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Preface
I take the opportunity of this preface to share my personal view on how to handle transdisci-
plinary projects; this thesis is an exceptional case as it regroups three different areas of study
: firstly, mathematics, more specifically the field of topology, which is my field of expertise.
Secondly, bioinformatics, which, during my four years of PhD, came to be the second field
in which I am most comfortable. Finally, biology, which continues every day to surprise me
in how rich the field is. My thesis comprises all of these three fields and I believe that it is
important that it can be read by interested readers from any of these three areas of study. For
this reason, introductions are needed in each of these fields, which can be skipped without loss
of information, if the reader is already familiar with the basics. Some notions in each field,
such as "topology" or "connected components", are assumed to be known. For this reason, I
recommend the reader to read [1] for a basic course in topology and [2] for basic definitions
on cells. The way I approached this thesis was by realising early on where my weaknesses and
my strengths were. I discovered that the years of PhD needed to be divided according to the
different fields and that I had to start by learning more about the mathematical aspects of
topological data analysis, before developing bioinformatics skills to write my own method.
Lastly, learn techniques of biology in order to validate my findings. Throughout this whole
process I had to remember that the field in which one is least comfortable with, should never
be neglected. Therefore, immersions into seminars and meetings on a regular basis were
crucial. At first, the meetings were hard to grasp and there were probably a lot of question
arising that could be asked afterwards. The more determination one shows, the easier it gets
to understand them. Throughout this whole thesis, I kept regular meetings with my advisor
in molecular science as well as with my co-advisor in topology. It was important for me to
benefit from their expertise, but it was equally important for them to be informed on how the
process of learning and working was moving forwards, even though it is not in their field of
expertise. Moreover, the only way to see if you truly understood what you have been working
on, is to explain it to somebody from outside of your area of studies. In molecular biology,
one is often confronted with histochemistry, a technique which consists in viewing a piece of
tissue at a given point. This method is widely used in my lab and I only fully started to grasp
what can be seen on these sections, when I took a course about it. It is therefore important
to follow small introductory courses to techniques used in the lab. The last important point
for me is to not isolate yourself and meet with experts, regularly. If you physically sit and eat
with bioinformaticians on a daily basis the conversations arising are different than when you
eat with mathematicians. Last advice: Get immersed and start learning, but do not forget
the fun!

Lausanne, 22 January 2018 R. J.
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Abstract
There is a growing need for unbiased clustering algorithms, ideally automated to analyze
complex data sets. Topological data analysis (TDA) has been used to approach this problem.
This recent field of mathematics discerns characteristic features of a space without relying
on probabilistic approaches. It provides robust qualitative and quantitative assessments of
the structure of data. Mapper, an algorithm of TDA, showed increased power over standard
methods for complex data and overcame problems of noise. However, it relies on the selection
of several parameters and is not well suited for small datasets. To overcome these problems,
we have developed a topology-based clustering algorithm called Two-Tier Mapper (TTMap)
to detect subgroups in global gene expression datasets and to identify their distinguishing
features in a two groups comparison. First, TTMap discerns and adjusts for highly variable
features in the control group and identifies outliers. Second, in order to obtain an individual
appreciation of the differences with respect to the control group, a profile of deviation is
computed for each test sample. Test samples are clustered according to two tiers creating
a global and local network using a new topological algorithm based on Mapper, where all
the parameters are carefully chosen or data-driven, avoiding any user induced bias. These
choices render the algorithm theoretically stable. In particular when sample sizes are small,
TTMap outperforms existing clustering methods in finding relevant subgroups, in stability on
synthetic and biological datasets and in revealing more gene expression changes. Datasets
from different sources can readily be combined into one analysis. Thus, TTMap can extract
information from highly variable biological samples, and since an individual profile of deviation
is established, it has potential for personalized medicine. The algorithm was developed as an
open source R package deposited at the Bioconductor.
Furthermore, two additional applications of topology were developed in order to find differences
in gene expression through the menstrual cycle and cyclical patterns in gene expression related
to hormone response.

Key words: Mapper, two-tier cover, topology, topological data analysis, extended persistent
homology, clustering, gene expression, parameter-free, Bioconductor R package, estrous and
menstrual cycle, progesterone, RANKL
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Zusammenfassung
Es besteht ein wachsender Bedarf an unvoreingenommenen Clustering-Algorithmen, die idea-
lerweise automatisiert wurden, womit man komplexe Datensätze analysieren kann. Lösungen
für dieses Problem wurden in den letzten zehn Jahren mit topologischer Datenanalyse (TDA)
vorgeschlagen. Dieses neue Gebiet der Mathematik verschafft relevante Merkmale eines Raum-
es, ohne sich auf probabilistische Ansätze zu verlassen. Es trägt zu robusten qualitativen
und quantitativen Bewertungen über die Struktur der Daten bei. Diese Domäne besteht aus
Algorithmen, die sichfür die Analyse von komplexen Daten eignen und die Lärmprobleme
überwinden können. Mapper, ein Algorithmus von TDA, zeigte gegenüber Standardmetho-
den eine gesteigerte Aussagekraft. Er ist jedoch abhängig von der Auswahl von mehreren
Parametern und is nicht geignet für kleine Datensätze. Um diese Probleme zu überwinden,
haben wir einen Topologie-basierten Clustering-Algorithmus namens Two-Tier Mapper (TT-
Map) zum Erkennen von Untergruppen in globalen Genexpressionsdatensätzen entwickelt
und zur Identifizierung ihrer Unterscheidungsmerkmale, in einem Vergleich zweier Gruppen,
der Kontroll und der Testgruppe. Zuerst erkennt und korrigiert TTMap für stark variable
Eigenschaften in der Kontrollgruppe und identifiziert Sonderfälle. Zweitens, um eine individu-
elle Wertschätzung von Unterschieden in Bezug auf die Kontrollgruppe zu erhalten, wird ein
Abweichungsprofil für jede Testprobe berechnet. Testproben werden nach zwei Ebenen mit
einem neuen topologischen Algorithmus basierend auf Mapper geclustert, wo alle Parameter
sorgfältig ausgewählt wurden oder datengetrieben sind, um eine Voreingenommenheit vom
Benutzer zu vermeiden. Diese Auswahl macht den Algorithmus theoretisch stabil. Durch die
zwei Ebenen entsteht ein globales und lokales Netzwerk. Insbesondere bei kleinen Datensätzen,
übertrifft TTMap aktuelle Clustering-Methoden in der Suche nach relevanten Untergruppen
und in der Stabilität von synthetischen und biologischen Datensätzen und enthüllt bisher
unentdeckte Veränderungen der Genexpression. Datensätze von mehreren Quellen können
leicht zu einer Analyse kombiniert werden. TTMap kann Informationen aus sehr variablen
Daten extrahieren un aufgrund der Tatsache, dass ein individuelles Abweichungsprofil vorliegt,
hat TTMap das Potential für personalisierte Medizin nützlich zu sein. Der Algorithmus wurde
als Open-Source-R-Paket in Bioconductor entwickelt.
Darüber hinaus wurden zwei weitere Ideen der Anwendung der Topologie entwickelt, um
Unterschiede in Genexpression in menschliches Brustgewebe durch den Menstruationszyklus
zu finden und zyklische Muster in der Genexpression zu finden, die in Zusammenhang mit
einer Hormonreaktion stehen.

Stichwörter: Mapper, zweistufige Bedeckung, Topologie, topologische Analysis von Daten,
erweiterte beständige Homologie, clustering, Genexpression, ohne Parameter, Bioconductor R
Paket, Menstruationszyklus und Östruszyklus, Progesteron, RANKL.
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Résumé
Afin d’analyser le nombre croissant d’ensembles complexes de données, il est devenu nécessaire
de recourir à des algorithmes de regroupement automatisés qui ne soient pas biaisés. Au cours de
la dernière décennie, l’analyse topologique de données (TDA) s’est imposée comme l’un d’eux.
Ce nouveau domaine des mathématiques permet une analyse non probabiliste, qualitative et
quantitative de la structure des données au moyen d’algorithmes adaptés à l’analyse de données
complexes et capables de résoudre des problèmes de bruit. Mapper, l’un des ces algorithmes,
a montré une efficacité supérieure par rapport aux méthodes standards d’analyse de données.
Cependant, il dépend de nombreux paramètres et n’est pas adapté au petits ensembles de
données. Afin de parer ces inconvénients, nous avons développé un algorithme de regroupement
basé sur la TDA, appelé Two-Tier Mapper (TTMap), permettant la détection de sous-groupes
au sein d’ensembles de données d’expression globale de gènes ainsi que l’identification de leurs
caractéristiques distinctives dans une comparaison entre deux groupes : le contrôle et le groupe
test. Dans un premier temps, TTMap détecte et corrige les propriétés à forte variabilité dans
le groupe de contrôle et remarque les valeurs aberrantes. Ensuite, un profil de variation est
établi pour chaque échantillon du test, de manière à obtenir une appréciation individuelle des
différences par rapport au groupe de contrôle. Les échantillons du test sont alors regroupés
sur deux niveaux via un nouvel algorithme topologique basé sur Mapper, dans lequel tous les
paramètres sont soigneusement sélectionnés ou déduits des données pour éviter les biais liés à
l’utilisateur. Cette sélection rend l’algorithme théoriquement stable. Les deux niveaux créent
un réseau de sous-groupes locaux et globaux. TTMap surpasse les méthodes de regroupement
actuelles sur des ensembles de données synthétiques et biologiques, en particulier sur des
petits ensembles de données en effectuant une meilleure classification des sous-groupes, par
sa stabilité et par la découverte de variation d’expression de gènes, jusqu’ici non détectés.
Les données provenant de sources multiples peuvent facilement être combinées en une seule
analyse. TTMap est capable d’extraire des informations à partir de données extrêmement
variables et comme TTMap produit un profil individuel de déviation par rapport au groupe
de contrôle, il possède un potentiel d’utilisation dans la médecine personnalisée. L’algorithme
a été développé en tant que package R open-source dans Bioconductor.
De plus, deux idées d’application de la topologie à la détection des différences dans l’expression
de gènes du tissu mammaire humain au cours du cycle menstruel ainsi qu’à la détermination de
modèles cycliques dans l’expression de ces gènes qui seraient associés à une réponse hormonale.

Mots clefs : Mapper, recouvrement à deux niveaux, topologie, analyse topologique des don-
nées, homologie persistente étendue, regroupement, expression de gènes, sans paramètres,
Bioconductor R package, cycle menstruel ou oestral, progesterone, RANKL.
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Chapter 1. Background

1.1 Introduction to Topological Data Analysis
Topology is a field of mathematics that was born through concepts of geometry and set theory.
It is sometimes considered as the unifying field of mathematics because it naturally appears
in many branches of mathematics. An example illustrating this are spaces provided with a
distance, which represent a particular subtype of topological spaces and appear naturally in
geometry, or in metric analysis [1]. In topology, concepts of geometry have been redefined
without using or introducing a notion of distance. This recent field of mathematics studies
the shape of objects under appropriate deformations. Especially in terms of shape recognition,
the goal is to identify a standing person and the same individual running as "continuously
deformable one into the other" or being indistinguishable [3]. In this context, continuously
deformable means that objects are allowed to be stretched and bent, but not torn apart
nor glued. Moreover, objects do not need or depend on a coordinate system. This has the
consequence that topology is insensitive to scale, or homothetic transformations, or rotations.
Since spaces are studied under continuous deformations, the notion of distance becomes more
coarse: the actual value of a distance between two points is not needed to be known, but an
understanding of the global proximity is. Topology not only studies how to deform an object
into another one and whether or not such deformations exist but also tries to find invariants,
i.e., properties of an object that would remain unchanged through continuous deformations,
by using algebra. These invariants are then used to distinguish spaces that are topologically
the same in a more efficient way, i.e. calculable or computable, than trying to find an explicit
deformation of one object into another one. As they are topological notions, these invariants
are not depending on geometric coordinates of the space, and represent descriptions of a
space that differentiates it from another. They can be of the following form: this object is
composed of two separate "parts", called the connected components, possesses one hole
in the structure and one 2-dimensional cavity. These summaries of the objects have been
defined and proved to remain unchanged through these continuous deformations in the last
centuries. In the 90s, these theoretical invariants started to become applied to data and helped
distinguish different shapes. The invariants were called shape descriptors and started a new
field of mathematics, called Topological Data Analysis (TDA) [4], [5], [6], [7]. Topological
data analysis comprises two parts that sometimes overlap : complex network analysis methods
consisting as well of dimension reduction algorithm, and persistent homology (PH) [8]:
both of these aspects are discussed in this thesis (Fig. 1.1).

!
(Extended) Persistent HomologyNetwork/Mapper analysis

a b

Figure 1.1: The main branches of topological data analysis. (a) Complex Network analysis such as the
Mapper algorithm described in the following section 1.2 (picture adapted from [9]) and (b) Persistent
as well as extended persistent homology summarising topological features (section 1.3).
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1.2 The Mapper algorithm
1.2.1 Introduction to the Mapper algorithm
In 2011, the first breakthrough in the "network" analysis part of TDA applied an algorithm
called Mapper [10] to breast cancer data revealing a hidden subgroup among breast cancer
patients displaying common characteristics: no metastases, excellent survival and alteration in
expression in a common group of genes undetectable by standard algorithms [9]. The Mapper
algorithm was first described in a paper in 2007 [10], then explained a second time within
a general theoretical TDA framework in [8] and finally made accessible to a large audience
in 2013 [11], where a visual example illustrates the functioning of Mapper (example 1.2.38)
and where real data examples proved the broad application of this algorithm. Two reviews,
written for a large audience, summarise the theoretical aspects and usefulness of Mapper [12],
and its application in the fields of genomics [13].
Mapper describes a space or a point cloud, i.e. a finite set X of points, usually these
points are in Rn and n is large, as a complex network and was developed as a computational
approximation of a Reeb graph [14] (see section 1.2.6) which is a recapitulation of a space in
a certain "direction", determined by a function (Fig. 1.2). A filled donut for example equipped
with the height function, is represented by a circle with two branches or a multigraph (Fig.
1.2). As observed in this example of the donut, the important topological structure of the
initial space, i.e. the hole of the donut, is still kept and only the complexity of the space has
been reduced. Mapper graphs and Reeb graphs are therefore simplifications of spaces that
enable dimension reduction given further input/information on the space, a function, that
would enable more precise decomposition of the space, called clustering. Implementation of
such algorithms can be found in the software R with the package Topological data analysis
of Fasy et al. [15] or C++ and Python implementation from Maria et al. [16] and finally a
private company, Ayasdi, [17] whose cofounder is Gunnar Carlsson.

a1

a2

a3
a4

a b

Figure 1.2: Illustration of the Reeb Graph. (a) A donut with the height function and (b) its Reeb
Graph.

This enhanced clustering method based on algebraic topology considers high-dimensional
datasets as point clouds and transforms them into networks; the nodes are clusters of samples,
which are linked when they contain common samples [10]. As topology is insensitive to scale
and small deformations, it is useful for the analysis of highly variable and noisy data and
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Chapter 1. Background

reveals patterns not detected with standard tools [11], [12], [13]. It is used broadly to reduce
dimensions and to recognize patterns in datasets as diverse as voting preferences, interactions
of basketball players across games [11], and nanoporous material [18]. Mapper has been applied
to analyze large biological datasets, such as global gene expression profiles of breast cancer
samples [9] or temporal single-cell RNA-seq data [19]. In an approach called Progression
Analysis of Disease (PAD)[9] consisting of a pre-processing step called Disease-Specific
Genomic Analysis (DSGA) followed by Mapper, global gene-expression data are processed
statistically and subsequently analyzed with Mapper [9], [20], [21], [13].
The Mapper algorithm is dependent on three parameters; a filter function, a cover of
the codomain of the function and a clustering algorithm on the domain that is generally
determined by a distance on the points in the domain, and a cutoff parameter of closeness.
It has been shown that small changes in the choices of the cover of the codomain can affect
the output and therefore make the method unstable [12]. Finding the best parameters usually
requires trial-and-error strategies, until the output provides the most insight from the user
perspective is reached [12]. This results in unusual choices that can be used only for limited
numbers of data sets or even solely for the particular data set analysed. Despite frequently
ending up with not much informative structure in the output for the user, another proposed
strategy is given by estimating the distribution of the data points and then calculating a range
of parameters for which the output is stable [22]. Recently advances towards a statistically
well-founded version of Mapper has been made [23]. This strongly depends on the sampling
of the data and the regularity of the filter function. A last approach proposed by Dey et al.
[24],[25] is called multiscale Mapper and studies Mapper through multiple scales or ranges
of a parameter, which they describe how best to choose in order to reach stability results.
No application of this method have been found yet and theoretical results are still being
established such as the relationship between Reeb graphs and multiscale Mapper [24]. We
aim to develop a new method depending on the Mapper algorithm with optimized parameter
selection for gene expression analysis. Therefore, we start by introducing the mathematics
behind this method in the following sections.
Intuition 1.2.1. The particularity of Mapper and Reeb graphs is that they take as input a
function of interest that helps describing or distinguishing spaces. An example is given by
the distinction between × and +; as they are the same objects upon rotation, they are not
distinguishable in the sense of standard topology and geometry. If one considers the function
of height from top to bottom, then × starts with two pieces that merge into one at the middle
and separate again, so the "flattened" × with the height function still is ×, whereas + is at
each level represented by one connected component, since the middle bar is flattened. Hence,
the Reeb graph of + is given by a line. Therefore, × and + can be distinguished by their
Reeb graphs.

1.2.2 Metric spaces and equivalence relations
In application the dataset that needs to be analysed is considered as a point cloud. In order to
have a notion of proximity between elements of a point cloud, one defines a distance between
every pair of elements of the point cloud. Taken together, those distances, if they verify
certain conditions, are called a metric on the point cloud.
Intuition 1.2.2. An example of a distance on the point cloud X corresponding to the cities in
Switzerland is for each two points/cities a and b in X given by the shortest time it takes by
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1.2. The Mapper algorithm

car to travel from point a to point b.

Definition 1.2.3. Ametric space (X, d) is a setX equipped with a function d : X×X → R+,
which is called the distance, such that for any x, y, z ∈ X,

• d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y

• d(x, y) = d(y, x), and

• d(x, y) ≤ d(x, z) + d(z, y).

If the last point is not verified, it is called a semi-metric.

In order to define the Mapper algorithm, we need the formalism of an equivalence relation,
which gives a binary relation between elements of a set X, or a point cloud.

Intuition 1.2.4. If the space X considered is the students of a class, then an example of an
equivalence relation is the relation between the students given by "has the same birthday as".

Definition 1.2.5. A binary relation ∼ on a set X is called an equivalence relation if and
only if it verifies for all x, y, z in X

x ∼ x

x ∼ y if and only if y ∼ x, and

x ∼ y and y ∼ z then x ∼ z.

1.2.3 Simplices
Simplices are polyhedra built out of points, segments, triangles, tetrahedra, etc., put together
in such a way that they are glued along common edges or faces.
We will introduce all the necessary formalism and illustrate it through examples.

Figure 1.3: Illustration of two point clouds that topological tools are able to distinguish, on the right a
circle shaped point cloud and on the left an infinity shaped point cloud.
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Intuition 1.2.6. In order to distiguish the point clouds in Fig. 1.3, we would like to glue some
segments between certain vertices in order to obtain the circle or the two circles that appear
to the eye. These segments can not randomly be added, therefore we need to have an idea
as to where to put them, and find an algorithm that would perform this task. In this first
subsection, we are describing a formalism for segments, triangles, tetrahedra, etc.

Definition 1.2.7. A set of points {v0, . . . , vm} in Rn is said to be geometrically indepen-
dent if for any λ0, . . . , λm ∈ R such that

∑m
i=0 λivi = 0 and

∑m
i=0 λi = 0, then λi = 0 for each

i = 0, . . . ,m.

Remark 1.2.8. This definition is equivalent to saying that the vectors v0−v1, v0−v2, . . . , v0−vm
are linearly independent. Namely, if we have µ1, . . . , µm ∈ R such that

∑m
i=1 µi(v0 − vi) = 0,

then µi = 0 for each i = 1, . . . ,m.
We recall that a set A ⊂ Rm is convex if, for two points of A, the line segment joining the
points is still contained in A.

Lemma 1.2.9. The intersection of convex sets is convex.

Definition 1.2.10. The convex hull of A ⊆ Rm is the intersection of the convex sets
containing A.

Proposition 1.2.11. Take a set of geometrically independent points {v0, . . . , vm} in Rn. The
convex hull of the set {v0, . . . , vm} is equal to

σ(v0, . . . , vm) =
{
v ∈ Rn | v =

m∑
i=0

λivi where
m∑
i=0

λi = 1, and 0 ≤ λi, for each i = 0, . . . ,m
}
.

Definition 1.2.12. Take a set of geometrically independent points {v0, . . . , vm} in Rn. The
simplex spanned by v0, . . . , vm is the convex hull of the set {v0, . . . , vm}. The points v0, . . . , vm
are the vertices of the simplex σ(v0, . . . , vm).

The dimension of the simplex spanned by m+ 1 geometrically independent points is m, and
we call it an m-simplex.
A face of an m-simplex σ is the simplex spanned by any subset of the sets of the m + 1
vertices {v0, . . . , vm} of σ.

Remark 1.2.13. The fact that the dimension of a simplex spanned by v0, . . . , vm is m and not
m+ 1 follows from the fact that {v0, . . . , vm} spans a m-dimensional subspace of Rn.
Here are some examples to understand these new notions.
Example 1.2.14. In R3, the largest number of vertices a simplex can have is 4, as we cannot
have more than 3 linearly independant vectors in R3. We construct simplices of dimension
−1, 0, 1, 2, 3 :

� (-1)-simplex : no vertices : ∅, the empty set.

� 0-simplex : one vertex : •, a point.

� 1-simplex : two vertices {v0, v1}, thus the linear combinations of the vertices as in
Definition 1.2.12 gives the points tv0 + (1− t)v1 with 0 ≤ t ≤ 1, which is the well known
parametrisation for the segment between v0 and v1 :
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1.2. The Mapper algorithm

� 2-simplex : three vertices, so the combinations of the vertices as in Definition 1.2.12
give a full triangle :

� 3-simplex : here we have four vertices, and the combinations of these four vertices give
an entire tetrahedron :

Definition 1.2.15. The n-th standard simplex is the n-simplex, ∆[n], spanned by σ =
{e1, . . . , en+1}, where

(ei)j =

1 if j = i

0 otherwise.

Remark 1.2.16. Hence, with the definition 1.2.12, we can see that the n-th standard simplex
can be written,

∆[n] = {(t1, . . . , tn+1) |
n+1∑
i=1

ti = 1, ti ≥ 0}.

This is a useful example of an n-simplex.

1.2.4 Simplicial and abstract simplicial complexes
After the definition of a simplex, we can define what a simplicial complex is, an easier to
grasp definition as its "abstract" version, called abstract simplicial complex.

Definition 1.2.17. A simplicial complex is a finite collection ∆ of simplicies that verifies
the two following conditions :

1. if σ ∈ ∆ and τ ⊆ σ then τ ∈ ∆. Namely, if σ ∈ ∆, then any face of σ has to be in ∆;

2. if σ, τ ∈ ∆, then σ ∩ τ has to be a face of both σ and τ .

Definition 1.2.18. An abstract simplicial complex is a pair (V,Σ) where V is a finite
set and Σ =

∐
Σk is a set of ordered subsets Σk 6= ∅ of V such that if σ ∈ Σ, then for every

τ ⊆ σ, we have τ ∈ Σ, and if A ∈ Σk, then |A| = k + 1.

The definition is aptly named, as it is an abstract object in the sense that if we want to
visualise an abstract simplicial complex, we need to define its geometric realization. To
construct the latter, we will look at simplices associated to the Σk, taking their vertices to be
the associated points of V . We glue them together along vertices that correspond to the same
point in V .
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Definition 1.2.19. Let K be a simplicial complex (abstract or not). A subcollection L of
simplices from K which in turn forms a simplicial complex is called a subcomplex of K. In
other words, if a simplex σ is in L, then all of its faces in K are also present in L.

• We will write ∆[k]σ to emphasize the fact that the space ∆[k] corresponds to the set
σ = (v0, . . . , vk) ∈ Σk.

• For any i = 0, . . . , k, the map δi is defined by

δi : Σk −→ Σk−1

(v0, . . . , vk) 7−→ (v0, . . . , vi−1, vi+1, . . . , vk+1),

• For any i = 0, . . . , k − 1, the map di is

di : ∆[k − 1] −→ ∆[k]
(x0, . . . , xk−1) 7−→ (x0, . . . , 0︸︷︷︸

ith

, . . . , xk−1),

Definition 1.2.20. The geometric realization of the abstract simplicial complex (V,Σ),
written |(V,Σ)|, is

|(V,Σ)| =
∐
k

∐
Σk

∆[k]σ
/(

x ∼ dix, ∀x ∈ ∆[k − 1]δiσ

)
(1.1)

where dix ∈ ∆[k]σ, equipped with the quotient topology.

To better understand this complicated definition, some examples are given.
Examples 1.2.21. 1. Take V = {1, 2, 3} and Σ = {(1), (2), (3), (1, 2), (1, 3), (2, 3)}. We get

|(V,Σ)| =

(
∆[0](1)

∐
∆[0](2)

∐
∆[0](3)

∐
∆[1](1,2)

∐
∆[1](1,3)

∐
∆[1](2,3)

)
/∼

and here δ0((1, 2)) = (2), δ1((1, 2)) = (1), etc. Thus, we have a list of 0- and 1-simplices
:

(1.2)

To patch them together, we apply the equivalence relation in (1.1). For example, take
σ = (1, 2) ∈ Σ1. So k = 1, and take i = 0. Then ∆[0]δ0σ = ∆[0](2) which is the second
point in (1.2). And d0(∆[k − 1]δ0σ) is the extremity of the edge (1, 2), corresponding to
(2). So we patch the point (0-simplex) corresponding to (2) to the extremity associated
to 2 of the edge (1-simplex) (1, 2). We get :
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And we do the same for all σ ∈ Σ, and we get the geometric realization of (V,Σ) :

2. If we keep the same V but just add (1, 2, 3) to Σ, namely

Σ′ = Σ ∪ {(1, 2, 3)}.

We have one additional 2-simplex in this example. To construct the geometric realiza-
tion |(V,Σ′)| we paste each 1-simplex namely each edge, of the 2-simplex to the edge
corresponding to the 1-simplex of Σ : (1, 2), (1, 3), (2, 3). That gives :

Examples 1.2.22. Here are some examples that are not realizations of abstract simpicial
complexes.

1. An edge and two vertices are missing in the following diagram.

2. We have that σ ∩ τ , which is the thicker segment in the following diagram, is neither an
edge of σ, nor one of τ .
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Thus, the above picture is not a realization of an abstract simplicial complex.

3. Here, σ ∩ τ is the red point that is a vertex of neither σ, nor of τ :

This is not a realization of an abstract simplicial complex.

Here are some other examples of realization of abstract simplicial complexes.

1. We can take disjoint simplices for the collection :

Namely we have {σ1, σ2, σ3, σ4} and all their faces.

2. Take two 3-simplices and one 1-simplex as follows :

This is a realization of an abstract simplicial complex as in particular all their intersections
are faces of each of the two complexes.

Definition 1.2.23. A simplicial function is a map between two abstract complexes (V,Σ)
and (V ′,Σ′), is a map f : V → V ′ verifying that if (v0, . . . , vn) ∈ Σ, then (f(v0), . . . , f(vn)) ∈
Σ′.

Remark 1.2.24. We can construct the category, Csim, whose objects are the abstract simplicial
complexes, and the maps f ∈Map(Csim,Csim) are the simplicial functions defined in the
previous definition 1.2.23.
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The realization of an abstract simplicial complexes defines a functor from the category Csim
of abstract simplicial complexes to the category of topological spaces, once we have defined
what the realisation of a simplicial function is:

Definition 1.2.25. The realization of a simplicial function f is a continuous extension
of f to the realization of the abstract complexes, that is a map |f | : |(V1,Σ1)| → |(V2,Σ2)|
such that the vertices of a simplex are always sent to vertices in the image. Namely, for
x =

∑n
i=0 λivi, we have

|f |(x) =
n∑
i=0

λif(vi).

1.2.5 Nerve
Intuition 1.2.26. Since we defined what an abstract simplicial complex is, we have a formalism
for the "links" between points. We need to know when to add such connections between points
in a point cloud. Therefore, we will define an object that will be essential in the Mapper
method : the nerve of a cover. The definition of a cover of a space is again central for the
Mapper algorithm. This formalises the idea of dividing the space into subparts.

Definition 1.2.27. A cover of a space X is a family of sets Uα, α ∈ A such that X =
∪α∈AUα.

Examples 1.2.28. We will illustrate this concept by studying several covers of the circle S1.
The first one in the Fig. 1.4 (a) is the cover with the northern hemisphere (in red) and the
southern hemisphere (in blue). Another example (Fig. 1.4b) illustrates three subspaces that

a b

Figure 1.4: Covers of S1. (a) A first way to cover S1 using hemispheres. (b) A second way using three
subspaces.

cover S1. These two examples clearly highlight the existence of a variety of ways to cover the
same space.

Definition 1.2.29. Let U = {Uα}α∈A be a cover of a space X. The nerve of the cover U ,
denoted N (U), is the geometric realization of the abstract simplicial complex (V,Σ), where

V = A,

Σ =
∐
n≥0
{(α0, . . . , αn) ⊆ A | Uα0 ∩ . . . ∩ Uαn 6= ∅, and i 6= j ⇒ αi 6= αj}.
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We then have Σk = {(α0, . . . , αk) ⊆ A | Uα0 ∩ . . . ∩ Uαk 6= ∅, and i 6= j ⇒ αi 6= αj}. If σ ∈ Σ,
there exists a k such that σ ∈ Σk, and saying that τ ⊆ σ means that τ ∈ Σj for j ≤ k, and its
geometric realization is a subspace of σ’s realization, as a polyhedron in Rk.

Examples 1.2.30. 1. Take X = S1, the circle. Take the cover U = {U1, U2} as in Fig. 1.4a.

We have A = {1, 2}, therefore, for a subset of A we have three possibilities :

- {1} : which gives a 0-simplex : •,

- {2} : which gives a 0-simplex : •,

- {1, 2} : which gives, as U1 ∩ U2 6= ∅, a 1-simplex :

And so we get the following geometric realisation for the nerve N(U ) :

2. Keep X = S1. Take the cover U = {U1, U2, U3} in Fig. 1.4b.

We have A = {1, 2, 3}. For subsets of A we have

• {1}, {2}, {3} : each one gives a point,

• {1, 2}, {1, 3}, {2, 3}, : each one gives an edge as Ui ∩ Uj 6= ∅ for any i, j = 1, 2, 3,

• {1, 2, 3} : which gives nothing since U1 ∩ U2 ∩ U3 = ∅.

This time we have three points with three edges, and then the nerve N(U ) is given by :

Remark 1.2.31. We see that the second cover of S1 is better than the first one as the nerve
N(U ) has the homotopy type (or the same "shape") of S1. We thus rather recover S1 with
this latter cover.

Homotopy equivalence
Two continuous maps f0, f1 : X → Y are said to be homotopic if there exists a continuous
map H : X × [0, 1]→ Y such that for any x ∈ X, H(x, 0) = f0(x) and H(x, 1) = f1(x). Let
X and Y be two topological spaces if there exists f : X → Y and g : Y → X such that f ◦ g
and g ◦ f are homotopic to the identity maps of Y and X respectively, then X and Y are said
to be homotopy equivalent. Let X be a topological space. If X is homotopy equivalent to a
point (Y = {?}), then X is said to be contractible.
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The nerve theorem
If the cover is well-chosen one can prove a strong relation between X and the nerve of the
cover.
Theorem 1.2.32. Let topological space X and let U = (Ui)i∈I be a cover by open sets such
that if C = ∩i∈JUi, J ⊆ I, then C is either empty or contractible. Then, X and the nerve of
{Ui|i ∈ I} are homotopy equivalent.
Example 1.2.33. In the first example 1.2.28, the intersection between U1 and U2 is not empty
and not contractible (it is homotopy equivalent to two points). The second example verifies
the hypothesis of the theorem 1.2.32, and the nerve is given by a triangle which is homotopy
equivalent to the circle.

1.2.6 Reeb Graphs
Intuition 1.2.34. As already mentioned in the introduction section 1.1, Reeb graphs [14] are
used as approximation of spaces and should be thought of as a thin version of a space (Fig.
1.2). The Mapper algorithm is an approximation of the Reeb graph, since the Reeb graph is
not computable.
Given a topological space X and a continuous function f : X → R, we define the equivalence
relation ∼f between points of X by:

x ∼f y ⇐⇒ f(x) = f(y) and x, y belong to the same
connected component of f−1(f(x)) = f−1(f(y)).

The Reeb graph [14], denoted by Rf (X), is the quotient space X/ ∼f .
As f is constant on equivalence classes, there is an induced map f̃ : Rf (X) → R such that
f = f̃ ◦ π, where π is the quotient map X → Rf (X).

1.2.7 The Mapper algorithm
Using a function f : X → Z, called the filter function, a special type of cover of X is
created from any cover of Z, by pulling back along f . This is needed here as the clustering in
the Mapper algorithm is applied to the pullback of a cover of the space Z.
Definition 1.2.35. Let f : X → Z be a function and let U = {Uα}α∈A be a cover of the
space Z. The pullback of the cover U is given by f−1(U ) = {f−1(Uα)}α∈A.
Algorithm 1: The Mapper Algorithm
Input: A data set or point cloud X with a metric or a dissimilarity measure between
data points d, a filter function f : X → R (or Rd), a cover U of f(X) and a closeness
parameter ε.
Method: For each U ∈ U , decompose f−1(U) into clusters CU,1, . . . , CU,nU , using
an algorithm that partitions data into clusters such as single-linkage clustering
with parameters d and ε (See Algorithm 2, section 1.2.8).
Compute the nerve of the cover of X defined by the sets CU,1, . . . , CU,nU , ∀U ∈ U .
Output: a simplicial complex: for every U ∈ U , we define
- vertices vU,i for each cluster CU,i, where i = 1, . . . , nU ,
- k-simplex between vU0,i0 , . . . vUk,ik if and only if CU0,i0 ∩ · · · ∩ CUk,ik 6= ∅,
where Uj ∈ U and ij ∈ {1, . . . , nUj}, for every j = 1, . . . , k
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Remark 1.2.36. It is therefore clear that if the cover of the codomain has at most two opens
that overlap, no 2-simplex will be drawn. This means that in that case the algorithm only
displays vertices and edges and is therefore a graph.

1.2.8 Clustering algorithms used in the Mapper algorithm
Numerous clustering algorithms exist, but only single-linkage [26], complete linkage [26] and
average linkage clustering [26] are implemented algorithms for the Mapper algorithm as they
are popular and density-based. We focus here on the single-linkage algorithm as it is the most
frequently used clustering algorithm in applications of Mapper and the one implemented in
the "Two-tier Mapper", the method we will define in chapter 2 and is the popular choice of
the general use of the Mapper algorithm.

Algorithm 2: single-linkage clustering
Input: A data set or point cloud X with a metric or a dissimilarity measure between
data points d, a parameter of closeness ε, and an open set of X.
Method: Define the relation ∼1, by x ∼1 y if and only if d(x, y) ≤ ε. This
becomes an equivalence relation ∼ under transitive closure in U of ∼1, i.e x ∼ y if and
only if there exists x1, . . . xn ∈ U such that d(xi, xi+1) ≤ ε, for i ∈ 0, . . . , n, where x0 = x

and xn = y, n ∈ N.
Let U be an open of X, we define the clusters to be the equivalence classes of ∼:
[U1], . . . , [UnU ].
Output: a partition of U into clusters [U1], . . . , [UnU ].

Example 1.2.37. The single-linkage clusters can be obtained by drawing the ε-neighbourhood
graph, i.e. linking every two points X and Y that verify d(X,Y ) ≤ ε with an edge (in red in
Fig. 1.5) on the point cloud and then extracting from this graph the connected components.
The equivalence classes are drawn in this example as discs with size corresponding to the
number of samples in the cluster. This representation is employed as well in the Mapper
algorithm. In the following Fig. 1.5, the point cloud is considered with the euclidean distance
and the epsilon parameter is chosen (bottom right). This results in an ε-neighbourhood graph
(red edges) which, by taking the connected components, gives the single-linkage clusters.

1.2.9 The choices of parameters
Since Mapper has a wide range of applications, from the analysis of basketball players
interaction during games [11] to the classification of nanoporous materials [18], there are also
a wide range of choices for the different parameters. Software implementing Mapper allows
one to choose some of the parameters to different degrees [27], [15], some can freely be chosen
and some are chosen among few. In the following sections, we want to explain each parameter
and show this variety of choices, mostly linked to gene expression analysis, to illustrate and
guide the user towards analysing data using Mapper. The method developed in this thesis
uses Mapper as well, but with specific parameters that are different from the standard ones
(described in this section). Therefore, the choice of those parameters for that new algorithm
will be defined in section 2.3.
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Single-linkage clustering

epsilon-neighborhood  
graph

connected  
components

point cloud

epsilon

Figure 1.5: Example of the single-linkage clustering algorithm. Starting from a point cloud in the
box, single-linkage clustering is the same as drawing the ε-neighbourhood graph and then taking the
connected components.

The distance
The distance is used to segregate the data and is hence chosen in order to provide the user
with information about proximity in the dataset. In the case of Mapper, it is enough to
work with a similarity measure, not necessary verifying the triangle inequality. The choice of
the similarity measure influences highly the clusters formed, as two samples could be close
using one distance, but far away according to another. It needs to be chosen according to the
problem and the interpretation of the output will be different. Several similarity measures
have been implemented and are proposed.

The correlation distance is used in many applications to expression datasets [19], [9], [13].
Even though it is not often used, euclidean distance or variance normalized euclidean distances
can be the metric of choice as it is the most common segregation method in hierarchical
clustering and the default distance in the software R [26]. It has been used to separate
basketball players [11] for instance.
Other popular distances include : special types of topological measures [18], Lp-metric (and
usually p is chosen to be 2) [8].

The filter function
This function is used to gain insight into the data and should therefore be problem dependent.
The filter function is often also used to color code the clusters obtained in order to know
the average value of the filter function for samples in that cluster. In the different fields of
application, different functions have been proposed.
Often, dimension reduction algorithms such as Multidimensional Scaling (MDS) or Principal
Component Analysis (PCA) are used to generate a filter function, i.e. a filter function could
be given by the first MDS or PCA component or even a function with codomain in two or more
dimensions is given by taking more than one principal component. Two-dimensional MDS
of the 5000, respectively 4600 genes with most variance was used, depending on the experi-
ment, in the analysis of scRNA-seq data [19]. This dimension reduction is useful in order to
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screen for topological features in single-cell RNA-seq, but in different regions of the MDS plots.

In the analysis of breast cancer data [9], the chosen parameter resulted in the method PAD
and the following filter function f was chosen :

f : T→ R : Tk 7→ (
∑
l∈S
| (Dc.Tk)l |l)p/l,

where Tk is a tumour sample that was decomposed into two parts using linear regression a
normal component Nc.Tk and a disease component Dc.Tk, for every k = 1, . . . , S, where S is
the number of samples in the group of patients with a certain disease. The two new parameters
p and l were chosen between 1 to 5 and 1 to 10 respectively [9] and have been chosen to be
4 and 2 in the breast cancer cohort [9] and unspecified values in another article using PAD [20].

Other popular filter functions include : singular value decomposition in the case of observing
the interactions between basketball players or the voting preferences of the US House of
Representatives [11], L-Infinity Centrality and Event Death, which is a two-dimensional
function, in the case of breast cancer gene expression data [11] or the neighbourhood Lens in
the case of analysis of nanoporous material [18].

The cover of the codomain of the filter function
The cover, described in definition 1.2.27, of the codomain of the filter function is the most
important choice as it will determine the refinement at which the data is studied. An example
of the impact of the refinement can be seen in examples 1.2.28, where two different types of
covers result in graphs with topologically distinct nerves (Fig. 1.4 a, b).

The most commonly applied type of cover of the codomain consists of a number P of intervals
with a percentage of overlap G between two consecutive intervals [27], [15], [19], [8]. It is
sometimes referred to as the gain (% of overlap= 1-1/gain) and the resolution, corresponding
to the diameter of an interval [23], or sometimes the minimimum length of an interval [23],
and yet other times the number of intervals [27]. If the codomain of the filter function is
Rn the same idea is extended to n dimensions: a certain number of hyperrectangles cover
the space overlapping two-by-two with a certain percentage. Hence, the user inputs the
number of intervals and the % of overlap per dimension. As examples, 15 intervals, with 80%
overlap were chosen in the breast cancer data [9]. This data has been re-analysed with a
two-dimensional filter function where in the "L-Infinity Centrality" dimension the resolution is
70 and the gain is 3, and in the "Event Death" dimension 30 and 3 respectively.
In the single-cell RNAseq analysis 26× 26 and 62× 62 rectangular patches were considered
for the two datasets in the paper [19]. To avoid sampling-density biases, Rizvi et al. choose
the size of the patches such that the number of cells in each row or column of patches is
the same [19]. The overlap between patches was 66% but not in all the figures of the paper [19].

The epsilon parameter
The parameter ε is used as a cutoff for the single-linkage clustering algorithm determining
when two samples are close enough in terms of the chosen distance.

16



1.2. The Mapper algorithm

In Ayasdi and [8], the parameter ε of closeness is described as a parameter that should depend
on the previously determined number of intervals and is not available for the user to choose.
A high number of intervals should give a small value for ε whereas a small number should
allow for a high value of ε [27]. One method to determine ε is to search for a gap in the
histogram of the number of merges of the dendrogram generated using the distance (Fig. 1.6).

Gap

Figure 1.6: Illustration of the ε parameter selection using a dendrogram representation (left) of the
distance between samples and a histogram of the merges (right).

1.2.10 Example of the Mapper algorithm
Example 1.2.38. Starting from a point cloud on an object (Fig. 1.7a), in this example of the
Mapper Algorithm, a hand, we want to reduce the complexity of the space and gain insight
with respect to a function of interest.
The function of interest or filter function of this example is the distance to the palm, color-
coded from blue, close to the palm, to red, tip of the fingers (Fig. 1.7b). One then chooses a
cover, a distance and an ε parameter of closeness that are given here by 6 intervals, with 50%
overlap, the three-dimensional euclidean distance and ε (Fig. 1.7c). In each of the pre-images
of the intervals, i.e. on the points with function value inside that interval, single-linkage
clustering is performed with the distance and ε as inputs. It gives in each intervals the
connected components of the ε-neighbourhood graph. These connected components are
depicted as circles that are linked if the clusters share a point (Fig. 1.7d). As the intervals are
overlapping there are always points in the intersection of two consecutive intervals and one
obtains a link between the components in one interval and the next if they share a common
point. If epsilon is too big, then the fingers all merge into one connected component and the
resolution of the topology of the object is lost. If epsilon is too small, isolated points start to
appear. One would have more than 5 fingers, and the topology of the starting object would
be lost as well. An equilibrium needs to be found and parameters well chosen.
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a b

c

= epsilon

d

Figure 1.7: Example of the Mapper algorithm (adapted from [11]). (a) A point cloud with (b) a filter
function associated to the point cloud which is the distance to the palm represented as a color code.
(c) Dividing the color code space into overlapping bins results in an overlapping cover of the point
cloud and choosing a parameter of closeness ε is then resulting in a (d) Mapper output.
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1.3 Persistent and extended persistent homology
1.3.1 Introduction to persistent homology
Another method of topological data analysis is called Persistent Homology (PH) [28]. This
notion emerged in three different research groups (Italy, Colorado, Duke) at almost the same
time.
In Italy, the group of Patrizio Frosini, Massimo Ferri, and Claudia Landi started the field of
size theory, which uses PH to give a well-structured mathematical answer to problems in shape
recognition[4], [5], [7]. The aim is to capture information about the shape of the studied space
by using a function, called a size function. Having characterized the shape of an object by
summarising its topological features in a 2D plot [6] and having defined a distance between
these 2D summaries, they are able to classify spaces by shape. Application of this theory
ranges from the recognition of the sign language alphabet[29] to the study of the evolution
of cyclones [30]. In 2011, this group in Italy managed to enhance the size theory by proving
a theorem stating that whenever two functions on a sphere are given, and certain criteria
verified, then there exists a reparametrisation of the sphere bringing the two functions close
[31]. In the later chapter 6.1, we will discuss how this is useful in the research on hormones.
In her doctoral work in Colorado, V. Robins studied fractal sets using PH [32]. Her analyses
of approximations on spaces led to remarkable results in material science on classification of
crystalline patterns [33] or X-ray CT images of porous and granular materials [34].
Finally, at Duke and Stanford, developments of the concept of alpha shapes [35] resulted in
algorithms for PH computations. Edelsbrunner et al. [36] analysed the Klein bottle [37] and
was popularised with image analysis in [8] and [38].
PH is an algorithm that takes as input nested families, which are referred to as a filtration, of
higher dimensional generalizations of graphs, called simplicial complexes [35], [39]. Many
methods for converting point cloud datasets into simplicial complexes have been developed [8],
[40], [35], [41]. Several different approaches to building filtrations have been proposed. The
most popular and common one is the filtration arising from a function f from the space or
dataset studied to R, given by taking sublevel sets [31]: i.e., at a time i every point that f
maps to a value less than or equal to i is inside that "level" of the filtration (Fig. 1.8).

Figure 1.8: Illustration of a filtration, representing a nested family of spaces. On the left the smallest
subpart and on the right, the full space. The function used to generate that filtration is the height
function depicted on the far right (Adapted from [23]).

Given such a filtration of the object of study, i.e., growing subparts of the space, one keeps
track of the time points of the filtration at which a certain topological feature appears , called
the birth, and disappears, called the death of the feature. This is then summarised in a
2-dimensional plot [8]. This enables us to see which features persist a long time and which
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features are only transiently apparent. These 2D summaries are therefore called Persistent
Diagrams (PD) . In the beginning of the 21st century, natural distances on these diagrams
were introduced [42], [43], in order to compare and distinguish the PD of two spaces. Statistics
were then defined on PD in order to establish rigorous mathematical foundation for calculations
[44]. Statistics were also conjointly used with PD to form new methods [45] giving rise to a
new way to classify spaces. Application of persistent homology ranged from areas such as
neural networks [46], [47], to histochemistry scoring of breast cancer pathological slides [48],
passing by fingerprint classification [49] or even differentiating handwritten letters [8].
In the following sections, we provide a more in-depth description of the concepts sketched
above.

1.3.2 Homology
Homology is a concept of algebraic topology used to detect and characterize topological features.
Any k-dimensional hole is represented by an element of the vector space Hk. Therefore, H0
measures connected components of a space, H1 the 1-dimensional holes or loops, H2 the
2-dimensional holes or voids, etc . . . We can then know how many k-dimensional holes a space
has. For less heavy notation, we will choose a field that we fix F = Z2 = {[0], [1]}, the field of
two elements verifying [1] + [1] = [0]. We refer the reader to [50] and [51] for further concise
introductions to homology.

Example 1.3.1. In the following example (Fig. 1.9), the space, a torus, is connected and has
two one-dimensional holes or loops (blue, Fig. 1.9), and one two-dimensional hole (green, Fig.
1.9).

Figure 1.9: Illustration of a topological space, a torus, with its one-dimensional holes in blue and the
two-dimensional holes in green.

The vector space of k-Chains
Definition 1.3.2. Let K be a simplicial complex with a finite number of simplices in each
dimenison. A k-chain in K with coefficients in F is defined as a formal sum of k-simplices in
K, i.e.

p∑
i=1

εiσi,

where σi is a k-simplex of K and εi ∈ F for all i = 1, . . . , p, and p is the number of k-simplices
in K.
The spaces of all k-chains is denoted Ck(K), where the field is suppressed from the notation.
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Remark 1.3.3. Ck(K) is a vector space as there is an addition and a multiplication by a
scalar defined on this space. If c, c′ ∈ Ck(K), then there exist εi, ε′i ∈ F , for i = 1, . . . , p
such that c =

∑p
i=1 εiσi and c′ =

∑p
i=1 ε

′
iσi. We define the sum of the two k-chains by :

c+c′ =
∑p
i=1(εi+ε′i)σi. The multiplication by a scalar λ ∈ F is defined by λ ·c =

∑p
i=1 λ ·εiσi.

The boundary operator, its kernel and image
Definition 1.3.4. • Let σ = [v0, . . . , vk] be a k-simplex. The boundary of σ is the

(k − 1)-chain ∂k(σ) =
∑k
i=0(−1)i[v0, . . . , vi−1, vi+1, . . . , vk]. In the field we have chosen

[−1] = [1] and therefore ∂k(σ) =
∑k
i=0[v0, . . . , vi−1, vi+1, . . . , vk].

• The boundary operator on Ck(K) is a linear extension of the boundary operator
defined on individual simplices. Let c =

∑p
i=1 εiσi ∈ Ck(K) be a k-chain. Then,

∂k(c) =
∑p
i=1 εi∂k(σi).

• The kernel of the boundary operator Zk(K) = {c ∈ Ck(K) | ∂k(c) = 0} is called
the space of k-cycles of K.

• The image Bk(K) = {c ∈ Ck(K) | ∃c′ ∈ Ck+1(K), ∂k+1(c′) = c} is called the space of
k-boundaries of K.

The boundary operators verify the following composition property: ∂k−1 ◦∂k = 0 for any k > 1.
Therefore, any k-boundary is a k-cycle and there are inclusions Bk(K) ⊆ Zk(K) ⊆ Ck(K).
Example 1.3.5. In the following example (Fig. 1.10), let F = Z2, then σ = [v0, v1, v2] is a
2-simplex and ∂2(σ) = [v1, v2] + [v0, v2] + [v0, v1], which is the formal sum of the 1-simplices
that form the empty triangle and corresponds to our intuition of a boundary.

v0

v1

v2 v0

v1

v2

Figure 1.10: Illustration of a 2-dimensional simplex (left) and its boundary (right).

Simplicial homology groups and Betti number
The k-th (simplicial) homology group of K is the quotient vector space

Hk(K) = Zk(K)/Bk(K).

The k-th Betti number, named after Enrico Betti, of K is the dimension of the vector space
Hk(K), given by βk(K) = dim(Hk(K)).

Relative homology
The same idea defining homology and homology groups is used to define another homology
theory called the relative homology. For that, let X be a space and A ⊆ X a subspace
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of X. Let Ck(X,A) be the quotient group Ck(X)/Ck(A). This implies that chains in A

are trivial in Ck(X,A). The boundary map ∂k : Ck(X) → Ck−1(X) induces a well defined
"relative" boundary map ∂k : Ck(X,A)→ Ck−1(X,A). Indeed, it can easily be verified that
∂k sends Ck(A) to Ck−1(A). We define the kernel and the image of the relative boundary
operator ∂k in the same way as in the previous paragraphs. The relation ∂k−1 ◦ ∂k = 0
for any k > 1 still holds. Therefore, any k-boundary is a k-cycle and there are inclusions
Bk(X,A) ⊆ Zk(X,A) ⊆ Ck(X,A). The relative homology groups Hk(X,A) are defined
by Zk(X,A)/Bk(X,A).

1.3.3 Persistent homology
Persistent homology was developed to cope with noise in data, distinguish relevant feature of
spaces, and describe particular topological feature of a space at different resolutions. When
using persistent homology, the evolution of homology groups across nested families of simplicial
complexes is studied, detecting features that are apparent at different scales and calculating
how long these topological features persist. Persistent homology is often applied to point
clouds, as they can easily be turned into simplicial complexes.

Intuition 1.3.6. The intuition one should have for this section is that persistent homology
machinery will be able to distinguish for instance a circle-shaped point cloud and an∞-shaped
point cloud (see Fig. 1.3), as they have respectively one one-dimensional hole and two
one-dimensional holes that are apparent.
Despite the fact that the human eye directly recognize a circle-shaped point cloud in Fig. 1.3,
we need to have a formalism to determine when this should be considered to be a circle. The
idea is to link the points according to a chosen criterion, and decide when a feature can be
considered to be real rather than noise. There are several ways to proceed, and we will discuss
hereafter the ones that are computationally the most efficient.

Čech and Vietoris-Rips complexes
Definition 1.3.7. Let d : Z × Z → R be a metric or a similarity measure on a topological
space Z.
The open balls Bε(z), describing a basis of the metric topology, are defined for any ε > 0
and z ∈ Z as

Bε(z) = {y ∈ Z | d(z, y) < ε}.

For any ε > 0, the family of sets {Bε(z)}z∈Z covers the space Z as each z ∈ Z is contained in
at least Bε(z).
Let V ⊆ Z be a subset such that ∪z∈VBε(z) = Z. The nerve (see definition 1.2.29) of this
cover is the Čech complex attached to V and ε, denoted Čε(V )

Definition 1.3.8. For a metric space Z with distance function d and ε > 0, the Vietoris-
Rips complex, written V R(Z, ε), is the simplicial complex with vertices the elements in Z
and where a set of points σ = {z1, . . . , zn} spans a k-simplex if and only if d(zi, zj) ≤ ε for
any zi, zj ∈ σ.

Remark 1.3.9. • The Vietoris-Rips complex is computationally less demanding than the
Čech complex and therefore often preferred in applications.
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• Other complexes such as witness complexes [40] or alpha complexes [35] are not defined
here. They have been applied however in finding patterns in natural images [40].

Example 1.3.10. Suppose Z = {x1, x2, x3}, as a subset of R2. For ε > 0 take Bε(xi) for each
xi. That gives the following cover of Z :

To construct the Čech complex, we will take the nerve of U = {Bε(x1), Bε(x2), Bε(x3)}. That
means the vertex set is Z and as Ui ∩ Uj 6= 0 for any i, j = 1, 2, 3, and U1 ∩ U2 ∩ U3 = 0 we
get that the nerve of U is a union of three 1-simplices :

Figure 1.11: Čech complex of Z = {x1, x2, x3}
To compute the Vietoris-Rips complex, the points of Z are again the vertices. Taking the
cover V = {V1, V2, V3} as in the following figure, we get that d(xi, xj) ≤ ε for all i = 1, 2, 3,
and {x1, x2}, {x1, x3} and {x2, x3} span 1-simplices but this time as well {x1, x2, x3} spans a
2-simplex.

Figure 1.12: Vietoris-Rips complex of Z = {x1, x2, x3}

Remark 1.3.11. We used the same scale in Fig. 1.11 and 1.12, to illustrate the difference
between the two complexes, which is why Fig. 1.12 is smaller.

Level sets, sublevel sets and superlevel sets
In order to get insight into a topological space X, we use an associated real-valued function f
on X and consider subsets of the space X.

Definition 1.3.12. Let X be a topological space and f : X → R a real-valued function.

• The level set of X at a parameter t ∈ R is f−1(t) and denoted Xt.

• The sublevel set of X at a parameter α ∈ R is f−1(−∞, α) and is denoted X(−∞,α).

• The superlevel set of X at a parameter α ∈ R is f−1[α,∞) and is denoted X [α,∞).

Example 1.3.13. An illustration of these notion can be found in figure 1.13.

23



Chapter 1. Background

level set sublevel set

superlevel set

Figure 1.13: Illustration of a topological space, a torus, together with a real-valued function, the height
function, and the level set, sublevel set, superlevel set at α

Filtration
We first need to introduce what it means for a simplicial complex to be nested in another
simplicial complex.

Definition 1.3.14. Let K be a simplicial complex. A subcollection L of simplices from K is
called a subcomplex of K if L also forms a simplicial complex. Therefore, if a simplex σ is
in L, then all of its faces in K are also present in L. The vertex set of L can be smaller than
that of K.

Filtrations built out of a point cloud
The families of Vietoris-Rips complexes (Ripsε(X))ε≥0 and Čech complexes (Čechε(X))ε≥0
(see section 1.3.3) define interesting filtrations on point clouds. One starts with the point
cloud when ε is equal to 0 (except if one allows the distance to be 0 between different points)
and with increasing ε simplices are progressively added, until the complex with all the points
linked and all the possible simplices added is obtained.

Filtration by sublevel sets
Let K be a simplicial complex and V its vertex set. Moreover, let f : V → R be a
function defined on the vertices. This function can be extended to all simplices of K by
f([v0, . . . , vk]) = maxi=1,...,kf(vi) for any simplex σ = [v0, . . . , vk]. The sublevel set filtration
of f is defined by Kr = {σ ∈ K|f(σ) ≤ r}. The superlevel set filtration of f is defined in
section 1.3.4.

Remark 1.3.15. In practice, all the filtrations considered are built on finite sets and are indeed
finite, whence even if the index set is infinite (ε and r), the Rips or Čech filtration will only
change at a finite number of values of ε, and the same holds for the sublevel set filtration Kr

which only changes for a finite number of values of r. They are therefore easy to handle from
an algorithmic point of view.

Persistence modules
Persistence modules are explained in a complete and precise way in [39] and [8] and with a
more algebraic/categorical point of view in [52].

Definition 1.3.16. Let T be a subset of the real numbers R. A persistence module V over
T is an indexed family of vector spaces (Vr | r ∈ T ) together with linear maps νsr : Vr → Vs,
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for every r ≤ s which satisfy the composition law νts ◦ νsr = νtr whenever r ≤ s ≤ t, and where
νrr is the identity map on Vr.

Remark 1.3.17. Let K be a simplicial complex and let Kr, r ∈ R be a filtration of K (as
defined for instance through sublevel sets or through complexes). For every r < r′ ∈ R, the
elements of the filtration Kr and Kr′ verify Kr ⊆ Kr′ . This inclusion, denoted δsr , verifies
that δts ◦ δsr = δtr for every r < s < t. This inclusion induces linear maps between the homology
vector spaces δ̄sr : Hk(Kr)→ Hk(Ks), also verifying δ̄ts ◦ δ̄sr = δ̄tr for every r < s < t.

Therefore, the homology groups on elements of a filtration, together with the maps δ̄ define a
persistence module, which is the object of study of persistent homology.

Barcodes and Persistence diagram
Recall the formal definition of an interval, which corresponds to our intuition : An interval in
(R,≤) is a subset I ⊆ R such that if i, k ∈ I and if there is a j ∈ R such that i ≤ j ≤ k, then
j ∈ I.

Definition 1.3.18. Let I be an interval in R. A special persistence module is the interval
module kI defined by assigning to each element i ∈ I the vector space k and the zero vector
space to elements in R \ I. Moreover, if i, j ∈ I and i ≤ j, the maps νji are the identity map
and otherwise are the zero map.

Since interval modules are defined completely by the interval where non 0 spaces appear one
can represent interval modules as bars. They are denoted I(b, d), where b is the infimum and
d the supremum of the interval.
In many cases, a persistence module V can be decomposed into a direct sum of intervals
modules, in which case it can be shown that the decomposition is unique up to reordering
of the intervals (see [53]). Therefore, one summarises the persistence module as a collection
of bars (and the order does not matter) called the persistence barcode of V. Another
representation called the persistence diagram represents each interval, I(b, d), by a point
(b, d) in R2, corresponding to topological feature to which the diagonal ∆ = {(x, x) | x ∈ R}
is added with infinite multiplicity. Points that are close to the diagonal often represent noise
in the data, as illustrated in example 1.14.
Let us see in which cases a decomposition of a persistence module as a direct sum of intervals
exists.

Decomposition of persistence modules
We highlight here two situations in which persistence modules are decomposable. More details
can be found in [37], [39], [35].

Theorem 1.3.19. (Can be found in [37], [53]) Let V be a persistence module indexed by a
subset T of R. If T is a finite set or if all the vector spaces Vr are finite-dimensional and T is
locally finite, then V is decomposable as a direct sum of interval modules.

The persistent homology of filtrations of finite simplicial complexes verifies the above conditions.
Therefore, the persistence diagrams of such filtrations are always well-defined.

Definition 1.3.20. A persistence module V indexed by T ⊆ R is q-tame if for any r < s in
T , the rank of the linear map νsr : Vr → Vs is finite.
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Theorem 1.3.21. (Can be found in [54], [53]). If V is a q-tame persistence module, then V
has a well-defined persistence diagram.

Examples 1.3.22. We show three examples of persistence diagrams corresponding to the three
most common types: one using a function f : [0, 1] → R and sublevelsets (Fig. 1.14), one
using a height function on a topological space (Fig. 1.15) and the last one after creating a
filtration using the Rips complex on a point cloud (Fig. 1.16).

a0
a0'

a1

a2

a3

a4'a4

X

f(X)

Figure 1.14: The persistence diagram (on the right) of a function f : X → R (on the left) together
with its barcode (in the middle). Blue points in the diagram represent noisy feature as they are close
to the diagonal, whereas green points represent relevant features. As Hq = 0 for q ≥ 1, only H0 points
are displayed.

Figure 1.15: The persistence diagram of the height function on a topological space, H0 points/bars in
red, H1 points/bars in blue. (Illustration from [12])

1.3.4 Extended persistent homology
This subsection was written in collaboration with M. Carrière and was inspired by [23].
Let X be a topological space and f : X → R a real-valued function on X. The sublevel
sets {X(−∞,α]}α∈R of f define a filtration, i.e. X(−∞,α] ⊆ X(−∞,β] for all α ≤ β ∈ R.
The superlevel sets {X [α,+∞)}α∈R of f are nested as well, though in the opposite direction:
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1.3. Persistent and extended persistent homology

Figure 1.16: The persistence diagram of a filtration arising from a Rips complex with growing ε, H0
points/bars in red, H1 points/bars in blue. (Illustration from [12])

X [α,+∞) ⊇ X [β,+∞) for all α ≤ β ∈ R. By reversing the real line, this nested family can be
turned into a filtration. Indeed, let Rop = {x̃ | x ∈ R}, ordered by x̃ ≤ ỹ ⇔ x ≥ y. By
indexing the family of superlevel sets by Rop, we obtain a filtration: {X [α̃,+∞)}α̃∈Rop , with
X [α̃,+∞) ⊆ X [β̃,+∞) for all α̃ ≤ β̃ ∈ Rop.
Combining the two filtrations at infinity defines extended persistence: each superlevel set
X [α̃,+∞) is replaced by the pair of spaces (X,X [α̃,+∞)) in the second filtration. The filtration
property is maintained since (X,X [α̃,+∞)) ⊆ (X,X [β̃,+∞)) for all α̃ ≤ β̃ ∈ Rop. Then, let
RExt = R ∪ {+∞} ∪ Rop, where the order is completed by α < +∞ < β̃ for all α ∈ R and
β̃ ∈ Rop. One can show that there is an isomorphism between this poset and (R,≤). The
extended filtration of f over RExt is defined as follows:

Fα = X(−∞,α] for α ∈ R

F+∞ = X ≡ (X, ∅)

Fα̃ = (X,X [α̃,+∞)) for α̃ ∈ Rop,

where the space X has been identified with the pair of spaces (X, ∅). The filtration is well-
defined since we have X(−∞,α] ⊆ X ≡ (X, ∅) ⊆ (X,X [β̃,+∞)) for all α ∈ R and β̃ ∈ Rop. The
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ordinary part of the filtration is the subfamily {Fα}α∈R, and the subfamily {Fα̃}α̃∈Rop is
called the relative part. See Fig. 1.17 for an illustration.

Figure 1.17: The extended filtration of the height function on a topological space, the torus. The
ordinary part of the filtration is displayed on the upper row, while the lower row shows the relative
part (Taken from [23]).

The homology of the elements of this filtration is then computed, giving rise to the extended
persistence module V of f :

Vα = H∗(Fα) = H∗(X(−∞,α]) for α ∈ R

V+∞ = H∗(F+∞) = H∗(X) ∼= H∗(X, ∅)

Vα̃ = H∗(Fα̃) = H∗(X,X [α̃,+∞)) for α̃ ∈ Rop,

where the linear maps between the spaces are induced by the inclusions in the extended
filtration and where H∗(X,A) represents the relative homology (see section 1.3.2).
The question of existence and uniqueness of a decomposition into interval modules in the
extended case requires the definition of Morse-type functions for which such a decomposition
exists.

Morse-type functions
Intuition 1.3.23. Morse-type functions are generalizations of the classical Morse functions.
Some properties are shared, but the function is not required to be differentiable nor defined
over a smooth manifold. Morse function are used to study particular points on a manifold,
such as for instance maxima, minima and saddle points, whereas Morse-type functions are a
generalisation of those concepts to any topological space with the particularity that the points
studied segregate the space into distinct parts that can be studied almost independently.

Definition 1.3.24. Let f be a continuous real-valued function on a topological space X. The
function f is of Morse-type if the following conditions hold.

(i) There exists real numbers a1 < · · · < an ∈ R, with n ∈ N, called the critical values,
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such that over every open interval (a0 = −∞, a1), ..., (ai, ai+1), ..., (an, an+1 = +∞) there
is a compact and locally connected space Yi and a homeomorphism µi : Yi× (ai, ai+1)→
X(ai,ai+1) such that ∀i = 0, ..., n, f |

X(ai,ai+1) = π2 ◦ µ−1
i , where π2 is the projection onto

the second factor;

(ii) For all i = 1, ..., n − 1, the function µi extends to a continuous function µ̄i : Yi ×
[ai, ai+1]→ X [ai,ai+1] – similarly µ0 extends to µ̄0 : Y0 × (−∞, a1]→ X(−∞,a1] and µn
extends to µ̄n : Yn × [an,+∞)→ X [an,+∞);

(iii) Each level set Xt has a finitely-generated homology.

Remark 1.3.25. Morse functions are known to be of Morse-type, therefore we can say that
they generalise Morse functions [55], while the converse is not true. Indeed, as previously
mentioned, Morse-type functions are not required to be differentiable, and their domain does
not have to be a smooth manifold nor even a manifold at all. It is also possible to find
Morse-type functions on manifolds that are not Morse, such as the Gaussian curvature on a
torus.
Example 1.3.26. In Fig. 1.18, we illustrate a Morse-type function, the height function of a
topological space (on the right). On the left, we illustrate the decomposition of each X(ai,ai+1)

into a homeomorphic space Yi × (ai, ai+1), i = 0, . . . , 3.

a0

a1

a2

a4

a3

a0

a1
a1

a2
a2

a3
a3

a4

Figure 1.18: A topological space together with a Morse-type function (the height function) and the
decomposition into spaces Yi× (ai, ai+1) homeomorphic to X(ai,ai+1) explaining why it is a Morse-type
function.

The function f is asked to be of Morse-type, since in that case the Reeb graph is a multi-
graph [56], whose nodes are in one-to-one correspondence with the connected components of
the critical level sets of f . This multigraph can then be equipped with a metric by assigning
the length l(vi, vj) = |f(vi)− f(vj)| to each edge (vi, vj).

Theorem 1.3.27. (Can be found in Chazal et al. [53]) The extended persistence module of a
Morse-type function can be decomposed as a finite direct sum of half-open interval modules:

V '
n⊕
k=1

I[bk, dk),
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where each summand I[bk, dk) is made of copies of the field of coefficients at each index
α ∈ [bk, dk), and of copies of the zero space elsewhere, the maps between copies of the field
being identities.

The lifespans of homological features (for example the connected components, the holes,
the voids, etc.) within the filtration are represented by the summands. More precisely, the
birth time bk and death time dk of the feature are given by the endpoints of the interval.
There exists a well-defined analogue to the persistence diagrams (see section 1.3.3) called the
extended persistence diagram of f , denoted Dg (f). Endpoints of each of the intervals in
the decomposition are plotted as coordinates in R2. The distinction between ordinary and
relative parts of the filtration leads to a classification of the points in Dg (f) in the following
way.

• Points whose coordinates both belong to R are called ordinary points; they correspond
to homological features being born and then dying in the ordinary part of the filtration,
denoted Ord(f).

• Points whose coordinates both belong to Rop are called relative points; they correspond
to homological features being born and then dying in the relative part of the filtration,
denoted Rel(f)

• Points whose abscissa belongs to R and whose ordinate belongs to Rop are called
extended points; they correspond to homological features being born in the ordinary
part and then dying in the relative part of the filtration, denoted Ext(f).

The extended persistence diagram is illustrated in the following picture (Fig. 1.19).

a

Figure 1.19: Illustration of an example of correspondences between topological features of a graph
(branches, holes, components) and points in its corresponding extended persistence diagram. The
ordinary persistence is unable to detect the blue upwards branch.

Ordinary points lie strictly above the diagonal ∆ = {(x, x) | x ∈ R} and relative points
lie strictly below ∆, while extended points can be located anywhere, including on ∆, e.g.
connected components that lie inside a single critical level – see section 1.2.6. It is common
to decompose Dg (f) according to this classification:

Dg (f) = Ord(f) t Rel(f) t Ext+(f) t Ext−(f),

where by convention Ext+(f) are extended points above the diagonal and includes the extended
points located on the diagonal ∆.
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Comparing extended persistence diagrams
The definition of a distance between extended persistence diagrams is based on partial
matchings.

Definition 1.3.28. Given two persistence diagrams D,D′, we define a partial matching
between D and D′ as a subset Γ of D ×D′ such that:

∀p ∈ D, there is at most one p′ ∈ D′ such that (p, p′) ∈ Γ,

∀p′ ∈ D′, there is at most one p ∈ D such that (p, p′) ∈ Γ.

Γ is required to match points of the same type (ordinary, relative, extended) and of the same
homological dimension only. In other words, a partial matching is an injective function from
a subset of D to a subset of D′ respecting certain type-matching conditions.

One defines a cost of a matching Γ which defines how good the matching is (i.e. the closest
possible points have been matched).

Definition 1.3.29. The cost of Γ is:

cost(Γ) = max
{

max
p∈D

δD(p), max
p′∈D′

δD′(p′)
}
,

where

δD(p) = ‖p−p′‖∞ if ∃p′ ∈ D′ s.t. (p, p′) ∈ Γ and δD(p) = d∞(p,∆) = inf
q∈∆
‖p−q‖∞ otherwise,

δD′(p′) = ‖p−p′‖∞ if ∃p ∈ D s.t. (p, p′) ∈ Γ and δD′(p′) = d∞(p′,∆) = inf
q∈∆
‖p′−q‖∞ otherwise.

Now, the distance between two persistence diagrams is given by the matching with the smallest
possible cost.

Definition 1.3.30. Let D,D′ be two extended persistence diagrams. The bottleneck
distance between D and D′ is:

d∞b (D,D′) = inf
Γ

cost(Γ),

where Γ ranges over all partial matchings between D and D′.

The bottleneck distance d∞b is only a pseudo-metric, not a metric, because points lying on ∆
can be left unmatched at no cost.

Stability
One can prove that extended persistence diagrams of Morse-type functions with respect to
the bottleneck distance are stable.

Theorem 1.3.31 (Stability [57]). For any Morse-type functions f, g : X → R,

d∞b (Dg (f),Dg (g)) ≤ ‖f − g‖∞ = supx∈X | f(x)− g(x) | .

Moreover, as pointed out in [57], the theorem can be strengthened to apply to each subdiagram
Ord, Ext+, Ext−, Rel and to each homological dimension individually.
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Reeb Graphs and the extended persistence of f̃ .
Recall that in the definition of the Reeb graphs of a function f , there is an induced map
f̃ : Rf (X) → R such that f = f̃ ◦ π, where π is the quotient map X → Rf (X).
One has an easy interpretation of Dg (f̃) in terms of the structure of Rf (X). We refer the
reader to [58] and the references therein for a full description as well as formal definitions and
statements.
If the Reeb graph is oriented vertically so that f̃ is the height function, each connected
component of the graph can be seen as a trunk with multiple branches (some oriented upwards,
others oriented downwards) and holes. Then, one has the following correspondences (Fig.
1.19), where the vertical span of a feature is the span of its image by f̃ .

• The vertical spans of the trunks are the points in Ext+
0 (f̃).

• The vertical spans of the branches that are oriented downwards are the points in Ord0(f̃).

• The vertical spans of the branches that are oriented upwards are the points in Rel1(f̃).

• The vertical spans of the holes are the points in Ext−1 (f̃).

The rest of the diagram of f̃ is empty. These correspondences provide a dictionary to read off
the structure of the Reeb graph from the persistence diagram of the induced map f̃ . Note
that it is a bag-of-features type descriptor, taking an inventory of all the features (trunks,
branches, holes) together with their vertical spans, but leaving aside the actual layout of the
features. As a consequence, it is an incomplete descriptor: two Reeb graphs with the same
persistence diagram may not be isomorphic, as illustrated in Fig. 1.20.

a b c

Figure 1.20: (a), (b) Two Reeb graphs with the same set of features but not the same layout, having
the same (c) persistence diagram.

This connection can be rephrased in terms of the extended persistence of f and of its induced
map f̃ , following the intuition that the 1-dimensional persistence diagram of f̃ is a subset
of that of f , and that the missing points correspond either to the inessential or horizontal
1-dimensional homology generators, or to the homology generators in dimension 2 and above:

Theorem 1.3.32. (Proof can be found in [23]) Let X be a topological space and f : X → R
a function of Morse-type. Then, Dg (f̃) ⊆ Dg (f). Furthermore:

Dg 0(f̃) = Dg 0(f)
Dg 1(f̃) = Dg 1(f) \ (Ext+

1 (f) ∪Ord1(f))
Dg p(f̃) = ∅ if p ≥ 2
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1.4 Introduction to sequencing methods
1.4.1 The early days of sequencing
In each cell of the body lies the genetic material inherited by our ancestors, called the
deoxyribonucleic acid (DNA) . The DNA is made out of a chain of nucleotides, which
are the molecules that constitute the alphabet of the DNA and are characterized by three
distinctive chemical sub-units: a five-carbon sugar molecule, a nitrogenous base (which can
be Adenosine (A), Guanosine (G), Thymine (T), Cytosine (C)) and one phosphate group.
To understand the role of each cell at a certain moment in time, looking at the DNA, and
more specifically at its sub-entities called genes, is not sufficient as it is similar across the
different cell types. Each of these genes, constituted of coding parts, exons, and non-coding
parts, introns, exerts a specific role in a tissue. To know which of these genes are currently
transcribed from DNA to ribonucleic acid (RNA) which is the macromolecule that conveys
the genetic information, one measures the expression of messenger RNA (mRNA), which
is an RNA molecule essential in transcription. mRNA changes tremendously from cell to
cell or organism to organism and provides insights into what proteins are soon to be made.
This step is called transcription. The proteins that are accessible to the cell can be measured
(translation) and represents therefore what the fate of the latter might be. Hence three tiers
are available to a biologist. First, DNA sequencing (the genomic tier) reflecting somatic
mutations, i.e. mutations in subpopulations of cells of the body, happening for instance
in cancer cells, or germinal mutations, i.e. mutations inherited by our ancestors. Then, a
second level with mRNA sequencing to measure current or upcoming activity of the cells
(transcriptome tier). Finally, protein sequencing measuring currently available proteins to
the cell. In 2017, DNA sequencing celebrated its 40th anniversary [59]. Due to their much
smaller sequence, proteins and mRNA were sequenced a decade before DNA [59]. This was
achieved in the 1950s by sequencing the protein sequence of insulin [60], followed by many
proteins afterwards, revealing that each protein has a different sequence and that this might
vary from species to species and even from individual to individual. In the early 1960, the
same principle than for sequencing proteins was used to sequence mRNA, i.e. fragments of
RNA obtained by using enzymes that cut the RNA were separated by chromatography and
electrophoresis. Fragments were deciphered and the sequence deduced. Of note, five people
worked during three years with one gram of pure material, isolated from 140kg of yeast, to
determine the 76 nucleotides of the first RNA sequence, of alanine transfer RNA [61].

Through the years, several strategies for sequencing mRNA have been developed, and three of
them are discussed in the following sections, ordered by when they first emerged : microarray
(section 1.4.2), RNA-seq (section 1.4.3) and single-cell RNA-seq (section 1.4.4).

1.4.2 Microarray
Microarray is the oldest sequencing technique of the three and is based on light emission.
This micro-technological process is looking for complementary targets, i.e. the nucleotides
A, C, T and G are complementary targets of T, G, A and C respectively [62] and when the
complementary sequence and the target sequence bind they will form a hybrid which emits
light. That is the concept behind microarray technology. Single stranded DNA (ssDNA)
fragments formed by synthetic oligonucleotides, which are synthetic sequences of letters A, C,
T and G, are fixed on the surface of a microarray chip. This DNA microarray chip is a grid
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on a substrate (Fig. 1.21a), which is usually made out of glass or silicon, and each element of
the grid contains thousands of copies of identical probes of ssDNA fragments that are waiting
to link to their complementary sequence. These ssDNA fragments correspond to one gene per
grid element (Fig. 1.21b). On one chip thousands of genes can be assessed simultaneously.
During sample preparation complementary DNA (cDNA) , the complementary sequence of
the mRNA, is obtained from the sample of interest and is fluorescently labelled. Therefore, if
a part of the grid emits light it ensures that mRNA of this gene was present in the sample.
The output is a picture of more or less bright spots (Fig. 1.21c) and can be transformed using
the software R into a matrix (Fig. 1.21d), where the rows correspond to a gene, the columns
to the different samples assessed and the value is given by the intensity observed for that gene
in log2-scale.

AAACTG
CATT

AAACTG
CATT

AAACTG
CATT

AAACTG
CATT

GeneX

A =

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
... . . . ...

am,1 am,2 · · · am,n

a b

c d

=AAACTGCATT

Figure 1.21: Scheme of microarray process (a) A schematic DNA microarray chip which is a grid (b)
each grid element contains the sequence of the same gene. (c) the image of intensities produced by
the microarray procedure, (d) translation of the .CEL files, which is the file type obtained from the
sequencing step, into a matrix of values of intensity in log2 scale. The rows represent the genes and
the columns represent the samples.

The brighter one spot on the picture the more the gene concerned in that spot is expressed.
The values for each gene are given in log2-scale, and was shown to be normally distributed
[63]. This microarray method is robust and a consortium decided on a standardised way to
exchange and communicate microarray data in order to easily reproduce the results (Minimum
information about a microarray experiment, MIAME) [64].

1.4.3 RNA-seq
RNA-seq emerged recently, and is more precise as it works with providing the actual nucleotides,
which is the alphabet constituting the DNA, of the sequenced fragment. After isolating the
mRNA from the target sample, a fragmentation step splits the mRNA into smaller pieces (Fig.
1.22a), called reads [65]. This step is necessary since the sequencing machines, called also
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sequencer, can only read a limited length of fragments that depends only on the engine used
and chosen parameters and which is shorter than most RNA transcripts. RNA fragments are
then converted into double stranded DNA as this is more stable and enables easy amplification.
Adapters, which are small sequences mostly repeats of the same letters, are added to the reads
in order for the machine to recognize the fragments. This chemical process is not completely
reliable, and some sequences might be lost as they did not bind to an adapter (Fig. 1.22b).
This would also allow the user to sequence different samples at the same time since different
adapters can be used for each sample. The fragments that have adapters are amplified through
a process called polymerase chain reaction (PCR) in order to enrich for those fragments.
After a quality control check, the DNA fragments are linked to a grid vertically. The sequencer
processes several millions reads simultaneously, nucleotide per nucleotide (Fig. 1.22c, example
for 4 reads). It uses fluorescently labelled nucleotides, called probes, that can bind to their
corresponding nucleotide. Each probe A, C, T or G has a different color and binds to the
first base of each of the reads. A picture is taken and the sequencer translates each base
according to the observed color into A, C, T or G (Fig. 1.22c). The colors are washed, and
the process starts again for the second nucleotide until the fragment is sequenced. The picture
might not be clear for all the million spots as there might be brighter spots that the machine
assesses with less certainty as to which base correspond to that site (Fig. 1.22d, light blue
spot). Therefore each base receives a quality score to understand the certainty of the called
nucleotide.
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Figure 1.22: Scheme of RNA-seq analysis from RNA to the sequences of the RNA. (a) RNA is
fragmented and converted into double stranded DNA (b) adapters are added (red), and the fragments
are PCR amplified, (c) fluorescently labelled probes linking to the corresponding nucleotides enables
the sequencer to translate each base into A, C, T or G. (d) A possible problem that arises with a spot
that is less bright.

These fragments, or reads, can then be mapped to an existing reference genome, such as
the human genome GRCh38 or a generated genome (Fig. 1.23a) [66]. They are allowed to
map with mismatches between fragments and reference genome that can then reveal somatic
mutations, consistent mismatches in a certain nucleotide compared to a reference genome (Fig.
1.23b). This step is achieved in an operating system such as UNIX using tools such as tophat
[67], bowtie [68], hisat [69], samtools [70] among others. A count of abundance of fragments
on a gene locus, consisting of the sum of the number of counted reads per exon, which is the
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part of the gene that is conserved after transcription, of the gene, reveals the expression of
that gene (Fig. 1.23c). Cufflinks [71], Picard [72], Kallisto [73], featureCounts [74] and others
perform this step in UNIX. After this, using the software R or online tools such as ASAP
[75], gene expressions are filtered and normalised. They can be visualised using PCA plots,
segregate using hierarchical clustering and heatmaps and subgroups can be discovered by
visual inspection or using specific algorithms (Fig. 1.23d). Genes are then interrogated on
how they differ in subgroups, called differential expession analysis that are either known
previous to the analysis or found using the previous step. In R, this can be achieved using
voom [76], edgeR [77], DESeq2 [78], limma [79] or using online tools such as ASAP [75] and is
visualised with Venn diagrams (Fig. 1.23e). Analysis of the differentially expressed genes is
performed in order to obtain a global view on the changes using pathway analysis tools in R
such as : GSEA [80], topGO [81], topAnat [82] or using online tools such as ASAP [75], GO
[83], Panther [84], STRING [85] among others (Fig. 1.23f).

This sequencing technique is more precise and reveals more insights than microarray, such as
somatic mutation, variants and isoforms of genes and many others [86]. Similar techniques are
used to analyse RNA-seq and microarray data, even though as one might expect RNA-seq data
is mainly discrete as a total number of fragments per gene is counted and therefore is usually
an integer, whereas microarray is considered continuous. Techniques have been developed to
normalise RNA-seq data in such a way that it resembles microarray data [87]. However, the
various normalisations provide different lists of significant genes and understanding the right
normalisation to use is troublesome. Moreover, numerous methods to perform differential
expression analysis exist and have distinct abilities to find true positives in different situations,
depending on the sample size, the number of 0s or missing values, and first attempts to
decipher where a certain method should be preferred are just emerging [88].

1.4.4 Single-cell RNA-seq
In the last years, single-cell sequencing has been popularised. This method is similar to
RNA-seq but gives the information of the expression of genes per cell. Changes from cell to
cell can therefore be observed, e.g. a neuronal cell can be compared to a cell from the skin,
and their different role questioned. This has the drawback that the dataset one obtains is
extremely sparse since at a given time point in a given cell most genes are not expressed. In a
data set [89], one cell displayed 87% of the genes without expression (0 value) and most of
the cells have more than 60 % of the genes with no expression (Fig. 1.24a). This is rendering
analysis difficult as standard RNA-seq analyses (Fig.1.24b) make the assumption that there is
no such bias towards one value [88]. Several new techniques have been developed to analyse
single-cell RNA-seq, among which ASAP [75] and [90], but the field is still evolving and new
statistical methods developed for this type of analyses. Existing methods are not satisfactory
yet in terms of reproducibility and robustness [91].

In conclusion, microarray is slowely being replaced by RNA-seq as the information provided
by the latter is deeper. Single-cell RNA-seq is the newest technique and in comparison to
RNA-seq provides gene expression information at the cell level rather than the tissue or
mixture of cells level.
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Figure 1.23: Scheme of RNA-seq analysis from the results obtained by the sequencer to pathway
analysis (continued on next page).
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Figure 1.23: Scheme of RNA-seq analysis from the results obtained by the sequencer to pathway
analysis. (a) Per sample, the sequencer provides a FASTQ-type of file comprising the information
per fragments or reads of different letters A, C, T or G found and a quality score linked to each base.
These are aligned to a reference genome that can either be downloaded or generated (b) fragments are
mapped to the reference genome with mismatches (as in exon1 and intron1, red), reflecting somatic
mutations (exon1, red). Splicings over exon junctions, i.e. one part of the fragment is on one exon the
other on the following exon, are possible (grey) this step is done in UNIX using tools such as tophat,
bowtie, hisat, samtools, etc. (c) the counting of fragments mapped to a region is achieved by adding
up the number of read counted per exon in UNIX using Cufflinks, Picard, Kallisto, featureCounts
among others. (d) In R or using online tools such as ASAP, after filtering and normalizing one can
visualise the data as a PCA plot (left), segregate the data using hierarchical clustering (middle) and
heatmaps (right), subgroups can be discovered by visual inspection or using grouping algorithms (e.g.
red and blue points in PCA plot) (e) Differential expression is performed in R to compare different
groups (obtained for instance in (d)) using: voom, edgeR, DESeq2, limma or using online tools such
as ASAP and is visualised with Venn diagrams (f) Analysis of the differentially expressed genes using
pathway analysis tools in R such as : GSEA, topGO, topAnat or using online tools such as ASAP,
GO, Panther, STRING.
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Figure 1.24: Histogram illustrating the percentage of genes having no expression (a) per cell in
single-cell RNA-seq data [89] and (b) per sample in RNA-seq bulk data.
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1.5 Introduction to clustering methods
Clustering algorithms are used to segregate data D consisting of M objects in n dimensions
into subparts that share a certain similarity. Their main usages consists of deriving knowledge
from the data by sorting it according to a measure of similarity and rules of segregation, and
in a second time they are used for class predictions. In literature, clustering algorithms are
sometimes referred to as knowledge discovery in databases [92]. There exists two main types
of clustering algorithms : partitioning and hierarchical algorithms (Fig. 1.25).

Figure 1.25: The main branches of clustering algorithms. (a) Partitioning algorithm, shown with a
Voronoï diagram [26], a partitioning of the plane in subsets represented by different colors based on
distance to points. (b) Hierarchical algorithms shown as a dendrogram.

The partitioning algorithms are creating K subparts out of the data D, and these algorithms
are often further subdivided into (1) convex partitioning into K partitions, which is restrictive
of the shape of the cluster, (2) density-based approaches, (3) grid-based methods and (4)
model-based approaches [93].
The hierarchical algorithms create, as the name suggests, a hierarchical decomposition of the
data into subparts starting from one cluster and ending at M clusters. This segregation is
often represented by dendrograms, which are tree like structures that separate in an iterative
way the data D into smaller subsets until each subset consists of one sample [26] (Fig. 1.25b).
This algorithm is appreciated as it gives a full representation of the iteration at which samples
merge. It is therefore not required to determine a number K of subsets, however the user
can choose a height at which to cut the tree to obtain a partitioning. This height is called a
termination condition (TC) [92]. There is few guidance on choosing an appropriated TC and
depends on the users needs. One algorithm proposes an automatically determined TC for
hierarchical algorithm, called Ejcluster [94], which has the disadvantage of being, however,
computationally expensive.
We will make a brief introduction to the clustering methods to which the method developed
in this work was compared to. We selected k-means [95] and density-based spatial clustering
of application with noise (DBSCAN) for the analysis of real-data as these are two popular
clustering algorithms and are representing different subsets of partitioning algorithms. Both of
them required selection of several parameters, which usually are difficult to choose, and were
optimised for solving the given real data problem. DBSCAN was also selected as it displays
similarities with the algorithm developed in this work. We analysed in silico generated data
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(section 3.2), and we compared it to a model-based clustering approach, which is yet a different
subpart of partitioning clustering, called Mclust [96], since this method did not need any
parameter selection and was therefore unbiased and comparable to the developed algorithm.

1.5.1 Introduction to k-means
K-means falls into the category of convex partitionings and is a popular clustering method
that separates M points in n dimensions (Fig. 1.26a) into K clusters, so that the sum of
squares within a cluster is minimized [95]. It is therefore an extremely powerful tool if a
pre-existing intuition, obtained for instance through a PCA plot, dictates the likely number of
clusters in the dataset. As a second input k-means needs the initial centers L1, . . . , LK (Fig.
1.26a, blue and green). If this input is missing, the R implementation of k-means randomly
subselects in the data K points that serve as initial centers [97]. Each point in the point cloud,
using the euclidean distance, is matched to the closest initial center, forming K clusters (Fig.
1.26b, each color corresponds to one group). Then, new centers are determined by finding
the centroïd of the points in each cluster (Fig. 1.26c). A centroïd is a point which minimizes
the sum of squares of the distances between the points in the cluster and the centroïd. The
previous steps are then repeated until clusters remain unchanged from one step to the next.
This algorithm is extremely sensitive to the number of clusters K and the initial centers
L1, . . . , LK . Fig. 1.26d illustrates the outputs of the algorithm on the same dataset with two
different sets of initial centers.

Figure 1.26: Explanation of k-means illustrating the influence of the initial centers on the clusters
obtained. (a) The point cloud, in black, and the three initial centers, represented with filled blue and
green scares, corresponding to two different initial inputs. (b) K clusters are being created where
K corresponds to the number of initial centers, represented in orange, brown, and purple (for the
green centers left, and the blue centers right). (c) The new centers are given by the centroïds of the
clusters and are represented with unfilled scares (green, left and blue, right), the two first step are
then repeated until the centers are again the same, and (d) the final clusters are obtained with the
initial blue (left) and initial green centers (right).
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1.5.2 Introduction to Density-Based Spatial Clustering of Application with
Noise (DBSCAN)

DBSCAN falls into the category of density-based approaches and is therefore different from
k-means as the clusters are based on a density approach [92]. Looking at the examples in
Fig. 1.27a and b, the eye unambiguously defines the notion of a cluster by points that are
densely packed. Noise points are defined as isolated islands of points. DBSCAN formalises
this intuition by defining the concept of noise and of density. The first parameter of DBSCAN
requires the definition of the concept of noise, by determining what is the minimum number
of samples that are close enough to compose a core point, called minPts. Hence, if minPts
is chosen to be 3 then a minimum of three points need to be close to a point p so that p is
not considered as noise. The clusters are then build around such core points. The second
parameter ε formalises the notion of closeness: two points are close whenever their distance is
smaller than ε. The algorithm defines the notion of density. Each cluster contains at least
one core point and non core-points can be part of a cluster only if they are ε-close to a core
point. The notion of density is highly dependent on the parameter minPts as this defines the
number of points required to lie in a close neighbourhood. As a non-example, if minPts is 3,
then a two-by-two close chain (as in Fig. 1.27c, grey chain) is not a cluster and these points
remain isolated.

Figure 1.27: Explanation of DBSCAN. Example of two point clouds (a) and (b) where the notion of
cluster is visually apparent. (c) In red we connected everything which is densely close, the size of ε is
indicated by a red line at the bottom of the picture and minPts is chosen to be three. The grey chain
illustrates points that are two-by-two close but would not form a cluster.

The parameter ε can be estimated using a visual inspection of a plot. Indeed, for a given
k, k-dist is a function from the database that one starts with to the real numbers, where
each point is mapped to the distance from its k-th nearest neighbour. One orders the points
according to descending k-dist value and plots the ordered points on the x-axis and their
k-dist values on the y-axis. This enables an assessment of the density distribution in the data.
The threshold is chosen as the k-dist value of the first point in the first "valley" of this k-dist
graph (Fig. 1.28). The parameter k can be chosen as minPts in this case.
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Figure 1.28: The choice of ε using the visual inspection of a k-dist graph in order to understand what
is noisy points and where are the clusters. (Illustration adapted from [92].

1.5.3 Introduction to Mclust
The software Mclust in R stands for model-based clustering and is part of the model based
approaches of clustering. Mclust models the data using a hereafter defined process called
finite Gaussian mixture models (GMM) with different covariance structures and different
numbers of mixture components (Fig. 1.29). It is updated regularly according to optimized
ways to estimate the different parameters that are describe here, further reading can be found
in [98], [99], [100] and [101].

Figure 1.29: Example of application of Mclust with Gaussian Mixture Models for three clusters each
having a normal distribution (illustration found in [101]).

Let x = {x1, x2, . . . , xn} be n independent identically distributed observations of a sample.
The distribution of every observation is a probability density function given by a finite mixture
of models of G components, which takes the following form

f(xi;ψ) =
G∑
k=1

πkfk(xi; θk), (1.3)

where πk > 0,
∑G
k=1 πk = 1 and ψ = {π1, . . . , πG−1, θ1, . . . , θG} are the parameters of the

mixture model (usually unknown and are needed to be estimated, chosen or given by the
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data). Moreover, fk(xi, θk) is the k-th component density for observation xi with parameter
vector θk. Since Mclust estimates the mixture model using GMM, it assumes that fk are
Gaussian densities, for every k = 1, . . . , G parametrized by its mean µk and a covariance
matrix Σk. Then, (π1, . . . , πG−1) are the weigths that are reflecting the probability that an
observation belongs to the k-th component, and G is the number of mixture components.
Hence, we have fitted a model to our data under the knowledge of our sample points. This
needs to be optimized, i.e. the best fit must be found, and therefore, we need to maximize
the likelihood function given by L (ψ;x1, . . . , xn) =

∏n
i=1 f(xi;ψ).

One uses the log-likelihood function to find the maximum of the previous equation to simplify
the problem : L (ψ;x1, . . . , xn) =

∑n
i=1 log(f(xi;ψ)). However, as this is still too complicated

to estimate, the Mclust algorithm uses an algorithm called the expectation-maximisation
(EM) algorithm [102], [103] to compute an estimator of the maximum of this likelihood of the
finite mixture model, which represents an approximation.
As said previously if each component follows a Gaussian distribution, it is called a Gaussian
Mixture Model, which can be restate by fk(x; θk) ∼ N (µk,Σk). The G clusters are estimated
or assumed to be ellipsoidal in this model, centered at the mean vector µk, and with other
geometric features, such as volume, shape and orientation, determined by the covariance
matrix Σk. As an example, if Σk = λI, where I is the identity matrix, then all the clusters
are spherical and of the same size. Moreover, the nearer the points are to the mean the more
dense they are.
GMM uses a decomposition of the covariances matrices by means of an eigen-decomposition
of the form Σk = λkDkAkD

T
k , where Ak is a diagonal matrix specifying the shape of the

density of the points, called density contours, with det(Ak) = 1, and Dk is an orthogonal
matrix which determines the orientation of the corresponding ellipsoid [104], [105], finally λk
is a scalar controlling the volume of the ellipsoid.
In Fig. 1.30, one can observe the effect of the density contours of the ellipsoid Ak, the
orientation of the ellipsoid, Dk, and the volume of the ellipsoid, λk, being equal (E) or variable
(V) across the groups.

Figure 1.30: Gaussian Mixture Model, 14 possibilities of the combination of the volume, the density
contours, and the orientation of the ellipsoid being equal (E) or variable (V) across the groups
(illustration found in [101]).
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1.6 Role of hormones in the breast development and cancer
with a focus on progesterone

(Adapted from: "Progesterone and Overlooked Endocrine Pathways in Breast Cancer Patho-
genesis", C. Brisken, K. Hess and R. Jeitziner, Endocrinology, 2015, 156 (10): 3442-3450
[106].)

1.6.1 Breast development
The breast is a unique organ in that it develops primarily after birth, under the control of
hormones (Fig. 1.31) [107]. These can be sex hormones produced by the ovaries or the testes,
such as estrogen, progesterone or testosterone or hormones secreted by the pituitary axis
such as prolactin. A rudimentary ductal system present at birth begins to unfold during
puberty and gains in complexity during adulthood with recurrent hormone stimulation during
menstrual/estrous cycles. During pregnancy, ductal complexity increases further and finally
secretory structures of saccular shape, called alveoli, bud all over the ductal system. Its
embryonic-like state after birth makes the breast exquisitely plastic and particularly susceptible
to carcinogenesis.

Figure 1.31: Mammary gland development in the mouse. Schematic representation of distinct stages of
postnatal mammary gland development. In the pubertal mammary gland, terminal end buds appear
at the tips of the ducts triggered by ovarian estrogens, which require epithelial estrogen receptor. The
ducts elongate and bifurcate until the edges of the fat pad are reached, which coincides with sexual
maturity. Repeated stimulation with progesterone, as occurs during estrous cycles, results in the
formation of side branches, which bud from preexisting ducts at a 90◦ angle. Side branch formation is
blocked in progesterone receptor −/− mammary epithelia. Ductal complexity continues to increase
during the first half of pregnancy. In the last third of pregnancy, secretory structures of saccular shape,
alveoli, sprout all over the ductal system and differentiate into milk-producing units under the control
of prolactin receptor signaling.

The mouse mammary gland has served as a model to study gene function in vivo and to
genetically dissect gene function in development. A large number of mouse mutant strains
are available, and tissue recombination experiments allow one to generate epithelial specific
mutants [107]. This approach has revealed that mammary epithelial intrinsic estrogen
receptor (ER)-α signaling is required for pubertal ductal elongation [108]. Progesterone
Receptor (PR) is essential in the mammary epithelium for side branching and alveologenesis
[109], whereas the epithelial prolactin receptor is required for alveologenesis and milk secretion
(Fig. 1.31) [110].
On the one hand, different hormone receptor signaling pathways are limiting at distinct
developmental stages. On the other hand, the mammary epithelium responds differently to a
hormonal stimulus depending on its developmental stage. Hormone ablation and replacement
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experiments have shown that 17-β-estradiol induces cell proliferation specifically in pubertal
[111] but not in adult mammary glands. In the adult, i.e., more than 8-week-old, female
mouse, 17-β-estradiol pretreatment induces the expression of PR [112], whereas subsequent
stimulation with progesterone triggers proliferation [113]. Hence, in the adult female PR
signaling is the major stimulus of cell proliferation.
These findings among others display the importance of hormones and their receptors throughout
development of the breast.

1.6.2 Human menstrual cycle and mice estrous cycle
The anatomy of the human breast with its 15–25 ducts that each give rise to a lobe con-
taining multiple terminal ductal lobular units and 2 distinct stromal compartments, the
intralobular and interlobular stroma, is more complex than that of the mouse mammary
gland, which has a single stem ductal tree embedded in a homogeneous fatty stroma (Fig. 1.32).

ba
Fat

Milk duct

Figure 1.32: (a) Human breast scheme, 1. Chest wall, 2. Muscles, 3. Lobules and terminal ductal
lobular units, 4. Nipple, 5. Areola, 6. Milk duct, 7. Fat cells, 8. Skin (Adapted original illustration
from Patrick J. Lynch, can be found in [114]) (b) mouse breast scheme.

Nevertheless, in terms of hormonal regulation, there seem to be substantial similarities across
species. In most mammals, the ovaries first secrete estrogens in response to increased secretion
of gonadotropins, and sexual maturity coincides with the establishment of cyclic peaks of
ovarian progesterone secretion. Progesterone levels increase after ovulation when the body
anticipates pregnancy, and continue to rise when pregnancy is established.
The human menstrual cycle lasts around 28 days and is divided in two phases of equal
length the follicular and the luteal phase, separated by ovulation and the latter being
characterized by the peak of progesterone (Fig. 1.33). Mice have similar exogenous hormonal
exposures and lesser genetical variations limiting drastically the variation encountered between
samples. However, the major difference is that the mouse estrous cycle (EC) lasts about 4-5
days as opposed to 28 days for humans. Mice EC consists of four stages: proestrus, estrus,
metestrus and diestrus (Fig. 1.34). These are determined using vaginal cytology, where the
cell types that are present in the smears of mice are used to group them in: proestrous, if the
smears consists predominantly of nucleated epithelial cells, estrus, with anucleated cornified
cells, metestrus, if it consists of the three types of cell, cornified leukocytes, and nucleated
epithelial cells, and diestrus, if it consists predominantly of leucocytes (Supplementary Fig.
S7).
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Figure 1.33: The human menstrual cycle. Graph showing serum levels of the major fluctuating
hormones across a menstrual cycle. Note that progesterone levels peak during luteal phase. Estrogen
reaches its maximum levels during follicular phase; a smaller peak follows during luteal phase. Cell
proliferation is observed in the breast epithelium in the luteal phase and positively correlated with
serum progesterone levels.

Proestrous Estrous

Diestrous

Nucleated epithelial cells
Cornified cells
Leukocytes

Estrous 
cycle  

(4-5 days) Metestrous

Figure 1.34: Scheme explaining the estrous cycle. Presences of the different cell types at different
stages of the estrous cycle: when predominantly nucleated epithelial cells are present, it is called
proestrous, estrus is when anucleated cornified cells are mainly present, metestrus smears consists of
the three types of cell, cornified leukocytes, and nucleated epithelial cells, and diestrus, if it consists
predominantly of leucocytes

Pathologists observe proliferative activity in the breast epithelium during the luteal phase,
when progesterone levels peak (Fig. 1.33) [115],[116], suggesting that mouse and human
mammary epithelia may indeed be similarly regulated, at least with regards to hormonal
control of cell proliferation. This was shown as well using the proliferation marker KI67, which
was higher in the luteal phase and upon progesterone stimulation giving further evidence
that progesterone signaling triggers proliferation during this phase of the cycle. This is even
further enhanced when women are younger than 35 years old, i.e., when the cycle is still fully
functional [117]. Recently developed ex vivo models of the human breast have shown that
progesterone elicits cell proliferation [118], [119]. Of note, the dog, a species with particularly
long luteal phase, is especially prone to mammary carcinoma [120].
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1.6.3 Organisation of the mammary epithelium

The mammary epithelium is bilayered: the inner layer of luminal cells is surrounded
by a meshwork of elongated myoepithelial cells, which are in close contact with the basal
membrane. Luminal cells touch the lumen and are frequently opposed to the cells that are
summarized under the term “basal cells”: the subluminal, myoepithelial, progenitor, and stem
cells. Between 30% and 50% of the luminal cells express ER in the adult female, whether
rodent or human [121], [122]. Because PR is an ER target gene, it is coexpressed in the
same cells, although evidence has emerged that, at least in the human breast, PR is also
independently expressed [123], [124]. In the adult mammary epithelium, most cell proliferation
occurs in the luminal compartment, but few of the proliferating cells express ER and PR
[121]. When mammary epithelial cells that are PR deficient (genetically PR-/-) are grafted
on their own to cleared mammary fat pads, they hardly proliferate in adult hosts. However,
when the PR-/- mammary epithelial cells are intermingled with PR wild-type mammary
epithelial cells in a 1 to 10 ratio, they proliferate and contribute to all aspects of mammary
gland development in the context of the resulting chimeric epithelia [109], indicating that PR
signaling can occur in a paracrine fashion. The same applies to ER-/- mammary epithelial
cells, which, when grafted on their own, fail to proliferate at all, but which contribute to
all aspects of mammary gland development in the context of chimeric epithelia [108]. This
motivates us to name the cells expressing ER and PR “sensor cells” [125], because they relay
the systemic signal to local partners by emitting paracrine signals (Fig. 1.35).

Figure 1.35: Signaling downstream of progesterone. Schematic representation of the bilayered mammary
epithelium and the intra- and intercellular signaling activated by progesterone. An inner, luminal layer
is surrounded by myoepithelial/basal cells, which are in contact with the basal lamina. Progesterone
binds its receptor in a subset of hormone receptor + luminal cells, the sensor cells (light blue). In certain
PR+ cells, it induces cell proliferation by a Cyclin-D1-dependent mechanism (cellintrinsic signaling).
It induces a tumor necrosis factor, called RANKL, which elicits cell proliferation in neighboring
hormone receptor − cells (paracrine homotypic) and wnt4, which acts on myoepithelial cells (paracrine
heterotypic) and increases stem cell activity.
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1.6.4 Cell proliferation mechanism of progesterone in the mammary ep-
ithelium

When adult female mice are hormonally ablated and subsequently pretreated with estrogens,
progesterone induces cell proliferation in 2 waves. During the first 24 hours, PR+ cells
proliferate, whereas proliferation of PR- cells is observed subsequently [126]. The first,
small wave of cell-intrinsic proliferation requires Cyclin-D1; whether this relates to its cell
cycle and/or its transcription-related functions is unclear. Support for such scenarios can
be found in observations from the PR+ breast cancer cell line T47D, which reveal both
that PR and Cyclin-D1 interact physically and are found in transcription complexes that
bind to DNA and that down-modulation of Cyclin-D1 expression blocks PR-B-induced gene
transcription [127]. The second wave of cell proliferation, induced by a paracrine mechanism,
is larger and relies on a tumor necrosis family member, receptor activator of nuclear factor κB
ligand (RANKL). Progesterone increases RANKL mRNA expression by a posttranscriptional
mechanism stabilizing the mRNA [118]. RANKL protein is detected exclusively in PR+ cells
[126], [128]. Whether RANKL itself acts as mitogen, or removes a growth-inhibitory signal,
or acts through a more complex loop involving other cell types, possibly infiltrating immune
cells known to express the receptor, awaits further clarification. Although individual cells
in luminal and abluminal locations express the cognate receptor RANK [129], it remains to
carry out costainings to determine whether RANK+ cells are actively cycling epithelial cells.

1.6.5 Stem cell activation of progesterone in the mammary gland
During luteal phase, stem cells are likely to be activated in anticipation of the cell number
expansion of pregnancy. Stem cells have been studied by 2 major approaches, one entailing
fluorescence-activated cell sorting, to enrich for cells with the ability to reconstitute mammary
glands divested of their endogenous epithelium, and the other lineage tracing. Stem cells
as defined by the first approach are located in the basal layer and express high levels of
integrin β1 and α6 [130], [131] and have been shown to expand in response to hormone
stimulation [132], [133]. Lineage-tracing experiments indicated, however, that most postnatal
cell proliferation derives from luminally restricted stem cells [134], [135]. To assess the role
of PR signaling in stem cell function comprehensively, we resorted to serial transplantation.
Mammary epithelium can reconstitute up to 7 transplant cycles [136]. When we compared
PR-/- and PR wild-type epithelia by serially transplanting them in contralateral glands, PR
wild-type only slightly decreased in fat pad reconstitution over 4 generations, but PR-/- failed
to reconstitute at the third generation, indicating that PR signaling is required to expand the
stem cell pool during puberty and in adult life [137].
Wnt signaling is important to adult stem cells in many tissues, including the mammary gland
[138]. Wnt family member 4 (Wnt4) emerges as central activator of mammary epithelial
stem cells and of their niche(s). On the one hand, it may act directly on bipotent or basally
restricted stem cells located in the basal layer, which can be identified based on expression of
the protein c receptor, itself a Wnt target gene [139]. In this, Wnt4 is helped by a membrane
protein expressed in hormone receptor negative cells, R-spondin 1, which enhances canonical
Wnt signaling and is itself induced by hormone stimulation [140]. On the other hand, wnt4 may
act directly, possibly via noncanonical Wnt signaling and/or indirectly via distinct paracrine
signals on luminally restricted stem cells. A potential paracrine mediator is growth hormone,
which can be synthesized in the breast epithelium and has been implicated in progesterone-
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induced activation of stem cells in the human breast, in work inspired by observations on dogs
[141].

1.6.6 Relevance of rodent work on the mammary gland to human research
Two lines of work suggest that at least some of the findings in rodent models are of relevance
to humans. First, work with a novel ex vivo model for the human breast consisting of tissue
microstructures isolated from fresh reduction mammoplasty specimens that remain responsive
to hormones, has shown that progesterone triggers cell proliferation in the adult human
breast tissue and that it induces the expression of RANKL and WNT4 transcripts [118], [119].
Second, next-generation whole transcriptome sequencing was used to analyze global gene
expression in the breast epithelium from 20 premenopausal women, who were not affected by
breast cancer and donated breast tissue to the Susan G. Komen for the Cure Tissue Bank
(http://komentissuebank.iu.edu/), and who were carefully staged for the menstrual cycle [142].
This study revealed 255 genes that are differentially expressed between follicular and luteal
phase, with 221 increased in luteal phase; in functional terms these genes related to cell cycle
and mitosis, and DNA damage and repair, as also observed in vitro [143], [144]. Interestingly,
this unbiased approach identified 3 paracrine factors: RANKL, WNT4, and epiregulin [142].

1.6.7 Hormonal risk factor for breast cancer
Breast cancer affects 1 in 8 women in Western countries [145]. The disease is heterogeneous:
more than 20 distinct histopathological subtypes are recognized [146]. Of clinical relevance
are tumor grade and tumor stage, as well as classification according to ER-α and progesterone
receptor status, as assessed by immunohistochemistry (IHC), and erb-b2 receptor tyrosine
kinase 2 called also more commonly HER2 overexpression due to amplification, as determined
by IHC and fluorescent in situ hybridization. Five major molecular breast cancer subtypes
were discerned by global gene expression profiling and largely correspond to IHC subtype,
with luminal A representing ER+, of low grade and low Ki67 index; Luminal B, ER+ of
higher grade and proliferative index; HER2 being HER2+ by IHC and either ER+ or ER-;
and the “basal-like,” which are dubbed triple negative because they do not express any of the
3 receptors. The last is a heterogeneous group that contains further subtypes [147]. More
than 2 thirds of all breast cancers are luminal, i.e., ER+, and differ in biology and clinical
course from HER2+ and basal-like tumors [148]. Tamoxifen is a selective ER modulator,
which was introduced over 40 years ago and has dramatically increased survival of ER+ breast
cancer patients [149]. ER signaling can now also be inhibited by pure ER antagonists, such
as fulvestrant, or indirectly by aromatase inhibitors, which are the mainstay in the therapy
of most postmenopausal breast cancer patients. Although most ER+ tumors express ER in
at least 90% of the cells, some cancers have lower percentages of ER+ tumor cells, but are
still classified as ER+ as long as at least 1% of the tumor cells express ER [150]. The ER
signaling pathway has long been a major focus of research in the breast cancer field; although
it is of premier importance in the therapy of ER+ breast cancer, other hormonal factors are
increasingly considered to play an important role in the pathogenesis of the disease [151],
[152], [153]. Endogenous hormones, in particular progesterone, impinge on the breast and
their role in tumor development.
Ovariectomy [154] was shown to benefit individual breast cancer patients more than 100 years
ago. Epidemiological studies revealed that breast cancer risk increases with the number of
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menstrual cycles a woman experiences in her lifetime [155]: early menarche, late menopause,
and short menstrual cycles all increase risk [156]. Based on breast cancer statistics from the
seventies that were not confounded by hormone replacement therapy (HRT) , Pike et al. [155]
calculated that if it were not for menopause there would be 6 times as many cases of breast
cancer [155], [157]. More recently, it was shown that the risk related to menstrual cycles
applies to all subtypes of breast cancer [158]. Young age at first pregnancy has a protective
effect [159], [160]; more detailed data from the Nurses Health Study indicates that this applies
to hormone-receptor-positive, more specifically PR+, breast cancers [158]. The protective
effects of early pregnancy rely on a number of factors: lower levels of growth hormones [161]
and prolactin [162] after a first pregnancy, changes in stem cell numbers and biology, changes
in p53 functional status [163], and differences in the proliferative response have all been
implicated [164].
The findings in section 1.6.4 suggest that PR signaling and its downstream effectors activate
biological processes, such as cell proliferation and stem cell activation, that may account
for the tumor-promoting effects of recurrent menstrual cycles. The same mechanisms may
be activated when exogenous progestins are administered, as in the context of HRT and
oral contraception. Large women’s health studies revealed that breast cancer risk related to
HRT increases when an estrogenic compound is combined with progestin [165], [166], [167],
whereas estrogens on their own can have protective effects [168]. Indeed, since HRT was
discontinued, breast cancer incidence has diminished [169]. Similarly, women who are currently
on oral contraception, most of which consists of ethinyl estradiol and a progestin, have a
24% increased risk of getting breast cancer, which decreases once they stop taking the pill
[170]. However, PR signaling itself is context-dependent, and not all PR signaling is tumor
promoting. Pregnancies have a protective effect early in life with a 50% reduction in lifetime
risk of breast cancer before the age of 20 [159]. However, they bring on extremely high levels of
progesterone, with serum progesterone reaching 180 ng/mL in the third trimester, compared
with 8–33 ng/mL in luteal phase and 0.1–0.8 ng/mL in follicular phase. Thus, the biological
effects of progesterone may depend on the dose, the duration of the stimulus, the presence of
concomitant high levels of 17-β-estradiol and other hormones, as well as on the woman’s age.
A third ovarian hormone, testosterone, fluctuates to some extent during the menstrual cycle
with a modest peak 3 days before the Luteinizing hormone (LH) peak [171], [172]. Interestingly,
testosterone was reported to be the only hormone, the blood levels of which correlated with
breast cancer risk in women with regular menstrual cycles [173]. Whether cyclic activities of
this hormone contribute to the risk associated with menstrual cycles needs to be explored.
The role of this hormone in tumorigenesis is complex and dependent on the ER status of the
tumor, as reviewed in Ref. [174].
A number of other hormones impinge on the basic regulatory network controlled by the
ovarian hormones [175]. They may serve to fine-tune the system or have distinct functions. In
this context, an extensive study of normal human breast samples is of interest. It revealed 7
subsets of hormone receptor positive cells, all of which are luminal in the human breast: ER+,
androgen receptor (AR)+, vitamin D receptor (VDR)+, ER+AR+, ER+VDR+, AR+VDR+,
and ER+AR+VDR+. Other hormone receptors that were tested, including thyroid hormone
receptor-α, thyroid hormone receptor-β, parathyroid hormone 1 receptor, oxytocin receptor,
various somatostatin receptors, RARα, RARβ, RXRα, and RXRβ, did not show a bimodal
expression pattern [176]. It will be of interest to see whether these populations of hormone
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receptor positive cells are conserved across species and whether the distinct receptor expression
patterns characterize distinct cell types with specific biological function.

1.6.8 Tumor promoting action of Progesterone
Based on the above, we propose a model of menstrual cycle effects on breast carcinogenesis
(Fig. 1.36), in which the repeated activation of PR signaling during luteal phase may be
tumor promoting. Some of the effects of progesterone are cell-intrinsic, but many biological
responses rely on paracrine signaling that can be homotypic, i.e., to neighboring luminal cells,
or heterotypic, i.e., to the myoepithelium and possibly to stromal cell types.

Figure 1.36: Graph showing breast cancer risk plotted over a woman’s age, depending on whether
or not she was exposed to DES or BPA. With each menstrual cycle, breast cancer risk increases
through progesterone-induced events during luteal phase. The model proposes that perinatal exposure
to endocrine disruptors increases the sensitivity of the breast to progesterone and hence increases
the slope of the curve (top panel and inset). Various factors such as RANKL, WNT4, epiregulin,
Cyclin-D1, ID4, and calcitonin, which act through distinct mechanisms and have been shown to have
distinct biologically functions, have been implicated in the biological response to progesterone that
may be amplified due to perinatal exposure.

Tumor-promoting effects of progesterone are also observed in rodents, where chemically
(7,12-Dimethylbenzanthracene)-induced carcinogenesis is enhanced by progesterone/progestin
administration [177], [178]. In support of this model, pharmacologically or genetically blocking
RANKL delayed tumorigenesis [129], [179]. Interestingly, RANKL inhibition was not effective
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anymore once the tumor was fully established [129], suggesting that the PR/RANKL axis is
important specifically early in the pathogenesis of mammary carcinomas.

Similarly, the Wnt signaling pathway may promote tumorigenesis. In the mouse, wnt1, a
wnt4 cousin, was long identified as an oncogene by cloning of the frequent insertion site of the
oncogenic mouse mammary tumor virus [180]. Ectopic expression of Wnt1 in the mammary
epithelium results in highly penetrant widespread hyperplasia and, ultimately, tumors [181],
consistent with an early tumor-promoting effect that may rely largely on indirect and niche-
related effects. In T47D cells, Wnt1 is a PR-B target and induces matrix metalloproteases to
shed epidermal growth factor receptor ligands that transactivate the epidermal growth factor
receptor [182].

1.6.9 Introduction to Receptor Activator of Nuclear factor κB ligand
In 1997, receptor activator of nuclear factor κB ligand (RANKL) was discovered along with its
cellular receptor RANK while researchers were sequencing cDNAs from a human bone marrow
derived myeloid dendritic cell cDNA library [183]. Two research groups independently found
osteoprotegerin (the bone protector, OPG), a decoy receptor for RANKL, by using mice models
lacking the cDNA for OPG [184], [185]. By limiting osteoclastic bone resorption, it appeared to
protect the skeleton from bone resorption. Both groups then used expression cloning and OPG
as a probe, to identify its ligand that they called OPG ligand and osteoclast differentiation
factor, respectively [186], [187]. This ligand was identical to RANKL that was previously
discovered [183]. Since then, RANKL was considered to be involved in osteoclastogenesis and
T cell activation and later was shown to be involved in the differentiation, activation and
function of osteoclasts [188]. It was identified as part of the Tumour Necrosis Factor alpha
family and exerts its biological functions by binding to RANK, the complex RANK/RANKL
activates nuclear factor κB (NF-κB), which is a transcription factor for immune-related genes.
It is also a key regulator of inflammation, innate immunity, cell survival and differentiation
[188].
RANKL displayed important functions for lactational hyperplasia of mammary epithelial
cells and milk production [189]. Moreover, in lactating mice RANKL was required for the
development of lobulo-alveolar structures [189]. The defect in mammary gland female mice
lacking RANKL was characterized by enhanced apoptosis and failures for the cells to proliferate
[189]. Through genetic studies in the mouse mammary gland, it has been shown that RANKL
is important as a paracrine mediator of progesterone-induced proliferation in the adult mouse
mammary gland [190]. This conclusion was based on the observation that RANKL localizes
to progesterone receptor positive (PR+) cells just next to cells that are actively replicating
their DNA [190]. In cancer cells, several studies demonstrated that increased RANK signaling
contributes to breast carcinogenesis by interfering with mammary cell commitment [191], [192],
[193]. This was shown in cells treated with the progestin medroxyprogesterone acetate, a widely
used hormonal contraceptive and hormone replacement therapy compounds, which massively
increases the level of RANKL on mammary epithelial tissue [191], [192]. Pharmacological
inhibition of RANKL lowered tumor progression and metastasis [191], [192] in mice and if the
same effect can be observed in human breast cancer is still questioned.
The study of breast cancer has been hampered by the difficulty in culturing cells from
patients (both cancer and normal) that retain hormone receptor expression. To circumvent
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this difficulty, a way of culturing breast tissue microstructures from healthy donors was
developed that was shown to retain hormone receptor activity [118]. This technique was used
on healthy human cells that were treated with promegestone, called R5020, a PR agonist,
resulting in RANKL induction [118]. RANKL was also demonstrated to be sufficient to
induce cell proliferation and was required for R5020-induced proliferation [118]. The findings
were validated in vivo, where RANKL protein expression in the breast epithelium correlated
with serum progesterone levels. The ligand was expressed in a subset of luminal cells that
express PR. Systemic inhibition of RANKL signaling by intravenous injection of recombinant
osteoprotegerin, blocked the induced proliferation in the mouse mammary epithelium [118].
Recall that breast cancer risk is increased with increasing number of menstrual cycle, and is
increased while taking hormonal contraceptives (see section 1.6). This is partially associated
to the high proliferation of cells in the luteal phase of a menstrual cycle. Blocking or reducing
this proliferation might be beneficial for breast cancer prevention. Therefore, RANKL was
proposed as a possible target for breast cancer prevention and maybe treatment as inhibiting
RANKL reduces the proliferation of healthy cells and because of its role in reducing mice
breast cancer progression. However, this hypothesis should be strenghten by further work
using human data. For the treatment of bone diseases, there exists an inhibitor for RANKL,
called denosumab, which is in use since June 2010, when it was approved by the U.S. Food
and Drug Administration for treatment of postmenopausal women at high risk for fracture
and for prevention of skeletal-related events in patients with bone metastases. Breast cancer
patients could benefit from denosumab.
Hence, whether the findings in the mouse model can be translated to humans and whether
denosumab will be of use to prevent breast cancer or treat the disease is an urgent question.
It is therefore of clinical interest to further investigate the molecular functions of RANKL in
the human mammary gland.
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1.7 Aim : Development of an unbiased topological tool over-
coming problems linked to variable data

(This section is Adapted from: "Two-Tier Mapper: a user-independent clustering method for
global gene expression analysis based on topology", R. Jeitziner, M. Carrière, J. Rougemont, S.
Oudot, K. Hess, and C. Brisken, 2017, arXiv: 1801.01841 [194], submitted to Bioinformatics.)
Large datasets, specially coming from high-throughput sequencing are generated at an
exponentially increasing pace in biology and medicine [195],[196],[197], while the development
of tools to analyze them lags behind. Unbiased clustering methods are needed to analyze these
growing numbers of complex data sets. Challenges are posed by the variability of biological,
in particular clinical, samples, data acquisition at different times and on different platforms,
and the necessity to compare measurements at different stages of the life cycle of an individual
patient. Moreover, reliability of patient generated metadata (using a questionnaire for instance)
and classification in subtypes requires a particular attention. Statistical methods require
large sample numbers to determine the distribution of the data and to extract statistically
significant features [198]. The choice of normalization can be arbitrary and may affect the
outcome of the analysis [198].
Most clustering methods including k-means [95], hierarchical clustering [26], PAD [9] and
Mapper [10] require large sample sizes [199], [26], [200] and depend on parameters, which are
chosen by the users and may affect the outcome [201]. To ensure that minor perturbations of
the dataset do not alter clusters, the methods applied should be stable [26] [201].
We aim to address the following challenges by developing a topological tool that :

- is user-independent, parameters should be chosen by the data or strong default, such as
to reduce the user-induced bias.

- is stable.

- is not harshly affected by normalisations.

- should not change when not all the data is included (removal of samples/of rows).

- is able to overcome problems encountered when facing variable human data, with a
perspective towards personalised medicine.

- compares two groups.

- generates a visual clustering with new insights.

- gives for each sample an individual appreciation for how close it is to the compared
group.

- is written as a Bioconductor program R such that it gets a broad audience.

- produces an interpretable output.

- works for a broad range of data, but specially for : Microarray/RNAseq and maybe
single-cell RNAseq.

To address these challenges, we have developed a topology-based clustering tool called Two-Tier
Mapper (TTMap) for enhanced analysis of global gene expression datasets.
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(This whole chapter is Adapted from: "Two-Tier Mapper: a user-independent clustering
method for global gene expression analysis based on topology", R. Jeitziner, M. Carrière, J.
Rougemont, S. Oudot, K. Hess, and C. Brisken, 2017, arXiv: 1801.01841 [194], submitted to
Bioinformatics.)

2.1 Overview of Two-tier Mapper
Each global gene expression profile is represented as a high-dimensional vector in Rn with n
the number of genes, features or probes. The input (Fig. 2.1, green) of TTMap is given by two
matrices in log-2 scale, one for the control samples, N the other for the test samples T. Batches
are defined as groups of samples sharing a source of variation, such as experimental date,
technical platform for data acquisition, date or site of sequencing, or biological differences,
such as mouse strain, patient age, or other.

TTMap consists of two independent parts; the Hyperrectangle Deviation Assessment (HDA)
and the Global-to-Local Mapper (GLMap) (Fig. 2.1). HDA characterizes the control group,
N; it adjusts for outliers and generates the "corrected control group", N̄, which is the reference
for calculating the deviation of each individual test vector. GLMap uses the Mapper algorithm
[10] with the following parameters: a two-tier cover I , the mismatch distance dM , computed
with the previously calculated deviations, the closeness parameter ε, which is data-driven,
and a special filter function f , which provides a gradient of proximity to the corrected control
group. Through the filter function the two-tier cover detects global and local similarities in the
deviation patterns allowing it to capture the structure of the test group based on relatedness
of samples. The test samples are clustered according to the shape of their deviation from
the control; each cluster is represented by a sphere the size of which reflects the number
of samples it comprises (Fig. 2.1). The extent of deviation of individual clusters from the
corrected control group translates into a color-code as well as the arrangement from left to
right (Fig. 2.1). A subsequent analysis of the commonly changed features in a cluster discerns
the differentially expressed genes (Fig. 2.1).
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Figure 2.1: Schematic overview of TTMap. The inputs (green) are given by two gene expression
matrices, the control (N) and the test group (T), rows represent genes and columns samples. In
Part 1, TTMap adjusts the control group for outlier values (N̄∗), feature by feature. It calculates
deviation from this corrected control group for individual samples in the test group (Dc.T∗). In Part 2,
TTMap computes a similarity measure, the mismatch distance (represented as a heatmap) using the
deviation components. The Mapper [10] algorithm is used with a two-tier cover to generate a visual
representation of the clustering creating a network of global clusters (Overall) and local clusters (1st,
2nd, 3rd, 4th quartile of a filter function). It takes as inputs the mismatch distance and the deviation
components.
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2.2 Hyperrectangle deviation assessment (HDA)
2.2.1 Data preprocessing
Prior to the analysis, the collected data are log-transformed and grouped into two separate
tables, where columns are samples and rows are features from:

• a group N, called the normal (or control) group the elements of which are denoted
N1, . . . , NS , where S is the number of collected samples in this group.

• a group T, called the test group, the elements of which are denoted T1, . . . , TR, where
R is the number of collected samples in this group.

The number of features measured (e.g., number of genes expression levels of which were
determined) in each sample is written n. Thus, each element in group T and group N is a
vector in Rn.
If different numbers of features have been measured for groups T and N, then HDA considers
only the features measured across both data groups.

2.2.2 Generation of a hyperrectangle of values in the control group
HDA compares the value of each feature of each control sample N to the values of that feature
of all the other control samples in the same batch N (Fig. 2.1, "adjustement of control group").
If the absolute value of the difference between a given value and the median of the values
of all the other samples is more than e, the value is considered an outlier and replaced by
Not a Number (NA). The e parameter is computed using the variances of all the genes to
accommodate for the variability of the dataset (see section 3.2.8).
Hyperrectangle deviation assessment first analyses the vectors in the control group N; for each
sample in N feature by feature, i.e. probe by probe or gene by gene, the algorithm compares
the measured value to the values of all the other measurements of that feature in samples from
the same batch in group N (Fig. 2.1, "adjustement of control group"). If the absolute value of
the difference between a given value and the median of the values of all the other samples is
more than e, the value is considered an outlier and replaced by Not a Number (NA). The e
parameter is computed using the variances of all the genes to accommodate for the variability
of the dataset by the 90th percentile of the standard deviations for every feature multiplied
by 2√

S
, where S is the number of samples in the control group. If this 90th percentile is

small, the user can also change and choose to take the e parameter to be 1 for instance in
order to remove only highly variable features or to be a huge number to skip this step. The
user can identify highly variable features of the control group by examining the numbers of
replaced values for each feature (Fig. 2.2a). A barplot showing the number of adjusted values
per sample helps identify outliers in the control group (Fig.2.2b, Fig. 3.10b, Supplementary
Fig. S14c and d). Thus, HDA creates a matrix that describes the range of expression values
expected in group N corrected for outliers. The (k, j)-coefficient of this matrix of the corrected
control group, (Nk)j , which corresponds to the jth feature of sample k, is computed by:

((N)k)j =

NA if |(Nk)j −mediani∈I (Nk),i 6=k(Ni)j | ≥ e
(Nk)j otherwise.

Here, (Ni)j denotes the value of the expression of gene j in sample i, and I (Nk) ⊆ {1, ..., S}
is the set of indices of control samples in the batch containing Nk. Each NA is replaced by
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Figure 2.2: Possible outputs after the first part of TTMap (a) histogram representing the frequency
of features per percentage of outliers and (b) a barplot of the number of outliers per sample in the
control group to enable the discovery of highly variable genes or samples (red, arrow).

the median of its batch, in order not to affect the next steps.

This step of the method is obtained using the function control_adjustement() in R and can
be summarized by the following table.
Algorithm 3: Control Adjustment
Input: Two matrices corresponding to the control group, and the test group, where in
the rows are the genes or features, in the columns are the samples,
the e parameter (not mandatory), a method to replace the NA that will be generated
in this step (not mandatory).
Method: If the e parameter is missing it is computed by the 90th percentile of the
standard deviations for every feature multiplied by 2√

S
, where S is the number of samples.

For each value in the control group, if the absolute value of the difference between a given
value and the median of the values of all the other samples is more than e, this value is
replaced by NA.
The number of NAs per row and per column is computed.
The NAs are replaced by the median of all the other values or by an method given in
the inputs.
Output: 5 files are created:
- The normal matrix with only common features with the test matrix. This file is only
created if the two matrices in the input have different rows.
- The test matrix with only common features with the normal matrix. This file is only
created if the two matrices in the input have different rows.
- A pdf showing a plot of the mean (X axis) against the variances (Y axis) of each feature.
- A pdf showing a plot of the mean (X axis) against the variances (Y axis) of each feature
after correction of the control group.
- The number of outliers per row.
- The number of outliers per column.
Moreover, an outlier corrected control matrix is created.
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Each feature has a range of values, in which control measurements are expected, for sample
Tk and gene j given by

Bk
j =

[
min

i∈I (Tk)
(N i)j , max

i∈I (Tk)
(N i)j

]
,

where I (Tk) is the set of indices of control samples in the batch containing Tk (Fig. 2.3).
For each batch, these normal ranges determine a hyperrectangle in n-dimensional space
Bk = Bk

1 × · · · ×Bk
n (Fig. 2.3: example with n = 2).
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Figure 2.3: Deviation component calculation. Scheme of two test sample T and S together with
their deviation components Dc.T = (Dc.TA, Dc.TB), Dc.S = (Dc.SA, Dc.SB) and normal component
Nc.T = (Nc.TA, Nc.TB), Nc.S = (Nc.SA, Nc.SB) from the hyperrectangle (box) of normal values,
example for n = 2 genes A and B

2.2.3 Deviation component calculation from the hyperrectangle
Each test sample Tk is decomposed as Tk = Nc.Tk + Dc.Tk, where Nc.Tk is the normal
component, which is its projection onto the hyperrectangle Bk and hence is the closest point
to Tk inside Bk (Fig. 2.3) and the deviation component (Dc.Tk), which is the remainder
of the projection (Fig. 2.3).

More precisely, for each test sample Tk and feature j, HDA computes

x̄kj ∈
[

min
i∈I (Tk)

(N i)j , max
i∈I (Tk)

(N i)j
]
,

such that
|(Tk)j − x̄kj | ≤ |(Tk)j − x|

for all
x ∈

[
min

i∈I (Tk)
(N i)j , max

i∈I (Tk)
(N i)j

]
.

Then,
(Nc.Tk)j = x̄kj for all 1 ≤ j ≤ n

and
(Dc.Tk)j = (Tk)j − (Nc.Tk)j for all 1 ≤ j ≤ n.
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This part is obtained using the function hyperrectangle_deviation_assessment() in R and can
be summarized by the algorithm.
Algorithm 4: Hyperrectangle deviation assessment
Input: Two matrices corresponding to the control group, and the test group, where in
the rows are the genes or features, in the columns are the samples, batches.
Method: In each batch in the control group, find the minimum and the maximum
per gene or feature.
Define a hyperrectangle made out of the product of all the intervals of minimum
and maximum calculated previously.
Each test sample is projected onto the hyperrectangle.
The projection and the remainder of the projection are calculated.
Output: 3 output files are created :
-The matrix of the remainder of the projection for each test sample (Dc).
-The matrix of the normal components for each test sample (Nc).
- The corrected control used (usually gotten through Algorithm 3).
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2.3 Global-to-Local Mapper (GLMap)
The second step of TTMap first calculates distances and provides a visualization of these
distances and relations in the dataset, using the Mapper algorithm (section 1.2.2). As ex-
plained in section 1.2.9, different parameters need to be chosen: a filter function, a distance
or a similarity measure, a cover and a closeness parameter ε.

2.3.1 The distance
The default similarity measure in GLMap is the mismatch distance, dM given by a sum
of mismatches, where a mismatch between two samples X and Y in a gene is a gene that
is differentially expressed in opposite direction for X and Y as measured by the deviation
component (Fig. 2.4, n = 1). The deviation must be bigger than α to avoid counting noise as
mismatch. The mismatch distance, or sum of mismatches is defined as follows (Fig. 2.4),

gene_1.3

e

Dc.X

Dc.Y

Mismatch

MatchMismatch

Match

Figure 2.4: Scheme defining a match and a mismatch between two deviations components (Dc) of test
samples X and Y with cutoff α to remove noise close to 0, n = 1. The mismatch distance between two
samples is the sum of mismatches through all the genes.

for a fixed α ≥ 0

dM (X,Y ) =
n∑
i=1

dm((Dc.X)i, (Dc.Y )i), where

dm(x, y) =


0 if sign(x) = sign(y),
1 if sign(x) 6= sign(y)

and |x| or |y| ≥ α
|x−y|
8αn otherwise,

.

where

sign : R→ {−1, 0, 1}, x 7→


0 if x = 0,
1 if x > 0,
−1 if x < 0.
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For the theory to work and without impinging on the practical results we will consider a
slightly modified version of the mismatch distance on our datasets defined by d∗(X,Y ) =
dM (X,Y ) + dĒ(X,Y ), where dĒ(X,Y ) is the bounded euclidean distance by 1/4 (see 2.4.2).
If features measured are gene expression values, then the default value does not need to be
changed and is set to α = 1, corresponding to a 2-fold-change, which is a standard cut-off for
gene expression.

Remark 2.3.1. This is the default distance, which is recommended for gene expression and
verifies the hypothesis of the theoretical stability theorems. However, any distance matrix can
be imputed. Alternative distances, such as correlation distance, Euclidean distance, useful
when there is no control group, and complete mismatch distance, a stringent version of the
mismatch distance defined above, are implemented in GLMap and can be selected by the user.
Of note, in those cases the parameter ε described hereafter in the subsection 2.3.4 needs to be
adapted and has no appropriate default value. The mismatch distance is appropriate for gene
expression data, since it captures deviation of samples from the control values with the same
orientation, regardless of the magnitude of deviation.

2.3.2 The filter function
Furthermore, GLMap uses a filter function, given by properties of interest of the samples.
It can be chosen by the user to take into account relevant variables, such as the age of the
patients in a cohort. The default filter function in GLMap, called total absolute deviation
and denoted τ , measures the overall deviation of a test vector from the control, i.e.,

τ : T→ R : Tk 7→
∑
l∈S
| (Dc.Tk)l |,

where S is a subset of features, determined by the user, the default being to select all features,
and T is the set of test vectors, which is a subset of Rn.

Remark 2.3.2. This is the default filter function. If any other metadata or function would
be of interest to do local clustering, it can be imputed by a vector of the same length as the
number of samples.

2.3.3 The cover of the codomain of the filter function
Let Im τ denote the image of τ with multiplicity, i.e.,

Im τ = {(τ(X), σ) | X ∈ T, σ ∈ {1, . . . ,mult(X)}} ⊆ R× N,

with the lexicographic order, where mult(X) = card(τ−1(τ(X))) is the multiplicity of τ(X)
and for any 0 ≤ a < b ≤ 100, let

q[a,b[ = π1
({
y ∈ Im τ | quantilea(Im τ) ≤ y < quantileb(Im τ)

})
,

where π1 is the natural projection on the first component, and quantilea(Im τ) is the a-th
quantile of the ordered values in Im τ .
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The chosen cover of the image without multiplicity ({τ(X) | X ∈ T} is given by

I = {π1 Im τ, q[0,25[, q[25,50[, q[50,75[, q[75,100]}.

2.3.4 The epsilon parameter
Intuition 2.3.3. The ε parameter is estimated by the data. We use probabilities to determine,
given the variability of the control group, what is the expected amount of mismatches between
two samples that would be distributed as the controls. This expected amount, called ε, will
give us the cutoff. If the two samples are distributed as the control then we expect less than
ε mismatches between those samples. And if both should be clustered together, they are
distributed as the controls in almost all but N genes, the significant genes, where n >> N

and is therefore negligible, and these two samples are going in the same direction (positive
or negative) in terms of deviations for those N genes and will not contribute to the total
mismatches. The other n−N genes have the same distribution as the control and therefore it
implies that the mismatch distance of these two samples should be lower than ε.

Assuming that the two vectors X and Y follow the same normal distribution N (µi, σ2
i ) for

feature i, the parameter ε is estimated using the data. Feature by feature the probability to
be a mismatch is calculated. Let Xk be the random vector representing the gene expressions
of a sample Tk. Therefore, let

p1j,k = P (Xkj < min
i∈I (Tk)

(N i)j), the probability to be underexpressed compared to normal values

p2j,k = P (Xkj > max
i∈I (Tk)

(N i)j), the probability to be overexpressed compared to normal values

p3j,k = P ( min
i∈I (Tk)

(N i)j < Xkj < max
i∈I (Tk)

(N i)j), the probability to be inside the normal range

Then, we define
pα1j,k = P (Xk < min

i∈I (Tk)
(N i)j − α),

pα2j,k = P (Xk > max
i∈I (Tk)

(N i)j + α).

Hence the probability (P lk)j of a mismatch between the j-th gene of (Xk, Xl) is equal to :
((p3j,k + p1j,k) · pα2j,l) + (p3j,k + p2j,k) · pα1j,l) + ((p3j,l + p1j,l) · pα2j,k) + (p3j,l + p2j,l) · pα1j,k)− pα1j,k ·
pα2j,l− pα2j,k · pα1j,l, where for example ((p3j,k + p1j,k) · pα2j,l) would represent the probability that
Xk for gene j is either as the control (p3j,k) or lower than the control (p1j,k) whereas Xl is
marginally (more than alpha) higher than the control (pα2j,l), and so it represents a mismatch.
Using Chen-Stein’s theorem, it is known that if n >> S, and if the probabilities accumulated
around 0 as is the case for gene expression data, then the sum over all genes of mismatches
follows a Poisson distribution with mean

∑n
j=1(P lk)j . This in turn allows one to determine

how significant the number of mismatches between X and Y is, if both vectors follow the same
distribution. Hence, ε is given by P (

∑n
j=1(P lk)j < ε) = β, which can be obtained from the

quantiles of a Poisson law. Thus, samples are linked if the number of mismatches between
them is less than ε, which is the β% confidence threshold of mismatches for samples following
the same distribution.
If ε is chosen such that P (

∑n
j=1(P lk)j < ε) = 0.025, it means that only in 2.5% of the cases
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if Xk and Xl are distributed in the same way, they would have such a small number of
mismatches and therefore it is certain that Xk and Xl must be clustered together. In the
same way, if ε is chosen such that P (

∑n
j=1(P lk)j < ε) = 0.975, it means that only in 97.5% of

the cases if Xk and Xl are distributed in the same way, they would have such a high number
of mismatches and therefore it is certain that Xk and Xl must be separated. The user can
therefore choose either to cluster samples together only if one is sure that samples should be
clustered together (0.025) or choose to separate samples only if one is sure that samples need
to be separated or finally the user has the option to put another value for parameter ε, when
the % of mismatches to be expected is already known.

2.3.5 The algorithm Global-to-local Mapper
This part is based on the Mapper algorithm (see section 1.2.2) [11] and can be obtained using
the function ttmap() in R and can be summarized by the algorithm.
Algorithm 5: Global-to-local Mapper
Input: A matrix corresponding to the deviation components.
Optional arguments: distance matrix, filter function, ε parameter.
Method: In default mode, GLMap applies the Mapper algorithm (Algorithm 1)
to the quadruple given by
- the mismatch distance dM or a distance received as input,
- a closeness parameter ε, computed from the data, see 2.3.4, which depends on the
variance in the control group, or is entered as input,
- the total absolute deviation τ or another filter function given as input,
- the cover of Im τ given by I representing a global tier, the full Im τ ,
and the local tiers, the quartiles of the function.
Output: 3 output files are created :
- the distance matrix.
- a visual representation of the clustering, giving subgroups in the test samples,
that can be zoomed in and out.
- description of the clusters of the visual representation, with information.

This means that GLMap performs single-linkage clustering (see section 1.2.2) with distance
dM and parameter of closeness ε to every τ−1(U) such that U ∈ I.

• all of T, giving the connected components {C01, . . . , C0l(0)} of the graph Gε defined by
the vertex set {Tk} and the edge set {(Ta, Tb) s.t. dM (Ta, Tb) < ε} and then to

• the pre-image with respect to τ of each of the quantiles q0,25, q25,50, q50,75, and q75,100,
which gives the connected components {Ci1, . . . , Cil(i)} of the subgraph Gε(i) = τ−1(Ii),
where Ii ∈ I.

Two connected components Cij and Ckl are represented as spheres with diameters increasing
with the number of samples in each component. The spheres are connected by an edge
whenever Cij ∩Ckl 6= ∅, i.e. the algorithm links clusters that share samples as every sample is
assessed twice for connectivity, once globally and once within its quartile, links are formed
between local and global structures, enabling the discovery of subgroups based on the filter
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function of the global clusters (Fig. 2.1, Part2).

The color of a sphere in the output figure of the method (see example in section 3.3, Fig. 3.8a)
is determined by the average of the values of the filter function applied to the samples in the
bin. A legend for the color code is provided at the bottom of the output figure, for the size of
the balls on the right, and for the different tiers on the left, i.e. the overall clustering and the
clustering in the different quartiles, (Fig. 2.1, Part2). A list of the differentially expressed
genes per cluster is provided by genes that are all deviating into the same direction or that
are as the control, and the deviation is larger than α.

2.3.6 Global-to-local Mapper through a toy example
Example 2.3.4. We recall example 1.2.37. We associate to it a function given by a color code
The Mapper algorithm (see section 1.2.2) performs a clustering algorithm on the elements of
the pullback of the chosen cover. In this case the pullback of the chosen cover is given by

• all of T, giving the connected components {C01, . . . , C0l(0)} of the graph Gε defined by
the vertex set {Tk} and the edge set {(Ta, Tb) s.t. dM (Ta, Tb) < ε} and then to

• the pre-image with respect to τ of each of the quantiles q0,25, q25,50, q50,75, and q75,100,
which gives the connected components {Ci1, . . . , Cil(i)} of the subgraph Gε(i) = τ−1(Ii),
where Ii ∈ I.

So one cluster is obtained per connected component in the ε-neighbourhood graph, this corre-
sponds to the classical single-linkage clustering algorithm and we color-code each connected
component shown by a sphere of the size of the number of samples by average amount of the
filter function (Fig. 2.5a-d top). Then, single-linkage clustering is performed on the subset
given by the points in one quartile, e.g. the lower quartile (Fig. 2.5a), the 2nd quartile (Fig.
2.5b), the 3rd quartile (Fig. 2.5c), the higher quartile (Fig. 2.5d). The Mapper algorithm
adds higher order simplices if clusters share a sample. In this case the only possible overlap is
between the global and the local structure, as each sample will only be in one quartile of the
filter function, which only gives the possibility to have 1-simplices, i.e. the edges. These will
be added to understand to which global structure the local structure belongs to (Fig. 2.5e).
Once this output is spatially reordered, we obtain the TTMap output (Fig.2.5f).
Remark 2.3.5. An example to illustrate the utility would be to imagine the function to be
the age of the patient in a cohort, from dark blue, the young patients to dark red the old
patients. Only having the information of the global cluster, we would see (Fig. 2.5a-d top),
that there are two cluster with average age of the samples a "light green" value. However,
only the decomposition in terms of quantiles reflects that one cluster was composed only of
"light green"-aged patients, whereas the other sample is constituted of one younger patient
and one older patient. This sheds light into the composition of the global clusters.
Remark 2.3.6. As the global clusters are unaffected by the filter function since they are only
affected by the distance and the epsilon parameter, if the filter function is changed only the
clusters in the quartiles are changed. This gives a basis of comparison for all the different
filter functions.
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Figure 2.5: Example of TTMap on a point cloud with an associated filter function, given by the colors
on the points. The data with the single linkage clustering associated to it, the cluster obtained are
colored by the average amount of the filter function. The data is subselected for the (a) lower quartile
points, from dark blue to aquamarine, (b) 2nd quartile points, from light blue to light green, (c)
3rd quartile points, from yellow to orange, (d) higher quartile points, from red to dark red, then
the ε-neighbourhood graph of this selected subset is computed and from these graphs the connected
components are taken. This corresponds to perform the single-linkage clustering algorithm on the
subset of points only. (e) The Mapper algorithm generates links between the global and the local
spheres. (f) Once it is rearrange spatially and annotated we obtain the TTMap output.
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2.4 Theoretical aspects
To assess the stability of TTMap theoretically, we studied the effects of modifications of the
source space, of the filter function and of approximations with a point cloud on its output.
The absence of a natural distance on the outputs of TTMap precludes direct assessment of
the stability of the TTMap graphs. Therefore, we summarized the information contained in
the TTMap graphs as a diagram in R2, similar to a persistence diagram (PD) [202], where
there is a natural distance d that generalizes the distance on PD, enabling a comparison of
TTMap graphs.
The PDs summarize the topological features of the data such as connected components, holes,
branches, and dots. We supplemented PDs with links between the "local" features and the
connected components or global clusters, forming a descriptor, denoted DM(X, f,I), for a
space X and a filter function f : X → R that verifies mild regularity conditions. In terms of
these enriched PDs, we establish the following theorems, stated informally here and precisely
in Theorems 2.4.2, 2.4.4, 2.4.5, 2.4.6, respectively.

• Completeness The descriptor is complete: the information contained in the graph of
TTMap(X, f,I) can be recovered from the diagram DM(X, f,I).

• Stability with respect to changes of the filter function If the filter function f is perturbed,
the distance between the diagrams of f and of its perturbation is not greater than the
amount of perturbation.

• Stability with respect to perturbations of the domain If the starting space X is perturbed,
then the distance between the diagrams of X and of its perturbation depends linearly on
the amount of perturbation.

• Stability with respect to point cloud approximations

If data points are sampled on a space X, then the difference between the diagrams associated
to X and to the δ-neighborhood graph built on the point cloud is less than a value depending
on δ.

Thus, the three stability theorems state that the method is stable upon modifications of the
source space, of the filter function, and upon approximations with a point cloud.

In this section, all functions are assumed to be of Morse type, whose definition and example
can be found in section 1.3.4 [203]. It is a mild assumption as a wide variety of function verify
to be of Morse type, especially the filter function chosen in the algorithm TTMap verifies
to be of Morse type, which will be proven in section 2.4.2 along with the verification of all
assumptions made in the stability theorems.
This assumption is technical and needed since in that case we have a well defined extended
persistence diagram (see section 1.3.4, theorem 1.3.27). It assures that the mathematical
objects dealt with are well-defined.

2.4.1 Generalized structure of TTMap
Let X be a topological space and let f : X → R be a Morse-type function. Consider a family
of pairwise disjoint intervals of R with non-empty interiors, such that the union of all the
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intervals is still an interval. Add R to this family and call the result I . Considering the class
of Morse-type pairs (X, f) such that I is a cover of Im(f), our aim is to study the structure
of M(X, f,I ) and its stability with respect to perturbations of (X, f) within this class. Note
that, TTMap(Dc.T, τ,I ) is a special case of M(P, f,I ), where P is given by Dc.T and X is
the corresponding underlying support, f is given by τ and I is given by the quantiles qab
and the real line and δ is given by the parameter ε (section 2.3).

Definition 2.4.1. We define the following descriptor for M(X, f,I ):

DM(X, f,I ) := (Dg (f̃), ϕ, {∆I}I∈I ),

where:

• Dg (f̃) is the extended persistence diagram of the Reeb graph of X using the induced
function f̃ (see section 1.3.4).

• ϕ : Dg (f̃)→ Ext+
0 (f̃) maps a persistence pair (i.e. (a, b) where a and b are the birth

and the death time respectively of a topological feature to the connected component of
X to which its corresponding feature belongs,

• ∆I = {(x, x) | x ∈ I} is the diagonal subset of I × I.

Intuitively, M(X, f,I ) can be reconstructed from DM(X, f,I ) in 3 steps (Fig. 2.6a, b, c and
d):

1. Create one super-node per point in Ext+
0 (f̃).

2. For each interval I ∈ I , create one node per point (x, y) ∈ Dg (f̃) such that I is contained
entirely in the lifespan of (x, y), which is materialized in the descriptor DM(X, f,I ) by
the fact that the line segment ∆(x,y) bounded by the horizontal and vertical projections
of (x, y) onto the diagonal ∆ contains ∆I . If (x, y) ∈ Ord0(f̃) ∪Rel1(f̃) ∪ Ext+

0 (f̃) then
create a vertex also if I contains x. If (x, y) ∈ Ext+

0 (f̃) then create a vertex also if I
contains y.

3. Draw the links prescribed by ϕ between the super-nodes and the rest of the nodes.

Theorem 2.4.2. Completeness. DM(X, f,I ) is a complete descriptor of M(X, f,I ), i.e.
the Mapper graph can be drawn from the information obtained by the descriptor.

Proof. At any level α ∈ R, the following equality holds:

#
{
C : C is a connected component of f̃−1({α})

}
=

#
{

(x, y) ∈ Dg (f̃) : α ∈ lifespan (x, y)
}
,

(2.1)

where:

lifespan (x, y) =


[x, y] if (x, y) ∈ Ext+

0 (f̃)
(y, x) if (x, y) ∈ Ext−1 (f̃)
[x, y) if (x, y) ∈ Ord0(f̃)
(y, x] if (x, y) ∈ Rel1(f̃)
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a b

c d

Figure 2.6: (a) The Reeb graph of an object X composed out of two components with a function f , the
height function, and its Mapper (b) computed with a cover of Im(f) with disjoint intervals represented
by different colors. (c) By adding R to this cover and calling it I , the descriptor DM(X, f,I ) is
calculated and (d) the Mapper can be retrieved from the descriptor in (c).

Indeed, let α ∈ R. Assume for simplicity that α 6∈ Crit(f) (if α ∈ Crit(f) then the same
analysis holds with the extra technicality that the type of each interval endpoint, open or
closed, must be taken into account). Define the following quadrants (Fig. 2.7):

α

α

Qα
NW Qα

NE

Qα
SEQα

SW

b

Figure 2.7: Plot of the various Qα∗ in the plane.

QαNW = {(x, y) ∈ R2 : x ≤ α and y ≥ α}
QαNE = {(x, y) ∈ R2 : x ≥ α and y ≥ α}
QαSW = {(x, y) ∈ R2 : x ≤ α and y ≤ α}
QαSE = {(x, y) ∈ R2 : x ≥ α and y ≤ α}

Since points in Ord0(f̃) and Ext+
0 (f̃) are located above the diagonal and points in Ext−1 (f̃)
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and Rel1(f̃) are located below, proving Equation (2.1) amounts to showing that

dim
(
H0
(
f̃−1({α})

))
= |Ord0(f̃) ∩QαNW|

+ |Ext+
0 (f̃) ∩QαNW|+ |Ext−1 (f̃) ∩QαSE|+ |Rel1(f̃) ∩QαSE|.

(2.2)

For this the Mayer-Vietoris theorem is used with spaces A = f̃−1((−∞, α]), B = f̃−1([α,+∞)),
A ∩B = f̃−1({α}), and A ∪B = Rf (X). This theorem can be used because the Morse-type
condition implies that A,B are deformation retracts of neighborhoods A′, B′ in Rf (X) with
A′ ∩B′ deformation retracting onto A ∩B. Hence, the following sequence is exact:

H2(Rf (X)) ∂2−→ H1
(
f̃−1({α})

)
ϕ−→

K1︷ ︸︸ ︷
H1
(
f̃−1((−∞, α])

)
⊕H1

(
f̃−1([α,+∞))

)
ψ−→ H1(Rf (X)) ∂1−→ H0

(
f̃−1({α})

)
ζ−→ H0

(
f̃−1((−∞, α])

)
⊕H0

(
f̃−1([α,+∞))

)
︸ ︷︷ ︸

K0

ξ−→ H0(Rf (X)) ∂0−→ 0

To be more specific, exactness gives the following relations:

Im(∂2) = ker(ϕ) (2.3) Im(∂1) = ker(ζ) (2.4)
Im(ϕ) = ker(ψ) (2.5) Im(ζ) = ker(ξ) (2.6)
Im(ψ) = ker(∂1) (2.7) Im(ξ) = ker(∂0) (2.8)

It follows from (2.8) and from [58] that

dim(Im(ξ)) = dim(ker(∂0)) = dim(H0(Rf (X))) = |Ext+
0 (f̃)|. (2.9)

Moreover, according to Theorem 2.9 in [204], we have Hp(Rf (X)) = 0 for any p ≥ 2. Using
equation (2.3), it follows that Im(∂2) = 0 = ker(ϕ), hence

0 = dim
(
H1
(
f̃−1({α})

))
= dim(ker(ϕ)) + dim(Im(ϕ)) = dim(Im(ϕ)). (2.10)

Using equations (2.4) to (2.10) and Theorem 2.5 in [204], the following equalities hold:

dim
(
H0
(
f̃−1({α})

))
= dim(ker(ζ)) + dim(Im(ζ))

= dim(Im(∂1)) + dim(ker(ξ))
= dim(H1(Rf (X)))− dim(ker(∂1)) + dim(ker(ξ))
= |Ext−1 (f̃)| − dim(Im(ψ)) + dim(ker(ξ))
= |Ext−1 (f̃)| − dim(K1) + dim(ker(ψ)) + dim(ker(ξ))
= |Ext−1 (f̃)| − dim(K1) + dim(Im(ϕ)) + dim(ker(ξ))
= |Ext−1 (f̃)| − dim(K1) + dim(ker(ξ))
= |Ext−1 (f̃)| − dim(K1) + dim(K0)− dim(Im(ξ))
= |Ext−1 (f̃)| − dim(K1) + dim(K0)− |Ext+

0 (f̃)|
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It remains to compute dim(K1) and dim(K0). Using the correspondence between connected
components and branches of Rf (X) and points of Dg (f̃) [58], it holds that

dim(K1) = dim
(
H1
(
f̃−1((−∞, α])

))
+ dim

(
H1
(
f̃−1([α,+∞))

))
= |Ext−1 (f̃) ∩QαSW|+ |Ext−1 (f̃) ∩QαNE| (2.11)

and

dim(K0) = dim
(
H0
(
f̃−1((−∞, α])

))
+ dim

(
H0
(
f̃−1([α,+∞))

))
= |Ord0(f̃) ∩QαNW|+ |Ext+

0 (f̃) ∩ (QαNW ∪QαSW)|
+ |Rel1(f̃) ∩QαSE|+ |Ext+

0 (f̃) ∩ (QαNW ∪QαNE)|. (2.12)

Combining these results, we obtain

dim
(
H0
(
f̃−1{α}

))
= |Ext−1 (f̃)| − |Ext−1 (f̃) ∩QαSW| − |Ext−1 (f̃) ∩QαNE|+ |Ord0(f̃) ∩QαNW|

+ |Rel1(f̃) ∩QαSE|+ |Ext+
0 (f̃) ∩ (QαNW ∪QαSW)|

+ |Ext+
0 (f̃) ∩ (QαNW ∪QαNE)| − |Ext+

0 (f̃)|
= |Ext−1 (f̃) ∩QαSE|+ |Ord0(f̃) ∩QαNW|+ |Rel1(f̃) ∩QαSE|

+ |Ext+
0 (f̃) ∩QαNW|,

which gives (2.2) and thus proves Equation (2.1).
The theorem is proved using the three steps of the reconstruction scheme detailed before the
statement 2.4.2.
According to the one-to-one correspondence between the connected components of Rf (X)
and the points of Ext+

0 (f̃), Step 1 ensures that there are as many super-nodes as there are
connected components in Rf (X).
Equation (2.1) can be extended to intervals at no cost to prove that the number of vertices
created in Step 2 and the number of nodes in M(X, f,I ) (apart from the super-nodes) is the
same.
Finally, each node v of M(X, f,I ) corresponds to some connected component of the preimage
f−1(I) of some interval I ∈ I . That connected component lies entirely in some connected
component Xi of X, therefore v gets connected to the super-node corresponding to Xi in
M(X, f,I ). This is the only type of connection that matters for M(X, f,I ), since every pair
of intervals other than R in I has an empty intersection. Since the connected component
corresponding to v belongs to at least one feature of Rf (X), or equivalently one persistence
pair of Dg (f̃), this proves that the links prescribed by ϕ in Step 3 and the ones of M(X, f,I )
are the same.

This result states that whenever two descriptors are the same, their corresponding TTMap
graphs must also be the same and therefore for what follows the results are shown in terms of
diagrams.

Stability theorems
Note that {∆I}I∈I induces the grid (End(I \ R)× R) ∪ (R× End(I \ R)), (Fig. 2.6 c).
Intuitively, the distances of the points of Dg (f̃) to this grid give the amount of perturbation
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allowed to preserve the structure of M(X, f,I ). Reciprocally, for a given amount of perturba-
tion ε, drawing a square of radius ε around each diagram point allows us to see which diagram
points may change grid cells and how the structure of M(X, f,I ) is impacted.

Definition 2.4.3. Let f, g be two Morse-type functions defined on topological spaces X,Y .
The descriptor distance between DM(X, f,I ) and DM(Y, g,I ) is:

d(DM(X, f,I ),DM(Y, g,I )) = inf
Γ

cost(Γ),

where Γ ranges over all partial matchings between Dg (f̃) and Dg (g̃) such that (p, p′) ∈ Γ⇒
(ϕ(p), ϕ(p′)) ∈ Γ.

This definition is illustrated in the following figure (Fig. 2.8)

Figure 2.8: Illustration of the descriptor distance on two extended persistence diagrams between two
diagrams in blue and black.

Theorem 2.4.4. Stability with respect to changes of the filter function. For any
Morse-type functions f, g : X → R:

d(DM(X, f,I ), DM(X, g,I )) ≤ ‖f − g‖∞.

Proof. Decompose X into its various connected components: X = X1 tX2 t ... tXn, and
let fi := f |Xi : Xi → R and gi := g|Xi : Xi → R. Note that Dg (f) = Dg (fi) t ... t Dg (fn),
and similarly for g and the induced maps f̃ and g̃. Thus, one can build a matching Γ
that preserves connected components by taking any matching for each pair of subdiagrams
Dg (fi),Dg (gi). For instance, let us take for each pair Dg (fi),Dg (gi) the matching achieving
d(DM(Xi, fi,I ), DM(Xi, gi,I )). Call it Γi, and let Γ =

⋃
i Γi. Hence, the following
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inequalities hold:

d(DM(X, f,I ), DM(X, g,I )) ≤ cost(Γ)
≤ max

i∈{1,...,n}
cost(Γi)

= max
i∈{1,...,n}

d(DM(Xi, fi,I ), DM(Xi, gi,I ))

= max
i∈{1,...,n}

d∞b (Dg (f̃i),Dg (g̃i)) since Xi is connected

≤ max
i∈{1,...,n}

‖f̃i − g̃i‖∞ by the stability theorem [205]

= ‖f̃ − g̃‖∞
= ‖f − g‖∞ since the quotient maps f̃ and g̃ preserve function values.

Theorem 2.4.5. Stability with respect to perturbations of the domain. Let X
and Y be two compact Riemannian manifolds or length spaces with curvature bounded above.
Denote by ρ(X) and ρ(Y ) their respective convexity radii. Let f : X → R and g : Y → R be
Lipschitz-continuous Morse-type functions, with Lipschitz constants cf and cg respectively.
Assume dGH(X,Y ) ≤ 1

20 min {ρ(X), ρ(Y )}. Then, for any correspondence C ∈ C (X,Y ) such
that εm(C) < 1

10 min(ρ(X), ρ(Y )),

d(DM(X, f,I ), DM(Y, g,I )) ≤ (9(cf + cg) + min{cf , cg})εm(C) + εf(C),

where εm(C) = sup(x,y),(x′,y′)∈C | dX(x, x′)− dY (y, y′) | and εf(C) = sup(x,y)∈C | f(x)− g(y) |
are the distance distortion and the functional distortion [206].
Proof. If there is a one-to-one matching between the connected components of X and Y

induced by the correspondence achieving dGH(X,Y ), then the proof follows the same line
as the proof of Theorem 2.4.4. The only difference in the proof is the use of Theorem 3.4
in [207] instead of the stability theorem [205]. If such a one-to-one matching does not exist,
dGH(X,Y ) is infinite and so is εm(C), hence

d(DM(X, f,I ), DM(Y, g,I )) ≤ (9(cf + cg) + min{cf , cg})εm(C) + εf(C),

still holds.

Theorem 2.4.6. Stability with respect to point cloud approximations. Let X be a
submanifold of Rd with positive reach r(X) (largest number such that any point at distance less
than r(X) from X has a unique nearest point on X) and convexity radius ρ(X). Let f : X → R
be a Lipschitz-continuous Morse-type function, with Lipschitz constant c. Let P ⊆ X be such
that every point of X lies within distance ε of P , for some ε < min{r(X)/16, ρ(X)/16, s/8c},
where s > 0 is the minimum distance of the points of Ext1(f) to the diagonal ∆. Let
δ ∈ [4ε, min{r(X)/4, ρ(X)/4, s/2c}), and Gδ(P ) be the δ-neighborhood graph built on top of
P with parameter δ. Then, the following inequality holds:

d
(
DM(X, f,I ), DM(Gδ(P ), f̂ ,I ))

)
≤ 2cδ,
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where f̂ is the piecewise linear interpolation of f along the edges of Gδ(P ) [208].

Proof. Let CX = min{‖x−x′‖d : x, x′ do not belong to the same connected component of X},
and let x, x′ ∈ X be two points achieving CX . Let y = 1

2(x+ x′) ∈ Rd. Then ‖x− y‖d ≥ r(X)
since y belongs to the medial axis of X. Hence, CX = 2‖x− y‖d ≥ 2r(X). Since δ < 1

4r(X) <
CX , it follows thatX and Rips1

δ(P ) have the same number of connected components. Then, the
proof of Theorem 2.4.6 follows the same line as the proof of Theorem 2.4.4. The only difference
in the proof is the use of Theorem 7.5 in [207] instead of the stability theorem [205].

2.4.2 Hypotheses verification for TTMap
In order to use those theorems, one needs to verify their hypotheses. Hence, the topology
induced by the distance d∗ should verify that it is equivalent to the euclidean distance to be
able to use the last theorem. Moreover, the function need to be Lipschitz in order to use
the theorems 2.4.5 and 2.4.6. Lastly, f needs to be of Morse-type in order to use all of the
theorems of stability (2.4.2, 2.4.4, 2.4.5, 2.4.6).
For that, we will proceed in several steps : Let x, y be two deviation components, whence
x, y ∈ Rn. Then, d∗(x, y) = dM (x, y) + d̄E(x, y), where d̄E(x, y) is the Euclidean distance
bounded by 1/4 and dM (x, y) is given by dM (x, y) =

∑n
i=1 dmi(xi, yi), where

dmi(xi, yi) =


0 if sign(xi) = sign(yi),
1 if sign(xi) 6= sign(yi)

and |xi| or |yi| ≥ α
|xi−yi|

8αn otherwise

(2.13)

We observe that even if all the values are noise smaller than α (around 0), then the d(x, y) < 1/2,
and therefore not perturbing the results if we replace ε by ε+ 1/2 in the corresponding section.
We will prove that with this distance

1. we can define a topology.

2. we verify that (Rn,Td∗) = (Rn,TĒ), which is the topology with the bounded euclidean
distance and which is known to be the same as (Rn,TE), the standard topology with
the euclidean distance.

3. the following function is Lipschitz:

f : (Rn,Td∗) → (R,TE)
x = (x1, . . . , xn) 7→

∑n
i=1 |xi|.

4. the function f is Morse-type.

1. Let us show that {Bd∗(x, ε) | ε > 0, x ∈ Rn} defines a base of a topology. Indeed, for
every x ∈ Rn and x ∈ Bd∗(x, 1/2) so the first axiom is verified. Secondly, let x, y ∈ Rn
be two vectors and δ and ε two real numbers then, let

t ∈ Bd∗(x, δ) ∩Bd∗(y, ε).
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Let

ν = min

min{|ti| | ti 6= 0, i = 1, . . . , n},

min{|α− |ti|| | ti 6= α, i = 1, . . . , n},

1/4, δ − d∗(x, t), ε− d∗(y, t)

 > 0.

We want to show that Bd∗(t, ν) ⊆ Bd∗(x, δ)∩Bd∗(y, ε). The proof is the same for y and
x just replacing ε by δ. Let us therefore focus on showing that Bd∗(t, ν) ⊆ Bd∗(x, δ).

Let z ∈ Bd∗(t, ν). Hence, d∗(z, t) < ν and therefore

dM (z, t) =
n∑
i=1

dmi(zi, ti) < ν

since dmi(zi, ti) ≥ 0 this means that dmi(zi, ti) < ν for every i = 1, . . . , n.

Lemma (A) : If ti 6= 0, then zi 6= 0 and sign(zi) = sign(ti).

Proof. Since, d∗(z, t) ≤ ν, then dĒ(z, t) ≤ ν.

As ν < 1/4, dĒ(z, t) = dE(z, t) and hence
∑
i=1 |zi−ti| < ν. This implies that |zi−ti| < ν

for every i = 1, . . . , n.

Moreover, since |ti| 6= 0, we have that|zi − ti| < ν ≤ |ti|. Therefore, zi 6= 0 because
otherwise we get |ti| < |ti|, which is a contradiction. Moreover if ti > 0 and zi < 0, then
|zi − ti| = ti − zi = |ti|+ |zi|, since zi is negative. This can not be strictly smaller than
|ti| otherwise we get |zi| < 0 which is a contradiction.
Similarly if ti < 0 and zi > 0, then |zi − ti| = zi − ti = |zi| + |ti|, which can not be
strictly smaller than |ti|. Therefore, zi and ti must have the same signature.

Lemma (B) : If |ti| 6= α either |ti| and |zi| are > α or |ti| and |zi| < α.

Proof. By the above argument, we know that |zi − ti| < ν and ν ≤| α − |ti| |. Let us
suppose |ti| > α then | α−|ti| |= |ti|−α, and |zi−ti| < |ti|−α implies−|zi−ti| > −|ti|+α,
which results in

|zi| ≥ |ti| − |zi − ti| > |ti| − |ti|+ α = α.

Hence, |zi| > α.

Let us suppose |ti| < α then | α− |ti| |= α− |ti|, and

|zi| ≤ |zi − ti|+ |ti| < α− |ti|+ |ti| = α
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and hence |zi| < α.

Let us enumerate the cases :

• H = {i ∈ {1, . . . , n} | |ti| = α}.

• I = {i ∈ {1, . . . , n} | i /∈ H, sign(ti) = 0}.

• J = {i ∈ {1, . . . , n} | i /∈ H ∪ I, sign(xi) = sign(ti)}.

• K = {i ∈ {1, . . . , n} | i /∈ H ∪ I, sign(xi) 6= sign(ti), |ti| < α}.

• L = {i ∈ {1, . . . , n} | i /∈ H ∪ I, sign(xi) 6= sign(ti), |ti| ≥ α}.

Let us calculate,

dM (x, z) =
n∑
i=1

dmi(xi, zi) =
∑
i∈H

dmi(xi, zi) +
∑
i∈I

dmi(xi, zi) +
∑
i∈J

dmi(xi, zi)

+
∑
i∈K

dmi(xi, zi) +
∑
i∈L

dmi(xi, zi)

• For i ∈ H, there are two cases:

– If dmi(xi, ti) = 0, then by Lemma A, we have that sign(ti) = sign(zi) and
therefore sign(zi) = sign(xi), and therefore dmi(xi, zi) = dmi(xi, ti) = 0.

– If dmi(xi, ti) = 1, then dmi(xi, zi) < dmi(xi, ti) = 1.

• For i ∈ I since ti = 0 there are several scenarios :

– |xi| ≥ α : in this case either zi and xi have the same signature and then
dmi(xi, zi) = 0 < dmi(xi, ti) or the have opposite signatures and then dmi(xi, zi) =
1 = dmi(xi, ti). In both cases dmi(xi, zi) ≤ dmi(xi, ti).

– 0 < |xi| < α : if sign(zi) = sign(xi), then dmi(xi, zi) = 0 < dmi(xi, ti),
otherwise by Lemma B as ti < α we have that zi is smaller than α as
well and hence sign(zi) 6= sign(xi) then dmi(xi, zi) = |xi−zi|

8nα = |xi|
8nα + |zi|

8nα =
dmi(xi, ti) + dmi(ti, zi).

– |xi| = 0 then ti = xi and dmi(xi, zi) = dmi(ti, zi)

• For i ∈ J since sign(ti) = sign(xi) and from Lemma A, we know that sign(ti) =
sign(zi). Therefore, dmi(xi, zi) = dmi(xi, ti) = 0.

• For i ∈ K, then |ti| < α, and we know from Lemma B. that this implies |zi| < α

as well. We again have two cases here :

– |xi| ≥ α, dmi(xi, zi) = 1 = dmi(xi, ti).

– |xi| < α, then dmi(xi, zi) = |xi−zi|
8nα ≤ |xi−ti|

8nα + |zi−ti|
8nα = dmi(xi, ti) + |ti−zi|

8nα =
dmi(xi, ti) + dmi(ti, zi).

• For i ∈ L, since |ti| ≥ α, we know from Lemma B that |zi| ≥ α as well, which
implies that dmi(xi, ti) = 1 = dmi(xi, zi).
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Put together we have that

dM (x, z) =
n∑
i=1

dmi(xi, zi)

=
∑
i∈H

dmi(xi, zi) +
∑
i∈I

dmi(xi, zi) +
∑
i∈J

dmi(xi, zi) +
∑
i∈K

dmi(xi, zi) +
∑
i∈L

dmi(xi, zi)

≤
∑
i∈H

dmi(xi, ti) +
∑
i∈I

dmi(xi, ti) +
∑
i∈J

dmi(xi, ti) + dmi(ti, zi) +
∑
i∈K

dmi(xi, ti)

+ dmi(ti, zi) +
∑
i∈L

dmi(xi, ti)

≤dM (x, t) + dM (t, z)

Hence, d∗(x, z) = dM (x, z) + dĒ(x, z) ≤ dM (x, t) + dĒ(x, t) + dM (t, z) + dĒ(t, z) =
d∗(x, t) + d∗(t, z) ≤ d∗(x, t) + δ − d∗(x, t) = δ.

2. ” ⊇ ” Let ε > 0 and let x ∈ Rn if δ = ε > 0 then

Bd∗(x, δ) ⊆ BĒ(x, ε).

Indeed, if y ∈ Bd∗(x, δ), then d∗(x, y) < δ and hence, dĒ(x, y) ≤ dM (x, y) + dĒ(x, y),
since dM (x, y) ≥ 0 for every x, y and hence dĒ(x, y) ≤ d∗(x, y) < δ = ε. Therefore,
y ∈ BĒ(x, ε).
” ⊆ ” Let ε > 0 and let x ∈ Rn if δ = min(α/2, 1/4, ε/( 1

8α + 1)) > 0 then

BĒ(x, δ) ⊆ Bd∗(x, ε).

Indeed, if y ∈ BĒ(x, δ), then dĒ(x, y) < δ and since δ < α/2, and δ < 1/4, then for
every i ∈ {1, . . . , n} either sign(xi) = sign(yi) or sign(xi) 6= sign(yi) and both |xi|
and |yi| are less than or equal to α.
We use the fact that dĒ(x, y) < 1/4 implies dĒ(x, y) = dE(x, y). Then, dĒ(x, y) < α/2
implies that

∑n
i=1 |xi − yi| < α/2 and therefore |xi − yi| < α/2.

If sign(xi) 6= sign(yi), then either xi > 0 and yi < 0, implying that |xi − yi| = xi − yi >
xi = |xi| and therefore |xi| < α/2. This in turn implies that |yi| < |xi − yi| + |xi| <
α/2 + α/2 = α, or yi > 0 and xi < 0 which with the same reasoning shows that |xi|
and |yi| are smaller than α. Coming back to the original problem, we obtain either
d∗(x, y) = dĒ(x, y) when sign(xi) = sign(yi) or

d∗(x, y) = dM (x, y) + dĒ(x, y) =
∑
i∈I

|xi − yi|
8αn + dĒ(x, y),

and since the L1 norm is bounded by
√
n times the L2 norm, it is clear that

|xi − yi|
8αn ≤

√
n

8αn · dĒ(x, y) ≤ 1
8α · dĒ(x, y).

Therefore,
d∗(x, y) ≤ 1

8α · δ + δ ≤ ε,
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where I = {i ∈ {1, . . . , n} | sign(xi) 6= sign(yi) and |xi| and |yi| ≤ α}. Therefore,
y ∈ Bd∗(x, ε).

3. f is Lipschitz since
f : (Rn,Td∗) = (Rn,TE)→ (R,TE).

and hence

d(f(x), f(y)) =| f(x)− f(y) |=|
n∑
i=1
|xi| −

n∑
i=1
|yi| |≤

n∑
i=1
| xi − yi |≤ dE(x, y).

4. It is clearly of Morse-Type, since f : (Rn,Td∗) = (Rn,TE)→ (R,TE) is the L1-norm.
Each interval in R has as pre-image a void thickened diamond in Rn, which is compact
and locally connected. Since the thickening is given by the length of the interval, it is
then straightforward to obtain the needed homeomorphism and conclude that it is of
Morse-type.
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2.5 Implementation
TTMap was implemented as an open-source R package in Bioconductor (https://www.
bioconductor.org/packages/devel/bioc/html/TTMap.html).
To install this package, start R and enter:
source("https://bioconductor.org/biocLite.R")
biocLite("TTMap")

The reference manual, explaining all the functions, and the "vignettes" guiding the user
through TTMap with an example, are available on the above mentioned webpage and in the
Annexe of this thesis, Appendix A. Newest updates can be found on https://github.com/
jeitziner/TTMap.
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3.1 Introduction to the different sections
TTMap has been applied throughout the thesis on various types of datasets, from metabolic
data, to neuronal spike data, passing by single-cell RNA-seq data and of course our main focus
was on RNA-seq and microarrays. Each of these datasets has a different history and needs to
be put in context. We used TTMap in each cases to answer specific biological question and
compared it to standard methods. This chapter is therefore extremely various in content, and
each section will be structured with an introduction to the problem possibly followed by a
biological question, and then the results of TTMap are shown and discussed in the context of
that experiment.

In order to understand and validate the functioning of TTMap and compare it to other
methods, we started by applying it to in silico data sets that we generated (in R) (see section
3.2) and afterwards applied it to two known biological experiments reflecting the two major
types of datasets in gene expression which are microarrays (for drosophila data in section
3.3) and RNA-seq (for the data on the estrous cycle of mice section 3.4). These two datasets
have been studied more extensively than the others. These three sections 3.2, 3.3, 3.4 have
been adapted from : "Two-Tier Mapper: a user-independent clustering method for global gene
expression analysis based on topology", R. Jeitziner, M. Carrière, J. Rougemont, S. Oudot, K.
Hess, and C. Brisken, 2017, arXiv: 1801.01841 [194], submitted to Bioinformatics.)
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3.2 In silico validation
TTMap was tested on simulated data that mimics a situation for which standard methods
are weak, i.e., small sample size (n<20). Moreover, we generated differences arising from the
same genes in the subgroups, deviating in opposite directions. Control samples in group C
and test samples are generated each with 10′000 features, where the test group is composed
of two subgroups TA and TB that need to be found by TTMap and the method to which we
compared it called Mclust [96]. The subgroups TA and TB have the same mean per gene as
the mean in the control group, except for m genes for which the mean is ∆ times higher for
TA, respectively lower for TB. The m genes are true positives, whereas all the other features
are true negatives. The accuracy of the method is estimated by simulating at least 30 datasets
per condition and calculating the percentage of times TTMap finds the right subgroups,
establishing the clustering power of this method. Since TTMap is an analytical workflow, we
also assessed its performance in finding the genes that are differentially expressed.

Goal. We want to assess the performance of TTMap in finding two subgroups TA and TB
on in silico generated data. Depending on the variance in the control group C, we evaluate the
performance of the algorithm until the noise exceeds the signal. TTMap also finds differentially
expressed genes and we will therefore determine the number of true positives and negatives
according to the variance. We want to assess also the running time of the algorithm, as well as
the accuracy of TTMap depending on the sample size or the subgroup sizes. We will describe
how the parameter selections affect the ouput of TTMap, justifying our choices.

3.2.1 Synthesised data generation
Since microarray gene expression data, is modelled as a normal distribution ([63]), the simulated
data has been generated as follows. For a fixed natural number m less than 10′000, K random
lists of 10′000 real numbers each are generated, where half of them C1, . . . CK/2 are the K/2
controls and the other half is divided by two TA1, TA2, . . . , TAK/4, and TB1, TB2, . . . , TBK/4,

representing the test samples, each with 10′000 genes. The subgroups TA and TB have a
mean per gene that is ∆ times higher, respectively lower than the mean of the control in m
genes. Hence,

(C1)i, . . . , (CK/2)i ∈ N (µ, σ2)

for all 1 ≤ i ≤ 10, 000, and

(TA1)i, (TA2)i, . . . (TAK/4)i, (TB1)i, (TB2)i, . . . , (TBK/4)i ∈ N (µ, σ2)

for all 1 ≤ i ≤ 10, 000−m, while

(TA1)i, (TA2)i, . . . , (TAK/4)i ∈ N (µ+ ∆, σ2),

and
(TB1)i, (TB2)i, . . . , (TBK/4)i ∈ N (µ−∆, σ2)

for all 10, 000 −m < i ≤ 10, 000 and K is either 12, 200 or 400. The parameter µ is equal
to 4 (the outputs do not change if it is another value), but ∆ and σ vary in the different
subsections hereafter and are therefore made precise there.
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3.2.2 The performance of TTMap as a clustering method
The performance of TTMap was assessed, with the parameter ε given by the lowest 2.5 per-
centile (Fig. 3.1a) or the highest 2.5 percentile of the distribution of the distance dM between
two random variables (Fig. 3.1b). The variance σ2 ranged from 0.01 to 1 in order to measure
the accuracy of TTMap in situation ranging from low variance to high variance. The number
of significant features m in the test cases were 50, 100, 1000, and 5000, i.e., 0.5, 1, 10, and 50%
of all the features, respectively. When ∆ = 2, TTMap performed 100 % correctly when the
variance in the control group was in the biologically encountered range [63] (Fig. 3.1a, b, pink
shade), where σ2 < 0.3 (Fig. 3.1a). For variances between 0.4 and 0.8 and for 0.5% and 1%
of significant features respectively, the method could no longer distinguish between noise and
signal (∆ = 2) and classified all the samples as different. When ε is chosen in the higher 2.5
percentile (Fig. 3.1b), the method was less good than the lower 2.5 percentile when the vari-
ances are low (below 0.5), but much better for higher variances (greater than 0.5). Moreover,
the higher the number of significant features, the better TTMap performs in finding the two
subgroups. Performance also improved when ∆ increased (Fig. 3.1a, Supplementary Fig. S8a).

In contrast, a standard clustering tool Mclust[96] that similarly to TTMap does not need any
parameter selection, was unable to find the right groups (Fig. 3.1a, black line). This is in line
with Mclust learning from the data, and hence requires a large enough sample size to be able
to perform properly.
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Figure 3.1: In silico validation of TTMap. Plot showing the accuracy of TTMap in percentage of
times it correctly identifies subgroups of an in silico dataset over a range of different variances, N > 30.
Individual curves were established for different percentages of significant genes. The accuracy of Mclust
on the same dataset is shown in black, (a) using epsilon with probability 0.025 and (b) 0.975.

3.2.3 The running time of TTMap
The running time of TTMap follows a quadratic curve (Fig. 3.2a, blue curve), reflecting
the fact that the algorithm is O(n2) (Fig. 3.2). This is due to the distance function (the
mismatch distance), which needs the computation of the distance for each pair of two points.
The algorithm could be further fastened by optimizing this function. All the other parts of
TTMap are growing almost linearly O(n) (for the control adjustment and HDA) and are fast
(Fig. 3.2b, c) or even almost uniformly O(1) (for the global-to-local Mapper once the distance
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has been calculated) (Fig. 3.2d). Moreover, on the in silico datasets tested, the running time
of Mclust is 45 times longer than that of TTMap (3.8 minutes versus 5 seconds, respectively
on K = 12).

TTMap Control adjustment

HDA GLMap

a b

c d

Figure 3.2: Time usage of TTMap. (a) Time in seconds used on in silico datasets of different sample
size (black) with fitted quadratic curve (blue) of the full TTMap pipeline (N = 10, per sample size)
(b) of only the control adjustement with fitted quadratic curve (blue) and with fitted linear curve
(red) (N = 3, per sample size) (c) of only the hyperrectangle deviation assessment with fitted linear
curve (red) (N = 3, per sample size) (d) of only the global-to-local Mapper after the distance has
been calculated with fitted uniform curve (green) (N = 3, per sample size).

3.2.4 HDA and GLMap are both essential
To assess whether the accuracy of TTMap relies solely on HDA or on GLMap, we applied
Mclust to the data obtained after HDA, i.e., the deviation components. The accuracy of
Mclust in detecting the subgroups improved from 0 % to 20% on average (Fig. 3.3). Thus,
the accuracy of Mclust improved but did not reach the level of accuracy of TTMap.

85



Chapter 3. Applications of Two-tier Mapper

10
1
0.5

Significant 
genes %

A
cc

ur
ac

y 
(%

)
0

20
40

60
80

10
0

0.2 0.4 0.6 0.8 1.0
Variance in the control group

Figure 3.3: Plot showing the accuracy of Mclust on the deviation components with N = 10 per
condition.

3.2.5 The performance of TTMap as a differential expression method in
finding true positives and true negatives

To assess the performance of TTMap with regards to the genes determining a cluster, the
numbers of true positives and of true negatives were computed with ∆ = 2, whenever the
right groups are found. In datasets with low variance (σ2 < 0.5) in the control group, TTMap
found close to 100% of the true positives and true negatives (Fig. 3.4a, b). Since the samples
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Figure 3.4: Plot showing the percentage of (a) true positives (b) true negatives when the right groups
are found with N > 30 per condition.

in TA and TB have the same differentially expressed features but expressed in opposite
directions, the moderated t-test did not detect any true positives. Even when the right groups
are provided it poorly discovered the true positives in the subgroups, due to low sample size
(Fig. 3.5). Together with the observation that the moderated t-test finds close to 100 % of
true negatives, this suggests that the standard method is more likely to detect no significant
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genes in such a situation, and is therefore dominated by TTMap.f
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Figure 3.5: Plot showing the true positives (TP) and true negatives (TN) using moderated-t-test when
the correct groups are given and when they are unknown.

3.2.6 The performance of TTMap on different sample sizes
TTMap was assessed on larger datasets as well consisting of 100 or 200 simulated samples.
The method performed similarly at finding the right subgroups as in the case of small datasets
(Supplementary Fig. S8c). In particular, for small variances (σ2 = 0 − 0.3) the method’s
accuracy is above 98%, though it decreases for higher variances. Different sizes of subgroups
TA and TB were generated, i.e., two samples in TA against four in TB and one in TA against
five in TB respectively. Even if one of the subgroups is composed only of a single sample, the
method accurately (more than 98% of accuracy for small variances) distinguishes the outlier
sample from the rest of the samples (Supplementary Fig. S8b). Hence, TTMap is neither
affected by the size of the point cloud nor by the sizes of the subgroups.

3.2.7 The output of TTMap upon changes of the mean of the features
TTMap is calculating deviation components from the control group, and therefore the output
of TTMap does not change depending on the given average in the control group.

3.2.8 The parameter e
The effect of taking e as described in this thesis compared to selecting a standard confidence
interval modifies considerably the values that are considered normal (Supplementary Fig. S9).
Choosing e = 1 (corresponding to a 2 fold change, as the data is log transformed) or e as
the 90-th percentile are the most reasonable choices as they are still reflecting the variability
found in the samples.

3.2.9 The estimation of the parameter ε
The parameter ε is estimated using probabilities (see 2.3.4). As the data consists of a high
number of genes n >> S, where S is the number of samples, two possibilities arise : either
using Chen-Stein’s theorem [209] and therefore estimate the amount of mismatches expected
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by chance using a poisson approximation (see section 2.3.1) or use the Bernoulli law of
large numbers stating that a normal approximation can be used to solve the problem. We
estimated on simulated data which is the best approach and conlcuded that both work similarly
(Supplementary Fig. S10). However, Chen-Stein’s theorem is adaptable to the setting of not
independent variables, which can be the case for gene expression analysis if a certain group of
genes are dependent on each other. We therefore chose Chen-Stein as an approximation to ε
knowing that TTMap can possibly be adapted to the case of known dependencies of genes
[209].
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using the Fly atlas.

3.3 Comparison of TTMap to standard clustering tools on
biological data using the Fly atlas.

To further validate TTMap, we compared it to established clustering methods, k-means [95]
and DBSCAN [92], on well-characterized biological data using the flyatlas (www.flyatlas.org).
This dataset comprises microarray-based RNA expression profiles from 33 different drosophila
tissues pooled from 50 male and 50 female flies or third instar feeding or wandering larvae, all
in four replicates (Table 3.1). The 132 samples were compared to four replicate samples from
the "whole adult fly" serving as control group N.

Name Abbr. Name Abbr.
Adult Accessory gland A Adult Ovary O

Adult Brain B Larval Feeding fat body Qf
Adult Carcass C Larval Feeding Carcass Cf
Adult Crop R Adult Salivary Gland S
Adult Heart D Adult Spermatheca Mated 2 K3
Adult Eye E Larvae Wandering Tubules Lw

Larval Feeding Hind Gut Gf Adult Testes T
Adult Hind Gut G Adult Thoracic Muscle V
Adult Head H Adult Trachea X

Larval Feeding Mid Gut Mf Adult Thoracoabdominal ganglion U
Larval Feeding Salivary Gland Sf Larval Feeding CNS Nf
Adult Spermatheca Mated K Larval Wandering fat body Qw
Adult Spermatheca Virgin K2 Adult Wings P

Adult Mid Gut M Whole Larvae Feeding F
Adult Ejaculatory Duct Z Larval Feeding Trachea Xf

Larval Feeding Malpighian Tubule Lf 5th Passage Drosophila S2 Cells Y
Adult fat body Q

Table 3.1: Legend used for the fly dataset, Abbr. = Abbreviation, CNS = Central Nervous System

Goal. Using TTMap, tested in this section on microarray data, we interrogate how far each
organ is from the whole fly globally on all genes, i.e. which organs are transcriptomically the
closest and which one the furthest away from the whole fly. We might discover organs that
overall have the same genes that change, but their extent of change is different, by looking
at the distribution of the clusters in the quartiles. The dataset will also be used to assess the
stability of the clusters.

Remark 3.3.1. Even though the control group is small since it is only composed of 4 samples,
the test group is large 132 samples, and the dataset represents a multiple comparison, where
the multiple groups correspond to the different organs.

3.3.1 Comparison of TTMap to DBSCAN and k-means
For the standard methods parameters were chosen as to maximize their performance; k
in k-means was set to 33, corresponding to the number of distinct tissues and minPts in
DBSCAN was set to 4, reflecting the four replicates, providing an advantage to the methods,
as it reduces the different possibilities of clusters generated. The ε parameter of DBSCAN
was chosen according to guidelines [92] that we explained in section 1.5.2 (Fig. 3.6).
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Figure 3.6: Determining the parameter ε of DBSCAN using guidelines of [92]. Points are displayed
with the distance to their k-th nearest neighbor, where k = 4, the red line was chosen by visual
inspection and shows one possible choice of ε as there is a gap in the distance between the previous
points and the following points.

DBSCAN and k-means clustered 20 and 15 tissues, respectively, uniquely with their four
replicates, i.e., clusters that consisted of four replicated samples (Fig. 3.7a, Supplementary
Tables). TTMap, even though not provided with any parameter, clustered 21 tissues uniquely
(Fig. 3.7a, Supplementary Tables).
To compare the stability of the different methods, the data were first quantile-normalized.
Rand Index (RI), a measure of similarity between two clusterings [210], was 0.990 and 0.97,
and 0.999 for DBSCAN, k-means and TTMap, respectively (Fig. 3.7a). However, quantile-
normalization increased the number of uniquely clustering tissues to 21 with DBSCAN, to 22
with TTMap and decreased to 10 with k-means (Supplementary Tables, Fig. 3.7a). Next,
we randomly selected 50% of the genes for re-clustering of the quantile-normalized data.
DBSCAN’s performance dropped to 12 (RI=0.86) due to the difficulty in finding the right ε
parameter. K-means found 13 uniquely clustering organs (RI= 0.97). TTMap detected 20
uniquely clustering tissues under both conditions (RI=0.995) (Fig. 3.7b). Thus, TTMap is the
most stable method upon normalization and random subselection and detects the maximum
number of uniquely clustering organs.

3.3.2 Gained insights using TTMap
Overall, TTMap formed 32 global clusters (Fig. 3.8). The gene expression profiles of whole
larvae (F) (Table 3.1) deviated the least (Fig. 3.8, cluster 1) and testis (T) and brain (B) the
most from the whole adult fly that were considered as controls as indicated by the color code
as well as their positions from left to right (Fig. 3.8, cluster 31 and 32).
Four clusters comprised samples from more than one tissue, while 6 clusters contained fewer
than 4 replicates, and one cluster comprised four samples not all from the same tissue. The
largest cluster (Fig. 3.8, cluster 16) contained the 4 replicates of virgin (K) and mated
spermatacea (K2), as well as 3 replicates of the spermatacea redone (K3) along with a single
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Figure 3.7: Stability of TTMap and comparison to standard clustering methods k-means, DBSCAN on
the flyatlas. (a) Barplot representing the number of uniquely clustering organs, observed by clusters
of four replicate samples, on log-transformed data and on quantile-normalised data using DBSCAN,
k-means and TTMap. (b) Barplot representing the number of uniquely clustering organs when data
are randomly subselected for 50% of the genes on quantile-normalised data using DBSCAN, k-means
and TTMap.

replicate of the adult thoracic muscle (V). Interestingly, the 4th replicate of K3 clustered
with the 3 replicates of V, cluster 30, suggesting a labelling mistake, which may explain
that standard tools (moderated t-test) revealed < 10% of the genes detected by TTMap
(Supplementary Fig. S11a, b). On average, 84 % of the genes were found by both standard
statistics and TTMap. However, specifically in the case of organ replicates that did not
uniquely cluster with replicates of the same organ only, TTMap showed more power to detect
significant genes.

Fat bodies from wandering and feeding larvae (Qw and Qf) clustered together globally (Fig.
3.8, cluster 13). Local Mapping using the filter function revealed that three of the four Qf
replicates were in the 3rd quartile (Fig. 3.8, cluster 64), and three Qw samples were in the 1st

quartile (Fig. 3.8, cluster 36, 43).

This separation in the quartiles shows that the fat bodies of Qw and Qf share differentially
expressed genes, but their expression levels deviate to different extents. It is in line with the
fat body having the same role in both developmental states, with an enhanced function when
the larvae are constantly feeding compared to when they are wandering. On the other hand,
cluster 23 comprised tubules from wandering and feeding larvae (Lw and Lf), which fell into
the same quartiles because they not only share the shape of deviation, but also their extent of
deviation. Interestingly, the heterogeneous cluster 2 comprises four replicates of the adult
carcass (C), consisting of everything that is left of the thorax and abdomen after the gut and
sexual tracts have been removed, and one replicate of the adult trachea (X). These tissues are
anatomically close and technically difficult to dissect, hence cross contamination is a likely
problem. In line with this hypothesis, the other trachea replicates were in nearby groups
3 and 5. An outlier from the fat body (Q) was identified as cluster 10, while the 3 other
replicates clustered together much further away in terms of amount of deviation in cluster
20. An identical situation was noted for the larval trachea (Xf) found in cluster 15 and 19
(Fig. 3.8). Thus, the two-part clustering of TTMap adds information and provides additional
biological insights.
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Figure 3.8: TTMap characterizes deviations of gene expression in different fly organs from whole fly
tissues flyatlas. Output of TTMap showing the global clusters (Overall) and local clusters (1st, 2nd,
3rd, 4th Quartiles of the amount of deviation function) with its links to the global clusters. The size
of the sphere corresponds to the number of samples in the cluster, the color the average amount of
deviation. The number above the sphere identifies the clusters and the letters indicate organs inside
a cluster (C: carcass, X: adult trachea, Xf: larvae trachea, Q: fat body, K: spermatacea virgin, K2:
spermatacea mated and K3: spermatacea virgin (redone), V: adult toracic muscle, Qw: fat body of the
wandering larvea, Qf: fat body of the feeding larvea, Lw: malpighian tubule of the wandering larvea,
Lf: malpighian tubule of the feeding larvea, F: whole larvea, T: Testes, B: Brain). Outliers are the
adult trachea (X) in clusters 3, 5, the larvae trachea (Xf) in cluster 15, as well as the fat body (Q) in
cluster 10.

3.3.3 The impact of the choices of parameters
TTMap was tested here using Normal approximation and Poisson approximation for the ε
parameter (section 2.3.4). In both cases, ε was estimated to be at the minimum of detection
of the software R (and therefore set to 0). This low value is due to the control group having a
small variation (90-th percentile of variance = 0.005, Fig. 3.9, red line). Hence, the estimation
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Figure 3.9: Mean against variance plot with red line representing the 90-th percentile of the variance.
Each point represents a gene with its mean and variance across control samples.
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of ε was independent of the choice of distribution (Poisson or Normal). Moreover, two choices
are possible for the p-value in the probability estimation of ε, either 0.025 or 0.975 (see section
2.3.4). Again, no difference was observed choosing one or the other. The other parameter that
could change the output is e, which when set to 1 no gene expression of the control group
was considered to be an outlier. In case e is chosen by default, around 2000 genes per sample
in the control group are changed even though only slightly. This difference and adjustment
again, did not impact the output of TTMap, but was interesting to notice.

3.3.4 Direct comparison with DBSCAN
DBSCAN and TTMap are similiar in that they both function with a linkage algorithm
(single-linkage for TTMap, section 1.2.7, a variation of it with a minimum amount of links
to be connected for DBSCAN , section 1.5.2). It is therefore clear that the result on the
data is quite similar in terms of uniquely clustering organs (Fig. 3.7a). The difference in
uniquely clustering organs can therefore be listed : Brain and thoracoabdominal ganglion
cluster together for DBSCAN and are separated for TTMap in uniquely clustering organs.
TTMap in turn separates the samples from the trachea, which in DBSCAN are grouped but
as outliers (counted here within the 20 uniquely clustering organs). As already mentioned,
trachea is difficult to dissect and therefore is likely to have varying profiles from sample to
sample. We did not find a justification for the grouping of Brain and thoracoabdominal
ganglion found with DBSCAN.

3.3.5 Comparison with hierarchical clustering and PCA
We tested also other algorithms such as hierarchical clustering on raw data (Supplementary
Fig. S12) or on the mismatch distance (Supplementary Fig. S13a, Supplementary tables)
and PCA (Supplementary Fig. S13b) where we observed no clear separation in groups of 4.
The best selection for the parameters of hierarchical clustering, the TC or the cutoff at a
certain level, in terms of uniquely clustering organs, chosen by visual inspection of the plot,
revealed 21 uniquely clustering organs on the mismatch distance. We tested the changes of
performing PCA on the vectors after HDA (Supplementary Fig. S13c), and observed no visible
improvement in the clusters, reflecting once more that both steps of TTMap are necessary in
order to obtain increased information.

3.3.6 Literature search on genes found only by TTMap
TTMap revealed that larvae wandering fat body and larvae feeding fat body the same genes
were differentially expressed overall but to different extents. Specific subgroups were obtained
in each quartiles (Fig. 3.8, clusters 36, 43, 55, 64). We searched the literature for the genes
specific to the subgroups of larvae wandering fat body and larvae feeding fat body in order to
find which ones are related to the distinct stages of the larvae in the fat body.
We discovered that the gene "shd" (shade), only found with TTMap, is highly upregulated in
larvae wandering fat body but not in larvae feeding fat body. In the fat body, this gene is
a biological timer and regulates pupation timing in Drosophila melanogaster, i.e., this gene,
expressed in the fat body, needs to be upregulated in order for the larvae wandering to turn
into a pupa [211].
On the other side, highly upregulated genes in the larvae feeding fat body comprises specific
genes such as "br" (broad) and "pgant8" that have been linked in several organs to the
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development of organs in different stages of the larvae [212], however no literature exist on
the fat body. Our data suggests that these genes might have the same role in the fat body
than in these organs and could therefore be potential candidate markers of these different
larvae stages. These results would need further validation.

3.3.7 Data availability
These drosophila Affymetrix array data files were downloaded from GEO accession no GSE7763.
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3.4 Estrous-cycle-related gene expression changes in murine
mammary glands

We challenged TTMap by asking it to identify subtle gene expression changes as they occur in
a complex organ related to cyclic alterations in hormone levels. For this purpose, we studied
RNA-seq data from intact mammary glands from C57BL/6 and BALB/c females, collected in
different phases of the estrous cycle –proestrous (P), estrous (E), and diestrous (D)– based on
the prevalence of different cell types in their vaginal smears (see section 1.6.2) (n = 12) [213].

Goal. We want to assess TTMap’s performance on RNA-seq data with batch effects corre-
sponding to the strains of mice, which are C57BL/6 and BALB/c. TTMap will determine
how far each sample of a certain phase of the estrous cycle is from another phase and if there
are samples which overall have the same genes that change, but their extent is different.
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Figure 3.10: Estrous cycle related gene expression changes in the mammary glands of C57BL/6 and
BALB/c mice; estrous vs proestrous phase. (continued on the next page).

Principal component analysis grouped samples according to strain (Supplementary Fig. S14a);
and standard analysis was performed on each strain separately [213] leading to the identification
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Figure 3.10: Estrous cycle related gene expression changes in the mammary glands of C57BL/6 and
BALB/c mice; estrous vs proestrous phase. (a) Barplot representing the number of outlier values in
each of the sample of the control group (estrous phase). Samples with high number of outlier values and
remain isolated during clustering when E is the test group are identified as outliers (arrowheads). (b)
Venn diagrams of the genes differentially expressed between E vs P using standard analysis tools and
TTMap on BALB/c compared to C57BL/6 analyzed separately. In red, the fraction of common over
total number of significant genes per strain. (c) Venn diagrams of the common differentially expressed
genes when the analysis is done separately on the two mouse strains (Separated) or with the two mouse
strains combined into one analysis (Grouped) using TTMap comparing E vs P. Adjacent heatmaps of
the deviation components illustrate the reason why the genes were missed; on the separated analysis
deviations are going into opposite direction, in the grouped analysis the genes deviate in the same
direction, but to different extent. (d) Panther pathway analysis [84] of significant genes identified
by TTMap in the comparison E vs P shown by Fold Change (FC) enrichment of the pathway with
-log(Pval) as a color code. Fifteen most increased pathways are shown. (e) Boxplots representing the
deviation component values in the identified subgroups of P (P1-P5) by TTMap ordered by amount of
deviation compared to the estrous samples (controls) of the genes Lalba, Csn3, Mybpc1 and Irf7.

of differentially expressed genes with a false discovery rate (FDR) < 0.05 and a low fold
change (FC) of |FC| ≥ 1.2 [213] (Fig. 3.10b, Supplementary Fig. S15b, S16b).
We considered each of the 3 cycle phases as the control group in TTMap. The number of
outliers was 6/24 for estrous (E) (Fig. 3.10a, arrowheads), 4/23 for diestrous (D), and 4/23 for
proestrous (P) (Supplementary Fig. S15a, S16a). TTMap increased the number of significant
genes by a factor of 1.38 in the comparison E vs P in BALB/c and 4.29 in C57BL/6 (Fig.
3.10b). Moreover, a 1.08 and 5.29-fold increase in the number of significant genes in D vs
P and E vs D, respectively, was observed in BALB/c, and a 2.2 and 2.83-fold increase in
C57BL/6 in these two comparisons, respectively (Supplementary Fig. S15b, S16b). The
overlap of significant genes between the two strains changed with TTMap compared to the
standard analysis [213]. For E vs P, a consistent increase from 5 to 28 % in BALB/c and 19
to 32 % in C57BL/6 was observed (Fig. 3.10b). For D vs P, it increased from 18 to 36 % in
BALB/c and decreased from 47 % to 45 % in C57BL/6 (Supplementary Fig. S15b). In E vs
D, an increase from 0 % to 20% was found for both strains (Supplementary Fig. S16b).
Next, TTMap considered a strain as a batch (Fig. 3.10c). This grouped comparison increased
the number of common genes 1.81-fold (Fig. 3.10c, Venn diagram) for E vs P and 1.72- and
2.23-fold for D vs P and E vs D, respectively (Supplementary Fig. S15c, S16c) over the
common genes from the separate analyses with TTMap. The significant genes comprised >
85% of the genes identified by separate analysis (Fig. 3.10c, Venn diagram). Heatmaps of the
deviation components showed that the genes missed by the grouped analysis were differentially
expressed in different phases of the cycle in BALB/c and in C57BL/6 mice but in opposite
directions (Fig. 3.10c, Supplementary Fig. S15c, S16c, heatmaps on the left), whereas genes
missed by separate analysis deviated in the same direction from the control in both strains,
but did so to different extents and had therefore failed to reach significance in one of the
strains (Fig. 3.10c, Supplementary Fig. S15c, S16c, heatmaps on the right).
Bioinformatic analysis of the genes revealed by the grouped analysis of E vs P using pathway
analysis [84] revealed " angiogenesis" (FC = 2.81, p < 2.23E − 02) and "gland development"
(FC=2.44, p < 4.73E − 02) as important terms (Fig. 3.10d) missed with standard tools,
and "positive regulation of tumour necrosis factor (TNF) superfamily cytokine production"
(FC=4.26, p < 4.28E − 03) in D vs P (Supplementary Fig. S15d) when TNFα expression

96



3.4. Estrous-cycle-related gene expression changes in murine mammary
glands

was shown to vary through the human menstrual cycle [214]. Genes in E vs D were related
to immune and inflammatory responses terms (Supplementary Fig. S16d). Using the filter
function to determine the extent of deviation from the control group, TTMap orders subgroups
within each phase. For P, P1 is closest and P5 furthest from the control (E) (Supplementary
Fig. S14b). Among the significant genes in these subgroups are genes whose expression
was previously shown to vary through the human menstrual cycle [142], [215] (Fig. 3.10e,
Supplementary Fig. S15e, S16e), such as Mybpc1, a progesterone target gene [215], and the
milk protein coding genes Lalba, Csn3, all missed with standard tools. These genes deviate
significantly only in subgroups of P (Fig. 3.10e). In contrast, the normalized expression levels
of Irf7, a gene detected by standard tools, were at least 1.2-fold higher in all 5 P subgroups,
as reflected by the deviation components, compared to E (Fig. 3.10e). Biologically, estrous
cycle phases are continuous rather than discrete subgroups (see section 1.6.2), TTMap maps
samples in-between 2 phases by providing information about the overall closeness to control,
as in the case of P1. These results were further validated by Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Panther pathway analysis of the genes that are differentially expressed
between these phases; we discovered that P1, even though already having downregulated
pathways that are common to the five proestrous subgroups, such as Fatty acid metabolism,
p=0.0025, it had not yet upregulated major pathways like the oxytocin and calcium signaling
pathway. Moreover, fluctuations in hormone signaling are reflected in P4 which revealed
GO molecular pathways such as "response to hormone" (p=0.0144), "lactation" (p=0.0152),
"response to steroid hormone" (p=0.0179), "cellular response to hormone stimulus" (p=0.0186)
and "response to progesterone" (p=0.0186) (Supplementary Tables). Thus, TTMap by
stratifying further on degree of deviation from normal characterizes the phases of the estrous
cycle and reflects the underlying cyclic biology better than the standard tools and provides
more information and additional insights into estrous-cycle-related gene expression changes.

3.4.1 Multiple comparison analysis
To observe the effect of HDA on the dataset, we performed PCA plots after HDA was
performed in the comparisons E vs (P and D) (Supplementary Fig. S17a), P vs (E and D)
(Supplementary Fig. S17b), and D vs (P and E) (Supplementary Fig. S17c). We notice
that the samples cluster more by cycle stage and less by strains than in the starting PCA
(Supplementary Supplementary Fig. S14a). Then, we assessed the effect of the filter function
by looking in the multiple comparison a barplot of the values of the total absolute amount
of deviation, the chosen filter function, in the different comparisons (Supplementary Fig.
S18a, b and c), which revealed clear outliers and that E and D are both further away to P
(Supplementary Fig. S18c, minimum deviation of 500) than to each other (Supplementary
Fig. S18a, b, minimium deviation of 100 and 200). We performed hierarchical clustering
on Z-score-normalised values per batch (per strain) of all the samples. This normalisation
did not improve the grouping of samples which grouped samples according to their strain
(Supplementary Fig. S19a, b and c). A Venn diagram compares the results of the analysis
separately on E vs (D and P) on BALB/c only C57BL/6 only to the analysis with batches
considered as strains. The same result as in the simple analysis was found, since few genes
were not included when the analysis is done with all the samples (Supplementary Fig. S20).

3.4.2 Data availability
This mouse data was kindly provided by A. Snijders and colleagues [213].
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3.5 Progesterone and R5020 action on human breast tissue
3.5.1 Understanding the role of progesterone compared to R5020
Progesterone receptor signaling (section 1.6) has been linked to proliferation [118], [117] and
the potential tumorigenic role of progesterone has been described [106]. Understanding what
are the molecular changes induced by progesterone inside the normal breast will shed light
onto the mechanism by which progesterone is inducing proliferation. R5020 has been used
for years in research as a synthetic progesterone [216]. This stable PR agonist, in a similar
way than natural progesterone (P4), induces proliferation on cells treated with the compound
[118], [117].

Goal. The goal is to find genes that are controlled by progesterone in the human breast
epithelium and whether or not these are induced as well by R5020. Then, we assess what are
the differences in action of R5020 and progesterone on those cells.

3.5.2 Experimental design
In order to evaluate the action of progesterone on gene expression of healthy human epithelial
cells, the recently developed ex vivo model technique on mammoplasty cells was chosen as a
model [118], obtained by a collaboration with the hospital in Lausanne the Centre Hospitalier
Universitaire Vaudois (CHUV) , to ensure that hormonal pathway are still active. Tissues
from the same patient were stimulated with P4 or with the synthetic progestin R5020 or with
vehicle.
Patients were asked to provide information on their reproductive history (e.g. contraceptives,
parity, last menses). At the moment of the mammoplasty surgery, blood was collected and
later analyzed to determine the actual phase of the cycle (Table 3.2).

Sample number Number of annotation Age P4 Level nmol/ L
Sample 220 15 35 <0.3
Sample 221 16 38 7.1
Sample 229 19 17 0.7
Sample 243 20 54 0.6

Table 3.2: Patient information

The tissue microstructures obtained following mechanical and enzymatic tissue dissociation of
mammoplasty specimens [118] were exposed to vehicle or R5020 (20 nM) or P4 (20 nM) for 14
hours. Subsequently, tissue microstructures were dissociated and immunodepleted for immune
cells, fibroblasts, and endothelial cells with a cocktail of anti-CD45, anti-FAP, and anti-CD31
antibodies. Cells were labelled with antibodies against Epithelial Cell Adhesion Molecule
(EpCAM) (clone HEA-125) to enrich for the luminal cell population and Common Acute
Lymphoblastic Leukemia Antigen (CD10/CALLA) for myoepithelial cells (Clone SS2/36)
[217]. The EpCam+ cells were collected and processed for RNA analysis.
Illumina Eland_v2e protocol was used to generate RNA-seq data for each tissue in the
condition control, progesterone treated, R5020 treated. A total of 4 different mammoplasties
were used (Table 3.2).
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3.5.3 Standard analysis
After using tophat (version-2.0.11, maximum 2 multimaps, not allowing for novel junctions
or indels) and featureCounts (version-subread-1.6.0) for aligning and counting the reads
respectively, we used the limma pipeline [79] for RNA-seq analysis with the Voom normalisation
[76] after trimmed-mean of M values (TMM) normalisation [218], using the design with groups
given by treatment (control, R5020 and progesterone) and batches given by the mammoplasty
(15,16,19,20).
PCA plot did not group samples according to batches (mammoplasties) after TMM normali-
sation (Fig. 3.11a), but once the data was renormalised with Voom samples cluster according
to mammoplasty (Fig. 3.11b). This is expected as human variability (from mammoplasty to
mammoplasty) should be larger than any treatment inferred on the cells [219].
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Figure 3.11: Standard clustering algorithms of gene expression profiles from four mammoplasty (15,
16, 19, 20) treated with vehicle R5020 or P4. (a) PCA of RNAseq samples after TMM normalisation
colored by treatment and annotated by patient number (b) PCA of RNAseq samples after Voom
normalisation performed on TMM normalised samples.

We performed differential expression analysis of R5020 samples vs control (with batch correc-
tion) and progesterone vs control (with batch correction) and R5020 vs progesterone (with
batch correction) and corrected the p-values according to the Benjamini-Hochberg method
[220] for adjustment of p-values. We found respectively 89, 65, and 0 significant genes by
adjusted p-values (Fig. 3.12a). Noticing that many genes were common in the treatment with
progesterone and the treatment with R5020, we overlapped the two list of significant genes
and found that most genes are shared (Fig. 3.12a). This was still the case when looking at
the significant genes only by p-value (Fig. 3.12b).
Among other known progesterone receptor target genes, WNT4 and RANKL (p-value =
0.003, and 0.0008 respectively for progesterone and 0.001 and 0.009 respectively for R5020),
but not adjusted p-value, we found CXCL13 (adj.p-value= 0.0006, 6.08E − 05) , MYBPC1
(adj.p-value= 0.0002, 6.08E − 05) [221], [142], which are positive controls and validate the
induction of progesterone and R5020. As a negative control, we observed downregulation
of PGR (p value= 0.003, 0.003) after treatment with both progesterone and R5020 [222].
GREB1, found to be significantly upregulated (adj.p-value= 0.049, 0.049), was recently shown
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Figure 3.12: Venn diagram of differentially expressed genes in the comparison between R5020 and the
control treated samples and progesterone and control treated samples (a) adjusted p-value selected
genes (b) p-value selected genes.

to be a progesterone responsive gene [223] in healthy human endometrial stromal cell. This is
the first evidence that this also applies to breast epithelial cells.
Standard analysis using PCA revealed that the samples cluster by mammoplasties, but since
the effect of mammoplasty is larger than the treatment inferred to the cells, we do not know
if this clustering reflects an individual way of reacting to treatments or if this suggests that
each mammoplasty has different "baseline" levels of genes.
Then, standard differential expression analysis revealed that the effect of progesterone and
R5020 is mostly similar on the cells.

3.5.4 The analysis using TTMap
We used TTMap with batches corresponding to the different mammoplasties. The controls
were given by the vehicle treated samples. TTMap subgroups the treated samples with R5020
and progesterone according to their pattern of deviation compared to control and color code
the obtained clusters (represented by spheres) by the amount of deviation compared to control
(blue, low deviation and red, high deviation).
Four clusters formed upon TTMap analysis (Fig. 3.13) in the overall situation, each cluster
corresponding to a mammoplasty sample, and comprising the treatment with R5020 and
the treatment with progesterone in one cluster. Hence, TTMap’s output suggest that R5020
and progesterone induce the same transcriptomic alterations on EpCam+ breast cells of
mammoplasties but each mammoplasty has its unique changes induced by the two compound.
Moreover, the different local tiers (the quartiles) of TTMap revealed that for each of the
spheres except the most extreme one, the natural progesterone was always classified in a
lower quartile than its R5020 counterpart, per mammoplasty. This suggests that R5020 and
progesterone imply the same gene expression changes on the microstructures, but the extent of
deviation of the gene expression changes is more enhanced with R5020, probably illustrating
that R5020 is a more potent compound [118] (Fig. 3.13).
The closest sample to control is from the gene expression profile of mammoplasty number
16 (Fig. 3.13), which had the highest level of progesterone (Table 3.2). The furthest sample
from control is tissue extracted from mammoplasty number 19 (Fig. 3.13), which was from
the youngest patient (Table 3.2). This underlines once more the fact that each patient has
a unique way of reacting to a treatment [224] and in particular patient history is crucial in
order to predict the effect of progesterone.
An important improvement over the standard methods concerns the expression of Cyclin-D1

100



3.5. Progesterone and R5020 action on human breast tissue

Figure 3.13: TTMap characterize the exogenous action of Progesterone (N) and R5020 (R) on
microtissues obtained from mammoplasty numbered 15, 16, 19 and 20.

that was not significant with standard analysis, but was consistently downregulated in the
cluster of the samples 19, and not in the three others. Similarly, FOXA1 was at the border
or about to of being significant (p = 0.09) but was enriched in cluster 19, and others not.
A more precise decomposition of the changes occuring in each mammoplasty could only be
appreciated using deviation components of TTMap.
We conclude that TTMap is producing an output with much richer structure than standard
methods such as PCA, since we revealed the samples with smallest and highest reaction to
treatment. Furthermore, we discovered that even though the transcriptomic changes induced
by R5020 and progesterone are the same, R5020 induces the variations to a higher extent.
This also reflects that a careful attention should be made when delineating analogies between
R5020 and P4 as one is a more potent compound than the other one.
Based on our findings with TTMap, we hypothesised that high level of progesterone makes
the cell less responsive to progesterone whereas tissue structures from young patients are more
responsive to treatment. We also discovered significant genes known to be downstream of
PR signaling, such as Cyclin-D1, which was shown to interact with PR in breast cancer cells
[127]. However, this gene was only significantly changed in subsets of human breast samples,
reflecting the heterogeneity of human expression profiles, only obtained through the individual
profiles of deviations obtained by TTMap.
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3.6 RANKL stimulation of human breast specimens
The receptor activator of nuclear factor κB ligand (RANKL), a downstream target gene
of progesterone receptor signaling (section 1.6.9), plays an important role in mediating
cell proliferation in the mouse mammary [191], [192] and human breast tissue [118]. The
mechanism through which this cytokine induced proliferation is unknown.

Goal. To uncover events downstream of RANKL signaling, we investigated the effect of
exogenous RANKL on mammoplasty cells from healthy donors.

3.6.1 Experimental design
To assess the effect of RANKL on gene expression in the normal human breast, we generated
tissue microstructures ex-vivo [118] from reduction mammoplasty surgery patients obtained
by the CHUV.
Patients were asked to provide information on their reproductive history (contraceptives,
parity, last menses). At the moment of the surgery blood was also collected and later analyzed
to determine the levels of progesterone (Table 3.3). Through the menstrual cycle, lower serum
progesterone level are found in the follicular phase and determined as less than 4 nmol/l (see
section 1.6.2) and higher serum progesterone level correspond to luteal phase and are more
than 4 nmol/l [225], [226].

Name Age Oral Contraceptives P4 Level nmol/ L
Sample 210 22 No 1
Sample 211 21 No 20
Sample 212 42 Unknown Pill 18
Sample 215 38 No 2
Sample 217 37 NA 1
Sample 230 17 NA 0.7

Table 3.3: Patient information

The tissue microstructures obtained following mechanical and enzymatic tissue dissociation
of mammoplasty specimens [118] from six patients between 17 and 42-year-old who under-
went mammoplasty surgery were exposed to vehicle or rRANKL (1µ g/ml) for 14 hours.
Subsequently, tissue microstructures were dissociated and immunodepleted for immune cells,
fibroblasts, and endothelial cells with a cocktail of anti-CD45, anti-FAP, and anti-CD31
antibodies. Cells were labelled with antibodies against Epithelial Cell Adhesion Molecule
(EpCAM) (clone HEA-125) to enrich for the luminal cell population and Common Acute
Lymphoblastic Leukemia Antigen (CD10/CALLA) for myoepithelial cells (Clone SS2/36)
[217]. The EpCam+ cells were collected and processed for RNA analysis.
Affymetrix Human Gene 10 st v1 probeset protocol (microarray protocol, see section 1.4) was
performed on EpCAM+ cells treated or not with RANKL.

3.6.2 Standard analysis
Standard moderated t-test paired for tissue mammoplasty and corrected using Bonferroni
correction method revealed only 11 significantly differentially expressed genes (by p-value and
none by adjusted p-value) between treated samples with RANKL and tissue treated with
vehicle. Hierarchical clustering did not match all the pairs (Fig. 3.14a) and PCA plot did not
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group samples according to mammoplasties (Fig. 3.14b). Even after taking only the 100 most
variable genes (by leading fold change) samples did not group according to mammoplasty
(Supplementary Fig. S21a and b). Thus, standard clustering algorithms and analysis tool
could not reveal any relevant information on the action of RANKL on human microstructures.
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Figure 3.14: Standard clustering tools on gene expression profile of six samples (210, 211, 212, 215,
217, 230) treated with human RANKL (hRANKL, red) or with vehicle (Ctrl, black). (a) Hierarchical
clustering on the full dataset (b) PCA plot on the full dataset.

3.6.3 The analysis using TTMap
We used TTMap taking the untreated samples as the control group and correcting for the
batches that are the different mammoplasties. Two clusters formed upon TTMap analysis (Fig.
3.15): a cluster of four samples with low average total amount of deviation (filter function,
blue color code on Fig. 3.15), and a cluster of 2 samples with high deviation showing clear
changes occurring upon treatment (orange color code). Standard moderated t-test was then
applied on the two subgroups discovered by TTMap. The analysis of the first subgroup
confirmed the observation on the TTMap graph that there are no significant gene expression
changes in that subgroup, whereas in the second subgroup 280 significant genes could be
found, among which several genes linked to lactation such as LALBA, CSN1S1, CSN2 and
CSN3 (Fig. 3.16a), in line with known function of RANKL in lactation [189]. Further analysis
of the subgroups revealed a clear correlation of progesterone levels in the blood of the patient
at the time of surgery and the response to treatment with RANKL (Table 3.3). The cluster
showing low deviation reflected by the color code (first cluster, blue, Fig. 3.15) is composed
of patients with low serum progesterone, while the two samples displaying high deviation
(second cluster, orange, Fig. 3.15) were from patients with high serum progesterone levels at
the time of surgery, as assessed by mass spectrometry.
As luteal phase (see section 1.6.2) corresponds with high levels of progesterone, progesterone
alone is not the only factor correlating with the composition of the clusters (other correlation
are for instance luteal phase, and, even though not assessed, also prolactin levels are higher
during the luteal phase [227] than the follicular phase).
When RANKL was added to cells derived from women with high progesterone, we observed
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Figure 3.15: TTMap characterize the exogenous action of RANKL in mammoplasty tissue. Two major
clusters are apparent in the overall group, a blue color-coded cluster made out of samples 210, 215,
217 and 230 and an orange color-coded group with two samples 211 and 212.

the downregulation of several genes linked to progesterone receptor signaling, among which
DIO2, CXCL13, MYBPC1, EREG(Fig. 3.16b).
To give more strength to the observation that progesterone receptor signaling genes are
downregulated, we overlapped the list of downregulated genes by RANKL to the significant
genes that are upregulated in gene expression profile of luteal phase premenopausal epithelial
enriched cells of women compared to gene expression profile of women in the follicular phase in
I. Pardo’s dataset et al. [142] where progesterone receptor signaling is more active and found
a significant enrichment (p = 0.0035, hypergeometrical test). More strickingly, genes that
were upregulated by RANKL in the presence of progesterone were significantly enriched in the
genes downregulated during the luteal phase in I. Pardo’s dataset et al. [142] (p = 2.5 · 10−8,
hypergeometrical test). Only two genes were found to be regulated in the same direction
when overlapping these gene lists and hence there was no significant enrichment (p = 0.110).
By pathway analysis [84] of the genes modulated by RANKL, we found significant enrichment
mostly in immune related terms (e.g. negative regulation of innate immune response (p =
2.16E − 04), or interferon-gamma related terms (e.g. cellular response to interferon-gamma,
p = 2.38E − 09, but found as well proliferation terms (e.g. regulation of epithelial cell
proliferation, p = 8.79E − 04), with genes such as CTSL2, FGFBP1, PTN, CAV1, MMP12,
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Figure 3.16: Deviation components of genes, shown as average with standard deviation in the samples
with high level of progesterone and in the samples with low level of progesterone of (a) lactation
associated genes LALBA, CSN1S1, CSN2 and CSN3, (b) progesterone receptor target genes DIO2,
CXCL13, MYBPC1, EREG, RANKL, WNT4, and (c) proliferation associated genes CTSL2, FGFBP1,
PTN, CAV1, MMP12, ITGB3.

ITGB3 (Fig. 3.16c), in-line with RANKL increasing proliferation on the cells [118] and hints
towards molecular mechanism through which this process is happening (Supplementary Fig.
S22).
We conclude that TTMap unravelled a novel action of RANKL, missed by standard tools,
which seems to be dependent on the presence of progesterone in the breast or the breast to
have been in luteal phase. In that case, a pregnancy-like program is induced with genes such
as LALBA, CSN1S1, CSN2 and CSN3, confirming the implication of RANKL with lactation
[189], as well as a proliferation program (CTSL2, FGFBP1, PTN, CAV1, MMP12, ITGB3 ),
also in-line with the literature [118]. Moreover, RANKL counteracts progesterone/luteal
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induced signatures, which is a novel role of RANKL that needs further validation.

3.6.4 Comparing RANKL’s to progesterone’s action on breast epithelium
In the two last sections, we analysed the action of RANKL on breast epithelial cells (see
3.6) with TTMap which is dependent on the presence of progesterone, and the action of
progesterone (as well as R5020) on breast epithelial cells as well (see 3.5). In this section, we
want to compare the two datasets and observe the common or diverging genes and pathways.
As genes were only significant in the context of high progesterone with the treatment of
RANKL, its action will refer to the effect of RANKL in this context.
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Figure 3.17: Heatmap of the deviation component of the common significant features between the
RANKL experiment looking at its action in the two samples (211,212) with high progesterone and the
experiment searching for progesterone action (N) and R5020 action (R) in 4 samples (15, 16, 19, 20).

We observe that the deviation component of the common significant genes in the experiments
studying the effect of RANKL and progesterone are mostly going into opposite direction, as
reflected by the color-code in the heatmap of the deviation components (Fig. 3.17).
We specifically analysed the pathways of the commonly changed genes and found that pathways
are linked to apoptosis (adjusted p-value = 0.005) and cell death (adjusted p-value = 0.005)
(Supplementary Fig. S23) , with genes such as BMF, DUSP6 and TP53INP1 which are
strongly downregulated upon RANKL and upon progesterone (Fig. 3.18a). There is therefore
a possibility that RANKL and progesterone communicate to block important apoptotic
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processes. Additionally, the pathway of gland morphogenesis was significant with genes that
are commonly downregulated such as PGR, PTHLH and TBX3 and genes that are commonly
upregulated such as TGFA, CAV1 and TGM2 (Fig. 3.18b).
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Figure 3.18: Deviation components of genes, deviating in the same direction upon RANKL stimulation
or progesterone stimulation, shown as average with standard deviation linked to (a) apoptosis and cell
death, with genes such as BMF, DUSP6 and TP53INP1 and (b) gland morphogenesis, with genes
such as PGR, PTHLH, TBX3, TGFA, CAV1 and TGM2.

We also analysed the differentially expressed pathways, which are increased upon RANKL and
decreased upon progesterone. One of the top hits is "tissue development" (adjusted p-value =
0.00165) with genes linked to Transforming Growth Factor beta signaling (TGFB2, TGFBI )
(Fig. 3.19a). Then, we found terms linked to signal transduction and cell communication
reflecting the fact that RANKL is acting in a paracrine manner, and might hint towards
possible co-players that can be validated (Supplementary Fig. S24).

Genes that are significantly decreased when RANKL is added and increased when progesterone
is added, were linked to progesterone receptor signaling with genes such as RANKL, WNT4,
CXCL13 and MYBPC1 (Fig. 3.19b). Moreover, genes linked to estrogen receptor signaling
and prolactin receptor signaling are also significantly changing into opposite directions (Fig.
3.19c, d).

Pathways linked to all the significant genes varying in opposite direction upon RANKL and
progesterone is revealing "epithelium development" (adjusted p-value = 0.02), "branching mor-
phogenesis of an epithelial tube" (adjusted p-value = 0.03) and "epithelial cell differentiation"
(adjusted p-value = 0.03) (Supplementary Fig. S25). These findings suggest that RANKL is
counteracting progesterone receptor signaling on the cells and this process, probably, happens
by regulating epithelium development. Further validation of these results will shed light onto
the question and a first attempt is made in section 3.6.5.
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Figure 3.19: Deviation components of genes, deviating in the same direction upon RANKL stimulation
or progesterone stimulation, shown as average with standard deviation linked to (a) TGF-β-signaling
with ARTN, CDKN2B, MMP12, SMAD3, TGFB2 and TGFBI, (b) progesterone receptor signaling
with RANKL, WNT4, CXCL13 and MYBPC1, (c) estrogen receptor signaling with BCL2, GREB1,
ESR1, TFF1 and PRSS23 and (d) prolactin receptor signaling with AOX1, JAK2, LBP and PRLR.

3.6.5 Preliminary attempt to validate results obtained by TTMap
In order to test the hypothesis that progesterone needs to be present in the cells for RANKL
to exert molecular changes on the mRNA of the cells, we injected human breast cells extracted
from mammoplasty surgeries into the milk duct of recipient mice following the protocol
described in [228], [217]. Half of the mice received a pellet of progesterone with a dosage of 20
nM for 14 days, mimicking luteal phase like exposure, while the other half was left untreated.
The mammary glands of those animals were extracted, the cells were mouse depleted (to
enrich for human cells) and stimulated overnight with RANKL or with vehicle. Hence, the four
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conditions per mammoplasty injected into mice were control, control + RANKL, progesterone
treated (P4), P4 + RANKL.
These four conditions should mimic the previous dataset in that we have the "follicular
phase"-like condition with the control mice either treated or untreated with RANKL, then the
"luteal phase"-like condition with the mice treated for 14 days with progesterone. We used
two mammoplasties (number 319, 324) and several mice to reduce the variability from mice
to mice. and previously validated human specific primers were used for qPCR. The patient
information of these mammoplasties are missing and therefore crucial information to help us
conclude on the results is unavailable. Steroid measurements were performed and the results
are summarised in Table 3.4.

Mammoplasty number Estrogen levels (pg/ml) Progesterone levels (ng/ml)
319 <LOD 1.02
324 37.38 0.08

Table 3.4: Steroid levels in blood retreived from mammoplasties samples 319 and 324, LOD = Limit of
detection.

We will hence be able to validate also some genes obtained in section 3.5 as we have the
condition control and progesterone.

Prolactin pathway
Key genes of the downstream pathway of prolactin receptor signaling such as PRLR and
JAK2, among others, were shown by TTMap to be downregulated upon RANKL in the
background of high progesterone in the microarray data (see section 3.6) , whereas these were
shown to be upregulated when cells were treated with progesterone or R5020 (Table 3.5).
When progesterone was low in the patient of the mammoplasty at the time of surgery, the
levels of PRLR and JAK2 inconsistently vary and often times the variation is low (Table 3.6).

Deviation component Deviation component
Gene Symbol Description average upon RANKL average upon R5020

in progesterone high samples or progesterone
PRLR Prolactin receptor -0.36 0.28
JAK2 Janus kinase 2 -0.59 0.72

Table 3.5: Prolactin signaling in the experiments on the effect of RANKL (see section 3.6) on human
cells and the effect of progesterone or R5020 (see section 3.5), average value for deviation components
obtained by TTMap are shown for PRLR and JAK2.

Gene Symbol Deviation component
211 (High P4) 212 (High P4) 210 215 217 230

PRLR -0.28 -0.44 0.06 0.02 0.14 -0.26
JAK2 -0.27 -0.91 0.53 -0.38 -0.15 -0.42

Table 3.6: Prolactin signaling in the experiment of the effect of RANKL on 6 treated mammoplasties;
2 with high level of progesterone (P4) (211, 212) and 4 with low level (210, 215, 217, 230). Individual
deviation components values are displayed for PRLR and JAK2.

We then proceed with the validation of PRLR by qPCR, and found in each tested mammoplasty
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a slightly different result; while in mammoplasty 319 RANKL is downregulating PRLR in
control cells and in treated cells with progesterone (Fig. 3.20a), in mammoplasty 324 RANKL
increases slightly the levels of PRLR in control cells and downregulates them in the treated
case.(Fig. 3.20b) Therefore, the effect of RANKL on treated cells with progesterone revealed
a downregulation of PRLR in both cases, confirming the findings of the microarray. Overall,
however the trend seems to go along with the findings of the microarray, where RANKL has
no significant effect when progesterone is not present whereas when progesterone is present
the levels of PRLR are downregulated (Fig. 3.20c, d). A third sample with available patient
information would shed light into this validation.
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Figure 3.20: Validation of Prolactin signaling genes: PRLR. (a), (b) PRLR on individual mammoplas-
ties injected intraductally into recipient mice and kept for 14 days after they established and treated
with control or progesterone, cells were taken out and treated with RANKL or control. Therefore, 4
conditions (control, RANKL, P4 and P4+RANKL) are found on mammoplasties (a) number 319 (b)
number 324. (c) Average of two independent experiments of the 4 conditions and (d) PRLR levels of
P4 + RANKL cells relative and compared to P4 only levels.

We then proceed with the validation of JAK2 by qPCR, and found consistent results in both
mammoplasties: RANKL is downregulating JAK2 in treated cells with progesterone (Fig.
3.21a, b), and RANKL has no effect on the levels of JAK2 in control cells. Therefore, the
effect of RANKL on treated cells with progesterone revealed a downregulation of JAK2 in
both cases, confirming the findings of the microarray. Treatment with progesterone in both
cases increased the level of JAK2 (Fig. 3.21a, b) Overall, the trend seems to go along with
the findings of the microarray, where RANKL has no significant effect on JAK2 mRNA when
progesterone is not present whereas when progesterone is present the levels of JAK2 are
downregulated (Fig. 3.21c, d). Of note, the increase in JAK2 upon progesterone treatment
was significant. A third sample with available patient information would shed light into this
validation.

Estrogen pathway
Key genes downstream of estrogen receptor signaling pathway such as ESR1, TFF1 [229] and
PRSS23 [230] were shown by TTMap to be upregulated upon RANKL in the background
of high progesterone in the RNAseq data, whereas these were shown to be downregulated
when cells were treated with progesterone or R5020 (Table 3.7). GREB1, an estrogen receptor
target gene [229] in the breast and recently shown progesterone receptor target gene in the
endometrium [231], showed an opposite pattern, it displayed an overexpression when treated
with progesterone which was countered in the case of RANKL stimulation in the presence of
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Figure 3.21: Validation of Prolactin signaling genes: JAK2. (a), (b) JAK2 mRNA measured by qPCR
on individual mammoplasties injected intraductally into recipient mice and kept for 14 days after they
established and treated with control or progesterone, cells were taken out and treated with RANKL or
control. Therefore, 4 conditions (control, RANKL, P4 and P4+RANKL) are found on mammoplasties
(a) number 319 (b) number 324. (c) Average of two independent experiments of the 4 conditions and
(d) JAK2 mRNA levels of P4 + RANKL cells relative and compared to P4 only levels.

high progesterone (Table 3.8).
When progesterone was low in the patient of the mammoplasty at the time of surgery, the
levels of estrogen receptor target gene varied inconsistently and often times the variation is
low (Table 3.8).

Deviation component Deviation component
Gene Symbol Description average upon RANKL average upon R5020

in progesterone high samples or progesterone
ESR1 Estrogen 0.40 -0.28

receptor (ER) 1
TFF1 Trefoil factor 1 0.82 -0.81

PRSS23 Serine protease 23 2.32 -0.31
GREB1 Growth regulating -0.71 1.34

ER binding 1

Table 3.7: Estrogen signaling in the experiments on the effect of RANKL (see section 3.6) on human
cells and the effect of progesterone or R5020 (see section 3.5), average value for deviation components
obtained by TTMap are shown for ESR1, TFF1, PRSS23 and GREB1.

Gene Symbol Deviation component
211 (High P4) 212 (High P4) 210 215 217 230

ESR1 0.29 0.51 -0.11 -0.06 0.14 -0.22
TFF1 0.90 0.74 -0.24 0.01 0.23 0.04
PRSS23 2.21 2.43 -0.24 0.04 0.11 0.30
GREB1 -0.56 -0.87 -0.19 -0.11 0.24 -0.22

Table 3.8: Estrogen signaling in the experiment of RANKL action on 6 treated mammoplasties cells; 2
with high level of progesterone (P4) (211, 212) and 4 with low level (210, 215, 217, 230). Individual
deviation components values are displayed for ESR1, TFF1, PRSS23 and GREB1.

The first and most stricking difference was noted in the ESR1 validation by qPCR as it
depends strongly on the background of the mammaplosty treated. While the mammoplasty
319 with low level of estrogen strongly downregulated ESR1 in all three cases (treated with
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RANKL, with RANKL and P4, and with P4) (Fig. 3.22a), in the mammopasty 324, ESR1
was increased upon progesterone treatment and further increased upon addition of RANKL,
whereas no changes were observed upon RANKL alone (Fig. 3.22b).
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Figure 3.22: Validation of Estrogen signaling gene ESR1. (a), (b) on individual mammoplasties
injected intraductally into recipient mice and kept for 14 days after they established and treated
with control or progesterone, cells were taken out and treated with RANKL or control. Therefore, 4
conditions (control, RANKL, P4 and P4+RANKL) are found on mammoplasties (a) number 319 (b)
number 324.

Both mammoplasty cells showed a significant increase upon progesterone treatment of TFF1
mRNA by qPCR (Fig. 3.23a, b). This is opposite to the results found in the RNA-seq. The
further treatment of RANKL induced the desired changes in mammoplasty 319 but not in
mammoplasty 324 (Fig. 3.23a, b). As in the microarray study, no changes were induced upon
RANKL treatment alone (Fig. 3.23a, b).
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Figure 3.23: Validation of Estrogen signaling gene TFF1. (a), (b) on individual mammoplasties
injected intraductally into recipient mice and kept for 14 days after they established and treated
with control or progesterone, cells were taken out and treated with RANKL or control. Therefore, 4
conditions (control, RANKL, P4 and P4+RANKL) are found on mammoplasties (a) number 319 (b)
number 324.

Also PRSS23 showed opposite results to the RNA-seq and the microarray (Fig. 3.24a, b).
However, RANKL is counteracting and even abrogating (mammoplasty 319) the induced
expression of PRSS23 with progesterone (Fig. 3.24a, b).
Both mammoplasty cells showed a significant increase upon progesterone treatment of GREB1
mRNA by qPCR confirming the results of the RNA-seq (Fig. 3.25a, b). Only mammoplasty
324 showed the desired changes upon further treatment with RANKL (after progesterone
exposure) (Fig. 3.25b). Moreover, unlike the results of the microarray study, increased levels
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Figure 3.24: Validation of Estrogen signaling gene PRSS23. (a), (b) on individual mammoplasties
injected intraductally into recipient mice and kept for 14 days after they established and treated
with control or progesterone, cells were taken out and treated with RANKL or control. Therefore, 4
conditions (control, RANKL, P4 and P4+RANKL) are found on mammoplasties (a) number 319 (b)
number 324.

of mRNA are observed upon RANKL treatment alone (Fig. 3.25a, b). Averages confirmed
those results (Fig. 3.25c, d).
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Figure 3.25: Validation of Estrogen signaling gene GREB1. (a), (b) on individual mammoplasties
injected intraductally into recipient mice and kept for 14 days after they established and treated
with control or progesterone, cells were taken out and treated with RANKL or control. Therefore, 4
conditions (control, RANKL, P4 and P4+RANKL) are found on mammoplasties (a) number 319 (b)
number 324.(c) Average of two independent experiments of the 4 conditions and (d) GREB1 mRNA
levels of P4 + RANKL cells relative and compared to P4 only levels.

Progesterone pathway
Key downstream target genes of progesterone receptor pathway such as RANKL [142], [106]
WNT4 [142], [106], MYBPC1 [215], CXCL13 [142] were shown by TTMap to be downregulated
upon RANKL in the background of high progesterone in the RNAseq data, whereas these
were shown to be upregulated when cells were treated with progesterone or R5020, in line with
them being progesterone receptor target genes (Table 3.9). PGR showed a downregulation in
both cases (Table 3.10), which follows the expected tendency [232].
When progesterone was low in the patient of the mammoplasty at the time of surgery, the
levels of progesterone receptor target gene varied inconsistently and often times the variation
is low (Table 3.10).
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Deviation component Deviation component
Gene Symbol Description average upon RANKL average upon R5020

in progesterone high samples or progesterone
PGR Progesterone receptor -0.36 -0.65

RANKL Receptor activator of -0.41 1.01
nuclear factor
kappa B ligand

WNT4 Wingless-type -0.49 0.72
family member 4

MYBPC1 Myosin binding -2.16 3.00
protein C slow type 1

CXCL13 C-X-C motif -3.29 4.43
chemokine ligand 13

Table 3.9: Progesterone signaling in the experiments on the effect of RANKL (see section 3.6) on
human cells and the effect of progesterone or R5020 (see section 3.5), average value for deviation
components obtained by TTMap are shown for PGR, RANKL, WNT4, MYBPC1 and CXCL13.

Gene Symbol Deviation component
211 (High P) 212 (High P) 210 215 217 230

PGR -0.45 -0.27 -0.34 -0.13 0.20 0.20
RANKL -0.68 -0.14 -0.07 -0.18 0.09 0.06
WNT4 -0.63 -0.36 0.13 0.12 0.20 0.17

MYBPC1 -2.29 -2.03 0.03 -0.11 0.01 0.31
CXCL13 -3.68 -2.90 0.35 0.21 0.18 -0.23

Table 3.10: Progesterone signaling in the experiment of the effect of RANKL on 6 treated mam-
moplasties; 2 with high level of progesterone (P4) (211, 212) and 4 with low level (210, 215, 217,
230). Individual deviation components values are displayed for PGR, RANKL, WNT4, MYBPC1 and
CXCL13.

The qPCRs in the two mammoplasty for progesterone receptor (PGR) showed different
patterns and inconsistent with RNA-seq (Fig. 3.26a, b).

CTRL
RANKL
P4 (20 mg)
P4 (20 mg)+RANKL

a b
PGR mRNA expression 324319

0.0

0.5

1.0

1.5

CTRL

RANKL
P4

P4+
RANKL

0

1

2

3

4
CTRL
RANKL
P20
P20+RANKL

CTRL

RANKL
P4

P4+
RANKL

Figure 3.26: Validation of Progesterone signaling genes: PGR. (a), (b) PGR mRNA measured by
qPCR on individual mammoplasties injected intraductally into recipient mice and kept for 14 days
after they established and treated with control or progesterone, cells were taken out and treated with
RANKL or control. Therefore, 4 conditions (control, RANKL, P4 and P4+RANKL) are found on
mammoplasties (a) number 319 (b) number 324.
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RANKL also known as RANKL showed a consistent increase upon progesterone treatment in
both mammoplasties (Fig. 3.27a, b), further treatment of RANKL did not show the expect
result as an increase in RANKL was observed (Fig. 3.27a, b).

CTRL
RANKL
P4 (20 mg)
P4 (20 mg)+RANKL

a b
RANKL mRNA expression 324319

0

2

4

6

CTRL

RANKL
P4

P4+
RANKL

0

1

2

3
CTRL
RANKL
P20
P20+RANKL

CTRL

RANKL
P4

P4+
RANKL

Figure 3.27: Validation of Progesterone signaling genes: TNFSF11. (a), (b) TNFSF11 mRNA
measured by qPCR on individual mammoplasties injected intraductally into recipient mice and kept
for 14 days after they established and treated with control or progesterone, cells were taken out and
treated with RANKL or control. Therefore, 4 conditions (control, RANKL, P4 and P4+RANKL) are
found on mammoplasties (a) number 319 (b) number 324.

We then proceed with the validation of WNT4 by qPCR, which confirmed our findings;
WNT4 mRNA is upregulated in treated cells with progesterone compared to control (Fig.
3.28a, b). Moreover, treatment of RANKL in cells treated with progesterone compared
to progesterone-treated cells alone showed a decrease (Fig. 3.28d). RANKL treatment on
cells without progesterone treatment showed no changes (Fig. 3.28a, b). Averages of both
mammoplasties show that WNT4 mRNA follows the results found in sections 3.6 an 3.5 (Fig.
3.28c, d), although they do not reach significance yet. A third sample with available patient
information would shed light into this validation.
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Figure 3.28: Validation of Progesterone signaling genes: WNT4. (a), (b) WNT4 mRNA measured by
qPCR on individual mammoplasties injected intraductally into recipient mice and kept for 14 days
after they established and treated with control or progesterone, cells were taken out and treated with
RANKL or control. Therefore, 4 conditions (control, RANKL, P4 and P4+RANKL) are found on
mammoplasties (a) number 319 (b) number 324. (c) Average of two independent experiments of the
4 conditions and (d) WNT4 mRNA levels of P4 + RANKL cells relative and compared to P4 only
levels.

For MYBPC1, only mammoplasty 324 validated the results of the mammoplasty and RNA-
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seq (Fig. 3.29b). Whereas in mammoplasty 319, progesterone levels are not affecting the
expression of MYBPC1, in mammoplasty 324 it induces the expression of MYBPC1 (Fig.
3.29a, b). The further treatment of RANKL on those cells showed a decrease of MYBPC1
mRNA in 324 (Fig. 3.29b). Even when averaging the results of both mammoplasty the result
are going along with the previous results, but does not reach significance yet (Fig. 3.29c, d).
A third sample with available patient information would shed light into this validation.
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Figure 3.29: Validation of Progesterone signaling genes: MYBPC1. (a), (b) MYBPC1 mRNA
measured by qPCR on individual mammoplasties injected intraductally into recipient mice and kept for
14 days after they established and treated with control or progesterone, cells were taken out and treated
with RANKL or control. Therefore, 4 conditions (control, RANKL, P4 and P4+RANKL) are found
on mammoplasties (a) number 319 (b) number 324. (c) Average of two independent experiments of
the 4 conditions and (d) MYBPC1 mRNA levels of P4 + RANKL cells relative and compared to P4
only levels.

While both mammoplasty were displaying a positive response of CXCL13 mRNA upon pro-
gesterone treatments (Fig. 3.30a, b), only mammoplasty number 319 (Fig. 3.30a) reproduced
the previously observed results on RANKL, i.e. a reduction of the levels of CXCL13 upon
treatment of RANKL in progesterone induced cells. This might be explained by the difference
in the two mammoplasty of basal level in control cells (average cycle of 32, compared to 38).
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Figure 3.30: Validation of Progesterone signaling genes: CXCL13. (a), (b) CXCL13 mRNA measured
by qPCR on individual mammoplasties injected intraductally into recipient mice and kept for 14 days
after they established and treated with control or progesterone, cells were taken out and treated with
RANKL or control. Therefore, 4 conditions (control, RANKL, P4 and P4+RANKL) are found on
mammoplasties (a) number 319 (b) number 324.
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Conclusions on the validation
As shown by TTMap (see section 3.6), RANKL mostly shows no effect on mRNA on the
tested genes in cells that have not been previously exposed to progesterone specially on JAK2,
RANKL, WNT4, CXCL13 and TFF1 mRNA levels.
For the effect of RANKL on the cells pre-treated with progesterone, no significant results
are observed when grouping the two mammoplasty reflecting that each mammoplasty has a
different manner to react to treatments as also observed in [224].
JAK2 and WNT4 show reproducible result compared to the microarray experiment (see
section 3.6) and the RNA-seq experiment (see section 3.5). Therefore, WNT4 is induced by
progesterone signaling, whereas RANKL reduces this increase and JAK2 mRNA increases
upon progesterone signaling and is abrogated upon RANKL treatment.
Other genes show either validation of the findings in mammoplasty 319 (CXCL13 ) or 324
(MYBPC1,GREB1 ) urging the need to add more samples for validation.
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3.7 Gene expression changes in the breast epithelium during
the menstrual cycle

The Susan G. Komen for the Cure Tissue Bank at the IU Simon Cancer Center was established
as a resource of breast tissue samples from healthy women volunteering to donate a biopsy
of their breast in order for researcher to gain knowledge on the biology and developmental
genetics of the normal mammary gland [233]. A better understanding of the normal biology of
the breast might distinguish the early events triggering breast cancer and therefore implicate
an improved prevention of breast cancer [234].
A first step towards a characterization of the normal biology of the breast is to understand the
impact of the fluctuation in hormonal levels throughout the menstrual cycle on the molecular
level of genes. Therefore, 20 biopsies of healthy premenopausal women were selected based on
abundance of epithelial tissue on hematoxylin and eosin-stained sections of the Formalin-Fixed
and Paraffin-Embedded tissue in order to facilitate laser capture microdissection [142]. This
technique permits the dissection and capture of cells and was used in order to enrich for
epithelial cells for a more informed view on the changes through the menstrual cycle among
only epithelial cells and for eliminating the bias of cell type content. Hence, microdissected
epithelial parts were captured and mRNA was extracted from these samples and sequenced
using RNA-seq.
At the day of surgery, women are guided through a questionnaire on their reproductive history
(e.g. last menses, length of cycle, parity) [142]. Blood is drawn from the patient to assess the
hormonal levels (estrogen, progesterone and LH) simultaneously to biopsy retrieval. Therefore,
the 20 samples could be classify into follicular (9 women) and luteal phase (5 women) according
to the last menses and confirmed by progesterone levels. Moreover, six women using hormonal
contraception at the time of donation were also included.

Goal. The major goal of this study is to find molecular differences between breast tissue from
follicular and luteal phase women and understand the impact of hormonal contraceptives on
healthy premenopausal breast epithelial cells. Considering the patients in follicular phase
currently not under hormonal contraceptives (n = 9) as the control samples, we assess with
TTMap how far each gene expression profile from patient from the luteal phase and each profile
from women under contraceptives are to the follicular phase. Also this dataset enables us
to question if the molecular profile of women under contraceptives is similar to non-takers.
Lastly, TTMap permits the classification of women from closest to furthest to the control and
we can question if there is a correlation between this deviation and hormone levels.

As can be seen in the MDS plot (Fig. 3.31) there are 3 batches, two that were composed of
10 samples and 9 samples respectively and one batch that consisted only of a point (sample
19). The first part of TTMap also highlighted this sample as an outlier (Fig. 3.32).
The only African American (AA) woman in the cohort was revealed by TTMap as the woman
with the overall gene expression profile which is the furthest away from the control (Fig. 3.33).
Evidence from breast cancer studies suggest that breast tissue from AA are extremely different
from the general population. Indeed, epidemiological studies show that AA women are prone
to particular type of breast cancer [235] and different links between breast cancer risk and
hormonal history are described [236]. Moreover, AA are more likely to be diagnosed with
triple negative breast cancer which is less common in the general population [237].
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Figure 3.31: MDS plot of the expression profiles obtained from extracted RNA from breast biopsies of
20 healthy premenopausal human donors, batches are represented with different colors.
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Figure 3.32: Control adjustment part of TTMap on the data from [142]. One sample showed a 5-fold
increase in the number of genes considered as outliers (red, sample 19).

Apart from outliers (sample 2, 8 and 10), TTMap formed 2 major clusters in the overall level.
The first group, which is the closest to the control samples is composed of samples 11, 12, 13,
16, 18. This biggest cluster could be separated into the quartiles of the function and revealed
that sample 12, 13 and 18 were the closest to control (Fig. 3.33, 1st. Q.). Sample 12 was
in luteal phase, but still had low level of progesterone and samples 13 and 18 are under oral
contraceptives with the same type of progestin.
The second subgroup consists of the sample 4, 6 and 7. Sample 4 and 6 are gene expression
profiles originating from women taking oral contraceptives which contain however different
type of progestin. These both had a high deviation compared to follicular profiles.
These two different groups have well defined genes that change compared to follicular phase
comprising all the 255 genes found by standard tools [142]. We observed that inside each
batch (Samples 1 to 10 / 11 to 18 and 20), excluding women taking hormonal contraceptives,
gene expression profile of women are ordered by amount of progesterone in the blood, i.e.
the higher the progesterone the higher the deviation compared to control (Fig. 3.34). This
was not the case for estradiol levels, menstrual cycle day, nor age. We can therefore suggest
that the biggest change inferred on the breast cells through the menstrual cycle is driven by
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progesterone levels.
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Figure 3.33: TTMap on the expression profiles obtained from extracted RNA from breast biopsies of
20 healthy premenopausal human donors where follicular-phased women are considered as controls, Q.
= Quartile.
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Figure 3.34: Correlation plot between the total absolute amount of deviation of the expression profile
of the five luteal-phased women on the x-axis and the progesterone level (ng/mL) on the y-axis, colors
represent different batches.

Remark 3.7.1. Several other dataset were generated in the lab that could be used to complete
this one. First of all, the microarray dataset from section 3.6 comprises two luteal phase
samples and four follicular phase samples. They were sequenced for the experiment explained

120



3.7. Gene expression changes in the breast epithelium during the
menstrual cycle

in that section, but can be used to assess the differences, in EpCAM+ cells only, in luteal
against follicular-phased gene expression profiles. The difference between these two datasets is
also that these cells were kept ex-vivo as microstructures. Both were extracted from healthy
premenopausal women donors. Over 700 significant genes were found.
The second dataset consists of laser microdissected samples from 3 follicular and 3 luteal
phase samples and RNA-seq was performed on the epithelial enriched parts. This resembles
most closely the dataset mentioned above and was generated for the same purpose. Only 21
genes reached significance by adjusted p-value, among which the known progesterone receptor
target genes RANKL, DIO2, CXCL13 [221], [142], [118].

Lasty, aged-matched women with low level of progesterone (n = 8) and high level of pro-
gesterone (n = 8) were selected from our biobank and RNA was extracted from the full
tissue, from the sorted luminal and from myoepithelial cells. Among the 8 women with low
level of progesterone, 2 were categorised into follicular phase and the 6 others either are
under hormonal contraception or did not provide the answer to the question of hormonal
contraception. This dataset was generated in order to determine changes in different human
cells when progesterone is high compared to when progesterone is low in aged-matched samples.
With standard analysis comparing the two follicular phased sample to the 8 luteal phased
samples in the luminal cells (that would correspond more closely to the setting above) no
significant genes were found by adjusted p-value reflecting the fact that there are only 2
samples in one of the two groups. However, three milk proteins CSN1S1, CSN3, LALBA and
a progesterone target gene CXCL13 were the highest in terms of fold changes compared to
follicular phase.
These datasets were analysed at the beginning of the thesis when TTMap was not developed
yet, and therefore only standard analyses were used to find significant genes.
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3.8 Applying TTMap to other types of datasets
In the previous chapters, we have appreciated applications of TTMap to RNA-seq data sets
(section 3.4, 3.7, 3.5) and to microarray data (section 3.3, 3.6). In this section, TTMap is
applied to various types of data to uncover generalisation of application of the method. We
applied TTMap to neuronal data spike, i.e. measurements of spiking of neurons in brains of
rats and mice 3.35, and to metabolomic data 3.8.2 of patients with chronic depression and
early psychosis.
We are currently also testing an extension of TTMap to single-cell RNA-seq analysis, which
due to the nature of the data, which is sparse (see section 1.4.4), needs modifications in HDA
(see 2.2) and in the mismatch distance calculation.

3.8.1 TTMap on neurological data with the Human Brain Project
To understand which neurons of the brain are spiking upon certain impulses, electrodes have
been placed on mice and rats in specific brain regions. This enables to measure average and
maximum spike height, spike interval length, spike numbers, among others. Brain gray matter
is divided into 6 layers (L1-L6) and different cell types have been assessed (Pyramidal cells
(PC), dopaminergic (DA) neurons, fast-spiking (FS) neurons, stem cells (IN), Amygdala cells
(Amyg)).
Dopaminergic neurons were considered as controls and the others cell types were considered as
test samples. Batches correspond to mice and rats cells. Data has been Z-scored and missing
values were considered as 0.

Goal. We use TTMap to characterize the spiking pattern of the different neuronal cells across
mice and rats.
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Figure 3.35: TTMap on brain spike measurements of different cell types compared to dopaminergic
cells. Several subgroups are constituted of the same cell types of mice and rats (L5PC = pyramidal
cells in layer 5, L5IN= stem cells in layer 5, CA1PC = pyramidal cells in layer CA1, Amyg = Amygdala
cells). Outliers, i.e. groups of single samples, are not shown.
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TTMap characterizes several well-defined groups that match cell types disregarding the animal
of origin (rats and mice) (Fig. 3.35). This was not discerned by standard tools as the data has
many NAs (Supplementary Fig. S26). These subgroups display similar differences in certain
measured parameters compared to dopaminergic cells. Analysis of those features permits a
better characterization of the variation compared to dopaminergic cells. L5PC cells divided
into two distinct groups. Further analysis of these subgroups might reveal a subclassification
in terms of spiking pattern of those cells. This dataset had a consequent amount of missing
value which often constitutes a problem for standard data analysis. As TTMap operates with
ranges of control values, NAs did not impinge on the results.

Data availability
This dataset was generated by Rodrigo De Campos Perin and colleagues at the EPFL, who
provided it to us. For more information contact : rodrigo.perin@epfl.ch.

3.8.2 TTMap on metabolic data
The metabolome of healthy individual, of patients with chronic depression (C) and of patients
with early psychosis (EP) events have been assessed in order to detect markers distinguishing
the two stages. C patients and EP patients are often difficult to distinguish [238]. Therefore,
it is of considerable clinical interest to discover hints for a more informed classification of
these stages. The metabolome of each patient was derived from their blood using liquid
chromatography-mass spectrometry.

Goal. We use TTMap in order to understand if a subtyping of the metabolome of patients
with early psychosis or chronic depression can be made and if these profiles can be ordered in
how close they are to the metabolome of healthy individual.

TTMap showed a core cluster of samples with early psychosis and chronic depression and
several outliers, all EP patients (Fig. 3.36). The distribution of the samples in the quartiles
revealed that all the chronic patients were in the lower quartile, and therefore had a lower
total amount of deviation compared to healthy individuals, than EP, with the exception of one
sample. Therefore, chronic and early psychosis patients have similar metabolic changes, but
chronically depressed patients are closer to the control samples. Moreover, outliers identified
in the overall clustering reflect EP patients with metabolic changes that are significantly
higher and different than other samples, a precise analysis of those metabolites would shed
light into the disease as they are specific to the early psychotic state. The only chronic patient
who was in a higher quartile was younger (Fig. 3.36, red box). TTMap showed that young
patients of EP and C between 20 and 30 years old were all assigned to higher quartiles, and
therefore deviate more compared to control (Fig. 3.37, red box), showing that the metabolic
changes are more noticeable in younger patients, but are the same than for older patients as
they cluster together in the overall clustering.

Data availability
This dataset was generated by Margot Fournier and colleagues at the CHUV, who provided it
to us. For more information contact : margot.fournier@chuv.ch.
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Figure 3.36: Output of TTMap comparing metabolic data obtained from blood of healthy individuals
and patients with psychotic events, either patients with early psychotic events (EP) or chronically
depressed patients (C). Q. = Quartile.
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Figure 3.37: Correlation plot of total amount of deviation compared to age, blue line is a linear fit, red
box represents samples between 20 and 30 years old.
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4.1 Discussion
(This section is Adapted from: "Two-Tier Mapper: a user-independent clustering method for
global gene expression analysis based on topology", R. Jeitziner, M. Carrière, J. Rougemont, S.
Oudot, K. Hess, and C. Brisken, 2017, arXiv: 1801.01841 [194], submitted to Bioinformatics.)
We have developed a topology-based clustering tool, Two-Tier Mapper (TTMap) that calculates
and relates individual deviation from a given control group. TTMap outperforms existing
clustering tools especially when dealing with small sample numbers.
We validated the method by analysing in silico data (section 3.2), several biological data sets,
including microarray data from Drosophila data and human data respectively (sections 3.3
and 3.6), RNA-seq data from mice and human data (sections 3.4, 3.5 and 3.7), metabolic data
(section 3.8.2) and on neuronal spike data (section 3.35), and by proving theoretical aspects
of the stability of the method (section 2.4).
TTMap outperforms existing clustering tools, with particular strength for small sample
numbers. TTMap identifies subgroups in the dataset, even reliably discriminating subgroups
composed of a single sample. It should therefore be used as a first-line analysis tool on the
dataset to reveal outliers within the control and the test group and clusters with well-defined
associated gene signature. The gained insights on the data guide further statistical analyses,
applied in a second phase.
Thanks to the two-tier cover, the algorithm is theoretically stable, as expressed precisely in
three stability theorems. This cover not only provides the global clusters in an unbiased
manner, but provides additional local information using a filter function that yields deeper
insights into the composition of the clusters. Having a control group enabled us to define a
new topological type of distance on the samples leading to an enhanced view on the data.
TTMap characterizes the control group by finding outlier values and samples. This is useful
as it can improve standard statistical methods for differential expression analysis.
TTMap provides an ordering of the test samples reflecting their proximity to the control
samples. This reveals possible samples that are in-between the two compared groups by
samples that are extremely close to control, and samples that are outliers since they are the
furthest to the control group.
Popular clustering method as well as Mapper depend on parameters that are challenging
to select [92], [95]. Our improved and extended version of Mapper includes an optimized
parameter selection, making it user-independent for global gene expression analysis, and
performs well independently of sample sizes.
TTMap offers the advantage that it can group analyses with batches into one analysis instead
of analysing separately the data in each batch and grouping the results afterwards. This
process strengthen the subgroup discovery, which is not obtained according to batches but
according to shape of deviation reflecting the biological changes.
TTMap does justice to biological complexity and detects significant subgroups within a cluster.
This was illustrated by the clustering of data using TTMap on different strains of mice in the
estrous cycle, considered as different batches, which demonstrated the existence of samples
that are in-between two phases, and revealed subgroups that reflect possible alterations of
hormone levels, as they have differentially expressed genes known to vary along the human
menstrual cycle [142] or are under control of progesterone [215]. These genes are invisible to
standard tools, since they are significantly expressed only in those subphases of the estrous
cycle. Hence, a reclassification of the estrous cycle into more than 3 phases might be necessary
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in order to reflect hormonal changes as well as physiological changes in vaginal cytology.

TTMap revealed that RANKL (section 3.6), a protein linked to lactation in the mammary
gland [189] and which is under the control of progesterone receptor signaling [118] (see section
1.6.9) exerts significant effect on mammoplasty tissue only when the tissue is obtained from
patients in the luteal phase of the cycle, i.e. having high levels of progesterone. This suggests
that careful attention should be paid when stimulating human cells with RANKL as the
results vary depending on the hormonal history of the patients.

TTMap demonstrated that R5020, a synthetic progestin, has the same role than progesterone
on epithelial cells, but to a higher extent, demonstrating that R5020 is a more potent compound
than natural progesterone.

TTMap showed that the level of progesterone of the patient at the time of surgery influences
the response of the epithelial cells to the treatment of progesterone and R5020, since a lower
extent of deviation of gene expression profiles was observed in patient with higher levels of
progesterone.

Moreover, the extent of deviation of gene expression profiles from young patients treated
with progesterone or R5020 is higher than from older women. Therefore, cells from younger
patients are more responsive, whereas cells from women with high level of progesterone are less
responsive to treatment with progesterone and R5020. Progesterone induces proliferation on
epithelial cells [126], [117], and increases breast cancer risk. Hormonal contraceptives as they
are composed with a synthetic progestin, might act in a similar way than R5020. Our results
would provide an explanation to the observed increase in breast cancer risk among young
women taking oral contraceptives [170], as TTMap showed that R5020 had a higher impact
on the cells provided by a mammoplasty from a young woman. We also provided first-line
of evidence that GREB1 is a progesterone-responsive gene in human breast epithelial cells
which was also shown to be the case in human endometrial stromal cells [231]. This findings
could be reproduced by qPCR, but need further replicates to reach significance. As in the
stimulation with RANKL, each mammoplasty showed a different pattern of deviation, and we
realised that experiments dealing with mammoplasty tissues should be carefully interrogated
for patient history in order to draw the right conclusions.

Furthermore, combining these two analyses, we discovered that the action of RANKL on
these particular cells having been exposed to luteal levels of progesterone antagonises the
action of progesterone on human breast tissue (section 3.6.4). The commonly changed features
revealed a link with apoptosis reflecting that RANKL and progesterone might act together
for blocking apoptosis in healthy epithelial cells. Both RANKL and progesterone action
increased genes linked to proliferation, but not the same genes, suggesting that they might
use complementary pathways to induce proliferation. This sheds light into the interplay of
RANKL and progesterone and could not be found using standard analyses.

We appreciated in several sections (3.2.4, 3.3.5, 3.4.1) that both steps, HDA and GLMap, of
TTMap are compelling to discern desired insights on the data.

The method is available as a freely downloadable library "TTMap" in Bioconductor, enabling
widespread application of this useful tool.
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4.1.1 Discussion on the differences between TTMap, PAD and to the stan-
dard Mapper algorithm

The main differences between TTMap and the standard use of Mapper is the choice of
parameters and the data pre-treatment. Because of the parameter selection, each of the two
version of Mapper are producing a distinct output and should be interpreted in a different way.
If parameters are well-chosen, then the insights produced by the original way of using the
Mapper algorithm (OMap) [10], [8], [11], i.e. the algorithm with the parameters selected in
the way described in section 1.2.9, reflect the topology with regards to a filter function chosen
appropriately of the underlying space on which the point cloud lies. The TTMap algorithm in
turn describes one topological aspect, the connected components, locally and globally. Hence,
both algorithms could be used in a complementary manner. To understand more precisely
the advantages of using one against the other, here is a summary of the points on which they
differ. More precisely, progression analysis of disease (PAD) [9] has been described as an
optimized version of OMap for the analysis of gene expression dataset, hence our focus will
be on comparing the two methods.

4.1.2 Disease-specific-genomic-analysis compared to hyperrectangle devia-
tion assessment

Method
The first part of PAD uses several times linear regressions (LR). These LR processes are
highly affected by outliers [199] and are not suitable for small datasets. Therefore, in TTMap
we decided to replace this step by the hyperrectangle deviation assessment.

Outputs
The resulting "disease components" of PAD, which are comparable to TTMap’s deviation
components, are difficult to be interpreted due to the LR; a +1 does not mean 2-fold increase
in expression, it can be an artefact of LR processes. In TTMap, a deviation of -1 for a certain
feature is precisely reflecting a 2-fold decrease, since the data is in log2-scale.

Parameter selection
Both PAD and TTMap have a parameter to select for this part: the Wold’s invariant for PAD
and e for TTMap. They are chosen by visual inspection of the Wolds plot that sometimes is
equivocal for PAD or by the data using the variances for TTMap.

4.1.3 Original use of Mapper compared to Global-to-Local Mapper
The selection of a cover
In OMap, the chosen cover of the real-line requires selection of parameters and no guidance is
provided towards these choices. It is given by a number of intervals with a certain percentage
of overlap (section 1.2.9). The selection of those parameter depend on the given problem [19],
[239], [9], [13], [240]. Furthermore, it has not been demonstrated that the chosen parameters
for a given problem are general enough for similar data. For instance, for temporal single-cell
RNA-seq [19] several different parameters were chosen for the same type of data. Some
attempts to guide the choice of parameters for the cover, i.e. the number of intervals and the
percentage of overlap, have recently been made [241]. It is however unclear if this methodology
is suitable for small data set since it is stated that the sample size needs to be large enough
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in order to prove that the right parameters are chosen [241].
In TTMap, two covers are considered at the same time, a local one and a global one. Instead
of tracking changes across a full range of covers as in [24] with the Multiscale Mapper, here
only the local and global features are considered and directly related. TTMap is the first
application of Mapper with a two-tier cover.

The selection of a distance
A new distance (see section 2.3.1), called the mismatch distance, was introduced in TTMap,
similar to the Hamming distance [242]. This is useful in the analysis of gene expression, where
the extent of deviation from the control is less important than the pattern of deviation. Any
other distance can be entered, which enables a lot of flexibility. In some versions of the OMap,
the distance can also be freely chosen [243], others have restricted choices [27].

The parameter of closeness ε
Linked to the distance is the cutoff parameter ε, which in OMap remains mysterious as it is
not stated as a number in the applications, it can not be freely chosen [27]. It is linked to the
number of intervals chosen for the cover [27], or is given as a number that determines the
final number of clusters [243] introducing a huge user-bias. In TTMap (section 2.3.4), ε was
optimised for gene expression data and represents significant subgroups in the data as it uses
probabilities, but can also be chosen freely by the user to accommodate specific needs.

Significant features
TTMap detects subgroups in the dataset and then determines the features distinguishing them,
which requires further work with OMap (subgroups need to be selected by visual inspection
of the graph and further tests such as Kolmogorov-Smirnov tests [240] are applied).

Theoretical stability
On the theoretical side (see section 2.4), the OMap studies the topological features distinguish-
ing two objects [8] and persistence diagrams [202] are extensively used as descriptors of those
Mapper outputs. By focussing on the connected components only, but at different levels, and
by adding to the extended persistence diagram the additional information of links between
local and global features we defined a new type of descriptors of the TTMap graphs (Definition
2.4.1). These new descriptors are enlarging the field of persistence diagrams. The results
on the persistence diagrams in [204] were adapted to the setting of this method, and unlike
the OMap, the descriptors of TTMap are complete, ensuring the stability of not exclusively
the descriptors but also of TTMap, which confirmed the strength of the method. Since the
stability of TTMap is assessed theoretically and practically, we proved that it is a reliable
clustering tool [26].

4.1.4 Future developments and outlook
As implemented here, the one-dimensional real filter function takes into account only one
specific aspect of refinement. To further enhance the method, one can filter by any metadata,
such as categorical information and numerical data. This flexibility enables the user also to
interrogate the data in various ways. All outputs can be compared, as the global clusters are
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independent of the chosen filter function. However, we imagined a generalisation of TTMap to
accept as input filter functions f : X → Rn to enable to view all these outputs in one picture.
In this situation, keeping the notations of 2.3.3, the chosen cover of the image of f without
multiplicity is given by

I = {π1 ◦ Im f, π̃−1
1 qπ̃1◦f

[0,25[, q
π̃1◦f
[25,50[, q

π̃1◦f
[50,75[, q

π̃1◦f
[75,100], . . . , π̃

−1
n qπ̃n◦f[0,25[, q

π̃n◦f
[25,50[, q

π̃n◦f
[50,75[, q

π̃n◦f
[75,100]},

where π̃j : Rn → R is the projection onto the j-th component, Im f denote the image of f
with multiplicity, i.e.,

Im f = {(f(X), σ) | X ∈ T, σ ∈ {1, . . . ,mult(X)}} ⊆ R× N,

with the lexicographic order, where mult(X) = card(f−1(f(X))) is the multiplicity of f(X)
and for any 0 ≤ a < b ≤ 100, let

qr[a,b[ = π1
({
y ∈ Im r | quantilea(Im r) ≤ y < quantileb(Im r)

})
,

where π1 : R×N→ R is the natural projection on the first component, and quantilea(Im r) is
the a-th quantile of the ordered values in Im r.

This cover of Rn (Fig. 4.1) is a repetition in each dimension of the cover in one dimension,
where all the other dimensions are fixed. Since the global tier is added to the cover of Rn,
each one-dimensional plot obtained by TTMap is linked to the global tier and linked with
each local tier of each dimension. The idea is to draw a hotel-like structure, where in each
floor one finds the i-th projection of the function. If the function is all the metadata available
on the patients (e.g. one dimension is the age, the other the cancer type, then family history,
then height, then BMI, . . . ), then at the i-th floor one finds the i-th metadata segregated into
quartiles. (Work currently done by a master student Martino Milani, EPFL).

Figure 4.1: Proposition of a cover Rn, with n = 2 for a generalisation of TTMap.

Another valuable ressource is the future development of a webpage which would include
the current version of TTMap. All the steps would be entered via choices and clicks online.
Moreover, by clicking on each sphere obtained on the TTMap graph a circular plot of the
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metadata linked to that sphere would be available reflecting meta-data.
In section 2.3.4, we explained the selection of the parameter ε using the Chen-Stein method on
identically and independently distributed variables. Since the theory also exists for dependent
variables and since this might be highly applicable to gene expression data sets as genes
work within a pathway or a network, hence are not independent variables, a possible future
project would be to calculate ε using Chen-Stein’s method on dependent variables [209]. The
obstacle being to know prior to the analysis or estimate with the data which are the dependent
variables.
A cluster in TTMap does not reflect precisely the distance between the samples. Another
version of TTMap could be envisioned that upon a click on a sphere or with a closer view
into a sphere one would visualize the Vietoris-Rips complex drawn on top of the N points in
that cluster and each link is supplemented with a weight depending on the proximity of two
samples either written next to the edge or represented as more or less thick edges (Fig. 4.2).

Figure 4.2: Extension of TTMap, with a zoom on a sphere that displays a Vietoris-Rips simplicial
complex with weights.

The TTMap algorithm might be strengthen by replacing the single-linkage clustering step
by other more powerful clustering algorithms such as DBSCAN. The situation of an outlier
point between two clusters C1 and C2 could then avoid grouping the two clusters C1 and C2
together (Fig. 4.3).
TTMap produces individual profile of deviation from the control for each sample and relates
it to other samples. This, together with its ability to account for batch effects, make it a
promising tool for personalized medicine, where increasingly complex individual patient data
need to be analyzed and related to other samples.
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C1

C2

Figure 4.3: Plot of a point cloud with two clusters (C1 and C2) linked with one outlier point.

132



5 Conclusion

133



Chapter 5. Conclusion

We have developed a new method for the analysis of global gene expression profile based on
topology, called Two-Tier Mapper (TTMap).
All the parameters have been optimized in order to render this algorithm user-independent.
This choice of parameters induced the theoretically stability of the algorithm, confirming the
reliability of TTMap.
TTMap, with default parameters, is a two groups comparison that provides an individual
profile of deviation, enabling precise decomposition of each sample. The method produces a
visual output with subgroups and outliers easily identifiable. It associates to each cluster the
significant features distinguishing it from the others.
TTMap defines a new category of clustering algorithm since it is at the intersection of the two
major subtypes of clustering methods: the partitioning clusterings, as it provides subgroups
and the hierarchical clusterings, as it gives a two-tier decomposition of the data, i.e. a local
tier and a global tier.
TTMap provided previously unravelled insights into a wide variety of datasets ranging from
microarray and RNA-seq on mice data, Drosophila data and on human data to metabolic
data or even neuronal spike data. We also validated this approach on in silico data. We
showed that it outperforms standard clustering algorithms in terms of subgroups discovery
and stability. The complex biology of the mice estrous cycle could be further deciphered using
TTMap, where subgroups of the different phases of the estrous cycle were found and related
to hormonal action. New insights on the action and interplay of RANKL and progesterone on
human epithelial cells were gained using TTMap that could not be obtained with standard
methods.
We generate TTMap as an open source R package in Bioconductor to enable its broad usage.
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In this chapter, we report ongoing work. For that, we will introduce two further topological
methods to analyse data, more specifically useful in the discovery of cyclical data, i.e. data
that after a certain time returns back to its original value.
In section 6.1, we illustrate a possible application of multidimensional persistence to the study
of hormone-responsive genes, with first implementations. It is based on the work of Frosini
and Landi [31] that we explain in Appendix B.0.1.
The second application (section 6.2) of topology is using an adaptation of the method described
by Arsuaga et al. [244], [245] to data from our lab.
Other ongoing work consists of 1) extending TTMap to single-cell RNA-seq data and apply it
and 2) using TTMap to detect subgroups in breast cancer data obtained through a collaboration
with Lund, Sweden, which provided us with 1079 breast cancer RNA-seq profiles to which
was added 20 healthy mammoplasty RNA-seq profiles. The healthy tissues were provided
from our biobank and shipped to Sweden for sequencing in order to reduce the bias due to
the place of sequencing.
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6.1. New method to determine hormone responsive genes using
multidimensional persistence

6.1 New method to determine hormone responsive genes us-
ing multidimensional persistence

Estrogen and progesterone are two major hormones fluctuating through the human men-
strual cycle of premenopausal women, as can be observed in the graph of hormone levels
(Supplementary Fig. S1) using the dataset of I. Pardo et al. [142].
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Supplementary Figure S1: Hormonal fluctuation through the menstrual cycle from dataset [142], data
reported from Mass Spectrometry of blood from 14 women through the menstrual cycle with self
reported last day of menses, progesterone blue, estradiol pink.

To discover a list of genes responsive to either progesterone or estrogen, as well as other
measured hormones, and gain molecular insights into their respective roles in cells of the
breast, we developed the following method.

Let f : [0, 28] → R2 : t 7→ (Pt, Et) be the function representing for each day t of the
cycle the corresponding measured level of progesterone and estrogen, where f(0) = f(28)
(Supplementary Fig. S2). This function needs to be compared to the two functions eG :
[0, 28] → R2 : t 7→ (Pt, Gt) and pG : [0, 28] → R2 : t 7→ (Gt, Et), where Gt is the level of
expression of a gene G measured for instance by RNA-seq or microarrays on day t of the
cycle. The functions f , eG and pG can be seen as functions from S1 to R2, and we want to
determine whether there exists a diffeomorphism he : S1 → S1 such that || f − eG ◦ he ||∞= 0,
which would imply that G is an estrogen responsive gene. The diffeomorphism (see Appendix
B.0.1) is needed as it is unclear when the response is occurring, the same day or with a delay.
The same question will be asked for pG, i.e. find hp : S1 → S1 such that || f − eG ◦ hp ||∞= 0.
An answer to that problem can be found using multidimensional persistence (the theory of
multidimensional persistence and comparison of size functions is described in Appendix B.0.1,
specifically theorem B.0.38), which reduces the problem to the calculation of homology groups
and their ranks. We wrote a program in R that, specifically for gene expression and menstrual
cycle data, calculates these ranks, i.e. rank(H .,.

0 (τ)), where τ is a function τ : [0, 28] → R2.
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It is of note that these ranks are computable, since we have a finite sampling of the points
representing the functions eG and pG.
We are currently testing the method on the dataset generated by I. Pardo et al. [142], with
positive controls RANKL and WNT4 as they are known progesterone target genes. Plots
of eG (Supplementary Fig. S3a) and pG (Supplementary Fig. S3b) for RANKL illustrate
the fact that RANKL is closer to progesterone as pG more closely resembles the function f
in terms of shape (Supplementary Fig. S2). Indeed, eG (Supplementary Fig. S3, left top
corner) is missing the peaks observed on the day 4 and 6 (Supplementary Fig. S2, left top
corner), whereas pG displays them (Supplementary Fig. S3 b, left top corner). This is a first
indication that the method should be strong enough to distinguish estrogen-responsive genes
and progesterone-responsive genes, as RANKL was shown to be a progesterone-responsive
gene [118].
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Supplementary Figure S2: Function f representing for each day of the cycle (number above each point)
the corresponding measured levels of progesterone (x-axis) and estrogen (y-axis) from dataset [142].
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Supplementary Figure S3: Function eG and pG, where G is RANKL, representing for each day of the
cycle (number above each point) the corresponding measured levels of (a) progesterone (x-axis) and
the expression level of the gene G (y-axis), and (b) the expression level of the gene G (x-axis) and
estrogen levels (y-axis) from the dataset [142].
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6.2. Adaptation of a homological method to the analysis of gene expression
data using TTMap or DSGA profiles

6.2 Adaptation of a homological method to the analysis of
gene expression data using TTMap or DSGA profiles

Inspired by the methods described in the articles of J. Arsuaga et al. [244],[245] that assessed
the topological complexity of a comparative genomic hybridization (CGH) profile, we describe
an adaptation of this method to the analysis of microarray data, which should be applicable
as well to RNA-seq data. Since there is no direct comparison to a reference genome as is done
with CGH profiles, the method developed for CGH could not be applied as is to microarray
raw tables. Instead, we studied the vectors obtained from the DSGA method or the deviation
components from TTMap, since they provide vectors resembling CGH profiles: low expression
for genes that are only slightly altered with respect to a group of healthy or control vectors,
and high levels for interesting genes.

Definition 6.2.1. For one sample, suppose there are m genes with corresponding values
{xi}mi=1 ordered by the localisation of the gene inside the chromosomes, order from 1-22 and
X. A point cloud generated with a sliding window of the points {xi}mi=1 of length n is
the definition of m points in Rn, vi, where i = 1, . . . ,m, given by vi = (xi, xi+1, . . . , xi+(n−1)),
and xi = ximodm, for all i > m.

This means, for example with n = 2, that the first two consecutive points will give rise to
one point in R2, then the window moves from one gene and gene two and three give rise to a
point in R2, and so on (Supplementary Fig. S4).
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Supplementary Figure S4: (a) CGH profile and explanation of sliding window by two purple values
and three red ones that are found in the (b) point cloud generated using a sliding windows of length
n = 2 (Illustration adapted from [245]).

To determine the complexity of this point cloud in Rn, Arsuaga et al. [244],[245] constructed
the Vietoris-Rips complex with parameter ε > 0 (see definition 1.3.8), where the vertices are
the points of the point cloud, and the distance between the points given by the euclidean
distance between points.

Remark 6.2.2. This means a 1-simplex is constructed between two points in Rn whenever the
Euclidean distance between the points is smaller than ε, a 2-simplex whenever the Euclidean
distance between any two points of a set of three points is smaller than ε, and so on.

The Betti numbers (section 1.3.2) of those complexes are calculated to determine the complexity
of the expression profile.
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6.2.1 Application to the comparison of gene expression profiles from breast
tissue through the menstrual cycle

In order to assess molecular changes through the menstrual cycle, gene expression using
microarrays of mRNA extracted from luminal epithelial sorted mammoplasty cells was
measured. Each sample was classified into luteal phase (5 samples) or follicular phase (2
samples) if the woman answered with "NO" the question of usage of hormonal contraceptives
(Table S1).

Number Progesterone Age Follicular Hormonal Contraception
Level ng/mL or Luteal

90 0 41 - Desarex 15 years
80 0.4 31 - Marvelon
69 0.4 35 F -
29 0.5 36 - Minulet, during 10 years
16 0.6 28 - Various, 12 years
64 0.7 38 ? NA
37 1.1 34 - Yasmine, 6 months
5 1.1 45 F -
63 1.6 41 - Yes
27 14.8 32 - Yes, during 10 years
46 17.4 29 L -
22 18.6 39 L -
51 19.4 35 L -
83 23.2 43 - Yes, 10 years
39 26.3 44 L -
70 32.1 35 ? NA
11 37.2 33 L -

Table S1: Data set of mammoplasty samples whose RNA was extracted from luminal sorted cells and
assessed by microarray with available information on the patients: mammoplasty number, progesterone
level at the time of surgery, age, classification in follicular or luteal phase, hormonal contraceptives
information.

We generated point clouds using sliding windows of length 2 of the obtained DSGA profiles
comparing luteal (Supplementary Fig. S5a, b) and profiles from women under hormonal
contraceptives (Supplementary Fig. S5c) to the two follicular-phased expression profiles,
representing the healthy state model.
We observed differences between luteal phase and oral contraceptives by visual inspection of
the plots (Supplementary Fig. S5a, b, c). We then calculated the barcodes of the Vietoris-Rips
complexes to assess if the difference is statistically significant.
Every women taking oral contraceptive displays a different pattern of β0 in their profile, which
corresponds to homological features of H0. While some have a complex gene profile with
many holes in many dimensions; others are close to some profile of women in the luteal phase.
Therefore comparing the group of hormonal contraceptives to the group of luteal phase women
did not reach significance when comparing the Betti numbers at a given ε. This did not
change by considering a sliding window either of length n = 3 (Supplementary Fig. S6a, b)
or of length n = 10 (Supplementary Fig. S6c, d). The method was applied as well on only
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6.2. Adaptation of a homological method to the analysis of gene expression
data using TTMap or DSGA profiles

Supplementary Figure S5: Plot of the sliding window of length 2 of the vector obtained after DSGA
method, with women in the follicular representing the healthy state model of (a) mammoplasty 39,
beginning of luteal phase, (b) mammoplasty 46, end of luteal phase and (c) mammoplasty 80, taking
oral contraceptives.

one chromosome, but the results did not improve (data not shown). This method should be
repeated with the deviation components from TTMap tin order to determine if the results
are improved.

a b

c d

Supplementary Figure S6: (a) The 0-th dimensional Betti number, β0, is computed for a sliding
window of length n = 3, women using contraceptives in blue and luteal phase women in pink. (b)
Boxplot of the values in (a) grouped by women using contraceptives (blue) or women in the luteal
phase (pink). (c) The 0-th dimensional Betti number, β0, is computed for a sliding window of length
n = 10, women using contraceptives in blue and luteal phase women in pink. (d) Boxplot of the values
in (c) grouped by women using contraceptives (blue) or women in the luteal phase (pink).
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6.3 Supplementary figures
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Supplementary Figure S7: Vaginal cytology through the estrous cycle at 20X and with a zoom to
visualise more clearly the cell types. (a) In proestrous, with predominantly nucleated epithelial cells
(N). (b) In estrous with cornified cells (C). (c) In metestrous, all three cell types are apparent: N, C
and leukocytes (L). (d) In diestrous, the predominant cells are L and they fill the picture.
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Supplementary Figure S8: In silico valdiation. (a) Accuracy plot when increasing delta. (b) Accuracy
plot when the subgroups have different sizes. (c) Accuracy plot when increasing the number of samples
in the control group.
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Supplementary Figure S9: Effect of changing the parameter e (a) Dot plot showing the effect of
different ways to select an outlier on HDA Original data (b) After TTMap’s outlier correction (c)
using a confidence interval correction. Red line = 0.56 represents the 90-th percentile of the variance.
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Supplementary Figure S10: Effect of changing the parameter e (a) Dot plot showing the effect of
different ways to select an outlier on HDA Original data (b) After TTMap’s outlier correction (c)
using a confidence interval correction. Red line = 0.56 represents the 90-th percentile of the variance.
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Supplementary Figure S11: Significant genes of the Spermatacea (K). (a) Venn diagramm of significant
genes of K with TTMap (purple area) and with moderated-t-test (Mttest, red area). (b) Barplot
showing the relevance of the genes missed by Mttest on K, K2 and K3.

Supplementary Figure S12: Hierarchical clustering using euclidean distance of the log-transformed
data from the flyatlas.
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Supplementary Figure S13: Hierarchical clustering using euclidean distance and PCA on the fly atlas,
a color represents one organ. (a) Hierarchical clustering on the mismatch distance (b) PCA on the
log transformed data (c) PCA on the deviation components, after the HDA step.

b

Supplementary Figure S14: Clusters obtained with PCA and with TTMap of the data in section 3.4.
(a) PCA plot of RNA-seq profiles of mammary glands from BALB/c (light) and C57/BL6 mice (dark),
in different phases of the estrous cycle. (b) Output of TTMap with global and local clusters showing
the different subgroups of P (P1, P2, P3, P4, P5) and outliers (single points) color-coded and ordered
by average amount of filter function which is the proximity to control (estrous).
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Supplementary Figure S15: Estrous cycle related gene expression changes in the mammary glands
of C57BL/6 and BALB/c mice; diestrous (D) vs proestrous (P) phase. (a) Barplot representing the
number of outlier values in the control group (proestrous phase). Samples with a high number of
outlier values and remain isolated during clustering when P is the test group are identified as outliers
(black arrowhead) or as highly variable samples that are forming one group (red and blue arrowheads).
(b) Venn diagrams of the genes differentially expressed between D vs P identified with standard
tools and TTMap on BALB/c compared to C57BL/6 analyzed separately. In red, the fraction of
common significant genes per strain (% over total number of significant genes). (c) Venn diagrams
of the common differentially expressed genes when the analysis is done separately on the two mouse
strains (Separated) or with the two mouse strains combined into one analysis (Grouped) using TTMap
comparing D vs P. Adjacent heatmaps of the deviation components illustrate why the genes were
missed; while on the separated analysis deviations are going into opposite direction, in the grouped
analysis the genes deviate in the same direction, but to different extent.. (d) Panther pathway analysis
[84] of significant genes identified by TTMap in the comparison D vs P shown by Fold Change (FC)
enrichment of the pathway with -log(Pval) as a color code. Fifteen most increased pathways are shown
p = positive, n= negative, r=regulation. (e) Boxplots representing the deviation component values
in the identified subgroups of P (P1, P2, P3, P4, P5) by TTMap ordered by amount of deviation
compared to the diestrous samples (controls) of the genes Mki67, Csn3, Mybpc1 and Irf7.
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Supplementary Figure S16: Estrous cycle related gene expression changes in the mammary glands of
C57BL/6 and BALB/c mice; estrous (E) vs diestrous (D) phase. (a) Barplot representing the number
of outlier values in the control group (diestrous phase). Samples with high number of outlier values and
remain isolated during clustering when D is the test group are identified as outliers (black arrowhead)
or as highly variable samples that are forming one group (red arrowheads). (b) Venn diagrams of the
genes differentially expressed between E vs D using standard analysis tools and TTMap on BALB/c
compared to C57BL/6 analyzed separately. In red, the fraction of common significant genes per strain
(% over total number of significant genes). (c) Venn diagrams of the common differentially expressed
genes when the analysis is done separately on the two mouse strains (Separated) or with the two mouse
strains combined into one analysis (Grouped) using TTMap comapring E vs D. Adjacent heatmaps
of the deviation components illustrate why the genes were missed; while on the separated analysis
deviations are going into opposite direction, in the grouped analysis the genes deviate in the same
direction, but to different extent. (d) Panther pathway analysis [84] of significant genes identified
by TTMap in the comparison E vs D shown by Fold Change (FC) enrichment of the pathway with
-log(Pval) as a color code. Fifteen most increased pathways are shown p = positive, n= negative,
r=regulation. (e) Boxplots representing the deviation component values in the identified subgroups
of D (D1, D2, D3) by TTMap ordered by amount of deviation compared to the controls samples in
estrous, of the genes Areg, Cxcl13.
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Supplementary Figure S18: The output of the filter function as a barplot for the comparison (a) E vs
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Supplementary Figure S20: Triangular Venn diagram showing the overlap of the multiple comparison
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samples (C57) or all together.
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Supplementary Figure S22: Panther [84] analysis of significant genes upon treatment with RANKL in
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Supplementary Figure S23: Panther [84] analysis of the common significant genes varying in the same
direction upon treatment with RANKL and upon treatment with progesterone.
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Supplementary Figure S24: Panther [84] analysis of the common significant genes upon treatment
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Supplementary Figure S26: PCA of brain spike measurements of different cell types.
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A Appendix

A.1 Appendix A.1
I contributed to the work: Cathrin Brisken, Kathryn Hess and Rachel Jeitziner, Proges-
terone and Overlooked Endocrine Pathways in Breast Cancer Pathogenesis, Endocrinology,
156(10):3442-3450, 2015 [106].
My work consisted in illustrating the different facts in a concise manner and write their legend.
First, an illustration describing the evolution of the mammary gland in the mouse. Second, a
scheme of the fluctuation of the hormones through the menstrual cycle. Then, a scheme of
the signaling downstream of progesterone. Finally, a description of the risk factor and how
they evolve through time, focussing on the role of the menopause and the different endocrine
discruptors.
This work has been adapted and presented in Chapter 1 section 1.6.1.

A.2 Appendix A.2
I participated in the work: George Sflomos, Valerian Dormoy, Tauno Metsalu, Rachel Jeitziner,
Laura Battista, Valentina Scabia, Wassim Raffoul, Jean-Francois Delaloye, Assya Treboux,
Maryse Fiche, Jaak Vilo, Ayyakkannu Ayyanan, and Cathrin Brisken, A Preclinical Model for
ERα-Positive Breast Cancer Points to the Epithelial Microenvironment as Determinant of
Luminal Phenotype and Hormone Response, Cancer Cell, 29(3):407-422, 2016 [228].
I wrote several bioinformatic scripts for the analysis of data in this article and gave my
mathematical support for numerous analysis. I therefore analysed RNA-seq data, comparing
mouse intraductally injected MCF7 cells to fat pad cells with or without treatment with
Fulvestrant as well as patient derived xenografts with or without treatment. Kegg, Gene
ontology and metacore analysis were needed to confirm if the signatures obtained up on
treatment are relevant. I drew a graph of the radiance of the metastases found in each
organ post mortem. Then, I analysed RNA-seq data comparing cells treated or not with
the compound Fulvestrant and drew a heatmap. Moreover, I drew boxplots reflecting the
difference between the IHC staining of a breast biopsy and the biopsy of the cells injected
into mice.

A.3 Appendix A.3
During the fourth year I was the main author of the work entitled "Two-Tier Mapper: a
user-independent clustering method for global gene expression analysis based on topology"
submitted as an original article to Bioinformatics in 2018, from the following authors : Rachel
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Appendix A. Appendix

Jeitziner, Mathieu Carrière, Jacques Rougemont, Steve Oudot, Kathryn Hess, and Cathrin
Brisken and available on arXiv, arXiv: 1801.01841 [194].
This work aimed at presenting the method that was developed during this thesis. It had been
characterized on two different datasets.
This work has been adapted and presented in Chapter 2 and Chapter 3 as well as in Chapter
1 section 1.7.

A.4 Appendix A.4
I was the only author of the reference manual inside the R package "Two-Tier Mapper" [246].
This paper explains all the functions developed in R for the packages "TTMap" with working
examples for each function.

A.5 Appendix A.5
I was the only author of the user guide inside the R package "Two-Tier Mapper: a user-
independent clustering method for global gene expression analysis based on topology" [247].
This paper explains through an example in R how to use the package "TTMap".
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SUMMARY

Seventy-five percent of breast cancers are estrogen receptor a positive (ER+). Research on these tumors is
hampered by lack of adequate in vivo models; cell line xenografts require non-physiological hormone sup-
plements, and patient-derived xenografts (PDXs) are hard to establish. We show that the traditional grafting
of ER+ tumor cells into mammary fat pads induces TGFb/SLUG signaling and basal differentiation when they
require low SLUG levels to grow in vivo. Grafting into the milk ducts suppresses SLUG; ER+ tumor cells
develop, like their clinical counterparts, in the presence of physiological hormone levels. Intraductal ER+

PDXs are retransplantable, predictive, and appear genomically stable. The model provides opportunities
for translational research and the study of physiologically relevant hormone action in breast carcinogenesis.

INTRODUCTION

About 90% of potential oncology drugs fail in clinical trials

(Arrowsmith, 2011; Hait, 2010), in part because the preclinical

models used to test them do not adequately reflect their clinical

counterparts. Breast cancer is the leading cause of cancer-

related death among women worldwide. While there are some

preclinical models, there is a paucity of in vivo models for the

estrogen receptor a-positive (ER+) subtypes, which represent

more than 75% of all cases (Hidalgo et al., 2014). The lack of a

clinically relevant model hampers progress in understanding

how hormones, increasingly recognized as important factors

in breast carcinogenesis, impinge on disease progression and

therapy.

Many cell lines reflecting different breast cancer subtypes

have been established. In those that can grow as xenografts, a

million or more cells must be injected either subcutaneously or

into themammary fat pad of immune-compromisedmice; the re-

sulting tumors grow much faster than their human counterparts

(Zhang et al., 2013). Cell lines derived from the most frequent

specific histological subtypes, the ER+ lobular carcinomas, do

not grow in vivo at all (Guiu et al., 2014; Sikora et al., 2014).

The few ER+ cell lines that grow as xenografts depend on exog-

enous 17b-estradiol (E2) (Vargo-Gogola and Rosen, 2007). This

results in serum E2 levels equivalent to mid-menstrual cycle

levels in premenopausal women (100–400 pg/ml) (Kratz et al.,

2004) whereas most ER+ breast cancers occur in postmeno-

pausal womenwith E2 levels <18 pg/ml. The hormonal treatment

has detrimental effects on the E2-sensitive urogenital tracts of

female mice, which some investigators have bypassed using

male mice, circumstances that may further reduce the clinical

relevance (Clinchy et al., 2000). Finally, the injection of tumor

Significance

A high percentage of potential oncology drugs fail in clinical trials, partly because preclinical models used to test them are
inadequate. Breast cancer is the leading cause of cancer-related death among women worldwide, but we lack appropriate
in vivo models for the ER+ subtypes, which represent more than 75% of all cases. We address these issues by xenografting
tumor cells to their site of origin, themilk ducts. All ER+ cell lines and patient-derived xenografts growmimicking their clinical
counterparts. Disease progresses with invasion andmetastasis, which become amenable to study. The action of hormones,
important in breast carcinogenesis, can now be studied in a relevant context. Importantly, this model opens opportunities
for development and evaluation of therapies.

Cancer Cell 29, 407–422, March 14, 2016 ª2016 Elsevier Inc. 407



cells into adipose tissue relates poorly to the human disease

where it may take many years for tumor cells originating from

the milk ducts to invade the stroma and select for metastatic

cells (DeRose et al., 2011).

Patient-derived xenografts (PDXs) mimic the human disease

more accurately (Hidalgo et al., 2014) but they are difficult to

establish from ER+ tumors, with a 2.5% engraftment rate in a

series of 423 ER+ tumors grafted into immune-compromised

mice (Cottu et al., 2012). Genetically engineered mouse models

(GEMMs) have been developed, in which the entire tumorigenic

process including metastasis can be studied (Weinberg, 2011),

but few of these produce ER+ tumors (Zhang et al., 2013).

To our knowledge, Stat1�/� mice are currently the only GEMM

with consistent ERa expression in the majority of tumor cells

and with functional E2 dependence, i.e. decreased growth

upon ovariectomy (Chan et al., 2012).

Here, we address these concerns and the need for a model to

study hormone response in vivo in clinically relevant settings.

RESULTS

Intraductal Growth of Breast Cancer Cell Lines
The mouse intraductal (MIND) model, in which cells are injected

into the mouse milk duct system, was initially developed for

studying ductal carcinomas in situ (DCIS) (Behbod et al., 2009;

Valdez et al., 2011). To test the hypothesis that mousemilk ducts

offer a supportive microenvironment for human breast cancer

cells in the presence of physiological hormone levels, we ob-

tained breast cancer cell lines of different molecular subtypes

(Neve et al., 2006) (Table S1). After infection with DsRed and

luciferase2 expressing lentivirus, between 50,000 and 100,000

cells were injected into the thoracic and inguinal mammary

glands of adult female SCID/Beige mice through the teat,

creating a MIND xenograft (Behbod et al., 2009) (Figure 1A). All

cell lines grew without hormone supplements with engraftment

rates between 30%and 100%with the exception of MDAMB231

cells, which grew only in 1 out of 26 grafts (Figure 1B). The find-

ings included ER+ cell lines, such as the most widely studied

MCF7 (Lee et al., 2015), HCC1428, ZR751, and MDAMB134VI,

which is derived from a lobular carcinoma and does not seem

to have been established in vivo previously (Logan et al.,

2015), as well as the androgen receptor (AR)+ MDAMB453

(Figures 1B, S1A, and S1B), which usually requires exogenous

5a-dihydrotestosterone (Ni et al., 2011). In vivo monitoring of en-

grafted mice by luminescence showed that the ER+ cell lines

grow exponentially (Figure 1C). The initial signal detected from

intraductally injected MDAMB231 cells dropped to background

levels within a week (Figures S1C and S1D).

The basal-like cell lines BT20 and HCC1806 gave rise to

palpable tumors within 3 and 8 weeks, respectively. The en-

grafted ER+ cell lines merely dilated the milk ducts. MCF7 and

T47D cells caused focal distensions (Figures 1D and 1E), and

BT474 cells extensively dilated the milk ducts (Figure 1F). We

used primate-specific Alu repeats to unequivocally identify hu-

man cells (Schmid and Deininger, 1975) (Figures S1E and S1F).

BT20 and HCC1806 were highly invasive, whereas the luminal

cell lines expanded predominantly within the ducts (Figure S1G).

All xenografts preserved histopathological features of their

clinical counterparts (Figure 1G); MCF7 cells showed moderate

nuclear pleomorphism and tubular differentiation (‘‘gland in the

gland’’), T47D cells were poorly differentiated, and the HER2+

BT474 cells gave rise to DCIS-like structures with marked

nuclear pleomorphism, solid architecture, and central necrosis,

termed ‘‘comedo necrosis’’ frequently associated with HER2+

DCIS (Bane, 2013). HCC1806 formed keratin pearls character-

istic of the rare basaloid breast carcinoma from which they are

derived (Volk-Draper et al., 2012) (Figure 1G).

Fat pad (FP) xenografts have high proliferative indices, irre-

spective of ER status and molecular subtype. In contrast, in

the MIND grafts, Ki67 indices were lower in luminal (MCF7,

BT474, and T47D) than in basal-like (BT20 andHCC1806) tumors

with 23%, 36%, and 23% versus 89% and 77%, respectively

(Figure 1H). Thus, the ER+ MIND xenografts resemble their

clinical counterparts both histopathologically and with respect

to tumor kinetics. The extensive intraductal growth is reminis-

cent of the prolonged DCIS state of many luminal breast cancers

in the clinic (Sgroi, 2010).

MCF7-MIND versus MCF7-FP
To discern the impact of the engraftment site on disease charac-

teristics, we comparedMCF7-MINDwithMCF7 grafted to the FP

(MCF7-FP). MCF7-FP gave rise to large, highly vascularized

tumors within 4–6 weeks (Figure 2A). The MCF7-MINDs became

palpable at 5 months after injection. Macroscopically, milk ducts

distended by MCF7 cells appeared as white lines in a barely

enlarged mammary FP (Figure 2B, arrows). This was reflected

in lower growth rates of MCF7-MIND versus MCF7-FP (Fig-

ure 2C). CD31 immunohistochemistry (IHC) indicated high endo-

thelial cell density in MCF7-FP with an average of 76 units/cm2

(Figures 2D and 2E), whereas in the MCF7-MIND an average of

31 units/cm2 was found selectively around ducts distended by

tumor cells (Figures 2E and 2F). The Ki67 index of MCF7-FP

was 82% compared with 23% in MCF7-MIND (Figures 2G–2I),

which is close to that of human ER+ in situ and invasive breast

cancers, known to have lower proliferative indices than triple-

negative (TN) tumors (Fiche et al., 2000). The apoptotic index

measured by cleaved CK18 was 50 times higher in MCF7-FP

than in MCF7-MIND (Figures S2A and S2B). Invasive breast car-

cinomas often show a desmoplastic reaction involving collagen

deposits and accounting for the characteristic ‘‘hardness’’

upon palpation. Picrosirius red, which stains type I and III colla-

gens, revealed few dispersed fibers in MCF7-FP tumors, in line

with their soft consistency (Figure 2J). In MCF7-MIND, collagen

fibers accumulated around the ducts (Figure 2K); some invasive

areas showed higher collagen content reminiscent of desmopla-

sia seen in human breast cancers (Figure 2L).

Microcalcifications are a common clinical characteristic of

DCIS and are typically detected by mammography (Cox et al.,

2012; Hofvind et al., 2011). They were absent from MCF7-FP

(Figure 2M), HCC1806-MIND, and BT20-MIND (Figure S2C)

butpresent inMCF7-andBT474-MINDasassessedbyH&Estain-

ing, mammography (Figures 2N and S2C), or micro-computed

tomography (Figure S2D).

Tumor Progression in the MCF7-MIND Model
Dispersed tumor cells were detected in the stroma by Alu

in situ hybridization (Alu-ISH) 12 weeks after intraductal injec-

tion (Figure 3A). H&E staining revealed invasion (Figure 3B) and
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Figure 1. Intraductal Growth of Human Breast Cancer Cell Lines

(A) Scheme of the two xenograft approaches: tumor cells are injected either into the mammary fat pad (FP) or intraductally, via the teat (MIND).

(B) Bar graph showing MIND engraftment rates of 12 breast cancer cell lines representing distinct molecular subtypes. Tumor growth was assessed by

bioluminescence and whole-mount analysis (number of analyzed glands 60 R n R 6).

(C) Tumor growth of ER+ MCF7-, BT474-, and T47D-MINDs assessed by bioluminescence. Shown are means ± SEM.

(D–F) Whole-mount stereo micrographs of representative mammary glands (nR 3) 8 weeks after intraductal injection of 53 104 MCF7 (D), T47D (E), or BT474 (F)

cells. Arrowheads point to areas of intraductal growth. Scale bars: 2.5 mm (D), 0.5 mm (E), 5 mm (F).

(G) H&E-stained sections of different MINDs. Scale bars: 50 mm (MCF7, T47D); 200 mm (BT474); 100 mm (BT20); 25 mm (HCC1806).

(H) Bar graph showing Ki67 index of MCF7-, T47D-, BT474-, BT20-, and HCC1806-MIND 8 weeks after injection and 4 weeks for BT20 due to humane reasons.

Data are shown as means ± SD.

See also Figure S1 and Table S1.
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intravasation of tumor cells (Figure 3C). Three to 6 months after

injection, Alu-ISH showed human cells in the lungs (Figure 3D)

that expressed ERa (Figure 3E). Bioluminescence imaging of or-

gans resected post mortem revealed metastatic cells in multiple

organs, the number of which increased over time (Figures 3F and

3G). The most frequent sites of metastasis were bones, lungs,

and brain followed by the liver, pancreas, and kidney (Figures

3F and 3G). Thus, MCF7-MIND xenografts recapitulate the tu-

mor progression of their clinical counterpart (Figure 3H) a finding

that extended to ZR751-, BT474-, T47D-, and HCC1428-MIND

(Figure 3I). The sensitive bioluminescence approach also de-

tected lung metastases in the MCF7-FP, but few brain and no

bone metastases (Figure 3I). Thus, the MIND model improves

the physiological relevance of luminal breast cancer xenografts.

Response to Endocrine Therapy
The selective ER modulator tamoxifen, the selective ER down-

regulator fulvestrant, and aromatase inhibitors are mainstays in

endocrine therapy of ER+ tumors (Howell et al., 2004). To test

whether MCF7-MIND is endocrine responsive and thereby eval-

uate its utility as a preclinical model for drug testing, we treated

mice 4 weeks after cell injection with tamoxifen, fulvestrant, or

solvent (Figure 4A). The treatments inhibited significantly tumor
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Figure 2. MCF7-MIND versus MCF7-FP

(A) Representative photograph of inguinal mam-

mary gland 8 weeks after FP injection with 13 105

MCF7 cells. The arrow indicates blood vessels.

Scale bar, 2 mm.

(B) Representative photograph of inguinal mam-

mary gland with MCF7-MIND 20 weeks after

injection of 5 3 104 MCF7 cells. Arrows indicate

ducts engorged with tumor cells and appear

white. Scale bar, 2 mm.

(C) Growth of MCF7-MIND and -FP assessed by

radiance. Shown are means ± SEM.

(D–F) CD31 IHC of MCF7-FP (D) and MCF7-MIND

(F), and quantification of vessel density in both

models (E).

(G–I) Ki67 IHC on MCF7-FP (G) and MCF7-MIND

(I), and their quantification (H).

(J–L) Picrosirius red-stained histological sections

from MCF7-FP (J), and MCF7-MIND beginning

invasion (K) and invasive (L).

(M and N) H&E staining of mammary tissue (left)

and mammographs (right) of paraffin-embedded

mammary glands, 6 weeks after FP injection (M)

and 5 months after MIND injection (N). Image on

the right (N) shows higher magnification of boxed

area marked in the adjacent lower-magnifica-

tion image. Dotted lines highlight where tumor

samples were embedded.

Graphs represent means ± SD, p values by

Student’s t test. Scale bars, 50 mm (D, F, G, I, J–N).

See also Figure S2.

growth as measured by in vivo lumines-

cence after 14 days (Figure 4B). In con-

trols, 20% ± 0.8% of the cells were

Ki67+; tamoxifen decreased the Ki67

index to 8.4% ± 5% (Figure 4C) and

induced cleaved CK18 in 18% of the

tumor cells (Figures 4D and 4E), indicating that both decreased

cell proliferation and increased apoptosis contributed to

reduced tumor growth rates.

To mimic the use of fulvestrant in the advanced metastatic

setting, we initiated treatment when metastatic disease was pre-

sent (Figure 4F). A 2-month treatment decreased tumor burden

as measured by in vivo luminescence (Figure 4G), ex vivo DsRed

signal (Figure 4H), and ductal width (Figure 4I). Fulvestrant, which

targets ER for degradation (Osborne et al., 2004), abrogated

expression of both ER and its target, the progesterone receptor

(PR) (Figure 4J). Postmortem analysis showed lung and brain

metastases in control mice but not in fulvestrant-treated mice

(Figure 4K).

Finally, postmenopausal patients with ER+ tumors are

frequently treated with aromatase inhibitors to achieve further

estrogen depletion. As mice have more restricted aromatase

expression than humans in non-ovarian tissue (Chow et al.,

2009), we used ovariectomy to deplete E2 levels in MCF7-

MIND bearing mice. All the control mice had to be euthanized

within 8 months because of tumor burden, whereas 60% of the

ovariectomized females were still alive after a year (Figure 4L).

Thus, MCF7-MIND xenografts can be used as a model to study

different settings of endocrine therapy in luminal breast cancer.
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To further assess the utility of the model for translational

research and to mimic the clinical settings where patients are

treated with endocrine therapy for long periods or until relapse,

we treatedMCF7-MIND bearing tumors for 3monthswith fulves-
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Figure 3. Hallmarks of Tumor Progression in

the MCF7-MIND Model

(A–C) H&E-stained sections of MCF7-MIND

3 months after injection showing individual tumor

cells that have invaded the stroma (A), small invasive

focus next to in situ carcinoma (B), and disseminated

tumor cells in a vessel, which is probably a lymph

vessel (C). Images on the right show higher magni-

fication of boxed areasmarked in the adjacent lower-

magnification image. Scale bars: 50 mm (A and C),

100 mm (B).

(D) Alu-ISH of a lung section 5 months after intra-

ductal injection of MCF7 cells showing tumor cell

colony (arrow).

(E) ERa IHC of lung micrometastases. Scale bar,

50 mm.

(F) Ex vivo bioluminescence from metastatic cells in

different organs plotted over time of analysis; values

%103 105 were considered as background (graded

gray shading).

(G) Representative images of ex vivo luminescence

showing MCF7-MIND cells in lungs, brain, liver, and

bones dissected at different times after injection.

Scale bar, 1.5 cm.

(H) Scheme summarizing the hallmarks of tumori-

genesis in MCF7-MINDs over time.

(I) Summary of metastases from the ER+ ZR751-,

BT474-, T47D-, and HCC1428-MINDs andMCF7-FP,

5–37 weeks post injection; mice were euthanized and

bioluminescence was measured in various organs.

trant or solvent. MIND bearing mammary

glands were dissociated to single cells,

and tumor cells were separated from

mouse cells by fluorescence-activated cell

sorting (FACS) based on DsRed expres-

sion. Their transcriptome was analyzed by

RNA sequencing (Table S2). We identified

4,497 differentially expressed protein cod-

ing genes (logFC >2, p < 0.05) with 1,924

increased and 2,573 decreased upon

endocrine treatment (Figures 4M and Table

S3). Consistent with fulvestrant abrogating

ER protein expression, Kyoto Encyclopedia

of Genes and Genomes (KEGG) analysis

showed decreased expression of genes

involved in ER signaling (Figure S3A).

MetaCore analysis for biomarkers re-

vealed ‘‘Breast Neoplasms’’ and ‘‘Breast

Diseases’’ as the two top significant sig-

natures, indicating clinical relevance (Fig-

ureS3B). BothMetaCoremaps (FigureS3C)

and network (Figure S3D) analyses re-

vealed epithelial to mesenchymal transition

(EMT) as the second most significant sig-

nature. Consistently, when 32 established

EMT genes were used to interrogate the

data the samples clustered into control and fulvestrant-treated

groups (Figure 4N). This corresponds to what is observed in

clinical samples where residual tumor cells surviving endocrine

therapy are enriched for tumor-initiating cells with EMT features
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Figure 4. Response of MCF7-MIND to Endocrine Therapy

(A) Experimental scheme for short-term endocrine treatment: 4 weeks after injection of MCF7 when radiance R10 3 106, a 14-day-treatment with tamoxifen,

fulvestrant, or vehicle was initiated.

(B) Graph showing tumor growth based on bioluminescence (n = 3). Statistical significance for the difference in fold-change radiance between treatment and

control groups, p < 0.02 calculated by unpaired Student’s t test, was reached after 14 days of treatment.

(C) Ki67 index of vehicle and tamoxifen-treated tumors.

(D and E) Immunofluorescence (D) and quantification (E) for cleaved CK18, an alternative marker of apoptosis adapted for cells, like MCF7, that do not express

cleaved caspase-3 (Janicke, 2009), on vehicle and tamoxifen-treated tumors. Scale bar, 50 mm.

(legend continued on next page)
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(Creighton et al., 2009), and suggests that the model may serve

to identify biomarkers.

Molecular Signatures of MIND versus FP Model
Togain additional insights into themolecularmechanisms under-

lying the biological differences between the two models, we

analyzed global gene expression of FACS-sorted MCF7:

DsRed/luc2 cells that had been grown asMIND or FP using Affy-

metrix U133 Plus 2.0 arrays. Strikingly, 3,249 genes were differ-

entially expressed between the two sites (R2-fold; p < 0.05)

(Figure S4A and Table S4). Principal component analysis (PCA)

and the PAM50 gene expression classifier for intrinsic subtype

classification (Parker et al., 2009) were used to compare the

models with a panel of 48 breast cancer cell lines (Neve et al.,

2006). MCF7-MIND clustered with the luminal and MCF7-FP

with the basal-like breast cancer cell lines (Figure 5A). In compar-

ison with clinical breast tumor samples profiled with the same

Affymetrix microarray platform (Guedj et al., 2012) and PAM50,

the MCF7-MIND clustered with luminal B and MCF7-FP fell

outside any tumor subtype cluster (Figure 5B).

To assess whether themicroenvironment at the site of engraft-

ment influences other breast cancer cells, we also profiled two

basal-like cell lines, BT20 and HCC1806. Strikingly, not a single

gene was differentially expressed between the two sites (Table

S5), and both lines clustered with the basal-like cell lines and

patient tumors (Figures 5A and 5B). Thus, the molecular signa-

ture of MCF7-MIND but not MCF7-FP resembles their clinical

counterparts, and the in vivo observation that the intraductal

microenvironment specifically favors tumor cells of the luminal

type is corroborated at the molecular level.

To address the factors underlying the different pheno-

types, we analyzed the most significantly changed genes bio-

informatically. KEGG and REACTOME functional enrichment

analysis revealed eight and 13, respectively, distinct terms en-

riched in the MCF7-FP (Figures 5C and 5D). Consistent with

the low Ki67 index in MCF7-MIND, several genes related to

cell proliferation and cell cycle E2F1, MCM2, MKI67, MYBL2,

BUB1, PLK1, CCNE1, CCND1, and CCNB1 were among the

most differentially expressed genes, with higher levels in the

MCF7-FP (Perou et al., 1999) (Tables S4, S5, S6, and S7).

ECM components, focal adhesions, gap junction trafficking,

and gap junction regulation as well as synthesis and oligomeri-

zation of connexins and transport of connexins to the plasma

membrane were predicted to be affected, indicating differen-

tial regulation of gap junctions (Goodenough and Paul, 2009).

By contrast, in MCF7-MIND only one term was enriched in either

analysis, theHippo signalingpathway andCXCR4/7 andCXCL12

(Figures 5C and 5D), respectively. Both of these have been

implicated in breast cancer metastasis (Lamar et al., 2012;

Muller et al., 2001), suggesting that the high propensity of

MCF7-MINDs tometastasizemay relate to their activation. Using

thegeneontology termsignaling pathways, interferon-, cytokine-

mediated-, and vitamin D-receptor signaling pathways were

found to be upregulated in MCF7-FP (Table S6).

The ability of ER+ cell lines to grow asMIND xenografts without

exogenous hormones was unexpected, and led us to assess the

expression of hormone receptors and receptors of downstream

signaling pathways (Table S7). The receptors with known roles in

mammary gland development upregulated in MCF7-MIND were

those for growth hormone, androgen, E2, aryl hydrocarbon, and

glucocorticoids. PR and the prolactin receptor were expressed

at comparable levels in both microenvironments whereas in-

sulin, fibroblast growth factor, and activin A receptors showed

increased expression in MCF7-FP (Figure 5E). The increased

ER and AR protein levels are confirmed (Figures 5F and 5G).

Other ER+ cell lines similarly showed increased ER but not PR

expression in the MIND setting (Figures S4B–S4K).

TheRole of SLUG inMaintaining Luminal Cell Phenotype
MCF7-FP cluster with basal-like cell lines, and the basal markers

CK5, CK6, TP63, S100A4, SNAI2 (SLUG), VIM (vimentin), and

ANXA1 (annexin A1) (de Graauw et al., 2010; Liu et al., 2013)

were among the 50 most significantly enriched genes in

MCF7-FP (Table S4), suggesting that the FP microenvironment

induces a basal/EMT-like state. Gene set enrichment analysis

revealed that EMT-related genes were enriched in MCF7-FP

(Figure 6A). SLUG, vimentin, and annexin A1 proteins were

readily detected in cultured MCF10A cells, which are basal

cells, and in MCF7-FP but not in MCF7 cells in vitro nor in

MCF7-MIND (Figure 6B). Similarly, Caveolin-1, ITGA6, and p63

were increased in MCF7-FP versus MCF7-MIND (Figure 6C).

p63, a transcription factor important in maintaining basal cell

fate (Yalcin-Ozuysal et al., 2010) is expressed in a subset of

MCF7-MIND cells (Figure 6D).

To directly assess whether the intraductal environment can

induce a basal to luminal transition, we isolated MCF7-FP by

FACS, reinjected the cells intraductally, and harvested them

from the intraductal site on day 1 and day 20 after injection.

The transcript levels of the luminally expressed ESR1 and AR

increased 5.1- and 11.3-fold, respectively (Figure 6E), whereas

(F) Experimental scheme for long-term fulvestrant treatment: Six weeks after injection of MCF7DsRed/luc2, when radiance R10 3 109, 60-day-treatment with

fulvestrant was initiated (n R 3 per group).

(G) Graph showing tumor growth measured by radiance. Statistical significance (p = 0.014) by Mann-Whitney U test was reached at 18 days of treatment.

(H) Fluorescence stereomicroscopy of mammary glands with MCF7DsRed/luc2 treated with vehicle or fulvestrant; note fulvestrant-treated gland was exposed

four times longer than control gland. Scale bar, 1 mm.

(I) Box plot showing ductal width in glands from control and fulvestrant-treated animals. Horizontal lines outside the box depict minimum and maximum values,

upper and lower borders of the box represent lower and upper quartiles, and line inside the box identifies the median.

(J) ER- and PR-IHC on glands from mice treated with vehicle or fulvestrant, and histograms showing percentage of ER+ and PR+ cells. Scale bars, 20 mm.

(K) Bioluminescence images of lungs and brains isolated from mice after treatment with vehicle (n = 3) or fulvestrant (n = 3). Scale bar, 1 cm.

(L) Kaplan-Meier plot showing survival of females ovariectomized (blue) or sham-operated (red) 20 weeks after injection with MCF7-MIND (n = 5); p < 0.05 by

log-rank (Mantel-Cox) test.

(M) Bar plot showing protein coding genes, expression levels of which were altered in MCF7-MIND by fulvestrant treatment.

(N) Heatmap of EMT-related genes in MCF7-MIND fulvestrant-treated and controls shown median-centered and log-scaled. Data are shown as means ± SD.

See also Figure S3 and Tables S2 and S3.

Cancer Cell 29, 407–422, March 14, 2016 ª2016 Elsevier Inc. 413



B

H normal-
    like

G molecular-
    apocrine

C basal-like
D luminal A
E luminal B

F luminal C

C D

E

A

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

a

b

c

d

e

f
g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

A MCF7-FP
B MCF7-MIND

y
x w

v
u t

s
rq

p

o

n

m

l

k

j

i

h

g f

e

d

c

b

a

ZY

X

W

V

U

T

S

R

Q
P

O

N

M

L

K

J

I

H

G
FE

D
C

BA

C
om

po
ne

nt
 2

Component 1

600MPE 
AU565

BT474
BT20 

BT549 
BT483

CAMA1 
HBL100
HCC1143 
HCC1187

HCC1569 
HCC1937
HCC1954 

HCC1428 

HCC202 
HCC2157 
HCC2185 
HCC3153 
HCC38
HCC70
HS578T 
Y2
MCF10A 
MCF12A

MCF7 
MDAMB134VI
MDAMB157
MDAMB175VII 
MDAMB231 

MDAMB435 

MDAMB361 
MDAMB415 

MDAMB453

SKBR3

SUM185PE 

SUM44PE
SUM52PE
T47D 
UACC812
ZR751 
ZR7530 
ZR75B

MDAMB436 

SUM149PT 
SUM159PT

SUM190PT

MDAMB468 

SUM1315MO2

SUM225CWN 

-1.0 -0.5 0.0 0.5

-0.5

0.0

0.5

luminal basal-like A basal-like B

H

H

H

H

H HH

H

H

H

H

H

HH

H
H

H

H

H H

H

H

H
H

H

HH
H

H

H

HH

HH

H

H

H

H

H

HH

H

H

H

H
H

H
H

H

HH

H

H

H H

H

H

H

H

H

H

H

H

H

H H

H

H

H

H

H

H

H

H H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H H
H

H

HH

H

H
H

H
H

H

H

H
H

H

HH

H

H

H
H

H

H

H

H

H

H

H

H

H

H

H
H

H
H

H

H

H

H

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G
G

G

GG

G

G

G

G

G

G

G

G

G
G

G
F

F

F

F

F

FF

FF

F

F

F

F

F

F

F

F

F

F

F
F

F

F

F

F

F

F

F

F
F

F

F

F

F
F

F

F
F

F

F

F

F

F

F F

F

F

F

F
F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

FF

F

F

F

F

F

F

F

F

F

F
F

F

F

F

F

F

F

F
F

F
F

F

EE

E

E
EE

E

E

E E

EE

E

E

E

E
E

E
E

E

E

E

E

E

E

E

E
E

E
E

E

EE

E

E

EE
E E

EE

E

E

E

E

E

E

E

E

E
EE

E

E

E

E

E

E

E

E

E

E

E
E
E

E

E

E

E

E

E E

E

E

E

E
E

E

E

E

E

EE

E

E

E

E

E

E

E

E
E

E E E

E

E

E

E

E

E

E

E

D

D

D

D

D

D

D

DD

D

D

D

D

D

D

D

D

D
D

D

D

D

D

D

D

D

D

D

D
D

D

D

D

D

D

D
D

D D DD

D

D
D

D

D

D

D

D

DD

DD

D

D

D
D

D

D

D

D D

D

DD

D

D

D

D

D
DD

D

D

D

D

D

D

D

D

DD

D

D

DD

D

D

D

D

D

D

D

D

D

D

D

D

D

D

DD

D

D

D

D

D

D

D

D

D

D

DD

D

DD

D

C
C

C

C

C
C

C

C
C

C

C

C

C

C

C

C

C

C

C

C

CC

C
C

C

C

C

C

CC

C

C

C

CC

C

C

C

C

C

C

CC

C

C

C

C

C

C

C

C

C

BA

Component 1

C
om

po
ne

nt
 2

5

-5

0

-10
-15 -10 -5 0 10

5

−log10(p)

0

Drug metabolism − cytochrome P450
Jak−STAT signaling pathway

Renin−angiotensin system
Viral myocarditis

Leukocyte transendothelial migration
Amoebiasis

PI3K−Akt signaling pathway
Vascular smooth muscle contraction

Thyroid hormone synthesis
p53 signaling pathway

Proteoglycans in cancer
Hedgehog signaling pathway

Cytokine−cytokine receptor interaction
Basal cell carcinoma

Axon guidance
Hepatitis C

Pathways in cancer
Malaria

Hepatitis B
Progesterone−mediated oocyte maturation

Influenza A
Proteoglycans in cancer

Protein digestion and absorption
Amoebiasis

Measles
Cell cycle

Focal adhesion
p53 signaling pathway

ECM−receptor interaction

50

E2F transcriptional targets at G1/S
Basigin interactions

Proteolysis of the IGF:IGFBP−3:ALS Complex
Mitotic Prometaphase

G2/M transition by Cyclin A:Cdc2 complexes
Cyclin A/B1 associated events during G2/M transition

Kinetochore capture of astral microtubules
Gap junction trafficking and regulation

M Phase
Gap junction trafficking

Connexin synthesis
Gap junction assembly

Oligomerization of connexins into connexons
Cell Cycle, Mitotic

Transport of connexons to the plasma membrane

Steroid hormones
Hormone biosynthesis

PI3K activation
PI3K Cascade

IRS−mediated signalling
IRS−related events

Insulin receptor signalling cascade
Signaling by Insulin receptor

REACTOME pathways
TRKA signalling from the plasma membrane

GPCRs that act as GEFs for G alpha−q/11
CXADR binds to AMICA1

Formation of NR−NCOR Complex
NR transcription pathway

50

0
−log10(p)

M
IN

D
F

P

5

M
IN

D
F

P

α-ERα
α-RFP

   FP  MINDF

G

C

C BT20-FP

D

D BT20-MIND

E

E HCC1806-FP

F

F HCC1806-MIND
A MCF7-FP
B MCF7-MIND

C BT20-FP
D BT20-MIND

E HCC1806-FP
F HCC1806-MIND

FDEC

Gene FC p value
GHR , growth hormone receptor 11.16 2.02E-10
NR3C1, glucocorticoid receptor 13.20 1.39E-08
IGF1R, insulin-like growth factor 1 receptor -2.51 1.82E-07
AR, androgen receptor 4.72 2.81E-07
ESR1, estrogen receptor 1 2.73 2.16E-06
AHR, aryl hydrocarbon receptor 2.60 1.01E-05
FGFR3, fibroblast growth factor receptor 3 -1.81 2.54E-05
ACVR1, activin A receptor, type I -1.89 2.61E-05
VDR, vitamin D receptor - ns
PRLR , prolactin receptor - ns
CSF2RB, colony stimulating factor 2 receptor - ns
PGR, progesterone receptor - ns
THRA, thyroid hormone receptor, alpha - ns

  FP                         MIND

Hippo signaling pathway
Receptors CXCR4 and 7 bind CXCL12 ligand 

Figure 5. Molecular Signatures of MCF7-MIND versus MCF7-FP

(A) Global gene expression profiles of FACS-sorted cells derived from indicated xenografts compared with breast cancer cell lines grown in vitro by PCA using

PAM50 classifier genes. First (x axis) and second (y axis) principal components are shown. Colors indicate subtypes: orange, luminal; green, basal-like A;

magenta, basal-like B.

(legend continued on next page)
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basal markers such as cytokeratins 6A and 14, vimentin, N-cad-

herin, and the transcription factors SLUG and DNp63 decreased

up to 95% (CK14) within a day (Figure 6F). At the protein level, ER

was upregulated between days 4 and 8 (Figures 6G and 6H).

Thus, the intraductal environment suppresses the basal differen-

tiation induced by the FP and promotes expression of luminal

genes.

To test the basal transcription factors functionally, we ectopi-

cally expressed DNp63 and SLUG in MCF7 cells, and examined

the effectsongrowth inMINDandFP. Ectopic expressionof either

proteinwascompatiblewithFPgrowth,but ectopicSLUGexpres-

sion abrogated growth in MIND (Figure 6I). Next, we asked

whether inhibition of SLUG expression enables MCF7 cells to

grow in the FP without exogenous E2. Indeed, MCF7-shSLUG

cells survived and grew (Figure 6J), suggesting that SLUG abro-

gates luminal features required for in vivo growth. As SLUG is a

key effector of transforming growth factor b (TGFb)/SMAD3

signaling (Xue et al., 2014), we asked whether TGFb signaling is

activated in the MCF7-FP. MetaCore network analysis showed

that TGFb signaling is increased at the transcriptional level in

the MCF7-FP versus MCF7-MIND (Figure S5). Biochemically,

increased phosphorylation of specifically SMAD3, not SMAD2

(Figure 6K), was detected in MCF7-FP. Of interest, another

SMAD3-specific TGFb target gene SERPINE1 (Dennler et al.,

1998) was increased 24.9-fold in the FP (Table S4).

Physiological and Clinical Relevance of the Intraductal
Approach
Our findings that the FP microenvironment induces SLUG

expression in MCF7 cells, which inhibited their growth, raised

the question whether the difficulties experienced in establishing

ER+ PDXs are related to the engraftment site. To test this, we

obtained tumor tissue from ten patients with ER+ breast cancer,

seven no special type (NST) and three lobular, and one with a TN

breast cancer (Figure 7A). Single-cell suspensions were pre-

pared from tumor tissues, lentivirally transduced with GFP and

luciferase for subsequent tracing, and, depending on the number

of tumor cells obtained, injected into 6–23 glands of 2–11 mice.

All 11 tumors established xenografts (Figure 7A). In vivo tumor

growth followed a biphasic growth pattern with a decrease in

slope at around 10 weeks (Figure 7B). The ER+ tumors were fol-

lowed for up to 1 year in their recipients; the TN tumor cells grew

more rapidly and recipients had to be euthanized by 30 weeks

after injection. The presence of GFP-expressing human cancer

cells was confirmed 12–40 weeks after injection by fluores-

cence stereomicroscopy (Figure 7C) and subsequent whole

mounting, which revealed focally dilated milk ducts (Figure 7D).

Alu-ISH confirmed the identity of human cells (Figure 7E), and

H&E staining revealed thatMIND-PDXs sharemorphological fea-

tures of the patient tumors (Figure S6A). Most growth was in situ

but invasive areas were identified (Figure S6A). The MIND-PDXs

resembled the patient tumors with regard to ER and PR status

(Figure S6B); the Ki67 index was frequently lower in the MIND-

PDXs (Figures 7F–7H), which may relate to the fact that it is

mostly established on in situ components in the PDXs whereas

clinically it is assessed on the invasive parts.

An unresolved paradox in breast cancer research is the obser-

vation that primary cells from normal breast epithelium are more

easily established in culture than are tumor cells (Hines et al.,

2015). To assess whether the MIND approach reflects the

biological properties of transformed and normal cells, we grafted

cells from reduction mammoplasties intraductally. All four pa-

tient samples established themselves and proliferated (Fig-

ure S6C), but grew at lower rates than the tumor cells (p <

0.05) and plateaued at levels that are 100-fold lower than those

reached by the tumor cells (Figure 7I). Individuals with mutations

in BRCA1 are at increased risk for breast cancer and have a

larger progenitor cell compartment (Lim et al., 2009; Molyneux

et al., 2010). Cells from three patients who hadBRCA1mutations

and underwent prophylactic mammectomy (Figure S6D) were

engrafted and showed a trend to grow faster than the cells

from control individuals (Figure 7I), further supporting the biolog-

ical relevance of the MIND-PDXs.

We followed engrafted animals for up to 13 months and

detected evidence of metastasis in all ten ER+ and the TN

MIND-PDXs, but not BRCA1 nor normal cell grafts (Figure 7J).

As observed in breast cancer patients, ER+ PDXs frequently

metastasized to brain (7 of 17) and bone (12 of 17), but rarely

to liver or lungs (1 of 17) (Figure 7J).

Toward Personalized Clinical Models
Personalized medicine requires that cancer cells from individual

patients be tested for response to therapy. Hence, we treated

mice engrafted with TN PDX with doxorubicin and cyclophos-

phamide for 4 weeks similarly to patients, who receive four

cycles of this combined chemotherapy. Tumor growth was

inhibited (Figure 8A) and tumor shrinkage was evident upon

stereoscopic inspection of the engrafted glands (Figure 8B).

The GFP-labeled tumor cells were readily detected in dis-

tended ducts of the control mice, but fluorescence was sparse

in the treated animals (Figure 8B). Postmortem radiance

showed metastases in brain and bones of control but not of

treated animals (Figure 8C). Mice bearing five different ER+

PDX-MINDs received endocrine therapy with fulvestrant for at

least 4 weeks. Tumor growth decreased in four cases; only a

lobular carcinoma with ERBB2 amplification, a genetic alter-

ation associated with resistance to endocrine therapy, did not

respond (Figure 8D). Thus, PDX-MINDs respond to therapy

just as in the clinics.

All five ER+ PDXs tested re-engrafted with an average 91%

success rate, superior to the initial 76% (Figure S7A). Thus,

ER+ tumors, including lobular carcinomas, can readily be

(B) PCA of global gene expression profiles of patient samples and of cells derived from indicated xenografts. Color-coded letters indicate breast cancer subtypes.

(C and D) KEGG (C) or REACTOME (D) pathway analyses performed on genes upregulated in MCF7-FP (upper panel) and MCF7-MIND (lower panel). Top

15 groups based on p values are shown. Red line p value cutoff = 0.05, x axis �log10 of the p value. Pathways that are altered shown in blue, p < 0.05.

(E) Summary of differentially expressed receptors involved in mammary gland development. Fold change (FC) reflects gene expression of MIND/FP.

(F) ERa and red fluorescent protein (RFP) immunoblot of MCF7-FP and MCF7-MIND xenografts.

(G) AR IHC on histological sections of MCF7-FP and MCF7-MIND. Scale bar, 50 mm.

See also Figure S4 and Tables S4, S5, S6, and S7.
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established asMIND. The TNPDX reached transplant generation

10 within 2 years (Figure S7B).

To assess whether tumor cells preserve their genomic char-

acteristics when they grow as PDX-MIND, we sequenced 52

commonly mutated cancer genes (Table S8) using DNA isolated

from ten paraffin-embedded tumors and respective PDXs. Anal-

ysis of MCF7- and MDAMB453-MINDs revealed the expected

PIK3CA E545K and PIK3CA H1047R mutations and TP53

P33R polymorphism (Figure 8E). Mutations and/or polymor-

phisms in patient samples were frequent in TP53 (100%),

PIK3CA (80%), and KDR (20%); individual tumors had EGFR,

FGFR2, SMAD4, KRAS, ATM, AKT1, and SMARCB1 mutations.
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Figure 6. MicroenvironmentAffectsLuminal

Breast Cancer Cells through SLUG

(A) Gene set enrichment analysis showing over-

representation of EMT category among genes

differentially expressed between MCF7-FP

and -MIND. High values on the left part of the

red line show the enrichment with genes over-

expressed in the FP (total number of genes

17,067). FDR shows the corrected p value

(q value) adjusted for gene set size. NES denotes

normalized enrichment score. Empirical null

distribution of enrichment score calculated by

randomly shuffling sample labels 1,000 times.

(B) Immunoblot of proteins encoded by selected

differentially expressed genes from MCF7-MIND,

MCF7-FP, and MCF7 and MCF10A growing in 2D

in vitro. ForMCF10A, 4-fold less protein lysatewas

loaded.

(C) Immunoblot analyses of selected proteins from

MCF7-FP and MCF7-MIND.

(D) p63 IF of MCF7-MIND and MCF7-FP 1 month

after injection counterstained with DAPI. Scale

bars, 50 mm.

(E) Bar plot showing relative ESR1 and AR mRNA

expression normalized to TBP1 mRNA in FACS-

sorted MCF7-FP cells at different times after

intraductal injection.

(F) Bar plot showing relative mRNA expression of

various basal markers normalized to TBP1 mRNA

in FACS-sorted MCF7-FP cells at different times

after intraductal injection.

(G) IF micrographs of mammary glands engrafted

with FACS-sorted MCF7-FP cells at different

times after injection. Dashed outlines highlight

perimeter of cross-sectioned milk duct. Scale bar,

100 mm.

(H) Quantification of ER positivity based on signal

intensity.

(I) Graphs showing bioluminescence of MCF7-FP

or -MIND xenografts stably expressing luc2 and

either GFP only or GFP together with DNp63 or

SLUG after contralateral injection.

(J) Graph showing bioluminescence signal of

xenografts of MCF7-FP and MCF7-MIND stably

expressing luc2 and either GFP scramble or

GFP shSLUG. MCF7-FP was tested both in the

presence (E2) and absence (no E2) of exogenous

E2. Graphs in (I) and (J) show means ± SEM.

Statistical significance was determined by Mann-

Whitney U test.

(K) Immunoblot analysis of pSMAD2 and

pSMAD3 in control mousemammary glands (MG),

MCF7-FP, MCF7-MIND, and MCF7 cells growing

in 2D; RFP loading control and quantification of the

pSMAD3 level. Data in bar plots are shown as

means ± SD.

See also Figure S5.
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Figure 7. ER+ MIND-PDXs

(A) Summary of the characteristics of patient tumors and the MINDs derived from them.

(B) Graphs showing the radiance of PDX-MINDs, no specific type (NST) or lobular, in individual glands (black) and mean thereof ± SEM (red).

(legend continued on next page)
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The results were concordant in all ten pairs. Only threemutations

present in tumor samples at low allele frequencies (SMAD4,

SMARCB1, and PIK3CA) were not detected in the respective

PDXs, suggesting dilution or loss of tumor subpopulations

upon grafting. No de novo mutations were detected in any of

the PDXs. Thus, PDX-MINDs do not acquire additional mutations

in critical cancer genes and appear genomically stable.

DISCUSSION

The MIND approach addresses a long-standing need for better

preclinical models of ER+ breast cancer, and shows that the

intraductal microenvironment enables ER+ breast cancer cells

to grow in vivo and to recapitulate the human disease. It offers

several advantages over existing preclinical models. First, the

proliferative indices are relatively low, with 23%–35% Ki67 for

ER+ cell lines. Second, tumors grow with systemic E2 levels of

10–60 pg/ml, comparable with those of postmenopausal women

(<59 pg/ml) in whom most ER+ breast cancers occur, so that

mechanisms of endocrine resistance can now be studied in the

context of appropriate E2 levels (Yue et al., 1994). Furthermore,

it obviates the deleterious effects of excess E2, such as urinary

retention, cystitis, hydronephrosis, and renal failure, which

limited the utility of traditional xenografts (Gakhar et al., 2009;

Levin-Allerhand et al., 2003; Pearse et al., 2009). The clinical rele-

vance of the MCF7-MIND model is reflected at the molecular

level in gene expression signatures similar to those of clinical

samples. It remains to be tested whether the utility of the model

extends to other hormone-responsive cancers, such as ovarian

and thyroid carcinomas, and to selectively established adeno-

matous versus squamous lung carcinomas.

A potential drawback of MCF7-MIND as a preclinical model is

the required immune suppression. The immune system is impor-

tant in tumorigenesis (de Visser et al., 2006) and may affect

the outcome of therapy. Its impact may differ between tumor

subtypes, and its role in the luminal cancers is poorly defined

(Kroemer et al., 2015). Future studies should extend the MIND

model to mice with a humanized immune system (Kalscheuer

et al., 2012).

The model offers opportunities to study breast cancer pro-

gression. The critical transition from in situ to invasive disease

and spontaneous metastasis to relevant sites are now amenable

to mechanistic studies when previous work relied on injection

of a large number of tumor cells into the circulation or specific

organ sites (Minn et al., 2005; Wang et al., 2015).

The distinct microenvironments dramatically alter gene

expression in luminal tumor cells. The stroma bestows EMT-

like changes on MCF7 cells and induces a basal differentiation

program with high-level expression of SLUG. The intraductal

microenvironment induces expression of ER and other hormone

and growth factor receptors important in mammary gland devel-

opment. It will be interesting to determine whether the observa-

tion that the hippo and the CXCR4/7 CXCL12 pathways, which

are enriched in MCF7-MIND, is generalizable and functionally

relevant to the metastatic behavior of the tumor cells. The genes

modulated by fulvestrant show little overlap with established

in vitro targets (Patani et al., 2014), but treatment duration and

analytical platform differed. Of interest, we noticed that some

genes among the 800 most differentially expressed genes,

such as calpain 8 (CAPN8), heparanase (HPSE), and sphingo-

myelin phosphodiesterase 3 (SMPD3), were identified as in vivo

E2 targets in the bovine breast with roles in ECM turnover and

signaling (Li et al., 2006).

The finding that ER+ PDXs grow readily in the mouse milk

ducts suggests that the differences in hormone levels, the lack

of human stroma, and human specific paracrine factors previ-

ously held responsible for the low engraftment rates are not so

important (Rong et al., 1992; Utama et al., 2006). As some of

the tumors proliferate less as PDX-MIND, we cannot exclude

that some of the above factorsmay be important for these partic-

ular tumors. However, the observation that MIND tumors show

two distinct growth rates point to the possibility that the differ-

ences in cell proliferation relate to the time of analysis. The

ease with which primary tumor cells can now be grown in vivo

opens exciting perspectives for translational research and

personalized breast cancer therapy.

EXPERIMENTAL PROCEDURES

The details of cell culture, immunofluorescence, immunoblotting, qRT-PCR,

and Alu-FISH are included in Supplemental Experimental Procedures.

Clinical Samples

The Commission cantonale d’éthique de la recherche sur l’être humain

approved the studies (45-05 and 72-04), and informed consent was obtained

from all subjects. Normal breast tissue was obtained from women undergoing

reduction mammoplasties with no previous history of breast cancer, as

described by Tanos et al. (2013), and freshly resected tumor material of

pinhead size was obtained from the pathologist. Human tissue was mechani-

cally dissociated, digested overnight at 37�C with 10 mg/ml collagenase A

(11088793001; Roche) in DMEM/F-12 (11039-021; Gibco) supplemented

with 1% penicillin-streptomycin (15070-063; Thermo Fisher Scientific) and

(C) Fluorescence stereo micrographs of inguinal mammary gland 20 weeks after injection of PDXs (patients 3 and 8). Dashed outlines highlight perimeter of the

engrafted mammary gland. Scale bar, 3 mm.

(D) Stereo micrographs of whole-mounted mammary glands 20 weeks after injection of primary cancer cells from patients 3 and 4. Scale bars, 2 mm.

(E) Overview and blow-up of adjacent sections stained by H&E and Alu-ISH from PDX-MIND derived from tumor in patient 1. Dashed outlines highlight perimeter

of the engrafted mammary gland. Scale bars, 2 mm and 50 mm.

(F) Alu-ISH and Ki67-, ER-, and PR-IHC on histological sections of MIND derived from the tumor in patient 4. Scale bar, 50 mm.

(G) Summary of ER, PR, and Ki67 status in patient tumors and corresponding PDX-MINDs.

(H) Box plot showing range of ratios of ER, PR, and Ki67 expression. For patients 1, 7, and 10, the ratios were corrected to 1 when patient tumor and PDX

presented the value of 0 for % PR+ or ER+ cells. Horizontal lines outside the box depict minimum and maximum values, upper and lower borders of the box

represent lower and upper quartiles, and line inside the box identifies the median.

(I) Mean radiance of MIND-PDXs of different tumor types or breast epithelial cells derived from normal donors or BRCA1 mutation carriers. Curves represent

means ± SEM of measurements performed on multiple samples.

(J) Summary of the metastatic spread in clinical relevant organs measured by ex vivo luminescence at indicated times after PDX-MIND engraftment.

See also Figure S6.
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1% fungizone (cat. #15290-018; Thermo Fisher) in continuous agitation

(40 rpm) as described by Sflomos et al. (2015). Samples were rinsed and eryth-

rocytes lysed with Red Blood Cell Lysis Buffer (R7757; Sigma) and dissociated

to single cells with 0.25%Gibco Trypsin-EDTA (15400-054; Thermo Fisher) for

2 min. Trypsin was inactivated with PBS/2% calf serum (CS) followed by incu-

bation with 5 mg/ml DNase (1284932; Roche) in L-15medium (11415; Gibco) at

37�C for 2 min. 2%CS in PBS was added, and the cells were filtered through a

70-mm pore size filter (cat. #352350; BD Falcon) and counted. Primary tumor

cells were transduced with bifunctional reporter fusion gene ffLuc2/EGFP

lentivirus (GFP-luc2) under control of the cytomegalovirus promoter. Lentiviral

spin infection was performed at 25�C for 2.5 hr at 2,500 rpm as described by

Yalcin-Ozuysal et al. (2010).

Animal Experiments

Animal experiments were performed in accordance with protocols approved

by the Service de la Consommation et des Affaires Vétérinaires of Canton

de Vaud. SCID/beige and NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice (NSG) were

purchased from Charles River and Jackson Laboratories, respectively. Mice

were anesthetized by intraperitoneal injection with 10 mg/kg xylazine and

90 mg/kg ketamine (Graeub). Intraductal injections of single-cell suspensions

were performed as described by Behbod et al. (2009) but without surgically

opening the mouse. Engrafted mammary glands were harvested 4–32 weeks

after intraductal injections and 2–6 weeks after FP injections, fixed in 4% para-

formaldehyde for IHC or snap-frozen for RNA and protein isolation. Mammary

gland whole mounts were prepared as described by Ayyanan et al. (2011).

Stereomicrographs were acquired with an M205 FA (Leica).
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TTMap-package Two-Tier Mapper: a clustering tool based on topological data analysis

Description

TTMap is a clustering method that groups together samples with the same deviation in comparison
to a control group. It is specially useful when the data is small. It is parameter free.

Details

The DESCRIPTION file: TTMap/DESCRIPTION Version 1.0

Author(s)

Rachel Jeitziner Maintainer: Rachel Jeitziner <rachel.jeitziner@epfl.ch>

References

R. Jeitziner et al., TTMap, 2018, DOI:arXiv:1801.01841

See Also

rgl, colorRamps

Examples

#to be found in \code{\link[TTMap]{ttmap_sgn_genes}}

calcul_e Calculation of the value of epsilon

Description

Calculation of the value of epsilon

Usage

calcul_e(dd5, pvalcutoff = 0.95, tt1, alpha = 1, S =
colnames(tt1$Normal.mat))
calcul_e_single(dd5, pvalcutoff = 0.95, tt1, alpha = 1, S =
colnames(tt1$Normal.mat))

Arguments

dd5 distance matrix as created by generate_mismatch_distance

pvalcutoff cutoff of 0.05 percent (default) or less

tt1 output of control_adjustment

alpha a cutoff value for the FC between the group of control and the disease group

S subset of columns to be considered
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Value

al number representing the cutoff to choose for the relatedness with dd5

Author(s)

Rachel Jeitziner

See Also

control_adjustment, hyperrectangle_deviation_assessment, ttmap_sgn_genes, generate_mismatch_distance

Examples

##--
library(airway)
data(airway)
airway <- airway[rowSums(assay(airway))>80,]
assay(airway) <- log(assay(airway)+1,2)
ALPHA <- 1
the_experiment <- TTMap::make_matrices(airway,
seq_len(4), seq_len(4) + 4,
rownames(airway), rownames(airway))
TTMAP_part1prime <-TTMap::control_adjustment(
normal.pcl = the_experiment$CTRL,
tumor.pcl = the_experiment$TEST,
normalname = "The_healthy_controls",
dataname = "Effect_of_cancer",
org.directory = tempdir(), e = 0, P = 1.1, B = 0);
Kprime <- 4;
TTMAP_part1_hda <-
TTMap::hyperrectangle_deviation_assessment(x =
TTMAP_part1prime,
k = Kprime,dataname = "Effect_of_cancer",
normalname = "The_healthy_controls");
annot <- c(paste(colnames(
the_experiment$TEST[,-(seq_len(3))]), "Dis", sep = "."),
paste(colnames(the_experiment$CTRL[,
-seq_len(3)]), "Dis", sep = "."))
dd5_sgn_only <-TTMap::generate_mismatch_distance(
TTMAP_part1_hda,
select=rownames(TTMAP_part1_hda$Dc.Dmat), alpha = ALPHA)
e <- TTMap::calcul_e(dd5_sgn_only, 0.95, TTMAP_part1prime, 1)

control_adjustment Calculates a corrected control group, discovers outliers in it.

Description

control_adjustment function finds outliers in the control group and removes them

Usage

control_adjustment(normal.pcl, tumor.pcl, normalname, dataname,
org.directory = "", A = 1, e = 0, meth = 0, P = 1.1, B = 0)
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Arguments

normal.pcl the control matrix with annotation as obtained by $CTRL from make_matrices

tumor.pcl the disease/test data matrix with annotation as obtained by $TEST from make_matrices

normalname A name for the corrected control files

dataname the name of the project

org.directory where the outputs should be saved

A integer if A=0 then the difference to the median is calculated otherwise the dif-
ference to the mean.

e integer giving how far to the median an outlier is at least

meth value or method that defines how to replace outliers, default is set to replace by
the median

P if more than P percent of features are outliers the feature is removed, by default
all are kept

B Batch vector a vector for normal and test samples with a same number corre-
sponding to a same batch

Details

control_adjustment calculates a corrected control group, discovers outliers in it.

Value

Several files are created

paste(org.directory,normalname,".normMesh",sep = "")

The normal matrix with only common features with the test matrix. This file is
only created if the two have different rows

paste(org.directory,dataname,".normMesh",sep = "")

The test matrix with only common features with the normal matrix. This file is
only created if the two have different rows.

mean_vs_variance.pdf

A pdf showing a plot of the mean (X axis) against the variances (Y axis) of each
feature

mean_vs_variance_after_correction.pdf

A pdf showing a plot of the mean (X axis) against the variances (Y axis) of each
feature after correction of the control group

na_numbers_per_row.txt

number of outliers per row
na_numbers_per_col.txt

number of outliers per column

And values of ttmap_part1_ctrl_adj

e Selected criteria for what is an outlier

tag.pcl Annotation of features, ID of features and weight

Normal.mat The control matrix without annotation and only with the common rows with
Disease.mat

Disease.mat The test/disease matrix without annotation and only with the common rows with
Disease.mat
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flat.Nmat A list $mat being the corrected control matrix $m a record of the different num-
bers of removed genes per sample

record numbers recording the number of columns in Disease.mat and Normal.mat

B The batch vector B introduced in the begining

U1 The different batches in Normal.mat

U2 The different batches in Disease.mat

Author(s)

Rachel Jeitziner

See Also

hyperrectangle_deviation_assessment, ttmap ttmap_sgn_genes

Examples

##--
library(airway)
data(airway)
airway <- airway[rowSums(assay(airway))>80,]
assay(airway) <- log(assay(airway)+1,2)
ALPHA <- 1
the_experiment <- TTMap::make_matrices(airway,
seq_len(4), seq_len(4) + 4,
rownames(airway), rownames(airway))
TTMAP_part1prime <-TTMap::control_adjustment(
normal.pcl = the_experiment$CTRL,
tumor.pcl = the_experiment$TEST,
normalname = "The_healthy_controls",
dataname = "Effect_of_cancer",
org.directory = tempdir(), e = 0, P = 1.1, B = 0);

generate_correlation Generates different distance matrices

Description

Single cell complete mismatch distance, single cell complete mismatch distance with a parameter
of cutoff, mismatch distance, correlation distance, p-value of correlation test distance and euclidean
distance.

Usage

generate_single_cell_complete_mismatch(ttmap_part1_hda,
select, alpha = 1)
generate_single_cell_mismatch_with_parameter(ttmap_part1_hda,
select, alpha = 1)
generate_correlation(ttmap_part1_hda, select)
generate_euclidean(ttmap_part1_hda, select)
generate_mismatch_distance(ttmap_part1_hda, select, alpha = 1)
generate_p_val_correlation(ttmap_part1_hda, select)
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Arguments

ttmap_part1_hda

an object given back by hyperrectangle_deviation_assessment

select A sublist of rownames of ttmap_part1_hda$Dc.Dmat

alpha A real number corresponding to a cutoff

Details

If one is interested only in clustering samples according to a list of genes belonging to a certain
pathway, then this list is provided to the parameter select. Alpha is a cutoff for deviations that
should be considered as noise, for gene expression data such as normalised RNA-seq or microarrays
for instance a cutoff of 1, corresponding to a two fold change is being chosen.

Value

Distance matrix

Author(s)

Rachel Jeitziner

Examples

ttmap_part1_hda <- list()
ttmap_part1_hda$Dc.Dmat <- matrix(c(-1, 2, 0, -4, 5, 6), nrow = 2)
rownames(ttmap_part1_hda$Dc.Dmat) <- c("Gene1", "Gene2")
colnames(ttmap_part1_hda$Dc.Dmat) <- c("A", "B", "C")
dd <- TTMap::generate_mismatch_distance(ttmap_part1_hda, select =
rownames(ttmap_part1_hda$Dc.Dmat))
dd <- TTMap::generate_euclidean(ttmap_part1_hda, select =
rownames(ttmap_part1_hda$Dc.Dmat))

hyperrectangle_deviation_assessment

Calculation of deviation components

Description

hyperrectangle_deviation_assessment function calculates the hyperrectangle deviation assess-
ment (HDA) that calculates the deviation components using normal_hda2 which calculates the nor-
mal component of the test sample and deviation_hda2 which calculates the deviation component.

Usage

hyperrectangle_deviation_assessment(x,
k = dim(x$Normal.mat)[2], dataname,
normalname,Org.directory = getwd())
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Arguments

x output object given back by control_adjustment, list

k A factor if not all the lines in the control group should be kept

dataname the name of the project

normalname A name for the corrected control files

Org.directory where the outputs should be saved

Details

The function performs the hyperrectangle deviation assessment (HDA)

Value

Outputs

Tdis.pcl The matrix of the deviation components for each test sample

Tnorm.pcl The matrix of the normal components for each test sample
NormalModel.pcl

The normal model used

Values

Dc.Dmat the deviation component matrix composed of the deviation components of all
the samples in the test group

m the values of the filter function per sample in the test group

Author(s)

Rachel Jeitziner

See Also

control_adjustment, hyperrectangle_deviation_assessment, ttmap_sgn_genes

Examples

##a full example can be found in ttmap_sgn_genes
##--
library(airway)
data(airway)
airway <- airway[rowSums(assay(airway))>80,]
assay(airway) <- log(assay(airway)+1,2)
ALPHA <- 1
the_experiment <- TTMap::make_matrices(airway,
seq_len(4), seq_len(4) + 4,
rownames(airway), rownames(airway))
TTMAP_part1prime <-TTMap::control_adjustment(
normal.pcl = the_experiment$CTRL,
tumor.pcl = the_experiment$TEST,
normalname = "The_healthy_controls",
dataname = "Effect_of_cancer",
org.directory = tempdir(), e = 0, P = 1.1, B = 0);
Kprime <- 4;
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TTMAP_part1_hda <-
TTMap::hyperrectangle_deviation_assessment(x =
TTMAP_part1prime,
k = Kprime, dataname = "Effect_of_cancer",
normalname = "The_healthy_controls");

make_matrices Prepares the matrices for control_adjustment

Description

make_matrices generates the control and the test matrice in the right format

Usage

make_matrices(mat, col_ctrl, col_test, NAME, CLID,
GWEIGHT = rep(1, dim(mat)[1]), EWEIGHT = 0)

Arguments

mat the gene expressions can be matrix, data.frame, " RangedSummarizedExperiment",
" ExpressionSet" format

col_ctrl the columns in the matrix "mat" of the control samples

col_test the columns in the matrix "mat" of the test samples

NAME Name of genes,or annotation, e.g. WNT4

CLID Identities of genes,e.g. ENSMUSG00000000001

GWEIGHT the weight for each gene

EWEIGHT the weight for each experiment

Details

make_matrices generates the test matrix and the control matrix in the format accepted by control_adjustment
from a matrix object

Value

junk A list containing $CTRL and $TEST the matrices to impute in control_adjustment

Author(s)

Rachel Jeitziner

See Also

control_adjustment, hyperrectangle_deviation_assessment, ttmap_sgn_genes, " RangedSummarizedExperiment"
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Examples

##--
##--
Aa = 6
B1 = 3
B2 = 3
C0 = 100
D0 = 10000
a0 = 4
b0 = 0.1
a1 = 6
b1 = 0.1
a2 = 2
b2 = 0.5
ALPHA = 1
E = 1
Pw = 1.1
Bw = 0
RA <- matrix(rep(0, Aa * D0), nrow = D0)
RB1 <- matrix(rep(0, B1 * D0), nrow = D0)
RB2 <- matrix(rep(0, B2 * D0), nrow = D0)
RA <- lapply(seq_len(D0 - C0), function(i) rnorm(Aa,
mean = a0, sd = sqrt(b0)))
RA<-do.call(rbind, RA)
RB1<- lapply(seq_len(D0 - C0), function(i) rnorm(B1,
mean = a0, sd = sqrt(b0)))
RB1 <- do.call(rbind, RB1)
RB2 <- lapply(seq_len(D0 - C0), function(i) rnorm(B2,
mean = a0, sd = sqrt(b0)))
RB2 <- do.call(rbind, RB2)
RA_c <- lapply(seq_len(C0), function(i) rnorm(Aa,
mean = a0, sd = sqrt(b0)))
RA_c <- do.call(rbind, RA_c)
RB1_c <- lapply(seq_len(C0), function(i) rnorm(B1,
mean = a1, sd = sqrt(b1)))
RB1_c <- do.call(rbind, RB1_c)
RB2_c <- lapply(seq_len(C0), function(i) rnorm(B2,
mean = a2, sd = sqrt(b2)))
RB2_c <- do.call(rbind, RB2_c)
norm1 <- rbind(RA, RA_c)
dis <- cbind(rbind(RB1, RB1_c), rbind(RB2, RB2_c))
colnames(norm1) <- paste("N", seq_len(Aa), sep = "")
rownames(norm1) <- c(paste("norm", seq_len(D0 - C0), sep = ""),
paste("diff", seq_len(C0), sep = ""))
colnames(dis) <- c(paste("B1", seq_len(B1), sep=""),
paste("B2", seq_len(B2), sep =""))
rownames(dis)<-c(paste("norm",
seq_len(D0 - C0), sep = ""),
paste("diff", seq_len(C0), sep = ""))
the_experiment <- TTMap::make_matrices(cbind(norm1, dis),
col_ctrl = colnames(norm1),
col_test = colnames(dis), NAME = rownames(norm1),
CLID = rownames(norm1))
###other example using SummarizedExperiment
library(airway)
data(airway)
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airway <- airway[rowSums(assay(airway))>80,]
assay(airway) <- log(assay(airway)+1,2)
the_experiment <- TTMap::make_matrices(airway,
seq_len(4), seq_len(4) + 4,
rownames(airway), rownames(airway))

make_matrices-methods Prepares the matrices for control_adjustment

Description

make_matrices generates the control (output $CTRL) and the test (output $TEST) matrice in the
right format for control_adjustment

Methods

signature(mat = "data.frame") Method make_matrice for data.frame object.

signature(mat = "matrix") Method make_matrice for matrix object.

signature(mat = "SummarizedExperiment") Method make_matrice for SummarizedExperiment
object.

signature(mat = "RangedSummarizedExperiment") Method make_matrice for RangedSummarizedExperiment
object.

signature(mat = "ExpressionSet") Method make_matrice for ExpressionSet object.

ttmap Visualisation of the clustering

Description

Enables a quick view on the groups in the dataset (globally) and how locally they differ.

Usage

ttmap(ttmap_part1_hda, m1,
select = row.names(ttmap_part1_hda$Dc.Dmat),
ddd, e, filename = "TEST", n = 3, ad = 0, bd = 0, piq = 1,
dd = generate_mismatch_distance(ttmap_part1_hda = ttmap_part1_hda,
select = select), mean_value_m1 = "N", ni = 2)

Arguments

ttmap_part1_hda

list output of hyperrectangle_deviation_assessment

m1 either a user imputed vector whose names are the names of the samples with
addition of .Dis. or by default it is the amount of deviation

select Should all the features (default) or only a sublist be considered to calculate the
distance
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ddd Annotation matrix with rownames the different sample names with addition of
.Dis. There can be as many columns as wanted, but only the column n will be
selected to annotated the clusters

e integer parameter defining under which value two samples are considered to be
close

filename Name for the description file annotating the clusters

n The column to be considered to annotate the clusters

ad if ad!=0 then the clusters on the output picture will not be annotated

bd if different than 0 (default), the output will be without outliers of the test data
set (clusters composed of only "piq" element)

piq parameter used to determine what small clusters are, see bd

dd the distance matrix to be used

mean_value_m1 if == "N" the average of the values in m1 divided by the number of the samples
are put into the legend (by default represents the average of the samples in a
cluster of the mean-deviation of the features) otherwise it will show the average
value of the values in m1 (is useful for instance if m1 represents the age of the
samples)

ni The column to consider to annotate the samples (is put into parenthesis) for the
description file

Details

Is the Two-tiers Mapper function. The output is an interactive image of the clusters in the different
layers.

Value

all the clusters in the overall group

low the clusters in the lower quartile group

mid1 the clusters in the first middle quartile group

mid2 the clusters in the second middle quartile group

high the clusters in the higher quartile group

Author(s)

Rachel Jeitziner

See Also

control_adjustment, hyperrectangle_deviation_assessment, ttmap_sgn_genes

Examples

##--
library(airway)
data(airway)
airway <- airway[rowSums(assay(airway))>80,]
assay(airway) <- log(assay(airway)+1,2)
ALPHA <- 1
the_experiment <- TTMap::make_matrices(airway,
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seq_len(4), seq_len(4) + 4,
rownames(airway), rownames(airway))
TTMAP_part1prime <-TTMap::control_adjustment(
normal.pcl = the_experiment$CTRL,
tumor.pcl = the_experiment$TEST,
normalname = "The_healthy_controls",
dataname = "Effect_of_cancer",
org.directory = tempdir(), e = 0, P = 1.1, B = 0);
Kprime <- 4;
TTMAP_part1_hda <-
TTMap::hyperrectangle_deviation_assessment(x =
TTMAP_part1prime,
k = Kprime,dataname = "Effect_of_cancer",
normalname = "The_healthy_controls");
annot <- c(paste(colnames(
the_experiment$TEST[,-(seq_len(3))]),"Dis", sep = "."),
paste(colnames(the_experiment$CTRL[,
-seq_len(3)]), "Dis", sep = "."))
annot <- cbind(annot, annot)
rownames(annot)<-annot[, 1]
dd5_sgn_only <-TTMap::generate_mismatch_distance(
TTMAP_part1_hda,
select=rownames(TTMAP_part1_hda$Dc.Dmat), alpha = ALPHA)
TTMAP_part2 <-
TTMap::ttmap(TTMAP_part1_hda, TTMAP_part1_hda$m,
select = rownames(TTMAP_part1_hda$Dc.Dmat), annot,
e = TTMap::calcul_e(dd5_sgn_only, 0.95, TTMAP_part1prime, 1),
filename = "first_comparison", n = 1, dd = dd5_sgn_only)

ttmap_sgn_genes Gives a list of associated genes per cluster

Description

ttmap_sgn_genes function

Usage

ttmap_sgn_genes(ttmap_part2_gtlmap, ttmap_part1_hda,
ttmap_part1_ctrl_adj, c, n = 2, a = 0,
filename = "TEST2", annot = ttmap_part1_ctrl_adj$tag.pcl,
col = "NAME", path = getwd(), Relaxed = 1)
ttmap_sgn_genes_inter2(q, ttmap_part1_hda, alpha = 0)
ttmap_sgn_genes_inter(q, ttmap_part1_hda, alpha = 0)

Arguments

ttmap_part2_gtlmap

output of ttmap
ttmap_part1_hda

output of hyperrectangle_deviation_assessment
ttmap_part1_ctrl_adj

output of control_adjustment
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c annotation file of the samples

n column to give the name to the cluster

a cutoff to be considered different than noise

filename Name of the files

annot annotation file

col which column should be considered to annotate the features

path where to put the output files

Relaxed If Relaxed then one allows sample to be as the control and for all the others in
one cluster to be going in the same direction (more than alpha) otherwise all the
features must be deviating to be considered a significant feature

q The sample in one cluster

alpha cutoff to be considered different than noise inherited by a

Details

Is giving per cluster the features that vary in the same direction

Value

generates a file per cluster of significant features with an annotation

Author(s)

Rachel Jeitziner

Examples

##--
library(airway)
data(airway)
airway <- airway[rowSums(assay(airway))>80,]
assay(airway) <- log(assay(airway)+1,2)
ALPHA <- 1
the_experiment <- TTMap::make_matrices(airway,
seq_len(4), seq_len(4) + 4,
rownames(airway), rownames(airway))
TTMAP_part1prime <-TTMap::control_adjustment(
normal.pcl = the_experiment$CTRL,
tumor.pcl = the_experiment$TEST,
normalname = "The_healthy_controls",
dataname = "Effect_of_cancer",
org.directory = tempdir(), e = 0, P = 1.1, B = 0);
Kprime <- 4;
TTMAP_part1_hda <-
TTMap::hyperrectangle_deviation_assessment(x =
TTMAP_part1prime,
k = Kprime,dataname = "Effect_of_cancer",
normalname = "The_healthy_controls");
annot <- c(paste(colnames(
the_experiment$TEST[,-(seq_len(3))]),"Dis", sep = "."),
paste(colnames(the_experiment$CTRL[,
-seq_len(3)]), "Dis", sep = "."))
annot <- cbind(annot, annot)
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rownames(annot)<-annot[, 1]
dd5_sgn_only <-TTMap::generate_mismatch_distance(
TTMAP_part1_hda,
select=rownames(TTMAP_part1_hda$Dc.Dmat), alpha = ALPHA)
TTMAP_part2 <-
TTMap::ttmap(TTMAP_part1_hda, TTMAP_part1_hda$m,
select = rownames(TTMAP_part1_hda$Dc.Dmat), annot,
e = TTMap::calcul_e(dd5_sgn_only, 0.95, TTMAP_part1prime, 1),
filename = "first_comparison", n = 1, dd = dd5_sgn_only)
TTMap::ttmap_sgn_genes(TTMAP_part2, TTMAP_part1_hda,
TTMAP_part1prime, annot,
n = 2, a = 1, filename = "first_list_of_genes",
annot = TTMAP_part1prime$tag.pcl, col = "NAME",
path = getwd(), Relaxed = 1)

write_pcl Reading, writing and annotation files

Description

Reading (read_pcl), writing (write_pcl) files and annotating matrices (mat2pcl)

Usage

mat2pcl(mat, tag)
write_pcl(df, dataname, fileaddress = "")
read_pcl(filename, na.type = "", Nrows = -1,
Comment.char = "", ...)

Arguments

df PCL object to be saved

dataname Name of the file

fileaddress Where to save the file

filename File name to be loaded on R

na.type feels the parameter na.strings of read.table

Nrows Number of rows to be ignored (nrows of read.table)

Comment.char comment.char of read.table

... other read.table arguments

mat matrix to be changed in annotated

tag annotation

Details

The file (called filename) MUST contain 3 columns before the actual values, which are called CLID,
NAME and GWEIGHT, described bellow. The first row must be the header of the columns (starting
with CLID,NAME and GWEIGHT) and the second row must be EWEIGHT. Representing how
much weight each column has: if some columns are n replicates they can have each a weight of 1/n.
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Value

Data frame composed of

CLID Column called CLID which is the ID of the features, which will then be the
rownames of the dataframe

NAME A possibly longer name, more meaningfull than CLID, text format

GWEIGHT A weight for each gene or feature. If some genes are less important than others
or only a pathway should be selected than the file (called filename) should have
this information

Matrix The matrix with numbers of the different observations

Author(s)

Rachel Jeitziner

See Also

control_adjustment

Examples

library(airway)
data(airway)
airway <- airway[rowSums(assay(airway))>80,]
assay(airway) <- log(assay(airway)+1,2)
ALPHA <- 1
to_be_saved <- TTMap::make_matrices(airway,
seq_len(4), seq_len(4) + 4,
rownames(airway), rownames(airway))
TTMap::write_pcl(to_be_saved, "tempfile()", getwd())
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1 Introduction

We developed a new user-independent analytical framework, called Two-Tier Mapper (TTMap).
This tool is separated into two parts. TTMap consists of two separated and independent parts : 1.
Hyperrectangle Deviation assessment (HDA) and 2. Global-to-Local Mapper (GtLMap), where the
first step establishes properties of the control group and removes outliers in order to calculate the
deviation of each vector in the test group from the corrected control group. The second step uses
the traditional Mapper algorithm [1] with a two-tier cover and a special distance. This topological
tool detects both global and local differences in the patterns of deviations and thereby captures the
structure of the test group. The samples are clustered according to the shape of their deviation (do
they both deviate positively, negatively or are they as the control). To still keep on the information
about the amount of deviation, one separates the data into 4 clusters according to a function
measuring the amount of deviation. These represent then the second tier. Each cluster is colored
by the extent of the deviation. A list of the differentially expressed genes is also provided. The

1
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method for global gene expression analysis based
on topology 2functions and methods presented on this vignette provide explanation on how to use TTMap, by
default and what can be changed by the user.

2 Prepare the data

Upload the file(s) to compare in R. Log transform and subselect them. Use make matrices to create
the needed files for the first function of TTMap since it generates the control and the test matrix
in the right format. As an example, we use the airway data set available at Bioconductor.

> library(airway)

> data(airway)

> dw <- rowSums(assay(airway))>80

> dw <- names(dw[dw==TRUE])

> airway <- airway[dw,]

> assay(airway) <- log(assay(airway)+1,2)

> experiment <- TTMap::make_matrices(airway,seq_len(4),seq_len(4)+4,

+ NAME = rownames(airway), CLID =rownames(airway))

This function can directly be used on a normalised count table from RNA- seq precising what are the
columns of the control group (in col ctrl) and what are the columns in the test group (in col test) .

3 TTMap part1: Adjustement of the control group (ctrl adj)

The first part of the method checks if the control and the test matrices have the same row-names, and
if not the method subselects the common rows. It outputs the files with the common rows subselected
(with the extension mesh). It then calculates the corrected control matrix, which removes outliers
and replaces them by a chosen method (given by a function with input the matrix with NAs where
there is an outlier and should return a matrix without NAs), or by the median of the other values
by default. The inputs can even be given by the CTRL and TEST variables of the list given by the
output of make matrices or by imputed control and test matrices in pcl format (see [2]). The name
of the control group and the project name need to be inputed as well as the working directory, in
which the output files will be created. A value for what to consider as an outlier (called e) can be
imputed or use the data-driven default value given by the method. If there are any batch effects to
consider, they can be imputed using the variable B, which is a vector of numbers representing the
batches. Last, the parameter P is a value which will remove the genes that have a higher percentage
than P of outlier values.

> E=1

> Pw=1.1

> Bw=0

> TTMAP_part1prime <-TTMap::control_adjustment(normal.pcl = experiment$CTRL,

+ tumor.pcl = experiment$TEST,

+ normalname = "The_healthy_controls", dataname = "The_effect_of_cancer",

+ org.directory = getwd(), e=E,P=Pw,B=Bw);

This outputs:

• A file with the number of outliers per sample (Dataname followed by the number of the batch
followed by na numbers per col.txt)

• A file with the number of outliers per row (Dataname followed by the number of the batch
followed by na numbers per col.txt)

• A picture of the distribution of the mean against variance for each gene, before (Dataname
followed by mean vs variance.pdf) and

• after correction of outliers (Dataname followed by
mean vs variance after correction.pdf).
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The corrected control matrix is output in the next step. A possible output after this first step is
shown in figure 2

4 TTMap part1: Hyperrectangle deviation assessement (hda)

This part consists in calculating deviation components from a hyperrectangle. This enables the
calculation in the third function (ttmap part2 gtlmap) of the shape of deviation. One parameter k
is given by if all the vectors of the control group should be kept or if only the the top k-dimensional
principal component approximation of the control matrix should be kept using the singular value
decomposition (as in [2]). The default is to keep all the vectors.

> TTMAP_part1_hda <- TTMap::hyperrectangle_deviation_assessment(x =

+ TTMAP_part1prime,k=dim(TTMAP_part1prime$Normal.mat)[2],

+ dataname = "The_effect_of_cancer", normalname = "The_healthy_controls");

> head(TTMAP_part1_hda$Dc.Dmat)

SRR1039516.Dis SRR1039517.Dis SRR1039520.Dis SRR1039521.Dis

ENSG00000000003 2.5977598 3.540946 -5.017074 -2.8395353

ENSG00000000419 5.4810747 5.552852 -3.522795 -0.5227945

ENSG00000000457 2.8373989 5.467910 -3.973458 -2.6042244

ENSG00000000460 2.9880457 4.234311 -2.688056 -0.7705182

ENSG00000000971 0.2050992 3.742591 -3.976432 -1.3737670

ENSG00000001036 1.2333603 -2.783987 -4.568258 -2.3631438

The outputs of this step are the following.

• The corrected control matrix, calculated at the first step is given in The healthy controls.NormalModel.pcl,
with a possible trimming of columns if k is different than the number of columns in the cor-
rected matrix.

• The deviation component of each test sample is written in The effect of cancer.Tdis.pcl. An
example of the deviation component is found in the previous script by writing head(TTMAP part1 hda$Dc.Dmat)

• The normal component of each test sample is written in The effect of cancer.Tnorm.pcl.

The two values of this function are the deviation component matrix and the overall deviation (cal-
culated by summing in absolute values the deviation components).

5 TTMap part2: Global-to-local Mapper (gtlmap)

The third part corresponds to the Global-to-local Mapper part. One starts with an annotation file
of our samples, in order to annotate the obtained clusters. In this example here we just copied
several times the column names. This annotation file needs to have as rownames the columns of the
test samples followed by ”.Dis”. We then calculate the distance matrix between the samples using
the generate mismatch distance function, which uses a cutoff parameter α in order to decide what
is a considered as noise. Any other distance matrix can be computed here and used for the next
step. Then, we calculate and output the clusters using ttmap part2 gtlmap, which needs as inputs
the values of ttmap part1 ctrl adj, ttmap part1 hda. The default parameter uses all the genes to
calculate the overall deviation, but if a subset should be selected (only one pathway for example), it
can be imputed here. ttmap part2 gtlmap then calculates using calcul e a parameter of closeness
using the data, in order to know what distance is ”close” enough to clusters samples together. The
parameter n determines which column of metadata should be chosen for the output files. Two more
parameters of convenience, if ad is set to something different than 0 (the default) then the clusters
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on the output picture will not be annotated and if bd is different than 0 (default), the output will
be without outliers of the test data set. After the picture has been adjusted to what one wants to
see one can save it using the rgl.postscript function.

> library(rgl)

> ALPHA <- 1

> annot <- c(paste(colnames(experiment$TEST[,-seq_len(3)]),"Dis",sep=".")

+ ,paste(colnames(experiment$CTRL[,-seq_len(3)]),"Dis",sep="."))

> annot <- cbind(annot,annot)

> rownames(annot)<-annot[,1]

> dd5_sgn_only <-TTMap::generate_mismatch_distance(TTMAP_part1_hda,

+ select=rownames(TTMAP_part1_hda$Dc.Dmat),alpha = ALPHA)

> TTMAP_part2_gtlmap <-

+ TTMap::ttmap(TTMAP_part1_hda,TTMAP_part1_hda$m,

+ select=rownames(TTMAP_part1_hda$Dc.Dmat),

+ annot,e= TTMap::calcul_e(dd5_sgn_only,0.95,TTMAP_part1prime,1),

+ filename="first_comparison",

+ n=1,dd=dd5_sgn_only)

[1] "e_map = 0.278978511367175"

[1] "e_map = 0.278978511367175"

[1] "e_map = 0.278978511367175"

[1] "e_map = 0.278978511367175"

[1] "e_map = 0.278978511367175"

> rgl.postscript("first_output.pdf","pdf")

6 TTMap: Finding the significant genes (sgn genes)

This last function analyses the different clusters for significant features. It outputs a file per level
(one for overall, called all, one for the lower quartile, called low, one for the second quartile, called
mid1, the third, mid2, and the higher quartile, called high). In each of them one file per cluster is
given, with the list of significant genes linked to the cluster. Relaxed is a parameter permitting to
select as a match one sample that would be 0 for the deviation component, while the others deviate
in the same shape.

> TTMap::ttmap_sgn_genes(TTMAP_part2_gtlmap,

+ TTMAP_part1_hda, TTMAP_part1prime,

+ annot, n = 2, a = ALPHA,

+ filename = "first_trial", annot = TTMAP_part1prime$tag.pcl, col = "NAME",

+ path = getwd(), Relaxed = 0)

7 Conclusion

Two-Tier Mapper (TTMap) is a topology-based clustering tool, which is user- friendly and reliable.
The algorithm first provides an overall clustering, in an unbiased manner, since all the parameters
are defined in a data-driven manner or by reliable default parameters. his method enables a refined
view on the composition of the clusters by delineating how clusters differ locally and how the local
clusters relate to the global structure of the dataset. The output is a visual interpretation of the data
given by a colored graph that is easy to interpret, which describes the shape of the data according
to the chosen distance.



Two-Tier Mapper: a user-independent clustering
method for global gene expression analysis based
on topology 5

References

[1] P. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Vejdemo-Johansson, M. Alagappan, J. Carlsson,
and G. Carlsson. Extracting insights from the shape of complex data using topology. Scientific
Reports, 3, 2013.

[2] Monica Nicolau, Arnold Levine, and Gunnar Carlsson. Topology based data analysis identifies a
subgroup of breast cancers with a unique mutational profile and excellent survival. Proceedings
of the National Academy of Science, 108(17):7265–7270, 2011.



Two-Tier Mapper: a user-independent clustering
method for global gene expression analysis based
on topology 6

Figure 1: Schematic overview of TTMap. The inputs (green) are given by two gene expression
matrices, the control (N) and the test group (T), rows represent genes and columns samples. In
Part 1, TTMap adjusts the control group for outlier values (N̄∗), feature by feature. It calculates
deviation from this corrected control group for individual samples in the test group (Dc.T∗). In
Part 2, TTMap computes a similarity measure, the mismatch distance (represented as a heatmap)
using the deviation components. The Mapper [?] algorithm is used with a two-tier cover to generate
a visual representation of the clustering creating a network of global clusters (Overall) and local
clusters (1st, 2nd, 3rd, 4th quartile of a filter function). It takes as inputs the mismatch distance
and the deviation components.
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B Appendix: Additional Theory

B.0.1 Multidimensional size functions for shape comparison
This section is an introduction to multidimensional size functions and how to compare them.
We are starting to use these concepts 6.1.

Goal. The major goal is comparing several descriptions of a space M expressed in terms of
certain functions in order to understand which functions provide similar information on the
space. Therefore, given two functions f, g from a space M to Rn, a possibility would be to
calculate

‖f − g‖∞ .

However, for some application and in particular once M is the space S1, calculating the
infinity norm is not sufficient to compare the shape descriptors. Indeed, two of them could be
the same up to a certain delay, i.e., f(ei2πt) = g(ei2π(t+m)), where m ∈ R is the shift. In that
case, the goal becomes to compare the functions f and g by calculating

‖f − g ◦ h‖∞ ,

where h : S1 → S1 is a diffeomorphism (a differentiable bijection, which in the case of study
of the menstrual cycle takes into account delays, see section 6.1). The solution is however not
computable. Indeed, in order to compare two functions, f and g, infinitely many diffeomor-
phisms need to be computed and each time the ∞-norm calculated, which is not achievable in
a finite time.

The complexity of the problem should be reduced. The idea is to calculate a distance, for which
the following statement is true : for every ε > 0, there exists a δ > 0 such that if two functions
are at a computable distance δ from each other, there exists a diffeomorphism h : S1 → S1 as
described earlier, which would verify that

‖f − g ◦ h‖∞ < ε.

Therefore, understanding the problem would be reduced to calculating a distance, which should
lower the complexity of the computations.

This section is a compilation of articles [248], [249] and [31]. All the proofs of the theorems
can be found in [248]. In order to understand the shape of a space, a theory emerged in the
early 90s that describes the space using a size function. These functions are used in order to
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gain information about the space. The final result, theorem B.0.38, enables the classification
of size functions by calculating only a certain type of homology groups. This lowers the
complexity of the problem since it is easier to calculate the rank of those groups rather than
directly comparing the curves.

B.0.2 1-dimensional Size Theory
Size theory is used to understand shapes, by using functions from the space to a reference
space, which is easier to understand, where a specific example is Rk, and k ∈ N∗ is called
the dimension. The 1-dimensional size theory refers to the study of space descriptors that
are continuous function from the space to R, whereas k-dimensional size theory will analyse
continuous function from the space to Rk.

For the whole section M will be a compact locally connected Hausdorff space (see [1] for
definitions).
Intuition B.0.1. Space descriptors are functions on the space and have the same role as filter
functions (see section 1.2.9).

Definitions
Definition B.0.2. A continuous function ϕ : M → Rk describing a feature of interest is
called a k-dimensional measuring function.

Definition B.0.3. Let ϕ : M → Rk and ψ : N → Rk be two k-dimensional measuring
functions. Let H be the set of all homeomorphisms between M and N . The natural
pseudo-distance between ϕ and ψ, is defined as

d((M , ϕ), (N , ψ)) = inf
f∈H

max
P∈M

‖ϕ(P )− ψ(f(P ))‖∞ .

Intuition B.0.4. If M = N , then the problem becomes finding out how close the two
descriptors are. Hence, the user will find out which descriptions of a space give different types
of information (those will be discovered when the distance is non zero). For instance, since
the weight and the diameter of a tumor are gradually increasing together, it is expected that
the natural pseudo-distance between the two functions is small.

Definition B.0.5. Let ϕ : M → R be a measuring function. The lower level sets are
defined for x ∈ R by

M 〈ϕ ≤ x〉 = {P ∈M | ϕ(P ) ≤ x}.

Definition B.0.6. Let y ∈ R. Two points P,Q ∈M are said to be 〈ϕ ≤ y〉-connected if
and only if a connected subset of M 〈ϕ ≤ y〉 exists containing P and Q.

It is easy to verify that this defines an equivalence relation.
Example B.0.7. In the following example (Supplementary Fig. S1) ϕ : M → R is defined as
the distance to the point O. The points P , Q are not 〈ϕ ≤ a+ ε〉-connected as long as ε is
smaller than (b− a) (at b the two green components merge and at that moment P and Q are
in the same component).

Definition B.0.8. The pair (M , ϕ) gives rise to a 1-dimensional size function defined as

200



O

a
b

c

P

Q

Figure S1: Illustration of a measuring function given by the distance to O and the equivalence relation
〈ϕ ≤ a+ ε〉-connectedness.

l(M ,ϕ) : {(x, y) | x < y} → N,

where l(M ,ϕ)(x, y) is equal to the number of equivalence classes in which the set M 〈ϕ ≤ x〉 is
divided by the 〈ϕ ≤ y〉-connectedness relation.

Example B.0.9. Continuing the example B.0.7,if a ≤ x < y < b, then l(M ,ϕ)(x, y) = 2. Indeed,
the two component (shown in green) cannot be joined under y. At the point b however, they
join, hence l(M ,ϕ)(x, z) = 1, for z ≥ b. The size function is represented in Supplementary
Fig. S2. Another way to see l(M ,ϕ)(x, y) is by observing that it corresponds to the number of
connected component of M 〈ϕ ≤ y〉 that have at least one point in M 〈ϕ ≤ x〉.

a b c

b
2

3

1

0

c

x

y

Figure S2: Illustration of the 1-dimensional size function corresponding to the pair (M , ϕ) defined in
Supplementary Fig. S1.

Describing Size functions with cornerpoints and cornerlines
The information contained in the graph in Supplementary Fig. S2 can be summarised using
only certain points and lines in this plot and is described in this paragraph.

Definition B.0.10. For every vertical line r, with equation x = k, we define themultiplicity
of r, denoted µ(r) as the minimum, over all the positive real numbers ε verifying k + ε < 1/ε,
of

l(M ,ϕ)(k + ε, 1/ε)− l(M ,ϕ)(k − ε, 1/ε).
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When the multiplicity of r is a strictly positive number, the line r is called a cornerline for
the size function.

Example B.0.11. Continuing the example B.0.7, for the vertical line x = 0 and any ε > 0 such
that k + ε < 1/ε, we obtain that

l(M ,ϕ)(k + ε, 1/ε)− l(M ,ϕ)(k − ε, 1/ε),

is equal to either 1 or 2, which is bigger than 0 (Supplementary Fig. S3). Hence, the line
x = 0 is a cornerline.

a b c

b
2

3

10
c

x

y

Figure S3: Illustration of the cornerline x = 0 and the calculation for a given ε of the multiplicity of
the line x = 0 to prove that it is a cornerline.

Definition B.0.12. For every point p = (x, y), with x < y, we define the multiplicity of p,
denoted µ(p) as the minimum, over all the positive real numbers ε verifying x+ ε < y − ε, of

l(M ,ϕ)(x+ ε, y − ε)− l(M ,ϕ)(x− ε, y − ε)− l(M ,ϕ)(x+ ε, y + ε) + l(M ,ϕ)(x− ε, y + ε).

When the multiplicity of p is a strictly positive number, the point p is called a cornerpoint
for the size function.

Remark B.0.13. There is another similar theory, called persistent homology (section 1.3)
that describes when a new component is "born" and when this component dies (finally merged
with another component). Persistent diagrams correspond to studying the cornerpoints of the
1-dimensional size function, which are given by (a, b) where a denotes when a component was
born, and b when it died.
Example B.0.14. Still continuing example B.0.7, considering the point p = (b, c), for any ε > 0
such that a+ ε < b− ε, we obtain that

l(M ,ϕ)(b+ ε, c− ε)− l(M ,ϕ)(b− ε, c− ε)− l(M ,ϕ)(b+ ε, c+ ε) + l(M ,ϕ)(b− ε, c+ ε)

is equal to 2, which is bigger than 0 (Supplementary Fig. S4). Hence, the point p = (b, c) is a
cornerpoint.

Representation theorem
We are now able to link the multiplicity of the points and the size function.
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Figure S4: Illustration of the cornerpoint p = (b, c).

Theorem B.0.15 (Representation theorem). Let l(M,ϕ) be a size function. Then for every
(x̄, ȳ) ∈ R2, with x̄ < ȳ <∞, we have that

l(M,ϕ)(x̄, ȳ) =
∑

(x,y):x<y≤∞
x≤x̄,y≥ȳ

µ(x, y).

Example B.0.16. Back to example B.0.7 (Supplementary Fig. S5) reflects that the represen-
tation theorem is working since the green node, which has size function equal to 3 (as can
be read from the graph) and the sum of the multiplicities that lie in the shaded grey area
corresponds to the multiplicity of the cornerpoint (b, c) µ(b, c) = 2 and the multiplicity of the
cornerline x = a which is µ(a) = 1 coincide.

a b c

b
2

3

10
c

x

y
Cornerpoint of multiplicity 1
Cornerpoint of multiplicity 2
Cornerpoint of multiplicity 1

Example

Figure S5: Illustration of theorem B.0.15.

Remark B.0.17. The representation theorem B.0.15 states that the size function at a specific
point is equal to the multiplicity of the cornerpoints and cornerline on its upper-left quadrant.
In other words two size function can be compared through their cornerpoints and lines, an
intuition that will be justified in the next paragraph.

Comparing Size functions
In the previous section, the study of size function was reduced to the comparison of their
cornerpoints and cornerlines. Let l1, l2 be two size functions. We define the associated sets
C1 (respectively C2) to be the multiset of all cornerpoints taken with their multiplicity and
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cornerlines of l1 (respectively l2) where infinitely many points are added from the diagonal
{(x, y) ∈ R2 | x = y} and where cornerlines x = k are represented by points (k,∞).

Definition B.0.18. Let l1, l2 be two size functions and C1 and C2 their associated multisets
as defined above. Let B be the set of all bijections between C1 and C2. The matching
distance between size functions arising from 1-dimensional measuring functions is given by

dmatch(l1, l2) = min
σ∈B

max
p∈C1

δ(p, σ(p)),

where

δ((x, y), (x′, y′)) = min
{

max{| x− x′ |, | y − y′ |},max
{
y − x

2 ,
y′ − x′

2

}}
.

This is calculated using the convention that ∞−∞ = 0, ∞− x = x−∞ =∞ for all x 6=∞,
∞/2 =∞, | ∞ |=∞, min(c,∞) = c, max(c,∞) =∞.

Example B.0.19. In Supplementary Fig. S6, we illustrate two size functions represented by
their cornerpoints and cornerlines. The multiplicities different from one are written above the
points. In the lower panel, an explanation of how the distance between the two size functions
are calculated is illustrated.

a b c

b

c

x

y

a b c

b

c

x

y

a b c

b

c

x

y

x

2

2

Figure S6: Illustration of the calculation of the matching distance.

Theorem B.0.20. Let (M , ϕ) and (N , ψ) be size pairs. Then,

dmatch(l(M ,ϕ), l(N ,ψ)) ≤ d((M , ϕ), (N , ψ)).

The matching distance defined above is the best possible approximation to the natural
pseudo-distance, using size functions.

Theorem B.0.21. If d′ is another distance on size functions verifying d′(l(M ,ϕ), l(N ,ψ)) ≤
d((M , ϕ), (N , ψ)), then

d′(l(M ,ϕ), l(N ,ψ)) ≤ dmatch(l(M ,ϕ), l(N ,ψ)).

Concluding remarks B.0.22. This concludes the 1-dimensional case. Indeed, dmatch is a
computable distance that is the best lower bound using size functions.
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B.0.3 k-dimensional Size Theory
The question of how to compare k-dimensional size functions is of greater difficulty. Indeed,
cornerpoints and cornerlines as defined in the previous section do not have a direct analogue
in the k-dimensional case. The task here will be to reduce the comparison of k-dimensional
size functions to the comparison of corresponding 1-dimensional functions.

Definition B.0.23. A pair (l, b) ∈ Rk ×Rk is linearly admissible if l = (l1, . . . , lk) verifies∑k
i=1 li = 1 where li > 0 for i = 1, . . . k, and b = (b1, . . . , bk) in Rk verifies

∑k
i=1 bi = 0.

Notation. We denote the set of admissible pairs in Rk × Rk by Admk.
Example B.0.24. If (l, b) ∈ R2×R2 is an admissible pair, then, by definition B.0.23, l ∈ R2 and
verifies l1 + l2 = 1. In addition, l verifies li > 0. Hence, l = (l1, 1− l1) ∈ (0, 1)× (0, 1). And
b = (b1, b2) ∈ R2 is given by b1 + b2 = 0, which then corresponds to all the b = (b1,−b1) ∈ R2.

Definition B.0.25. For every linearly admissible pair (l, b), the associated half-plane to
this linearly admissible pair, written π(l,b) ∈ R2×R2, is determined by the equations u = σl+b
and v = τ l + b with σ, τ ∈ R and σ < τ .

The following theorem explains the usefulness of admissible pairs.

Theorem B.0.26. For every (u, v) such that u < v, there exists one and only one linearly
admissible pair (l, b) such that (u, v) ∈ π(l,b).

The following statement explains the construction of a 1-dimensional size function for every
admissible pair which is consistent with the k-dimension size function.

Theorem B.0.27. Let (l, b) ∈ Admk, and ϕ = (ϕ1, . . . , ϕk) a k-dimensional size function
and let Fϕ(l,b) : M → R be the function given by

Fϕ(l,b)(x) = max
i=1,...,k

{
ϕi(x)− bi

li

}
.

Then, for every (u, v) = (σl + b, τ l + b) ∈ π(l,b), we get l(M ,ϕ)(u, v) = l(
M ,Fϕ(l,b)

)(σ, τ).

Hence the 1-dimensional size functions l(M ,Fϕ(l,b))
for (l, b) varying through Admk is characterize

completely the k-dimensional size function l(M ,ϕ). In addition, the following theorems clarify
the relation between the original natural pseudo-distance between size pairs (M , ϕ) and
(N , ψ) and the matching distance on l(M ,Fϕ(l,b))

and l(N ,Fψ(l,b))
.

Theorem B.0.28. Let (M , ϕ) and (M , ψ) be two size pairs, on the same space. Then

dmatch(l(M ,Fϕ(l,b))
, l(M ,Fψ(l,b))

≤ max
P∈M

{ || ϕ(P )− ψ(P ) ||∞
mini=1,...,k li

}
.

Theorem B.0.29. Let (M , ϕ) be a size pair. Moreover, let (l, b) ∈ Admk be an admissible
pair and ε > 0 a real number smaller than mini=1,...,k li. Then, for every admissible pair (l′, b′)
that verifies || (l, b)− (l′b′) ||∞≤ ε, it holds that

dmatch(l(M ,Fϕ(l,b))
, l(M ,Fϕ(l′,b′))

≤ ε ·
maxx∈M

{
||ϕ(P )||∞+||l||∞+||b||∞

mini=1,...,k li

}
mini=1,...,k{li(li − ε)}

.
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Definition B.0.30. Let (M , ϕ) and (N , ψ) be two size pairs with ϕ and ψ taking values in
Rk. Then we define the k-dimensional matching distance by

Dmatch(l(M ,ϕ), l(N ,ψ)) = sup
(l,b)∈Admk

min
i=1,...,k

lidmatch

(
l(

M ,Fϕ(l,b)

), l(
N ,Fψ(l,b)

)).
Remark B.0.31. • We therefore replaced a not computable distance with another distance

that is again not computable.

• As shown in the next pages, this is not problematic, since there is a good approximation
of this distance in the 2-dimensional case. Indeed, for every ε > 0 an algorithm
constructing a finite set A ⊆ Admk such that

D̃match(l(M ,ϕ), l(N ,ψ)) = max
(l,b)∈A

min
i=1,...,k

lidmatch

(
l(

M ,Fϕ(l,b)

), l(
N ,Fψ(l,b)

))

verifies
|Dmatch(l(M ,ϕ), l(N ,ψ))− D̃match(l(M ,ϕ), l(N ,ψ))| < ε,

can be found.

B.0.4 Algorithm to approximate the 2-dimensional matching distance
This algorithm was described in [249] and implemented in [250]. In order to explain how the
algorithm works, some useful constants are needed. First, for every couple of 2-dimensional
size pairs (M , ϕ) and (N , ψ), where ϕ = (ϕ1, ϕ2) et ψ = (ψ1, ψ2), let C be a constant defined
by

C = max
{

max
x∈M

max{| ϕ1(x) |, | ϕ2(x) |},max
y∈N

max{| ψ1(y) |, | ψ2(y) |}
}
.

Then, for every linearly admissible pair (l, b) = (l1, 1 − l1, b1,−b1) let m(l) be the constant
defined by m(l) = min{l1, 1− l1}.

10

C

-C

l1

b1

Figure S7: Possible region for b1 and l1 such that (l, b) = (l1, 1− l1, b1,−b1) is linearly admissible.

Theorem B.0.32. Let (l, b) = (l1, 1 − l1, b1,−b1) be an admissible pair. Let (M , ϕ) and
(N , ψ) be two 2-dimensional size pairs, where ϕ = (ϕ1, ϕ2) et ψ = (ψ1, ψ2). If |b1| ≥ C, then
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it follows that

m(l)dmatch
(
l(

M ,Fϕ(l,b)

), l(
N ,Fψ(l,b)

)) =


m(l)
l1
dmatch(l(M ,ϕ1), l(N ,ψ1)) if b1 ≤ −C

m(l)
1−l1dmatch(l(M ,ϕ2), l(N ,ψ2)) if b1 ≥ C.

Remark B.0.33. Since the 2-dimensional matching distance is searching for a supremum, only
the highest possible value that m(l)dmatch

(
l(

M ,Fϕ(l,b)

), l(
N ,Fψ(l,b)

)) could reach is of interest.

Therefore, looking at theorem B.0.32, the supremum restricted to when b1 is smaller than
−C and when b1 is greater than C is easily computable. In those cases, the function does
not depend any more on b1. Therefore, it makes sense to compute out the supremum of this
function on all (l, b) where b1 ≤ −C and where b1 ≥ C.

In the former case, we need to determine when m(l)
l1

is maximal. The following calculation

max
l1∈[0,1]

m(l)
l1

= max{max
l1≤ 1

2

l1
l1
,max
l1≥ 1

2

1− l1
l1
} = max{1,max

l1≥ 1
2

1− l1
l1
} = 1,

shows that the supremum in this case is reached when l1 is smaller or equal to 1
2 (to understand

this formula, observe that when l1 ≤ 1
2 , then m(l) = l1 and when l1 ≥ 1

2 , m(l) = 1− l1). This
helps us conclude that

sup
{(l,b)|b1≤−C}

m(l)dmatch
(
l(

M ,Fϕ(l,b)

), l(
N ,Fψ(l,b)

)) = dmatch
(
l(M ,ϕ1), l(N ,ψ1)

)
.

This supremum is attained, for example, for the pair (l, b) = (1
2 ,

1
2 ,−(C + 1), (C + 1)).

In the latter case, with the same procedure, we discover that m(l)
1−l1 is maximal when l1 is

greater than or equal to 1
2 . This helps us conclude that

sup
{(l,b)|b1≥C}

m(l)dmatch
(
l(

M ,Fϕ(l,b)

), l(
N ,Fψ(l,b)

)) = dmatch
(
l(M ,ϕ2), l(N ,ψ2)

)
.

This supremum is attained, for example, for the pair (l, b) = (1
2 ,

1
2 , (C + 1),−(C + 1)).

Hence, the problem is reduced to calculating

Dmatch(l(M ,ϕ), l(N ,ψ)) = max
{
dmatch

(
l(M ,ϕ1), l(N ,ψ1)

)
, dmatch

(
l(M ,ϕ2), l(N ,ψ2)

)
,

max
(l,b)∈Adm∗

m(l)dmatch
(
l(

M ,Fϕ(l,b)

), l(
N ,Fψ(l,b)

))},
where Adm∗ = {(l, b) = (l1, 1− l1, b1,−b1) ∈ Adm2 | b1 ∈ [−C,C]}.

Error Bound Theorem
Lemma B.0.34. Let δ > 0 a positive number. For every linearly admissible pair (l, b) ∈ Adm∗2
and every linearly admissible pair (l′, b′) ∈ Adm2 such that || (l, b)− (l′, b′) ||∞≤ δ, it follows
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that∣∣∣∣∣m(l)dmatch
(
l(

M ,Fϕ(l,b)

), l(
N ,Fψ(l,b)

))−m(l′)dmatch
(
l(

M ,Fϕ(l′,b′)

), l(
N ,Fψ(l′,b′)

))∣∣∣∣∣≤ δ ∗ (16C + 2).

We can state the Error Bound Theorem:

Theorem B.0.35 (Error Bound Theorem). Let δ > 0 a positive number. For every couple of
linearly admissible pairs (l, b), (l′, b′) ∈ Adm∗2 such that || (l, b)− (l′, b′) ||∞≤ δ, it follows that∣∣∣∣∣m(l)dmatch

(
l(

M ,Fϕ(l,b)

), l(
N ,Fψ(l,b)

))−m(l′)dmatch
(
l(

M ,Fϕ(l′,b′)

), l(
N ,Fψ(l′,b′)

))∣∣∣∣∣≤ δ ∗ (16C + 2).

Algorithm
In this paragraph, we enumerate the different steps of the algorithm illustrating the steps of
the computation

1. Let ε > 0 be a fixed error threshold.

2. The algorithm starts with a value δ = 1/16. Afterwards, in every iteration, this value
changes.

3. Calculate the matching distance for (l, b) = (1
2 ,

1
2 ,−(C + 1), C + 1) et (l, b) = (1

2 ,
1
2 , C +

1,−(C + 1)) (this gives the maximum for the dotted area in Supplementary Fig. S8).
The maximum between these two values is written M1.

10

C

-C

l1

b1 maximum of matching distance 
on the dotted section

2*delta

Pn++

Pn+-

Pn

Pn-+

Pn--

Figure S8: Algorithm illustration to approximate the matching distance.

4. Then, find a set of points in R2, P = {Pn = (αn, βn)} such that Pn is the center of the
square of side 2δ. The union of all those squares should cover the space ]0, 1[×]− C,C[.
In that way any admissible pair (l, b) verifies that there exists an n ∈ N such that
|| (l, b)− (αn, βn) ||∞≤ δ.

5. We can calculate the distance for the associated pairs (lPn , bPn) = (αn, 1−αn, βn,−βn).
The maximum of those values is written Mδ.

6. Let D̄ be the maximum of the values obtained until now, i.e. D̄ = max{M1,Mδ}.
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• If δ · (16C + 2) ≤ ε holds then the theorem B.0.35 implies that |Dmatch − D̄| ≤ ε.
The algorithm finishes here.
• Otherwise, the algorithm deletes from P every point Pn such that

D̄ −D(lPn ,bPn )(l(M ,ϕ), l(N ,ψ)) > δ · (16C + 2)

and remove also the corresponding square.
• For the remaining points Pn divide the square associated to that point into four
sets, and each point Pn is replaced with the four points Pn++, Pn−+, Pn+−, Pn−−
(Supplementary Fig. S9), so δ is replaced by δ/2 and the algorithm can start again.

• 2*delta

Pn++

Pn+-

Pn

Pn-+

Pn--

Figure S9: Algorithm illustration to approximate the matching distance.

B.0.5 Comparing generic curves
We summarise the major findings and most useful theorems for our applications, for complete
literature see [31], [251] and [249].

A dense subset of C1 [31] functions is needed for shape comparisons.

Definition B.0.36. A function f : S1 → R2 is called generic if it verifies the following
properties.

• f ∈ C1.

• f is an immersion, i.e. dθf has rank equal to one for every θ ∈ S1.

• f(S1) has at most a finite number of multiple points, all of them are double points and
f(θ1) = f(θ2) and imdθ1f = imdθ2f together imply that θ1 = θ2, for every θ1, θ2 ∈ S1.

This category of functions must be further subselected in order to prove theorem B.0.38.

Definition B.0.37. Fix k > 0. We define the set Fk for functions f that match the following
criteria.

1. Let f : S1 → R2 be a generic function (see previous definition).

2. f is in C2(S1,R2).

3. f(S1) is contained in a disk of R2 centred at (0, 0) with radius k.

4. f is a curve of length lf with lf ≤ k.

5. the curvature of the curve f is everywhere not greater than k.
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6. every C1 function f1 : S1 → R2 such that f1 has a distance less than 1/k to f with
respect to the C1-norm is also generic.

The following theorem will be used to discover hormone-responsive genes in 6.1.

Theorem B.0.38 (Frosini and Landi, 2011, [31]). Let k > 0. For every ε > 0, a δ > 0 exists
such that if f, g ∈ Fk and the matching distance between the functions rankH .,.

0 (s ◦ f) and
rankH .,.

0 (s ◦ g) is not greater than δ for every s ∈ Σ2, then there exists a C1-diffeomorphism
h : S1 → S1 such that || f − g ◦ h ||∞≤ ε.

Furthermore, if f and g are generic function, the following result holds as well :

Theorem B.0.39 (Landi, 2011, [31]). If f, g are generic functions and H
(u,v)
0 (s ◦ f) =

H
(u,v)
0 (s ◦ g), for every (u, v) ∈ ∆+ = {(u, v) ∈ R2 | u ≤ v} and for every s ∈ Σ2, then there

exists a C1-diffeomorphism h : S1 → S1 such that f = g ◦ h.

Therefore, we conclude that if f , g ∈ Fk than we need only to calculate the matching distance
(where an algorithm approximating this distance is given in section B.0.4) to establish the
existence of a diffeomorphism h : S1 → S1 such that || f − g ◦ h ||∞ is small.
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