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Abstract. The influence of aerosols on cloud properties
is an important modulator of the climate system. Tra-
ditional Köhler theory predicts the equilibrium concentra-
tion of cloud condensation nuclei (CCN); however, it is not
known to what extent particles exist in the atmosphere that
may be prevented from acting as CCN by kinetic limita-
tions. We measured the rate of cloud droplet formation on
atmospheric particles sampled at four sites across the United
States during the summer of 2006: Great Smoky Mountain
National Park, TN; Bondville, IL; Houston, TX; and the At-
mospheric Radiation Measurement Program Southern Great
Plains site near Lamont, OK. We express droplet growth rates
with the mass accommodation coefficient (α), and report val-
ues ofα measured in the field normalized to the meanα

measured for lab-generated ammonium sulfate (AS) parti-
cles (i.e.,α′=α/αAS). Overall, 59% of ambient CCN grew
at a rate similar to AS. We report the fraction of CCN that
were “low-α′” (α′<10−1, corresponding toα<1.5×10−2).
Of the 16 days during which these measurements were made,
8 had relatively few low-α′ CCN (<16%), 6 had moderate
low-α′ fractions (27% to 59%), and 2 had large low-α′ frac-
tions (>82% during at least one∼30 min period). Day to day
variability was greatest in Tennessee and Illinois, and low-α′

particles were most prevalent on days when back trajectories
suggested that air was arriving from aloft. The highest frac-
tions of low-α′ CCN in Houston and Illinois occurred around
local noon, and decreased later in the day. These results sug-
gest that for some air masses, accurate quantification of CCN
concentrations may need to account for kinetic limitations.

Correspondence to:C. R. Ruehl
(cruehl@ucsc.edu)

1 Introduction

After several decades of research attempting to quantify the
influence of human activities on the Earth’s climate, the
largest single source of uncertainty in the total anthropogenic
radiative forcing of the atmosphere remains the effect of
atmospheric particles on cloud properties, i.e., the indirect
aerosol effects on climate (IPCC, 2007). The ability to pre-
dict the size distribution of cloud droplets given an initial size
distribution of suspended particles is essential if aerosol in-
direct effects are to be quantified. In the atmosphere, cloud
droplets form on pre-existing aerosol particles, which can act
as cloud condensation nuclei (CCN) when the ambient par-
tial pressure of water vapor (pw) exceeds the saturation vapor
pressure (p0

w) resulting in a supersaturation (S)

S =
pw

p0
w

− 1. (1)

For almost a century, K̈ohler theory (K̈ohler, 1936) has been
used to determine the minimum, or critical, supersaturation
(Sc) required to activate a particle of known size and compo-
sition, causing the particle to grow into a cloud droplet via
condensation of water vapor. More recently, modifications
of Köhler theory have been proposed to incorporate vari-
ous chemical effects, including slightly-soluble compounds
(Shulman et al., 1996), soluble gases (Kumala et al., 1993),
surface tension reduction (Shulman et al., 1996; Facchini
et al., 1999), and film-forming compounds (Feingold and
Chuang, 2002). Adiabatic cloud parcel modeling suggests
that the influence of these effects on cloud droplet concen-
tration (Nd) is comparable to the influence of total particle
concentration (Nenes et al., 2002).

Classical K̈ohler theory, however, predicts only the equi-
librium Sc of a particle, and thus does not incorporate
any potential kinetic limitations to cloud droplet formation.
Chuang et al. (1997) pointed out that failure to take into ac-
count kinetic limitations could result in errors in calculated
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radiative forcing similar to that corresponding to current an-
thropogenic greenhouse gas concentrations (∼2 W/m2). It is
therefore of interest if particles exist in the atmosphere that,
under typical atmospheric supersaturations (∼0.1 to 1%),
would form cloud droplets at equilibrium, but cannot do so
within realistic time scales (tens of seconds to a few min-
utes). These kinetic limitations could result from, for exam-
ple, films at the droplet surface that limit transfer of water
to the drop during condensation, or from slow dissolution
of particulate matter. The kinetics of condensational growth
are often represented by the mass accommodation coefficient
(α), which conceptually is the probability that a water va-
por molecule colliding with a droplet will be incorporated
into the liquid phase. Althoughα for pure water droplets
is expected to be∼1 (Laaksonen, 2005), some experimen-
tal techniques have yielded estimates ofα for pure water as
low as 0.06 (Shaw and Lamb, 1999). Regardless, it is not
known to what extent the atmosphere contains CCN whose
growth rates during activation would be better fit using stan-
dard condensational growth theory withα less than that ex-
pected for pure water. A great number of studies have con-
cluded that the presence of an organic film at the aqueous-
air interface can reduceα during condensation and/or evap-
oration to∼10−4 (e.g., Rubel and Gentry, 1984; Seaver et
al., 1992). Cantrell et al. (2001) found that settingα equal
to 10−4 produced the best fit between modelled and mea-
sured CCN concentrations near the Indian Ocean during a
time when aerosol concentrations and organic fractions were
relatively high. Chuang (2003) found that 0 to 2% of par-
ticles in Mexico City exhibited subsaturated condensational
(i.e., hygroscopic) growth at a rate corresponding toα∼1 to
4×10−4, but did not measure growth rates under supersatu-
rated (i.e., droplet activating) conditions. Recently, Stroud et
al. (2007) found that settingα equal to 0.07 produced the best
fit between modeled growth and that observed for CCN sam-
pled from a forest in the southeastern United States. In this
study, we determineα for each observed activated droplet at
realisticS values (0.13 to 0.63%), and thus determine theα

distribution of atmospheric CCN.
Köhler theory can be tested by CCN closure experiments,

in which CCN concentration (NCCN)predicted given parti-
cle size distribution and composition is compared to obser-
vations in a CCN instrument in whichS is known. Closure
experiments have been conducted in various settings, includ-
ing near the Canary Islands, Spain (Snider and Brenguier,
2000; Chuang et al., 2000), the Southern Ocean (Covert et
al., 1998), the Arctic Ocean (Zhou et al., 2001), the Indian
Ocean (Cantrell et al., 2001), Amazonia (Rissler et al., 2004),
Florida (VanReken et al., 2003), Nova Scotia (Ervens et al.,
2007), New Hampshire (Medina et al., 2007), and North Car-
olina (Stroud et al., 2007). A smaller number of studies have
compared predicted and observed in-situ cloud droplet con-
centrations (e.g., Hallberg et al., 1997; Snider et al., 2003;
Conant et al., 2004). Although closure is often achieved
within experimental uncertainties, when it is not achieved it

is almost invariably due to overprediction of CCN concentra-
tions. Often discrepancies between predictions and observa-
tions can only be reduced by assuming that the aerosol solu-
ble fraction is unrealistically low (e.g., Snider and Brenguier,
2000), or alternatively that all aerosol organic matter is in-
soluble (e.g., Cantrell et al., 2001), despite observations that
some organic aerosol is CCN active (e.g., Novakov and Pen-
ner, 1993). These discrepancies could be due to kinetic limi-
tations to droplet growth, a possibility that seems more likely
considering that most identified chemical effects on droplet
activation lowerSc (e.g., surface tension reduction and dis-
solution of gases). If kinetic limitations to cloud droplet
formation are important in the atmosphere, not only cloud
properties but also the lifetime of aerosol particles and con-
sequently aerosol composition could be influenced. The pur-
pose of this study was to measureα distributions for various
ambient aerosols (urban, regional polluted, and background)
to determine the extent to which potential kinetic limitations
to droplet formation exist in the atmosphere.

2 Experimental

2.1 Site descriptions

All equipment was housed in a trailer, which was deployed at
four sites across the United States during August–September
2006 (Fig. 1). The sites were selected to sample a variety
of general air mass types: urban (HOU – Houston, TX),
polluted regional (GSM – Great Smoky Mountain National
Park, TN), and background continental (BON – Bondville,
IL, and SGP – the Southern Great Plains site, run by the
U.S. Department of Energy Atmospheric Radiation Measure-
ment program, near Lamont, OK). In Houston, particles were
sampled on top of Moody Towers on the campus of the Uni-
versity of Houston, as part of the second Texas Air Quality
Study (TexAQS II). Moody Towers is approximately 6 km
southeast of downtown Houston, and 5 km southwest of the
Houston Ship Channel. PM2.5 in the region is dominated
by sulfate (32% by mass), organic carbon (30%), and am-
monium (9%), and annual mean PM2.5 concentrations are
10 to 14µg/m3, with maximum hourly concentrations often
>40µg/m3 (Russell et al., 2004). The GSM site was located
at Look Rock, a long-term atmospheric monitoring station on
a ridge along the western edge of the National Park. To the
north and west of this ridge is a valley that includes the cities
of Knoxville (36 km north) and Chattanooga (140 km south-
west), as well as several interstate highways and coal-fired
power plants. During the summer of 2001, the average PM2.5
concentration at Look Rock was 19.0µg/m3, which by mass
was 41% sulfate, 29% organic carbon, and 9% ammonium
(Tanner et al., 2004). The BON site was at the Bondville En-
vironmental and Atmospheric Research Site, maintained by
the Illinois State Water Survey, 14 km southwest of Urbana-
Champaign. Throughout a field campaign conducted at BON
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Figure 1. United States map, showing locations of urban (HOU), polluted regional (GSM), 

and background continental (BON and SGP) sites, along with inset maps of each site.
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Fig. 1. United States map, showing locations of urban (HOU), pol-
luted regional (GSM), and background continental (BON and SGP)
sites, along with inset maps of each site.

from March 2001 to May 2003, the average PM2.5 concen-
tration was 9.5µg/m3, of which (by mass) 12% was organic
carbon, 28% was sulfate, and 17% was nitrate (Kim et al.,
2005). The Southern Great Plains (SGP) site, located 38 km
southwest of Ponca City, OK, is maintained by the U.S. De-
partment of Energy’s Atmospheric Radiation Measurement
Program. Summer submicron aerosol at the site from 1997
through 2001 was dominated by sulfate and ammonium (23
to 30% and 9 to 12% by mass, respectively), and concentra-
tions averaged 12.1µg/m3 (organic carbon was not quanti-
fied) (Iziomon and Lohmann, 2003).

2.2 Instrumentation

Condensational growth rates were measured for both gener-
ated ammonium sulfate (AS) particles, used as reference par-
ticles, and ambient particles sampled in the field. This was
accomplished by exposing particles to a water vapor super-
saturation (i.e.,S>0) for a known duration in a Continuous
Flow Thermal Gradient Chamber (CFTGC), and then mea-

Figure 2. Experimental schematic.
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Fig. 2. Experimental schematic.

suring the resulting droplet size with a phase doppler interfer-
ometer (PDI). The CFTGC produces a water vapor supersat-
uration along its centerline when an increasing temperature
gradient (1T ) is applied to its walls (Fig. 2). BothS and the
duration of the exposure can be controlled by adjusting the
CFTGC flow rate and1T (Roberts and Nenes, 2005). Par-
ticles were initially passed through a humidity conditioner
that maintained the relative humidity (RH) at>80%. The
particles were then sent to a differential mobility analyzer
(DMA). The DMA sheath flow was taken from the sample
stream and filtered to ensure that it had a similar RH and
T as the DMA sample flow. The DMA selected a quasi-
monodisperse particle population with a mean diameter in
the range of 100 to 250 nm. This flow was then divided
between a condensation nucleus counter (CNC, TSI 3010)
and the CFTGC-PDI. After flowing for 10 s through a wetted
isothermal entrance length with RH∼100%, particles were
exposed to a knownS in the CFTGC for 30 s. The velocity
and diameter (D) of the activated droplets was then measured
with the PDI while still subject toS (i.e., before the particles
exited the CFTGC).

Along the centerline of the CFTGCC, the calibrated value
of S at any given1T is determined by the mobility diam-
eter of lab-generated AS particles selected by the DMA at
which 50% are activated. Under the DMA conditions used
for this calibration, the geometric standard deviation of the
DMA transfer function is approximately 1.05, which corre-
sponds to an absolute uncertainty inSc of 0.01% at the low
end of the calibration (0.11%) and 0.04% at the high end
(0.63%). Temperature fluctuations in the CFTGC were mon-
itored with thermistors and were typically∼0.01 K, which
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would produce a negligible uncertainty inS relative to the
uncertainty associated with the DMA transfer function. Like-
wise, CFTGC flow rate fluctuations are expected to be min-
imal, as this flow passed through a critical orifice immedi-
ately downstream of the column. However, there were at
times substantial variations in the droplet velocity measured
by the PDI, possibly due to deviations from a fully-developed
(parabolic) velocity profile in the CFTGC in the vicinity of
the PDI view volume. We therefore omitted any measure-
ments in which the PDI velocity was more than 5% higher
or lower than that predicted for parabolic flow. These were
typically<20% of all measurements, and tended to occur im-
mediately after changing the temperature gradient in the col-
umn, and/or when1T was relatively high (∼20 K/m). The
resulting uncertainty in droplet size due to velocity fluctua-
tions is minimized, however, because when the droplet ve-
locity is greater, theS experienced for a given1T increases
(enhancing droplet growth), whereas the residence time in
the CFTGC decreases (inhibiting droplet growth). Therefore,
uncertainty in droplet growth rate based on measurements of
D are expected to be less than those associated with the<5%
deviation from parabolic flow velocity discussed above.

There are several advantages to using a phase Doppler
interferometer to measure droplet diameter. Conventional
light-scattering probes direct a single laser beam into a
stream of particles, which scatter light when they intersect
the beam. The diameter is determined by the intensity of
the scattered light signal. A PDI, on the other hand, consists
of two laser beams that form a view volume at their intersec-
tion (Bachalo, 1980; Bachalo and Houser, 1984; Bachalo and
Sankar, 1996), which in this system is on the centerline of
the CFTGC. When droplets pass through this view volume,
three photodetectors aligned along the axis of the CFTGC
measure the light scattered by the droplet. The phase differ-
ences between the photodetector signals are determined by
the curvature of the droplet (a function ofD), because the
divergence of scattered light increases as the droplet curva-
ture increases. Therefore theD measurement depends only
on these phase differences, and is independent of signal in-
tensity. This is an advantage because signal intensity can be
influenced by detector response, laser strength, and absorp-
tion/scattering of light by condensation on CFTGC windows
or smaller droplets off the CFTGC centerline, all of which
can vary with time. We therefore were able to place the view
volume in the CFTGC while the droplets were still exposed
to S by aligning the beams and photodetectors with windows
that were built into the CFTGC, and any minor condensation
on the windows did not influence diameter measurements.
The PDI probe used in these experiments was calibrated with
precision glass beads of knownD, and can detect droplets
with D≥0.5µm, with an accuracy of±0.5µm (Sankar et
al., 1991). We assume that the droplets were still exposed to
the average centerlineS when they passed through the view
volume even though the temperature gradient ended∼2 cm
above the windows. This is because water vapor and heat dif-

fusing from the inner wall of the CFTGC to the centerline are
also carried downwards by the flow in the CFTGC. Droplets
in the view volume experience a water vapor pressure equal
to that along the wall some distance above the view volume.
This distance (x) is roughly equal to the product of the av-
erage velocity inside the CFTGC (v̄CFTGC) and the timescale
of water vapor diffusion (τw) (Roberts and Nenes, 2005)

x = v̄CFTGCτw =
v̄CFTGCR

2
CFTGC

Dv

(2)

whereRCFTGC is the inner radius of the CFTGC (0.011 m)
andDv is the diffusivity of water vapor in air (2.5×10−5 m2/s
at 298 K and 1 atm). All results presented here are for
v̄SSC=0.011 m/s, which when used in Eq. (3) results in
x>5 cm, suggesting that the droplets in the view volume are
still experiencing the characteristicS of the CFTGC. Addi-
tionally, the PDI ensures that only droplets along the CFTGC
centerline are measured (the view volume dimensions are
less than 1 mm perpendicular to the direction of sample
flow), i.e., droplets are exposed to a single (maximum)S.
Finally, as discussed above, the PDI also determines droplet
velocity based on the frequency of the scattered light sig-
nal, and thus we were able to verify that parabolic flow had
developed in the CFTGC and consequently to minimize un-
certainty in the CFTGC residence time.

2.3 CFTGC model

We represent droplet growth rates by transforming observed
drop size distributions intoα distributions with a fully-
coupled numerical flow model that simulates conditions in
the CFTGC (Roberts and Nenes, 2005). This model calcu-
lates the finalD given initial particle composition and size,
α, 1T (which determinesS, based on calibration with dry
ammonium sulfate particles) and flow rate (i.e., duration of
exposure toS). The model solves the time-dependent equa-
tions for droplet condensational growth in a water vapor su-
persaturation (Fukuta and Walter, 1970)

D
dD

dt
=

S − Seq

ρwRT

4p0
wD′

vMw
+

ρwMw1Hv

4k′T

(
1Hv

RT
− 1

) (3)

whereSeq is the equilibrium supersaturation of the particle
(i.e., the solution to the K̈ohler equation),ρw, Mw, and1Hv

are the density, molecular mass, and molar heat of vaporiza-
tion of water,R is the universal gas constant,T is the tem-
perature, andD′

v andk′ are the diffusivity and thermal con-
ductivity of water vapor corrected for noncontinuum effects.
The size of this correction forD′

v depends onα (Fukuta and
Walter, 1970)

D′
v =

Dv

1 +
2Dv

αD

√
2πMw

RT

. (4)

Our direct measurement is of the droplet growth rate. We
parameterize the results withα, but we are not able to deter-
mine if limited mass transfer is the mechanism causing some
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Figure 3. (a) α(S,D) for 30 s of droplet growth on ammonium sulfate particles (100% soluble) 

with Ddry = 100 nm. (b) Same as (a), but with 5% soluble particles. (c) Difference between (a) 

and (b).
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Fig. 3. (a)α (S,D) for 30 s of droplet growth on ammonium sulfate
particles (100% soluble) withDdry=100 nm. (b) Same as (a), but
with 5% soluble particles.(c) Difference between (a) and (b).

droplets to grow more slowly than others. If kinetic limita-
tions are caused by slow dissolution, or diffusion of solute
to the droplet-air interface, droplet growth will be limited by
the Raoult Effect (i.e., the lowering of liquid water activity
due to the presence of solute). These mechanisms would in-
creaseSeq in Eq. (3), leading to a reduction in the difference
in water activity between the droplet and its surroundings that
drives condensational growth (S−Seq), as opposed to a true
reduction in mass accommodation (α). Because the mech-
anism causing any changes in growth rate is unknown, we
refer to theapparentmass accommodation coefficient (αapp)

when representing droplet growth rates.

Because the composition of particles in the field is un-
known, there is no way to know a priori what their critical su-
persaturations (Sc) are. However, when the duration of expo-
sure toS is 30 s andS is relatively high, the modeledαapp is
relatively insensitive toSc.For example, when condensation
occurs on AS particles withDdry=100 nm for 30 s, the mini-
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Fig. 4. D andαappdistributions after 30 s of condensational growth
at 4 different supersaturations on lab-generated ammonium sulfate
particles.

Table 1a.Classification of individual CCN by growth kinetics.

Very low Low High

symbol fVL fL fH

α <1.5×10−3 <1.5×10−2 >9×10−1

α′ <10−2 <10−1 >6
Deviation fromαAS <−4σ <−2σ >1.5σ

Table 1b. Classification of individual days.

Description of day fVL fL fH

“Little/no kinetic inhibition” <1.1% <16% N/A
“Moderate kinetic inhibition” <5.1% 27–59% N/A
“Strong kinetic inhibition” >33% >82% N/A
“Kinetic enhancement” N/A N/A >10%

mum diameter detectable by the PDI,∼0.5µm, corresponds
to αapp=3×10−4 (Fig. 3a). When the particles are assumed
to be composed of 5% AS and 95% insoluble material,Sc
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α′<10-2.0 (fVL)
10-2.0<α′<10-1.5

10-1.5<α′<10-1.0

10-1.0<α′<6
α′>6 (fH)

(fL)}

BON (n=1705) GSM (n=1651)

SGP (n=140)

Total (n=5642)

HOU (n=2146)

Fig. 5. Summary of CCNα′ distributions at each site, and the total
of all four sites. Anα′ of 10−2.0 is 4σ below the mean for ammo-
nium sulfate (αapp,AS), α′=10−1.5 is 3σ belowαapp,AS, α′=10−1.0

is 2σ belowαapp,AS, andα′=6 is 1.5σ aboveαapp,AS.

increases from∼0.12% to∼0.30%, but at higherS, droplets
with αapp ∼10−3 are still detectable by the PDI (Fig. 3b).
The difference between these two cases, i.e., the error inαapp
introduced when assuming a 5% soluble particle is fully sol-
uble (Fig. 3c), is small (<0.2 in log space) whenS is at least
0.1% larger thanSc for activating droplets. This is because
after activation,Seqdrops fromSc to∼0 as the droplet grows,
and therefore, as can be seen in Eq. (3), the rate of droplet
growth depends primarily onS, which is known, andα. It
has been previously noted that the hygroscopicity of inter-
nally mixed (soluble/insoluble) aerosols is dominated by the
soluble fraction, even in small proportions (Raymond and
Pandis, 2003; Bilde and Svenningsson, 2004; Broekhuizen
et al., 2004). We therefore assume AS particles in the model,
and assume that meaningful values ofαappwill be derived as
long as ambient particles withD (at RH∼80%) from 100 to
250 nm are sampled (the size range of AS particles used to
determineαAS), and measurements are made at several val-
ues ofS. Because the hygroscopic and CCN properties of
AS are relatively well known, we use it as a reference com-
pound, and therefore all field measurements are reported as
α′, which isαappnormalized to that of lab-generated AS par-

Figure 6. Summary of CCN α′ distributions for each day at GSM, and the total for the site. An 

α′ of 10-2.0 is 4σ below the mean for ammonium sulfate (αapp,AS), α′ = 10-1.5 is 3σ below αapp,AS, α

′ = 10-1.0 is 2σ below αapp,AS, and α′ = 6 is 1.5σ above αapp,AS.

26

Fig. 6. Summary of CCNα′ distributions for each day at GSM,
and the total for the site. Anα′ of 10−2.0 is 4σ below the mean
for ammonium sulfate (αapp,AS), α′=10−1.5 is 3σ belowαapp,AS,

α′=10−1.0 is 2σ belowαapp,AS, andα′=6 is 1.5σ aboveαapp,AS.

ticles of the same size (at RH∼80%), i.e.:

α′
=

αapp

αapp,AS
. (5)

3 Results

3.1 Lab measurements ofαapp

Ammonium sulfate (AS) particles were generated in the lab
and sent through the same RH conditioner used in the field
(producing an RH∼80%) before size-selection by the DMA.
αapp of these particles was determined from PDI measure-
ments ofD, and did not vary significantly when initial wet
particle D was changed from 100 nm to 250 nm. OverS
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Table 2. Results of all droplet growth rate measurements.

Date local time site n S range fVL fL fH
(%) (%) (%) (%)

10 Aug 2006a,d 10:35–15:32 GSM 985 0.29 1.0 14 19
12 Aug 2006a 12:12–19:02 GSM 481 0.24–0.31 0.0 10 3.5
13 Aug 2006b,d 12:58–15:22 GSM 108 0.18–0.31 13 59 10
15 Aug 2006a,d 21:27–21:32 GSM 19 0.47 0.0 11 42
19 Aug 2006b 13:58–14:10 GSM 58 0.33 0.0 52 1.7
GSM total 1651 1.5 17 13

23 Aug 2006b 13:17–15:26 BON 33 0.22 3.0 55 3.0
24 Aug 2006c 12:24–13:02 BON 420 0.33–0.41 0.0 44 0.0

13:06–13:47 BON 202 0.23–0.30 33 82 0.0
17:02–17:29 BON 95 0.37–0.41 0.0 14 3.2

25 Aug 2006c 11:49–12:27 BON 219 0.41–0.52 .05 31 0.5
13:06–14:22 BON 166 0.23–0.34 33 86 0.0
14:38–17:18 BON 485 0.13–0.52 8.2 60 2.3

28 Aug 2006a,d 13:40–14:33 BON 85 0.16–0.37 0.0 13 27
BON total BON 1705 9.5 52 2.3

4 Sept 2006a,d 16:27–16:50 HOU 43 0.33–0.35 0.0 16 33
6 Sept 2006b,d 17:29–19:39 HOU 176 0.30–0.44 5.1 27 25
7 Sept 2006a,d 11:47–12:09 HOU 1023 0.34–0.56 2.3 43 0.0

16:58–17:40 HOU 274 0.35–0.49 0.7 14 31
8 Sept 2006a,d 11:24–11:32 HOU 164 0.63 0.0 1.2 18
11 Sept 2006a,d 12:23–21:17 HOU 466 0.28–0.63 1.1 15 17
HOU total HOU 2146 1.8 28 12

16 Sept 2006b 16:01–16:36 SGP 97 0.34–0.63 2.1 28 8.2
22 Sept 2006a 14:39–14:57 SGP 43 0.41–0.63 0.0 2.3 0.0
SGP total SGP 140 1.4 20 5.7

total (all sites) 5642 4.0 32 9.2

a little/no kinetic inhibitions to condensational growth
b moderate kinetic inhibition
c strong kinetic inhibition
d kinetic enhancement to growth

ranging from 0.18% to 0.50% (roughly corresponding to the
range ofD detectable by PDI),αapp,AS was 10−0.82±0.52, or
0.15 (0.045–0.51) (Fig. 4). The uncertainty quoted is 1σ (in
log space). Therefore, according to Eq. (5), we report all field
measurements ofαapp normalized to AS asα′=αapp/0.15.
Furthermore, because they are significantly different from
AS droplets, we refer to CCN withα′<10−1, α′<10−2, and
α′>6 as “low-α′”, “very low-α′”, and “high-α′”, CCN, re-
spectively, and report the fraction of CCN that were low-α′

(fL), very low-α′ (fVL ), and high-α′ (fH) (see Table 1).

3.2 Field measurements ofα′

The growth rate of droplets was measured as described above
on a total of 16 days between 10 August and 22 Septem-
ber, 2006 (see Table 2 for a summary of all measurements).
On days when different time periods yielded distinct results,

the periods are listed separately. Overall,α′ for a major-
ity of droplets (59%) was between 0.1 and 6 (i.e.,αapp be-
tween−2σ and 1σ relative to droplets formed on AS parti-
cles), but among the sites this fraction of CCN with similar
growth rates to AS ranged from 46% at BON to 69% at GSM
(Fig. 5). GSM was characterized by relatively large day-to-
day variability inα′ distributions (Fig. 6). Daily variability
in α′ distributions was also relatively high at BON, which
had the highest fraction of low-α′ CCN (fL=52%) among
the sites (Fig. 7). HOU had less daily variability than GSM
and BON, and was the only site which had high-α′ CCN each
day (Fig. 8). Less data was available from SGP than the other
sites, but CCN from this site did have similar growth kinetics
to those from HOU, although no high-α′ CCN were detected
(Fig. 9). For individual time periods at all sites,fL andfVL
ranged from 0 to 89% and 0 to 33%, respectively, andfH
ranged from 0 to 42%.

www.atmos-chem-phys.net/8/1043/2008/ Atmos. Chem. Phys., 8, 1043–1055, 2008
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Figure 7. Summary of CCN α′ distributions for each day at BON, and the total from the site. 

An  α′ of 10-2.0 is 4σ below the mean for ammonium sulfate (αapp,AS), α′ = 10-1.5 is 3σ below 

αapp,AS, α′ = 10-1.0 is 2σ below αapp,AS, and α′ = 6 is 1.5σ above αapp,AS.

27

Fig. 7. Summary of CCNα′ distributions for each day at BON,
and the total from the site. Anα′ of 10−2.0 is 4σ below the mean
for ammonium sulfate (αapp,AS), α′=10−1.5 is 3σ belowαapp,AS,

α′=10−1.0 is 2σ belowαapp,AS, andα′=6 is 1.5σ aboveαapp,AS.

Among the 16 days, we identify those with either (a) lit-
tle/no, (b) moderate, or (c) strong kinetic inhibition to con-
densational growth, as well as those with (d) kinetic enhance-
ment to growth (see Table 1). Seven of the 16 days had lit-
tle/no inhibition (fVL<1.1% andfL<16%), 7 days had at
least one period with moderate inhibition (fVL<5.1% and
27%<fL<59%), and 2 days had at least one period with
strong inhibition (fVL>33% andfL>82%). Also, we de-
tected CCN with enhanced kinetic growth (10%<fH<42%)
on 9 out of 16 days. All 4 sites experienced at least one day
with moderate or strong inhibition to condensational growth
relative to AS, including one out of 2 days at SGP and 2
out of 5 days at HOU, although relatively few very low-α′

CCN (fVL =1.4%) were detected at SGP. Moderate inhibition
was observed on 2 out of 5 days at the polluted regional site
(GSM), and 2 out of 4 days at one continental background
site (BON) had strong inhibition to growth. On both days
with strong inhibition, kinetic limitations peaked around lo-
cal noon and decreased later in the day (Fig. 10). A decrease
in fL later in the day was also seen at HOU (Fig. 11). Ki-
netic enhancement to condensational growth (relative to AS)

Figure 8. Summary of CCN α′ distributions for each day at HOU, and the total from the site. 

An  α′ of 10-2.0 is 4σ below the mean for ammonium sulfate (αapp,AS), α′ = 10-1.5 is 3σ below 

αapp,AS, α′ = 10-1.0 is 2σ below αapp,AS, and α′ = 6 is 1.5σ above αapp,AS.

28

Fig. 8. Summary of CCNα′ distributions for each day at HOU,
and the total from the site. Anα′ of 10−2.0 is 4σ below the mean
for ammonium sulfate (αapp,AS), α′=10−1.5 is 3σ belowαapp,AS,

α′=10−1.0 is 2σ belowαapp,AS, andα′=6 is 1.5σ aboveαapp,AS.

was also observed, but typically in a much smaller fraction
of CCN than those with inhibited growth. The polluted re-
gional site (GSM) had the highest fraction of high-α′ CCN
(fH=13%), followed by HOU (12%), SGP (5.7%), and BON
(2.3%).

4 Discussion and conclusions

To potentially explain the observed daily variability in
droplet growth rates, we compared back trajectories for
the days during which measurements were taken at BON
and GSM (Figs. 12 and 13, respectively). According to
these analyses, air masses descending from>1000 m above
ground level arrived both days at BON that had highest-

Atmos. Chem. Phys., 8, 1043–1055, 2008 www.atmos-chem-phys.net/8/1043/2008/
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Figure 9. Summary of CCN α′ distributions for both days at SGP, and the total from the site. 

An  α′ of 10-2.0 is 4σ below the mean for ammonium sulfate (αapp,AS), α′ = 10-1.5 is 3σ below 

αapp,AS, α′ = 10-1.0 is 2σ below αapp,AS, and α′ = 6 is 1.5σ above αapp,AS.

29

Fig. 9. Summary of CCNα′ distributions for both days at SGP,
and the total from the site. Anα′ of 10−2.0 is 4σ below the mean
for ammonium sulfate (αapp,AS), α′=10−1.5 is 3σ belowαapp,AS,

α′=10−1.0 is 2σ belowαapp,AS, andα′=6 is 1.5σ aboveαapp,AS.

observed low-α′ CCN (Fig. 12b, c), but were absent on other
days (Fig. 12a, d). A similar pattern was seen at GSM: air
from aloft (>1000 m elevation) was arriving throughout the
one day in which there was moderate inhibition to conden-
sational growth (Fig. 13c), whereas on other days descend-
ing air was either absent or intermittent (Fig. 13a, b, d). If
air arriving from aloft contains accumulation mode aerosols
that have survived one or more cloud cycles, and these cycles
selectively remove high-α′ CCN via wet deposition, low-α′

CCN should be more prevalent in air arriving from aloft. No-
vakov et al. (1997) observed an increase in aerosol carbon
mass fraction with altitude in the eastern United States. Sim-
ilarly, Andrews et al. (2004) observed a slight decrease in
single-scatter albedo with altitude above SGP in data col-
lected over two years, which was likely due to an increase
in carbonaceous content. Other studies have confirmed the
abundance of organic matter aerosols in the free troposphere
(e.g., Murphy et al., 1998; Heald et al., 2005). Most potential
mechanisms of kinetic limitations to droplet growth likely in-
volve organic matter (e.g., slowly-dissolving or film-forming
compounds), and therefore the preponderance of organic ma-
terial in free tropospheric aerosols is consistent with our ob-
servations that low-α′ CCN seemed to be more prevalent in
air masses arriving from aloft.

Kinetic inhibitions to condensational growth were strong
on two days at BON, and although there was less daily vari-
ability at HOU, one period during 7 Sept. had more low-α′

(fL=43%) than all other HOU times (fL<27%). On each
of these three days, kinetic limitations peaked around noon,

Figure 10.  α' distributions  for  various  periods on the two days  with strong inhibitions  to 

condensational growth (both at BON).

30

Fig. 10. α′ distributions for various periods on the two days with
strong inhibitions to condensational growth (both at BON).

Figure 11. α' distributions for various periods on two days from HOU.

31

Fig. 11.α′ distributions for various periods on two days from HOU.
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Fig. 12. NOAA HYSPLIT back trajectories ending at the BON site, ending on(a) 23/08/2006,(b) 24/08/2006,(c) 25/08/2006, and(d)
28/08/2006.

and decreased later in the day. It is possible that photochem-
ical aging of the ambient aerosol on those days caused the
particles to become more oxidized and therefore more solu-
ble, and that this is the reason for the consistent decrease in
low-α′ droplets throughout the afternoon. Much more data

would be required, however, to rigorously test this hypoth-
esis. We also observed CCN that grew more rapidly than
lab-generated AS. One possible explanation for this is the
presence of surface-active substances that might act to lower
Seq, and thus increase the difference betweenS andSeq that
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Fig. 13. NOAA HYSPLIT back trajectories ending at the GSM site, ending on(a) 10/08/2006,(b) 12/08/2006,(c) 13/08/2006, and(d)
18/08/2006.

drives condensational growth, i.e., the numerator on the right
side of Eq. (3). Additionally, these high-α′ CCN might be sea
salt particles, which should grow more rapidly than AS parti-
cles because there are more ions in a NaCl particle of a given
size. This could explain why high-α′ CCN were observed

each day in HOU. Again, more data would be required, in-
cluding compositional data, before either mechanism for in-
creased growth rates could be verified.
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These results suggest that aerosols containing CCN with
αapp significantly lower than that observed for laboratory-
generated AS are fairly common in the atmosphere, as they
were observed on 8 out of 16 days at four different field sites.
Kinetic limitations of this magnitude could keep these par-
ticles from being activated under atmospherically relevant
timescales of exposure to water vapor supersaturation (i.e.,
∼30 s). These particles could be partly responsible for over-
prediction of CCN concentrations in previous closure exper-
iments, and could also lead to broadening of cloud droplet
spectra that might diminish the affect of increased aerosol
concentrations on cloud radiative properties (Liu and Daum,
2002). Low-α′ CCN might also have a longer atmospheric
lifetime than other particles due to less efficient removal by
wet deposition. Less efficient removal could, in fact, ex-
plain why slowly-growing particles seemed to be present in
air masses arriving from aloft, if a portion of the particles in
these masses had already been subject to one or more cloud
cycles with at least some precipitation.
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