonian function itself in (1.11) can be random due
to the random interaction between the spins. For example, the Hamiltonian
of SS codes induced from the posterior distribution (1.2) is random w.r.t. the
noisy observations y and the code ensemble F. This external randomness is
called quenched randomness.

A central object in statistical physics is the free energy of the system defined
as

i =~ Ellog(2)], (1.12)

where Z is the partition function in (1.11) and E denotes the expectation over
the quenched random variables. Note that the negative sign here is a matter

210ne can prove that the replica formulation is intimately related to the algorithmic
performance of message-passing.
22 Also called Gibbs distribution.
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of convention. In this thesis, we use the negative sign to denote the free energy
while the positive counterpart refers to the free entropy.

The free energy is a fundamental quantity in statistical physics. In fact, the
behavior of the system and many physical properties can be extracted from
the free energy. In the limit N — oo, the non-analyticity of (1.12) w.r.t. some
model parameters® indicates a phase transition in the system. This is very
reminiscent of the behavior of the normalized mutual information discussed
earlier. Actually, one can show that computing the normalized mutual infor-
mation for both of our problems is equivalent to compute the free energy (the
two quantities are equal up to a trivial term, see Chapter 4.). More gener-
ally, when the Boltzmann distribution (1.11) represents a posterior measure
for an inference problem in the Bayesian setting, the free energy in statistical
physics is closely related to the normalized mutual information (or conditional
entropy) in information theory. Hence, it is equivalent to study either of them.

The regime of our interest is the thermodynamic limit, i.e. the limit of large
number of spins N — oo. In this limit, statistical physics postulates that the
free energy is self-averaging, in the sense that the free energy concentrates
around its expectation. Again, the computation of such quantity in the limit
N — o0 is computationally prohibitive. The replica method provides a “trick”
to compute the free energy in the thermodynamic limit as we will see in the
following.

1.6.2 Replica Method

The replica method is a heuristic analytical tool developed in statistical physics
in order to compute the free energy, or equivalently the normalized mutual in-
formation, in the thermodynamic limit. The replica method is based on math-
ematically unjustified manipulations and it also involves some assumptions on
the structure of the solution. A typical assumption is the replica symmetry
(RS) assumption.?® Nevertheless, the predictions provided by the non-rigorous
replica method are believed to be accurate for mean-field models. Recently,
the replica predictions have been proven to be exact on various nontrivial prob-
lems. Note that the exactness of the replica predictions means that the final
solutions it provides, e.g. the expression for the free energy, are exact. This
does not necessarily mean that the replica method itself is rigorous.?

The replica method consists of “replicating” the partition function in (1.12)
n times. This helps in transforming the expectation of the logarithm into a
logarithm of an expectation, which involves the n'* moment of the partition
function (see Eq. (1.14) below). The replica method then involves a couple of

23This can be a noise parameter for example. The non-analyticity can also occur as a
function of the inverse temperature .

24Tt assumes that the “replicas” of the system are symmetric under permutation of their
labels.

25“At the present time, it is difficult to see in the physicist’s replica method more than
a way to guess the correct formula” — Talagrand, 2003 [105].
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mathematically unjustified steps. This includes an exchange of limits and an
analytic continuation argument that assumes n — 0.

In order to compute the free energy (1.12) in the thermodynamic limit, the
replica method, which has many incarnations, computes the following
—Ellog(Z)] 0 —log(E[Z"])

lim = lim lim —
N—o0 N—oo n—0 On, N

(1.13)

This former step can be justified by a simple differentiation where one can
show that

E[z" log(2)]

e loe(Bl2") = =k

o (1.14)

The replica method then assumes that we can exchange the order of lim,,_,09/0n
and limy o [106]. The next trick is to assume that n is an integer despite
the fact that we take the limit n — 0 afterwards. The reason for this is
that computing the n'® moment might be more feasible than averaging the
partition function itself. The expectation and the limit N — oo are then
computed using the saddle-point integration scheme.

Using these manipulations, the replica prediction for the free energy (1.12)
in the thermodynamic limit is given in a variational form

Jim fy ~ gllélclfRs(m)v (1.15)

where m is a trial parameter defined on a certain set C and frs is the RS
potential function. The “a~” symbol is used to stress on the lack of rigor in
the replica method. It turns out that the RS potential represents a free energy
of a simple problem that we can easily compute. Besides the trial parameter
m, the RS potential also depends on some other parameters of the original
model (e.g. the inverse temperature [ or the noise parameter denoted by A,
see Fig. 1.5). Here, we show explicitly the dependency on m while all other
dependencies are implicit in fgrg.

Interestingly, the replica formulation does not only predict the asymptotic
free energy, but it also retains a very close connection with the algorithmic
message-passing performance when solving an inference problem on graphical
model. Indeed by computing the free energy, the replica solution can predict
the optimal performance as the non-analyticity point (i.e. the optimal phase
transition). Moreover, the replica formulation can predict the performance of
the iterative message-passing algorithm by looking at the stationary points
of the RS potential (see Fig. 1.5). In fact, one can show that the stationary
points of the RS potential correspond to the fixed point solutions of the density
evolution, or state evolution, tracking the performance of the message-passing
algorithm. Hence, by looking at the RS potential one can predict the algorith-
mic phase transition as well.26 Furthermore, the trial parameter m involved

26The algorithmic phase transition corresponds to the point where the behavior under a
low-complexity algorithm exhibits an abrupt change. The optimal phase transition corre-
sponds to the abrupt change under the optimal algorithm (e.g. exhaustive search).
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Figure 1.5: The RS potential as a function of the trial parameter m and the
external noise parameter A. The potential is plotted for three different values of
A. The minima of the potential as a function of m are marked by dots. The
potential has a unique minimum below A,j,. The local minimum appears as A
increases beyond A,j,. The two minima change roles, i.e. from global to local and
vice versa, after Ags.

in the replica formulation can have some practical interpretations in terms of
the probability of error or MMSE.

For illustration purposes, the RS potential as a function of the trial pa-
rameter m and an external noise parameter A is shown in Fig. 1.5. For each
fixed value of A, the potential behaves in a certain fashion as a function of
m. For small enough A, the potential has a unique global minimum.?” As A
increases, the potential starts to develop a local minimum. The value of A
where the local minimum starts to appear is called the algorithmic threshold
denoted by A,j,. This is because the procedure tracking the message-passing
algorithm can be interpreted as a descent algorithm on the potential function:
as long as the potential has a unique minimum the algorithm succeeds; as soon
as the potential develops a local minimum the algorithmic behavior changes
discontinuously since the algorithm gets stuck at the new local minimum. As
A increases further, the local minimum becomes a global minimum. The value
of A where the two minima are global minima, i.e. have the same frg value,
is called the optimal threshold (or the potential threshold) denoted by Ags.
One can see that at Agg, the replica solution of the free energy, defined by
min,, frs, develops a point of non-analyticity.

The RS potential is used in Chapter 2 as an analysis tool for spatially
coupled SS codes. We prove that spatial coupling improves the performance
of the AMP algorithm and moves the algorithmic threshold up to the potential
threshold. In Chapter 4, we address the validity of the replica prediction. In
particular, we show that (1.15) holds with equality for symmetric rank-one
matrix factorization.

Note that the potential shown in Fig. 1.5 is a special case where a first-order

2"For inference problems with zero error-floor, this minimum occurs at m = 0 as in the
LDPC case. However, we present here the analysis in the most general form where an
error-floor can exist.



1.6. Connection to Statistical Physics 21

phase transition occurs, i.e. the potential has a maximum of three stationary
points (two minima and one maximum). Other types of phase transitions, or
no phase transition, are possible in spin glass models. It turns out that the
case of first-order phase transition is the most relevant to our discussion when
dealing with our problems at hand.

1.6.3 Interpolation Method

The heuristic replica method was applied by Giorgio Parisi in 1980 to compute
the free energy of the SK model [107], an archetypal mean-field model in
statistical physics named after Sherrington and Kirkpatrick [108]. Parisi’s
free energy remained a conjecture for more than two decades. A rigorous
proof showing that Parisi’s formula for the SK model is exact appeared by
Talagrand in 2006 [96]. The proof idea relies heavily on the interpolation
method developed by Guerra and Toninelli [109].

The interpolation method is a mathematical rigorous tool that we will
use extensively in Chapter 4. The idea is that we “interpolate” between two
models in order to compare their respective free energies. Typically, one model
is the original model and the other is the simple model guessed from the replica
solution. In many instances, the interpolation method is able to prove that
the replica prediction provides an upper bound for the free energy.?® In this
thesis, we will use the interpolation method on different occasions in order to
prove the validity of the replica prediction.

Formally, assume that we have two spin glass models labeled by the letters
a and b where (H%(s), 2, f%) and (H(s), Z°, f%) represent their respective
Hamiltonians, partition functions and free energies. We then define a “linear”
interpolated Hamiltonian as follows

H(s) = tH(s) + (1 — t)H"(s), (1.16)

with ¢ € [0, 1]. The resulting Hamiltonian interpolates between the two models
as a function of ¢. It yields model a at ¢ = 1 and model b at ¢ = 0. Note
that for illustration purposes, the interpolation path is assumed to be linear
here. In practice, the proper interpolation is more complicated and needs to
be carefully chosen (see Chapter 4). However, the interpolation path has to
satisfy the following: Ho(s) = H%(s) and H,(s) = H(s).

Let Z, and fn, represent the partition function and the free energy of the
interpolated model. Hence, the fundamental theorem of algebra gives

1
/ dt%fN,t:fN,l_fN,O = fyv— f* (1.17)
0

Therefore, one can compare the free energies of the two models by looking at
the sign of the derivative in the left-hand side term of (1.17). The beauty of

28This is only possible when the interpolation method yields a non-negative remainder
term. In many other instances, it is hard to argue about the sign of the remainder and
different proof techniques are needed.
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the interpolation method is that even if this term is hard to compute, one can
often argue about its sign by choosing a proper interpolation path.

One of the main challenges in applying the interpolation method, other
than choosing the proper interpolation path, is to choose the two models a
and b. In some special instances when deriving an upper bound on the free
energy, the second model can be guessed from the replica method. However,
in order to have a complete proof of the replica solution, the choice of the
models becomes much more challenging and the interpolation method has to
be applied more than once as we will see in Chapter 4.

1.7 Organization and Main Contributions of the
Thesis

This thesis addresses two different, yet very related, topics. The first topic
is a channel coding problem that spans Chapter 2 and 3. In these chapters,
we study SS codes which constitute a recent class of forward-error-correction
codes. The second topic, studied in Chapter 4, is the symmetric rank-one
matrix factorization which can be used to model many interesting problems
in machine learning and statistics. In both of these topics, we formulate the
problems at hand as Bayesian inference problems that we study in the asymp-
totic high-dimensional regime. It turns out that both formulations can be
represented on dense factor graphs. This common feature suggests that sim-
ilar message-passing algorithms can be used to solve our inference problems.
Furthermore, the graphical representation spurs the employment of the spatial
coupling technique.

In addition to that, both of our problems exhibit several forms of phase
transitions in the high-dimensional regime. This behavior is very reminiscent
of the behavior of spin glass models studied in statistical physics. Therefore,
the use of statistical physics techniques, such as the replica method or the RS
potential function, is a very natural choice for analysis.

In Chapter 2, we introduce the SS codes. A main contribution of this
chapter is the extension of the application and analysis of SS codes beyond
the scope of the AWGN channel, the channel for which these codes were first
introduced and used so far. This extension is possible via the introduction of
a mapping function that maps the real-valued Gaussian entries to the channel
input alphabet of a general memoryless channel. The concatenation of both the
deterministic mapping function and the physical probabilistic channel can be
then seen, from the algorithmic perspective, as a new effective channel. Hence,
the generalized approximate message-passing (GAMP) algorithm, which is a
generalization of the AMP algorithm [110], is adapted for the decoding task
of SS codes. Another important contribution of this chapter is the rigorous
analysis of spatial coupled instances of SS codes. This allows us to show that
spatially coupled SS codes “universally” achieve capacity on general channel
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under low-complexity GAMP decoding.

The adoption of the GAMP algorithm for a channel coding problem is
an unprecedented approach that we present in Chapter 2. A central result
in this chapter is the proof of threshold saturation for spatially coupled SS
codes, a result which ensures that SS codes universally achieve capacity on
general memoryless channels.? The proof of the threshold saturation is based
on the state evolution analysis and the RS potential predicted by the statisti-
cal physics’ replica method. Our threshold saturation proof follows the lines
of [82]. However, we consider a more general coupling construction. More
specifically, we assume a general coupling strength which is not necessarily
uniform or symmetric as in [82]. This relaxation could significantly improve
the performance in practice [111].

The proof requires an extension of the scalar state evolution analysis to the
vector case of the spatially coupled system. The main strategy is to assume
a “bad” fixed point solution of the spatially coupled state evolution and to
calculate the change in the RS potential due to a small shift in two different
ways: 1) by second-order Taylor expansion, ii) by direct evaluation. We then
show by contradiction that for large coupling parameters and as long as the rate
is below the potential rate, the state evolution converges to the “good” fixed
point. Hence, by taking the proper limit one can show that the algorithmic
rate of the spatially coupled system saturates the potential rate (i.e. the former
is lower bounded by the latter). Moreover, we show by analytical calculation
that the potential rate tends to capacity and the error floor (when it exists
e.g., in the AWGN case) vanishes in the proper limit. Furthermore, we provide
a closed-form formula for the algorithmic rate of the uncoupled code ensemble
in terms of a Fisher information.

It is worth noting that carrying out this program presents some technical
difficulties while bounding the second-order Taylor expansion of the coupled
state evolution which do not appear in [82]. This is due to the special form of
the state evolution tracking the performance of the GAMP algorithm for SS
codes over general channels.

Note also that the analysis in this chapter does not rely on the exactness
of the replica predictions, but rather on the intimate connection between the
RS potential and the state evolution as already explained in Section 1.6.

Chapter 3 presents a novel application of SS codes and GAMP algorithm
for a source coding problem, namely the distribution matching problem. Dis-
tribution matching is the building block for probabilistic shaping, a problem
that has recently attracted lots of attention in long-haul fiber optical commu-
nications.

We present an exact matcher based on a position modulation, that intro-
duces sparsity in the source, followed by a simple quantization of a Gaussian
signal. This yields any discrete target distribution. The quantizer can be seen

29Using low-complexity GAMP algorithm and under the assumption that state evolution
tracks the performance of the spatially coupled system.
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as a deterministic nonlinear channel. At the receiver, the dematcher exploits

the sparsity in the source and performs low-complexity dematching based on
the GAMP algorithm as done for the SS codes.

We show that GAMP algorithm and spatial coupling lead to an asymptot-
ically optimal performance, in the sense that the rate tends to the entropy of
the target distribution with vanishing reconstruction error in a proper limit.
Furthermore, we assess the performance of the GAMP algorithm on practi-
cal Hadamard-based operators. A remarkable feature of our approach is the
ability to perform joint channel coding and distribution matching at the sym-
bol level, a promising solution for probabilistically-shaped coded modulation
schemes [112, 113, 114]. Note that the analysis done in this chapter is mostly
numerical, whereas all the proofs and the theoretical guarantees can be derived
from Chapter 2.

In Chapter 4, we introduce symmetric rank-one matrix factorization, a
prominent problem with many applications in machine learning and high-
dimensional statistics. The central result is an explicit expression for the
normalized mutual information in the high-dimensional regime. Indeed, the
expression for the normalized mutual information is given by the replica pre-
diction. Our main contribution is to show that this expression is exact. Our
proof strategy uses spatial coupling as a proof technique.

We first show that the replica solution provides an upper bound for the
asymptotic normalized mutual information. This is done by applying the in-
terpolation method between the original model and a simple denoising model
guessed from the replica solution. The proof that the replica solution also
yields a lower bound is quite more involved. Roughly speaking, the lower
bound can be established as long as the RS potential has a unique minimum.
This is possible via the [ MMSE relation and the suboptimality of the AMP
algorithm. However, in the most interesting regime where the RS potential
develops a second local minimum (i.e. the presence of first-order phase tran-
sition), the proof requires the use of an “auxiliary” spatially coupled model.
It turns out that the spatially coupled model is easier to analyze. This is be-
cause of the threshold saturation phenomenon where the algorithmic threshold
coincides with the optimal threshold. Being able to deduce the information
theoretic optimal threshold from the algorithmic threshold is the crux of prov-
ing the lower bound, and hence the exactness of the replica prediction.

More specifically, we show, using the interpolation method, that the nor-
malized mutual information is the same for both the spatially coupled model
and the underlying (uncoupled) model. The interpolation here, although simi-
lar in spirit, is different than the one used to prove the upper bound. We apply
the interpolation method twice: i) interpolation between the spatially coupled
model and a sequence of “independent” underlying models, 7i) interpolation
between the spatially coupled model and a sequence of “fully connected” un-
derlying models. This allows to sandwich the spatially coupled model between
two models that are asymptotically equivalent to a single underlying model.
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This result together with the threshold saturation result* allow to extend the

proof of the lower bound to the whole region of parameters. Note that in
the process of showing the invariance of the mutual information under spa-
tial coupling, we derive the existence of the thermodynamic limit using the
interpolation method, once again, and a standard argument for superadditive
sequences.

The closed-form expression for the mutual information helps in detecting
the optimal phase transition and computing the MMSE. Hence, we are able to
assess the optimality of any algorithm in terms of both its range of operation
and its estimation error. In particular, we are able to provide an exact formula
for both the “vector” MMSE and the “matrix” MMSE from the RS potential.

A remarkable practical implication of Chapter 4 is the proof that the AMP
algorithm is optimal in a large region of parameters. Nonetheless, we show
that, in a specific region that we refer to it as the “computational gap”, the
currently known polynomial algorithms (in particular AMP and spectral meth-
ods) fail to reach the information theoretic optimal performance. Note that the
spatially coupled construction is mainly used in this chapter for the purposes
of the proof. However, the spatially coupled matrix factorization is an inter-
esting model in itself, specially in view of the fact that the computational gap
disappears for such model. Hence, one can imagine many possible applications
where spatial coupling is involved.

In Chapter 5, we summarize the findings of this thesis and we discuss
some open challenges and potential research directions.

We would like to end this introductory chapter by pointing out that this
thesis heavily relies on the state evolution analysis for the AMP algorithm.
However, the scope of this work does not cover the derivation of the AMP and
the state evolution. Interested readers can refer to [60, 69, 115]. Moreover, one
of our central results is the proof that the predictions given by the heuristic
replica method of statistical physics are accurate. Nonetheless, we do not
intend to give a recipe on how to perform the replica trick. Interested readers
can refer to the statistical physics literature [3, 105].

30The threshold saturation result for symmetric rank-one matrix factorization is estab-
lished following the same proof techniques used for SS codes in Chapter 2.






Universal Sparse
Superposition Codes

Sparse superposition codes, or sparse regression codes, constitute a new class
of codes which was first introduced for communication over the additive white
Gaussian noise (AWGN) channel. It has been shown that such codes are
capacity-achieving over the AWGN channel under optimal maximum-likelihood
decoding as well as under various efficient iterative decoding schemes equipped
with power allocation or spatially coupled constructions. In this chapter,’ we
generalize the analysis of these codes to a much broader setting that includes all
memoryless channels. We show, for a large class of memoryless channels, that
spatial coupling allows an efficient decoder, based on the generalized approx-
imate message-passing (GAMP) algorithm, to reach the potential (or Bayes
optimal) threshold of the underlying (or uncoupled) code ensemble. Moreover,
we argue that spatially coupled sparse superposition codes universally achieve
capacity under GAMP decoding by showing that both the error floor vanishes
and the potential threshold tends to capacity as one of the code parameter goes
to infinity. Furthermore, we provide a closed-form formula for the algorithmic
threshold of the underlying code ensemble in terms of a Fisher information.
Relating an algorithmic threshold to a Fisher information has theoretical as
well as practical importance. Our proof relies on the state evolution analysis
and uses the potential method developed in the theory of low-density parity-
check (LDPC) codes and compressed sensing.

!The content of this chapter is based on a joint work with J. Barbier and N. Macris
[116].

27
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2.1 Introduction

Sparse superposition (SS) codes, or sparse regression codes, were first intro-
duced by Barron and Joseph [29] for reliable communication over the additive
white Gaussian noise (AWGN) channel. The SS codes were then proven to be
capacity-achieving under adaptive successive decoding along with power allo-
cation [33, 34]. Later on, the connection between SS codes and compressed
sensing was made in [36]. The decoding of SS codes can be interpreted as an
estimation of a sparse signal, with structured prior distribution, based on a rel-
atively small number of noisy observations. Hence, the approximate message-
passing (AMP) algorithm, originally developed for compressed sensing, was
adapted in [36] to decode SS codes where it exhibited better finite-length per-
formance than adaptive successive decoding. SS codes, with appropriate power
allocation on the transmitted signal, were then proven to achieve capacity un-
der AMP decoding [37]. Furthermore, the extension of the state evolution
(SE) equations, originally developed to track the performance of AMP for
compressed sensing [69], was proven to be exact for SS codes in [37].

The idea of spatial coupling was originaly introduced for low-density parity-
check (LDPC) codes under the name of LDPC convolutional codes [22, 23].
Spatial coupling has been then successfully applied to various problems includ-
ing error correcting codes [25], code division multiple access (CDMA) [71, 72],
satisfiability [73], and compressed sensing [74, 75, 76]; where it has been shown
to boost the performance under iterative algorithms. Recently, spatial coupling
was applied to SS codes in [77, 78]. The construction of coding matrices for
SS codes with local coupling and a proper termination was shown to consider-
ably improve the performance. Moreover, practical Hadamard-based operators
were used in [77] to encode SS codes, where they showed better finite-length
performance than random operators under AMP decoding. The spatially cou-
pled construction used in [77, 78] has many similarities with that introduced in
the context of compressed sensing [117, 111, 115|. Empirical evidence shows
that spatially coupled SS codes perform much better than power allocated
ones and that they achieve capacity under AMP decoding without any need
for power allocation. This motivated the initiation of their rigorous study
[118] using the potential method, originally developed for the spatially coupled
Curie-Weiss model [79, 80] and LDPC codes [81, 27, 82]. The phenomenon of
threshold saturation for AWGN channels was shown in [118], i.e. the poten-
tial threshold that characterizes the performance of SS codes under the Bayes
optimal minimum mean-square error (MMSE) decoder can be reached using
spatial coupling and AMP decoding. Moreover, the potential threshold itself
was shown to achieve capacity in the large input alphabet size limit.

Threshold saturation was first established in the context of spatially cou-
pled LDPC codes for general binary input memoryless symmetric channels
in [27, 26], and is recognized as the mechanism underpinning the excellent
performance of such codes [24]. It is interesting that essentially the same phe-
nomenon can be established for a coding system operating on a channel with
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continuous inputs. This result was a stepping-stone towards establishing that
spatially coupled SS codes achieve capacity on the AWGN channel under AMP
decoding [118]. Note that a similar (but different) potential to the one used in
[118] has been introduced in the context of scalar compressed sensing [69, 82].
It is interesting that the potential method goes through for the present system
involving a dense coding matrix and a fairly wide class of spatial couplings.
Related results on the optimality of spatial coupling in compressed sensing [76]
and on the threshold saturation of systems characterized by a 1-dimensional
state evolution [82, 119] have been obtained by different approaches.

In the classical noisy compressed sensing problem, the AMP algorithm and
the SE recursion tracking the algorithmic performance were derived for the
AWGN channel [69, 60]. The extension of AMP to general memoryless (pos-
sibly non-linear) channels with arbitrary input and output distributions was
introduced in [110] via the generalized approximate message-passing (GAMP)
algorithm. Moreover, an extension of SE describing the exact behavior of
GAMP was also provided in [110]. Later on, a full rigorous analysis proving
the tractability of GAMP via SE was given in [115]. These encouraging results
naturally led to generalize the analysis of SS codes in [118] to a much broader
setting that includes all memoryless channels and potentially any input signal
model that factorizes over B-dimensional sections [120, 121, 116].

In this chapter we prove that threshold saturation is a universal phe-
nomenon for SS codes; i.e. we show that, for any memoryless channel, spatial
coupling allows GAMP decoding to reach the potential threshold of the code
ensemble (Theorem 2.1 and Corollary 2.3). Moreover, we argue that spa-
tially coupled SS codes universally achieve capacity under GAMP decoding by
showing that the error floor vanishes and the potential threshold tends to ca-
pacity as one of the code’s parameters goes to infinity. Indeed, a fully rigorous
statement requires to proof that the state evolution tracks the performance of
GAMP over general memoryless channels, which is beyond the scope of this
work. Furthermore, we give a simple expression of the GAMP algorithmic
threshold of the underlying code ensemble in terms of a Fisher information
(Section 2.6). Although we focus on coding for the sake of coherence with the
related literature, the framework and methods are very general and hold for a
wide class of non-linear estimation problems with random linear mixing.

Our proof strategy uses a potential function, which is inspired from the
statistical physics replica method. However, we stress that the proof does not
rely on the replica method (which is not rigorous). Recently, it has been shown
that the replica prediction is exact for random linear estimation problems
including compressed sensing and SS codes on the AWGN channel [122, 104,
103, 123]. Hence, the potential threshold can be rigorously interpreted as the
optimal threshold under MMSE decoding.

This chapter is organized as follows. The code construction of the underly-
ing and coupled ensembles are described in Section 2.2. Section 2.3 reviews the
GAMP algorithm, while Section 2.4 presents the SE equations and potential
function adapted to the present context. The GAMP thresholds of the under-
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lying and coupled ensembles as well as the potential threshold are then given
precise definitions. The essential steps for the proof of threshold saturation are
presented in Section 2.5. The connection between the potential threshold at
infinite input alphabet size and Shannon’s capacity, as well as the closed form
expression of the algorithmic threshold in terms of a Fisher information, are
given in Section 2.6. Four different channel models are then used to illustrate
the results. Section 2.7 is dedicated to open challenges.

2.2 Code Ensembles

We first define the underlying and spatially coupled ensembles of SS codes for
transmission over a generic memoryless channel. In the rest of this chapter
a subscript “un” indicates a quantity related to the underlying ensemble and
a subscript “co” a quantity related to the spatially coupled ensemble. The
probability law of a Gaussian random variable X with mean m and variance
02 is denoted X ~ A(m,o0?) and the corresponding probability distribution
function as N (z|m, o?).

2.2.1 The Underlying Ensemble

In the framework of SS codes, the information word or message is a vector
made of L sections, s = [sy,...,sr]. Each section s;, [ € {1,...,L}, is a B-
dimensional vector with a single component equal to 1 and B — 1 components
equal to 0. The non-zero component of each section can be set differently,
especially when schemes with power allocation are considered [33, 34]. How-
ever, we will restrict ourselves to the binary case in this chapter where spatial
coupling is used to achieve capacity instead of power allocation. We call B
the section size (or alphabet size usually chosen to be a power of 2) and set
N = LB. The message s can be seen as a one-to-one mapping from an original
message u € {0,1}71°82(8)  where the position of the non-zero component in
s; is specified by the binary representation of u; (i.e. s is obtained from u
using a simple position modulation (PM) scheme). For example if B = 4 and
L =5, a valid message is s = [0001, 0010, 1000, 0100, 0010] which corresponds
to u = [00,01,11,10,01] . One can think of the information words as being
defined for a B-ary alphabet with a constant power allocation for each symbol.

We consider random codes generated by a fixed coding matriz F € RM*N
drawn from the ensemble of random matrices with i.i.d real Gaussian entries
distributed as A(0,1/L). The variance of the coding matrix entries is such
that the codeword Fs € R has a normalized average power E[||Fs||3]/M = 1.
Note that the cardinality of this code is BL and the length of the codeword is
M. Hence, the (design) rate is defined as

~ Llog, B Nlog, B

h M MB

(2.1)
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Figure 2.1: The encoder/decoder block diagram of the SS codes under GAMP
decoding over any memoryless channel W. The map 7 is needed when the ca-
pacity achieving input distribution of W is not Gaussian. The GAMP algorithm
provides soft valued estimate s of s in the MMSE sense. A simple hard decision
(HD) mechanism is used to provide the binary decoded message s by setting the
most biased component in each section of s to 1 and the others to 0. The orig-
inal message u and its decoded version u can be easily recovered from s and s
respectively using PM modulator and demodulator as illustrated in Section 2.2.1.

The code is thus specified by (M, R, B) where R is the code rate, M the block
length, B the section size.

Codewords are transmitted through a known memoryless channel W. This
requires to map the codeword components [Fs], € R, p € {1,..., M}, onto
the input alphabet of W. We call = this map and refer to Section 2.6 for
various examples. The concatenation of 7 and W can be seen as an effective
memoryless channel Py, such that

E
S

Py (y|Fs) :H ot (| [FS],. H (yu|7([Fs],)). (2.2)

Note that one can look equivalently at 7 as a part of the channel model or
as a part of the encoder. In the present framework, it is more convenient to
work with the effective memoryless channel from which the receiver obtains
the noisy channel observation y. However in the analysis of Section 2.6, the
capacity of W is considered.

The decoding task is to recover s from channel observations y as depicted
in Fig. 2.1. The decoding can be interpreted as a compressed sensing prob-
lem with structured sparsity—due to the sectionwise structure of s—where
y would be the compressed measurements. The rate R can be linked to the
“measurement rate” «a, used in the compressed sensing literature, by

M log, B
““N " BR (23)



32 Universal Sparse Superposition Codes

< I

HonvT

N/T
>

y

Figure 2.2: A spatially coupled coding matrix F*° € RM*N made of I' x I blocks
indexed by (r,c¢), each with N/I" columns and M/I' = aN/T" rows where o =
(log, B)/BR. The i.i.d elements in block (r,¢) are distributed as AV (0, J,.I'/L).
Away from the boundaries, in addition to the diagonal (in red), there are w forward
and w backward coupling blocks. In this example, the design function g, enforces
a stronger backward coupling where the non-uniform variance across blocks is
illustrated by the level of shading. Blocks are darker at the boundaries because the
variances are larger so as to enforce the variance normalization 25:1 Jre=1VYr.
The yellow shape emphasizes variance symmetry.

Thus, the same algorithms and analysis used in compressed sensing theory like
the GAMP algorithm and SE can be used in the present context. See [78] for
more details on this interconnection.

2.2.2 The Spatially Coupled Ensemble

We consider spatially coupled codes based on coding matrices F©© € RM*N a5
depicted in Fig. 2.2. A spatially coupled coding matrix F is made of I' x I"
blocks indexed by (r,¢), each with N/T" columns and M/T" = aN/I" rows. The
structure of F* induces a natural decomposition of the message into I' blocks,
s = [s1,...,sp], where each block is made of L/T" sections.? F is constructed
such that each block is coupled (except at the boundaries) with w forward
blocks and w backward blocks, where w is the coupling window. The strength
of the coupling is specified by the variance J, . of each block (7, ¢). The entries
inside each block (r,c) of F* are i.i.d. distributed as N'(0, J,..'/L).* In order
to impose homogeneous power over all the components of Fs, we tune the
(unscaled) block variances J,.. such that the following variance normalization

20f course N, M, L,T" can always be chosen s.t N/T', M/T', L/T are integers.

3In the original uncoupled construction the variance scales as the inverse number of
sections. In the coupled construction the variances within a block scales as the inverse
number of sections within a block.
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condition holds for all » € {1,...,T'}

r
Z Jr,c = 1. (24)
c=1

This normalization induces homogeneous average power over all codeword
components, i.e. |[Fs|[2/M = 1. There are various ways to construct the
variance matrix J of the spatially coupled matrix such that (2.4) holds. For
instance, one can pick J,..’s such that the coupling strength is uniform over
the window. However, we will consider a more general construction in this
chapter by using a design function g,. The design function satisfies

(2.5)

where g, g are strictly positive constants independent of w. Moreover, g,
is assumed to be Lipschitz continuous on |z| < 1 with Lipschitz constant g,
independent of w. In particular

k K s
w(—) — gu(—)| < =k — K|, 2.6
19 (=) = gu ()] < k= K] (2.6)
for k, k' € {—w, ..., w}. Furtheremore, we impose the following normalization
1 k
wl—) =1 2.7
2w—|—1kzz_wg (w) (27)

The design function is then used to construct the variances such that (2.4) and
(2.7) are satisfied. Hence, we choose

JTC:Tgw((c—T)/w): gu((c—r)/w)/(2w+1) | |
T S S N [Py T

where 7, is tuned to enforce (2.4). Note that, away from the boundaries, v, is a
trivial term equal to 1. However, ~, changes at the boundaries to compensate
for the lower number of blocks being coupled (see Fig. 2.2 where darker colors
were used at the boundaries to stress on this point). The following remarks
will be used in the analysis. We always have 1 < ~, < Q_l and

Jre <(9/9)(2w +1)"". (2.9)

In the bulk (i.e. away from the boundaries), the following variance symmetry
property holds for k € {2w +1,..., T — 2w}

I I
> k= Jre=1 (2.10)
r=1 c=1
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The ensemble of spatially coupled matrices is then parametrized by the
parameters (M, R, B,I',w, g,,). Note that the coupling induced by ¢, is not
necesssarily symmetric, hence the present construction generalizes the ones
in [81, 82, 119] which all require g, (—x) = g,(z), while we do not. This
relaxation may strongly improve the perfomances in practice [111].

One key element of spatially coupled codes is the seed introduced at the
boundaries. We assume the sections in the first 4w and last 4w blocks of the
message s to be known by the decoder (the choice of 4w blocks is convenient
for the proofs and will become clear in Section 2.5). This boundary condition
can be interpreted as perfect side information that propagates inwards and
boosts the performance. Note that one could also impose the seed differently
by constructing a coding matrix with lower communication rate (higher mea-
surement rate) at the boundaries [77, 78, 117, 111, 115]. The seed induces a
rate loss in the effective rate of the code

Reﬁ:R(1—8—w). (2.11)
r

However, this loss vanishes as L — oo and then I' — oo for any fixed R. As
already mentioned, in addition to lower decoding error, the main advantage of
coupled SS codes w.r.t power allocated ones is that they allow communication
at high rate with a small section size B, while power allocated codes require
a much larger B, which prevents communication of messages of practically
relevant sizes [78].

2.3 Generalized Approximate Message-Passing
Algorithm

The posterior distribution describing the statistical relationships in the decod-
ing task is given by (in the following discussion F denotes a generic coding
matrix)

_ Hlel po(st) Hﬁil Pout<yu| [FS]M> '
Jds HlL:1 po(si) H,iwﬂ Pout (yul[Fs],.)

In the SS codes setting, the sections of the information word are uniformly
distributed over all the possible B-dimensional vectors with a single non-zero
component equal to 1. Hence, the prior of each section reads

P(sly, F)

(2.12)

1 B B-1
Polst) = B 253”,1 H 051,05 (2.13)
i=1

J#i

where s;; is the i* component of the I section (here i € {1,...,B} and
[ € {1,...,L}). The posterior distribution (2.12) can be represented via a
graphical model as shown in the Lh.s of Fig. 2.3. Therefore, it is natural to
consider an iterative message-passing algorithm to perform the decoding. For a
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Figure 2.3: Left: Factor graph of the underlying ensemble showing the statistical
relationships between the B-dimensional sections (circles) of the information word
s given the known prior py(s) (plain squares), the coding matrix F and the channel
observation y (colored squares). The BP algorithm estimates s via iterative ex-
change of messages, along edges, between circle-nodes and square-nodes. Right:
The GAMP algorithm simplifies the BP operations to a sequence of estimation
problems from Gaussian noise. At the [ section, 1; is the output of an effective
Gaussian channel of zero mean and covariance matrix diag(77).

dense graphical model, Belief Propagation (BP) is computationally prohibitive
but can be simplified down to the AMP algorithm which has been successfully
used in many applications, mainly in compressed sensing [69, 60]. The AMP
algorithm uses efficient Gaussian (or quadratic) approximations of BP that
“decouple” the vector-valued estimation problem into a sequence of scalar es-
timation problems under an effective Gaussian noise (r.h.s of Fig. 2.3). The
sum-product version of AMP (originally used to perform MMSE estimation in
compressed sensing with AWGN channel) was adapted in [36, 78] to SS codes
by incorporating the structured B-dimensional prior distribution (2.13). The
GAMP algorithm extends the approximations made in AMP to any memo-
ryless channel [110]. Interestingly, the same Gaussian approximations on a
dense graph remain valid under GAMP, even for a non-Gaussian channel, and
the only difference appears in the computation of the effective Gaussian noise
parameters.

The GAMP algorithm was originally introduced to estimate signals with
i.i.d components [110]. In the present context the message components are
correlated through po(s;), therefore we adapt GAMP to cover this vectorial
setting. The steps of GAMP are shown in Algorithm 2.1 below. The “02”
and “o — 1”7 symbols mean that the square and inverse operations are taken
componentwise: (F*?),; = FZ and (F°~'),; = F;'. All the derivatives in
Algorithm 2.1 are also taken componentwise. The function g;, depends on the
input prior distibution and it is adapted from [110] to act on B-dimensional
vectors. Due to the code construction, gi,(f;, diag(7])) can be interpreted as
the MMSE estimator, or denoiser, of a given B-dimensional section s; sent
through an effective Gaussian channel of zero mean and covariance matrix
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diag(7]) where
r=s+& &~ N(0, diag(y)). (2.14)

Definition 2.1 (Denoiser). Formally, we define the denoiser acting section-
wise on each B-dimensional section of the message as follows

_ J dsipo(s)N (7] 51, diag(]))si
[ dsipo(s)N (7]s), diag(7]))

where S; ~ po(s;). Plugging (2.13) yields the componentwise expression of the
denoiser used in the GAMP algorithm for SS codes

(gin (71, diag()))); = E‘fXP((% —1)/@27))

3o exp((2; — 1)/ (27))
_ [1 +3 exp ((27% —1)/(27) — (27 — 1)/(27;;)” -

JFi

gin(i7, diag(7)) ;== E[S| | R, = 7] (2.15)

where i € {1,...,B}.

Moreover, the componentwise product T{oa% Jin, that appears in Algorithm
2.1, is the estimate of the posterior variance which quantifies how “confident”
GAMP is in its current iteration. This is given by

0 - . - .
T] 0 a—ﬂgin(rl,dlag(ﬁ)) =var(S; | Ry =1)
=E[S;? | R, =1]— (B[S, | Ry =#))%,  (2.16)

where the expectation and the variance are induced from (2.14). As the mes-
sage s in SS codes consists of only 0’s and 1’s, we have that E[S}? | R, = 1] =
E[S; | R, = #]. Hence, the calculation of var(S; | Ry = ;) is immediate using
(2.13) which yields the following componentwise expression

T

[T 0 %gin(ﬁ,diag(ﬁ))]i = [gin(F1, diag(71))]; — (g (1, diag(77))];)*.

The function gy (in Algorithm 2.1 below) is acting componentwise and de-
pends solely on the physical channel P,,. The general expression of guu is
given in Appendix 2.8.1 as well as examples for different communication chan-
nels.

The computational complexity of GAMP is dominated by the O(MN) =
O(L*BIn(B)) matrix-vector multiplication. It can be reduced, for practical
implementations, by using structured operators such as Fourier and Hadamard
matrices [77, 121]. Fast Hadamard-based operators constructed as in [77], with
random sub-sampled modes of the full Hadamard operator, allow to achieve a
lower O(L1In(B)In(BL)) decoding complexity and strongly reduce the mem-
ory need (78, 124]. Besides practical advantages, using structured operators
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Algorithm 2.1 GAMP (y,F, B, nlter)

1: é(o) < ON,I

2: 7O « (1/B)1y,

3: 2(71) — OM,l

4: ~— 0

5. while ¢t < nlter do

6: P F2psl)

7. f)(t) « FsW _ @) 4 51

8: i(t) < Yout (IA)(t)7 Yy, Tp(t))

9: 72t «— _%gout(p(t)a y, Tp(t))
10: 7O (PO

11: #® — 8V 4 @6 ((i(t))TF)T
12: s g (89, diag (77 ™))

132 D W, ﬁgin(f‘(ﬂ, diag(7*®))
14: t — t+1

can lead to a more robust finite-length performance [77]. However, random
operators are mathematically more tractable and easier to analyse. Hence, we
restrict ourselves in this chapter to random operators.

Decoding SS codes using an iterative message-passing algorithm, such as
GAMP, leads asymptotically in L to a sharp phase transition below Shannon’s
capacity. The decoder is therefore blocked at a certain threshold separating the
“decodable” and “non-decodable” regions. Moreover, SS codes under message-
passing decoding may exhibit, asymptotically in L and for any fixed alphabet
size B, a non-negligible error floor* in the decodable region (similarly to low-
density generator-matrix codes [27]). Whenever the error floor exists, it can
be made arbitrarily small by increasing B [77, 78].

2.4 State Evolution and Potential Formulation

The asymptotic behavior of the AMP algorithm operating on dense graphs
can be tracked by a simple recursion called state evolution (SE), similar to
the density evolution (DE) for sparse graphs. The rigorous proof showing
that SE tracks exactly the asymptotic performance of AMP and GAMP was
given in [69, 115]. Moreover, the extension of the SE equation of AMP to
SS code settings, with B-dimensional structured prior distribution and power
allocation, was proven to be exact in [37]. We believe that the methods of [37]
and [115] can be extended to the present setting of spatially coupled SS codes
and GAMP algorithm. This would prove that SE correctly tracks GAMP, a
conjecture which is firmly supported by numerical simulations [121].

4In fact, the existence of error floor depends on the communication channel being used.
for example there is no error floor for the BEC and BSC but there is one for the AWGN
channel.
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2.4.1 State Evolution of the Underlying System

SE tracks the performance of GAMP by computing the average asymptotic
mean-square error (MSE) of the GAMP estimate 8 at each iteration ¢

- 1 .
BE® = mgozZHsg“ — sl (2.17)

It turns out that tracking the GAMP algorithm is equivalent to running a
simple recursion that iteratively computes the MMSE of a single section sent
through an equivalent AWGN channel. This equivalent channel is induced by
the code construction and has an effective noise variance that depends solely
on the physical channel P, (y|z). In order to formalize this, we first need
some definitions.

Definition 2.2 (Effective noise). The effective noise variance ¥*(E), paramet-
rized by E € [0, 1], is defined via the following relation

Eyps[F (p|E)]
R )
where the expectation By g is w.r.t N(p|0,1 — E) and

Y2(E) =

f@sz/@ﬁmeX@mfwnEw

is the Fisher information of the parameter p associated with the probability
distribution of the random variable Y with density

tmmm:/mmmmmmﬂy

See Appendix 2.8.1 for explicit expressions for various communication chan-
nels.

We will need some regularity properties for the function 3(F) which boils
down to mild assumptions on the channel transition probability Py, (y|z).

Assumption 2.1 (Continuity and boundedness of ¥(E)). The channel tran-
sition probability Py (y|z) is such that S(E) is a continuous and twice differ-
entiable function of E € [0,1].

Assumption 2.2 (Scaling of X7%(F) as E — 0). The channel transition prob-
ability Py (y|x) is such that X72(E) and its first two derivatives are bounded by
a polynomial in E=Y. Formally, for a given channel there exist two constants
C >0 and 8 > 0 such that

9x2(E)
OF

I O

max (E”(E), y D52 TP

AE) (2.18)

for all E € [0,1].
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Figure 2.4: ¥.7%(F) and its first two derivatives in a semi-log scale for the BSC
(left) and the BEC (right) with flip and erasure probabilities e = 0.1 and R = 0.2.
Assumption 2.2 is satisfied with exponents 5 = 1/2 and 5/4. Furthermore, the
effective noise variance of both channels is bounded with 3?(E) < 1/2. Note that
the mapping 7 ([Fs|,) = sign([Fs|,) was used here.

These assumptions will be needed in the proof of threshold saturation in
Section 2.5. In practice they can be checked on a case by case basis for each
channel at hand. For the AWGN channel, we have the analytic simple ex-
pression ¥?(E) = (snr™! + E)R so the assumptions are obviously satisfied.
One can also check them for the binary symmetric channel (BSC), binary era-
sure channel (BEC) and Z channel (ZC), using the tedious expressions for the
Fisher information given in Table 2.1 in Appendix 2.8.1. Fig. 2.4 illustrates
¥7%(F) and its derivatives for the BSC and BEC.

The following lemma (which is independent from the assumptions) will also
be needed.

Lemma 2.1. ¥2(E) is non-negative and increasing with E. In particular
Y2(E) < ¥%(1) < 4o00.

Proof. Positivity of the Fisher information implies ¥%(E) > 0. The proof that
it is increasing is a straightforward application of the data processing inequality
for Fisher information (e.g. Corollary 6 in [125]). O

From now on, S ~ po(s) and Z ~ N(0,1Ip) are B-dimensional random
vectors with corresponding expectations denoted Eg z, and Z ~ N (0, 1) with
expectation denoted E .

Definition 2.3 (SE of the underlying system). The SE operator of the under-
lying system is the average MMSE of the equivalent channel

Tun(E) := mmse(X(E))

~Eas 3 ([on(5+ 220 L20)) s’
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where gi, 1s the denoiser given in Definition 2.1

(o o i 8)]. -

>
\/log, B’ log, B

B —1
1+ Ze(sk—si)logQ B/%24(2,—2;)y/logy B/S .

ki

(2.19)

The SE iteration tracking the performance of the GAMP decoder for the un-
derlying system can be expressed as

B 1 (BO), >0,
with the initialization E© = 1.

Note for further use that (2.19) is a well defined continuous function of
Y > 0 (all other arguments being fixed). At ¥ = 0 we define the function by
its continuous extension which is obviously finite. Thus we will consider that
gin 18 continuous for 3 > 0.

After t iterations of the GAMP algorithm, the MSE tracked by SE is de-
noted by Téﬁ)(E(O)). The monotonicity properties and the continuity of the SE
operator, discussed in Section 2.5.1, ensure that eventually all initial conditions
converge to a fixed point. More specifically, the following limit exists

lim TWE®Y) .= 1) (EO), (2.20)
—00

for all E© € [0,1] and satisfies
Tu(TEI(ED)) = TEO(ED). (2.21)

Having introduced the SE iteration, the following definitions can be prop-
erly stated.

Definition 2.4 (MSE Floor). The MSE floor E¢ is the fized point reached
from the initial condition of zero error,

Ee = T%(0).

Note that for the channels where E = 0 is not a trivial fized point of the SE
at a finite section size B, the MSE floor E¢ is strictly positive. For example,
this is the case for the AWGN channel [36, 78]. However, one can show that
for certain channels W there exists a trivial fized point E = 0 of SE leading
to vanishing MSE floor even at finite B. This is typically the case for binary
input channels and has been proved explicitly for the BEC, BSC and Z channels
[121]. For generality, we will always denote the MSE floor as Er whether it is
zero or not.

Definition 2.5 (Basin of attraction). The basin of attraction V, to the MSE
floor E¢ is defined as

Vo= {E € [0,1]| T{P(E) = Er}.
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Definition 2.6 (Threshold of underlying ensemble). The GAMP threshold of
the underlying ensemble is defined as

Run i=sup{R > 0| T (1) = E¢}.

For the present system, one can show that the only two possible fixed points
are T2 (0) and TS5 (1). For R < Ry, there is only one fixed point, namely
the “good” one T2 (0) = E;. Whenever E; is non-zero, it will vanish as the
section size B increases (see Section 2.6). Instead if R > R,,, the GAMP
decoder is blocked by the “bad” fixed point T35 )(1) > Es. The “bad” fixed
point does not vanish as B increases.

The GAMP algorithm “tries” to minimize the MSE. Thus the natural quan-
tity being tracked by SE is the MSE. But one can also assess the performance
of GAMP by looking at the section error rate (SER) (which is more natural
for coding problems) after applying a hard decision (HD) thresholding on the
decoder’s output. The analytical relationship between MSE and the SER has
been discussed in [36, 78] and one verifies that an MSE going to zero implies
a SER going to zero.

2.4.2 State Evolution of the Coupled System

For a spatially coupled system, the performance of GAMP at each iteration ¢ is
described by an average MSE vector [Eét) | c€{1,...,I'}] along the “spatial
dimension” indexed by the blocks of the message with

- N A
EW = hnolOZZHSP —sl?, ce{dw+1,.... T — 4w}, (2.22)

where the sum [ € ¢ is over the set of indices of the L/T" sections composing
the c-th block of s. To reflect the seeding at the boundaries, we enforce the
following pinning condition for all ¢ € {1, ..., 4w} U{l —4w +1,...,T}

EY =0 t>0, (2.23)

where the message at these positions is assumed to be known to the decoder
at all times.
It turns out that the following change of variables

T
EM =Y " J ED, (2.24)
c=1

where E = [E, |r € {1,...,T'}] is called the profile, makes the problem math-
ematically more tractable for spatially coupled codes. The pinning condition
implies

EY =0, t >0, (2.25)

forallre R:={1,....3w}U{l' =3w+1,...,T'}.
An important concept is that of degradation because it allows to compare
different profiles.
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Definition 2.7 (Degradation). A profile E is degraded (resp. strictly de-
graded) with respect to another one G, denoted as E = G (resp. E - G), if
E.> G,V r (resp. there exists some r such that the inequality is strict).

In order to define the SE of the spatially coupled system, we need first the
following definition.

Definition 2.8 (Per-block effective noise). The per-block effective noise vari-
ance Y2(E) is defined, for all c € {1,...,T}, by

Jr,c
R

hE

BB = Y g = X B (Pl

r=1 r=1

Definition 2.9 (SE of the coupled system). The vector valued coupled SE
operator is defined componentwise fort > 0 as

E£t+1) - [TCO(E(t))]T

B

r () 2( ()
= Z Jr,cES,Z[Zl <gin,i <S+ Z\icsg%)’ Zlf)(gljB)> B Si> 2}’

forr & R. Note that for r € R, the pinning condition EY =0 is enforced at
all times. SE is initialized with B\ = 1 forr ¢ R.

c=1 i

Definition 2.10 (Threshold of coupled ensemble). The GAMP threshold of
the spatially coupled system is defined as

R, := liminf,, ,liminfr_, . sup{R > 0| TC((;’O)(l) =< E;}

where 1 is the all ones vector and Ey = [E, = E¢|r € {1,...,T}] is the MSE
floor profile (recall E¢ in Definition 2.4). The ezistence of the limit T§§°)(1) is
verified in Section 2.5.1. Note that the degradation = holds with equality for
the cases where Ey = 0.

Assumption 2.3. For the noisy compressed sensing problem, the rigorous
proof that SE tracks the performance of GAMP, on both the underlying and
spatially coupled models, was already done in [115] by generalizing the work
of [69]. For the SS codes, we assume that the same results hold. The proof
is beyond the scope of this work and would follow the same analysis of [37]
to account for the B-dimensional prior of the SS codes. Our assumption s,
however, supported by numerical simulations [121].

2.4.3 Potential Formulation

The fixed point solutions of SE can be reformulated as stationary points of a
potential function. This potential function can be obtained from the replica
method [36] as shown in Appendix 2.8.4 or by directly integrating the SE fixed
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point equations with the correct “integrating factor as done in [82]. Our
subsequent analysis does not depend on the means of obtaining the potential
function which is here a mere mathematical tool.

Definition 2.11 (Potential function of underlying ensemble). The potential
function of the underlying ensemble is given by

Fun(E) = Uun(E) - Sun(Z(E))7

with
R S
2In(2)X%(E)

S (X(E)) == Egz[logB/dBwpo(w)H(m, S,Z,E(E))],

where

Uun(E) i= - - 22| [ dvoiz.)tog, 00012,

é(ylz, E) == /d:vPout(y|$)N($|zx/1 —E,E),
|z — (s+ 2X(E /\/10g2 ||2)

252(E)/log, B

Replacing the prior distribution of SS codes (2.13) in the definition of Sun, one
gets

O(, s, 2,5(E)) = exp (

B

where
Zi — 21 1 )

ei(za) = exp ( - )

Definition 2.12 (Free energy gap). The free energy gap is
AF,, = infpgy, (Fun(E) — Fun(EY)),

with the convention that the infimum over the empty set is oo (i.e. when

R < Ru,).
Definition 2.13 (Potential threshold). The potential threshold is defined as
Ryot == sup{R > 0| AF,, > 0}.

We give examples of potential functions for the BEC and the AWGN chan-
nel in Fig. 2.5 for B = 2. Because of Lemma 2.2 below, the minimum that
is in the basin of attraction of £ = 0 corresponds to the error floor Ff. We
observe that there is a non-vanishing error floor for the AWGN channel but a
vanishing one for the BEC. The latter situation is also the case for the BSC
and 7Z channel.

Similarly to the underlying ensemble, one can define the potential function
of the spatially coupled ensemble that is applied on a vector indexed by the
spatial dimension.
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Figure 2.5: The potential functions for the BEC with ¢ = 0.1 (left) and the
AWGN channel with snr = 100 (right), in both cases with B = 2. The black
dots correspond to the global minima while the red dots correspond to the local
minima preventing GAMP to decode (e.g.yellow curve). The x-axis is given in the
log scale to differentiate between the BEC where there is no error floor and the
AWGN channel with non-negligible error floor.

Definition 2.14 (Potential function of spatially coupled ensemble). The po-
tential function of the spatially coupled ensemble is given by

The following lemma links the potential and SE formulations.

Lemma 2.2. If Tun(EO) = E, then % 5 = 0. Similarly for the spatially

coupled system, if [Too(E)], = E, ¥V r € R® = {3w+1,...,I — 3w} then

%%:|E:0VTERC.

Proof. See Appendix 2.8.2. O]

We end this section by pointing out that the terms composing the po-
tentials have natural interpretations in terms of effective channels. The term
Ez[[ dy ¢log,(¢)] in Uyn(E) is minus the conditional entropy H(Y|Z) for the
concatenation of the channels N (z|zv/1 — E, E) and P,y (y|z) with a standard-
ised input Z ~ N(0,1). The term S,,(X(E)) is equal to minus the mutual
information I(S;Y)/log, B for the Gaussian channel N (y|s, Iz X%(F)/ log, B)
and input distribution py(s), up to a constant factor —(21n2)~!.

2.5 Threshold Saturation

We now prove threshold saturation for spatially coupled SS codes using meth-
ods from [82]. The main strategy is to assume a “bad” fixed point solution
of the spatially coupled SE and to calculate the change in potential due to a
small shift in two different ways: i) by second order Taylor expansion (Lemma
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2.4 and Lemma 2.6), 77) by direct evaluation (Lemma 2.8). We then show by
contradiction that as long as R < R, the SE converges to the “good” fixed
point (Theorem 2.1).

In Section 2.5.1 we start by showing some essential properties of the spa-
tially coupled SE operator.

2.5.1 Properties of the Coupled System

Monotonicity properties of the SE operators T,,, and T, are key elements in
the analysis.

Lemma 2.3. The SE operator of the coupled system maintains degradation in
space, i.e. if E = G, then T.o(E) = T.o(G). This property is verified for Ty,
for a scalar error as well.

Proof. Combining Lemma 2.1 with the first equality in Definition 2.8 implies
that if E > G, then ¥.(E) > X.(G) V ¢. Now, the SE operator of Defini-
tion 2.9 can be interpreted as an average over the spatial dimension of local
MMSE’s. The local MMSE’s for each position ¢ =1,--- ,I" are the ones of B-
dimensional equivalent AWGN channels with noise & ~ N(0,1532/log, B).
These are non-decreasing functions of ¥2: this is intuitively clear but we pro-
vide a justification based on an explicit formula for the derivative below. Thus
[Teo(E)]r > [Teo(G)], ¥ r, which means T, (E) = T,o(G).

The derivative of the MMSE of the Gaussian channel with i.i.d. noise, dis-
tributed as N (0, Iz 3?), can be computed as

dmmse(X)  d

d(x-2) “dQ}J)EX”[
= —2Ex v [[| X — E[X|Y]||3Var[X]|Y]]. (2.26)

X — E[X[Y]]3]

This formula is valid for vector distributions py(x), and in particular, for our
B-dimensional sections. It confirms that T, (resp. [Tt,],) is a non-decreasing
function of ¥ (resp. X.). In particular the local MMSE’s for each position
c¢=1,---,I" in definition 2.9 are non-decreasing. O

Corollary 2.1. The SE operator of the coupled system maintains degrada-
tion in time, i.e. Teo(EY) < EY implies T.o( By < EYY - Similarly,
Too(EY) = EO implies To( VYY) = EYY . Furthermore, if we take the ini-
tial conditions E®) = 1 (the all one-vector) or E®) = 0 (the all zero-vector)
the limiting profile

lim EY := T (EO), (2.27)

t—o0
exists. Finally under Assumption 2.1 the limiting profile is a fived point of Te,,
i.e.,

Too( TS (EY)) = T (EY). (2.28)

co

These properties are verified by Ty, for the underlying system as well.
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Emax

>

Figure 2.6: A non-symmetric error profile in a typical SE iteration. The solid
line corresponds to the original spatially coupled system and the dashed line to
the modified system. The error profile of the original system has a 0 plateau
for all » < 3w and it increases until 7., Where it reaches its maximum value
Frnax € 10,1]. It flattens after rp,.x then it decreases to reach 0 at I' — 3w + 1
and remains null after. The non-symmetric shape of the double-sided wave in
Fig. 2.6 emphasises that we are considering the generic case of non-symmetric
coupling strength when designing spatially coupled matrices (see Section 2.2).
The error profile of the modified system (dashed line) starts with a plateau at £
for all r < r,, where r, + 1 is the first position s.t the original profile is at least
F¥, and then matches that of the original system for all r € {re, o Tmax}- It
then saturates to E.. for all 7 > r... Note that if E < E; then 7, = 7pax.
By construction, the error profile of the modified system is non-decreasing and
degraded with respect to that of the original system.

Proof. First we note Too(EY) < EY means E¢Y < E® and thus by Lemma
2.3 Too(ETY) < Too(E®) which means T.o(E¢™) < E¢*Y. The same ar-
gument shows that T,,(E®) = E® implies T.o(E¢Y) = E®Y. Let us
show the existence of the limit (2.27) when we start with the initial condi-
tion E® = 1. This flat profile is maximal at every position thus after one
iteration we necessarily have EY < E© . Applying ¢ times the operator Th,
we get EMHY < E® which means BTy < EY. Thus for every position we
have a non-increasing sequence which is non-negative. Thus the sequence con-
verges and lim, ., E® = T )(1) exists. The same argument applies if we
start from the initial condition E() = 0 (the limit may be different of course).
To show the last statement (2.28) we argue that Tt is continuous with respect
to E. We already noted after Definition 2.3 that the denoiser [gi,); is a contin-
uous function of ¥ > 0. Clearly, the denoiser satisfies 0 < [giy]; < 1 also, and
so does the expression ([gi,]; — s;)?. A look at the Definition 2.9 of [T.,(E)],
thus shows, by Lebesgue’s dominated convergence theorem, that [T.,(E)], is
jointly continuous in 3.(E), ¢ = 1,--- ,I". Thanks to Definition 2.8 and the
Assumption 2.1 of continuity of X(F), we conclude that T, is a continuous
function of E. O

Corollary 2.2. Starting from the error profile EY) = 1 and due to the pinning
condition, as the SE progresses the error profile must adopt the shape of the
solid line shown on Fig. 2.6: it is O for r < 3w, non-decreasing for 3w < r <
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Tmax, NON-tncreasing for rpax <7 < I'—=3w+1 and 0 forI' =3w+1<r <T.

Proof. For a large enough I', the pinning condition (2.25) and the variance
symmetry (2.10) ensure that in the first SE iteration X2(E(®) = 1) satisfies
the following ordering along the positions: ) it is non-decreasing for all ¢ €
{1,...,4w + 1}, i7) it is non-increasing for all ¢ € {I" — 4w, ..., T'}, di7) it is
constant elsewhere. Using the pinning condition again and the fact that the
componentwise SE operator is non-decreasing in ¥? (see the proof of Lemma
2.3), one can show that after the first SE iteration the error profile EY must
adopt the following ordering: ) it is non-decreasing for all » € {1,..., 5w+1},
i1) it is non-increasing for all r € {I' = 5w, ..., '}, 4i7) it is constant elsewhere.
Repeating the same argument by recursion one deduces that a double-sided
wave (solid line shown in Fig. 2.6) propagates inwards as the SE progresses. [

Recall that state evolution is initialized with E® = 1. The iterations will
eventually converge to a fixed point profile

EC) = 7 (1), (2.29)

The fixed point reached by SE may be the “good” MSE floor profile E¢ or may
be a “bad” profile which is strictly degraded with respect to Ex.

2.5.2 Proof of Threshold Saturation

The goal of this section is to arrive at a proof of the two main results, namely
Theorem 2.1 and Corollary 2.3, both formulated at the end of the section. In
this section we consider rates in the range 0 < R < Rpo. Thus the gap given
in Definition 2.12 is strictly positive and finite, i.e., 0 < AF,, < 4o00.

Definition 2.15 (The pseudo error floor). We fix 0 < n < 1 (the reader
may as well think of n = 1/2 in all subsequent arguments of this section).
It can be shown that continuity of X(E) (Assumption 2.1) implies that the
potential function Fu,(E) is continuous for E € [0,1]. In particular it is
continuous at the error floor F¢. Therefore we can find §(n, B, R) > 0 such
that |Fun(E) — Fun(Er)| < nAF,, whenever |E — E| < 6(n, B,R). Now we
take any 0 < € < 6(n, B, R) and set B = E; + €. We have in particular
|Fun(Er) — Fun(Er)| < nAFy,. This number Er, will serve as a “pseudo error
floor” in the analysis.

Definition 2.16 (The modified system). The modified system is a modification
of the SE iterations defined by applying two saturation constraints to the error
profile of the original system at every iteration. First recall that the error
profile of the original system has a 0 plateau for all v < 3w and increases until
Tmax Where it reaches its mazimum value Eya, € [0,1]. It flattens after rpax
then it decreases to reach 0 at I'—3w+1 and remains null after. Now take any
0 <e<dn, B,R) and set E¢ = B¢+ ¢ where E is the true error floor. At each
iteration the profile of the modified system is defined by applying the following
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two saturation constraints: (i) the profile is set to the pseudo error floor Ef
for allr < r,, where r,+1 is the first position s.t the original profile is at least
Ey; (i) the profile is set to Eway for all 7 > Thax. For v € {ry, ... Tmax} the
profiles of the modified and original systems are equal.

Fig. 2.6 gives an illustration of this definition: the full line corresponds to
the original system and the dashed one to the modified system. By construc-
tion, the error profile of the modified system is non-decreasing and degraded
with respect to that of the original system. We note that when the error floor
is non-vanishing (e.g. on the AWGN channel) we could take in the analysis
E; = E; + € — E; for fixed code parameters. However for zero error floor we
need to have € > 0 in the analysis. For code parameters w and I' large enough
we can make e arbitrarily small.

The fixed point profile of the modified system is degraded with respect to
E®) thus the modified system serves as an upper bound in our proof. Note
that the SE iterations of the modified system also satisfy the monotonicity
properties of T, (see Section 2.5.1). Moreover, the modified system preserves
the shape of the single-sided wave at all times. In the rest of this section we
shall work with the modified system.

We now choose a proper shift of the saturated profile in Definition 2.17,
and then evaluate the change in potential due to this shift in two different
ways in Lemma 2.6 and Lemma 2.8. Theorem 2.1 and Corollary 2.3 will then
be easy consequences.

Definition 2.17 (Shift operator). The shift operator is defined pointwise as
S(B): == Br, [S(B)), = By,

Lemma 2.4. Let E be a fixed point profile of the modified system initialized
with E®) = 1. Then there exist t € [0,1] such that

1« 0°F,
Foo(S(E)) — Feo(E) = B) Z AE,AE,. {aE—chOJ K
r r 1R

rr/=1

where AE, := E, — E,_y and E := (1 — {)E + {S(E). Note that t depends in
a non-trivial fashion on E.

Proof. Consider F,(t) := Foo(E+t(S(E)—E)) and note that F,(0) = Fo(E),
Foo(1) = Feo(S(E)). Since [S(E)], = E, + AE, the mean value theorem yields
Fc

a 1 0°F,
r=1 rr/=1 T T

(2.30)

for some suitable { € [0,1]. By saturation of B, AE, = 0V r € B =
{1,...,m} U{rmax + 1,...,T'}. Moreover for r ¢ B, E, = [T,(E)],, and
thus by Lemma 2.2 the potential derivative cancels at these positions. Hence
the first sum in the right hand side of (2.30) cancels. O
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Lemma 2.5. The fixed point profile of the modified system initialized with
E© = 1 is smooth, meaning that AE, satisfies the following

9« + g -
|AE,| < exp(—c(B)2 (B yw))
wg
g« + g
wyg

<

Y

where w is the coupling window and c¢(B) > 0 is a constant depending only on
B; whereas g., g and g correspond to the design function defined in Section

Proof. AE, =0 for all r € B. By construction of {J, .} we have

gul(r — ) /w)
e S T w1

Moreover from Definitions 2.8 and 2.9 of the coupled state evolution operator,
the fact that mmse is an increasing function of the noise and Lemma 2.1, we
have mmse(X.(E)) < mmse(X(FE,4y)) for ¢ = r —w, -+ ,r +w. Thus using
Lipschitz continuity of g,,, we have for all r ¢ B that

‘AEr’ = [TCO(E)]T - [TCO<E):|T'*1

— ’ i(Jr,c — Jrfl,c)nlmse(z]c(E))‘

mmse (2 (Fr i 2 r—c r—1—c
- <2u€+(1>g ! > fon () = 0 (=)

ety (20 0+ ()

_ mmse(X(Er1y))
2wg

<2g*+2§)

g« t+ g
wy

< 90T (e B)T 2By ). (2.31)
The last inequality is obtained by knowing that for an equivalent AWGN
channel of variance ¥? and under discrete prior, mmse(X) < exp(—c¥X™2)
where ¢ is some positive number that depends on the prior (see e.g. Appendix
D of [104] for an explicit proof). Here the prior is uniform over sections so this
number depends only on B. O

Lemma 2.6. Let E be a fized point profile of the modified system initialized
with B = 1. Then the coupled potential verifies

|: 02Fco :| ’ K(B,g,g;g*)
E

T
1
- AE,AE, |——2 SRSl
2 ’ 2 OE,0E, (Et + €)% Rw

ror/=1

where K(B,g,9,9-) > 0. The important point here is that the estimate is
O(w™1).
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Proof. First remark that a fixed point of the modified system satisfies E > Eg.
For E = E; the result is immediate since AE, = 0. It remains to prove
this lemma for E a fixed point of the modified system such that E > E¢. In
Appendix 2.8.3 we prove that

K1(Ba£772) KQ(B £_] ﬂ)
+ 1\7” r'|<2w+1 2
(Br + OR (i + 0P R2w + 1)

) <5,

OFE,0E, 1% (232)

for some finite positive K(B,g,g) and Ky(B, g, g) independent of w and T'.
Since AFE, > 0, using the triangle inequality we get

r 2
%’ S AEAE, {%h)

ror/=1

Ki(B,3,9) « Ky(B,3,9) sl
< —= AE2 AFE, AFE,
_Q(Ef+€)R; +2(Ef+e25R2w—i—1 Z T;w

K _B7 7, Tmax K B7 rmax
B9 eam, S g gg)mxAE 3 AB

2(E; + )R 7

r=ry+1

Ki(B,g,9,9.) K3(B,g,9,9:)
~ 2(Ef+e)Rw  2(Ef+ €)*Rw’

r=rs+1

To get the last inequality we used Lemma 2.5 and Z;’;" 41 AE, = Eox —

E,, 1 < 1. Finally, one can find K(B, g, g, g-) > 0 such that the last estimate
is smaller than -
(Ef + G)QBRU}
O

The change in potential due to the shift can be also computed by direct
evaluation as shown in the following lemmas.

Lemma 2.7. Let E be a fized point profile of the modified system initialized
with B9 = 1. If E = E;, then Fp. cannot be in the basin of attraction to
the MSE floor, i.e., Enax & Vo.

Proof. Knowing that E = E; and also that E is non-decreasing implies Fy <
Eax. Moreover, we have that

T
Emax - [TCO(E)]Tmax - Z ‘]Tmax,c mmse(Zc(E))

c=1
T

< e M8(S(Bina)) < Tun(Brax),  (2.33)

c=1

where the first inequality follows from the fact that X.(E) < X(F.x) due to
the variance symmetry (2.10) at rp. and the fact that E is non-decreasing.
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The second inequality follows from the variance normalization (2.4). Applying
the monotonicity of T, on (2.33) yields

B¢ < Fr < Enax < T (B, (2.34)
which implies that Eyax ¢ Vo. O

Lemma 2.8. Let 0 < 1 < 1 fived and Ey = Ef + ¢ with any 0 < € <d(n, B, R)
where 6(n, B, R) has been constructed in Definition 2.15. Let E >~ Es be a fized
point profile of the modified system initialized with E®) = 1. Then E satisfies

FCO(S(E>> - FCO(E) S _(1 - n)AFum

where AFy, is the free energy gap of the underlying system given in Definition
2.12.

Proof. The contribution of the change in the “energy” term is a perfect tele-
scoping sum:

UCO(S(E)) - Uco(E) - Uun(Ef) - Uun(Emax)' (235)

We now deal with the contribution of the change in the “entropy” term. Using
the properties of the construction of J,. we notice that for all ¢ € {2w +
..., =2w—1}

c+14w ctw

J, J,
) o r,c+1 o r+1,c+1
Zchl(S(E)) = Z m - 22<E7")
r=c+1—w r=c—w
_ iéu Jr,c _ E_Q(E) (236)
r=c—w ZZ(ET) ‘

which yields

SCO(E) - SCO(S(E)) - Sun<EF—2w(E)) - Sun(z2w+1 (S(E)))
- Z[Sun(ZC(S(E))) - Sun(zc(E))L (237)

ceS

where S := {1, ..., 2w}U{l'—2w+1,...,I'}. By the saturation of the modified
system, E possesses the following property

S(E)], = [E], forall re{l,...,r.}U{rmax+1,...,T} (2.38)

Hence, X.(S(E)) = X.(E) for all ¢ € S and thus the sum in (2.37) cancels.
Furthermore, one can show, using the saturation of E and the variance sym-
metry (2.10), that Xy, 1(S(E)) = X(Ef). The same arguments and the fact
that rpa < T — 3w for E = E¢ lead to Sp_g,(E) = X(Ey.y). Hence, (2.37)
yields

SCO(E) - SCO(S(E)) = Sun(E(Emax)) - Sun(Z(Ef)) (239)
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Combining (2.35) with (2.39) gives

Fco(S(E)) — FCO(E) - _(Fun(Ernax) - Fun<Ef)) B
= —(Fun(Emax) - Fun<Ef)) + (Fun(Ef) o Fun(Ef))'

Using the definition of the free energy gap (Definition 2.12), the fact that
Frnax & Vo (Lemma 2.7), and Fy,(Ef) — Fun(Er) < nAF,, we find

FCO<S(E>) - Fco(E> < _(1 - n)AFun

Using Lemmas 2.4, 2.6, 2.8 we now prove threshold saturation.

Theorem 2.1. Let 0 < n < 1 fived and Ey = Ey+¢ with any 0 < € < §(n, B, R)
where 6(n, B, R) has been constructed in Definition 2.15. Fix

K(Ba ga g’ g*)
(E; + €)2PR(1 — 1) AF

R < R,y and w > (2.40)

Then the fized point profile E) of the coupled SE must satisfy E® < E.

Proof. Assume that, under these hypotheses, the fixed point profile of the
modified system initialized with E® = 1 is such that E > E¢. On one hand
by Lemma 2.8 we have for R < R, a positive AFy, and

’Fco(E) - FCO(S<E))’ > (1 - n)AFun-

On the other hand by Lemmas 2.4 and 2.6

K(B,g,9, 9+)
’FCO(E) - FCO(S(E))| S m

Thus we get
K(-Ba ga gﬂ g*)
(B +e)?PR(1 — n)AFu,
which is a contradiction. Hence, E < E;. Since E > E®) we have E() =<
E:. O

w <

The most important consequence of this theorem is a statement on the
GAMP threshold,

Corollary 2.3. By first taking I' — oo and then w — oo, the GAMP threshold
of the coupled ensemble satisfies Reo > Rpot-

This result follows from Theorem 2.1 and Definition 2.10. Once the limit
w — +00 is taken we can send € — 0 and the pseudo error floor tends to the
true error floor Ky — E.
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2.5.3 Discussion

Corollary 2.3 says that the GAMP threshold for the coupled codes saturates
the potential threshold in the limit w — +4o00. It is in fact not possible to have
the strict inequality R, > Ry, so in fact equality holds, but the proof would
require a separate argument that we omit here because it is not so informa-
tive. Besides, this argument is not needed in order to conclude that sparse
superposition codes universally achieve capacity under GAMP decoding when
B — +o00. Indeed we have necessarily R., < C and we know (Section 2.6)
that limp_,o Rpot = C. Thus limp_,o Reo = C.

We emphasize that Theorem 2.1 and Corollary 2.3 hold for a large class
of estimation problems with random linear mixing [110]. Both the SE and
potential formulations of Section 2.4 as well as the proof given in the present
section are not restricted to SS codes. Indeed all the definitions and results
are obtained for any memoryless channel P, and can be generalized for any
factorizable (over B-dimensional sections) prior of the message (or signal) s.

Theorem 2.1 states that for w large enough the state evolution iterations
will drive the MSE profile below some pseudo error floor E = E; + e. This is
then enough information to deduce that the threshold saturation phenomenon
happens in the limit where w — +o0 (and note we do not expect full threshold
saturation, i.e., R., — Rpo for finite w). However, it is worth pointing out
that the condition (2.40) in Theorem 2.1 on the size of the coupling window
is most probably not optimal. We conjecture that a better bound should hold
where w > C/AF,, for some C' > 0 which does not diverge when E; + ¢ — 0.
The appearance of the error floor in the denominator can be traced back to
inequality (2.32) whose derivation is detailed in Appendix 2.8.3. One possible
way to cancel this divergence would be to obtain a better bound on AFE, than
the one given by (2.31). More precisely if E,,,, can be replaced by E, then
the proof of Lemma 2.6 and Theorem 2.1 would give a more reasonable lower
bound for w. Carrying out this program presents technical difficulties in the
analysis of coupled state evolution which we have not overcome in this work.
The present difficulties do not appear in the analysis of spatially coupled LDPC
codes [27].

2.6 Large Alphabet Size Analysis and
Connection with Shannon’s Capacity

We now show that as the alphabet size B increases, the potential thresh-
old of SS codes approaches Shannon’s capacity Roo = limp o0 Rpot = C
(Fig. 2.7), and also that limp .o, Fr = 0. These are “static” or “informa-
tion theoretic” properties of the code independent of the decoding algorithm.
Nevertheless this result has an algorithmic consequence. The threshold satu-

ration established in Corollary 2.3 for spatially coupled SS codes implies that
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Figure 2.7: The potential threshold v.s the alphabet size B for the BEC with
erasure probability e = 0.1.

optimal decoding can actually be performed using the GAMP decoder, i.e.
limp 00 Reo = C, because Ry < Reo < C.

The potential of the underlying system contains all the information about
Rpor and Ry,. Hence, we proceed by computing the potential in the large B
regime,

o (E) == lim F,,(F). (2.41)
B—oo
The limit (2.41) is computed in [78, 126] for the AWGN channel. Extending
this computation to the present setting, one obtains

1

pun(E) = Un(E) — max<0, 1— W> (2.42)
The extension from the AWGN case is straightforward, the U,,(E) term in
Fun(F) is independent of B while the S,,(X(E)) term remains the same. The
difference is only in the computation of the effective noise ¥(E), which is in-
dependent of B. We note that (2.42) is not a trivial asymptotic calculation
because the “entropy” term S,,(3(FE)) involves a B-dimensional integral (see
Definition 2.11). Since B — oo, this amounts to compute a “partition func-
tion” (or equivalently solve a non-linear estimation problem where the signal
has one non-zero component). We have not attempted to make this asymp-
totic computation rigorous but we expect that the results of [78, 126] could be
made rigorous using the recent work [103, 104, 122, 127].

The analysis of (2.42) for E € [0, 1] leads to the following

Claim 2.1. For a fized rate R and E € [0,1], the only possible local minima
of un(E) are at E = 0 and E = 1. Furthermore, for E' € {E € [0,1] |
2In(2)X%(E) < 1} the minimum is at E' = 0 and for E' € {E € [0,1] |
2In(2)L%(E) > 1} the minimum is at E' = 1.
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Figure 2.8: The large alphabet potential ¢, (E) (2.42) as a function of the error
parameter E for the BSC (left) and AWGN (right) channels with ¢ = 0.1 and
snr = 10 respectively. ., (E) is scaled such that ¢,,(0) = 0. For R below the
“asymptotic” GAMP threshold R;;, there is a unique minimum at £ = 0 while
just above R2%, this minimum coexists with a local one at £ = 1. At the optimal
threshold of the code, that coincides with the Shannon capacity, the two minima
are equal. Then, for R > C' the minimum at £ = 1 becomes the global one, and
thus decoding is impossible.

Note that this result was rigorously proven for the AWGN channel in [78]
and then verified for several memoryless channels in [120]. A fully rigorous
analysis of the function ¢.,(E) would be lengthy; we thus only claim the
result here, which is confirmed by numerical analysis.

The existence of a minimum at £ = 0 means that the error floor Ey, if it ex-
ists, vanishes as B increases (Fig. 2.8). Moreover, if ¥?(F) < (2In(2)) "'V E €
[0, 1], which corresponds to the region R < (21n(2)) 'E,; [F(p[1)], then ¢, (E)
has a unique minimum at £ = 0. Similarly if X*(F) > (2In2)"'V E € [0, 1],
corresponding to R > (21n(2)) 7 'E,o[F (p|0)], then ¢y, (E) has a unique mini-
mum at £ = 1. For intermediate rates both minima exist.

Therefore, we identify the algorithmic GAMP threshold of the underlying
ensemble, when B — +00, as the smallest rate such that a second minimum
appears,

BS00 2In(2)  2In(2)’ (243)

Recall R,o is defined by the point where AF,, switches sign (Definition
2.13). Thus R, can be obtained by equating the two minima of ., (£). The
potential (2.42) takes the following values at the two minimizers

punl0) =~ 5. | [ dyotulz.0) 1o, (612.0)|,

pun1) = =55 | [ dyotolz. ) 1os, (6012 ) | - 1
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where ¢(y|z, E)) is given in Definition 2.11. Then, setting pu,(1) = ©u(0)
yields

R == [ [ dzayCeI0. 1) Pl tog, ([ d2NE10.1) Pont2)
+ [ [ dsdune10, 1) Pastol o, (Pontl2)) (2.44)

We will now recognize that this expression is the Shannon capacity of W for
a proper choice of the map .

Let A and B be the input and output alphabet of W respectively, where
A, B C R have discrete or continuous supports. Call P the capacity-achieving
input distribution associated with . Choose ® : R — A such that i)
Poui(ylz) = W(y|n(z)) and i) if Z ~ N(0,1), then n(Z) ~ P. This map
converts a standard Gaussian random variable Z onto a channel-input ran-
dom variable 7(Z) = A with capacity-achieving distribution P(a). Recall that
m can be viewed equivalently as part of the code or of the channel.

Now using the relation

[N G0 DPutulz) = [N G0 DWlr(2) = [ daP@W (o)

(2.44) can be expressed equivalently as

R, = / / dydaP(a)W (y|a) log, ( / ddP(d)W(y\d))
/ / dydaP(a)W (y|a) log, <W(y|a)>. (2.45)

The first term in (2.45) is nothing but the Shannon entropy H(Y') of the
channel output-distribution. The second term eaquals minus the conditional
entropy H(Y|A) of the channel-output distribution given the input A = 7(2)
with capacity-achieving distribution. Thus, R, is the Shannon capacity of
W. Combining this result with Corollary 2.3, we can argue that spatially
coupled SS codes allow to communicate reliably up to Shannon’s capacity over
any memoryless channel under low complexity GAMP decoding.

An essential question remains on how to find the proper map = for a given
memoryless channel. In the case of discrete input memoryless symmetric chan-
nels, Shannon’s capacity can be attained by inducing a uniform input distri-
bution P = U,. Let us call g the cardinality of A = {ay,...,a,}. In this
case the mapping 7 is simply 7(2) = a; if 2 €2-1)/¢, %i/q), Where 2;/, is the
i'" g-quantile® of the Gaussian distribution, with zy = —o0,2z = oco. For
asymmetric channels, one can use some standard methods such as Gallager’s
mapping or more advanced ones [128] that introduce bias in the channel-input

SWith z;,, = Q7 1(1 —1 q where Q~!(-) is the inverse of the Gaussian Q-function
/e =

defined by Q(z) = [ dt ijr
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distribution in order to match the capacity-achieving one. This task is known
as distribution matching and it has applications beyond achieving the capacity
of asymmetric channels. Interestingly, SS codes can be employed to solve the
distribution matching problem as we will see in Chapter 3. Furthermore, SS
codes can perform joint distribution matching and channel coding.

We now illustrate our findings for various channels as depicted in Fig. 2.9
and Fig. 2.10.

2.6.1 AWGN Channel

We start showing that our results for the AWGN channel [118] are a special
case of the present general framework. No map 7 is required and the Shan-
non capacity is directly obtained from (2.44) because the capacity-achieving
input distribution for the AWGN channel is Gaussian. Thus, by replac-
ing Pouw(y|z) = N(y|z,1/snr) in (2.44), one recovers the Shannon capacity
R, = 3logy(1 + snr). Furthermore, from (2.43) one obtains the following
algorithmic threshold as B — oo

1
2In(2)(1 +snr- 1)

R = (2.46)

2.6.2 Binary Symmetric Channel

The BSC with flip probability® € has transition probability W (yla) = (1 —
€)d(y —a) + €6(y + a), where A = B = {—1,1}. The proper map is 7(z) =
sign(z). For Z ~ N(0,1), this map induces uniform input distribution U, =
1/2. So by replacing W and Uy in (2.45), or equivalently Puu(y|z) = (1 —
€)0(y —m(2)) + €d(y + 7(z)) into (2.44), one obtains the Shannon capacity of
the BSC channel R, = 1 — hy(€e) where hy is the binary entropy function.

pot

Using (2.43) this map also gives the algorithmic threshold

(1 — 2¢)?

Run — m

(2.47)

2.6.3 Binary Erasure Channel

Note that the BEC is also symmetric. Therefore, the same mapping 7(z) =
sign(z) is used and leads to the Shannon capacity R, = 1 — ¢, where € is the
erasure probability. Moreover, from (2.43) the algorithmic threshold for the

BEC when B — oo is .
R = (2.48)

o rin(2)

SWith a slight abuse of notation, we use € here as a channel parameter. Not to confuse
with e of Section 2.5 (Definition 2.15).




58 Universal Sparse Superposition Codes

—C =} log,(1 + snr)
6k = <R =[21n(2)(1 +snr b !

10

Figure 2.9: The capacities and GAMP thresholds in the infinite alphabet limits
for the BSC (left) and AWGN (right) channels.

Figure 2.10: Capacity and GAMP threshold of the Z channel in the infinite
alphabet limits. C'(p}) and R (p;) are the values under capacity-achieving input

n
distribution, whereas C'(3) and R (1) are the values under uniform distribution.

2.6.4 Z Channel

The Z channel is the “most asymmetric” discrete channel. It has binary input
and output A = B = {—1,1} with transition probability W (y|a) = d(a —
1)0(y —a)+d(a+1)[(1 —€)d(y —a)+ed(y + a)], where € is the flip probability
of the —1 input. The map m(z) = sign(z) leads to the symmetric capacity of
the Z channel

ffét(%) = C(%) = ha((1 = €)/2) — ha(€) /2, (2.49)

where C (%) denotes the symmetric capacity, in other words the input-output
mutual information when the input is uniformly distributed with U4 = 1/2.
Under the same map 7(z), one obtains the following algorithmic threshold in

the limit B — +o00
1 1—c¢

BG) = oo (2.50)
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Note that the expression of R;‘gt(%) differs from Shannon’s capacity. However,

one can introduce bias in the input distribution and hence match the capacity-
achieving one. To do so, the proper map defined in terms of the Q-function”
is m(z) = sign(z — Q'(p1)), where p; is the induced input probability of the
bit 1 (see Chapter 3 for more details about the choice of the map).

By optimizing over p;, one can obtain Shannon’s capacity of the Z channel

Rysi(ph) = Cp1) = ha((1 = p1)(1 =€) = (1 = pi)ha(e), (2.51)

with
pi=1-1[(1—e)(1 4201 (2.52)

Using this optimal map, one obtains the following algorithmic threshold as
depicted in Fig. 2.10

U ¢ B el

2.7 Open Challenges

We end up pointing out some open problems. In order to have a fully rigor-
ous capacity achieving scheme over any memoryless channel, using spatially
coupled SS codes and GAMP decoding, it must be shown that SE tracks the
asymptotic performance of GAMP for the B-dimensional prior. We conjecture
that this is indeed the case. The proof is beyond the scope of this work and
would follow by extending the analysis of [69, 115] to the SS codes setting as
done in [37] for AMP. It is also desirable to consider practical coding schemes
using Hadamard-based operators or, more generally, row-orthogonal matrices.
Another important point is to estimate at what rate the error floor vanishes
as B increases (when it exists e.g., in the AWGN channel). Finally, finite size
effects should be considered in order to assess the practical performance of
these codes.

2.8 Appendix
2.8.1 Vectorial GAMP Algorithm

The GAMP algorithm was introduced for general estimation with random
linear mixing in [110]. The extension to the present context of SS codes with
B-dimensional prior was given in Section 2.3 of this chapter. On a dense
graphical model, an important notion of equivalent AWGN channel is used to
simplify the BP messages. This notion is due to the linear mixing and it is
independent of the physical channel. The physical channel P, is reflected

S

t

"Here Q(z) = [ dt S
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Table 2.1: The expressions for g, and F.

[gout<p7Y7 T)]Z ‘F(pIE)
(E[Zi‘ph Yis Ti} _pi)/Ti
Y ~ Pous(+]2:), Zi ~ See Definition
General Npi, 7) 9.9
iPi 1
AWGNC Ti&/ﬁnr 1/snr+FE
(Pi—ki)v;‘_ﬂpﬁ-’fi)vf i Q"% (1-2¢)*
BSC ZBsCTi B ]7)'_1' (He26Q) (1-Q—€+2€Q)
(ki) h i Hpethi)h +2e3(yi)pi 0(10
BEC ZBE}%%‘ 00=0)
7.C (picki)of Hpitk)S(yir) _ p; | Q2002 | Q”(1—)
Zy0T; i Q+e(1-Q) 1-Q
hi=(1-€)d(y+1), h; =(1-€)d(y—1),
v =(1—€)0 (yt1 Hed (y—1), v, =(1—€)d(yi—1 H€ed (y+1),

ki =exp (5= )\/271/7T+erf( )pl, k= k:lpﬂterf( )7“
Q=3erte(Zg),  Q'=exp(3k)/V2nE
Zpre=erfe(f=) b +(Lterf( =) ) by +2e0 (yi),

Zyc=erfe( \/F) +—i—(1—|—erf( i ))d(yi—1),
Zpsc —erfc(r) ++(1+erf( ))vi_

in the computation of the equivalent AWGN channel’s parameter through
the function gouwi(p,y, 7). This function is acting componentwise and can
be interpreted as a score function of the parameter p; associated with the
distribution of Y;. The general expression is

[Gous (P, Y, T)]i = (Elzi|ps, vi, 7i] — i) /7
_ J dzi Pou (yil2)N (2ilpi, 7:) (2
deiPout<yi|Zi)N

_pi)/Tz’
(zilpi, )

(2.54)

This expression is also equal to d,, In f(y;|p;, ;) where f is the function occur-
ring in Definition 2.2 of the Fisher information.

In Table 2.1 and Table 2.2% we give the explicit expressions for various
channels as well as their derivatives used in the GAMP algorithm of Section
2.3 (where snr is the signal-to-noise ratio of the AWGN channel, € the erasure
or flip probability of the BSC, BEC and ZC). The expressions of the Fisher
information used in SE of Section 2.4 are given as well. These involve the
Gaussian error function erf(z) = \/75 f(f dte " and its complement erfc(z) =

8Based on a joint work with E. Biyik and J. Barbier [121].
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Table 2.2: The expressions for —gpgout.

[_%QOM (p7 Yy, T)]l
(1, —Var(Z;|p:, vi, Ti])/Tz‘2

General
Y; ~ Pout<'|zi)7 i~ N(piaTi)
1
AWGNC —
2 z_k, 'UTF 2 7(—H{;’ v, i
BSC Tli_(pl-” 1)21;8‘2(%;'7 1) . +([goutﬁ)7YaT)]i+%)2
1 (pHmRh HpHrekh, 423w (ritp]) |
BEC Ti ZpCTi®

([gout<p7yn-)]i + %)2
1 _ ATk o] HpHrth)d(yi1) N
7C i Zzomi? )
([gout(paY7T)]i + %)

1 — erf(z). Note that, for the sake of simplicity, all the expressions for the
binary input channels of Table 2.1 (BSC, BEC and ZC) are given using the
map 7(z) = sign(z). This map leads to a sub-optimal performance for the
asymetric Z channel. The optimal map would require a bias in the input
distribution as explained in Section 2.6.4.

2.8.2 State Evolution and Potential Function

In this appendix we prove Lemma 2.2. Namely, we show that the stationarity
condition 0F,,/0E = 0 for the potential function in Definition 2.11 implies
the state evolution equation in Definition 2.3. We present a detailed derivation
for the underlying uncoupled system. The proof of Lemma 2.2 for the coupled
system follows exactly the same steps.

The calculation is best done by looking at F, as a function of E and
Y (E)~2, so that

dFy 1 190

dE — 2W(2)T(E)? Eﬁ_EEZ[/dy Pl By o, 012 E)}
d

- {215(2) * ag(aE)QEs,z[logB / d"xpo(x)0(x. S, Z, B(E)) | | = £(B) 2
(2.55)

We first look at the derivative of the bracket {---} with respect to X72. In
the next few lines the following notation is used for the “Gibbs” average

oy [ APX AP (X)0(x, S, Z, S(E))
e
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Using the explicit expression of #(x,S,Z, ¥(FE)) we have

#Es,z [logB / dBXPO(X>9(X7 S, Z, E(E))]

a _1(1x—8|2 —21nB_2Z- (x~S) In B
- WES,Z [IOgB/dBXPO(X)e $(pesiemreig Ve T2 )]

1 , 1 S(E)
=~ (% =1 + 5Esalz- b= S s
_ 1 2 1 %(E)
=~ gnraBez (X = SIPhaa] + 5Bz |Va- (x— Shaa| St
1
= — 55 sz (1% = SI)aen| ~Es 2 (1% = S} aen | +Es 2 1% = S)acul?))
1
= g S [”<X>d€n - 8”2}
1
= —21n2mmse(Z(E)).
We show below that
1 2 0
s -~ part [ ez pmewiz )] @)
so that (2.55) becomes
dFy, 1 d _
= {mmse(z(E)) - E}QIHQEE(E) 2 (2.57)

which obviously shows that dF,, /dE = 0 implies the SE equation £ = T,,(E).
We point out as a side remark that this is the correct “integrating factor” which
allows to recover the potential function from the SE equation.

It remains to derive (2.56). We will start from the derivative with respect
to E in (2.56) and show that this relation can be transformed into Definition
2.2, namely

— 5 [ W [ Wt DO f B (258)

where

_ (z—p)?
2FE

f(ylp, E) = / 0 P (y])© (2.59)

V2rFE .

We first note that ¢(y|z, E) = f(y|zv/1 — E, E) so the derivative w.r.t E
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on the right hand side of (2.56) becomes

0

a—EEZ[/dyqﬁ(y\Za E)né(y|Z, E)

:i dz

e‘é
¢za/dyﬂyu¢1—zaEwnf@vvd—7iE>

- /dz i/_ﬁ /@(1 I flylovVI—E, E)sf(yls=v1—E,E).  (2.60)

An exercise in differentiation of Gaussians shows?

[

_(zfzx/le)2 Phi _(zfzvle)Q
2F ez 2F

o E } 21— E)a"{e_az{ﬁ}}'

e

or{

Thus from (2.59)

22

2

—maz{ezjazf(y\zm, E)}

aEf(y|zV - E) (1_

and (2.60) becomes

a%EZ [/dy ¢(y|Z, E)no(y|Z, Eﬂ

L
2

- 2(1;_/dz/dy(lnLlnf(y|zx/ﬁ,E { f(ylzv1— E)}

- 1 -7 8 flylzv/1 - E,E) )
o2(1- / \/_/ flylzv/1—E, E)
e 20— E) 0y (8zf(y|z,E))

«/271' 1— fylz, E)

:_é i dy f(yl=, E) (0. In f(y2, B))’.

(=B

This result explicitly shows that (2.56) and (2.58) are equivalent as announced.

9We thank Christophe Schiilke for pointing out this trick.
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2.8.3 Bounds on the Second Derivative of the Potential
Function

In this appendix, we provide an upper bound on the second derivative

2 2 r 2 r
[(‘%%]E - L?E?—(?E Z Uun(ET)L: B aE?—aET [Z: S““(EC(E))}E
r=1 c=1

2 L 92

of the potential function needed in the proof of Lemma 2.6. We first perform
the analysis for general memoryless channels satisfying our two Assumptions
2.1, 2.2. We then briefly show how to improve the estimate in the special case
of the AWGN because of the non vanishing error floor.

General Channel

Energy term:
Using relation (2.56) of Appendix 2.8.2 one obtains for the first derivative
of the energy term

OUw(E,) _E: 0¥ 2
OE, 22 0E,
Differentiating once more
PUmm(Er) 1 ox? E, 0*°v7?
OF2 22 9E, 2In2 OE2

Using Assumption 2.2 we immediately get

02U (E,) C CE,
< + .
OE? 2(In2)RE’  2(In2)RE/

Now recall that in the proof of Lemma 2.6 we have E,, > F¢ = Er + ¢ where
FEk is the (true) error floor and € > 0. Therefore

PUu] _ C C(Et + ¢
[ OE? :|E ~ 2(In2)R(E; + €)? * 2(In2)R(Es +¢)P
C(2+e¢)
S AWM R(E + (262)

Of course this is the worse possible bound and is valid all the way up to the
left boundary of the modified system. As one moves towards the right of the
spatially coupled system one could use bigger values for E, and tigthen the
bound. This however is not needed to prove Lemma 2.6 as long as € > 0.
Entropy term:
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For the second derivative of the “entropy” term we first apply the chain
rule

aQSun(Ec(E)) . 0 <8Sun 6262)
OE,0E,,  0E.,\0% 2 OF,
S 0X]70%7 N OSum O0*%72
0222 0B, OE,.  0X720E,0F,
0?Syn 0¥ 720872 T Sy 0*L72
d(X-2)?2 9E, OE, @ TTCon;? OFE2
where to get the last line we used
ox2 ox2 0?x 2 0?%2
— = Jrc—lcfw r<ctw; e :(5rr’t]rc—1cfw r<ctw
OE, ©OE, ¢vEEt OE,OE, “ OF? sreer

which follow directly from the definition of ¥, #(E). Recall that by construction
Jre/T < (g/9)(2w + 1)7'. Recall also Assumption 2.2. We thus have

- Jr,ch’,c

0%Sun (Ee(E))
ko6, |
N O Sun_||087%11057 | ,
- g_]2(2w+1)2 02221l 0E, |1 0F,, c—w<r<etw Le—w<r <cdw
8pprG | OSun || 0?82 .
* g(2w + 1) 1937211 OF? ewirsetw
§>C? &S|, X
- 92(2w+ 1) (252)2 c—w<r<ctw te—w<r' <ctw
O gC' OSun

1c—w§r§c+w (263)

* g@w + DRE?| 93,2

The next step is to compute and estimate the partial derivatives of Sy, in this
expression. Using Definition 2.11 we find that (this involves differentiating
under integral signs which can be justified by the ensuing bounds)

OSum (Zi —Z)E. 1 €;
o2 —;Ez[<2 POV 1n2>1+2f:26j]7 (2.64)

B
- (Zi—=20)%  1\? (Zi— Z)%
_(lnB)ZE [((2\/11121113 1112) 2m)1+2f2€j

1 B ( Z Zl 1 ) ((ZJ — Zl)Zc 1 ) €i€;
(In \2j —41)oe 2
= 2\/11121113 C2/\2ym2mB In2 (1437, e))?

(2.65)
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Since ¢; > 0 we have for 2 < <n

——5— <1
1+ Zj:Q €;
which easily implies the following bounds for (2.64) and (2.65)
8Sun Ec 1
<(B-1)|(—  —
82;2 _< )<\/7T1n21nB+1n2>
< C1(B) + Cy(B)%,, (2.66)
05, 2 1 2
“1<(InB)(B-1 £ -
02 < (I B)( )(21n21nB+(ln2)2+1n2\/7r1n21n3>
2v3 | 1\y2
=24 )% 1 2>
+(1nB)(B—1)2<( x t3)% o+ )
4In2In B (In2)2 " In2v7n2ln B
23
+(B—-—1)———
( )\/ﬂln21nB
< C3(B) 4 C4(B)X. + C5(B)%2 4 Cs(B)X:. (2.67)

where Cy(B), i =1,--- ,6 are constants that depend only on B. Furthermore,
from the definition of ¥.(E) and Assumption 2.1 we remark that ¥.(E) <
SUPpepo,1) 2(F) = ¥(1). Hence, we can replace ¥. by %(1) in the bounds
(2.66), (2.67). Then using these two bounds the estimate (2.63) becomes

S (Z.(E)) ‘
OE,0E,.
=22
< gC
922w + 1)2R2EV B,

(03(3) +Cy(B)S(1) + C5(B)S2(1) + 06(3)23(1))

X 1cfw§r§c+w 1cfw§r’§c+w

57’7”@0
Ch(B) + Co(B)X(1) ) Lo w<r<etw
g(2w+1)RE§( 1(B) + Ca(B) ()) <r<ct

Since

1c—w§r§c+wlc—w§r’§c+w < 1r—w§c§r+w1\r—r’\§2w+1
1c—w§r§c+w - ]-7"—w§c§r+w7

when we sum over ¢ we get

~ 9*Sun(Z(E))
g202

T PR(2w+ 1)EVED

5,mgC

gRE;

c=

(Cs(B) + Cu(B)T(1) + G5(B)T2(1) + Co(B)T*(1))

(01(3) + 02(3)2(1))

X 1\7'7r’\§2w+1 +
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Finally, using again ET > F¢ = E; + € we obtain
[ L 925, (S.(E))
OE.0F, &

~212
< gC¢
= 2R2(2w + 1)(Ef + 6)25
C3(B) + Co(B)S(1) + C5(B)S2(1) + 06(3)23(1)) L i<2wi1

5rr’gc

+ SR <01(B) + 02(3)2<1)) (2.68)

c=1

RS

X

VRS

Final bound:

Putting (2.61), (2.62) and (2.68) together the triangle inequality implies
the important result

[ 82FCO KI(B7g72> K2<B7gag)

SN R N Al A TR 2.69
aETaEr,}E— "Bt aR T B T % R + 1) (2.69)

for some finite positive K1(B, g,g) and K»(B, g, g) independent of w and T".

AWGN Channel

For the AWGN channel we have an explicit expression for the effective noise,
Y(FE)? = (snr~! + F)R which implies

Y2(E,) < R(surt+1)

ox. 2 snr?

= F 2:70)
9E2 < “r

Then using these bounds at the appropriate places in the previous analysis we
get

Ky(B, g, g)snr*
2w+ 1

[ O Feo (2.71)

m} ]:] S 5T7T/K:/L(B7 g)g)snr2 + 1‘7-_rl‘§2w+l

for new constants K{(B,g,9), K5(B, g, g) (independent of w, I'). We can see
that the qualitative behaviour of the bound when snr — 400 is the same as
in the case of vanishing error floor £y = 0 and € — 0.

2.8.4 Potential Function and Replica Calculation

The potential functions of the uncoupled and coupled systems, used in this
chapter, can be viewed as a mathematical tool and we are not really concerned
how they are found. However in practice it is important to have a more or less
systematic method which allows to write down “good” potential functions.
There are essentially two ways. One is to “integrate” the SE equations as
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done in [82] by using an appropriate “integrating factor“. With this method
there is some amount of guess involved. For example in the present problem
it is not entirely obvious that the correct integrating factor is directly related
to the Fisher information (as equation (2.57) in Appendix 2.8.2 shows). The
other way is to perform a formal and brute force replica or cavity calculation
of the free energy which is then given as a variational expression involving
the potential function. The disadvantage of such a calculation is that it is
painful and maybe also that it is formal, but the advantage is that it is quite
systematic. For completeness we give the replica calculation. We stress that
the results of the chapter do not rest on this formal calculation and the reader
can entirely skip it.

We treat the prototypical case of a spatially coupled compressed-sensing
like system where the signal has scalar components x;, ¢ = 1,--- N ii.d.
distributed according to a general prior py(z). The calculation is exactly the
same for signals whose components are B-dimensional with arbitray priors and
sparse suerrposition codes fall in this class. The integration symbol Dv is used

for dve 7.
The spatially coupled matrix is made of T' x T' blocks, each with N/T

columns and aN/T" rows for the blocks part of the 7 block-row. The entries
inside the block (r,¢) are i.i.d. with distribution N (0, J,. CF /N ). Furthermore,

we enforce the per block-row variance normalization Z Jre =1V r. We
use the notation x° for the signal and define 2 ZC_ Zf\gf wiT§ where the
matrix structure is made explicit.
The posterior distribution is given by the Bayes rule
M
P(xly) = Hpo ;) H out (Y| 20)
= /J,:l

where Z(y) = P(y) is the observation dependent normalization, or partition
function. The (coupled) free energy F, will be calculated using the replica
trick in one of its many incarnations

Fco = — lim lim ﬁw’
N—ocon—0 0On N

(2.72)

where E denotes expectation with respect to the observation y(F) which de-
pend on the measurement matrix realization (that will be always implicit).
We thus need to compute the n'* moment of the partition function. For the
moment, we consider n € N despite that we will let n — 0 at the end.

Z(y)™ can be interpreted as the partition function of n i.i.d. systems, the
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replicas a = 1,- -+, n, each generated independently from the posterior P(x|y)

:/H [dxanpo H e (U ]22) ] (2.73)

E[Z(y)"] = Er / dyZ(y)"P(y) = Ep / dyZ(y)""
- EF/dyH [dxaHpo(x?) HPOut(yMzg)] , (2.74)

where the last equality is implied by P(y) = Z(y). This last point is valid
only in the Bayes optimal setting and is known to induce a remarkable set of
consequences, among which the correctness of the replica symmetric predic-
tions.

The F and x* random variables being i.i.d., we can treat z;; as a Gaussian
random variable by the central limit theorem. Let us compute their distribu-
tion. As F has zero mean, zj; has zero mean also. Its covariance matrix g,
depends on the block-row index r, € {1,--- ,I'} to which the pt" measurement
index belongs. Similarly, ¢; € {1,...,I'} is the block-column index to which
the " column belongs. We have

r,T N/T,N/T r N/T
dﬁb Er|2; z Z Z Er[F, = Z e Z% x;,  (2.75)
c,c/’=1 iec,jec i€c

because Ep[F),; F,;] = 0ijJy, ;/IN in the present spatial coupling construction.
We introduce the macroscopic replica overlap matrix, that takes into account
the block structure in the signal induced by the matrix structure. Let

r Mr
.:—Zx "V a,be{0,---,n}. (2.76)
1€C
Then (2.75) becomes ¢% = S0, J,..q%.
We now introduce the replica symmetric ansatz. According to this ansatz,

the overlap should not depend on the replica index ¢%* = ¢q. V a # b, ¢** =
Q. V a. This implies

~ab

I
Jrele ¥ a #b, @0 = Qr =Y J.Q.V a. (2.77)

IIMﬁ

Using the variance normalization @), = Qr. Then, one can show that in Bayes
optimal inference we have furthermore Q, = Q, = E[S?| V ¢,r € {1,--- , T},
where E[s?] = [dspo(s)s®. In the physics litterature this is often called a
“lehlmorl 1dent1ty

Thus the self overlap Q. is fixed and the condition (2.76) for a = b does
not need to be enforced. On the other hand, the cross overlap for a # b
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is unknown and so we must keep {q.} as variables. Define a distribution of
replicated variables at fixed overlap matrices {q.,c € {1,--- ,T'}}

N/F
P({x"}/{a.}) :—E{qc H[Hpo DIBIC (m[N D

a=0 [ i=1 c=1b<a
(2.78)

where =({q.}) is the associated normalization. The role of the 2im appearing
in the delta function is purely formal and will become clear later on. Plugging
this expression inside (2.74) we get

r n I aN/T
E[Z(y)"]=Er /ddeqCP({X“}I{qc})E({qc 11 [dX“H I Pl ]

a=0 r=1 per (279)
r n I aN/T
~ [Tlaa=tta)) [ayPzyian]] [dzaHH Pl ]
- T (2.30)

The second equality is obtained after noticing that the integrand in (2.79)
depends on {x{} only through {27}, this allows to replace the integration on
{z{} by an integration on {z;}. As already explained, by the central limit
theorem

M T aN/T
P({z}{aq.}) H/\/ (2,0, 4,,) H H N(z,[0,q,)
n=1 r=1 per
T . aN/T
H 27‘(‘ n+ldet )]_T H 6_%22:;’;022[6:1}@22‘ (281)
r=1 per

This is a product of multivariate centered Gaussian distributions, where z,, :=
[z0,a €{0,...,n}], 2 == [z}, p € {1,..., M}]. Recall g, is a function of {q.}.
Let

r

— [Tl dacess [¥(stah) + ol{a))]. (282)

f({a.) = [2{a.))]. (28)
T aN/T

o(fa) = 5o [ [ asPayan H [dz [1 I Ponlal; ” (2.84)

r=1 per

Now we perform a saddle point estimation. This requires to take the limit
N — oo limit before letting n — 0, and we assume without justification that
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the final result does not depend on the order of limits n and N. This gives for
the free energy, using (2.72)

Fro =~ lim 2extr(f({a.}) + o({a.)))

n—00n {QC}
= —extr| lim d9/(a.}) + lim 99a.}) : (2.85)
{ge} \ n—0 on n—0 on

Now the replica symmetric ansatz allows to simplify ¢ since P({z°}|{q.})
becomes

r aN/T
—aN C’,. n a C,'P n,n a
Pz} =TT [r)y det(d,)] 5 T] e Shath% S i,
r=1 pner

(2.86)

where C, and Cy, depend on ¢, and E[s?] as they are obtained from the
matrix inversion g, !. Thanks to the simple structure of g, under the replica
symmetric ansatz, one can easily show that

) B[s%] + (n — 2); E[s?) - 24,
O = EAERT 4 (- 230+ (- o B g
Coy = — o oo (2.88)

E[)(E[s?] + (n —2)G,) + (1 —n)@ n=0  (E[s?] — G,)?

The replicated variables {z*} are correlated through P({z"}|{q.}). In order
to simplify g, we decorrelate them by linearizing the exponent of P({z*}|{q,})
using the Gaussian transformation formula for a given K > 0

e% Zi’o,b¢aZZZZ :/’Dfu 6@\/?2::025*% ZZ:O(ZZ)27 (289)

i.e. the previously correlated {zj,a € {0,...,n}} are now iid. Gaussian
variables, but that all interact with a common random Gaussian effective field
&, Using this with K = —C5, as we know that C5, < 0, the integration in g
can now be performed starting from (2.84)

9({a.})
I aN/T

:%m [H 11 / D, dy,, ( / dz N (Zu

r=1 per

:%rzrlaln _/Dﬁdy</dz./\/'<z)m(§,c]r), V(E[sz],qr)>Pout(y]z))n ]
:%Tz:;aln_/l)édy</szout<y‘m(£,(jr)+z\/V(E[52],(jT)>>n ]

(2.90)

m(&us Gr), V<E[52]> (jr>>Pout<yu|Zu)> ]
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As assumed, g does no depend on N. Let us compute m (&, G,), V(E[s%], G).
Combining (2.86) with (2.89), we get that for a u € r and up to a normaliza-
tion, 2, ~ eXp(_ZZ(Cl,r_02,r)/2+zu€p\ /—C',) which becomes using the n —
0 limit of (2.87), (2.88) 2, ~ N (2.6 @ E[5°] = Gr) exp(€G,/[2(E[s*] — G,)])-
Normalizing P(z,), the term exp(&.q./[2(E[s*] — ¢.)]) disappears being inde-
pendent of z, and thus P(z,) = N(2,,v/@ E[s*] — ¢.). Thus m(&,,q.) =
£V Gr, V(E[s?], Gr) = E[s*] — G-. Now performing the lim,, 9, operation and
using the identity

lim 2ln [/ duX(u)"“} = fdu)ji;;))l(n(i))((u)x (2.91)

we directly obtain

n—0

LIRS :i;% / {ngyDéPout@‘&\/qTT +5VERT-7)
x In [/szout(y’g\/ajuz\/MH } (2.92)

where we used the normalization [ dydu Pou(y|u)N (ula,b) = 1, such that the
denominator in (2.91) sums to one. Let us now deal With f({q.}). We will use
the following representation of the delta function &(x fR dqexp(2imqr) <
6(x/(2im)) = [, dgexp(gz) where ¢ can be mterpreted as an auxiliary external
field.t0
We assume the replica symmetric ansatz for the auxillary fields similarly as
for the overlap matrix ¢** = —§. V a,b # a. The minus sign is just introduced
for convenience. Using again the Gaussian transformation formula, we get

f({a.})
:-m[H / dqcﬁ]ﬁ {po . dxk]e e T2 e (o zﬁgfml

a=0 kec

N
1 n n ~ r
:Nzln /dqe N( +1) qah(/ll {dl‘po :|62Za 0,b#a ¥ b) ]

c=1
ZF ’ x
1 " e S 2y S
:N In /dqc _N(ntin chc(/DfH[dx po } Zﬂ:( )%ﬁ?) ]
c=1 L
L n+1
1 n+1)n N
:f;ei%fr(‘—( 2 P+ /Dﬁ(/da:po(x)ez +e ) D

(2.93)

10We now understand that the presence of the 2im in (2.78) is thus just a trick to make
the integral real.
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where we have assumed that we can treat ¢. as a positive variable for the
Gaussian transformation transform. This will be verified a posteriori at the
end of the computation. The saddle point method employed for the estimation
of the integral over the auxiliary fields is justified similarly as before, as the
N — oo as already been assumed. Finally, using again (2.91), we obtain

lim ———=%~ o {qc Ze tr( 4cdec /{Dfdspo(s)e@26“”2+§ Ges

X In [/d:cpo(x) BRI q“"”] }) (2.94)

Using (2.85), (2.92) and this last expression, we get a first version of the
replica formula for the free energy

I'F,, = extr( Z / DﬁdyDzPout< ‘5\/q_r+z\/E7>

{qc,Gc}

xIn | /szout ‘g\/aﬂ VEF - 4)]}

r
+) (qczqc—/Dfdspo(s 5 ln /da:po Je~ FoiHe ”D)
c=1

(2.95)

Recall that in this expression ¢, = Zle Ir.cqe-

To make contact with the potential function introduced in this chapter we
still have to partially solve the extremization problem and reduce (2.95) to a
variational problem over one variable. Differentiating the function of {q., q.}
in (2.95) with respect to ¢. and setting the derivative to zero we find

T ( RN S R A ) )
- (2.96)

where
F(ylu,0%) = / Q2N (2]j1, 0) P (y]) = / DiPa(ylao + ). (2.97)

One can show the following identity (this has already been shown and used in
Appendix 2.8.2)

+2

00, f (Wl Bl — 6) = @(afat(f(mt aT,E[sﬂ—qz))). (2.98)

2qr
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Hence, (2.96) can be rewritten as

A Z o [ {ayr(14m [foutolt /i B - a0) )
% Og, fouc 1t/ Bl — )}
_ il Jq2 / {dydt\/%_ﬂ (1410 [ fou (0173 El5*] - )] )
v (;fat(fout(ylt\/aﬂ[s?] ~3))}

2
‘ 00 fo WV, Bls2) — 1)
— Jrcg d D <
; " dr / vorl fout Y|t/ Gr, E[s%] — G1)

= Z Ty et / dydde%f (ylp, E[s*] — &) (9, In f(ylp, E[s*] - )"

= Z g caEp|q p|E( ) - q?“)] (299)

The final step consists in replacing the stationarity condition (2.99) in (2.95).
First we remark

i e _ LSS ) B (F 1B — )
—1 r=1 c=1
=5 quaEp\qr (PIE(s*) — 4)]
- LS G S () — ) (2.100)
r=1
where in the last line we have set

S (E(s?) - d) = aByg [F(PIE() — §,)). (2.101)

We also set

2({@.) ZJmozqur (PIE(*) — d.)] (2.102)
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so that g. = X72({g-}). Then (2.95) becomes

extr( - EF: <a/ {DedyD2 P (6 VG + 2VET - )

tar} =1
] [ e VBT + o )
- i </ {Dédé‘po(s)e—wﬂﬁms

c=1

xn | / dupo(z)e” F7HEV ECWW])}). (2.103)

The (courageous) reader can now compare with Definitions (2.14) and (2.11).
The sum over r yields an “internal energy” contribution ) Uy, (E,) and the
sum over ¢ an “entropic” contribution ) Sy, (X.(E)). To adapt the formula
to sparse superposition codes one must replace all scalars by B-dimensional
vectors, replace F[s?] — 1, a — 1/R and set G, — E[s*] — E, =1 — FE,.






Distribution Matching via
Sparse Superposition
Codes

In this chapter,’! we formulate the fixed-length distribution matching as a
Bayesian inference problem. Our proposed solution is inspired from the com-
pressed sensing paradigm and the sparse superposition (SS) codes of Chapter
2. The distribution matching task requires a matcher at the transmitting end
and a dematcher at the receiving end. In this chapter, we present a simple and
exact matcher based on position modulation (PM), that introduces sparsity in
the source, and Gaussian signal quantization. At the receiver, the dematcher
exploits the sparsity in the source and performs low-complexity dematching
based on generalized approximate message-passing (GAMP). We show that
GAMP dematcher and spatial coupling lead to an asymptotically optimal per-
formance, in the sense that the rate tends to the entropy of the target distri-
bution with vanishing reconstruction error in a proper limit. Furthermore, we
assess the performance of the dematcher on practical Hadamard-based opera-
tors. A remarkable inherent feature of the proposed solution is the possibility
to: i) perform matching at the symbol level (nonbinary); i) perform joint
channel coding and matching. Note that all the theoretical guarantees of the
proposed solution can be derived from Chapter 2. However, the formulation
of distribution matching in a way that leverages the GAMP algorithm for a
source coding problem is very novel and interesting by its own.

3.1 Introduction

Distribution matching has recently attracted lots of attention in long-haul fiber
optical communications. As an inverse of data compression, a distribution

!The content of this chapter is based on a joint work with V. Aref and L. Schmalen
[129].
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matcher maps a discrete memoryless source, namely i.i.d. Bernoulli(1/2) bits,
into a sequence of symbols distributed according to a target distribution. A
dematcher is required to perform the inverse operation and recover the original
source with a certain reliability.

As a primary application, distribution matching is used for probabilistic
shaping [130] in order to imitate the capacity achieving input distribution of
the channel and increase the spectral efficiency. The distribution matching
task in probabilistic shaping can be done at the bit level by introducing bias
in the binary source followed by a high-order modulation scheme that yields
nonuiform symbols. However, one can perform distribution matching at the
symbol level by directly mapping the binary sequence into the desired symbols,
e.g. nonunifrom pulse-amplitude modulated (PAM) or quadrature-amplitude
modulated (QAM) symbols. Distribution matching is also used to achieve the
capacity of asymmetric channels [128] and for rate adaptation [15].

Optimal variable-length distribution matching schemes with offline algo-
rithms were proposed in [131, 132, 133, 134]. A low-complexity online algo-
rithm based on arithmetic coding was introduced in [135, 136]. Variable-length
schemes require large buffer sizes and suffer from error propagation and syn-
chronization problems [131]. Recently, an asymptotically optimal fixed-length
and low-complexity distribution matcher was introduced in [137].

All the aforementioned schemes are lossless. However, their practical im-
plementations require a separate forward error correction code to be added
on top of the distribution matcher [138], which might incur a rate loss and
error propagation for finite blocklengths. In this chapter, we propose a scheme
which inherently performs joint channel coding and distribution matching. In
particular, we formulate the fixed-length distribution matching as a Bayesian
inference problem. The formulation is inspired from the compressed sensing
paradiagm [38, 39] and sparse superposition (SS) codes [29, 78, 37, 118]. More-
over, we provide a low-complexity algorithm based on generalized approximate
message-passing (GAMP) [60, 139] and spatial coupling. The proposed scheme
is asymptotically optimal and it is motivated by the recent success of GAMP
in quantized compressed sensing [140] and SS codes [116, 120, 121].

For the proposed scheme, the algorithmic performance under GAMP de-
matcher and the Bayes-optimal performance, under optimal dematcher, can
be tracked by the state evolution (SE) and potential function. We show via SE
analysis and numerical simulations that GAMP operates up to an “algorithmic
rate” with a nonnegligible gap to the information theoretical rate. However,
we illustrate that the GAMP dematcher on a spatially coupled version of the
problem is asymptotically optimal in the blocklength, in the sense that the
algorithmic rate saturates the Bayes-optimal rate which, in turn, tends to the
entropy of the target distribution in a proper limit. Furthermore, unlike the
existing approaches, the target distribution is attained for all blocklengths due
to the simplicity of the matcher which is based on quantizing a Gaussian signal.

Bearing in mind practical implementations, we assess the performance of
the dematcher on Hadmard-based operators that allow for substantial decrease
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in the complexity and memory needs. It is noteworthy to mention that our
approach provides a single-shot solution by performing distribution matching
at the symbol level in addition to the possibility of implementing joint chan-
nel coding on memoryless channels, a promising solution for probabilistically-
shaped coded modulation schemes [112, 113, 114].

3.2 Distribution Matching

In binary distribution matching, one is ideally interested in mapping a binary
sequence u € {0,1}™ with i.i.d. Bernoulli(1/2) bits into another discrete
sequence y € AM having a target marginal distribution Py-. The mapping
is done such that u is perfectly reconstructed from y. We call u the source
and y the target. Let Y be the target random variable with alphabet A and
distribution Py. The maximal achievable rate (or the information theoretical
rate) of lossless distribution matching is given by

R= % < H(Y), (3.1)

where H(Y') is the entropy of Y. In the binary-to-binary case, u is mapped
to another binary sequence y € {0,1}* with M Bernoulli(p*) bits, where p*
represents the target distribution. (see Fig. 3.1). The maximal achievable rate
in this case is given by

R = < h2(p*)7 (32)

SE

where hy(+) is the binary entropy function.

Note that one can frame this problem as the inverse of the lossless source
coding problem. In source coding, one is normally interested in mapping a
discrete memoryless source, possibly binary, with a presumably nonuniform
distribution into the shortest possible binary sequence. The lower bound on
the lossless compression rate is given by the entropy of the original source. In
distribution matching, we need to expand the original binary uniform source
into another discrete source, possibly binary as well, in order to reach a target
distribution. The lower bound on the lossless “expansion rate” (here M/m) is
given by the inverse of the target distribution’s entropy.

Consequently, a natural approach to solve the distribution matching prob-
lem is to use variable-length prefix-free source coding schemes such as Huffman
codes [131, 132, 133, 134] or low-complexity arithmetic codes [135, 136]. In
this case, perfect reconstruction is guaranteed for all blocklengths, while the
distortion measure is defined to be the normalized Kullback-Leibler (KL) di-
vergence between the matcher distribution and the target distribution [137].
As the blocklength increases, the rate of the aforementioned schemes tends to
the maximal achievable rate (3.1) with vanishing normalized KL divergence
between the matcher and target distributions. However, the main limitation of
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u ~ Bernoulli(1/2) Matcher y ~ Bernoulli(p*)

e {0,1}™ e {0,1}M

u Dematcher y

Figure 3.1: Binary-to-binary distribution matching block diagram.

these schemes is the varying transmission rate. Recently, a fixed-rate approach
based on constant composition arithmetic coding was introduced in [137].
Another approach to solve the distribution matching is to employ a forward
error correcting code [128] as done in lossless source coding [141, 142, 143]. In
this approach, the target distribution can be matched while the distortion
measure is the reconstruction error, between the original source and the re-
constructed one, that vanishes in the blocklength. Although this approach
might be erroneous at finite blocklengths, it remains very useful for many ap-
plication scenarios because of its amenability to perform joint channel coding
and matching. Following this second approach, we propose a solution that em-

ploys the SS codes for distribution matching and relies on the recent success
of GAMP algorithm for such codes [120, 121, 116].

3.3 Application: Probabilistic Shaping for
Optical Channels

One of the main applications of distribution matching is probabilistic shaping
as mentioned earlier. Driven by the recent advances in fiber optical commu-
nications, probabilistic signal shaping has attracted lots of attention in the
optical community. As the optical channel is bandwidth-efficient, the adop-
tion of high-order modulation schemes is the pathway toward increasing the
spectral efficiency. This can be done without increasing the power which is
limited by the nonlinearities of the channel.

The nonlinearities in the optical channels are often parameterized by some
variants of the Gaussian noise (GN) model [144, 145, 146, 147]. Therefore,
the adoption of constellations that follow Maxwell-Boltzmann (MB) distribu-
tions is very favorable as it allows to operate close to capacity [131]. The use
of classical uniform signalling with equidistant constellations incurs a perfor-
mance loss in terms of data rate. The mismatch between the signal distribution
and the capacity-achieving input distribution induces a gap to capacity, which
might be significant in the high signal-to-noise ratio (SNR) regime. There-
fore, optimizing the signalling is essential in order to take full advantage of
the optical channel and increase the spectral efficiency, specially with high-
order modulation schemes. The two possible techniques to achieve this and
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Figure 3.2: Left: 16-QAM constellation with geometric shaping. A nonequidis-
tant constellation is used where all the symbols occur with a uniform probability
1/16. Right: 16-QAM constellation with probabilistic shaping. An equidistant
constellation is used instead but the symbols occur with nonuniform probability.
The nonuniform probability is highlighted via the gray scale for the 16 symbols
(e.g. the symbols at the outer corners occur with the lowest probability).

circumvent the performance loss are geometric shaping and probabilistic shap-
ing. While the former uses uniformly distributed (or equiprobable) symbols
on nonuniform (or nonequidistant) constellations, the latter uses nonuniformly
distributed symbols on uniform constellations (see Fig. 3.2).

Using nonuniform constellations, as in geometric shaping, necessitates dras-
tic modifications in the signal processing algorithms. Therefore, probabilistic
shaping represents a viable alternative as it relies on the uniform equidistant
constellations, and hence uses the preexisting signal processing algorithms and
digital-to-analog converters. Moreover, probabilistic shaping seems to outper-
form the geometric shaping in terms of achievable rates [138]. The probabilis-
tic shaping task requires a distribution matcher at the transmitter in order to
map the original source, typically binary with i.i.d. Bernoulli(1/2) bits, into
the nonuniform symbols. An inverse operation is required at the receiver to
recover the source. In the sequel, we will present a new distribution matching
scheme that can be used for probabilistic shaping. A key feature of the pro-
posed scheme is the ability to perform distribution matching directly at the
symbol level. Moreover, the distribution matching can be done jointly with
channel coding, and thus spare any additional forward error correction code.

3.4 Compressed Sensing Approach for
Distribution Matching
Our proposed solution, depicted in Fig. 3.3, employs the SS codes used for

general channel in Chapter 2 to perform distribution matching. One can for-
mulate the distribution matching as a SS code on a deterministic nonlinear
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channel, and hence leverage the GAMP algorithm to perform the dematching.
The GAMP dematcher identifies an effective channel, which can be a con-
catenation of the deterministic matcher (quantizer) with a noisy channel, over
which the estimation is performed. Thus, distribution matching and channel
coding can be jointly performed. In this chapter, we focus on the distribu-
tion matching part while the channel coding part was already investigated in
Chapter 2. Hence, our channel is a quantization of a Gaussian signal that
yields the target distribution. Note that in Chapter 2, SS codes were used for
forward error correction over general channel while other techniques [128] were
proposed to perform the distribution matching task. The main contribution
of this chapter is to show that SS codes can be used to perform distribution
matching concurrently for any discrete alphabet.

3.4.1 Matcher

In order to use the compressed sensing and AMP paradigms, we need to in-
troduce sparsity in u. This can be done via simple position modulation (PM)
scheme (see Fig. 3.3). Following the same construction of Chapter 2, we take
m = Llog,(B) with B chosen to be a power of 2. The original source can be
seen as a vector made of L sections, u = [uy, ..., ur], where each section uy,
le{l,...,L}is alog,(B)-dimensional vector. We call B the section size. The
original source is then mapped to a sparse signal s made of L sections. Each
section s; is a B-dimensional vector with a single nonzero component that is
equal to 1. The position of the non-zero component in s; is specified by the
binary representation of w;. For example if B =4 and L = 5, a valid source is
u = [00,01, 11,10, 01] which corresponds to s = [0001, 0010, 1000, 0100, 0010].
We set N = LB.

A fixed coding matriv F € RN is taken with ii.d real Gaussian en-
tries distributed as N(0,1/L). We use this matrix to obtain a codeword
z = Fs € RM with i.i.d. standard Gaussian entries. The matching task
consists of quantizing the Gaussian codeword entries through a quantizer ®(-)
acting componentwise with

yi = ®(z) = ¢([Fs);), i=1,..., M, (3.3)

such that the output is distributed according to a given target distribution.
Note that one can look at ®(+) as a deterministic nonlinear channel leading to
the target distribution.

For the binary case and a target distribution of Bernoulli(p*), the quantizer
takes the following form as depicted in Fig. 3.4

yi = (=) = sign(z - Q7' (), i=1,...,M, (3.4)
where Q7!(+) is the inverse of the Gaussian Q-function defined by Q(z) =

2

_t=
f;oo dt e\/% The output y of the quantizer is in {—1,+1}* which can be
mapped to {0, 1}V,
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_____________________ Matcher
u— mo<1;u1\1/;t0r 2 F = Q()
y
................ Dematcher |
~ PM S S

demodulator S HD 8 GAMP

Figure 3.3: The original source u is mapped to a sparse signal s through a PM
modulator. A quantizer ®(-) is then applied to obtain the target sequence y. The
GAMP algorithm provides soft valued estimate s of s in the MMSE sense. A simple
hard decision (HD) scheme is used to provide the binary decoded message s by
setting the most biased component in each section of § to 1 and the others to 0.
The reconstructed version u of the original source u can be easily recovered from
s using PM demodulator.

0.3

0.1

0 ‘ ‘ N —

-4 -2 0 a(0.25) 2 4

Figure 3.4: Quantization of a standard Gaussian to Bernoulli(1/4) bits.

This approach is readily generalizable beyond the binary case to g-ary dis-
crete target distributions (e.g. PAM or QAM symbols). In this case, the
quantizer ® uses biased g-quantiles of the Gaussian distribution for quanti-
zation. Specifically, let Y be a discrete random variable with g-ary alphabet
A ={ay,...,a,} and distribution Py (ax) = P, (k € {1,...,¢}). The quantizer
is defined by

O(2) =ap ifz €lep_1, ¢, (3.5)

with

—00 k=0, (3.6)
C, — .
Q1= P) k=1,...4q,
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0.9 | | /

Q'(1-0.1)Q'(1-0.5)Q" (1-0.9)

Figure 3.5: Quantization intervals of a standard Gaussian signal to nonuniform
4-PAM constellation A = {ay, as, ag, as} with Py =[0.1,0.4,0.4,0.1].

Note that this simple matching operation ensures that the target distri-
bution is attained for all blocklengths. Note also that the quantizer ®(-) was
denoted 7(+) in the binary case of Chapter 2. We make this distinction to
stress that this map can be applied to any g¢-ary alphabet. The quantiza-
tion intervals of a nonuniform 4-PAM constellation based on the cumulative
distribution function of a standard Gaussian are shown in Fig. 3.5.

3.4.2 Dematcher

The dematching task is to recover a sparse signal s, and hence u, from quan-
tized random projections y as depicted in Fig. 3.3. The sparsity introduced in
the signal by PM can be harnessed at the dematcher in a compressed sensing
fashion. Namely, the dematching can be interpreted as a compressed sens-
ing problem with structured sparsity. Consequently, the same algorithms and
analysis tools used in compressed sensing theory, such as GAMP algorithm
and SE, can be used for the dematching task as done for SS codes of Chapter
2. For a Bernoulli(1/2) source and PM scheme, the sections of s are uniformly
distributed over all the possible B-dimensional vectors with a single nonzero
component that is equal to 1. The prior of each section is denoted by po(s;).
In a Bayesian setting, the estimation of the signal s, based on the observed
target y and a fixed matrix F, can be done in a minimum mean-square error
(MMSE) sense or maximum a-posteriori (MAP) sense. This necessitates the
computation of the posterior distribution of s given y and F on a dense graph-
ical model. Therefore, one can use an iterative message-passing algorithm
such as GAMP, which was first introduced in compressed sensing [60, 139] and
then adapted to account for any structured B-dimensional prior distribution
[78, 37, 116]. The GAMP algorithm uses Gaussian and quadratic approxima-
tions that yield a sequence of disjoint estimation problems under an equivalent
Gaussian noise. The real physical channel appears in the computation of the
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moments of the equivalent Gaussian noise. The physical channel in our distri-
bution matching problem is a deterministic highly nonlinear channel defined
by the quantizer (3.3). Thus, the GAMP algorithm of Chapter 2 (Algorithm
2.1) can be adapted to act on such channel. Note that for joint channel coding
and matching, the channel would be a concatenation of the quantizer and the
noisy channel.

Algorithm 2.1 of Chapter 2 shows the steps of GAMP. The same algorithm
can be used here and the only difference resides in the computation of Steps 8
and 9, which depend on the the quantizer (3.3). For the g-ary quantizer given
in (3.5) and (3.6), the i* entry of go, and %gout take the following forms
respectively

(Qk 1 Q;c(piaTi>)
(Q 1 Qk(pi;Ti))7
[%gout(p7YaT)]i = ([gout(p y. 7))

Zk 10 (yi—ax) (Qpy (i, 7) — Qe (pi, 73))
( )(Qk—l(piaTi)_Qk(piaTi)),

[gout<p7 Yy, T)]z -

forve=1,..., M, with

Qulp,7) = Q(222)
Qulp7) = = (3.7)
Qr(p,7) = Qi(p, )22,

where () in the first equation of (3.7) denotes the standard Gaussian Q-
function while the ¢;’s are given in (3.6). Steps 12 and 13 of Algorithm 2.1
depend on the prior py, which is the same for SS codes.

The GAMP algorithm requires an exchange of O(N) messages. The com-
plexity of computing each message is dominated by a matrix-vector mul-
tiplication. In fact, both the matcher and the GAMP dematcher involve
matrix-vector multiplication. Hence, the worst case complexity, per message,
is O(MN). This can be simplified using structured operators such as Fourier,
wavelet or Hadamard. While random Gaussian matrices are mathematically
more tractable and easier for analysis, the structured matrices provide practical
advantages and more robust finite-length performance [77]. Hadamard-based
matrices constructed as in [77], with random sub-sampled modes of the full
Hadamard operator, allow to achieve a complexity of O(m In(N )) and drasti-
cally reduce the storage need. Note that using such matrices might necessitate
fine tuning the quantizer (3.3) as the codeword’s distribution deviates from
Gaussian. Moreover, one would need to use other variants of AMP that are
better suited to general matrices [148, 149, 150].
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Figure 3.6: The performance of GAMP at each iteration in terms of SER under
Gaussian coding matrices. Left: binary-to-binary distribution matching with target
p* = 1/4; the information theoretical rate of such scheme is R = hy(p*) =
0.8113. Right: binary to 4-ary distribution matching with target distribution Py =
[0.1,0.4,0.3,0.2]; the information theoretical rate of such schemeis R = H(Y) =
1.8464. We fix B = 4 and we simulate GAMP under various rates. As long as
the rate is small enough (i.e. R < Rgamp), GAMP (solid blue line) performs
the dematching task up to a finite-length error floor that vanishes with L. As L
increases, the GAMP performance coincides with the SE prediction (dotted red
line) and the error floor vanishes.

3.5 Performance Evaluation

The same analysis tools used in Chapter 2, namely the state evolution (SE)
and potential function, are adapted and used for analysis here. An important
aspect of GAMP algorithm is that its asymptotic performance can be ana-
lytically tracked at each iteration by the SE equation [151]. SE is a simple
recursion analogous to the density evolution used to track the performance
of low-density parity-check (LDPC) codes on sparse graphical models. More-
over, the ultimate Bayes-optimal performance of our proposed scheme, i.e.
the performance under optimal algorithm, can be obtained from the potential
function [78, 116] inspired from statistical physics techniques and elaborated
in Chapter 2. Note that the GAMP performance is typically assessed using
the mean-square error (MSE) between s and § or the section error rate (SER)
between s and § (i.e. the fraction of sections that are wrongly reconstructed,
see Fig. 3.3 for 8 and s).

Numerical simulations as well as SE analysis show the following: for any
fixed section size B, the GAMP algorithm exhibits asymptotically in L a
“phase transition” at an algorithmic rate (or threshold) denoted by Rganmp-
Formally, Rgamp is the maximum rate at which the GAMP algorithm per-
forms the dematching task with vanishing reconstruction error. As soon as
the rate exceeds this threshold, GAMP algorithm fails. These observations
are depicted in Fig. 3.6 for both binary-to-binary and binary to g-ary distri-
bution matching with B = 4. Our empirical results shown in Fig. 3.6 confirm
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Figure 3.7: The performance of GAMP as predicted by the SE for binary to
4-ary distribution matching with target distribution Py = [0.1,0.4,0.3,0.2]. We
perform the SE analysis for three different section sizes. A sharp phase transition
occurs for each section size: Rgamp = 1.025 for B = 2, Rgamp = 1.247 for
B =4, Rogamp = 1.315 for B = 8. Note that although the gap to the informa-
tion theoretical rate varies with B, a nonnegligible gap persists with the current
construction as B increases.

that the SE tracks the asymptotic performance of GAMP dematcher. An al-
ternative way to see the phase transition behavior is presented in Fig. 3.7
where the final SER, after SE convergence, is plotted as a function of the rate
for three different section sizes.

The empirical algorithmic rate Rgamp, obtained from running GAMP on
real instances, as well as the one obtained from the numerical SE analysis for
the current “uncoupled” construction are shown on the upper curve of Fig. 3.8
for different values of B. Under Gaussian coding matrices, the performance
is accurately predicted by the SE for all values of B. Using Hadamard-based
matrices incurs a small performance loss, in terms of Rgamp, that vanishes
with B. However, a gap to the information theoretical rate persists as B
increases.

The gap to the information theoretical rate is due to the sub-optimality of
GAMP, which is a low-complexity iterative algorithm. In order to predict the
Bayes-optimal performance of our proposed scheme under optimal algorithm,
which is computationally intractable, we use the potential function. Numerical
simulations show that the Bayes-optimal rate (or potential threshold) denoted
by Rpt approaches the information theoretical rate as the section size increases
(see Fig. 3.8). Moreover, using the same analysis of the potential function as in
Chapter 2, one can argue that R, indeed tends to the information theoretical
rate as B — oo.

An effective approach to boost the algorithmic performance of GAMP is to
apply spatial coupling as done for capacity achieving SS codes of Chapter 2.
There are different ways to construct spatially coupled coding matrix and to
impose the seed at the boundaries. One way to impose the seed was already
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Figure 3.8: The distance between the algorithmic rate and H(Y') in dB as a
function of the section size. Binary-to-binary distribution matching is performed
with target p* = 1/4. For the uncoupled system: the gap to the information
theoretical rate persists even with large section sizes (dotted line). For the spatially
coupled system: the algorithmic rate (green curve) follows the optimal rate (purple
curve) that tends to H(Y') as B increases. Spatial coupling is performed with the
following coupling parameters: L, = 32, L, = 33, wy, = 2, wy = 2, f = 1.2 and
J = 0.1. The small mismatch between the purple and green curves is due to the
finite length of coupling parameters. As the coupling parameters increase, the two
curves coincide (threshold saturation phenomenon).
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Figure 3.9: A spatially coupled coding matrix F with L,. x L. blocks. Besides the
diagonal blocks, there are w;, and w; off-diagonal blocks with nonzero elements
representing the backward and forward coupling windows respectively. Each block
is of dimension M x N except the blocks in the first block-row that have a
dimension of SM x N, where (3 represents the seed rate. Each nonzero block is
composed of i.i.d. real Gaussian entries with zero mean and a certain variance such
that the variances of each block-row add up to 1. The variances can be tuned in

a uniform or nonuniform fashion using the coupling strength parameter J as done
in [78, 77].
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introduced in 2.2. The seed was imposed using the pinning condition which is
very suited for the analysis. In this chapter, we provide an alternative practical
way to impose the seed using higher measurement rate at the boundary as
depicted in Fig. 3.9.

It turns out that spatial coupling significantly improves the performance
and decreases the gap to the information theoretical rate H(Y"). The gap can
be made arbitrarily small by increasing B (see Fig. 3.8). Fig. 3.8 shows that
the performance of GAMP under Gaussian matrices (circles) is accurately pre-
dicted by the SE analysis. Applying GAMP, originally developed for Gaussian
matrices, on Hadamard-based matrices (crosses) yields a small mismatch w.r.t.
the SE prediction. This lack of accuracy in SE for non-Gaussian matrices can
be handled by using other variants of AMP [148, 149, 150].

Our SE simulations show that the algorithmic rate of the spatially coupled
system denoted by ReG,p follows the Bayes-optimal rate, which tends to the
information theoretical rate. Actually, one can show that the algorithmic rate
of the spatially coupled system equals the Bayes-optimal rate in a proper limit
as done for SS codes of Chapter 2. This phenomenon turns to be quite general
and it is coined threshold saturation. It was first introduced in the context
of spatially coupled LDPC codes [152] and then generalized in [82] to any
problem tracked by a scalar recursion.






Symmetric Rank-One
Matrix Factorization

Factorizing low-rank matrices is a problem with many applications in machine
learning and statistics, ranging from sparse principal component analysis to
community detection and sub-matrix localization. For probabilistic models
in the Bayes optimal setting, general expressions for the mutual information
have been proposed using powerful heuristic statistical physics computations
via the replica and cavity methods, and proven in few specific cases by a va-
riety of methods. In this Chapter,! we use the spatial coupling methodology
developed in the framework of error correcting codes, to rigorously derive the
mutual information for the symmetric rank-one case. We characterize the de-
tectability phase transitions in a large set of estimation problems, where we
show that there exists a gap between what currently known polynomial algo-
rithms (in particular spectral methods and approximate message-passing) can
do and what is expected information theoretically. Moreover, we show that
the computational gap vanishes for the proposed spatially coupled model, a
promising feature with many possible applications. Our proof technique has
an interest on its own and exploits three essential ingredients: the interpola-
tion method first introduced in statistical physics, the analysis of approximate
message-passing algorithms first introduced in compressed sensing, and the
theory of threshold saturation for spatially coupled systems first developed
in coding theory. Our approach is very generic and can be applied to many
other open problems in statistical estimation where heuristic statistical physics
predictions are available.

!The content of this chapter is based on a joint work with J. Barbier, N. Macris, F.
Krzakala and L. Zdeborova [153]
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4.1 Introduction

We consider the following probabilistic rank-one matrix factorization (or rank-
one matrix estimation) problem: one has access to noisy observations w =
(wij)P ;=1 € R™™ of the pair-wise product of the components of a vector
s = (s;)7, € R" where the components are i.i.d random variables distributed

according to S; ~ Py, i = 1,...,n.?2 The matrix elements of w are observed
through a noisy element-wise (possibly non-linear) output probabilistic chan-
nel Py (wyj|sis;), with i, 7 = 1,...,n. The goal is to estimate the vector s from

w, up to a global flip of sign in general, assuming that both distributions F
and P, are known. We assume the noise to be symmetric so that w;; = wj;.
There are many important problems in statistics and machine learning that
can be expressed in this way, among which:

e Sparse PCA: Sparse principal component analysis (PCA) is a dimension-
ality reduction technique where one looks for a low-rank representation
of a data matrix with sparsity constraints [43]. The following is the
simplest probabilistic symmetric version where one estimates a rank-one
matrix. Consider a sparse random vector S, for instance drawn from a
Gauss-Bernoulli distribution, and take an additive white Gaussian noise
(AWGN) channel where the observations are W;; = 5;5;/v/n + AZ;
whith Z;; ~ N(0,1). Here® Py (wij]sis;) = N(wi;]sis;/v/n, A).

e Spiked Wigner model: In this model the noise is still Gaussian, but the
vector S is assumed to be a Bernoulli random vector with i.i.d compo-
nents S; ~ Ber(p). This formulation is a particular case of the spiked
covariance model in statistics introduced by [154, 155]. It has also at-
tracted a lot of attention in the framework of random matrix theory (see
for instance [44] and references therein).

e Community detection: In its simplest setting, one uses a Rademacher
vector S where each variable take values S; € {—1,1} depending on
the “community” it belongs to. The observation model then introduces
missing information and errors such that, for instance, Py (w;j|s;is;) =
P16(w;j—8;55) +p20(wi;+5;5;)+(1—p1 —p2)d(w;;), where §(-) is the Delta
dirac function. These models have recently attracted a lot of attention
both in statistics and machine learning contexts (see e.g. [40, 41, 156,
157, 158, 159]).

e Sub-matriz localization: This is the problem of finding a submatrix with
an elevated mean in a large noisy matrix, as in [160, 161].

2Note that in Chapter 1, the dimension of the problem was denoted by the capital letter
N for coherence with the sparse superposition codes notations. Here, we will use the small
letter n, which is more consistent with the matrix factorization literature. We hope that
this will not confuse the reader.

3In this chapter N(z|m,0?) = (2r02)~ Y2 exp(—(z — m)?/20?))
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e Matriz completion: A last example is the matrix completion problem
where a part of the information (the matrix elements) is hidden, while the
rest is given with noise. For instance, a classical model is Py (w;;]sis;) =
po(wi;) + (1 — p)N (wij]sis5, A). Such problems have been extensively
discussed over the last decades, in particular because of their connection
to collaborative filtering (see for instance [45, 46, 162, 163]).

Here we shall consider the probabilistic formulation of these problems and
focus on estimation in the mean square error (MSE) sense. We rigorously
derive an explicit formula for the mutual information in the asymptotic limit,
and for the information theoretic minimal mean square error (MMSE). Our
results imply that in a large region of parameters, the posterior expectation of
the underlying signal, a quantity often assumed intractable to compute, can
be obtained using a polynomial-time scheme via the approximate message-
passing (AMP) framework [164, 165, 166, 42, 167]. We also demonstrate the
existence of a region where no known tractable algorithm is able to find a
solution correlated with the ground truth. Nevertheless, we prove explicitly
that it is information theoretically possible to do so (even in this region), and
discuss the implications in terms of computational complexity.

The crux of our analysis rests on an "auxiliary” spatially coupled (SC)
system. The hallmark of SC models is that one can tune them so that the gap
between the algorithmic and information theoretic limits is eliminated, while
at the same time the mutual information is maintained unchanged for the
coupled and original models. Roughly speaking, this means that it is possible
to algorithmically compute the information theoretic limit of the original model
because a suitable algorithm is optimal on the coupled system.

Our proof technique has an interest by its own as it combines recent rigorous
results in coding theory along the study of capacity-achieving SC codes [79, 25,
82, 85, 116] with other progress coming from developments in mathematical
physics of spin glass theory [168]. Moreover, our proof exploits the “threshold
saturation” phenomenon of the AMP algorithm and uses spatial coupling as a
proof technique. From this point of view, we believe that the theorem proven
in this chapter is relevant in a broader context going beyond low-rank matrix
estimation and can be applied for a wide range of inference problems where
message-passing algorithm and spatial coupling can be applied. Furthermore,
our work provides important results on the exact formula for the MMSE and
on the optimality of the AMP algorithm.

Hundreds of papers have been published in statistics, machine learning or
information theory using the non-rigorous statistical physics approach. We
believe that our result helps setting a rigorous foundation of a broad line of
work. While we focus on rank-one symmetric matrix estimation, our proof
technique is readily extendable to more generic low-rank symmetric matrix or
low-rank symmetric tensor estimation. We also believe that it can be extended
to other problems of interest in machine learning and signal processing. It has
already been extended to linear estimation and compressed sensing [122, 104].
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We conclude this introduction by giving a few pointers to the recent litera-
ture on rigorous results. For rank-one symmetric matrix estimation problems,
AMP has been introduced by [164], who also computed the state evolution
formula to analyze its performance, generalizing techniques developed by [69],
[115] and [169]. State evolution was further studied by [166] and [42]. In
[170, 167], the generalization to larger rank was also considered. The mutual
information was already computed in the special case when S; =41~ Ber(1/2)
in [171] where an equivalent spin glass model was analyzed. The results of [171]
were first generalized in [47] who, notably, obtained a generic matching upper
bound. The same formula was also rigorously computed following the study of
AMP in [166] for spike models (provided, however, that the signal was not too
sparse) and in [42] for strictly symmetric community detection. The general
formula proposed by [170] for the conditional entropy and the MMSE on the
basis of the heuristic cavity method from statistical physics was first demon-
strated in full generality in [102]. This chapter represents an extended version
of [102] that includes all the proofs and derivations along with more detailed
discussions. All preexisting proofs could not reach the more interesting regime
where a gap between the algorithmic and information theoretic performances
appears (i.e. in the presence of “first order” phase transition), leaving a gap
with the statistical physics conjectured formula. Following the work of [102],
the replica formula for rank-one symmetric matrix estimation has been proven
again several times using totally different techniques that involve the concen-
tration’s proof of the overlaps [172, 173]. Our proof strategy does not require
any concentration and it uses AMP and spatial coupling as proof techniques.
Hence, our result has more practical implications in terms of proving the range
of optimality of the AMP algorithm for both the underlying (uncoupled) and
spatially coupled models.

This chapter is organized as follows: the problem statement and the main
results are given in Section 4.2 along with a sketch of the proof, two applica-
tions for symmetric rank-one matrix estimation are presented in Section 4.3,
the threshold saturation phenomenon and the relation between the underly-
ing and spatially coupled models are proven in Section 4.4 and Section 4.5
respectively, the proof of the main results follows in Section 4.6 and Section
4.7.

A word about notations: in this chapter, we use capital letters for random
variables, and small letters for fixed realizations. Matrices and vectors are bold
while scalars are not. Components of vectors or matrices are identified by the
presence of lower indices.
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4.2 Setting and Main Results
4.2.1 Basic Underlying Model

A standard and natural setting is to consider an additive white gausian noise
(AWGN) channel with variance A assumed to be known. The model reads

S;S;
wij = T?i + \/Zzij, (41)
where z = (z;;);—, is a symmetric matrix with Z;; ~ N(0,1), 1 <
and s = (s;)"; has i.i.d components S; ~ Py. We set E[S?] =
hypothesis on P, are given later.

Perhaps surprisingly, it turns out that the study of this Gaussian setting is
sufficient to completely characterize all the problems discussed in the introduc-
tion, even if we are dealing with more complicated (noisy) observation models.
This is made possible by a theorem of channel universality. Essentially, the
theorem states that for any output channel P, (w|y) such that at y = 0 the
function y +— log Pou(w|y) is three times differentiable with bounded second
and third derivatives, then the mutual information satisfies

I(S; W) = I(SST;SST + VA Z) + O(v/n), (4.2)

where A is the inverse Fisher information (evaluated at y = 0) of the output

channel )
log P,

Al / duw Py (w]0) (a 08 Fou(tw]y) ) . (4.3)

dy y=0

This means that the mutual information per variable I(S; W) /n is asymptot-
ically equal the mutual information per variable of an AWGN channel. Infor-
mally, it implies that we only have to compute the mutual information for an
“effective” Gaussian channel to take care of a wide range of problems. The

statement was conjectured in [170] and can be proven by an application of the
Lindeberg principle [42], [47].

1< j<mn,
v. Precise

4.2.2 AMP Algorithm and State Evolution

AMP has been applied for the rank-one symmetric matrix estimation prob-
lems by [164], who also computed the state evolution formula to analyze its
performance, generalizing techniques developed by [69] and [115]. In [174],
AMP was used in conjunction with a spectral initialization. State evolution
was further studied by [166] and [42]. AMP is an iterative algorithm that pro-
vides an estimate 8()(w), at each iteration ¢ € N, of the vector s. It turns out
that tracking the asymptotic vector and matrix MSE of the AMP algorithm
is equivalent to running a simple recursion called state evolution (SE).
The AMP algorithm reads

3 = mp((wsl' ), — b8 ),
b = S (w1 = beDE)

7
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for j = 1,---  n, where n,(y) is called the denoiser function and 7;(y) is the
derivative w.r.t y. The denoiser is the MMSE estimator associated to an
“equivalent scalar denoising problem”

y=s+3(E)z,  N(E) 7= : (4.5)

with Z ~ N(0,1) and

(z—¥)?
drzPy(z)e 2=E®)?
1) = E[X]Y = y] = L 4220(@)

(4.6)

z—Y)2

_G@-v)
[ dxPy(x)e 2557

where E' is updated at each time instance ¢ according to the recursion (4.10).
Natural performance measures are the “vector” and “matrix” MSE’s of the
AMP estimator defined below.

Definition 4.1 (Vector and matrix MSE of AMP). The vector and matriz

MSE of the AMP estimator S’(t)( W) at iteration t are defined respectively as
follows

_ 1 5 ()
Vmse,yup(A™) = - Bs w7~ S|l (4.7)
_ 1 &) g7
Muse, (A7) = —Esw(| 88" — 5873, (4.8)

where || Ay = >, ; A3, stands for the Frobenius norm of a matriz A.

A remarkable fact that follows from a general theorem of [69] (see [42] for
its use in the matrix case) is that the state evolution sequence tracks these two
MSE’s and thus allows to assess the performance of AMP. Consider the scalar
denoising problem (4.5). Hence, the (scalar) mmse function associated to this
problem reads

mmse(X(E)?) := Egy[(S — E[X|Y])?]. (4.9)
The state evolution sequence E®), t € N is defined as
EUY — mmse(X(EW)72), EO =y, (4.10)

Since the mmse function is monotone decreasing (its argument has the dimen-
sion of a signal to noise ratio) it is easy to see that that £® is a decreasing
non-negative sequence. Thus lim;_, E® = E(>) exists. One of the basic
results of [69], [42] is

fin Vimsey )y yp (A7) = B, hrf Mmsel )y yp (A7) = 02— (v—EV)2.
n—-+oo ’ n——+oo ’
(4.11)
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We note that the results in [69], [42] are stronger in the sense that the non-
averaged algorithmic mean square errors are tracked by state evolution with
probability one.

Note that when E[S] = 0 then v is an unstable fixed point, and as such,
state evolution “does not start”, in other words we have E®) = v. While this
is not really a problem when one runs AMP in practice, for analysis purposes
one can circumvent this problem by slightly biasing P, and remove the bias at
the end of the analysis. For simplicity, we always assume that Fj is biased so
that E[S] is not zero.

Assumption 4.1. In this chapter we assume that Py is discrete with bounded
support. Moreover, we assume that Py is biased such that E[S] is non-zero.

A fundamental quantity computed by state evolution is the algorithmic
threshold.

Definition 4.2 (AMP threshold). For A > 0 small enough, the fized point
equation corresponding to (4.10) has a unique solution for all noise values in
10, A[. We define Aamp as the supremum of all such A.

4.2.3 Spatially Coupled Model

The present spatially coupled construction is similar to the one used for the
coupled Curie-Weiss model [79] and is also similar to mean-field spin glass
systems introduced in [175, 176]. We consider a chain (or a ring) of under-
lying systems positioned at p€{0,..., L} and coupled to neighboring blocks
{p —w,...,p + w}. Positions pu are taken modulo L+ 1 and the integer
we{0,...,L/2} equals the size of the coupling window. The coupled model is

Ay

wmy = Siusj,, — + Ziuju\/z7 (412)
n

where the index i, € {1,...,n} (resp. j,) belongs to the block p (resp. v)

along the ring, A is an (L+1)x (L+1) matrix which describes the strength of

the coupling between blocks, and Z; ;, ~N(0,1) are i.i.d. For the analysis to

work, the matrix elements have to be chosen appropriately. We assume that:

i) A is a doubly stochastic matrix;

iii v 1s not vanishing for |u—v| < w and vanishes for |pu—rv|>w;

)
ii) A,, depends on |u—vl;
)
iv)

Ay
A is smooth in the sense [Ay, —Ayy1,|=O0(w™?) and A* :=sup, , A, =

O(w™);

v) A has a non-negative Fourier transform.
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All these conditions can easily be met, the simplest example being a triangle
of base 2w+1 and height 1/(w+1), more precisely:

1 lp—v|
Ay = m(l— w+1)’ p—vl<w (4.13)
0, lw—v|>w

We will always denote by S, := {v|A,, # 0} the set of 2w+ 1 blocks coupled
to block p.

The construction of the coupled system is completed by introducing a seed
in the ring: we assume perfect knowledge of the signal components {s;,} for
peB:={—-w-1,...,w—1} mod L+1. This seed is what allows to close the gap
between the algorithmic and information theoretic limits and therefore plays
a crucial role. We sometimes refer to the seed as the pinning construction.
Note that the seed can also be viewed as an “opening” of the chain with fixed
boundary conditions.

AMP has been applied for the rank-one symmetric matrix estimation prob-
lems by [164], who also computed the state evolution formula to analyze its
performance, generalizing techniques developed by [69] and [115]. State evo-
lution was further studied by [166] and [42].

The AMP algorithm and the state evolution recursion [166, 42] can be
easily adapted to the spatially coupled model as done in Section 4.4. The
proof that the state evolution for the symmetric rank-one matrix estimation
problem tracks the AMP on a spatially coupled model is an extension of the
analysis done in [166, 42] for the uncoupled model. The full re-derivation
of such result would be lengthy and beyond the scope of our analysis. We
thus assume that state evolution tracks the AMP performance for our coupled
problem. However, we believe that the proof will be similar to the one done
for the spatially coupled compressed sensing problem [115]. This assumption
is vindicated numerically.

Assumption 4.2. We consider the spatially coupled model (4.12) with Py
satisfying Assumption 4.1. We assume that state evolution tracks the AMP
algorithm for this model.

4.2.4 Main Results: Basic Underlying Model

One of our central results is a proof of the expression for the asymptotic mutual
information per variable via the so-called replica symmetric (RS) potential.
This is the function E € [0,v] — igrg(E; A) € R defined as

_ 2 2 22

AN
(4.14)

with Z~N(0,1), S~ Py. Most of our results will assume that P, is a discrete
distribution over a finite bounded real alphabet Py(s)=>""_ pad(s—a,) (see
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Assumption 4.1). Thus the only continuous integral in (4.14) is the Gaussian
over Z. The extension to mixtures of continuous and discrete signals can be
obtained by approximation methods not discussed in this chapter (see e.g. the
methods in [172]).

It turns out that both the information theoretic and algorithmic AMP
thresholds are determined by the set of stationary points of (4.14) (w.r.t E). It
is possible to show that for all A > 0 there always exist at least one stationary
minimum.? In this contribution we suppose that at most three stationary
points exist, corresponding to situations with at most one phase transition as
depicted in Fig. 4.1 (see Assumption 4.3 below). Situations with multiple
transitions could also be covered by our techniques.

Assumption 4.3. We assume that Py is such that there exist at most three
stationary points for the potential (4.14).

Remark 4.1. An important property of the replica symmetric potential is that
the stationary points satisfy the state evolution fixed point equation. In other
words Jirg/OE = 0 implies E = mmse(X(E)~2) and conversely. Moreover
it 1is not difficult to see that the Aavp is given by the smallest solution of
Oirs/OF = 0%igs/OE? = 0. In other words the AMP threshold is the “first”
horizontal inflexion point appearing in igs(E; A) when A increases from 0 to
+00.

One of the main results of this chapter is formulated in the following the-
orem which provides a proof of the conjectured single-letter formula for the
asymptotic mutual information per variable.

Theorem 4.1 (RS formula for the mutual information). Fiz A > 0 and let
Py satisfy Assumptions 4.1-4.3. Then

1
lim —I(S; W) = min igs(E;A). (4.15)
Ec[0,v]

n—oo 1,
Proof. See Section 4.6. O

The proof of the existence of the limit does not require the above hypothesis
on Py. Also, it was first shown in [47] that

lim sup l[(S;VV) < min igs(E;A), (4.16)
n—+oo N E€[0,v]
an inequality that we will use in the proof section. Note that, interestingly,
and perhaps surprisingly, the analysis of [47] leads to a sharp upper bound on
the “free energy” for all finite n. We will make extensive use of this inequality
and for sake of completeness, we summarize its proof in Appendix 4.8.1.
Theorem 4.1 allows to compute the information theoretic phase transition
threshold which we define in the following way.

4 Note E=0 is never a stationary point (except for the trivial case of Py a single Dirac
mass which we exclude from the discussion) and E = v is stationary only if E[S] = 0.
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Figure 4.1: The replica symmetric potential irs(E) for three values of A in the
spiked Wigner model with S; ~ Ber(p). The normalized mutual information is
min igg(F) (the black dots, while the gray dots correspond to the local minima).
The asymptotic MMSE is argminigg(E), where v =p in this case with p=0.02.
The curves from top to bottom: i) For low noise values, here A=0.0007 < Aap,
there exists a unique “good” minimum corresponding to the MMSE and AMP is
Bayes-optimal. ii) As the noise increases, a second local “bad” minimum appears:
this is the situation at Ayyp <A =0.0011 < Agg. i) For A=0.00125> Agsg,
the “bad” minimum becomes the global one and the MMSE suddenly deteriorates.
AMP can be seen as a naive minimizer of this curve starting from EF'=v=0.02.

Definition 4.3 (Information theoretic or optimal threshold). Define Aoy as
the first non-analyticity point of the mutual information as A increases. For-
mally

1
Agpt :=sup{A| lim —1(S; W) is analytic in |0, A[}. (4.17)
n—oo N

The information theoretic threshold is also called “optimal threshold” be-
cause we expect Axvp < Agpy. This is indeed proven in Lemma 4.12.

When P is s.t the RS potential (4.14) has at most three stationary points,
then mingep, irs(£; A) has at most one non-analyticity point denoted Agg
(see Fig. 4.1). In case of analyticity over all R, we set Ars=o00. We call
Ags the RS or potential threshold. Theorem 4.1 gives us a mean to concretely
compute the information theoretic threshold: Ay, =Ags.

From Theorem 4.1 we will also deduce the expressions for the vector MMSE
and the matriz MMSE defined below.

Definition 4.4 (Vector and matrix MMSE). The vector and matriv MMSE
are defined respectively as follows
1
Vmmse, (A1) 1= ESW[HS—]E[XWV]Hﬂ (4.18)

n



4.2. Setting and Main Results 101

1
Mmmse, (A1) = EES,W[HSST ~E[XXT| m||§] (4.19)

The conditional expectation E[- [W] in Definition 4.4 is w.r.t the posterior
distribution

1 s ,(m_w_.f L
P(x|w) = ——e 28 Zi<i Uy %0 Py(z:), (4.20)
Z(w) 1
with the normalizing factor depending on the observation given by

2

Z(w) = / { ﬁdxiPo(a:i)}eiZKj () (4.21)

The expectation Es.w|-] is the one w.r.t P(w)P(s) = Z(w) ], Po(si). The
expressions for the MMSE’s in terms of (4.14) are given in the following corol-
lary.

Corollary 4.1 (Exact formula for the MMSE). For all A # Ags, the matriz
MMSE is asymptotically

lim Mmmse,, (A™') = v* — (v — argmin pe (o irs (£ A))?. (4.22)

n—0o0

Moreover, if A<Axup or A> Ags, then the usual vector MMSE satisfies

lim Vmmse,(A™!) = argmin e ,jirs (£; A). (4.23)
n—r00 ’
Proof. See Section 4.7. ]

It is natural to conjecture that, in the whole range A # Agg, the vector
MMSE is given by argminEe[O,v]iRs(E; A), but our proof does not quite yield
the full statement.

Another fundamental consequence of Theorem 4.1 concerns the optimality
of the performance of AMP.

Corollary 4.2 (Optimality of AMP). For A < Aamp or A > Ags, the
AMP is asymptotically optimal in the sense that it yields upon convergence the
asymptotic vector-MMSE and matriz-MMSE of Corollary 4.1. Namely,

. . (t) T 1
tLlErnoo HEIEOO Mmse,, s\p(A7) = nhjEO Mmmse, (A™). (4.24)
lim lim VmseS}AMP(Afl) = lim Vmmse,(A™"). (4.25)

t——+00 n—+o00 n—oo

On the other hand, for Aayp < A < Ags the AMP algorithm is strictly
suboptimal, namely

. . (t) -1 : -1

tlgrnoo nl—l>r—&l-1<>o Mmse,, s yp(A77) > nh_)rgo Mmmse, (A™). (4.26)
. . (t) -1 : -1

t£+moo nl_l)liloo Vmse, yyp(A77) > 7}1_)11010 Vmmse,, (A™). (4.27)



102 Symmetric Rank-One Matrix Factorization

Proof. See Section 4.7. [

This leaves the region Axyp < A < Agg algorithmically open for efficient
polynomial time algorithms. A natural conjecture, backed up by many results
in spin glass theory, coding theory, planted models and the planted clique
problems; is:

Conjecture 4.1. For Aavp < A < Ags, no polynomial time efficient algo-
rithm that outperforms AMP exists.

4.2.5 Main Results: Coupled Model

In this chapter, the spatially coupled construction is used for the purposes
of the proof. However, one can also imagine interesting applications of the
spatially coupled estimation problem, specially in view of the fact that AMP
turns out to be optimal for the spatially coupled system. In coding theory
for example, the use of spatially coupled systems as a proof device historically
followed their initial construction which was for engineering purposes and led
to the construction of capacity achieving codes.

Our first crucial result states that the mutual information of the coupled
and original systems are the same in a suitable limit. The mutual information
of the coupled system of length L and with coupling window w is denoted
]w,L(S; W) .

Theorem 4.2 (Equality of mutual informations). For any fized w s.t. By
satisfies Assumption 4.1, the following limits exist and are equal

o 1 1
fim gy L (S5 W) = Jim DI(S W), (4.28)
Proof. See Section 4.5. [

An immediate corollary is that the non-analyticity points (w.r.t A) of the
mutual informations are the same in the coupled and underlying models. In
particular, define the optimal threshold of the spatially coupled model defined
by ASLi=sup{A | imp o0 limy, o0 Ly, (S; W) /(n(L+1)) is analytic in ]0, A[},
we have Af = A

The second crucial result states that the AMP threshold of the spatially
coupled system is at least as good as Agg (threshold saturation result of Theo-
rem 4.3). The analysis of AMP applies to the coupled system as well [69, 115]
and it can be shown that the performance of AMP is assessed by SE. Let

1 “
E®:= lim ~Egz[||S,—S. |2 (4.29)

H n—soo N

be the asymptotic average vector-MSE of the AMP estimate SS) at time ¢
for the p-th “block” of S. We associate to each position p € {0,...,L} an
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independent scalar system with AWGN of the form y=s+%,(E; A)z, with

0= Aw by
A

Y, (E) 2= (4.30)
and S~ Py, Z~N(0,1). Taking into account knowledge of the signal compo-
nents in the seed B, SE reads

(4.31)

EfY = mmse(S, (EY; A)2), BY = v for pe{0,...,L}\ B,
E,(f)zofor/LGB,tZO

where the mmse function is defined as in (4.9).

From the monotonicity of the mmse function we have E,(fﬂ) < E,(f) for all
p € 40,..., L}, a partial order which implies that lim, ., E® = E) exists.
This allows to define an algorithmic threshold for the coupled system on a
finite chain:

AAMP,w,L = SUP{A‘E,SOO) < Egood(A) V pu}

where Ego0a(A) is the trivial fixed point solution of the SE starting with the
initial condition E(® = 0. A more formal but equivalent definition of A AMP,w, L
is given in Section 4.4.

Theorem 4.3 (Threshold saturation). Let Ay p be the algorithmic threshold
on an infinite chain, A{yp :=liminf,, . iminf; o Aampw r, s.t. Py satisfies
Assumptions 4.1 and 4.2. We have ASyp > Ags.

Proof. See Section 4.4. O

Our techniques also allow to prove the equality A§,;p = Agg, but this is
not directly needed.

4.2.6 Roadmap of the Proof of the Replica Symmetric
Formula

Here we give a roadmap of the proof of Theorem 4.1 that will occupy Sections
4.4-4.6. A fruitful idea is to concentrate on the question whether Ay, = Ags.
The proof of this equality automatically generates the proof of Theorem 4.1.

We first prove in Section 4.6.1 that Ay < Agg. This proof is based on a
joint use of the - MMSE relation (Lemma 4.9), the replica bound (4.16) and the
suboptimality of the AMP algorithm. In the process of proving Ay, < Agg,
we in fact get as a direct bonus the proof of Theorem 4.1 for A < Ag.

The proof of Agpy > Agg requires the use of spatial coupling. The main
strategy is to show

Agrs < Afup < AS Aopt.- (4.32)

opt =

The first inequality in (4.32) is proven in Section 4.4 using methods first in-
vented in coding theory: The algorithmic AMP threshold of the spatially
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coupled system A,p saturates (tends in a suitable limit) towards Agg, i.e.
Agrs < ASyp (Theorem 4.3). To prove the (last) equality we show in Section
4.5 that the free energies, and hence the mutual informations, of the under-
lying and spatially coupled systems are equal in a suitable asymptotic limit
(Theorem 4.2). This implies that their non-analyticities occur at the same
point and hence Ag = Agy. This is done through an interpolation which,
although similar in spirit, is different than the one used to prove replica bounds
(e.g. (4.16)). In the process of showing Af | = Ay, we will also derive the
existence of the limit for 7(S; W)/n. Finally, the second inequality is due the
suboptimality of the AMP algorithm. This follows by a direct extension of the
SE analysis of [166, 42] to the spatially coupled case as done in [115].

Once A,y = Agg is established it is easy to put everything together and
conclude the proof of Theorem 4.1. In fact all that remains is to prove Theorem
4.1 for A > A,pe. This follows by an easy argument in section 4.6.2 which
combines A, = Ags, the replica bound (4.16) and the suboptimality of the
AMP algorithm. Note that in the proof sections that follow, we assume that
Assumptions 4.1-4.3 hold.

4.2.7 Connection with the Planted SK Model

Let us briefly discuss the connection of the matrix factorization problem (4.1)
with a statistical mechanical spin glass model which is a variant of the classic
Sherrington-Kirkpatrick (SK) model. This is also the occasion to express the
mutual information as a “free energy” through a simple relation that will be
used in various guises later on.

Replacing w;; = n~"%s;s; + vV Az in (4.20) and simplifying the fraction
after expanding the squares, the posterior distribution can be expressed in
terms of s,z as follows

1, "
_ — ,~H(xls,z) )
P(x|s,z) = Ze EPO(xZ), (4.33)
where
Mixls.z) = Y (Tl — Sl ATy (4.34)
e 2nA nA n/A
and

z- / { 1T o Py oMo, (4.35)

In the language of statistical mechanics, (4.34) is the “Hamiltonian”, (4.35) is
the “partition function”, and (4.33) is the Gibbs distribution. This distribution
is random since it depends on the realizations of S, Z. Conditional expectations
with respect to (4.33) are denoted by the Gibbs “bracket” (—). More precisely

Exisz[AX)[S = 5,2 = z] = (A(X)). (4.36)
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The free energy is defined as

fn = —%Es,z[ln Z]. (4.37)

Notice the difference between Z in (4.20) and Z in (4.33). The former is
the partition function with a complete square, whereas the latter is the par-
tition function that we obtain after expanding the square and simplifying the
posterior distribution.

In Appendix 4.8.2, we show that mutual information and free energy are
essentially the same object up to a trivial term. For the present model

1o 1 v? 1 4 9

ﬁ](S’W) = EES’ZUDZ] + A + m(QE[S | —0v%), (4.38)
where recall v = E[S?]. This relationship turns out to be very practical and
will be used several times.

For binary signals we have s; and z; € {—1,+1}, so the model is a binary
spin glass model. The first term in the Hamiltonian is a trivial constant,
the last term corresponds exactly to the SK model with random Gaussian
interactions, and the second term can be interpreted as an external random
field that biases the spins. This is sometimes called a “planted” SK model.

The rest of the chapter is organized as follows. In Section 4.3 we provide
two examples of the symmetric rank-one matrix estimation problem. Thresh-
old saturation and the invariance of the mutual information due the spatial
coupling are shown in Section 4.4 and 4.5 respectively. The proof of Theorem
4.1 follows in Section 4.6. Section 4.7 is dedicated to the proof of Corollary
4.1 and Corollary 4.2.

4.3 Two Examples: Spiked Wigner and
Community Detection

In order to illustrate our results, we shall present them here in the context of
two examples: the spiked Wigner model, where we close a conjecture left open
by [166], and the case of asymmetric community detection.

4.3.1 Spiked Wigner Model

The first model is defined as follows: we are given data distributed according
to the spiked Wigner model where the vector s is assumed to be a Bernoulli
0/1 random variable with probability p. Data then consists of a sparse, rank-
one matrix observed through a Gaussian noise. In [166], the authors proved
that, for p > 0.041, AMP is a computationally efficient algorithm that asymp-
totically achieves the information theoretically optimal mean-square error for
any value of the noise A.



106 Symmetric Rank-One Matrix Factorization

002 R E——————
= MMSE : |
aass MSE of AMP I
|
3]
X2 |
=
7 0.01 - | 1
=
< /
=
/
H /7
i/
/'/‘
0 —-_‘?-" I I
0 0.0005 0.001 0.0015 0.002
A

Figure 4.2: Phase transition diagram for spiked Wigner model with p = 0.02.
The matrix MSE is shown as a function of the noise variance A. AMP provably
achieves the MMSE except in the region Aayp < A < Agp. We conjecture that
no polynomial-time algorithm will do better than AMP in this region.

For very small densities (i.e. when pis o(1)), there is a well known large gap
between what is information theoretically possible and what is tractable with
current algorithms in support recovery [177]. This gap is actually related to
the planted clique problem [178, 179], where it is believed that no polynomial
algorithm is able to achieve information theoretic performances. It is thus
perhaps not surprising that the situation for p < 0.041 becomes a bit more
complicated. This is discussed in details in [167] on the basis of statistical
physics consideration which we now prove.

For such values of p, as A changes there is a region where two local minima
appears in igg(F; A) (see Fig. 4.1 and the RS formula (4.14)). In particular
for Aamp < A < Agpt, the global minimum differs from the AMP one and
a computational gap appears (see Fig. 4.2). Interestingly, in this problem,
the region where AMP is Bayes optimal is still quite large. Moreover, AMP
algorithm was shown to outperform the spectral method [102, 153].

The region where AMP is not Bayes optimal is perhaps the most interesting
one. While this is by no means evident, statistical physics analogies with actual
phase transition in nature suggest that this region will be hard for a very
large class of algorithms. A fact that add credibility to this prediction is the
following: when looking to small p regime, we find that both the information
theoretic threshold and the AMP one corresponds to what has been predicted
in sparse PCA for sub-extensive values of p [177].

Finally, another interesting line of work for such probabilistic models has
appeared in the context of random matrix theory (see for instance [44] and
references therein). The focus is to analyze the limiting distribution of the
eigenvalues of the observed matrix. The typical picture that emerges from
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this line of work is that a sharp phase transition occurs at a well-defined
critical value of the noise. Above the threshold an outlier eigenvalue (and the
principal eigenvector corresponding to it) has a positive correlation with the
hidden signal. Below the threshold, however, the spectral distribution of the
observation is indistinguishable from that of the pure random noise. In this
model, this happens at Agyectral = p?. Note that for A > Agpectral spectral
methods are not able to distinguish data coming from the model from random
ones, while AMP is able to sort (partly) data from noise for any values of A
and p.

4.3.2 Asymmetric Community Detection

The second model is a problem of detecting two communities (groups) with
different sizes pn and (1 —p)n, that generalizes the one considered in [42].
One is given a graph where the probability to have a link between nodes in
the first group is p+pu(l—p)/(py/n), between those in the second group is
p+up/(v/n(1—p)), while interconnections appear with probability p—ju/+/n.
With this peculiar “balanced” setting, the nodes in each group have the same
degree distribution with mean pn, making them harder to distinguish.

According to the universality property described in Section 4.2, this is
equivalent to the AWGN model (4.1) with variance A =p(1—p)/u? where each
variable s; is chosen according to

Fy(s) = pd(s — /(1 = p)/p) + (1= p)d(s +/p/(1 = p)). (4.39)

Our results for this problem® are summarized in [102, 153] where a phase
transition behavior similar to that of Fig. 4.2 appears. Moreover, it was shown
that for p grater than a critical value p. =1/2—+/1/12, it is asymptotically
information theoretically possible to get an estimation better than chance if
and only if A<1. When p < p., however, it becomes possible for much larger
values of the noise. Interestingly, AMP and spectral methods have the same
transition and can find a positive correlation with the hidden communities for
A <1, regardless of the value of p.

4.4 Threshold Saturation

The main goal of this section is to prove that for a proper spatially coupled
(SC) system, threshold saturation occurs (Theorem 4.3 ), that is Agg < Afyp-
We begin with some preliminary formalism in Sections 4.4.1 and 4.4.2 on state
evolution for the underlying and coupled systems. Note that the proof of
threshold saturations done in this section is similar to that of sparse superpo-
sition codes in Chapter 2.

®Note that here since E = v = 1 is an extremum of irg(E;A), one must introduce a
small bias in Py and let it then tend to zero at the end of the proofs.
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4.4.1 State Evolution of the Underlying System

First, define the following posterior average

(A) = fdxA(ﬁ)Po(x)eimiA)QH(E(ETA)‘Z*E(QM)

: (4.40)

f dxpo(x)e_ 22(22,&2 +e ( SEA2 TSEA )

where S ~ Py, Z ~ N(0,1). The dependence on these variables, as well as on
A and F is implicit and dropped from the notation of (A). Let us define the
following operator.

Definition 4.5 (SE operator). The state evolution operator associated with
the underlying system is

Tu(E) := mmse(X(E) %) = Esz[(S — (X)), (4.41)
where S ~ Py, Z ~ N(0,1).

The fixed points of this operator play an important role. They can be
viewed as the stationary points of the replica symmetric potential function
E € [0,v] = igrs(E;A) € R or equivalently of fig : E € [0,v] — fis(E) € R
where

1)2

frs(E) ==irs(E; A) — A (4.42)

It turns out to be more convenient to work with fgg instead of irg. We have

Lemma 4.1. Any fixed point of the SE corresponds to a stationary point of

frs:

Ofis(E:),
oF E

Proof. See Appendix 4.8.4. n

E=T,(E) < = 0. (4.43)

The asymptotic performance of the AMP algorithm can be tracked by iter-
ating the SE recursion as follows (this is the same as equation (4.10) expressed
here with the help of T,)

ECY =T, (EM), t>0, EO =y, (4.44)

where the iteration is initialized without any knowledge about the signal other
than its prior distribution (in fact, both the asymptotic vector and matrix MSE
of the AMP are tracked by the previous recursion as reviewed in Section 4.2.2).
Let Egood(A) = Tém)(o), the fixed point reached by initializing iterations at
E = 0. With our hypothesis on F it is not difficult to see that definition 4.2
is equivalent to

Aane = sup {A > 0| T (v) = Byooa(A)}- (4.45)

The following definition is handy
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Definition 4.6 (Bassin of attraction). The basin of attraction of the good
solution Egeeq(A) is Vyood 1= {E | T (E) = Egooa(A)}.

Finally, we introduce the notion of potential gap. This is a function d fRq :
A e R, — 0fis(A) € R defined as follows:

Definition 4.7 (Potential gap). Define

O frs(A) = infEivgood(flgS(E) — frs(Ego0d)) (4.46)

as the potential gap, with the convention that the infimum over the empty set
is 0o (this happens for A < Aayp where the complement of Vyooa s the empty
set).

Our hypothesis on F, imply that

Agg :=sup{A > 0|5 frg(A) > 0} (4.47)

4.4.2 State Evolution of the Coupled System

For the SC system, the performance of the AMP decoder is tracked by an MSE
profile (or just profile) E®, defined componentwise by

(t)
I

1 -
EP = lim —EswlS.—S, (W)|3. (4.48)

n—-+oo N
It has L + 1 components and describes the scalar MSE in each block p. Let
us introduce the SE associated with the AMP algorithm for the inference over
this SC system. First, denote the following posterior average at fixed s, z and

A.

12 S z
fdxA(m)Po(x)e_%(E,Aﬂ”(EME,A)Z’*EME,A))

(A), - - - (4.49)
fdeo(x)e_ZEME,m? +x(2u(E,A)2+Eu<EvA>)
where the effective noise variance of the SC system is defined as
v — ALFE,
2, (B) 2 = 2ves, (4.50)

A Y
where we recall S, := {v| A, # 0} is the set of 2w+ 1 blocks coupled to block
L.

Definition 4.8 (SE operator of the coupled system). The state evolution op-
erator associated with the coupled system (4.12) is defined component-wise as

[T.(B)]u = Es,2[(S — (X),.)*]- (4.51)

T.(E) is vector valued and here we have written its ji-th component.
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We assume perfect knowledge of the variables {s;,} inside the blocks p €
B:={0:w—1}U{L—w: L} as mentioned in Section 4.2.3, that is z;, = s;,
for all i, such that p € B. This implies £, = 0V pu € B. We refer to this as
the pinning condition. The SE iteration tracking the scalar MSE profile of the
SC system reads for u ¢ B

EMY = [T(EW)], Vt>0, (4.52)

with the initialization E,SO) = v. For p € B, the pinning condition forces

E,(f) = 0V ¢. This equation is the same as (4.31) but is expressed here in terms
of the operator T'c.

Let us introduce a suitable notion of degradation that will be very useful
for the analysis.

Definition 4.9 (Degradation). A profile E is degraded (resp. strictly de-
graded) w.r.t another one G, denoted as E = G (resp. E = G), if £, >
G,V p (resp. if E= G and there exists some p such that E, > G,,).

Define an error profile Egooq(A) as the vector with all L 4+ 1 components
equal to Egood(A).

Definition 4.10 (AMP threshold of coupled ensemble). The AMP threshold
of the coupled system is defined as

ASyp = liminf,, ;oo sup {A > 0] 7 (v) < Egpoa(A)} (4.53)

where v is the all v vector. The liminf,, ;.. is taken along sequences where
first L — oo and then w — co. We also set for a finite system Aavp . =

sup {A > 0| T (v) < Egoa(A)}.

The proof presented in the next subsection uses extensively the following
monotonicity properties of the SE operators.

Lemma 4.2. The SE operator of the SC' system maintains degradation in
space, i.e. E= G = T.(E) = T.(G). This property is verified by T,(E) for a
scalar error as well.

Proof. From (4.50) one can immediately see that E- G = X,(E)>X,(G) Y p.
Now, the SE operator (4.51) can be interpreted as the mmse function associ-
ated to the Gaussian channel y = s+ ,(E, A)z. This is an increasing function
of the noise intensity ZZ: this is intuitively clear but we provide an explicit
formula for the derivative below. Thus [T.(E)], > [T.(G)], V p, which means
T.(E) = T.(GQ).

The derivative of the mmse function of the Gaussian channel can be com-
puted as

d mmse(X7?)
d¥—2

This formula explicitly confirms that 7,,(E) (resp. [T.(E)],) is an increasing
function of ¥* (resp. ¥2). O

— 2Exy||X - E[X|Y]||§var[X|Y]]. (4.54)
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Corollary 4.3. The SE operator of the coupled system maintains degradation
mn time, i.e., TC(E(t)) < EY = TC(E(tH)) < E™Y . Similarly TC(E(t)) -
EY = T, (E"Y) = EYY  Furthermore, the limiting error profile B :=
TS(EY)Y exists. These properties are verified by To(E) as well.

Proof. The degradation statements are a consequence of Lemma 4.2. The ex-
istence of the limits follows from the monotonicity of the operator and bound-
edness of the scalar MSE. m

Finally we will also need the following generalization of the (replica sym-
metric) potential function to a spatially coupled system:

Fis(B) =32 3 T B - B)

u=0rvesS,

L
- ZE&Z[ln ( / dzPy(z)e” En®? (v 2‘”S“ZZH<E’A>))]7 (4.55)
n=0

where Z ~ N(z]0,1) and S ~ Py(s). As for the underlying system, the
following Lemma links the SE and RS formulations.

Lemma 4.3. If E is a fized point of (4.52), i.e. E, = [T.(E)], = afggiE) ‘E =
OvVpeB ={w:L—w-—1}.

Proof. The proof is similar to the proof of Lemma 4.1 in Appendix 4.8.4. We
skip the details for brevity. m

Now that we have settled the required definitions and properties, we can
prove threshold saturation.

4.4.3 Proof of Threshold Saturation (Theorem 4.3)

The proof will proceed by contradiction. Let E* a fixed point profile of the
SE iteration (4.52). We suppose that E* does not satisfy E* < Eg,04(A), and
exhibit a contradiction for A < Agg and w large enough (but independent of
L). Thus we must have E* < Egy04(A). This is the statement of Theorem 4.4
in Section 4.4.3 and directly implies Theorem 4.3.

The pinning condition together with the monotonicity properties of the
coupled SE operator (Lemma 4.2 and Corollary 4.3) ensure that any fixed
point profile E* which does not satisfy E* < Egq0q4(A) necessarily has a shape
as described in Fig. 4.3. We construct an associated saturated profile E as
described in Fig. 4.3. From now on we work with a saturated profile EE which
verifies E = E* and E > E,,04(A). In the following we will need the following
operator.

Definition 4.11 (Shift operator). The shift operator S is defined component-
wise as [S(E)], == E,_1.
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Emax

L+1=0 w-1 o Hmax L—w L"LL

Figure 4.3: A fixed point profile E* of the coupled SE iteration (solid line)
is necessarily null ¥V © € {0 : w — 1} because of the pinning condition, and
then it increases to reach Fy.. € [0,v] at some pipx € {w @ L —w — 1}
(for a symmetric coupling matrix fimax = L/2). Then, it starts decreasing and
it is again null V u € {L —w : L}. By definition, the associated saturated
profile E (dashed line) starts at Eypoq(A) ¥V o < p., where g, is such that:
By < Egooa(A) ¥V € {0 1w} and B > FEgpoa(A) V p' € {p. +1: L}
Then, E matches E* V 1 € {1, : fimax} and saturates at Eppax YV [0 > fimax. The
saturated profile is extended for © < 0 and p > L indices. The green (resp. red)
branch shows that when the block indices of E are p1 < 0 (resp. > L), then E,
equals to Egood(A) (resp. Fiax). By construction, E is non decreasing in 1 and
is degraded w.r.t the fixed point profile E > E”.

Upper bound on the potential variation under a shift

The first step in the proof of threshold saturation is based on the Taylor
expansion of the RS free energy of the SC system.

Lemma 4.4. Let E be a saturated profile. Set Ey := (1 — \)E+ AS(E) for
A€ [0,1] and 6E, := E, — E,_1. There exists some X € [0,1] such that

0° fis(E
fis(S(E)) ~ fis(B Z BB GRS s

Proof. Using the remainder Theorem, the free energy difference can be ex-
pressed as

d O frs(E
fis(S(B)) - fis(B ZfW Ohst) 1 Z OB, 0By agjgiiu?E

(4.57)

for some A € [0,1]. By definition of the saturated profile E, we have §E, =
O0VueA:={0: .} U{pttmax+1: L} and E, = [T(E)], for r ¢ A. Recalling
Lemma 4.3 we see that the derivative in the first sum cancels for » ¢ A. Hence
the first sum in (4.57) vanishes. O

Lemma 4.5. The saturated profile E is smooth, i.e. JE* = max|dE,| =
o
O(1/w) uniformly in L.
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Proof. By definition of the saturated profile E we have 0E, =0V € A =
{0+ g} U{ftmax + 1 : L}. For p ¢ A, we can replace the fixed point profile
component £, by [T.(E)], so that 0E, = [T.(E)], —[1t(E)],—1. We will Taylor
expand the SE operator. To this end, we define %% := ¥ ,(E)~*> =X, ,(E)~>
for p € {p* + 1 : pmax}. Recall that A1, 1 = Ay, Ay > 0 and A* =
sup,,, Ay, = O(1/w). Thus from (4.50) we get

55,7 = | 3 AwlB, — B

veS,

g K* Z(Eu - Ell*l)

veS,
20A* 1

<2 =0 (4.58)

where we have used F, — E,_1 > 0 to get rid of the absolute value. Note
that the first and second derivatives of the SE operator (4.51) w.r.t ¥ >
bounded as long as the five first moments of the posterior (4.49) exist and are
bounded (which is true under our assumptions). Then by Taylor expansion at
first order in 52;2 and using the remainder theorem, we obtain

IT(E)],

[0 E,| = [Te(B)],, — [Te(B)]um| < 05,7 =555 | + O0%8,") < O(

),
59)

where the last inequality follows from (4.58). O

(
B}

=

L
(

Proposition 4.1. Let E be a saturated profile. Then for all A > 0 there exists
a constant 0 < C(A) < 400 independent of L such that

Fis(S(B) — fis(B)] < 2 (4.60)

Proof. From Lemma 4.4, in order to compute the free energy difference be-
tween the shifted and non-shifted profiles, we need to compute the Hessian
associated with this free energy. We have

Ofis(B) _ 5~ AuwBy 1§~ 0%, (B) v
OE, =2 2/ 2; OE, Te(E)L, 2A

veS,
1
- ﬁ( D MuvB+ ) M| T(B)), — v) (4.61)
veSu vesS,
and
Plasm) _ 1 oT(E),
W_ﬁ@’“’ﬂ(“ € Su) Z Mt =555 ‘). (462)
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We can now estimate the sum in the Lemma 4.4. The contribution of the first
term on the r.h.s of (4.62) can be bounded as

L
1 SE*A*(2w + 1) 1
x| 20 D A EdE| < ST (=), (4.63)
p=0 p'eS,
where we used the facts: 6£, > 0, the sum over p = 0,---, L is telescopic,

E, € [0,v], A* = O(1/w) and §E* = (w ') (Lemma 4.5). We now bound
the contribution of the second term on the r.h.s of (4.62). Recall the first
derivative w.r.t 32 of the SE operator is bounded uniformly in L. Call this
bound K = O(1). We obtain

L
. LB,
E‘ Z 6EM5EMI Z A/’L VAN v 8272
Hop'=1 veSNS, v
KA0E" | & .
< ToAT ‘ ZéEu Z card(S, NSy)| < O<E) (4.64)
p=1 W e{p—2w:pu+2w}
The last inequality follows from the following facts: the sum over p=1,--- L

is telescopic, A* = O(1/w), Lemma 4.5, and for any fixed p the following holds

> card(S, N S,) = (2w + 1)2. (4.65)

W e{p—2w:p+2w}

Finally, from (4.63), (4.64) and the triangle inequality we obtain

0 fis(E)
’ Z OEu0 B 8ER§E

- 0(-) (4.66)

uniformly in L. Combining this result with Lemma 4.4 ends the proof. O]

Lower bound on the potential variation under a shift

The second step in the proof is based on a direct evaluation of f5q(S(E)) —
fis(E). We first need the Lemma:

Lemma 4.6. Let E be a saturated profile such that E = Egyoq(A). Then
Emax ¢ Vgood-

Proof. The fact that the error profile is non decreasing and the assumption
that E > Egoa(A) imply that En.c > Ey = Egood(A). Moreover, Ep.y <
(T (E)] e < Tu(Emax) where the first inequality follows from E > E* and
the monotonicity of 7., while the second comes from the fact that E is non
decreasing. Combining these with the monotonicity of T, gives T, (Fmax) >
E. . which implies Té“’)(EmaX) > Emax > FEgooa(A) which means Eyay ¢
Vgood' [
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Proposition 4.2. Fiz A < Agrs and let E be a saturated profile such that
E > E,.0q4(A). Then

[fes(S(B)) = frs(B)| = 0 frs(A) (4.67)
where 6 fig(A) is the potential gap (Definition 4.7).

Proof. Set
() = ES,Z[ln ( / deo(x)ezzﬁ(x”S“EZx)ﬂ .

By (4.55)

fis(S(E)) — frs(E Z Z MHVH —E,)(v-E,)

e
D) (B, (0 E,)
S TSSE) + Y T(5,(E)

- (BB, - > (B0~ E)
(54 (B)) + (2 (1)), (4.68)

where we used A, +1,41 = A, implying also X,(S(E)) = X, (E) as seen from
(4.50). Recall 3(E)"% = (v — E)/A. Now looking at (4.50), one notices that
thanks to the saturation of E, ¥_(E) = X(Ey) where Ey = Eyp04(A) (see the
green branch in Fig. 4.3), while 3/ (E) = X(EL) where E = Epax (see the
red branch Fig. 4.3). Finally from (4.68), using that the coupling matrix is
(doubly) stochastic and the saturation of E

Fis(S(E) ~ fis(8) =[ U (2 Bya(2)))]
R 8]
—fRS( good) fﬁS(Emax) < _6f1%S(A)7 (4~69)

where we recognized the potentlal function of the underlying system since
Jis(E; A) = igs(E; A) — fx, whereas the last inequality is a direct application
of Lemma 4.6 and Definition 4.7. Finally, using the positivity of 0 fis(A) for
A < ARgg, we obtain the desired result. O
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End of proof of threshold saturation

We now have the necessary ingredients in order to prove threshold saturation.

Theorem 4.4 (Asymptotic performance of AMP for the coupled system).
Fiz A < Ags. Take a spatially coupled system with w > C(A)/6 fig(A) where
C(A) is the constant in Proposition 4.1. Then any fized point profile E* of the
coupled state evolution iteration (4.52) must satisfy E* < Eypoq(A).

Proof. The proof is by contradiction. Fix A < Ags and w > C(A)/d fig(A).
We assume there exists a fixed point profile which does not satisfy E* <
Ego0a(A). Then we construct the associated saturated profile E. This profile
satisfies both statements of Propositions 4.1 and 4.2. Therefore we must have
dfhs(A) < C(A)/w which contradicts the choice w > C(A)/d frg(A). We
conclude that E* < Ezy0q(A) must be true. O

Theorem 4.3 is a direct corollary of Theorem 4.4 and Definition 4.10. Take
some A, < Ags and choose w > C'(A,)/d fis(AL). Then we have Aayp . >
A,. Note that §fis(As) — 04 for A, — Agrs. Thus Taking L — +oo first
and w — +o00 second we can make A, as close to Arg as we wish. Therefore
we obtain Afyp = liminfy 4,400 Aamp,w,z > Ars where the limit is taken in
the specified order.

4.5 Invariance of the Mutual Information Under
Spatial Coupling

In this section we prove that the mutual information remains unchanged under
spatial coupling in a suitable asymptotic limit (Theorem 4.2). We will compare
the mutual informations of the four following variants of (4.12). In each case,
the signal s has n(L + 1) i.i.d components.

e The fully connected: If we choose w = L/2 and a homogeneous coupling
matrix with elements A, , = (L + 1)~! in (4.12). This yields a homoge-
neous fully connected system equivalent to (4.1) with n(L + 1) instead
of n variables. The associated mutual information per variable for fixed
L and n is denoted by 7} .

o The SC pinned system: This is the system studied in Section 4.4 to prove
threshold saturation, with the pinning condition. In this case we choose
0 < w < L/2. The coupling matrix A is any matrix that fulfills the
requirements in Section 4.2.3 (the concrete example given there will do).

The associated mutual information per variable is here denoted i
Note that i2%% | = (n(L 4 1)) "1, (S; W)

n,w,L*

e The periodic SC system: This is the same SC system (with same coupling
window and coupling matrix) but without the pinning condition. The



4.5. Invariance of the Mutual Information Under Spatial Coupling 117

associated mutual information per variable at fixed L,w,n is denoted
e

e The decoupled system: This corresponds simply to L + 1 identical and
independent systems of the form (4.1) with n variables each. This is
equivalent to periodic SC system with w = 0. The associated mutual
information per variable is denoted 3% . Note that i5 = n~'1(S; W).

Let us outline the proof strategy. In a first step, we use an interpolation
method twice: first interpolating between the fully connected and periodic SC
systems, and then between the decoupled and periodic SC systems. This will
allow to sandwich the mutual information of the periodic SC system by those
of the fully connected and decoupled systems respectively (see Lemma 4.7).
In the second step, using again a similar interpolation and Fekete’s theorem
for superadditive sequences, we prove that the decoupled and fully connected
systems have asymptotically the same mutual information (see Lemma 4.8 for
the existence of the limit). From these results we deduce the proposition:

Proposition 4.3. For any 0 < w < L/2

1
lim % ;= lim —I(S; W) (4.70)

n—-+oo n—+oo N

Proof. Lemma 4.8 implies that lim,, lpp, = 1My oo z‘,ifz One also notes
that 0 = £1(S; W). Thus the result follows from Lemma 4.7. O

In a third step an easy argument shows

Proposition 4.4. Assume Py has finite first four moments. For any 0 < w <
L/2

e jeou :O(%) (4.71)

naw,L ~ “naw,L
Proof. See Appendix 4.8.7. n

Since " ; = (n(L + 1)) 'L, (S; W), Theorem 4.2 is an immediate con-

naw,L
sequence of Propositions 4.3 and 4.4.

4.5.1 A Generic Interpolation

Let us consider two systems of same total size n(L + 1) with coupling ma-
trices AW and A© supported on coupling windows w; and w, respectively.
Moreover, we assume that the observations associated with the first system
are corrupted by an AWGN equals to /A /tz while the AWGN corrupting
the second system is \/A/(1 —t)z’, where Z;; and Z; are two iid. stan-
dard Gaussians and ¢ € [0, 1] is the interpolation parameter. The interpolating
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inference problem has the form

A A
wZMu - Szusﬂu n + ZZHJU t

_ AELOu) / A
wiuju - SiquV n + Zl'uju I_—t

(4.72)

In this setting, at ¢ = 1 the interpolated system corresponds to the first system
as the noise is infinitely large in the second one and no information is available
about it, while at ¢ = 0 the opposite happens. The associated interpolating
posterior distribution can be expressed as

L n
1
Py(x|s,z,7') = me%(t,Am,A(O))) H H Py(z;,) (4.73)

pn=01i,=1

where the “Hamiltonian” is Hin(t, AD, AQ) := H(t, AD) + H(1 — t, A1)
with®

L 2,2
M A = 3 A 3 (e St i VA
b A 132724 2n n ,—ntAM7M

L ptw n 2 .2
i A Tiy i, SinSiTiuTi,  TiuTj, i, VA
E : 187 § .
A 2n n Vnth,,

p=0 v=p+1 G, ju=1

(4.74)

and Z;,(t) is the obvious normalizing factor, the “partition function”. The
posterior average with respect to (4.73) is denoted by the bracket notation (—);.
It is easy to see that the mutual information per variable (for the interpolating
inference problem) can be expressed as

1 v? 1 4 9
_mES,Z,Z’ [In Zi(2)] + A + m(QE[S ] —v%)

(4.75)

iint (t) =

The aim of the interpolation method in the present context is to compare
the mutual informations of the systems at ¢ =1 and ¢ = 0. To do so, one uses
the fundamental theorem of calculus

Gint (1) — it (0) = / dt diizltt(t) : (4.76)

0

and tries to determine the sign of the integral term.

6Note that since the SC system is defined on a ring, we can express the Hamiltonian in
terms of forward coupling only.
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We first prove that

AA(L + 1)dii§t(t) _
ptwy
]ESZZ/ [<——<Z Z A Z qule,SiuS +ZAW‘ZX2 SZ)
0 v=p—w iy,Jr=1 ip=1
LH_wOu p—w1 J ; "
(z > AU Y X,X8,8, - A0 xEs)) ] @)
n=0 v=p—wo iy,Jv=1 n=0 iy=1

where (—); denotes the expectation over the posterior distribution associated
with the interpolated Hamiltonian Hu (¢, A, A©). We start with a simple
differentiation of the Hamiltonian w.r.t. ¢ which yields

%Hmt(t, AW A = %(A(t, AM) — B(t, A")),

L 2 2
a6 =30 Y (k- s, 22 V)

2" " 2y/ntAl)
L ptwr n 2 .2 /
A(l) Wy PP iy i Ju Ty
22 A D (5 ; =
- ’ 2 ntA,w

L 2 .2 /
B(t, AY) :ZASB Z (xigmju S0y SiuTin T, xiuxjuziuju\/Z)
=g ! 2¢/n(1 — t)Al)

L ptwo n ARV
Z Z A©) Z T, OSSR TT,  Tili g, VA
i 2n n

=0 v=p+1 iy j,=1 24/n(1— t)Af?J

Using integration by parts with respect to the Gaussian variables Z;;, ZZ’]7 ne
gets
Ay 2 32 2
Es 2,2/ Zi,;,(Xi, X, )] = X Eszz |:<XiMij>t - <Xiquu>ti| (4.78)
(1 - t)AO v
EszzlZ,,;,(Xi, Xi,)i) = \| " Bszz [ (X2 X2 ) — (X, X,)3].

(4.79)
Moreover an application of the Nishimori identity (4.165) shows

Esz,2[(Xi, X;,)7] = Es 2.2/ [(X;, X;,5:,5,)14]. (4.80)
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Combining (4.77)-(4.80) and using the fact that the SC system defined on a
ring satisfies

L ptw

§ m § Lip L3y Siy Sjp +§ : § : Ay E : LipLj, SipSj, =
p= 10 <ju p=0 v=p+1 iy,Jr=1
1 L ptw
§§ : E : A E : T3, 5,855,585, T 5 § :Auu% Sin

1=0 v=p1 -

we obtain (4.77).
Now, define the overlaps associated to each block u as

n

Z Siwr :=%Z X282 (4.81)

i iu=1
Hence, (4.77) can be rewritten as

dim(t) _ 1 o
dt AA(L+1) %7

, [<qTA(O) q—q' AW

1
+ = (ardiag(A®) - qdiag(A")) ) |, (4.82)
n
where qT = [0+ qz], Q" = [Go - - - 1] are row vectors and diag(A) represents
the column vector with entries {A,,,}%_,. The coupling matrices AV, A are
real, symmetric, circulant (due to the periodicity of the ring) and thus can be
diagonalized in the same Fourier basis. We have

t

diint(t) 1 “ N
= E ,[< (D© —pW®
i 42([ 1) s,z,z' |\ 4 ( )q

+ % (adiag(A®) — a'diag(A")) >t] (4.83)

where q is the discrete Fourier transfrom of q and D™, D©) are the diagonal
matrices with the eigenvalues of AW A Since the coupling matrices are
stochastic with non-negative Fourier transform, their largest eigenvalue equals
1 (and is associated to the 0-th Fourier mode) while the remaining eigen-
values are non-negative. These properties will be essential in the following
paragraphs.

4.5.2 Applications
Our first application is

Lemma 4.7. Let the coupling matriz A verify the requirements (i)-(v) in Sec-
tion 4.2.3. The mutual informations of the decoupled, periodic SC and fully
connected systems verify

I L (4.84)

— "nw,L —
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Proof. We start with the second inequality. We choose Al = (L+1)~* for
the fully connected system at ¢ = 1. This matrix has a unique eigenvalue
equal to 1 and L degenerate eigenvalues equal to 0. Therefore it is clear that
D© —DW is positive semi-definite and §7 (D(O) — D(l))q > 0. Moreover notice

that Afﬁ} = Ao is independent of L. Therefore for L large enough

d'diag(A") - q'diag(A") = (Ao — L—+1> un (4.85)

Therefore we conclude that (4.83) is positive and from (4.76) i’} — zfle; ;> 0.

For the first inequality we proceed similarly, but this time we choose A,w = O
for the decoupled system which has all eigenvalues equal to 1. Therefore
D — DM is negative semidefinite so q7(D® — DW)q < 0. Moreover this
time

L
d'diag(A®) — q'diag(AV) = (Ao — 1) DG <0 (4.86)
=0
because we necessarily have 0 < Aé%) < 1. We conclude that (4.83) is negative
and from (4.76) 5% —ivo, , < 0. O

The second application is

Lemma 4.8. Consider the mutual information of system (4.1) and set i, =
n~I(S; W). Consider also i,, and i, the mutual informations of two systems
of size ny and ny with n = ny + ng. The sequence ni, s superadditive in the
sense that

N1ln, + Noln, < Niy,. (4.87)
Fekete’s lemma then implies that lim,,_, . 1, exists.

Proof. This is easily proven by following the generic interpolation method of
Section 4.5.1 for a coupled system with two spatial positions (i.e. L 4+ 1= 2).
We choose AELO,,) = 0, i, v € 0,1 for the “decoupled” system and A,(},,) =1/2
for p,v € 0,1 for the “fully connected” system. This analysis is essentially
identical to [95] where the existence of the thermodynamic limit of the free
energy for the Sherrington-Kirkpatrick mean-field spin glass is proven. O

4.6 Proof of the Replica Symmetric Formula
(Theorem 4.1)

In this section we provide the proof of the RS formula for the mutual informa-
tion of the underlying model (Theorem 4.1) for 0 < A < A, (Proposition 4.5)
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and then for A > A, (Proposition 4.6). For 0 < A < A, the proof directly
follows form the I-MMSE relation Lemma 4.9, the replica bound (4.16) and
the suboptimality of the AMP algorithm. In this interval the proof doesn’t
require spatial coupling. For A > A, the proof uses the results of Sections
4.4 and 4.5 on the spatially coupled model.

Let us start with two preliminary lemmas. The first is an -MMSE relation
[48] adapted to the current matrix estimation problem.

Lemma 4.9. Let Py has finite first four moments. The mutual information
and the matriz-MMSE are related by

1di(s;w) 1

T anot = pMmmsen (A7) + O(1/n). (4.88)
Proof.
T g 3 (5 - B W]
17
= s w 85T ~ BXXT[W]]

Y3 > Eswl(s? — ELXW])
:iMmmsen(Al) + O(1/n), (4.89)

The proof details for first equality are in Appendix 4.8.3. The second equality
is obatined by completing the sum and accounting for the diagonal terms. The
last equality is obtained from

Es.wl(S7 — E[X?|W))*] = E[S}] — 2Es, w[S7E[X?|W]] + Ew|[E[X?|W]?]
E[S]] — Ew[E[X7[W]?]
E

[S}]. (4.90)

IN

where we used the Nishimori identity Eg, w[S?E[X?|W]| = Ew[E[X?W]?] in
the second equality (Appendix 4.8.4). O

Lemma 4.10. The limit lim,,_, ;oo n '1(S; W) exists and is a concave, con-
tinuous, function of A.

Proof. The existence of the limit is the statement of Lemma 4.8 in Sec. 4.5.
The continuity follows from the concavity of the mutual information with re-
spect to A~!: because the limit of a sequence of concave functions remains con-
cave, and thus it is continuous. To see the concavity notice that the first deriva-
tive of the mutual information w.r.t A~! equals the matrix-MMSE (Lemma
4.9) and that the later cannot increase as a function of A~ ]
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4.6.1 Proof of Theorem 4.1 in the Low Noise Regime

Lemma 4.11. Assume Py is a discrete distribution. Fixz A < Asvp. The

mutual information per variable is asymptotically given by the RS formula
(4.15).

Proof. By the suboptimality of the AMP algorithm we have
Mmseff?AMP(A_l) > Mmmse, (A™). (4.91)
Taking limits in the order lim,_, . limsup,,_, . and using (4.11) we find

v? — (v — E®)2 > lim sup Mmmse, (A™1). (4.92)

n—-+o0

Furthermore, by applying Lemma 4.9 we obtain

v? — (v — B()? “ s 1dI(S; W)
B n—>+oop n dAil ‘

(4.93)

Now, for A < Aaymp we have E) = E,,,q(A) which is the unique and hence
global minimum of igs(E;A) over E € [0,v]. Moreover, for A < Axyp we
have that E()(A) is continuously differentiable A~ with locally bounded
derivative. Thus

d . . . . diRS (00).
TaT (i ins(B3 ) = R (B )

=38 BT A GAT tgaa (BT A)
OiRs ~
(U — E(Oo)>2 + U2 _ 8ES,Z[' . ] 82_2

4 8272 E(o0) 3A*1 E(o0)

2 - E(oo) 2

v y iy (4.94)

where Eg z[- - -] is the expectation that appears in the RS potential (4.14).
The third equality is obtained from

o0y, 2
i P S 4.
AT v (4.95)
and
OFe /- - - 1 .
—(;;[2 ]]E(oo) — 50— E®). (4.96)
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This last identity immediately follows from 85%3 " = 0. From (4.93) and
(4.94)
d 1dI(S; W)
— E;A)) > 1 -
dA-T g, s (B ) 2 Mimsup o =07
(4.97)
which is equivalent to
d 1dI(S; W)
E;A)) <l f———. 4.
an ey s lB ) < it S %)
We now integrate inequality (4.98) over an interval [0, A] C [0, Aamp|
A
1dI(S
Erg&)ri] irs(E;A) — Em[%n} irs(£;0) < /o dA lyllrilig)f ﬁ%
1dIl
< liminf/ dA—M
n—+oo [o n dA
1
— liminf —1(S; W) — H(S).  (4.99)

n——+oo M

The second inequality uses Fatou’s Lemma and the last equality uses that for
a discrete prior
lim I(S; W) = H(S)— lim H(S|W)=nH(S). (4.100)
A*}O+ *)0+
In Appendix 4.8.6 an explicit calculation shows that ming irs(E;0) = H(S5).
Therefore

E;A) <l f— ] S; W 4.101

Ao ips (B A) < liminf 1 (S; W). (4.101)

The final step combines inequality (4.101) with the replica bound (4.16) to
obtain

1
min igs(£;A) < liminf — I(S W) <limsup —I(S; W) < m&)n]st(E P A).

E€[0,v] n—+oo N n—too N

(4.102)

This shows that the limit of the mutual information exists and is equal to the
RS formula for A < Aanmp. Note that in this proof we did not need the a-priori
existence of the limit. O

Remark 4.2. One can try to apply the same proof idea to the regime A > Ags.
Equations (4.91)-(4.98) work out exactly in the same way because the AMP
fized point E©) is a global minimum of igs(E; A). Then when integrating on
JA, +00[C [Ags, +00[, one finds

1
limsup —I(S; W) < m[%)n}st(E P A). (4.103)

n—-+oo T

This essentially gives an alternative proof of (4.16) for A > Ags.
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Lemma 4.12. We necessarily have Aayp < Agpt.

Proof. Notice first that it not possible to have Arg < Aamp because in the
range |0, Aanvp[, as a function of E, the function irs(E;A) has a unique
stationary point. Since mingejo,irs(E;A) is analytic for A < Agg, it is
analytic for A < Aamp. Now we proceed by contradiction: suppose we
would have Axyp > Agpe. Lemma 4.11 asserts that lim,, oo n ' 1(S; W) =
mingep,) irs(E£; A) for A < Aamp thus we would have lim, o n ' 1(S; W)
analytic at Agp. This is a contradiction by definition of Agp. O

Lemma 4.13. We necessarily have Ars > Agpy.

Proof. If Ars = 400 then we are done, so we suppose it is finite. The
proof proceeds by contradiction: suppose Ars < Agpi. So we assume Agg €
[Aamp, Aopt[ (in the previous lemma we showed that this must be the case).
For A €]0, Ags[ we have mingep) irs(£;A) = irs(Lgood(A); A) which is
an analytic function in this interval. By definition of A, the function
lim,, 4 o0 %[ (S; W) is analytic in 0, Ay Therefore both functions are an-
alytic on |0, Ags[ and since by Lemma 4.11 they are equal for |0, Aayp[C
10, Ags|, they must be equal on the whole range |0, Ars[. This implies that the
two functions are equal at Agrg because they are continuous. Explicitly,

minigg(F;A) = lim lI(S;VV)|A vV A €10, Ags]. (4.104)
E n—-+oo 1

Now, fix some A € |Agg, Agpt[- Since this A is greater than Agg the fixed point
of state evolution E(*) is also the global minimum of igs(E; A). Hence exactly
as in (4.91)-(4.98) we can show that for A € JAgs, Aopt[, (4.98) is verified. This
time, combining (4.16), (4.98) and the assumption Arg € [Aamp, Aopt], leads
to a contradiction, and hence we must have Arg > A, To see explicitly how
the contradiction appears, integrate (4.98) on |Ars, A[C]ARrs, Aopt[, and use
Fatou’s Lemma, to obtain

1 1
H}Ein irs(E;A) — mEin irs(F; Ars) <liminf (—I(S; W)la——I(S; W)\ARS>
n

n—-+oo n
1 .1
= tim —I(S;W)la— lim —I(S; W)lags-
(4.105)

From (4.104) and (4.16) we obtain ming igs(E; A) = lim, 4o = 1(S; W) when
Aamp < Aps < A < Agpe. But from (4.104), this equality is also true for
0 < A < Ags. So the equality is valid in the whole interval 0, Ay and
therefore ming igs(E;A) is analytic at Ars. But this is impossible by the
definition of Ags. O

Proposition 4.5. Assume Py is a discrete distribution. Fiz A < Aqp. The
mutual information per variable is asymptotically given by the RS formula

(4.15).
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Proof. Lemma 4.11 says that the two functions, lim, , . n 'I(S; W) and
mingeo,) irs(£; A), are equal for A < Apyp and Lemma 4.13 implies that
both functions are analytic for A < A,,. Thus they must be equal on the
whole range A < Agpy. Since we also know they are continuous, then they are
equal also at A = Ag. O

4.6.2 Proof of Theorem 4.1 in the High Noise Regime

We first need the following lemma where spatial coupling comes into the play.

Lemma 4.14. The optimal threshold is given by the potential threshold: Aypy =
ARgs.

Proof. 1t suffices to see that
Ars < A4mp <AL = Agpt < Ags. (4.106)

opt
The first inequality is the threshold saturation result of Theorem 4.3 in Section
4.4. The second inequality is due the suboptimality of the AMP algorithm.”
The equality is a consequence of Theorem 4.2 in Section 4.5. Indeed, equality of
asymptotic mutual informations of the coupled and underlying system implies
that they must be non-analytic at the same value of A. Finally, the last
inequality is the statement of Lemma 4.13 in Section 4.6.1. O

Proposition 4.6. Assume Fy is a discrete distribution. Fiz A > Aqy. The

mutual information per variable is asymptotically given by the RS formula
(4.15).

Proof. We already remarked in section 4.6.1 that for A > Agg,

%(mEimRs(E; A)) < lim inf %%. (4.107)

Now we integrate on an interval |Agg, A] both sides of the inequality. Since

from Lemma 4.14 we have that Ars = Ay, it is equivalent to integrate from
A,pe upwards®

A od, . A 1dI(S; W)

/ dA ﬁ(mElans(E; A)) < / dA liminf —————=.

(4.108)
Aopt Aopt 4o n dA

By Fatou’s lemma the inequality is preserved if we bring the lim inf outside of
the integral, thus
Aopt }

1 1
— lim —I(S;W)‘A— lim ~I(S; W)

n—-+oon, n—-+oomn,

1 1
ngn irs(E; A) —mbin irs(F; Ags) < lim inf{—I(S; W) ‘A——I(S; W)
n

n—-+oo n

Aopt

(4.109)

"More precisely, one shows by the same methods Lemmas 4.11 and 4.12 for the spatially
coupled system.
8This is the point we did not yet know in section 4.6.1.
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To get the last line, we used the existence of the thermodynamic limit (see
Lemma 4.10). We already know from Proposition 4.5 that ming igs(E; Agpt) =
lim,, 4 o0 %[ (S; W) . Therefore

opt

1
o A< T L7(S ‘
min irs(E;A) < nginoo nI(S,W), (4.110)
which together with (4.16) ends the proof. ]

4.7 Proof of Main Corollaries

In this section, we provide the proofs of Corollary 4.1 and Corollary 4.2 con-
cerning the MMSE formulae and the optimality of the AMP algorithm. We
first show the following result about the matrix and vector MMSE’s in Defi-
nition 4.4.

Lemma 4.15. Assume the prior Py has finite first four moments and recall
the second moment is called v. The matrix and vector MMSE verify

Mmmse,, < (v* — (v — Vmmse,)?) + (’)(l) (4.111)
n

Proof. For this proof we denote (-) the expectation w.r.t the posterior distri-
bution (4.20). The matrix and vector MMSE then read

Mmmse,, := %Es,w [[[ss™ - (xx7)]£]. (4.112)
1
Vmmse,, := EES’W [HS - <X>Hﬂ (4.113)

Expanding the Frobenius norm in (4.112) yields

n

Mmmse,, = %Es,w [ Z(Sisj - <Xin>)2}

ij=1
~ L Bow| Y0 5282 - ()
ij=1
= Eg [(% Zn: S?)? - % i Esw((XiX;)], (4.114)
i=1 ij=1

where the second equality follows from the Nishimori identity (4.165) that
vields Es w[(X;X;)?] = Eswl[S:S;(X;X;)]. Similarly, using Esw[(X;)?] =
Es.w|[5:(X;)] implied by the Nishimori identity, (4.113) simplifies to

1 n
Vinmse, = v — ~ > Eswl(Xi)?): (4.115)

i=1
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Hence,
Mmmse,, — (v* — (v — Vmmse,)*) = A, — B, (4.116)

with

A, = ESK%ZSSH 2, (4.117)

Buim =5 3 (Bswl(XiX,)! — Eswl(XBsw((X,)%).  (4.118)

ij=1
Since the signal components {S;} are i.i.d and Fp has finite first four moments,

A, = O(1/n). It remains to show that B, > 0. This is most easily seen as
follows. By defining the overlap

q(X,8) = % D SiX; (4.119)
i=1

and using the Nishimori identities

{ES,WKX»?J = Es w[S:(X,)] (4120)
Esw[(XiX;)?] = Es w[SiSi(XiX;)], '
we observe that
B, = Eswl{¢*)] — Esw[(¢)]?
= Eswl(¢ — Eswl(a)])?] (4.121)
which is non-negative. [l

Remark 4.3. Using ideas similar to [171] to prove concentration of overlaps
in inference problems suggest that Lemma 4.15 holds with an equality when
suitable “side observations” are added.

4.7.1 Exact Formula for the MMSE (Corollary 4.1)

We first show how to prove the expression (4.22) for the asymptotic Mmmse,,
by taking the limit n — 400 on both sides of (4.88). First notice that since
n~tI(S; W) is a sequence of concave functions with respect to A™!, the limit
when n — o0 is also concave and differentiable for almost all A~ and at
all differentiability points we have (by a standard theorem of real analysis on
convex functions)

! 1 d
n—1>r-iI-1C>o n dA_l

d lim I(S; W). (4.122)

A_l n—-+00

1
I(S; W) = —
n
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Thus from Lemma 4.9 and Theorem 4.1 we have for all A # Agsg

nl_l&loo Mmmse, (A7) = 4W Erél[%%}] irs(E; A). (4.123)
It remains to compute the right hand side. Let Ey(A) denote the (global)
minimum of igg(E£;A). For A # Agg this is a differentiable function of A
with locally bounded derivative. Hence using a similar calculation to the one
done in (4.94), we obtain

d . digrs
a7 o, ins(B:)) = 235 (B )
DiRs dEy Oirs
= —(Fy; A Ey; A
o BB ga  pa-i Foid)
To compute the partial derivative with respect to A we first note that %ﬁE‘ =
E
0 implies ’
v Ey aEsz[' : ] )
0= oA o |, OF |, (4.125)
0 0

where Eg z[-- -] is the expectation that appears in the RS potential (4.14).
This immediately gives

OEsz[---]] 1
S|, = 3 o). (4.126)
Thus
E%RS (Eo; A) (U — E0)2 + v? B 8E57z[' . ] ox 2
0N 4 gz |, 0AT|,
2 2
0 <”4 Eo)” (4.127)

From (4.123), (4.124), (4.127) we obtain the desired result, formula (4.22).

We now turn to the proof of (4.23) for the expression of the asymptotic
vector-MMSE. From Lemma 4.15 and the suboptimality of the AMP algorithm
(here Ey(A) is the global minimum of igs(E; A) and E) the fixed point of
state evolution)

v? — (v — Ey)? = lim Mmmse,
n—ro0

< liminf (v* — (v — Vmmse,)?)
n—oQ

< limsup (v* — (v — Vmmse,)?)
n—oo

<v? — (v — B™)? (4.128)
For A ¢ [Aamp, Agrs], we have that Ey = E©) which ends the proof.
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4.7.2 Optimality of AMP (Corollary 4.2)

In view of (4.11) we have

t£+moo nl_lgloo Vmseff’)AMP(Afl) = B, (4.129)
lim lim Mmseff’)AMP(A_l) =2 — (v — EC))2, (4.130)

t—+00 n—+o00

For A ¢ [Aamp, Agrs], we have B = argmin pe (o, irs (£; A) and also the two
identities of Corrolary 4.1 hold. This directly implies the identities (4.24) and
(4.25).

For A € [Aamp, Ars|, we have E(>) > argmin e ,jirs (£; A), so using the
monotonicity of £® leads to strict inequalities in (4.129) and (4.130) and thus
to (4.26) and (4.27).

4.8 Appendix

4.8.1 Upper Bound on the Mutual Information

For the completeness of this Chapter we revisit the proof of the upper bound
(4.16) on the mutual information. This result was already obtained by [47]
using a Toninelli-Guerra type interpolation and is used in this Chapter, so we
only sketch the main steps.

We consider the following interpolating inference problem

_ 8iSj A
wi =G+ b (4.131)
Yi = 8; + \/ﬁz{»,

with m :=v—FE € [0,v], and Z] ~ N(0,1). For t = 1 we find back the original
problem (4.1) since the y; observations become useless and for ¢ = 0 we have
a set of decoupled observations from a Gaussian channel. The interpolating
posterior distribution associated to this set of observations is

e MOTIL, Po(wi)

AN o 1 —H(t - .
Py(x|s,z,2') := T des Po(n) Je 00 Z(t)e H(t) HPO(xZ), (4.132)

where

i<j=1
“m(l—t) , m(l—1t) m(l—t) |,
+ Z —r — ———— S A\ ——— Tz
(st o, D,

can be interpreted as a “Hamiltonian” and the normalizing factor Z(t) is
interpreted as a “partition function”. We adopt the Gibbs “bracket” notation
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(—): for the expectation with respect to the posterior (4.132). The mutual
information associated to interpolating inference problem is
1 2

i(t) = — B[ 2()] + 15 + - (B[S — 0?) (4.133)

Note that on one hand i(1) = L (S; W) the mutual information of the original

T n

matrix factorization problem and on the other hand

lp = — %Es,z/ [hl (/ { ﬁdxipo(xi)}e_m2zlg+xT (TJF\/TZ/))}
i=1

+ v + L(21@[84] —v?)
NN !

=—Egz [1n (/dfﬁ Po(x)e_ﬂ;fﬂ(ﬂerﬁZ,))}

2

. 1
=ins(E5A) = 1+ m(21@[54] —v?), (4.134)

From the fundamental theorem of calculus, we have

i(1) — i(0) = —% /0 dt%Esyzzl[an(t)], (4.135)

so we get

L1 W) = ins(B: A) =T L o5t 2)—1/1 it L 5 7 [In 2 ()]
n — IRSLES AN 4An v nj, dt 8,2,2/[\1 '
(4.136)

We proceed to the computation of the derivative under the integral over t.
Denoting by (—); the expectation with respect to the posterior (4.132), we
have

d dH(t)

EES’Z’Z/ [hl (Z(t))] = ]ES,Z,Z’ [ — <7>t:| . (4137)

Hence, a simple differentiation of the Hamiltonian w.r.t. ¢ yields

d
EES’Z’Z, [11’1 (Z(t))] =

a (XPXD)e  (XiX3)iSiS; | Zi(XiXih
ES’Z’Z’[K%;(_ o5An An + 1/nAt )

- (X)s (Xa)eSi  ZH{Xih m
+;(m oA "TTA T T 2 A(l—t))]' (4.138)
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We now simplify this expression using integration by parts with respect to
the Gaussian noises and the Nishimori identity (4.165) in Appendix 4.8.4.
Integration by parts with respect to Z;; and Z; yields

Es 2.2/ [Zij(XiX;)] = Es2,2/ [0z, (XiX;)4]

|t 2 y2 2
= n_A]ES’Z’ZI [<Xz Xj>t - <Xin>t} (4.139)

and
Esz.2[Z{(Xi)i] = Bs 22/ [07(Xi)] = WE&Z,Z’ |:<Xi2>t - <Xi>t2]-
(4.140)
An application of the Nishimori identity yields
Es 7,2 [(XiX;)15:5;] = Es 2,2/ [(X:X;)7] (4.141)
and
Es z,2z/[(Xi):Si] = Es 2,2/ [(X:)7] (4.142)

Combining (4.138) - (4.142) we get

E%ES zz[ln (2(1))] :2Aln2 sz; Es 7.2/ [(XiX;5:55)1]
QMZEW (XS]
L g [(0(8. X — 24(5. Xl

1 2\ @2
+ 4An2 ;ES,Z,Z’KXZ‘ >tSi]7

where we have introduced the “overlap” ¢(S,X) :=n""t>""  S;X;. Replacing
this result in (4.136) we obtain the remarkable sum rule (recall m :=v — F)

LI(8;W) = ins(B3 A) — 1 / dEs 7.2 [((a(S.X) — m)*);]

1 -~ ) 1 .
——4An2;Es,z,z eS8+ - (2E[SY = 0). (4.143)

Thus for any E € [0, v] we have

lim sup l](S; W) <igrs(E;A) (4.144)

n—+oo T

and (4.16) follows by optimizing the right hand side over E.
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4.8.2 Relating the Mutual Information to the Free Energy

The mutual information between S and W is defined as I(S; W) = H(S) —
H(S|W) with

H(S|W) = —Es.w[In P(S|W)] = —Es z[(In P(XS, Z))]. (4.145)
By substituting the posterior distribution in (4.33), one obtains
H(S|W) =Esz[In Z] + Es 7 [(H(X]S, Z))] + H(S). (4.146)

Furthermore, using the Gaussian integration by part as in (4.139) and the
Nishimori identity (4.141) yield

n

Esz[(H(X]S,Z))] = _ﬁES[Z (5757)] = — 1 (v*(n — 1) + 2E[SY)).

(4.147)

Hence, the normalized mutual information is given by (4.38), which we repeat
here for better referencing

1 1 o o
2. - - 4 — — 7). 4.14
nI(S,W) nES,Z[ln Z]+ AT 4An(2E[S ] —v%) (4.148)
Alternatively, one can define the mutual information as I(S; W) = H(W)—
H(W|S). For the AWGN, it is easy to show that

n(n+1)

H(W|S) = In(27Ae). (4.149)

Furthermore, H(W) = —Ew [ In P(W)] with
P(w) = / {Hda:ipo(a:i)}P(W]x)

1 / - o S (B )
= —F dr; Py(x;) te 22 =i \'vn J

(2rA)" 5 {Iizll blai)}
-z (4.150)

n(n+1) ?

(2rA) "4

where Z is the partition function with complete square (4.20). Hence, H(W)
reads

H(W) = @ In(27A) — Ew[In Z]
_ —”(”4+ Y 1n(2rA) ~ Bsa[ln2] + iEs,z [;(5:/% +VAZy)],

(4.151)



134 Symmetric Rank-One Matrix Factorization

with Z the simplified partition function obtained after expanding the square
(4.33). A straightforward calculation yields

oxEsa D2 +VAZ = My e (st

= Vn 4 2An =
n(n+1) 1 A
== (o) + 4A( (n—1) 4+ 2E[S"]).

(4.152)

Finally, combining (4.149), (4.151) and (4.152) yields the same identity (4.148).

4.8.3 Proof of the I-MMSE Relation

For completeness, we give a detailed proof for the -MMSE relation of Lemma
4.9 following the lines of [48]. In the calculations below differentiations, ex-
pectations and integrations commute (see Lemma 8 in [48]). All the matrices
are symmetric and Z;; ~ N(0,1) for i < j.
Instead of (4.1) it is convenient to work with the equivalent model w;; =
+ 2z;; and set s;s; = wu;;. In fact, all subsequent calculations do not
epend on the rank of the matrix u and are valid for any finite rank matrix
estimation problem as long as the noise is Gaussian. The mutual information

I(S;W) = H(W) — H(W|S) and H(W|S) = " In(y/27e). Thus

sls]

1dI(S; W) 1dH(W)

n dATU T n dATT (4.159)
We have H(W) = —Ew|[ln P(W)] where
P(w) = Ey[P(w|U)] = EU[(QW) s 3 Tis, (i ww) ] (4.154)
Differentiating w.r.t A~1
dH(W) dP(w|U)
and
dP(w|U) A Ua \ -1y, _(&,w,,f _alnt1)
_ - _ 2 £Z4i<j \Vna w 2 2
dAT V an ;U’“ (w’“ m)e (27)
(4.156)

n(n+1)

[ A d _1 Yii )’
T RZUkzdwkle éziéj(m wis) (2m)~ "2 .  (4.157)
k<l
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Replacing this last expression in (4.155), using an integration by part w.r.t wy,
(the boundary terms can be shown to vanish), then Bayes formula, and finally
(4.154), one obtains

[4n dH(W)
A dA-T
U s

> Eu|Ui / dw(1 + I P(w)) et T (G5 w0) (a2
k<l Wkl

:—Z/dwEU U,d (‘JV[;)}‘W w)

dw
k<l kl

_ _Z/dwEmw (U] [dp(W‘U)]

dw
k<l ki

=5 [ awEu [V By (1~ ) Plw])]

k<I

_EW[;EUW (U] (Wi - ﬁEU|w un]) | (4.158)

Now we replace w = f + z, where u® is an independent copy of u. We
denote Ew|[| = Eyo z[-] the joint expectation. The last result then reads

dH(W) 1

AT~ oW [’;Eww U] (U;?l — Euw [Un] + Zkl\/nAﬂ. (4.159)

Now note the two Nishimori identities (see Appendix 4.8.4)

Ew [Emw (U] U,Sl} = Ew [EUIW [Ukzﬂ, (4.160)
Ew [(U,SZ)Z} =Ew [EU|W [UIZH ; (4.161)
and the following one obtained by a Gaussian integration by parts

Using the last three identities, equation (4.159) becomes

1dH(W 1
L) w3 Buw[U2] ~ B[V’
k<l
_ %Ew [Z (U,S, — Euw [Ukl]ﬂ, (4.163)
k<l

which, in view of (4.153), ends the proof.
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4.8.4 Nishimori Identity

Take a random vector S distributed according to some known prior Py and an
observation W is drawn from some known conditional distribution Pyws(wl|s).
Take X drawn from a posterior distribution (for example this may be (4.20))

Py (x) Pais (wix)
P(w) '

P(x|w) =

Then for any (integrable) function g(s,x) the Bayes formula implies
EsEwsExjw[g(S, X)] = EwEx/wExw(g(X', X)] (4.164)

where X, X’ are independent random vectors distributed according to the pos-
terior distribution. Therefore

In the statistical mechanics literature this identity is sometimes called the
Nishimori identity and we adopt this language here. For model (4.1) for ex-
ample we can express W in the posterior in terms of S and Z which are
independent and Exw[—] = (—). Then the Nishimori identity reads

Esz[{9(S,X))] = Es z[{g(X', X))]. (4.166)

An important case for g depending only on the first argument is Eg[g(S)] =
Es z[(9(X))].
Special cases that are often used in this Chapter are
Es z[Si(Xi)] = Es z[(X;)?]
Es z[9:5;(X: X;)] = Es z[(X; X;)?] (4.167)
E[S?] = Es z[(X7)].

A mild generalization of (4.166) which is also used is
Es z[5:5;(X:)(X;)] = Eg z[(XiX;) (Xi) (X;)]. (4.168)

We remark that these identities are used with brackets (—) corresponding to
various “interpolating” posteriors.

4.8.5 Relation Between State Evolution and Potential
Function

We show the details for Lemma 4.1. The proof of Lemma 4.3 follows the same
lines. A straightforward differentiation of fiq w.r.t. E gives

dfis(B:A) E—v 1
fiis(E8) _ E—v —IEZSK X2 4 2XS + ZX

dFE T 2A 2A (4.169)
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Recall that here the posterior expectation (-) is defined by (4.40). A direct
application of the Nishimori condition gives

v = Eg[S?] = Eg 2[(X?)], (4.170)
Esz[S(X)] = Es 2z [(X)?], (4.171)

which implies
Esz[(S — (X)£)?] = Esz[(X?)] — Es2[(X)?]. (4.172)

Thus from (4.169) we see that stationary points of fig satisfy

E =2v—2Eg4[(X)?] — ,/U fEES,Z[ﬂX)]. (4.173)

Now using an integration by part w.r.t Z, one gets

A

—Bsz[Z(X)] = v —Eg 7 [(X)7], (4.174)

which allows to rewrite (4.173) as
E=v—Egz[(X)?] = Esz[(S — (X))?] (4.175)

where the second equality follows from (4.170) and (4.172). Recalling the
expression (4.41) of the state evolution operator we recognize the equation
E =T,(F).

4.8.6 Analysis of the Potential for Small Noise

In this appendix, we prove that lima ,omingigs(F;A) = H(S). First, a
simple calculation leads to the following relation between igg and the mutual
information of the scalar denoising problem for £ € [0, v]

E2

N
where Z ~ N(0,1) and X(E)? := A/(v — E). Note that as A — 0, X(E) — 0
(for E # v). Therefore, lima_ I (S; S+ X(E)Z) = H(S). Now let Ey be the
global minimum of igs(E; A). By evaluating both sides of (4.176) at E, and
taking the limit A — 0, it remains to show that EZ/(4A) — 0 as A — 0 (i.e.
E2 — 0 faster than A). Since Fj is the global minimum of the RS potential,
then Fy = T,(Ey) = mmse(X(Ey)~?) by Lemma 4.1. Moreover, one can show,
under our assumptions on Fy, that the scalar MMSE function scales as

irs(E;A) =1(S;S+X(E)Z) + (4.176)

mmse(572) = O(e=> ), (4.177)

with ¢ a non-negative constant that depends on Py [104]. Hence, EZ/(4A) — 0
as A — 0, which ends the proof.
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4.8.7 Opening the Chain of the Spatially Coupled System

In this appendix, we provide a proof for Proposition 4.4. Call HP" and (—)per
the Hamiltonian and posterior average associated to the periodic SC system
with mutual information i}, ;. Similarly call H" and (—)eo, the Hamilto-
nian and posterior average associated to the pinned SC system with mutual
information ¢°% .. The Hamiltonians satisfy the identity H" — HP = §H

n,w,L"
with

oH :ZA“’H Z |:ZE22H$§# +812u8§# . Si,95,Li,Tj, B (xiul’j# _SwSJﬁ)Zz‘qu]
WeB i 2nA nA NN
+ Z Z Au,u x?“x?" +Si2“ 8?” S STy,
HEB ve{H: ptw}NB i <iu 2nA nA
(%, = 50,55, Zig }

VAN, ,

2 .2 2 .2
Y ALY Ti T, 185,55, 80,85, Tiy T,
o 2nA nA

peB ve{p—w:p—1}3NB >
(@i, = 8iu85,) % }

nAN,,

It is easy to see that

bl — I, L = mES,ZUH@ﬂW%OU], (4.178)
1
jeou Z-per — —ES,Z[1H<€6H>per]. (4'179)

n,w,L n,aw,L n(L 4 1)

Moreover, using the convexity of the exponential, we get

-cou ESZ |:<5H>per] < iper < -cou ]ES,Z [<5H>cou} .

il AR N 4.180
Zn,w,L ’I’L(L i 1) —= "nw,L —= Zn,w,L TZ(L + 1) ( )

Due to the pinning condition we have Eg z[(0H (X))cou] = 0, and thus we get
the upper bound i;%, ; <5’y ;. Let us now look at the lower bound. We note
that by the Nishimori identity in Appendix 4.8.4, and as long as Py has finite
first four moments, we can find constants K, Ky independent of n,w, L such
that

ES,Z[<Xi2MX]2V>per] < Kl,
Es z[(X;, )per] < Ko. (4.181)

First we use Gaussian integration by parts to eliminate z;,;, from the brackets,
the Cauchy-Schwartz inequality, and the Nishimori identity of Appendix 4.8.4,
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to get an upper bound where only fourth order moments of signal are involved.
Thus as long as Fy has finite first four moments we find

IESZ[gﬁ(i)%H < OA*(?U_:; D 0(%), (4.182)

for some constant C' > 0 independent of n, w, L and we recall A, :=supA,, =
O(w™"). Thus we get the lower bound 5%y ;, — O(F) <y, ;. This completes
the proof of Proposition 4.4.






Conclusion and Further
Directions

In this thesis, we have addressed two inference problems in the fields of coding
theory and machine learning. In the first problem, we have considered the gen-
eralization of a recent forward-error-correction code, namely the sparse super-
position code, to a large class of noisy channels. Moreover, we have employed
the sparse superposition code to perform distribution matching, an inverse
source coding scheme. In the second problem, we have studied the symmet-
ric rank-one matrix factorization, a prominent model in machine learning and
statistics with many applications ranging from community detection to sparse
principal component analysis. We have provided a Bayesian formulation for
the problem and analyzed it using an information theoretic approach. By
computing the mutual information, we have established fundamental theoret-
ical guarantees for the problem and proven the optimality of a low-complexity
message-passing algorithm.

The connection between the two problems stems from the fact that both
of them can be represented on dense graphical models. This allows to devise
similar algorithms, such as AMP and GAMP, and to harness recent efficient
graphical constructions, such as spatial coupling. Moreover, the structure of
both problems is reminiscent of spin glass models studied in statistical physics.
This can help in employing some sophisticated techniques developed in statis-
tical physics, such as the potential function predicted by the replica method,
in order to perform the analysis on a rigorous mathematical basis.

In Chapter 2, we have shown that spatially coupled sparse superposition
codes universally achieve capacity over any memoryless channel under GAMP
decoding. In particular, we have proven that spatial coupling allows the algo-
rithmic GAMP performance to saturate the potential threshold of the under-
lying code ensemble. Moreover, we have shown by analytical calculation that
the potential threshold tends to capacity and the error floor vanishes in the
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proper limit. The approach taken in this chapter relies on the state evolution
analysis and the application of the potential method.

In Chapter 3, we have presented a novel formulation of the fixed-length
distribution matching inspired from the sparse superposition codes and the
compressed sensing paradigm. The proposed solution uses a low-complexity
dematching based on the GAMP algorithm. We have shown that GAMP
dematching along with spatial coupling yields asymptotically optimal perfor-
mance. Moreover, we have investigated practical scenarios using Hadamard-
based operators. A notable aspect of the proposed solution is the amenability
to perform joint channel coding and matching.

In Chapter 4, we have provided an explicit single-letter expression of the
asymptotic mutual information for the symmetric rank-one matrix factoriza-
tion. This was made possible by proving that the heuristic predictions of
the replica method are exact, a long-standing conjecture in statistical physics
mean-field theory. Furthermore, we have characterized the Bayes-optimal de-
tectability region and estimation error. Moreover, we have proven that the
AMP algorithm yields the optimal performance for a large set of parameters.
Spatial coupling was employed in this chapter as an auxiliary model used in the
proof, and as a prototype for potential applications. In our proof technique,
we have exploited three essential ingredients: the interpolation method intro-
duced in statistical physics, the analysis of the AMP algorithm through the
state evolution introduced in compressed sensing, and the theory of threshold
saturation for spatially coupled systems developed in coding theory.

We end up pointing out some open problems. The AMP and GAMP algo-
rithms [60, 110] were first introduced for the noisy compressed sensing prob-
lem. The success story of these variants of message-passing algorithms on
dense graphical models stems from the fact that their performance is asymp-
totically tracked by the state evolution recursion, an important feature that
allows for rigorous mathematical analysis. State evolution is the analogous
tool of density evolution used for sparse graphical models. The justification
of state evolution is based on the conditioning techniques of Bolthausen [70],
which was used by Bayati and Montanari [69] to prove the exactness of state
evolution for compressed sensing. Soon after that, the proof of state evolution
was extended to account for general channels and spatially coupled models in
[115].

The AMP and GAMP algorithms were then adapted to account for the
structured sparsity in the sparse superposition codes [36, 78]. Moreover, the
AMP algorithm was adapted to the symmetric rank-one matrix factorization
[164]. Furthermore, the state evolution analysis was extended to both problems
and proven on rigorous basis in [37], [42] and [166]. These results are valid
on the underlying (uncoupled) models. An important future direction is to
extend these findings on state evolution to the spatially coupled models of
sparse superposition codes and matrix factorization. We believe that this is
possible by extending the work of [37], [42] and[166] and following the same
lines of [115].
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Table 5.1: Rigorous state evolution for AMP and GAMP algorithms.

Uncoupled | Coupled
Compressed
Sensing (AMP) 169 [76]
Compressed
Sensing (GAMP) [115] [115]
SS Codes
(AMP) 137) -
SS Codes B B
(GAMP)
Matrix
Factorization [42, 166] -
(AMP)

Table 5.1 summarizes the instances where state evolution was rigorously
proven to track the AMP and GAMP algorithms for our problems of inter-
est. The missing entries represent cases where state evolution was numerically
verified, yet no rigorous proof exists.

Another important direction for sparse superposition codes is to analyze
the finite-length effects in terms of error exponent, scaling exponent and error
floor regime,! a direction which was recently pursued in [180], [181] and[182].
Such analysis can provide many insights on how to design practical codes by
choosing the appropriate code parameters.

The use of structured operators, such as Hadamard-based matrices, for SS
codes has shown an improvement in terms of the finite-length performance [77].
Moreover, the use of such operators can reduce the computational complexity
and the memory need of the AMP algorithm. Although structured opera-
tors are mathematically harder to analyze compared to the Gaussian ones, it
is strongly desirable to consider the rigorous analysis of such operators (e.g.
Hadamard-based matrices or, more generally, row-orthogonal matrices) and to
quantify the finite-length improvement incurred by their use. Of course, the
employment of such operators would necessitate the adoption of other vari-
ants of AMP and state evolution that are better suited to general matrices
(148, 149, 150].

In addition to that, a promising direction is to optimize the decoding sched-
ule of AMP for spatially coupled SS codes. This could be done by extending
the windowed decoding of [183] to the dense graphical models. Hence, one can
improve the decoding complexity and the velocity of the propagation wave
(83, 84].

Finally, we would like to point out that the proof strategy we have used

!Note that there are two notions of error floor for SS codes. The finite-length error
floor (in terms of L), and the finite-alphabet error floor (in terms of B) that appears in the
AWGN channel.
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in Chapter 4 to assert the validity of the heuristic replica predictions is quite
general. Hence, our strategy can be applied to many other open problems in
statistical estimation where heuristic statistical physics predictions are avail-
able. In particular, our proof strategy can be generalized to finite-rank matrix
estimation and tensor estimation, and hence provides an alternative proof for
[172] and [184] using the spatial coupling technique. Note that the validity of
the replica predictions for high-rank matrix estimation problems remains an
open problem where we believe that our technique can be applied.
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