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Abstract. This paper presents an approach to study droplet
activation kinetics from measurements of CCN activity by
the Continuous Flow Streamwise Thermal Gradient CCN
Chamber (CFSTGC) and a comprehensive model of the
instrument and droplet growth. The model, which can be
downloaded fromhttp://nenes.eas.gatech.edu/Experiments/
CFSTGC.html, is evaluated against a series of experiments
with ammonium sulfate calibration aerosol. Observed and
modeled droplet sizes are in excellent agreement for a wa-
ter vapor uptake coefficient∼0.2, which is consistent with
theoretical expectations. The model calculations can be con-
siderably accelerated without significant loss of accuracy
by assuming simplified instrument geometry and constant
parabolic flow velocity profiles. With these assumptions, the
model can be applied to large experimental data sets to in-
fer kinetic growth parameters while fully accounting for wa-
ter vapor depletion effects and changes in instrument opera-
tion parameters such as the column temperature, flow rates,
sheath and sample flow relative humidities, and pressure.
When the effects of instrument operation parameters, water
vapor depletion and equilibrium dry particle properties on
droplet size are accounted for, the remaining variations in
droplet size are most likely due to non-equilibrium processes
such as those caused by organic surface films, slow solute
dissociation and glassy or highly viscous particle states. As
an example of model application, data collected during a re-
search flight in the ARCTAS 2008 campaign are analyzed.
The model shows that water vapor depletion effects can ex-
plain changes in the observed average droplet size.

1 Introduction

Aerosols are the precursors of cloud droplets and can pro-
foundly affect cloud albedo, lifetime, and droplet size dis-
tribution. Aerosol-cloud interactions have important impacts
on global climate, but with a magnitude that is considerably
uncertain (IPCC, 2007). Clouds are formed by cooling of
humid air masses (often in a rising thermal) that eventually
become supersaturated and activate cloud droplets on pre-
existing aerosol. Subsaturated growth occurs in equilibrium
with the ambient relative humidity, but growth and activation
under supersaturated conditions are kinetically limited by the
availability of water vapor and gas- and aerosol-phase mass
transfer resistances (e.g.Chuang et al., 1997; Nenes et al.,
2001). Consequently, droplet growth rates can be affected by
delays in solute dissolution (Asa-Awuku and Nenes, 2007),
formation of organic surface films (Chuang, 2003) and, pos-
sibly, glassy aerosol states (Zobrist et al., 2008; Virtanen
et al., 2010; Tong et al., 2011; Koop et al., 2011). Delays
in droplet growth kinetics have a tendency to decrease aver-
age cloud droplet size for a given growth period; if occur-
ring for all cloud condensation nuclei (CCN) in the updraft,
cloud droplet number concentration is promoted by allowing
higher maximum supersaturation values to be reached since
water vapor is not removed to the aerosol phase as quickly
(Nenes et al., 2002).

The supersaturated droplet growth depends on diffusion
limited transport of water vapor to the surface, but also on
transport through the droplet surface and bulk solution (Davi-
dovits et al., 2006; Kolb et al., 2010). The likelihood of ad-
sorption and subsequent absorption can be described by the
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mass accommodation coefficient or the effective uptake co-
efficient (αc) which includes the other resistances. For ideal
liquid water droplets, collision of a vapor molecule leads al-
most always to adsorption, so that water droplet growth de-
pends only on the diffusion of water vapor. The situation can
become more complicated when solutes are present in the
aqueous phase as they may change the bulk solution equilib-
rium state and the droplet surface properties.

Different values have been suggested forαc (e.g.
Mozurkewich, 1986; Shaw and Lamb, 1999; Li et al., 2001;
Davidovits et al., 2004; Zientara et al., 2005; Winkler et al.,
2004, 2006; Kolb et al., 2010), but the converging view is
that it is close to unity (≥0.1) for water surfaces. Several the-
oretical and experimental techniques are used to study water
uptake (Davidovits et al., 2006; Kolb et al., 2010). Molecular
dynamics simulations (e.g.Bahadur and Russell, 2008; Taka-
hama and Russell, 2011) offer a first principles approach for
estimatingαc and understanding the processes of adsorption
and absorption of water vapor into the growing droplets. Ex-
periments are usually droplet growth or evaporation studies
where observations are interpreted by a suitable numerical
model. Both sub-saturated (e.g.Chuang, 2003, 2006; Sjo-
gren et al., 2007; Drisdell et al., 2009; Tong et al., 2011)
and supersaturated (e.g.Winkler et al., 2004, 2006; Ruehl
et al., 2008, 2009; Lance et al., 2009; Asa-Awuku et al.,
2009, 2010; Shantz et al., 2010) conditions have been used.
Most of the latter are done with CCN instruments such as
the Droplet Measurement Technologies (DMT) CCN counter
(Lance et al., 2006), which is based on the Continuous Flow
Streamwise Thermal Gradient Chamber (CFSTGC) design
(Roberts and Nenes, 2005).

CCN activation kinetics can be qualitatively studied by
the threshold droplet growth analysis (TDGA) technique,
where measured droplet sizes are compared against those
from calibration experiments (Moore et al., 2008; Engelhart
et al., 2008). To account for hygroscopicity and dry size
differences between aerosol, both droplet sizes are selected
from the point where activation is first observed. TDGA
has been applied to several ambient aerosol samples (Asa-
Awuku et al., 2011; Bougiatioti et al., 2009, 2011; Lance
et al., 2009; Murphy et al., 2009; Padŕo et al., 2010, 2011;
Cerully et al., 2011), secondary organic aerosol (SOA) (En-
gelhart et al., 2008, 2011; Asa-Awuku et al., 2009, 2010)
and laboratory-generated aerosol (Moore et al., 2008; Ku-
mar et al., 2011a,b). In general, slower kinetics than cali-
bration aerosol have been related to insoluble organics from
SOA chamber experiments (Asa-Awuku et al., 2009), fresh
exhaust plumes (Murphy et al., 2009), and mineral dust par-
ticles when using a dry generation technique (Kumar et al.,
2011a,b). Ruehl et al.(2008, 2009) have also found slowly
growing particles in a number of environments using a CF-
STGC with a Phase Doppler Interferometer as the droplet
detector.

There are some important limitations with TDGA. First,
droplet size does not depend only on the water vapor up-

take coefficient, but also on instrument operation param-
eters (e.g. supersaturation, temperature, pressure and flow
rates), aerosol properties (e.g. hygroscopicity and size distri-
butions), and CCN concentration. Water vapor depletion in
the instrument from high CCN concentrations leads to de-
creases in the instrument supersaturation and final droplet
size (Lathem and Nenes, 2011). CCN concentrations are not
significantly affected, but even moderate particle concentra-
tions can have an observable effect on droplet size (Lathem
and Nenes, 2011). The second limitation of TDGA is that
it cannot provide numerical values for vapor uptake coeffi-
cients; a droplet growth model such as those used byShantz
et al. (2010), Ruehl et al.(2008, 2009), Asa-Awuku et al.
(2009) andKumar et al.(2011a) is instead required.

Here we present an approach to study droplet activation
kinetics and quantify kinetic parameters from measurements
of CCN activity combined with a comprehensive model of
the process. For the latter, an augmented version of the
coupled DMT CCN instrument and droplet growth model
used previously inRoberts and Nenes(2005), Lance et al.
(2006), andLathem and Nenes(2011) is developed and ap-
plied. Model accuracy is assessed by a comprehensive series
of droplet growth experiments with ammonium sulfate cali-
bration aerosol. A careful calibration of the optical particle
counter is carried out to quantify sizing uncertainty and the
sheath flow relative humidity is measured to provide an ac-
curate model for inlet boundary conditions. Sources of pre-
diction uncertainty in the model are explored. Simplifying
assumptions, which do not introduce significant prediction
errors, are introduced to accelerate calculations. The acceler-
ated model is able to simulate droplet growth for large CCN
data sets collected from field campaigns and laboratory ex-
periments. We demonstrate this using an airborne CCN sam-
ple data set collected in the vicinity of intense biomass burn-
ing plumes during the 2008 ARCTAS experiment.

2 Simulating CCN activation and growth

The analysis here focuses on the Droplet Measurement Tech-
nologies (DMT) Continuous Flow Streamwise Thermal Gra-
dient CCN chamber (Roberts and Nenes, 2005; Lance et al.,
2006), although the approach presented here can be applied
to any CCN instrument. A simple scaling analysis can be per-
formed to unravel the dependence of growth kinetics on in-
strument operation conditions (AppendixA). However, de-
pletion effects and other sources of variability cannot eas-
ily be accounted for by such an approach; this necessitates a
comprehensive modeling approach.

Droplet growth kinetics are simulated using a Lagrangian
approach that tracks individual particles as they flow through
the instrument. An Eulerian approach is used to predict the
distributions of supersaturation, temperature, pressure and
velocities from the known flow rate, humidity and temper-
ature boundary conditions. The droplet and gas (including

Atmos. Chem. Phys., 12, 4227–4243, 2012 www.atmos-chem-phys.net/12/4227/2012/



T. Raatikainen et al.: Activation kinetics from measurements of CCN activity 4229

2 

TEC1 

TEC2 

TEC3 

250 mm 

250 mm 

Sample 
flow Sheath flow 

Tinlet 
 

TTEC1 

 
 
 

 
 

 
TTEC2 

 
 

 
 
 
 

TTEC3 

 

 
TOPC 

47 mm 

OPC 

70 mm 

TEC1 TTEC1 

Sample 
flow Sheath flow 

Tinlet 

22.7 mm 

Tsample 

RHsample 

Tsheath 

RHsheath 

Dry 
section 

25 mm 

22 mm 

Wetted 
section 

1 mm 

2 mm 

Fig. 1. CCN chamber dimensions and temperatures used in the
models.

water vapor) phases are coupled through the release of latent
heat and condensation of water vapor.

2.1 Description of CCN instrument

A schematic of the CCN chamber is shown in Fig.1; sheath
and aerosol sample flows are introduced into the top of a
cylindrical vertical tube. By using a relatively high sheath-to-
aerosol flow ratio (usually 10:1), the sample flow is focused
in a narrow stream at the chamber centerline. Column walls
are kept wet and a constant positive wall temperature gradi-
ent in the streamwise direction is maintained by three sets
of thermo electric coolers (TECs). Because diffusion of wa-
ter vapor is faster than that of heat, a quasi-parabolic radial
supersaturation profile is developed. The streamwise super-
saturation profile depends mainly on pressure, flow rate, and
wall temperature gradient (Roberts and Nenes, 2005). Flows,
temperature, and water vapor concentration need different
lengths to develop, but a relatively constant maximum su-
persaturation is maintained after a characteristic entry length
(Lance et al., 2006). At the exit of the chamber, a funnel fo-
cuses the sheath and sample flows to a narrow and fast air
stream going through the optical particle counter (OPC) view
volume. The OPC detects droplets ranging from 0.5 to 10 µm
diameter.

Different operation modes can be used during instrument
calibration and CCN measurements. Wall temperature gradi-
ents can be kept constant, changed with selected steps, or su-
persaturation can be scanned continuously by adjusting flow
rate (Moore and Nenes, 2009). In addition, differential mo-
bility analyzers (DMAs) can be used in selecting dry parti-
cle sizes either in stepping or scanning modes (Moore et al.,
2010). This study focuses on the constant flow mode of op-
eration, which is currently the most widely-used mode of op-

eration for the DMT instrument. A version of the model sup-
porting the scanning flow mode is left for a future study.

2.2 Droplet growth model

The rate of change of droplet diameterDp can be described
with a differential equation derived from the mass transfer of
water vapor to the droplet/particle phase (Fukuta and Walter,
1970; Seinfeld and Pandis, 1998):

Dp

dDp

dt
=

S − Seq

ρwRT

4P 0
wD′vMw

+
1Hvρw

4k′
aT

(
1HvMw

T R
− 1

) (1)

whereS andSeq are ambient and droplet water equilibrium
saturation ratios, respectively. In addition to density of wa-
ter (ρw), universal gas constant (R), temperature (T ), water
saturation vapor pressure (P 0

w), molar mass of water (Mw),
and water vaporization enthalpy (1Hv), the equation con-
tains diffusivity (D′

v) and thermal conductivity (k′
a) terms

that account for non-continuum effects (Fukuta and Walter,
1970):

k′
a =

ka

1+
2ka

αT Dpρacp

√
2πMa
RT

(2)

D′
v =

Dv

1+
2Dv
αcDp

√
2πMw
RT

(3)

In Eq. (2) ka, ρa, cp andMa are thermal conductivity, density,
heat capacity and average molar mass of air, respectively.
Dv is the diffusivity of water in air. Thermal accommoda-
tion (αT ) and water vapor uptake (αc) coefficients are not
well known, but are thought to be close to unity for pure wa-
ter droplets (e.g.Fukuta and Walter, 1970; Laaksonen et al.,
2005; Davidovits et al., 2006; Kolb et al., 2010). In this study,
αT is prescribed to be unity, butαc is determined from the
experiments with ammonium sulfate calibration aerosol.

The water equilibrium saturation ratio of the growing
droplets is calculated from K̈ohler theory (Köhler, 1936):

Seq = aw exp

(
4σMw

RTρwDp

)
(4)

where the Raoult (or “solute”) term(aw = γwxw) gives the
change in the water vapor pressure due to the decreased mole
fraction of water (xw) and solute-water interactions (activity
coefficientγw). The Kelvin term gives the increase in vapor
pressure due to droplet curvature.γw, xw and surface tension
(σ ) are known for the calibration aerosol, but not for ambient
particles. Therefore, constant surface tension equal to that of
pure water (σw) is often assumed, which is a good approx-
imation for any dilute droplet, unless it contains strong sur-
factants. Droplet solution non-idealities are largely ignored
(assumed to be independent of solute concentration) when
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aw is parameterized in terms of a single solute hygroscopic-
ity parameterκ (Petters and Kreidenweis, 2007):

aw =

(
1+

κ

(Dp/Ddry)3 − 1

)−1

(5)

whereDdry is the dry diameter of the particle.
Equation (1) is an initial value problem, where tempera-

ture and both chamber and droplet water equilibrium satu-
ration ratios depend on time or the location in the instru-
ment. The gas-phase model (Roberts and Nenes, 2005; Lance
et al., 2006) is used to generate velocity, pressure, supersat-
uration and temperature fields based on the measured instru-
ment operation parameters (wall temperatures, pressure and
flow rates) and calibrated maximum supersaturation.

2.3 The gas-phase model

Calculation of gas-phase distributions of pressure, water va-
por, temperature and flow velocities is presented inRoberts
and Nenes(2005) and evaluated byLance et al.(2006),
Rose et al.(2008), andLathem and Nenes(2011). The rel-
evant heat and mass transfer equations, the coupling with the
droplet phase, and the details about the finite volume inte-
gration method are given byRoberts and Nenes(2005) and
Lance et al.(2006).

The main uncertainties in the calculation of velocity, pres-
sure, temperature and supersaturation fields are related to
boundary conditions of the gas-phase model, especially the
temperature and relative humidity of the inlet sample and
sheath flows, and the chamber wall temperature and wetting
profiles. Flow rates and pressure are quite easily controlled
and measured, while temperature control is limited to the
outer wall of the chamber, and at the three TEC regions (see
Fig. 1).

Inner wall temperatures are not measured, but a compari-
son between observed and simulated supersaturation depen-
dence on wall temperature gradient indicates that the inner
wall temperature gradients are lower than those measured
from the outer wall (Lance et al., 2006). In addition, exper-
iments show that supersaturation calibration lines (supersat-
uration as a function of column top and bottom temperature
difference) have a negative offset, i.e. a small temperature
gradient is needed for the zero supersaturation (Rose et al.,
2008). The model assumption of fully wetted column walls
means zero centerline supersaturation for the zero tempera-
ture gradient case. Much of these uncertainties related to the
supersaturation profiles can be avoided by selecting the inner
wall temperature gradient so that the calibrated and calcu-
lated maximum supersaturation values match. In the updated
model, this is done on-line for any given set of input param-
eters.

The original gas-phase model ofRoberts and Nenes(2005)
does not include the chamber section between TEC1 and col-
umn top. The impact of this assumption is addressed by de-
veloping a new detailed model version that includes the ge-

ometry of the complete inlet section. Several assumptions of
the inlet region must be made even for the detailed model.
First, sheath and sample flow relative humidities are not typ-
ically measured. The sample flow is often dried in laboratory
measurements, although it can be much higher when sam-
pling in ambient environments without a pre-conditioning
dryer. For this work, a sample flow RH of 30 % is assumed.
Uncertainty in this parameter has a minor effect on droplet
size because the sample flow is usually about 10 % of the to-
tal flow. Ideally sheath flow RH is 100 % at the humidifier.
Direct measurements of RH indicate that the sheath flow RH
depends on the flow rate, being lower for higher flow rates
(Sect.3.2). In practice, sheath flow RH can be an important
source of droplet size variability as it affects the entry length
required for development of supersaturation in the chamber;
the effect on maximum supersaturation however is often neg-
ligible. Second, the first few millimeters of the wetted cham-
ber wall could be dryer than expected due to the subsaturated
sheath flow. As a result, a smooth wall wetting profile is as-
sumed between the start of the wet wall section and TEC1.
Third, sheath flow temperature is known at the column top,
but sample flow is in a narrow tube from the column top to the
distance of TEC1. Instead of actually solving the heat con-
duction equations, it is assumed that the tube and the sample
flow temperatures are not changing until sheath and sample
flows meet at the location of TEC1.

Because temperature boundary conditions are not known
after the chamber where the flows are going through the
funnel, model simulations end at TEC3 about 70 mm be-
fore droplets are detected by the OPC. The distance between
TEC3 and OPC is quite small compared to the total chamber
length (500 mm from TEC1 to TEC3) and flow velocity in-
creases after the TEC3 when both sample and sheath flows
are funneled smoothly into a 1 mm diameter tube. A simple
calculation (assuming linear geometry and that aerosol ve-
locity is equal to the mean velocity) suggest that the time in
the funnel is∼0.3 s for 0.5 Lmin−1 flow rate compared to the
12 s residence time of the droplets in the chamber.

3 Results

The model development is first briefly described before pre-
senting the calibration experiments for model verification.
The optical particle counter (OPC) calibration experiments
are used to characterize the sizing of the OPC. A series
of standard supersaturation calibration experiments are then
used to assess if model predictions are in agreement with ex-
perimental observations for a water vapor uptake coefficient
∼1. We also assess the impact of various model simplifica-
tions on predicted droplet size and compare them to the ex-
perimental uncertainties. The last model verification experi-
ment is focused on water vapor depletion effects. Finally, an
ambient sample data set is analyzed to demonstrate the ap-
plicability of our approach.
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3.1 Model development

The original single precision FORTRAN code used in
Lathem and Nenes(2011) was first converted to double pre-
cision accuracy. This had a considerable impact on reducing
model computing time, by increasing the smoothness of the
supersaturation fields, and reducing the number of iterations
required for convergence. As an example, one simulation
was run with a standard quad-core desktop computer using
both types of precision for identical inputs (AppendixB); the
calculation times for the single and double precision mod-
els were 1284 s and 179 s, respectively. The main reason for
the order of magnitude time difference is that the droplet
growth calculations are much slower for the single precision
model; when the droplet growth is ignored, both model ver-
sions need about 50 s for calculations of the gas-phase fields
(pressure, flow velocity, temperature and water vapor con-
centration). The slower droplet growth calculations of the
single precision code is a result of fluctuations to the cal-
culated fields from accumulation of roundoff errors, which
slow down the solving of Eq. (1). An example of such fluc-
tuations and their impact on calculated centerline supersatu-
ration profiles is shown in AppendixB.

A further step in the development involved the separa-
tion of the gas-phase and droplet growth codes, allowing for
more flexible control over these two most time-consuming
tasks. Now droplet growth calculations and gas-phase iter-
ations are performed one at a time and only when needed.
Some updates were done to model parameters such as the
temperature dependence of latent heat of water which had
been constant in the previous version. Boundary conditions
were also redefined when needed (different model versions
specified below). The biggest change from the original code
is a new interface between the droplet growth and gas-phase
models which allows the on-line calculations of fields from
the given maximum supersaturation and instrument opera-
tion parameters. Other changes are related to more flexible
user inputs and outputs, error handling, and optimization for
quick droplet growth calculations.

For the following calculations we are using three model
versions of varying complexity. Thelong modelcontains
the detailed CCN chamber geometry from inlet to TEC3 as
shown in Fig.1. Because the model starts from the flow
straightener, uniform initial velocities are assumed for sheath
and sample flow regions. Temperature boundary conditions
are linear interpolations between the measured temperatures
from inlet and TECs, except that the sample tube temperature
is set equal to the inlet temperature. Initial water vapor con-
centrations are calculated from the given sheath and sample
flow relative humidities, and these are constants during the
dry chamber wall section. After that, chamber wall water va-
por concentration increases linearly from the initial value to
the saturation concentration at TEC1, and remains saturated
after that. Temperature boundary conditions are similar: inlet
temperature for the flows, and linear wall temperature pro-
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Fig. 2.Simulated centerline supersaturation profiles and droplet size
for 90 nm ammonium sulfate particles. Maximum supersaturation is
set to 0.3 % for 1000 mbar pressure and 0.5 Lmin−1 flow rate. Su-
persaturation in sub- and supersaturated regions are shown in dif-
ferent scales, and the inset shows an expanded view of the region
with the highest supersaturation.

files between the inlet, TEC1 and TEC3. The gas-phase part
of theshort modelis identical to that of the original model of
Lathem and Nenes(2011), i.e. calculations start from TEC1
with given initial flow temperatures and parabolic axial and
zero radial flow velocities. The initial width of the aerosol
flow region is calculated from the parabolic flow profile and
total volumetric sample flow. Finally, theconstant velocity
modelis similar to the short model except that velocity fields
are not calculated. Instead, fully developed flow (assuming
constant temperature, pressure and neglecting buoyancy ef-
fects) with the initial zero radial velocity and parabolic axial
velocity profiles are used for all grid cells. It should be noted
that this approximation is not possible for the long model,
because the sample flow slows down and expands after the
sample inlet tube, which requires explicit calculations of the
velocity and pressure fields.

Figure2 shows an example of calculated centerline super-
saturation profiles and droplet sizes from the different model
versions. Here maximum supersaturation is set to 0.3 %, flow
rate is 0.5 Lmin−1, pressure is 1000 mbar, sheath-to-aerosol
flow ratio (SAR) is 10.0, TEC1 temperature is 300 K, and
inlet temperature is 302 K for the long model. Particles are
90 nm in dry diameter and composed of ammonium sulfate
(κ = 0.6). Water vapor depletion effects (particle concentra-
tion 600 cm−3 at the instrument pressure and temperature)
are accounted for in the second constant velocity model sim-
ulation. This is a typical example of how insensitive field and

www.atmos-chem-phys.net/12/4227/2012/ Atmos. Chem. Phys., 12, 4227–4243, 2012



4232 T. Raatikainen et al.: Activation kinetics from measurements of CCN activity

90

85

80

75

S
he

at
h 

flo
w

 r
el

at
iv

e 
hu

m
id

ity
 (

%
)

1.00.90.80.70.60.50.40.30.2
Flow rate, Q (L min

-1
)

Linear fit, R
2
 = 0.97

%RH = 96.5 - (21.5 min L
-1

)Q
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droplet growth calculations are to most model details, such as
the inlet section, when (particle free) maximum supersatura-
tion is fixed. On the other hand, water vapor depletion has an
observable effect on the supersaturation profile even for this
low particle concentration.

The calculation times for the simulations in Fig.2 were
1.62 s, 239 s, and 362 s for the constant velocity, short, and
long models, respectively. The time for the constant veloc-
ity model when accounting for water vapor depletion effects
was 2.09 s. If depletion effects become larger, more iterations
will be needed and the computing time will increase. For this
single particle simulation, computing time depends largely
on the time to calculate velocity fields. When constant ra-
dial velocity profiles are assumed, total computing time is
decreased by about two orders of magnitude.

3.2 Sheath flow relative humidity

Sheath flow relative humidity was measured using an RH
meter (±3 % RH accuracy) from the sheath flow line be-
tween the Nafion dryer block and the column top of the CF-
STGC instrument (serial number CCN007). The CFSTGC
liquid flow set was set to “low”, sample temperature varied
between 21–26◦C, and Nafion temperature varied discretely
being either 24.3◦C or 27.2◦C. The results of the RH mea-
surements are shown in Fig.3, where the RH error bars rep-
resent variability from at least four measurements, and the
flow rate error bars show the average uncertainty (4 %). Lin-
ear fitting to the data is also shown.

Because sheath flow RH is not commonly measured and it
is not known if this calibration curve holds for all instruments
used in this study, the model is constrained with a fixed value
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equal to 80 %. Model simulations (not shown here) show that
sheath flow RH variations have a negligible influence on the
maximum supersaturation, but do affect the supersaturation
entry length, and hence, final droplet size.

3.3 Instrument size calibration

The optical particle counter (OPC) in the DMT CCN instru-
ment uses a 628 nm wavelength laser to detect right-angle
scattered light (27–153◦ scattering angle) from droplets en-
tering the beam line. The beam pulses are detected by a
photodetector and used to determine the CCN concentration
from 1-s integrated counts, while the scattered light intensity
is related to the droplet size. Since the original OPC design
work focused mainly on CCN counting, the accuracy of the
sizing over the range of droplet sizes has not yet been thor-
oughly evaluated.

Here, we use NIST-certified borosilicate glass and silica
microspheres from Duke Scientific to verify the OPC sizing.
The silica spheres (0.73±0.02, 0.99±0.02, 1.57±0.02 µm
mean diameters) were atomized from an aqueous solution
and dried in two silica gel diffusion dryers, while the glass
spheres (2.0±0.4, 5.1±0.5, 8.1±0.5 and 10.0±1.0 µm mean
diameters) were obtained as a dry powder and suspended into
the air stream using the DMT glass bead injector. Overall, the
atomization technique produced much lower particle concen-
trations, likely due to wall losses in the long drying section
and transport tubing. The dry generation technique worked
much better and was used to validate the OPC calibration.
Mie theory calculations performed for the instrument geom-
etry using the model ofBohren and Huffman(1983) show
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that the different refractive indices of the silica, glass, and
water spheres are not expected to bias the sizing measure-
ment (right axis in Fig.4).

Two different experimental configurations were used for
the OPC calibrations. In the first, the OPC was removed
from the base of the column while preserving the electrical
and tubing connections. The glass bead injector was placed
directly upstream of the OPC and filtered air was drawn
through the suspension vial directly into the OPC (tubing
length on the order of a few centimeters). This procedure was
carried out in August 2011, as well as during routine main-
tenance at DMT in March, 2010. Removing (and replacing)
the OPC from the column is likely to be challenging in the
field, and direct injection of the glass particles led to signif-
icant broadening due to coincidence errors. Consequently, a
second configuration was tested where the glass bead injector
was placed in-line with the sample flow between the column
top and the low-pressure end of the laminar flow element
and a filter was placed on the instrument inlet. In this con-
figuration, the instrument was operated normally with a 0 K
temperature gradient to prevent activation of the glass par-
ticles. While being much easier to perform in the field, this
second configuration also reduces coincidence errors through
mixing the sample and sheath flow as occurs during normal
operation of the instrument.

The calibration results shown in Fig.4 show remarkably
good agreement between the measured and standard sizes,
but uncover a small undersizing bias (∼15 %), which is im-
portant to account for when comparing experimental data
with the results of the droplet growth simulations. The bias
is the same during both March 2010 and August 2011, sug-
gesting that the OPC sizing is nearly constant despite any
environmental variation or changes in the laser characteris-
tics during this time period. While calibration of the OPC
with size standards provides confidence in the accuracy and
stability of the instrument sizing, this bias (and any others
resulting from instrument non-idealities such as non-uniform
column wetting) could be determined from comparing model
predictions to measurements of ammonium sulfate calibra-
tion aerosol.

3.4 Ammonium sulfate aerosol experiments

In the next two sections, we present the comparison of model
predictions with experimental data obtained for ammonium
sulfate aerosol at two different CCN instrument flow rates
(0.5 and 1.0 L min−1) and pressures (500 and 960 mbar) and
7–11 different temperature gradients (temperature difference
in the range of 4–26 K), which are typical of those used
in past field measurements. Aerosol were generated via at-
omization from an aqueous ammonium sulfate solution be-
fore being dryed in two silica gel diffusion dryers and size-
classified with a differential mobility analyzer. The total par-
ticle size distribution and CCN size distributions were ob-
tained using the Scanning Mobility CCN Analysis (SMCA)

technique ofMoore et al.(2010), and three replicate size
scans were made at each set of conditions. A simple scaling
analysis (AppendixA) was used to set the operating condi-
tions to obtain similar OPC-measured droplet sizes.

A sigmoidal function was fit to the CCN activation curves
obtained from SMCA, and the particle size at the inflec-
tion point of the sigmoid was used with Köhler theory to
calibrate the instrument maximum supersaturation, follow-
ing Moore et al.(2010) and Rose et al.(2008). The mean
column temperature was used in applying Köhler theory and
solution non-ideality was accounted for using an osmotic co-
efficient obtained from the ion-interaction approach ofPitzer
and Mayorga(1973) with parameters taken fromClegg and
Brimblecombe(1988).

The main variables for the four calibration experiments
with different pressures and flow rates are dry particle size
and supersaturation. To simplify the comparison with model
predictions, we have interpolated average droplet size for
90 nm dry particle size using the data from 80–100 nm dry
size range, which is common for all mobility scans. Linear
interpolation was used because droplet size depends on dry
particle size (larger dry size leads to larger droplets) and sin-
gle data points can be affected by noise and/or fluctuations.
Pressures, flow rates, sheath-to-aerosol flow ratios and col-
umn top temperatures do not depend on dry particle size,
so these were averaged for the four calibration experiments.
The resulting values, which are given in Table1, are used as
model input parameters.

3.5 Optimal water vapor uptake coefficient for
calibration aerosol

A wide range of water vapor uptake coefficient (αc) val-
ues have been reported in the literature, so here we use our
calibration experiments to constrainαc, which is expected
to range from 0.1 to 1.0. Because the three model versions
(Sect.3.1) predict very similar droplet sizes, only the con-
stant velocity model is used here. The model includes the
effect of water vapor depletion.

Figure5 shows observed droplet sizes from the four cali-
bration experiments and corresponding predictions from the
constant velocity model using different water vapor uptake
coefficients. Predictions and observations match within ex-
perimental uncertainty when the uptake coefficient is larger
than 0.05, but unityαc seems to be more likely for the two
963 mbar experiments. In calculations hereafter, we assume
αc = 0.2 given that it lies within the range of acceptable val-
ues, and is in agreement with measurements carried out for
droplet water isotopic exchange experiments (Li et al., 2001).

It should be emphasized that observed droplet size was
corrected by using the OPC calibration equation in Fig.4.
Without this correction, a significantly lowerαc would have
been needed to match model predicted droplet sizes with
the observations. However, as shown inLathem and Nenes
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Table 1.Average flow rate (Q), pressure (P ), sheath-to-aerosol flow ratio (SAR), TEC1 and inlet temperatures, and CCN concentrations at
the instrument pressure and temperature for the four calibration experiments.

Q (Lmin−1) P (mbar) SAR TTEC1 (K) Tinlet (K) CCN (cm−3)

0.50 501.0 10.00 299.0 301.2 598
0.50 963.0 10.04 299.5 301.7 320
1.00 500.0 10.04 299.2 301.4 618
1.00 963.0 9.96 299.8 302.0 151
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Fig. 5. Observed and predicted droplet size for 90 nm ammonium sulfate particles. Model predictions are from the constant velocity model
when using different water vapor uptake coefficients. Supersaturation error bars are based on uncertainties of the calibrated supersaturations
and droplet size error bars are the average distribution widths described by standard deviations.

(2011) and in Sect.3.7, high αc values are needed to cor-
rectly predict water vapor depletion effects.

3.6 Different model versions

When the correlation between observed and predicted
droplet sizes agree within experimental uncertainty (Fig.5),
little or no improvement can be achieved by changing model
geometry, calculating velocity fields or further optimizing
uncertain model parameters such as the sheath flow RH. Fig-
ure 6 shows the measured droplet sizes of activated 90 nm
ammonium sulfate particles and predictions based on the
long, short and constant velocity models. In addition to the

default sheath flow RH of 80 %, a much lower value of 50 %
was used in the second constant velocity model simulation.
This has some effect on the 1.0 Lmin−1 and 963 mbar case,
but generally the change in droplet size is small. Water va-
por depletion effects are accounted for only in the third con-
stant velocity model simulation. Large differences are not
expected for these low CCN concentration experiments, but
a clear difference is seen for all except the 1.0 Lmin−1 and
963 mbar case. Higher CCN concentrations are examined in
the next section.

Droplet sizes predicted by the constant velocity model are
always slightly larger than those from the models with calcu-
lated velocity fields, because calculated velocity fields in the
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Fig. 6. Observed and predicted droplet size for 90 nm ammonium sulfate particles. Constant water uptake coefficient of 0.2 is assumed for
all model versions. The experimental data is same as in Fig.5.

latter have higher centerline velocities and thus less time for
growth. The main reason is that the calculated velocity pro-
files are affected slightly by buoyancy and thermal expansion
in the streamwise direction (not shown). Despite these dif-
ferences, the change in droplet size predicted by the models
with and without velocity calculations is small enough that
velocity calculations can be ignored, reducing computational
time by about two orders of magnitude.

Figure6 also shows that the detailed description of the in-
let section before TEC1 does not change model predictions
noticeably. The reason is that droplet size is not changing
much during the sub-saturated section of the chamber, and
when RH exceeds 100 % for the first time, flow fields are al-
ready similar for all model versions. Figure7shows an exam-
ple of supersaturation fields (contour lines) calculated by the
long model. Negative values of the axial coordinate represent
the inlet region, where sample and sheath flows are separated.
The dashed black lines are streamlines for the sample flow
region. These start from the point where sheath and sample
flows meet, i.e. right after the sample inlet shown by the black
boxes. For these simulations, maximum aerosol section su-
persaturation was 0.3 %, pressure 500 or 1000 mbar, flow rate
0.5 or 1.0 Lmin−1, and inlet and TEC1 temperatures 302 and

300 K, respectively. Flows have developed when the stream-
lines become parallel with the chamber symmetry axis, and
this happens well before 100 % RH is reached.

3.7 Water vapor depletion

As shown byLathem and Nenes(2011), growing droplets
can significantly deplete water vapor in the instrument cham-
ber when CCN concentration is large enough. This leads
to decreased centerline supersaturation and droplet size.
Lathem and Nenes(2011) showed that the model is able
to correctly predict the droplet size decrease for ammonium
sulfate when using a water vapor uptake coefficient close to
unity. These experiments were performed at ambient pres-
sure and 0.5 Lmin−1 flow rate; the model should also cor-
rectly predict droplet size depression for any pressure and
flow rate as long as droplet size and CCN concentration are
correctly predicted. Model accuracy for predicting droplet
size was shown above; CCN concentrations are even easier
to predict, because they depend largely on the equilibrium
critical dry particle size. We have, nevertheless, carried out
additional high CCN concentration calibration experiments
at reduced pressure to study the effect of pressure on water
vapor depletion.
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Figure 8 shows the relative droplet size depressions
(droplet size divided by that at the lowest CCN concen-
tration) from four high CCN concentration calibration ex-
periments. In addition to the 980 mbar data fromLathem
and Nenes(2011), there are three additional experiments
shown for 450 mbar pressure and a total column flow rate
of 0.5 Lmin−1. The experimental procedures for these three
additional experiments are about identical to those from
Lathem and Nenes(2011), with the addition of a DMT pres-
sure control box upstream of the CCN instrument to con-
trol and lower the CCN pressure. First, a wide polydisperse
aerosol size distribution is generated by atomizing an am-
monium sulfate solution and drying the droplets with a se-
ries of diffusion dryers. After the dryers, one part of the
flow is led to a DMA and CPC to measure the dry particle
size distribution, and the other polydisperse part is led to the
CCN instrument. CCN concentrations were varied between
70 and 60 000 cm−3 by either changing the concentration of
the atomizer solution or adjusting a particle-free dilution flow
(while ensuring the mean diameter of the distribution was rel-
atively constant). The dry particle size distributions resemble
skewed log-normal distributions containing more particles at
the larger sizes.

As shown in Fig.8, the most important parameter for water
vapor depletion is CCN concentration. From the experimen-
tal data, it is difficult to see any clear effect of dry particle
size or pressure on water vapor depletion. The water vapor
depletion seems to depend on supersaturation, such that at
higher supersaturations the water vapor depletion effects are
the strongest. This is what can be expected, as droplet size
increases with supersaturation. At very low supersaturations,
the average droplet size is near the detection limit of the op-
tical particle counter (about 1 µm diameter), so droplet size
depression is subject to this measurement uncertainty. For
Fig. 8, we have removed this data where the initial droplet
sizes were close to the instrument detection limit. Therefore,
the data represents maximum water vapor depletion effects
(for the current supersaturation limits, pressures and dry size
distributions).

Noting the experimental uncertainties, we have performed
a simplified series of constant velocity model simulations
representing the maximum water vapor depletion case:
980 mbar pressure, constant 60 nm dry size (which may be
a bit low for activated particles), and 0.6 % supersaturation.
The main variable, however, is the water vapor uptake coeffi-
cient. The model simulations shown in Fig.8 suggest that the
largestαc are needed to adequately account for water vapor
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tions) are given in the figure. The experimental results are colored
by supersaturation. Both the experiments and simulations represent
cases with relatively large vapor depletion effect. The 980 mbar ex-
perimental data is fromLathem and Nenes(2011).

depletion effects. For the highest CCN concentrations, the
model seems to under predict water vapor depletion effects
even with the highestαc. It is however likely that the highest
observed CCN concentrations are underestimated due to co-
incidence events in the OPC. Indeed, the model simulations
with αc = 0.2 shows a good correlation with the experimen-
tal data for CCN concentrations at least up to 10 000 cm−3

(where coincidence errors are not expected to be important).
This can be considered as another strong piece of evidence
for a high water uptake coefficient (≥0.1).

4 Application of the model to sample ARCTAS data set

This section presents an example application of the new
method to analyze ambient data obtained during the ARC-
TAS (Arctic Research of the Composition of the Troposphere
from Aircraft and Satellites) campaign. ARCTAS took place
in Alaska and western Canada during spring and summer
2008, respectively, with a main objective to study the ef-
fects of aerosol and gas phase pollution on Arctic climate
(Jacob et al., 2010). Here we show results from flight 18
from 1 July 2008; the detailed analysis of the ARCTAS cam-
paign data is left to another study (Lathem et al., 2012).
Flight 18 was a detailed study of the Lake McKay fire in
NW Saskatchewan, Canada, including multiple plume tran-
sects to study conditions near the source, as well as transects

downwind to study atmospheric plume aging. As a result, the
sampled aerosol varies between fresh smoke, aged biomass
burning and remote boreal forest background. Not surpris-
ingly, aerosol size, composition, and number concentration
were highly variable. Therefore, this data set is an ideal test
for the model, especially since the observed CCN concen-
trations were high enough to lead to significant water vapor
depletion in the instrument.

A NASA DC-8 research aircraft was equipped with a
DMT CCN counter, which was operated at 451 mbar pres-
sure, 0.5 Lmin−1 total flow rate, 11.3 sheath-to-aerosol
flow ratio, and 305 K column top temperature (average val-
ues given). Instrument supersaturation was stepped between
three calibrated supersaturations:∼0.28, 0.42, and 0.57 %.
Ambient aerosol was sampled using the Langley Aerosol Re-
search Group Experiment (LARGE) aircraft inlet, which has
3–4 µm cut size (McNaughton et al., 2007). Dry particle size
distributions (8.5–414 nm), which are needed for the model
simulations, were measured by a Scanning Mobility Particle
Sizer (SMPS). Time resolution for the DMT CCN counter
is 1 s, but measuring the full dry particle size distribution
with the SMPS required 105 s, so the CCN measurements
were averaged over this time period. Dry particle hygroscop-
icity, which is also needed for the model, is inferred from
measurements of CCN activity and aerosol size distribution.
When all particles are internally mixed or have the same hy-
groscopicity, particles larger than a certain critical dry diam-
eter (Dc) are activated at each given CCN counter supersat-
uration. This critical dry diameter is calculated from the dry
particle size distributions and measured CCN concentrations,
and is converted to hygroscopicity described by theκ param-
eter (Petters and Kreidenweis, 2007):

κ =

4
(

4σwMw
RTρw

)3

27D3
c ln2(S)

(6)

HereS is the instrument saturation ratio and the other param-
eters are same as those in Eq. (4). Time series of the time-
dependent model input parameters as well as the measured
droplet size spectrum are shown in Fig.9.

The correlation between observed and model-predicted
average droplet sizes are shown in Fig.10. The predictions
are calculated using the constant velocity model with and
without water vapor depletion effects. At first it seems that
the observed droplet growth is significantly delayed, because
the model predicts 2–3 µm larger droplet size. For exam-
ple, the observed droplet size for 0.57 % supersaturation is
about 5 µm when the model predicts about 8 µm droplet size.
OPC sizing bias could explain a fraction of the difference,
but a∼40 % undersizing, which would be required to match
the droplet sizes, is unlikely. Another explanation is that
droplets really are smaller either due to slower water vapor
uptake (kinetic limitations) or factors not accounted for by
the model such as unexpected changes in sheath and sam-
ple flow RH, droplet evaporation between TEC3 and OPC,
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Fig. 9. Droplet size distribution at the instrument exit, CCN concentration (standard temperature and pressure), hygroscopicity parameter
κ (largest values are not shown), calibrated supersaturation and dry particle size distribution (standard temperature and pressure) for the
ARCTAS flight 18. Average droplet size and standard deviation (error bars) are shown with the droplet size distribution. The color scales of
the dry particle and droplet size distributions range from 1 to 10000 cm−3 and 1 to 1000 counts s−1, respectively.

incomplete column wetting, and non-linear wall temperature
profiles. Calibration data, where kinetic limitations can be
excluded, can provide further information about the expla-
nation. Model simulations for the ARCTAS calibration data
(black square markers in Fig.10) showed that the difference
between observed and predicted droplet sizes is similar to
that of the flight data, which means that slow activation ki-
netics do not cause the small observed droplet size. In gen-
eral, it seems that there are differences between the instru-
ments which is seen as differences in the observed droplet
size when the nominal operation parameters (supersatura-
tion, pressure and flow rate) and dry particle properties are
identical. These differences seem to be practically constant
over long (months–years) time periods. Therefore, the model
is best suited in explaining changes in droplet size rather than
absolute values.

There are clear variations in the observed droplet size,
which are represented by the widths of the gray boxes in
Fig. 10. Variations in dry particle properties (hygroscopic-
ity and dry particle size distributions) and instrument settings
(supersaturation, which is not entirely constant) have a rela-
tively small effect on predicted droplet size; this is seen as
practically constant model predictions for each fixed instru-
ment supersaturation (the lower plot in Fig.10). When water
vapor depletion is accounted for, the correlation between ob-
served and predicted droplet sizes becomes clear (the upper
plot in Fig.10). The solid black line is a linear fit with Pear-

son correlation coefficient 0.95 (R2 = 0.90), and the offset
and slope are 2.0 µm and 1.19, respectively. The conclusion
from the correlation is that water vapor depletion can explain
the majority of changes in the average droplet size. Without
the model and the knowledge about water vapor depletion ef-
fects, these changes could have been incorrectly interpreted
as a change in water vapor uptake coefficient.

There are still some variations in the observed droplet size
that cannot be explained by the model. Fluctuations in the
instrument operation parameters may cause real droplet size
variations, but it is more likely that the model cannot predict
these due to the highly simplified description of hygroscopic-
ity and averaged dry particle size distributions. For example,
the assumption of internally mixed particles with uniform hy-
groscopicity distribution is the simplest approach, but may
not be the most accurate, because several different and mixed
air mass types were sampled during flight 18. In this case,
model accuracy depends on the practical limitations in prob-
ing dry particle properties.

5 Conclusions

We present a novel and comprehensive approach to study
CCN activation kinetics by coupling a detailed model of the
process with CCN measurements. Thus, we have updated
the fully coupled DMT CCN counter gas-phase and droplet
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growth model, which simulates droplet growth in the instru-
ment while fully accounting for water vapor depletion effects
(Lathem and Nenes, 2011), changes in the instrument oper-
ation parameters, and dry particle properties (hygroscopicity
and dry size distributions). The updated model is more reli-
able and faster by an order of magnitude. By assuming con-
stant velocities, it can be further accelerated by an additional
two orders of magnitude without significant loss of accuracy,
making it suitable for examining large data sets. Model accu-
racy was verified by a detailed comparison with ammonium
sulfate calibration data covering a wide range of instrument
operation parameters, including high CCN concentrations.
The optical particle counter (OPC) was carefully calibrated
using different particle standards. When the observed 15 %
undersizing was accounted for and water vapor uptake coef-
ficient was set to 0.2, model predicted and observed droplet
sizes were in excellent agreement. This uptake coefficient is
also large enough so that water vapor depletion effects are
correctly accounted for up to large CCN concentrations. Ex-
ceedingly high CCN concentrations should be avoided, be-
cause droplet detection may be subject to considerable coin-
cidence errors and supersaturation depression.

Three model versions were presented above, but the
simplest and fastest constant velocity model is recom-
mended for general use. The model and a brief user manual

are available fromhttp://nenes.eas.gatech.edu/Experiments/
CFSTGC.html. To be able to use the model for droplet
growth simulations, dry particle size distributions and hygro-
scopicity needs to be known, but the instrument operation
parameters (e.g. temperatures, flow rates and pressure) are al-
ways saved and the supersaturation is from the usual calibra-
tion experiments. Careful OPC calibration and possibly also
tuning of model parameters (e.g. measuring and using accu-
rate sheath flow RH) are needed to obtain numerical values
for the water vapor uptake coefficient. The simplest use of
the model, which does not require any additional calibrations
or model tuning, is predicting relative changes in droplet size
from the effects not related to water vapor uptake (changes in
instrument operation parameters, water vapor depletion and
changes in dry particle properties). This method was used in
the first two applications, one shown here and the other in
Moore et al.(2012), of the updated model on real ambient
CCN measurements. In both cases, the model has shown the
importance of water vapor depletion effects on droplet size.
If unaccounted for, the effect of water vapor depletion could
have been interpreted as a change in the water vapor uptake
coefficient.

Most of the past DMT CCN studies have focused on CCN
concentrations and have largely ignored the capability of the
instrument to detect droplet size. As a result, there is a large
amount of unanalyzed droplet size data including chamber
experiments and field measurements from all over the world.
The approach outlined here allows the extraction of CCN ac-
tivation kinetics from this data and will allow the develop-
ment a much-needed climatology of CCN activation kinetics.

Appendix A

Droplet growth scaling analysis

Starting with a simplified form of the Maxwellian condensa-
tional growth equation (Eq. 1)

Dp

dDp

dt
= G

(
s − seq

)
(A1)

wheres andseq are the chamber and droplet water equilib-
rium supersaturations, respectively, and the parameterG =

1
ρwRT

4P0
wD′

vMw
+

1Hvρw
4k′

aT

(
1HvMw

T R
−1

) , which is only weakly dependent

on particle size and the instrument operating conditions. If
critical supersaturationsc � s after the instrument supersat-
uration develops (typical of large hygroscopic particles), one
can assume thats − seq ≈ s (Nenes et al., 2001). Then from
applying the chain rule to Eq. (A1) using the droplet veloc-
ity (assumed to be equal to twice the mean flow velocity,
U = dx/dt = Q/πR2) yields the droplet growth rate along
the Eulerian distance in the instrument growth chamber:

Dp

dDp

dx
=

πR2

2Q
Gs (A2)
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Fig. A1. Dimensionless scaling of droplet size (8) versus calibrated
instrument supersaturation for measured 100 nm ammonium sulfate
particles.

wherex is the axial distance along the growth chamber,R

is its inner radius,Q is the total flow rate, ands is supersat-
uration. Since the particles effectively activate immediately
upon entering the fully-developed supersaturation region of
the instrument, Eq. (A2) can be integrated from the point of
activation to the outlet of the growth chamber to yield the
OPC-measured droplet size,Dp,OPC

D2
p,OPC− D2

p,c =
πR2Gs

Q
(L − xs) (A3)

where Dp,c is the wet droplet diameter at activation de-
scribed by K̈ohler theory,L is the total length of the growth
chamber, andxs is the supersaturation entry length given
by Lance et al.(2006) as 0.20ReRR + R2U/α. ReR is the
dimensionless Reynolds number andα is the thermal diffu-
sivity of air. Substituting forxs in Eq. (A3) yields

D2
p,OPC− D2

p,c = R2
(

πL

Q
−

0.20

ν
−

1

α

)
Gs (A4)

whereν is the kinematic viscosity of air. Then, by rearrang-
ing Eq. (A4), we define the droplet growth parameter,8, as

8 =
D2

p,OPC− D2
p,c

R2
(

πL
Q

−
0.20
ν

−
1
α

) = Gs (A5)

Equation (A5) shows that8 is expected to scale linearly with
supersaturation independent of the instrument operating pa-
rameters (assuming a constant value ofG). This is confirmed
by the ammonium sulfate calibration data obtained at two
different pressures and flow rates shown in Fig.A1. Both
ν andα are pressure-dependent, and values for air obtained
from Seinfeld and Pandis(1998) were used in computing8
for Fig. A1.
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parameter (θ ) for measured 100 nm ammonium sulfate particles.

The maximum supersaturation in the instrument depends
on the pressure, flow rate, applied streamwise temperature
gradient (1T

L
), and to a lesser extent, the TEC1 temperature

(TTEC1). Consequently, we can parameterize the supersatura-
tion in terms of these parameters as

s = βθ (A6)

where

θ =

(
300K

TTEC1

)4(
P

1000mbar

)(
Q

1Lmin−1

)(
1T

1K

)
(A7)

and the fitting parameter,β, obtained from the ammonium
sulfate calibration data (Fig.A2) is found to be 0.114 %.
This value does not account for thermal efficiency variations
(Lance et al., 2006) or 1T offset (Rose et al., 2008), but still
is in excellent agreement with the value of 0.144 % obtained
for 810 model simulations over a range of 0.5, 0.75, and
1.0 L min−1 flow rates, 500, 750, and 1000 mbar pressures,
fifteen column temperature differences (from 1 to 15 K), and
six TEC1 temperatures (from 300 to 310 K). While not as
rigorous as the parameterization ofLance et al.(2006) as ev-
idenced by the wide confidence region (±0.1 % supersatu-
ration), Eq. (A7) captures the overall linear dependencies of
the maximum supersaturation on instrument operating condi-
tions reported byRoberts and Nenes(2005) andLance et al.
(2006).

Appendix B

Single and double precision models

As an example of improved model performance we ran one
simulation using identical inputs for the original single pre-
cision (FORTRAN) model used inLathem and Nenes(2011)
and the same model converted to double precision accuracy.
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Fig. B1.Centerline supersaturation profiles from the single and dou-
ble precision models after 1000 iterations. Note that there are dif-
ferent scales for sub- and supersaturated regions.

The inputs are: flow rate 0.5 Lmin−1, pressure 500 mbar,
sheath-to-aerosol flow ratio 10.0, and column top and bot-
tom temperatures 293 K and 301 K, respectively. Dry parti-
cles are ammonium sulfate (κ = 0.6) divided into 50 size bins
with 100 nm geometric mean diameter and 1.6 log-normal
standard deviation. Particle concentration was set to 1 cm−3,
but water vapor depletion effects were still calculated by up-
dating the condensation sink (i.e. calculating droplet growth)
after every 50 iterations. Scalar and vector fields were cal-
culated for 100×100 grid spacing. Solver convergence crite-
rion was set to machine precision, so that both models would
perform the maximum allowed number of 1000 iterations.
For the timing purposes discussed in the main text, calcula-
tions were also repeated with zero dry particle concentration,
which means that droplet growth was not calculated. Calcu-
lated centerline supersaturation profiles for the 1 cm−3 con-
centration case are shown in Fig.B1.
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Leskinen, J., M̈akel̈a, J. M., Holopainen, J. K., P̈oschl, U., Kul-
mala, M., Worsnop, D. R., and Laaksonen, A.: An amorphous
solid state of biogenic secondary organic aerosol particles, Na-
ture, 467, 824–827,doi:10.1038/nature09455, 2010.

Winkler, P. M., Vrtala, A., Wagner, P. E., Kulmala, M., Lehtinen, K.
E. J., and Vesala, T.: Mass and Thermal Accommodation during
Gas-Liquid Condensation of Water, Phys. Rev. Lett., 93, 075701,
doi:10.1103/PhysRevLett.93.075701, 2004.

Winkler, P. M., Vrtala, A., Rudolf, R., Wagner, P. E., Riipinen,
I., Vesala, T., Lehtinen, K. E. J., Viisanen, Y., and Kulmala,
M.: Condensation of water vapor: Experimental determination of
mass and thermal accommodation coefficients, J. Geophys. Res.,
111, D19202,doi:10.1029/2006JD007194, 2006.

Zientara, M., Jakubczyk, D., Derkachov, G., Kolwas, K., and Kol-
was, M.: Simultaneous determination of mass and thermal ac-
commodation coefficients from temporal evolution of an evap-
orating water microdroplet, J. Phys. D Appl. Phys., 38, 1978,
2005.

Zobrist, B., Marcolli, C., Pedernera, D. A., and Koop, T.: Do atmo-
spheric aerosols form glasses?, Atmos. Chem. Phys., 8, 5221–
5244,doi:10.5194/acp-8-5221-2008, 2008.

www.atmos-chem-phys.net/12/4227/2012/ Atmos. Chem. Phys., 12, 4227–4243, 2012

http://dx.doi.org/10.1029/2009JD013195
http://dx.doi.org/10.5194/acpd-11-32723-2011
http://dx.doi.org/10.5194/acp-7-1961-2007
http://dx.doi.org/10.5194/acp-7-1961-2007
http://dx.doi.org/10.1021/j100638a009
http://dx.doi.org/10.1080/027868290913988
http://dx.doi.org/10.5194/acp-8-1153-2008
http://dx.doi.org/10.5194/acp-8-1153-2008
http://dx.doi.org/10.5194/acp-8-1043-2008
http://dx.doi.org/10.5194/acp-10-299-2010
http://dx.doi.org/10.5194/acp-10-299-2010
http://dx.doi.org/10.1063/1.480419
http://dx.doi.org/10.1016/j.jaerosci.2006.11.005
http://dx.doi.org/10.5194/acp-11-4739-2011
http://dx.doi.org/10.5194/acp-11-4739-2011
http://dx.doi.org/10.1038/nature09455
http://dx.doi.org/10.1029/2006JD007194
http://dx.doi.org/10.5194/acp-8-5221-2008

