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Abstract

For decades, neuroscientists and psychologists have observed that animal performance on

spatial navigation tasks suggests an internal learned map of the environment. More recently,

map…based (or model…based) reinforcement learning has become a highly active research area

in machine learning. With a learned model of their environment, both animals and arti“cial

agents can generalize between tasks and learn rapidly. In this thesis, I present approaches

for developing ef“cient model…based behaviour in machines and explaining model…based

behaviour in animals.

From a neuroscience perspective, I focus on the hippocampus, believed to be a major substrate

of model…based behaviour in the brain. I consider how hippocampal connectivity enable

path…“nding between different locations in an environment. The model describes how envi-

ronments with boundaries and barriers can be represented in recurrent neural networks (i.e.

attractor networks), and how the transient activity in these networks, after being stimulated

with a goal location, could be used for determining a path to the goal. I also propose how

the connectivity of these map…like networks can be learned from the spatial “ring patterns

observed in the input pathway to the hippocampus (i.e. grid cells and border cells).

From a machine learning perspective, I describe a reinforcement learning model that inte-

grates model…based methods and •episodic controlŽ, an approach to reinforcement learning

based on episodic memory. According to episodic control, the agent learns how to act in

the environment by storing snapshot…like memories of its observations, then comparing its

current observations to similar snapshot memories where it took an action that resulted in

high reward. In our approach, the agent augments these real…world memories with episodes

simulated of”ine using a learned model of the environment. These •simulated memoriesŽ

allow the agent to adapt faster when the reward locations change.

Next, I describe Variational State Tabulation (VaST), a model…based method for learning

quickly with continuous and high…dimensional observations (like those found in 3D naviga-

tion tasks). The VaST agent learns to map its observations to a limited number of discrete

abstract states, and build a transition model over those abstract states. The long…term values

of different actions in each state are updated continuously and ef“ciently in the background

as the agent explores the environment. I show how the VaST agent can learn faster than other
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state…of…the…art algorithms, even changing its policy after a single new experience, and how it

can respond quickly to changing rewards in complex 3D environments.

The models I present allow the agent to rapidly adapt to changing goals and rewards, a key

component of intelligence. They use a combination of features attributed to model…based

and episodic controllers, suggesting that the division between the two “elds is not strict.

I therefore also consider the consequences of these “ndings on theories of model…based

learning, episodic control and hippocampal function.

Key words: Reinforcement learning, model-based, goal…directed, episodic, navigation, hip-

pocampus, place cells, recurrent neural networks, deep learning, machine learning, sample

ef“ciency, task transfer.
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Résumé

Durant des décennies, les neuroscienti“ques et psychologues ont observé dans les animuax,

lors de tâches de navigation spatiale, des comportements semblait indiquer l•acquisition

d•une carte interne de l•environnement. Plus récemment, l•apprentissage par renforcement

basé sur carte (ou model-based) est devenu un champ de recherche extrêmement actif dans

le domain de l•apprentissage automatique ( machine learning ). À l•aide d•un modèle appris

de leur environnement, les animaux tout comme les agents arti“ciels peuvent généraliser

d•une tâche à l•autre et apprendre rapidement. Dans cette thèse, je présente des approches

permettant de développer un comportement automatique model-based ef“cace et d•expliquer

le comportement model-based chez les animaux.

Du point de vue des neurosciences, je me concentre sur l•hippocampe, considéré comme étant

un sous-état major du comportement model-based dans le cerveau. J•examine comment les

connexions de l•hippocampe pourraient agir comme un substrat permettant une recherche de

chemin entre différents emplacements dans un environnement. Le modèle décrit comment

les environnements ayant des limites et des barrières peuvent être représentés dans des

réseaux neuronaux récurrents (i.e. réseaux attracteurs), et comment l•activité transitoire dans

ces réseaux, après avoir été stimulée par un but d•emplacement, pourrait être utilisée pour

la recherche de chemin. Je propose aussi de voir comment la connectivité de ces réseaux

cartographiques peut être apprise à partir des modèles d•activation spatiale observés dans la

saisie de chemins jusqu•à l•hippocampe (i.e. cellule de grille et cellules de bord).

Du point de vue de l•apprentissage automatique, je décris un modèle d•apprentissage par ren-

forcement qui intègre des méthodes model-based et un •contrôle épisodiqueŽ, une approche à

l•apprentissage par renforcement basée sur la mémoire épisodique. Selon le contrôle épiso-

dique, l•agent apprend à se comporter dans un certain environnement en emmagasinant des

souvenirs photographiques de ses observations, puis en comparant ses observations en cours

avec des clichés mémoriels similaires à l•endroit où a été entreprise une action donnant lieu

à une récompense élevée. Dans notre approche, l•agent augmente ces souvenirs du monde

réel à l•aide de souvenirs épisodiques simulés hors-ligne en utilisant un modèle appris de

l•environnement. Ces •souvenirs simuléesŽ permettent à l•agent de s•adapter plus rapidement

lorsque les emplacements à récompense changent.
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Suite à cela, je décris la Tabulation d•État Variationnel ( Variational State Tabulation , VaST),

une méthode model-based pour apprendre rapidement avec des observations en continu

et en grande dimension (comme celles que l•on retrouve dans les tâches de navigation 3D).

L•agent VaST apprend à cartographier ses observations jusqu•à un nombre limité d•états

abstraits discrets, puis à construire un modèle de transition par-dessus ces états abstraits. Les

valeurs à long terme des différentes actions dans chaque état sont mises à jour en arrière-plan,

de façon continue et ef“cace, en même temps que l•agent explore son environnement. Je

montre comment l•agent VaST peut apprendre plus rapidement que d•autres algorithmes

de l•état de l•art, et même comment il peut changer de stratégie suite à une seule nouvelle

expérience, et comment il peut répondre rapidement aux récompenses changeantes dans des

environnements 3D complexes.

Les modèles que je présente permettent à l•agent de s•adapter à des buts changeants et à des

récompenses à la volée, un composant clé de l•intelligence. Ils utilisent une combinaison de

caractéristiques attribuées au model-based et aux contrôleurs épisodiques, suggérant que

la division entre deux champs n•est pas absolue. Je prends donc aussi en considération les

conséquences de ces découvertes sur les théories de l•apprentissage model-based, du contrôle

épisodique et de la fonction de hippocampe.

Mots clefs : Apprentissage par renforcement, model-based, but dirigé, épisodique, hippo-

campe, cellules de lieu, réseaux neuronaux récurrents, apprentissage profond, apprentissage

automatique, sample ef“ciency, transfère de tâche.
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1 Introduction

The ability to adapt to new situations is a cornerstone in any theory of intelligence. Humans

show a remarkable capacity to rapidly thrive in new environments and tasks, often by rec-

ognizing features and patterns that they have seen in the past. While natural selection has

allowed varied forms of life to adapt to extreme and inhospitable environments across the

planet, it relies on millions of years of trial, error and noise. However, one solution generated

by natural selection … the human brain … can adapt to novel and complex situations in years,

days, or even minutes.

This thesis considers how the ability to adapt to new environments and new tasks might be

achieved by building a model of the environment. Rather than “nding solutions by simply

determining what works and what does not, building a model requires learning the underlying

dynamics of an environment or state space at some level of abstraction. Armed with a model

of the dynamics of an environment, an agent (human, animal or arti“cial) is often much faster

at solving a task in that environment and adapting when the task changes.

As a motivating example, we can consider the problem faced by a rat trying to reach a food

reward in a maze (Figure 1.1). We assume that, during the “rst stage of learning, the rat is

placed in the same location in the maze every day with the same location of the reward. The

rat can learn whether to turn left, turn right or continue forward at each choice point to “nd

the food. Alternatively, it can learn to build a model (or map) of where it will be following

each action at each choice point, and use that model to plan a path to the food. While the

second approach is generally more complex, it will allow the rat to adapt faster if the reward•s

location changes. In the neuroscience and psychology literature, these two types of learning

are often referred to as habitual vs. goal…directed, or stimulus…responsevs. stimulus…stimulus

respectively [Holland, 2008, Balleine and O•Doherty, 2010]. In the “eld of RL, they are referred

to as model…freevs. model…based[Daw et al., 2005, Sutton and Barto, 2018].

In this thesis, I will consider aspects of model…based learning from the perspective of both

machine learning and computational neuroscience. In neuroscience, I will focus on the

problem of spatial navigation, where model…based learning is closely related to the study of
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Chapter 1. Introduction

Figure 1.1 …Model…free vs. model…based learning. Left: A rat learns to navigate to a food
reward in a maze (at Position 1). Here, the rat learns a set of “xed stimulus…response rela-
tionships dictating which direction to turn at each intersection in the maze. These responses
cannot be easily adapted to a new reward location (Position 2). Right : The rat builds an
internal model of where it will be after turning in a given direction at each position in the
maze. The model can be used to plan a path to either reward location.

cognitive maps [Tolman, 1948, O•Keefe and Nadel, 1979]. In the “eld of machine learning, I

will focus on how arti“cial agents could use models to learn and adapt to new tasks faster. In

the following, I provide a brief overview of relevant research and “ndings in both neuroscience

and machine learning.

1.1 Navigation and cognitive maps

Modern theories of model…based behaviour are based on early behavioural experiments

in latent learning [Blodgett, 1929]. In these experiments, rats were trained to “nd the exit

in a maze, either with a food reward at the exit (control group) or without a food reward

(experimental group). With suf“cient training, rats trained with the food reward eventually

“nished the maze much faster than rats without the food reward. However, when a food reward

was later introduced for the experimental group, the researchers found that their performance

rapidly improved to match that of the control group. They concluded that the rats in the

experimental group had learned something about the structure of the maze even when not

incentivized by food, which allowed them to adapt much faster when the food was introduced.

The result contrasted against the prevailing theory of operant conditioning [Thorndike, 1898,

Sutton and Barto, 2018] in which learning corresponds to reinforcing behaviours that lead to

reward. The process of acquiring environmental knowledge in absence of reward was later

described by Edward Tolman as building a cognitive map [Tolman, 1948].

The discovery of hippocampal place cells in the rat [O•Keefe and Dostrovsky, 1971], which

2



1.1. Navigation and cognitive maps

Figure 1.2 …Spatial representations in the brain. A : Place cells in the hippocampus respond
selectively when the rat is in a particular position within the environment. B: Grid cells in the
medial entorhinal cortex stereotypically respond according to a hexagonal grid pattern in two…
dimensional space. C: The population response of multiple place cells in the hippocampus
with stable place “elds can be decoded downstream to estimate the rat•s current location.

tend to “re selectively in a speci“c region of an environment, provided evidence that the

hippocampus may play a role in forming a cognitive map [Moser et al., 2008]. Different place

cells within the hippocampus were found to be consistently selective to different locations in

an environment (Figure 1.2), such that the population response could be used to determine

the animal•s current location [O•Keefe, 1976, Wilson and McNaughton, 1993]. The existence of

spatially…tuned cells in the hippocampus has since been shown in several other mammalian

species, including humans [Nadel, 1991, Rolls et al., 1997, Ekstrom et al., 2003, Ulanovsky and

Moss, 2007].

Grid cells were later discovered in the entorhinal cortex [Fyhn et al., 2004, Hafting et al., 2005],

the primary input region to the hippocampus. Grid cells have a spatially periodic response,

such that a scatter plot of the animal•s location when an individual grid cell emits a spike

resembles a hexagonal grid (Figure 1.2B) [Moser et al., 2008]. Individual grid cells differ in their

grid orientation and offset, with a grid spacing that increases along the dorsoventral axis of the

medial entorhinal cortex [Hafting et al., 2005, Moser et al., 2008, Brun et al., 2008], mirroring
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Chapter 1. Introduction

the increase in place “eld size in the hippocampus along the dorsoventral axis [Kjelstrup et al.,

2008]. Several researchers have suggested that grid cells may act as basis functions for the

place cell network in the hippocampus, by combining them across different spatial scales to

produce a single, non…periodic place cell response [McNaughton et al., 2006, Solstad et al.,

2006, Rolls et al., 2006].

The ability to plan a path within an environment requires more than just a stable represen-

tation of the current location; it also requires a model of how different locations are related.

Experiments in path integration have shown that the hippocampal representation of position

is determined not only by external visual cues, but also by the distance travelled from a starting

position, particularly in the absence of familiar landmarks [Gothard et al., 1996, Redish et al.,

2000]. In addition, the hippocampal representation of position can persist and continue to

be updated after turning off the light in the environment [Quirk et al., 1990, Markus et al.,

1994]. The ability to maintain an estimate of the current position while moving in the dark

requires the animal to have an internal model of where it will be after moving in a particu-

lar direction from a known location, as suggested by the earlier latent learning behavioural

experiments [Blodgett, 1929].

Samsonovich and McNaughton [1997], and later Conklin and Eliasmith [2005], proposed

that the path integration response of hippocampal place cells could be explained using an

attractor network model, in which cells with similar and overlapping place “elds share recur-

rent excitatory connections, in combination with an external driving signal which moves the

place cell representation in the direction of motion. Attractor network connectivity has since

been used to explain several experimental “ndings on place cell responses [Wills et al., 2005,

Colgin et al., 2010, Jezek et al., 2011]. The attractor network model suggests that the spatial

relationship between locations is at least partially represented in the hippocampus, in the

recurrent connections between place cells.

If the rat were to use a model to plan, one would expect to see, during planning, a neural

representation of potential paths through the environment that the rat could follow (i.e.

Figure 1.1 right). The observation of sequential place cell activity in the hippocampus during

Sharp Wave and Ripple (SWR) events appears to re”ect such paths [Lee and Wilson, 2002,

Foster and Wilson, 2006, Csicsvari et al., 2007, Diba and Buzsáki, 2007, Johnson and Redish,

2007, Davidson et al., 2009, Karlsson and Frank, 2009, Gupta et al., 2010]. These short events

(50 … 300 ms) typically occur when the animal halts during exploration or when the animal is

sleeping [Buckner, 2010]. During these events, the location represented by the hippocampus

becomes disconnected from the animal•s actual location, and moves along a trajectory through

the environment. This trajectory can correspond to a path the animal has already taken ( replay,

Lee and Wilson [2002]), the reverse direction of a path the animal has just taken ( reverse replay,

Foster and Wilson [2006]), a path the animal may take in the immediate future ( preplay, Diba

and Buzsáki [2007]), or a path that has no clear relationship to past or future experience [Gupta

et al., 2010]. Preplay events have been shown to be predictive of the animal•s future path even

in open…“eld environments [Pfeiffer and Foster, 2013], suggesting a link to a path planning
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mechanism.

When a rat is moving, hippocampal activity is modulated by background theta oscillations

(approximately 8 Hz, Buzsáki [2002]). As the rat approaches the place “eld of a neuron, that

neuron typically “res at an earlier and earlier phase in the theta cycle [O•Keefe and Recce,

1993, Skaggs and McNaughton, 1996]. If we consider the activity of several cells within the

same theta cycle, this phenomenon can be interpreted as a •sweepŽ of the hippocampal

place representation moving from the animal•s location forward in the direction of travel,

corresponding to a prediction of future location [Lisman and Redish, 2009]. Like SWRpreplay

sequences, theta sequences have been found to predict the animal•s actual future path through

the environment [Huxter et al., 2008, Wikenheiser and Redish, 2015].

Trajectory events like SWRpreplay and theta sequences may re”ect model…based path plan-

ning or some other computation; if they do re”ect path planning, it is unclear to what extent

they depend on networks external to the hippocampus. However, behavioural evidence also

suggests a link between the hippocampus and model…based navigation. Bast et al. [2009]

found that the ability to rapidly learn and return to new goal locations in a well…known maze,

a hallmark of model…based planning, critically depends on one region of the hippocampus.

Incremental learning of constant reward locations (consistent with a model…free approach)

was found to not require the hippocampus at all. In other experiments, rapid place learning

has been found to depend on NMDA…based plasticity in the recurrently…connected CA3 region

of the hippocampus, while incremental learning does not [Nakazawa et al., 2003].

1.2 Reinforcement learning

Modern reinforcement learning theory is founded in the study of optimal control : the problem

of determining the control signal to supply to a dynamical system in order to maximize

a performance criterion over time, subject to a set of constraints [Kirk, 2012, Sutton and

Barto, 2018]. In such problems, a perfect model of the system is typically assumed. The

dynamic programming approach to optimal control suggests breaking the control problem

into multiple nested subproblems and solving them recursively. It is anchored in Richard

Bellman•s Principle of Optimality [Bellman, 1957]:

An optimal policy has the property that whatever the initial state and initial deci-

sion are, the remaining decisions must constitute an optimal policy with regard to

the state resulting from the “rst decision.

For example, in Figure 1.1, we can consider the very simple problem of “nding a path to reward

location 1 from the top right corner of the maze. This is, in fact, a subproblem of “nding an

optimal path from any other point in the maze, since the rat will “rst need to navigate to the

top right corner. The rat could build on solutions in the near vicinity of the goal, extending to

further distances, until it has determined the optimal path from any point in the maze. This is
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formalized in the Bellman Equation, discussed in Chapter 2.

The method of Q…learning [Watkins and Dayan, 1992] combined ideas from dynamic pro-

gramming with Temporal Difference ( TD) learning [Sutton and Barto, 2018]. Watkins and

Dayan showed that it was possible to learn an optimal policy by incrementally improving

an estimate of the long…run future rewards after taking a particular action from a state in

the environment. Q…learning relies on the concept of bootstrapping : the value of state A

depends on the estimated value of state B that follows it, and the estimated value of state B

depends on the estimate of its successor state C etc. As in dynamic programming, successfully

determining the value of state C would therefore improve the estimate of its predecessor states

B and A. Q…learning is model…free: the agent learns only the expected value of taking an action

from each state, and takes the action that has the highest expected value at each point in

time. Several algorithms later extended Q…learning with model…based components, including

Dyna…Q [Sutton, 1990], prioritized sweeping [Moore and Atkeson, 1993, Peng and Williams,

1993, Van Seijen and Sutton, 2013], and successor representations [Dayan, 1993]. Q…learning

and its variants and successors are considered in greater detail in Chapter 2.

In 2013, Q…learning was successfully extended to complex, high…dimensional environments

like video games by using deep arti“cial neural networks [Mnih et al., 2013]. Many algorithms

for model…free RL in continuous and/or high…dimensional environments have followed,

improving the performance or sample ef“ciency, decreasing the training time, or addressing

new types of problems (e.g. Lillicrap et al. [2015], Schaul et al. [2015], Mnih et al. [2016], Pritzel

et al. [2017]). However, there have been relatively few successful applications of model…based

techniques in combination with deep networks; most have appeared since 2016 [Gu et al.,

2016, Racanière et al., 2017, Nagabandi et al., 2017, Oh et al., 2017, Farquhar et al., 2017, Silver

et al., 2017a,b, Buesing et al., 2018].

1.3 Structure of the thesis and previously published work

Most chapters in the remainder of the thesis incorporate one or more model…based RL tech-

niques. In Chapter 2, I provide a very brief overview of the “eld of RL and an introduction to

the algorithms that will be considered.

In Chapter 3, I consider the problem of spatial navigation from a neuroscience perspective. I

propose a model in which the topology of an environment with boundaries and obstacles is

represented in the recurrent connections of the CA3 region of the hippocampus (i.e. a cognitive

map), and show how it could allow for planning paths to novel goal locations. Different

portions of this chapter were previously published in the proceedings of NIPS 2015 [Corneil

and Gerstner, 2015a], and as an extended abstract at COSYNE 2015 [Corneil and Gerstner,

2015b]. In Chapter 4, I extend this work by considering how the environment topology could

be learned in attractor networks beginning from simple spatial representations upstream of

the hippocampus.
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1.3. Structure of the thesis and previously published work

In Chapter 5 and Chapter 6, I describe two different model…based agents primarily from a

machine learning perspective (with some possible implications for neuroscience). Chapter 5

considers a deep neural network architecture that combines aspects of model…based RL with

the emerging theory of episodic control, allowing the agent to rapidly adapt to changing

reward landscapes. Portions of this chapter were previously published as an extended abstract

in the proceedings of CCN 2017 [Corneil and Gerstner, 2017].

In Chapter 6, I introduce Variational State Tabulation, an algorithm for enabling fast model…

based RL by learning discrete abstractions of environments de“ned by high…dimensional

and/or continuous observations. The model is evaluated primarily in the domain of 3D naviga-

tion. Most of this chapter, excluding some new results on multi…task learning and visualizing

the abstraction, has been previously published in the proceedings of ICML 2018 [Corneil et al.,

2018].

I conclude the thesis with a discussion of the overarching results and promising future research

directions.
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2 Background: Reinforcement Learning
Approaches

The “eld of Reinforcement Learning is concerned with “nding a mapping from observations

to actions, in order to maximize a reward signal [Sutton and Barto, 2018]. In the situations

considered in this thesis, a reward is often the outcome of an entire sequence of actions over

time, like the sequence of turns a rat needs to make to “nd the food pellet in a maze. RL is one

of three major classes of problems considered in the neuroscience of learning and machine

learning literature, together with supervised learning and unsupervised learning [Goodfellow

et al., 2016]. Supervised learning is concerned with “nding a mapping from observations to

labels (e.g. from a picture of a bird in a pond to the label •duckŽ), while unsupervised learning

is concerned with “nding some underlying structure in data. In Chapter 6, we will incorporate

aspects of unsupervised learning when considering how an agent can learn a model of its

environment.

Many problems studied in RL (including the ones in this thesis) belong to the class of Markov

Decision Processes (MDPs) [Bellman, 1957]. Consider an agent exploring an environment

made up of a set of states s � S, taking actions a � A , and receiving real…valued rewardsr � R ,

with discrete time steps t = 0,1,2,3 etc. In an MDP, we have

p(st +1 ,r t +1 |a1:t +1 ,r 1:t , s0:t ) = p(st +1 ,r t +1 |at +1 ,st ), 2.1

i.e. the outcome of the next action at +1 (the distribution over rewards and next states) depends

only on the current state st ; the agent•s history before the current state can be safely ignored.

This is referred to as the Markov assumption [Rosenblatt, 1974].

In RL, we consider the problem of learning a policy � (a|s), which describes the action that

should be taken in any particular state in order to maximize future reward. Typically, a discount

factor � � [0,1] is introduced to make rewards in the near future more enticing than rewards in

the distant future. Given a particular policy �, the value V � (s) of state s is de“ned as

V � (s) := E�

�
��

k=0
� k r t +1+k

�
�
�
�
�

st = s

�

, 2.2
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Chapter 2. Background: Reinforcement Learning Approaches

i.e. the expected discounted future reward starting from the state s and continuing under

the policy � . The optimal policy � � is that which maximizes the value function for all states,

resulting in the value function V � (s).

Using the Markov assumption, we “nd that the state value can be rede“ned [Sutton and Barto,

2018] as

V � (s) = max
a

�

s� � S
r � � R

p(s�,r � |a,s)
�
r � + � V � (s�)

�
. 2.3

This is the Bellman optimality equation, an expression of the Principle of Optimality intro-

duced in Chapter 1. It reveals the useful property that following the optimal policy from state s

simply means taking the action a that appears in the maximization of V � (s); all previous states

and actions are irrelevant due to the Markov assumption. This is more easily expressed by

stating Equation 2.3 in terms of the value of a state…action pair, the so-called Q…value, de“ned

as

Q� (s,a) =
�

s� � S
r � � R

p(s�,r � |a,s)
�
r � + � max

a�
Q� (s�,a�)

�
. 2.4

The optimal policy in the current state st is then to take action at +1 = argmaxa Q� (st ,a).

In some cases, the agent receives observations ot rather than the underlying states st directly.

When the observations fully determine the true underlying state, we say the problem is fully

observable at the current time step [Kirk, 2012]. When there are details about the state st

that cannot be determined from ot , we say the problem is partially observable. Often, some

recent history of observations can then be used to disambiguate the underlying state. In the

following, we assume the state is fully observable and consider st directly. Some partially

observable problems will be considered in Chapter 6.

When the number of states |S| and actions |A | are relatively few, we refer to the task as tabular.

This re”ects the fact that the task statistics can be ef“ciently stored and updated in a “xed…size

table or array in memory.

2.1 The model…based approach

2.1.1 Optimal control: value iteration

According to the model…based approach, we can determine the Q…values by solving the right…

hand side of Equation 2.4 after learning the task statistics p(s�,r � |a,s). The equation can be
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2.1. The model…based approach

separated into two terms, giving us

Q� (s,a) =
�

s� � S
r � � R

p(s�,r � |a,s)r � + �
�

s� � S
r � � R

p(s�,r � |a,s)
�
max

a�
Q� (s�,a�)

�
2.5

= r (s,a) + �
�

s� � S
p(s�|a,s)

�
max

a�
Q� (s�,a�)

�

where we have marginalized out the variables irrelevant to the expectation in each term, and

r (s,a) = E[r |a,s] is shorthand for the expected immediate reward after taking action a in state

s (i.e. without taking into account future rewards). If the agent learns an accurate model of

r (s,a) and p(s�|a,s) by exploration, the optimal Q…values can be determined by iteratively

solving for Q(s,a) over all states and actions until a stable solution is reached. This is referred

to as value iteration [Bellman, 1957]. The update equation is given by

Qi +1 (s,a) = r (s,a) + �
�

s� � S
p(s�|a,s)

�
max

a�
Qi (s

�,a�)
�

� s � S,a � A , 2.6

where i is the iteration index. Given suf“cient iterations for convergence, value iteration

arrives at a solution for the value function that induces the optimal policy for the MDP (under

the transition model and expected rewards). The algorithm therefore falls into the family of

optimal control techniques [Kirk, 2012].

Value iteration is computationally expensive in large state spaces, and can also be inef“cient

because the values of many states will not change over the course of one iteration. For instance,

consider an agent exploring a large state space, with all Q…values initialized to 0. It encounters

the “rst non…zero reward on step t + 1 after taking action at +1 from state st , and updates

r (st ,at +1 ) accordingly. It then performs value iteration to update its Q…value estimates for all

states and actions. In this case, the “rst update iteration will require |S| × | A | applications

of Equation 2.6 despite the fact that only Q(st ,at +1 ) will change, a signi“cant inef“ciency.

This is addressed in part by the method of prioritized sweeping by small backups, discussed

in Section 2.4.2 and applied in Chapter 6.

2.1.2 Synthetic experience

An alternative way to leverage a model in order to estimate the optimal value function is

to generate synthetic experiencesby sampling from the transition distribution p(s�|a,s) and

evaluating the result. These experiences, extending for one step or multiple steps using a given

policy, can be used to update the value function estimate (see Section 2.4.1 for more details).

Compared to backups using the full expectation over the next state as in value iteration,

sample…based backups require a learning rate parameter (as we will describe in the following

sections) and introduce sampling noise; however, they can achieve low error in the value

function estimate with less computation [Sutton and Barto, 2018].
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2.1.3 Decision…time planning

The preceding approaches use a model to solve or estimate a value function. Alternatively, a

model can be used to sample multi…step trajectories from the current state in order to simulate

and evaluate many possible future paths, taking the immediate action that leads to the best

sampled outcome (given the expected rewards r (s,a)). Typically, this process is repeated each

time an action is taken and the agent moves to a new state, receiving new observations. This is

called decision…time planning [Sutton and Barto, 2018]. In linear control theory, the process

of optimizing up to a future horizon in order to determine the current control signal, then

re…optimizing at the next time step, is referred to as model predictive control [Camacho and

Alba, 2013].

While not considered in detail in this thesis, decision…time planning is one of the main

areas of focus in model…based deep reinforcement learning and the basis of several recent

successful algorithms (e.g. Silver et al. [2016, 2017a]). In particular, decision…time planning

can be advantageous when the state space is very large such that the agent rarely revisits

states, and the transition model is well…known or perfectly known. In this case, the agent

may achieve better results by planning at each step rather than estimating or learning a

complex value function. Furthermore, decision…time planning avoids wasting computation

on determining the policy for states that the agent rarely visits. However, decision…time

planning is computationally intensive in general due to the need to re…determine the policy at

each step, leading to high latency in selecting an action. In contrast to decision…time planning,

model…based algorithms that do not depend on the current state (e.g. value iteration or

synthetic experience) have been referred to as background planning methods [Sutton and

Barto, 2018].

2.2 The model…free approach

2.2.1 Q…learning

Rather than solving for the recursion in Equation 2.4 from a learned model, one can attempt

to learn the Q…valuesQ� (s,a) directly. This is the approach taken in Q…learning [Watkins

and Dayan, 1992]. Consider the agent•s observations after taking the next step at +1 from the

current state st . If the Q…values have already been solved under the optimal policy, we expect

from Equation 2.4 that

Er � ,s�
�
r � + � max

a�
Q� (s�,a�) Š Q� (st ,at +1 )

�
= Er � ,s� [� td ] = 0, 2.7

where � td is called the TD…error [Sutton and Barto, 2018]. A non…zero expectedTD…error

represents an inconsistency in the current estimate of the state…action value. To improve the

estimate, one could perform stochastic gradient descent on � 2
td with respect to the current
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estimate of Q(st ,at +1 ). This yields the update equation

Q(st ,at +1 ) � Q(st ,at +1 ) + � ·
�
r t +1 + � max

a�
Q(st +1 ,a�) Š Q(st ,at +1 )

�
, 2.8

where 0 < � � 1 is the learning rate. Every time the agent takes a step, it observes the tuple

(st ,at +1 ,r t +1 ,st +1 ) (original state, action taken, reward received, new state). It then updates

Q(st ,at +1 ), using its current estimates to determine maxa� Q(st +1 ,a�). Watkins and Dayan

[1992] showed that Equation 2.8 converges to the state…action values Q� (s,a) under the

optimal policy given in“nite experience of all possible state…action pairs. Successful Q…

learning therefore requires a balance between collecting experience in the state space to

achieve a reliable estimate of the Q…values, and maximizing reward by choosing actions with

the highest Q…value (theexploration…exploitation dilemma ). A common approach is to choose

a random action with probability � on each step, or argmaxa Q(s,a) with probability 1 Š � ,

where epsilon is typically annealed over the course of training; this is referred to as an � …greedy

strategy [Sutton and Barto, 2018].

The term model…freeis perhaps a misnomer, since the algorithm clearly maintains a model

in the form of the learned Q…values. In contrast to the transition statistics learned by the

model…based approach, however, the learned Q…values are dependent on the reward structure.

If the reward distribution changes within the same environment, the Q…values will need

to be re…learned from scratch; in contrast, a model…based agent will only need to re…learn

the expected immediate rewards r (s,a). The parameters learned by a model-free agent are

therefore inseparable from the task (i.e. the rewards in an environment) being learned by that

agent.

2.2.2 Deep Q…learning

It is reasonable to build a table of Q…values Q(s,a) only when there are a small number

of discrete states s � S. In a continuous and/or high…dimensional state space, the agent

may never collect a suf“cient amount of experience to ensure that the Q…learning algorithm

converges; in some tasks, the agent may never revisit the same state twice. In this case, we need

a •non…tabularŽ approximation. A common practice is to parameterize the Q…values by a set

of parameters � , and minimize � 2
td with respect to � for the observed transitions. Generalizing

from observed data points to a continuous or high…dimensional function requires function

approximation [Sutton and Barto, 2018]. The Deep Q…learning (DQN) algorithm uses deep

neural networks as Q…value function approximators, and successfully applies Q…learning to

complex video game environments [Mnih et al., 2013, 2015].

Several issues can make value learning unstable when using function approximation, particu-

larly with deep networks. First, the network is trained under the assumption that training data

examples correspond to independent samples from the training set. However, if the agent

learns while exploring the environment according to the current policy, consecutive steps tend

to be in the same region of the environment and are therefore highly correlated. As well, the
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training set can change suddenly in response to changes in the agent•s policy. In DQN, this was

partially addressed by sampling training data points independently from a replay memory of

the last 1 million transitions [Lin, 1993, Mnih et al., 2013]. Secondly, we note from Equation 2.8

that both Q� (st ,at +1 ) and maxa� Q� (st +1 ,a�) are parameterized by � ; optimizing Q� (st ,at +1 )

can lead to a corresponding change in maxa� Q� (st +1 ,a�), causing parameters to oscillate or

diverge. Mnih et al. [2015] therefore parameterized maxa� Q� �
(st +1 ,a�) using a separate set of

parameters � � , which were copied from � every 10 000 steps. Finally, rewards and/or output

layer error terms were clipped to [ Š1,1] to allow the same learning rate to be used across

different reward scales in different games.

2.2.3 Policy search

The methods previously described (and those used throughout this thesis) determine a policy

� (a|s) indirectly by learning a value function over state…action pairs, then choosing the action

that maximizes the value function. An alternative model…free approach is to directly determine

a policy that maximizes the expected discounted returns. In the common case where this is

done by optimizing the parameters of the policy using gradient descent, it is referred to as

a policy gradient method [Peters and Schaal, 2008, Peters, 2010]. Policy gradient methods

have convergence guarantees that are lacking with many model…free value function…based

approaches [Peters, 2010].

One of the most common policy gradient methods is the REINFORCE algorithm [Williams,

1992, Sutton and Barto, 2018], which can suffer from high variance in the gradient descent

update. Attempts to reduce the gradient estimator variance in REINFORCE while maintaining

convergence guarantees have resulted in the combination of policy search and value function

approaches, through the class of actor…critic algorithms [Konda and Tsitsiklis, 2000].

2.3 Episodic control

When using function approximation for value functions as in DQN, the value function (cumu-

lative discounted rewards) is learned by optimizing a “xed number of network parameters

� . An alternative is to use a non…parametric approach, i.e. to store the returns experienced

from a state…action pair directly in memory, and use these raw data points for estimating

Q…values in the future. This approach, termed episodic control, has been championed from

both a neural/behavioural standpoint [Lengyel and Dayan, 2007, Gershman and Daw, 2017]

and a machine…learning standpoint [Blundell et al., 2016] as a viable alternative to parametric

model…free and model…based methods.

We focus on the formulation of episodic control given by Gershman and Daw [2017]. We

consider the case where an agent learns across multiple separate •episodesŽ, and the states

s encountered on these episodes exist in some continuous and/or high…dimensional state

space (for instance, the color intensity of pixels on a screen while playing a video game). We
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2.3. Episodic control

take sµ,t to indicate the (potentially vector…valued) state that the agent encountered on step t

of episode µ. The index set

Esa = {(µ, t )|sµ,t = s,aµ,t +1 = a} 2.9

describes the set of episodes and time steps where the agent has encountered a particular

state…action pair (s,a) in the past. The Q…value for (s,a) is then given by

Q(s,a) =
1

|Esa|

�

(µ, t )� Esa

�
� N�

n=1
� nŠ1r µ,t +n

	
+ � N max

a�
Q(sµ,t + N ,a�)

�

, 2.10

i.e. an average over the discounted returns from all experienced trajectories beginning with

(s,a) in the past, truncated to N steps (with the remaining returns estimated from the value of

the state on the N th step). Alternatively, the agent can use the maximum returns experienced

thus far from ( s,a) [Lengyel and Dayan, 2007, Blundell et al., 2016]. If N = � , the corresponds

to full episodic returns without bootstrapping (i.e. Monte Carlo returns [Sutton and Barto,

2018]).

While parametric N…step model…free methods are common [Sutton and Barto, 2018], an

additional key difference lies in how the Q…values of state…action pairs are estimated online:

Q(s,a) =



s� � Sa

K (s,s�)Q(s�,a)



s� � Sa
K (s,s�)

, 2.11

where K (s,s�) represents some similarity function between states (e.g. a kernel function or

a nearest…neighbour measure), and Sa are the states in memory where the action a was

experienced in the past. Equation 2.11 represents an alternative to function approximation for

generalizing to state…action pairs that the agent has never seen before. Past observed states

may be represented in memory by their associated raw representation (e.g. pixels) or some

low…dimensional projection to reduce memory requirements [Blundell et al., 2016].

Returns associated with each state in an episode can be added to the memory at the end of

that episode. Individual experiences tend to affect the policy much faster than with 1…step

model…free deepRL for two reasons. First, N…step TD methods result in a faster backward

diffusion of reward signals than 1…step methods. Secondly, an episode is incorporated into

the model immediately rather than being added to a replay memory for eventual incremental

update of a function approximator by stochastic gradient descent. Accordingly, episodic

controllers have shown much better performance in the early stages of learning [Blundell et al.,

2016, Pritzel et al., 2017]. However, they tend to perform worse in later stages, in part because

deep networks can eventually learn to generalize and extract the task…relevant features of

the state…space more ef“ciently than is possible with a “xed kernel over raw features. This

issue can be partially addressed by learning a state embedding that ef“ciently compresses the

observations [Blundell et al., 2016] or predicts the estimated returns [Pritzel et al., 2017].
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2.4 Hybrid model…free/model…based approaches

2.4.1 Dyna…Q

As mentioned earlier, a model can be used to generate synthetic experience by sampling in

order to update the value function. One possibility is to use that experience to augment the

performance of a model…free Q…learner. This is the approach taken by Dyna…Q [Sutton, 1990].

The agent explores a tabular environment updating the Q…values according to the Q…learning

update rule, while also learning p(s�|a,s) and r (s,a) online. Then, for a number of of”ine

backup steps, it updates the Q…values by randomly sampling learned transitions from the

estimated model, de“ned by transition probabilities p(s�|a,s) and estimated rewards r (s,a).

Algorithm 1 Dyna…Q.
Initialize Q(s,a) for all s, a
Initialize Nsa,Rsa,N s�

sa = 0 for all s, a, s�

1: Observe current state s
2: loop
3: Take action a with �-greedy strategy based on Q(s,a)
4: Observe r �, s�

5: Q(s,a) � Q(s,a) + � ·
�
r � + � maxa� Q(s�,a�) Š Q(s,a)

�
� Q…learning step

6: Nsa � Nsa + 1; N s�

sa � N s�

sa + 1; Rsa � Rsa + r � � Model update
7: for k = 1 to Nk do
8: Sample sk from states where



a Nsa > 0

9: Sample ak from actions where Nsk a > 0
10: Set r �

k = r (sk ,ak ) = Rsk ak / Nsk ak

11: Sample s�
k 	 p(s�

k |ak ,sk ) = N
s�

k
sk ak

/ Nsk ak

12: Q(sk ,ak ) � Q(sk ,ak ) + � ·
�
r �

k + � maxa� Q(s�
k ,a�) Š Q(sk ,ak )

�
� Of”ine backup

13: end for
14: s � s�

15: end loop

If the number of of”ine backup steps is Nk = 0, then the model is never used and Dyna…Q

collapses exactly to Q…learning. Conversely, asNk 
 � , Dyna…Q updates the value function

estimate almost entirely from the learned model. We can therefore see Nk as a parameter that

smoothly interpolates between a model…free and a model…based approach, and as a trade…off

in terms of background computation requirements.

Notably, the DQN replay memory considered in Section 2.2.2 is equivalent to a form of Dyna…Q

in which (a) the transitions kept in memory are limited to those recently encountered by the

agent and (b) sampling is biased towards transitions frequently encountered by the agent

(since transitions are stored explicitly rather than being used to update tabular statistics,

as in Algorithm 1). In this view, DQN is a hybrid approach, where the replay memory is a

non…parametric environment model, although the authors consider it to be purely model…

free [Mnih et al., 2013].
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2.4.2 Prioritized sweeping

Like value iteration, Dyna…Q can be computationally inef“cient because many cycles are spent

updating Q…values that change very little, or not at all. This is addressed by prioritized sweeping,

which aims to concentrate update cycles on large changes to the value landscape [Peng and

Williams, 1993, Moore and Atkeson, 1993, Van Seijen and Sutton, 2013].

Intuitively, after updating a Q…value according to Step 5 of Algorithm 1, we can consider the

priority value p = |Vi (s) Š Vi Š1(s)| = | maxa Qi (s,a) Š maxa Qi Š1(s,a)|, i.e. the change in value

of state s after updating Q(s,a). If p is high for a given state s, it is logical to prioritize sampling

states sk in Step 8 that have a high probability of transitioning into state s according to the

learned model.

The most ef“cient form of prioritized sweeping, prioritized sweeping with small backups [Van Sei-

jen and Sutton, 2013], is considered in Chapter 6. The version of the algorithm used there

updates the Q…values entirely with of”ine backups, making it a purely model…based approach.

In addition, the value of a predecessor state…action pair is updated using the probability

of the transition (without sampling or a learning rate); as a result, it can be considered an

asynchronous version of value iteration, and likewise converges to the optimal value function

for the model [Li et al., 2008, Van Seijen and Sutton, 2013].

2.4.3 Successor representations

As an alternative to background computation, one can consider a factorization of the Q…

value that allows the agent to respond quickly to new reward observations. The successor

representation [Dayan, 1993] does this by building a model of the expected multi…step future

occupancy of each successor state under the current policy in a tabular environment.

To see how this is useful, we note that the policy and transition probabilities can be combined

to give

M (s,s�) =
�

a� A
p(s�|a,s)�( a|s), 2.12

i.e. the policy…dependent probability that the agent will arrive in state s� after a single step

from s.

We form the matrix M from the entries M (s,s�); where M has the shape |S|× | S|. We similarly

de“ne |S|…length vectorsv and r , where each entry v(s) in v represents the value of state s, and

each entry r (s) =



a r (s,a)� (a|s) in r represents the expected reward received after exiting
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Chapter 2. Background: Reinforcement Learning Approaches

state s. In a similar fashion to Equation 2.2, state values v can be represented as

v =
��

k=0
� k Mk r 2.13

= r + �Mr + � 2M2r + � 3M3r + . . .

= (I Š �M) Š1r

= Lr,

where L is the successor representation. Each entry L(s,s�) gives the future discounted occu-

pancy in state s� starting from state s.

We can similarly de“ne a version of the successor representation that also depends on the

initial action a,

L(s,a,s�) = E�

�
��

k=0
� k � [st +k = s�]

�
�
�
�
�
st = s,at = a

�

, 2.14

where � [·] = 1 if · is True and 0 otherwise. This allows the state…action value Q� (s,a) under the

current policy � to be expressed as

Q� (s,a) =
�

s� � S
L(s,a,s�)r (s�). 2.15

It is straightforward to adapt a learning rule similar to Equation 2.8 that learns the successor

representation L(s,a,s�) and r (s�) independently.

The successor representation can be bene“cial because it isolates the task dynamics, which

change slowly as a multi…step function of the policy, from the immediate rewards, which can

be updated rapidly. Consider the case where the Q…values and policy have nearly converged

to optimality, then the agent experiences a surprising reward (Figure 2.1). In standard Q…

learning or Dyna…Q, it can take many experiences and/or of”ine backups before the Q…values

re…converge to accurate estimates. With successor representations, the immediate reward

estimates r (s) can change quickly, and the agent immediately gains access to the resulting

Q…valuesunder the existing policy . In Figure 2.1C, the agent•s existing policy would cause it to

move left in the left arm of the maze; since the leftmost state now has an expected negative

reward, all states that tend to transition into the leftmost state over time have their state values

reduced. As a result, the agent will already tend to move right in the left arm of the maze, as it

should according to the new optimal greedy policy.

The agent can adjust the policy rapidly because L(s,a,s�) implicitly contains a model of the

environment dynamics (from the de“nition of M (s,s�) in Equation 2.12), as in a model…based

approach. However, M (s,s�) also depends on the policy, and as a result L(s,a,s�) will need to be

re…learned as the policy changes, as in model…free approaches. The successor representation

can therefore be seen as a hybrid model…based/model…free approach.
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Figure 2.1 …The successor representation and rapid learning. [A] A simple tabular environ-
ment with four possible actions moving in cardinal directions (where the agent stays in the
same state if it moves into a wall). At the end of each hallway, the agent receives a reward and
the episode terminates; states are shaded according to their learned value after initial training
(where darker green corresponds to higher value). [B] The left arm stochastically gives a strong
negative reward that the agent has not yet experienced. The new state values one step after
experiencing the strong negative reward, under standard Q…learning (Equation 2.8). Note that
all states except the last one in the left arm still have high values; these could be updated with
a background planning method like Dyna…Q or prioritized sweeping. [C] The new state values
one step after experiencing the strong negative reward, using the successor representation
factorization (Equation 2.15). State values in the left arm are immediately reduced.

The future discounted occupancy under a certain policy can also be a useful metric for

representing a state space, as considered in Chapter 3.
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3 Preplay and Path Planning with
Attractor Networks

3.1 Introduction

Animals navigating in a well…known environment can rapidly learn to revisit observed reward

locations, often after a single trial [Bast et al., 2009]. The mechanism for rapid path planning

remains unknown, though the hippocampus is a natural candidate for investigation given its

established role in spatial representation [O•Keefe, 1976]. Experimental results have suggested

that the hippocampus is involved in active spatial planning: experiments in •one…shot learningŽ

have revealed the critical role of the CA3 region [Nakazawa et al., 2003, Nakashiba et al., 2008]

and the intermediate hippocampus [Bast et al., 2009] in returning to goal locations that the

animal has seen only once. In addition, •preplayŽ activity during Sharp Wave and Ripple

(SWR) events in the hippocampus appears to re”ect a path planning mechanism [Pfeiffer and

Foster, 2013]. This raises the question of whether hippocampal dynamics could support a

representation of the current location, a representation of a goal, and the relation between the

two.

In this chapter, we propose that a model of CA3 as a •bump attractorŽ [Samsonovich and

McNaughton, 1997, Conklin and Eliasmith, 2005] can be used for path planning. The attractor

map represents not only locations within the environment, but also the spatial relationship

between locations. In particular, broad activity pro“les (like those found in intermediate

and ventral hippocampus [Kjelstrup et al., 2008]) can be viewed as a condensed map of a

particular environment. In our model, the planned path is observed as sequential activity from

the representation of the current position towards the goal location, similar to the preplay

observed experimentally in hippocampal activity during navigation tasks [Pfeiffer and Foster,

2013, Wikenheiser and Redish, 2015]. In the model, the sequential activity is initiated by

supplying input to the neurons proportional to their activation at the goal site (i.e. reactivating

the goal). Unlike other models of rapid goal learning and path planning [Martinet et al., 2011,

Ponulak and Hop“eld, 2013, Khajeh-Alijani et al., 2015], there is no backward diffusion of a

value signal from the goal to the current state during the learning or planning process. Instead,

the sequential activity results from the representation of space in the attractor network, even
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in the presence of obstacles.

After a presentation of the background, the chapter focuses on three different contributions

discussed in separate sections. First, we describe how the traditional attractor network model

of the hippocampus, based on open…“eld environments with periodic boundaries, can be

extended to realistic environments with boundaries and obstacles. Secondly, we show how an

attractor network could give rise to preplay…like trajectories towards goal locations, even if

more than one environment is represented in the same attractor network.

Finally, we describe the recurrent structure of the attractor network using a random walk…

based successor representation [Dayan, 1993], which represents space according to the num-

ber and length of paths connecting different locations. The resulting network can be inter-

preted as an attractor manifold in a low…dimensional space, where the dimensions correspond

to the most relevant eigenvectors of the environment•s transition matrix. These low spatial…

frequency functions have recently found support in theory as a viable basis for place cell

activity [Franzius et al., 2007, Schoenfeld and Wiskott, 2015, Stachenfeld et al., 2014]. We

show that, when the attractor network operates in this space and is stimulated with a goal

location, the resulting network activity can be interpreted as a viable path to that goal. These

trajectories could then be decoded by networks downstream of the attractor network into

actions used by the rat to reach a goal. Thus, the bump attractor network can act as a spatial

path planning system as well as a spatial memory system.

3.2 Background

3.2.1 Attractor network models of hippocampus

Research in rodent spatial navigation has revealed the existence of place cells in two subregions

of the hippocampus: CA3 and CA1 [Moser et al., 2008]. Cells in the CA3 region have signi“cant

recurrent interconnectivity and project to the CA1 region, where there are few excitatory

recurrent connections [Andersen et al., 2007].

The connectivity pro“le of CA3 has contributed to multiple models of the CA3 place cell

network as a continuous attractor neural network [Samsonovich and McNaughton, 1997,

Tsodyks, 1999, Doboli et al., 2000, Conklin and Eliasmith, 2005], in loose agreement with

experimental “ndings on the network response of place cells [Wills et al., 2005, Colgin et al.,

2010, Jezek et al., 2011]. In a continuous attractor network, the steady…state activity of a

population of neurons lies on a low…dimensional manifold [Samsonovich, 2013]. In a spatial

bump attractor like that used to model CA3, activity lies on a 2D manifold representing the

coordinates [ x1,x2] of the animal•s current location in the environment. A true continuous

attractor is not strictly possible with a “nite population size, as the steady…state network

activity can only collapse to a discrete number of points on the manifold; however, a “nite

network can be viewed as a (quasi-)continuous attractor if the size of the perturbation required

to move the system to a different point on the manifold can be made arbitrarily small by
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3.2. Background

Figure 3.1 …Schematic of neural activity in a continuous •bumpŽ attractor network . The
schematic shows a cross…section along a single spatial dimension x1. [Top] The white circles
represent neurons in a population, arranged along the horizontal axis according to ci 1, i.e.
the position along the x1 axis where neuron i responds maximally (the neuron•s •place “eld
centerŽ). A feedforward stimulus xin representing a spatial position in 2D space is applied to
the population [green arrows]. The resulting activity in the population is shown. The stimulus
induces a Gaussian…like •activity pro“leŽ when neurons are aligned according to their place
“eld centers, where the activation of each neuron depends on the distance between its place
“eld center and xin . [Bottom ] A given neuron (below the black vertical line) recurrently excites
neurons with similar place “eld centers and recurrently inhibits neurons with distant place
“eld centers (as shown by the curve, where red represents excitation and blue represents
inhibition). As a result, the activity pro“le induced by a feedforward stimulus can persist after
the stimulus is removed.

increasing the number of neurons [Samsonovich, 2013].

Consider a network of N place cells, where the i th cell responds to the current position

xin (t ) = [x1(t ),x2(t )] in 2D space, with maximal response at that neuron•s place “eld center ci

(Figure 3.1). The activity ai of that neuron (analogous to a “ring rate in a spiking network) is

determined in attractor models by

�
dai

d t
= Š ai + gi

�
N�

j =1
w rec

i j a j + f i (x
in )

�

, 3.1

where gi is some non…negative monotonically increasing transfer function, w rec
i j are the

recurrent weights in the network, xin represents the observed position at time t , and f i
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describes the response of neuron i to an input position (i.e. the place “eld). Note that gi can

incorporate some multiplicative neuron…speci“c gain and additive neuron…speci“c bias (or

threshold) before the non…negative nonlinearity.

We describe f i as a function of the spatial position as

f i (x
in ) � exp(Šhd 2) 3.2

for some width factor h and distance d (here we take d = | xin Š ci |). A bump attractor can

then be achieved with recurrent weights w rec
i j corresponding to excitation between neurons

with similar place “elds and inhibition between neurons with distant place “elds (Figure 3.1

bottom).

Our neuron now has two nonlinearities, gi and f i , where f i is chosen to induce place cell…like

activity. Rather than assuming the nonlinearity f i , we can consider an alternative represen-

tation of the input position allowing for a linear response function. For instance, we can

achieve a spatial tuning curve as in Equation 3.2 after expressing the input position xin as an

approximately Gaussian…shaped •bumpŽ in space using a set of M orthonormal spatial basis

functions xin
k for k = 1, . . . ,M [Conklin and Eliasmith, 2005]. In this coordinate system, the

nonlinear function of the input position can be expressed as

f i (x
in ) =

M�

k=1
w f f

ik x in
k , 3.3

where the feedforward weights w f f
ik depend on the neuron•s place “eld center ci . We determine

the input weights using a normalized vector of coordinates ei = [ei 1,ei 2, . . . ,eik , . . . ,ei M ], the

neuron•s preferred direction vector or •encoding vectorŽ, optimized to make an approximately

Gaussian function in space. The feedforward weights are then w f f
ik = 	e ik for some scalar

input gain factor 	 � 1. The dot product eT
i xin de“nes a similarity measure between the

neuron•s selectivity and the current input; i.e. the overlap between the input Gaussian and the

neuron•s Gaussian tuning curve. For the illustrations in this section, the basis corresponds to a

set of 2D spatial Fourier functions. Note that the number of functions M required will depend

on the width of the Gaussian bumps represented by the input and the network; large bumps

can be represented using only a small number of low…frequency Fourier functions.

After this de“nition, we can re…write Equation 3.1 as

�
dai

d t
= Š ai + gi

�
N�

j =1
w rec

i j a j +
M�

k=1
w f f

ik x in
k

�

. 3.4

Here, we assume that the •activityŽ xin
k of each basis function is available directly as an input

to the network; we will consider how this assumption can be relaxed at the end of the next

section. Thus, xin
k is a Gaussian centered at the current input location projected onto a basis

function k .
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3.2. Background

3.2.2 Spatial representations in attractor networks

The weight pro“le shown in Figure 3.1 is the same for all neurons in the network, which is

appropriate if we assume the environment is periodic (toroidal) or in“nite. Before we gener-

alize the attractor network to represent “nite non…toroidal environments, we “rst consider

how to express the representation in the attractor network, and how to determine appropriate

recurrent weights. The central idea is that the network activities can be seen as representing

a control theoretic vector…valued variable x corresponding to a set of coordinates on the

basis functions considered in the previous section. Given appropriate recurrent weights, the

dynamics of the network representation x correspond to a low…pass “lter over recent input

positions xin supplied to the network. The analysis here is based primarily on the Neural

Engineering Framework (NEF) [Eliasmith and Anderson, 2004] and existing models of bump

attractors based on the NEF in toroidal environments [Conklin and Eliasmith, 2005].

In the following, we de“ne an •effective inputŽ xe f f � RM to the network. At “rst, we will use

the effective input as a mathematical construct to derive an appropriate recurrent weight

factorization, allowing for an alternative description of the network dynamics in terms of x.

After determining this factorization, we will show how the effective input corresponds to the

combined feedforward and recurrent input to the neurons in the network.

First, we consider how such an effective input vector could be recovered after being multiplied

with the network encoding vectors [ e1,e2, . . . ,ej , . . . ,eN ] and passed through the nonlinear

transfer function gj [·]. As before, each encoding vector ej � RM describes the selectivity of

neuron j to an effective input. We assume that the effective input can be approximately

linearly decoded using a set of neuron…speci“c •decoding vectorsŽ [ d1,d2, . . . ,dj , . . . ,dN ]. That

is, we write

xe f f 

N�

j =1
d j gj

�
eT

j xe f f
�

, where d j � RM . 3.5

Next, we use the same decoding vectors d j and apply them to the population activities as

de“ned in Equation 3.4. Here, we de“ne the result to be x, i.e. the population representation

of the spatial function (e.g. Gaussian bump) corresponding to the animal•s position. That is,

x =
N�

j =1
d j a j . 3.6

Finally, we “x the recurrent weights in the population to

w i j = (1Š 	)e T
i d j . 3.7
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Re…evaluating Equation 3.4 using Equation 3.6 and Equation 3.7, we “nd that

�
dai

d t
= Š ai + gi

�
N�

j =1
w rec

i j a j +
M�

k=1
w f f

ik x in
k

�

3.8

= Š ai + gi

�
N�

j =1



(1Š 	)e T

i d j a j
�
+ 	e T

i xin

�

from Equation 3.7

= Š ai + gi

�
(1Š 	)e T

i x + 	e T
i xin

�
from Equation 3.6

= Š ai + gi

�
eT

i



(1Š 	)x + 	x in � �

.

Applying our decoding vectors to both sides of the equation, summing over the population

activities and taking xe f f = (1Š 	)x + 	x in , we “nd that

�
N�

i
di

dai

d t
= Š

N�

i
di ai +

N�

i
di gi

�
eT

i

�
(1Š 	)x + 	x in

	 �
3.9

�
dx

d t

 Š x +

�
(1Š 	)x + 	x in

	
from Equation 3.5 and Equation 3.6

� � dx

d t

 Š x + xin , where � � = �/	.

The network can thus be seen as an integrator or low…pass “lter over the input positions xin

(Figure 3.2). The effective input introduced earlier corresponds to a convex combination of

the network representation x and the input xin under this weight factorization. Note that as

the recurrent weight magnitude increases (i.e. 	 decreases) the effective time constant of

the “lter also increases, re”ecting the hysteresis induced by the recurrent weights. Strong

recurrent weights can also “lter out high…frequency noise in the input and allow the network

to maintain a memory of the input for some time after it is removed.

To derive the decoding vectors. we take a set of P vectors [xe f f
1 ,xe f f

2 , . . . ,xe f f
P ] corresponding

to Gaussian pro“les of constant width evenly spaced throughout the environment. We then

consider the squared error after approximating these effective inputs from their resulting

nonlinear representations in Equation 3.5, i.e.

E =
1

2

P�

n=1

�

xe f f
n Š

N�

j =1
d j gj

�
eT

j xe f f
n

�
� 2

. 3.10

Finding the optimal decoding vectors for these P effective inputs corresponds to a linear

regression problem; they can thus be determined using the Moore…Penrose pseudoinverse

of the matrix of representations in response to the inputs. It is straightforward to adjust the

solution based on the expected variance of independent, Gaussian noise in each neuron•s

response pro“le, corresponding to an L2 regularization [Eliasmith and Anderson, 2004]. Note

that each neuron•s optimal decoding vector depends on the activity of the other neurons in

the population; in general, the error in decoding will decrease as more neurons are added to

the population.
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Figure 3.2 …A toroidal bump attractor network . [Left ] An input vector xin is supplied to the
network representing the animal•s position in space using a basis consisting of low…frequency
spatial basis functions. This vector corresponds to a 2D Gaussian bump in a spatial reference
frame. The width of the bump depends on the number of basis functions used; additional high…
frequency functions result in narrower bumps. [ Middle ] Encoding vectors ei also correspond
to localized Gaussian bumps in 2D space. As a result, neurons with encoding vectors most
similar to the current input have the strongest response. If the neurons are arranged in a 2D
grid with equally spaced place “eld centers, the resulting activity pro“le likewise resembles a
Gaussian function. [ Right ] The activity can be decoded to estimate the network representation
x. With recurrent weights that feed x back into the network, the decoded network activity
approximates a low…pass “lter of the input. The recurrent outgoing weights from neuron i are
shown, plotted in a 2D grid according to the 2D spatial relationship between neuron i •s place
“eld center and the place “eld center of each postsynaptic neuron (where neuron i •s place
“eld center corresponds to the middle of the plot). As in Figure 3.1, the neuron excites other
neurons with similar place “eld centers and inhibits those with distant place “eld centers.

In a toroidal attractor network, the resulting recurrent weights from this procedure are shown

in Figure 3.2. Note that they resemble the Gaussian or Mexican…hat…like recurrent connectivity

usually imposed heuristically to obtain an attractor network, as in Figure 3.1.

Until this point, we have described the network as a low…pass “lter over the input. It is an

•attractor networkŽ because the error minimization in Equation 3.10 is performed with respect

to a manifold of coef“cients that correspond to localized Gaussian bumps in space. As a

result, the low…pass “lter dynamics are only stable when the network operates in the vicinity

of this manifold, and the network activity tends to collapse back to this manifold (i.e. it

forms an attractor) [Eliasmith and Anderson, 2004]. For instance, if the initial effective input

xe f f = (1Š 	 )x + 	x in corresponds to a mixture of two narrow Gaussian bumps x and xin at

different locations in space, the recurrent connectivity will cause the network representation x

to rapidly collapse to a single bump rather than a mixture of the two (Eliasmith and Anderson

[2004]).

As an alternative to an orthonormal basis as an input to the network, we note that grid cells in

the entorhinal cortex (the primary input region to CA3 [Moser et al., 2008]) correspond to a

population of spatially global, periodic functions that can be linearly weighted to form place

“elds in an open environment [Solstad et al., 2006]. Thus, for a hippocampal bump attractor
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x x

Figure 3.3 …Non…Geodesic vs. Geodesic place “elds. The colour indicates a cell•s simulated
activity according to the animal•s 2D position in an environment divided by a wall (in white).
Here, darker red corresponds to higher activity. The two cells have a maximal response at the
same position in the environment, marked with a white cross, which we refer to as the cell•s
place “eld center. [ Left ] Place cell response under a non…geodesic metric. Here, place cell
activity varies with the shortest path distance from a position on the discrete grid to the place
cell center, moving horizontally or vertically between points on the discrete grid, whether
or not those points are occupied by a barrier. [ Right ] Actual place cell responses are better
represented by “elds based on geodesic distance. According to the geodesic metric, the cell•s
response depends on the shortest path along the discrete grid between the animal•s location
and the cell•s place “eld center, excluding grid positions occupied by obstacles.

network, we may instead take xin
l as the response of grid cell l to the current location, with

w f f
i l = 	e T

i dl as the connection from grid cell l to place cell i , where dl decodes the grid cell

representation into an M …dimensional basis representation. In the following we assume that

the •activitiesŽ of the M basis functions are available directly as input. Later we will consider

an explicit grid cell population as input (Chapter 4).

3.3 Geodesic attractor networks

In general, we are interested in representing environments with boundaries and obstacles. In

this case, place cell responses respect the topology of the environment; for instance, a cell

which responds strongly on one side of a thin wall has little or no response on the opposite

side [Gustafson and Daw, 2011].

Rather than using neurons that respond according to the distance between the animal•s

location and the place “eld center ignoring obstacles (here referred to as a non…geodesic

metric), we consider cell responses that scale with geodesicdistance … i.e. the shortest path the

animal could take through the environment between its current position and the place “eld

center. An example pro“le under a geodesic metric is shown in Figure 3.3 (right), compared

to a pro“le based on distances ignoring the obstacle in the environment (left). We use the

term •geodesicŽ following Gustafson and Daw [2011], where it refers to the fact that obstacles

28



3.3. Geodesic attractor networks
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Figure 3.4 …A geodesic attractor network in an environment with barriers . [A] Example of
one of the P large geodesic pro“les used for constructing the network weights. This example
has a place “eld centered in the top left corner of the maze. [ B] The four basis functions
associated with the highest magnitude singular values after performing SVD on a set of
geodesic spatial pro“les evenly spaced throughout the environment. These four low…frequency
functions, which varied smoothly across the environment, could explain > 95% of the variance
in the P large geodesic pro“les. [ C] 100 positions were randomly selected in the environment,
and the coordinates associated with those positions were used as encoding vectors. Coloured
pixels correspond to the 100 sampled positions; as a result, each pixel also de“nes one neuron•s
place “eld center. We plot the 100 outgoing recurrent weights from the i th neuron (which has a
place “eld center circled in red); each pixel•s colour gives the value of the recurrent weight from
the circled i th neuron to the neuron with a place “eld center at that pixel•s position. Note the
similarity to a traditional toroidal attractor weight pro“le (Figure 3.2), with recurrent excitation
between neuron•s with similar place “eld centers and inhibition between neurons with distant
place “eld centers. [ D] The place “eld for the i th neuron circled in C, i.e. the steady…state
activity of the i th neuron when a constant input stimulus is applied corresponding to each
position in the environment. [ E] The network activity pro“le for an input corresponding to
the top…left corner. The colour bar is shared between D and E.
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Chapter 3. Preplay and Path Planning with Attractor Networks

effectively curve or warp the geometry of the environment.

We consider the problem of building an attractor network that can stably represent such

geodesic pro“les in a given environment. First, we calculate geodesic spatial functions for

[1, . . . ,n, . . . ,P] 2D place “eld centers evenly spaced throughout an environment with obstacles,

where the nth function decreases exponentially with the shortest traversable distance d

between the nth place “eld center and a location in the environment (e.g. Figure 3.4A). The

full set of geodesic pro“les can be represented with a P × Z matrix R, where Z is the number

of possible positions in the environment (determined by the resolution of the representation).

Taking the Singular Value Decomposition of R gives R = USVT , where Sis a diagonal matrix of

singular values in order of decreasing magnitude. Here, V corresponds to an environment…

speci“c orthonormal basis (e.g. Figure 3.4B), like the Fourier basis in periodic environments.

Similar to a Fourier basis, the vectors in V correspond to topologically…smooth functions, with

larger singular values associated with functions of lower spatial frequency.

The nth row of US gives the coordinates on the basis V that reconstruct a geodesic pro“le

centered at position n. We took the vectors in US and truncated them to length M , after

arranging them in order of decreasing singular value magnitude. We picked N locations

randomly and expressed the locations in the new basis to construct the encoding vectors

[e1, . . . ,eN ] for the N neurons in the attractor network. In addition, we used all P rows in US to

generate the decoding vectors minimizing the error in Equation 3.10. Taking w rec
i j = (1Š	 )eT

i d j

and w f f
ik = 	e ik , this process fully de“nes the recurrent and feedforward weights for the

environment…speci“c attractor network. We used a recti“ed linear nonlinearity for gi .

The resulting recurrent weights for an H…maze environment are shown in Figure 3.4C, an

example place “eld is shown in Figure 3.4D, and an activity pro“le (for a set of 100 neurons

with randomly chosen place “eld centers) is shown in Figure 3.4E.

3.4 Trajectories from attractor dynamics

From Equation 3.9, we can see the network as maintaining a memory of the animal•s current

location x(t ) that follows a change in feedforward input on the timescale of � � . We next consider

how the attractor network structure could contribute to the sequential activity observed in

place cell networks during SWRs and theta cycles [Pfeiffer and Foster, 2013, Wikenheiser and

Redish, 2015].

We consider the case where the current state represented by the network, x(t ), and the new

input, xin (t ), are signi“cantly different. In this case, we can see the network as generating a

low…pass “ltered version of the transition between the initial and new stimulation coordinates.

In a goal…directed navigation task, x(t ) and xin (t ) may correspond to the animal•s current

location and a goal location, respectively.
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Figure 3.5 …Sequential activity generated by low…dimensional representations , with units
possessing place “elds centers equally spaced along a toroidal grid. [ A] Neurons with large
place “elds (generated using 9 Fourier basis functions) have place “eld centers that evenly tile
the entire toroidal environment. They produce a large activity pro“le [dark red: high activity,
dark blue: no activity]. Activity was initialized at the center of the image and stimulation was
delivered, centered at the white dot. [ B] Activity pro“les collapsed on the x1 spatial axis for
the “rst 200 time steps � of stimulation; pro“les are plotted at every 10 steps, moving from
yellow to green. Stimulation produced a smooth movement of the bump with an intervening
decrease in activity rates. [ C] The same stimulation process was used on a network of neurons
with narrow place “elds and narrow resulting activity pro“les. [ D] With narrow “elds, the
bump decreased at the original position and reappeared at the stimulated location. [ E] A
hierarchical structure was used with four populations of neurons, where the input stimulus
was applied to the population with the largest place “elds and each population projected
to the next population with smaller place “elds (Equation 3.11). [ F] With the hierarchical
structure, the bump moves smoothly to the new location at the lowest level.

In mean…“eld models of periodic continuous attractor networks with broad bump pro“les

and strong recurrent excitatory feedback, the network activity has been shown to re”ect a

smooth transition between the initial position and the stimulated position with relatively little

change in the pro“le, a phenomenon referred to as •virtual rotationŽ [Hansel and Sompolinsky,

1998]. Virtual rotation results from the overlap between the initial activity pro“le and the

input stimulus in combination with the recurrent excitatory dynamics, which pull the network

activity towards a bump…like pro“le.

We reproduce the same phenomenon in a continuous attractor generated according to the
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Chapter 3. Preplay and Path Planning with Attractor Networks

NEF in the top row of Figure 3.5. In this case, we evenly tiled the [41 x41] grid with neurons,

such that each neuron•s encoding vector made it maximally receptive to a Gaussian bump

at a particular 2D location. When the input and recurrent weights were determined using

broad Gaussian bumps (generated from a low…dimensional Fourier basis), we observed virtual

rotation (Figure 3.5B). When narrow Gaussian bumps were used (generated from a high…

dimensional Fourier basis), the network representation jumped directly to the stimulated

location (Figure 3.5D).

The low…pass “lter in Equation 3.9 requires the network to represent some convex combination

of the initial and “nal positions. In the low…dimensional, low…frequency basis used to generate

the broad activity pro“les, the possible positions [ x1 . . .xP] form a manifold that is nearly linear

close to the origin (i.e. closed under addition and multiplication). As a result, the network

representation of x in Equation 3.9 will, at any point in time, be close to the manifold of

possible positions. As well, since these points are used to determine the network weights

by minimizing the error in Equation 3.10, this manifold is also where the network error is

lowest. In contrast, attractor networks generated using narrow bumps correspond to high…

dimensional, highly nonlinear manifolds. In other words, convex combinations of narrow

Gaussian bumps do not resemble single Gaussian bumps, and they are not well…represented

by the network. As a result, the network pro“le tends to fade from the current position and

rise at the stimulated position, without a peak ever appearing between the two (Figure 3.5D).

Drawing on the observation of small place “elds in the dorsal hippocampus, but larger place

“elds in the intermediate and ventral hippocampus [Jung et al., 1994, Kjelstrup et al., 2008],

we propose that sequential activity could arise from recurrent dynamics in these more ventral

regions. However, preplay trajectories have been observed along the entire dorsoventral

axis in theta phase precession [Kjelstrup et al., 2008], and primarily recorded in the dorsal

hippocampus during SWRevents [Pfeiffer and Foster, 2013]. The model can account for these

observations under the hypothesis that sequential activity in dorsal regions (where place “elds

are narrow) is inherited from intermediate and ventral regions.

Here, we introduce a hierarchical model, where populations with large place “elds project to

and in”uence populations with smaller place “elds during sequential activity (e.g. Figure 3.5E).

At the top level (largest place “elds), the dynamics are determined according to Equation 3.4

as usual. For each lower level, the neuron dynamics are amended to

�
dal

i

d t
= Š al

i + g

�
nl�

j =1
w i j al

j +
nl +1�

k=1
w td

ik al +1
k

�

3.11

where the superscript l denotes the level, the activity of units al +1
k represent the estimate

of the position at a higher level (a broader, lower…frequency representation), and the top…

down weights w td
ik are determined using the least…squares decoders of these low…frequency

components. Notably, the weights at all levels were determined with respect to the same basis

functions. As a result, a neuron with a large place “eld at a given position maximally excites
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3.4. Trajectories from attractor dynamics

neurons with smaller place “elds down the hierarchy near the same position. The top…down

signal provides a low…dimensional estimate of the path for the lower level to follow, while

the recurrent dynamics at the lower level impose the high…frequency dynamics that keep the

activity close to the attractor manifold. By feeding the estimate iteratively through several

levels, a smooth path can be generated between distant locations in the environment, even at

the level of small place “elds.

In order to do this, we generated a four…level network using a 2D Fourier basis, with gradually

smaller place “elds (higher…dimensional representations) at each level. As shown in Figure 3.5F,

a path generated by virtual rotation in a network with large places could also produce a

smooth path in the network with small place “elds, by “ltering the activity through each level

successively. This was not possible when a goal signal was supplied directly to the population

with small place “elds; in that case, the bump jumped directly from the start location to the

goal location (Figure 3.5D).

By generating the weights according to the NEF rather than a Gaussian heuristic, the same

phenomenon of virtual rotation can be extended to non…toroidal environments with bound-

aries (Figure 3.6B). Here, the arrows indicate the initial shift in position of the most active

neuron after tiling the space such that exactly one neuron had a place “eld centered at every

position, and supplying feedforward input to the network corresponding to a given position

(the red dot). As in the toroidal environment, the shift was generally smooth relative to the

local topology with large place…“eld units, but was erratic when place “elds were small relative

to the size of the environment (Figure 3.6C). However, in a hierarchical 2…layer network, top…

down stimulation from the high…level population of 100 neurons with large place “elds could

induce smooth long…distance movement in the network with small place “elds (Figure 3.6D).

3.4.1 Spiking networks

The same behaviour is qualitatively demonstrated in a hierarchical leaky integrate…and…“re

(LIF) spiking network with 3 layers (Figure 3.7). We segregated the neurons into excitatory

and inhibitory subgroups following the generally sharp division of neurons by chemical ef-

fect at outgoing synapses (i.e. Dale•s Principle, Eccles et al. [1954]). In this simple toroidal

environment, we used a Gaussian weight pro“le within and between the excitatory subpopula-

tions and a uniform weight pro“le between excitatory and inhibitory populations, and within

inhibitory populations. Fewer neurons were used at each increasing level in the hierarchy,

re”ecting the decrease in precision (increase in width) of the place representation; as well, we

applied the position input at all levels of the hierarchy. Without top…down input, the narrow

activity pro“les did not move until they eventually jumped directly to the stimulated posi-

tion. With top…down input from the broader pro“les, they moved smoothly to the stimulated

position.
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Chapter 3. Preplay and Path Planning with Attractor Networks

Figure 3.6 …Trajectories in an environment with barriers . [A] Comparison of a large geodesic
place “eld (left) and a small geodesic “eld (right), both centered in the top left corner of the
maze. [B] An attractor network was composed with a large place “eld neuron centered at each
of the 1351 locations in the environment not occupied by a barrier. Activity was initialized at
each point in the environment, and weak bump…shaped input applied, centered at the bottom
right [red dot]. The direction of shift in the most active unit after the “rst 10 time steps � of
stimulation is shown by the vector “eld. [ C] Paths were generated again using small place
“elds (higher dimensional representations). With smaller “elds, the decoded trajectories were
generally accurate near the stimulated location, but activity pro“les far from the stimulated
location moved erratically or jumped directly to the stimulus (e.g. bottom left of maze). [ D]
A network of 100 large place “eld neurons with randomly situated centers was generated
[coloured overlay represents the steady…state activity in this network for a bump centered at
the red dot]. This network was stimulated with an input corresponding to the position of the
red dot, and provided top…down stimulation to the lower level, causing activity in the small
place “eld network to move towards a “xed point near the stimulation center from across the
environment [vector “eld].
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Figure 3.7 …Sequential activity generated in a spiking, hierarchical, toroidal attractor net-
work . [Left ] Network diagram. Each level contains an excitatory and a (global) inhibitory
population. Excitatory weights were generated with a Gaussian pro“le. Pro“le width was
increased and neuron count decreased at each higher level (population sizes are shown in
brackets). Red lines: excitatory connections, blue lines: inhibitory connections, dotted lines:
manipulated top…down connections. [ Middle ] Overlaid results from two separate trials in
the lowest level (smallest pro“le widths). Neurons are arranged in the grid according to their
place “eld centers. Two different initial activity pro“les [grey, spikes in the “rst 10ms] and
stimulation positions [large red dots] are shown. Without the dotted top…down connections,
the pro“les did not move during the initial stimulation input period [small black dots, activity
pro“le means plotted every 10 ms for 100 ms]. With top…down connections, the pro“le means
moved towards the stimulated position [colored dots, plotted every 10 ms, blue to green for
Trial 1 and orange to yellow for Trial 2]. [ Right ] Raster plots for corresponding neurons in
middle diagram, showing sequential “ring due to hierarchical attractor dynamics.

3.4.2 Multichart attractor networks

Place cells have been experimentally observed to •remapŽ between different environments, i.e.

cells which have correlated “ring “elds in one environment tend to show no correlation in an-

other environment [McNaughton et al., 1996]. Theorists have shown that a recurrent network,

such as CA3, can potentially store many uncorrelated maps simultaneously (a •multichartŽ

representation, Samsonovich and McNaughton [1997]), where each map corresponds to a

different environment.

Multichart attractors can be achieved with recurrent connectivity corresponding to the super-

position of multiple recurrent weight pro“les for multiple environments. Provided that the

place cell activities are uncorrelated across environments, and the number of environments is

small relative to the network size, the recurrent attractor connections can be superimposed

such that the bump is localized only in the environment represented by the feedforward in-

put [Samsonovich and McNaughton, 1997]. The cooperative activity of the neurons maintains

the representation in that environment, as the representation has no spatial coherence in any

other environment represented in the recurrent weights.

To investigate whether sequential activity could occur in multichart attractors, we generated

a geodesic multichart attractor with 100 units for two environments, where each unit was

randomly assigned a large place “eld center in both environments (Figure 3.8). In both environ-
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Chapter 3. Preplay and Path Planning with Attractor Networks

Figure 3.8 …A small network of large place…“eld units can generate geodesic trajectories in
multiple environments . Two orthogonal attractors representing different environments were
stored in the same network of 100 units. [ A] Initial activity trajectory from each point in a
twisting hallway environment, with stimulation provided at the red dot, as decoded from
the network activity. Place “eld centers and activities, for a bump centered at the red dot,
are shown in overlay. [ B] The same network representing a maze…like environment, with
trajectories and activities for stimulation centered at the red dot. Note the discontinuity in the
lower left, where two different paths are equidistant from the goal. [ C] The same activities as in
the previous two plots, plotted according to the place “eld centers in the other environment.

ments, these place “elds were well…represented using 6 basis functions. To generate multiple

charts in the same network, we determined the recurrent weights solved by minimizing the

representation error across both environments; i.e.
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for P1 positions in environment 1 and P2 positions in environment 2, where the augmented

input vectors correspond to

x�T
n1

= [x1,n1,x2,n1,x3,n1,x4,n1,x5,n1,x6,n1,0,0,0,0,0,0] and 3.13

x�T
n2

= [0,0,0,0,0,0,x1,n2,x2,n2,x3,n2,x4,n2,x5,n2,x6,n2], 3.14

i.e. for each 12…dimensional input vector used to determine the weights, 6 dimensions

represented a position in one environment and the other 6 dimensions were set to 0. As a

result, all encoding and decoding vectors were 12…dimensional as well. This process results in

the generation of two orthogonal attractor manifolds.

We then tested the possibility of sequential activity from virtual rotation in the multichart

network. For each environment, the initial movement of the activity pro“le from each point in
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3.5. Successor Representation…based geodesic attractors

that environment was recorded, after stimulating the network with a single goal location. In

this case, the movement of the pro“le was not judged by the shift in the most active unit, but

rather by the shift in the maximum position of the spatial function represented by the network

activities after decoding them with the optimal decoders from Equation 3.10.

The networks were able to generate trajectories across both environments and displayed

diverging activity at equidistant points (e.g. Figure 3.8B, bottom middle of maze), although

high…frequency elements like corners were sometimes “ltered out by the network (e.g. Fig-

ure 3.8A, top left of maze).

3.5 Successor Representation…based geodesic attractors

In the spatial attractor network models presented thus far, the shortest…path distances between

all grid positions in the environment are used to determine appropriate recurrent weights. In

the following, we consider how large…scale features of the environment could be represented

in the network weights using only local distance information about the environment. To do

this, we derive the network weights using a local random walk combined with the successor

representation framework. In addition, we provide an interpretation of the evolution of the

network•s activity in light of the successor representation. We focus on the network activity

in large place “eld populations, without the hierarchical structures considered in previous

sections.

3.5.1 Representing space using the successor representation

We represent the relationship between locations in an environment including obstacles using

the geodesic similarity metric considered in Section 3.3. Given two states s = [x1,x2] and

s� = [x�
1,x�

2] in the 2D plane, their (symmetric) similarity f is given by

f (s,s�) = f (s�,s) = exp


Šhd 2�

3.15

where h is a width term as in Equation 3.2 and d is the distance between s and s� along a dis-

crete grid, respecting walls and obstacles (as in the geodesic “elds previously considered). The

metric is localized such that f (s, ·) resembles, as a function of the second argument, a small

bump in space truncated by walls with a maximum located at s. Unlike the geodesic functions

considered in the previous section, we take a much larger, “xed value for h; the resulting

bump is therefore much smaller (Figure 3.9 center bottom, cf. Figure 3.4A). Normalizing the

similarity metric gives

p(s,s�) =
f (s,s�)



s� f (s,s�)

. 3.16

The normalized metric can be interpreted as a transition probability from s to s� under a

random walk. This random walk results in small steps to positions in the near vicinity of
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Chapter 3. Preplay and Path Planning with Attractor Networks

s; in the 41 × 41 discrete grid environments considered in the following, p(s,s�) < 0.1% for

positions s and s� more than 4 grid positions apart. Taking p(s,s�) =



a T (s�|s,a)� (a|s), the

transition probability can be seen as implicitly incorporating both the action…conditional

transition probabilities T (s�|s,a) and a policy � (a|s) [Stachenfeld et al., 2014]; the random

walk can therefore be interpreted as arising from a deterministic transition function and a

policy describing a small random step from the current position. The statistics of the random

walk could be determined from one…step observations during random exploration of the

environment.

In order to capture large…scale structure using the local transition function p(s,s�), we consider

the Markov chain described by the transition matrix P, formed from the elements p(s,s�). In

addition, we assume that there is a single •goalŽ state in the environment at any point in time,

described by the one…hot vector r with r (s�) = � s�g (� denotes the Kronecker delta function

and the index g denotes the goal state). Using the successor representation (Section 2.4.3), the

expected discounted returns v from each state while following the random walk is given by

v = r + �Pr + � 2P2r + � 3P3r + . . . 3.17

= (I Š �P) Š1r

= Lr.

where � denotes a discount factor. When we consider only a single goal, we can see the

elements of L as L(s,s�) = v(s|s� = g), i.e. the value of state s given that s� is the current goal.

We will use this property to generate a spatial mapping that allows for rapidly planning a path

between any two points in the environment.

Given that P is formed from a random walk, a spectral analysis of L [Coifman and Lafon, 2006,

Stachenfeld et al., 2014] gives

v(s|s� = g) = z(s�)
n�

l =0
(1Š �
 l )

Š1� l (s)� l (s
�) 3.18

where z(s�) is the steady…state occupancy ofs� given the transition matrix P, � l are the right

eigenvectors of P, and 1 = |
 0| � |
 1| � |
 2| · · · � |
 n | are the n + 1 eigenvalues [Coifman and

Lafon, 2006]. Large…scale features of the environment are represented in the eigenvectors

associated with the largest eigenvalues ([Fiedler, 1989], Figure 3.9 top left). Note that the

successor representation describes the space by repeated application of a local transition

function p(s,s�), rather than a single application of a large…scale, global similarity function as

in the previous geodesic networks.

We now express the position in the 2D space using a set of •successor coordinatesŽ, such that

s(x1,x2) �
 �s=
� � 


1Š �
 0
� Š1� 0(s),

� 

1Š �
 1

� Š1� 1(s), . . . ,
� 


1Š �
 q
� Š1� q (s)

�
3.19

=


� 0(s), � 1(s), . . . , � q (s)

�
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Figure 3.9 …Representing an environment in successor coordinates . [Left ] A rat explores
a maze…like environment and passively learns its topology. We assume a process such as
hierarchical slow feature analysis, that preliminarily extracts slowly changing functions in the
environment (here, the vectors � 1 . . . � q ). The vector � 1 for the maze is shown in the top left.
In practice, we extracted the vectors directly from a localized Gaussian transition function
(bottom center, for an arbitrary location). [Right] This basis can be used to generate a value
map approximation over the environment for a given reward (goal) position and discount
factor � (inset). Due to the walls, the function is highly discontinuous in the xy spatial
dimensions, but varies smoothly along dimensions where movement is possible. The goal
position is circled in white. In the scatter plot, the same array of states and value function are
shown on the manifold given by the “rst two non…trivial successor coordinate dimensions. In
this space, the value function is proportional to the scalar product between the states and the
goal location. The grey and black dots show corresponding states between the inset and the
scatter plot.

where � l =
� 


1Š �
 l
� Š1� l (see Figure 3.9). This is similar to the •diffusion mapŽ framework

by Coifman and Lafon [2006]; with the useful property that, if q = n, the value of a given

state when considering a given goal is proportional to the scalar product of their respective

mappings: v(s|s� = g) = z(s�)� �s,�s� � . This property allows a network operating in the successor

coordinate space to rapidly generate prospective trajectories between arbitrary locations.

The mapping can also be de“ned using the eigenvectors 
 l of a related measure of the space,

the normalized graph Laplacian [Mahadevan, 2009]. The eigenvectors 
 l serve as the objective

functions for slow feature analysis [Sprekeler, 2011], and approximations have been extracted

through hierarchical slow feature analysis on visual data [Franzius et al., 2007, Schoenfeld and

Wiskott, 2015], where they have been used as an input for generating place cell…like behaviour.

Note that, since the successor coordinates are based on a random walk and not a directed

policy resulting from a speci“c reward landscape, they primarily represent a model…based ap-

proach (rather than a hybrid model…free/model…based approach as associated with successor

representations in Chapter 2).
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3.5.2 Path…“nding using the successor coordinate mapping

Successor coordinates provide a means of mapping a set of locations in a 2D environment

to a new space based on the topology of the environment. In the new representation, the

value landscape is particularly simple. To move from a location �s towards a goal position �s�,

we can consider a constrained gradient ascent procedure on the value landscape, expressed

by Equation 3.20:

�s(t + � t ) = argmin
�s� �S

�
(�sŠ (�s(t ) + 	� v(�s(t )))2�

3.20

= argmin
�s� �S

� 

�sŠ (�s(t ) + �	 �s�)

� 2
�

where z(s�) (see Equation 3.18) has been absorbed into the parameter �	 . At each time step,

the state closest to an incremental ascent of the value gradient is selected amongst all states

in the environment �S. Since the value function is derived under a random walk policy, this

corresponds to choosing a state that is more likely to reach the goal in the near future under a

random walk. In the following, we will consider how the step �s(t ) + �	 �s� can be approximated

by a neural attractor network acting in successor coordinate space.

Due to the properties of the transition matrix, � 0 is constant across the state space and

does not contribute to the value gradient in 3.20. As such, we substituted a free parameter

for the coef“cient
�

(1Š �
 0)Š1, which controlled the overall level of activity in the network

simulations.

3.5.3 The network model

We use the same network structure described with the NEF in Section 3.3, but here using

successor coordinates. Each neuron has an encoding vector given by ei = �si
||�si ||

, the normalized

successor coordinates of a particular point in space, which corresponds to its place “eld center.

The input to neuron i in the network is then given by

wik = [ei ]k ,
m�

k=1
w ik �sin

k = ei · �sin . 3.21

where we assume the input �sin is given using the basis �. As before, we “nd a set of decoding

weights d j to recover the least…squares approximation to a set of example effective inputs

�se f f corresponding to locations in the environment, and use them to determine the recurrent

weights w i j . With a gain factor 	 in the feedforward weights and (1 Š � ) in the recurrent

weights, the update equation of the network (following from Equation 3.9) is then given by

�
d �s

d t

 Š � �s+ 	 �sin . 3.22
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3.5. Successor Representation…based geodesic attractors

Given a location �sin as an initial input, the network representation �s approximates the input

and reinforces it, allowing a persistent bump of activity to form. When �sin then changes to

a new (goal) location, the input and recovered coordinates con”ict. By Equation 3.22, the

recovered location moves in the direction of the new input, giving us an approximation of

the initial gradient ascent step in Equation 3.20 with the addition of a decay controlled by

� . However, the attractor dynamics prevent �s from moving far from the manifold of actual

locations in the environment (determined by the points where the error in Equation 3.10

was minimized). As before, the network activity is decoded after a short stimulation period;

here, the state on the manifold of actual states (Figure 3.9 right) closest to the new network

representation �s can be interpreted as a state close to the starting position that ascends the

value gradient.

As in earlier non…hierarchical experiments, we used large place “elds dominated by low…

frequency spatial functions (corresponding to � = 1). In addition, we truncated the successor

coordinate representation to the “rst q most signi“cant dimensions, where q < 6 in the

experiments presented here. Finally, we achieved the best results by balancing the decay and

input strength in the network ( � = 	).

3.5.4 Results

We generated successor coordinate…based attractor networks according to the layout of mul-

tiple environments containing walls and obstacles, and stimulated them successively with

arbitrary starting points and goals. Here, we use n = 500 neurons to represent each environ-

ment, with place “eld centers selected randomly throughout the environment. The network

activity resembles a bump across a portion of the environment, as in the previous geodesic

attractors (Figure 3.10).

For several networks representing different environments, we initialized the activity at points

evenly spaced throughout the environment and provided weak feedforward stimulation

corresponding to a “xed goal location (Figure 3.11). After a short delay (5 � ), we decoded the

successor coordinates from the network activity to determine the closest state (Equation 3.20).

The shifts in the network representation are shown by the arrows in Figure 3.11. For two

networks, we show the effect of different feedforward stimuli representing different goal

locations. The movement of the activity pro“le was similar to the shortest path towards the

goal (Figure 3.11, bottom left), including reversals at equidistant points (center bottom of the

maze). Irregularities were still present, however, particularly near the edges of the environment

and in the immediate vicinity of the goal (where high…frequency components play a larger

role in determining the value gradient).
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Figure 3.10 …Successor coordinate…based attractor networks . Network activities are illus-
trated over time for different inputs and networks, in multiples of the membrane time constant
� . Purple boxes indicate the most active unit at each point in time. [Top row] Activities are
shown for a network representing a maze…like environment in a low…dimensional space ( q = 5).
The network was initially stimulated with a bump of activation representing the successor
coordinates of the state at the black circle; recurrent connections maintain a similar yet fading
pro“le over time. [Middle row] For the same network and initial conditions, a weak constant
stimulus was provided representing the successor coordinates at the grey circle; the activities
transiently decrease and the center of the pro“le shifts over time through the environment.
[Bottom row] Two positions (black and grey circles) were sequentially activated in a network
representing a second environment in a low…dimensional space ( q = 4).

3.6 From trajectories to headings

In the geodesic attractor networks described thus far, we have decoded trajectories according

to either the place “eld center of the most active unit at each point in time (Section 3.4)

or by projecting the network representation on to the state manifold at each point in time

(Section 3.5). It is worthwhile to consider instead how a downstream network could translate

the network activity into a heading for the animal to follow (and ultimately, an action).

Rather than determining a nearby state that ascends the value gradient as in Equation 3.20, a

downstream network could decode the gradient in xy space (i.e. the arrows in Figure 3.11) in

order to determine an appropriate heading. Several methods for neural differentiation have

been proposed [Tripp and Eliasmith, 2010]; for instance, one approach utilizes feedforward
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3.6. From trajectories to headings

Figure 3.11 …Successor coordinate…based network trajectories in different environments .
Arrows show the initial change in the location of the activity pro“le by determining the state
closest to the decoded network activity (at t = 5� ) after weakly stimulating with the successor
coordinates at the black dot ( 	 = � = 0.05). Pixels show the place “eld centers of the 500
neurons representing each environment, coloured according to their activity at the stimulated
goal site. [Top left] Change in location of the represented successor coordinates in a maze…like
environment with low…dimensional activity compared to [Bottom left] the true shortest path
towards the goal at each point in the environment. [Additional plots] Various environments
and stimulated goal sites using low…dimensional successor coordinate representations.

excitation in combination with delayed, disynaptic inhibition. Suppose that the attractor

network projects indirectly to a downstream network, where the activity of each neuron can

be described by

�
dads

i (t )

d t
= Š ads

i (t ) + g

�
N�

j =1
w i j aat t

j (t ) +
N�

j =1
w �

i j aat t
j (t Š � t )

�

, 3.23

where aat t
j (t ) describes the activity of a neuron j in the attractor network at time t , and the

delay (t Š � t ) is accomplished with a disynaptic delay line. If the disynaptic pathway reverses

the sign of the input, and wi j = eT
i d j where d j decodes the successor coordinates, this gives

us

�
dads

i (t )

d t
= Š ads

i (t ) + g
�
eT

i �s(t ) Š e�T
i �s(t Š � t )

�
, 3.24

where ei and Še�
i represent the neuron•s response to successor coordinates at time t and time

(t Š � t ), respectively.

Suppose that a neuron in the downstream region is maximally receptive to a particular com-

bination of successor coordinates �sp1(t ) and Š�sp2(t Š � t ) from the attractor network, and
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Chapter 3. Preplay and Path Planning with Attractor Networks

that �sp1 and �sp2 correspond to neighbouring positions in the environment, offset in some

allocentric direction (e.g. �sp1 is slightly north of �sp2). If ads
i (t ) is strongly active near the

beginning of a trajectory, it suggests that the attractor network representation is also moving

north, and that the animal should travel north in order to move closer to the goal position. An

entire population receptive to different positions and offsets would therefore give rise to a

population code for planned allocentric heading, which could be compared to the animal•s

current heading by a further downstream network in order to determine an egocentric action

(e.g. turn left, turn right or go forward).

This model would require a network of •place × headingŽ cells downstream of the attractor

network in order to decode the heading; in fact, neurons with a place × heading response

have been found in the subiculum, the output pathway of the hippocampus [Cacucci et al.,

2004]. It is unclear how the cells respond during SWRs or whether they predict the animal•s

future heading (as opposed to merely re”ecting the current heading). However, the cells are

strongly predisposed to “re at a particular phase of the local theta rhythm; assuming that this

aligns with the end of a theta cycle in CA3/CA1, the subicular cells may summarize the place

cell trajectories that occur during theta cycles, which predict the animal•s future heading and

re”ect current goals [Huxter et al., 2008, Wikenheiser and Redish, 2015].

3.7 Discussion

We have presented a spatial bump attractor model generalized to represent environments

with arbitrary obstacles, and shown how, with large activity pro“les relative to the size of

the environment, the network dynamics can be used for long…distance path…“nding. This

provides a possible explanation for goal…directed activity observed in the hippocampus [Pfeif-

fer and Foster, 2013, Wikenheiser and Redish, 2015] and an hypothesis for the role that the

hippocampus and the CA3 region play in rapid goal…directed navigation [Nakazawa et al., 2003,

Nakashiba et al., 2008, Bast et al., 2009], as a complement to an additional (e.g. model…free)

system enabling incremental goal learning in unfamiliar environments [Nakazawa et al., 2003].

Recent theoretical work has linked the bump…like “ring behaviour of place cells to an encoding

of the environment based on its natural topology, including obstacles [Gustafson and Daw,

2011], and speci“cally to the successor representation [Stachenfeld et al., 2014]. As well,

several models have proposed that place cell behaviour can be learned by processing visual

data using hierarchical slow feature analysis [Franzius et al., 2007, Schoenfeld and Wiskott,

2015], a process which can extract the lowest frequency eigenvectors of the graph Laplacian

generated by the environment [Sprekeler, 2011] and therefore provide an appropriate basis for

successor representation…based activity. We provide the “rst link between these theoretical

analyses and attractor…based models of CA3.

Slow feature analysis has been proposed as a natural outcome of a plasticity rule based

on Spike…Timing Dependent Plasticity ( STDP) [Sprekeler et al., 2007], albeit on the timescale

of a standard postsynaptic potential rather than the behavioural timescale we consider here.
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3.7. Discussion

However, STDPcan be extended to behavioural timescales when combined with sustained

“ring and slowly decaying potentials [Drew and Abbott, 2006] of the type observed on the

single…neuron level in the input pathway to CA3 [Larimer and Strowbridge, 2010], or as a result

of network effects. Within the attractor network, learning could potentially be addressed by a

rule that trains recurrent synapses to reproduce feedforward inputs (representing positions)

during exploration (e.g. [Urbanczik and Senn, 2014]). Both the development of geodesic place

“elds and learning of recurrent weights are considered in greater detail in Chapter 4.

Our model assigns a key role to neurons with large place “elds in generating long…distance

goal…directed trajectories. We further propose that such trajectories in dorsal hippocampus

(where place “elds are much smaller [Kjelstrup et al., 2008]) may be inherited from dynamics

in ventral or intermediate hippocampus. The model predicts that ablating the intermedi-

ate/ventral hippocampus [Bast et al., 2009] will result in a signi“cant reduction in goal-directed

preplay activity in the remaining dorsal region. In an intact hippocampus, the model predicts

that long…distance goal…directed preplay in the dorsal hippocampus is preceded by preplay

tracing a similar path in intermediate hippocampus.

Recent evidence, since the development of this model, suggests that trajectory events in the

dorsal hippocampus move in a •step…likeŽ discontinuous fashion across discrete subpop-

ulations of neurons [Pfeiffer and Foster, 2015]. While this evidence contradicts a model in

which trajectories arise from continuous attractor dynamics in dorsal hippocampus, they

are still potentially consistent with one in which discrete trajectories in dorsal hippocampus

are inherited from continuous trajectories in intermediate/ventral hippocampus. Similar

experiments in the intermediate/ventral hippocampus could directly test the hypothesis.

In the model, if an assembly of neurons projecting to the attractor network is active while the

animal searches the environment, reward…modulated Hebbian plasticity provides a mech-

anism for reactivating a goal location. In particular, the presence of a reward…induced neu-

romodulator would allow for potentiation between the assembly and the attractor network

neurons active when the animal receives a reward at a particular location. Activating the

assembly would then provide stimulation to the goal location in the network; the same mech-

anism could allow an arbitrary number of assemblies to become selective for different goal

locations in the same environment. Unlike traditional model…free methods of learning which

generate a static value map, this would give a highly con“gurable means of navigating the

environment (e.g. visiting different goal locations based on thirst vs. hunger needs), providing

a link between spatial navigation and higher cognitive functioning.
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4 Learning Place Cell Maps for
Navigation

4.1 Introduction

In Chapter 3, we considered how an attractor…based representation of an environment in

the hippocampus could contribute to navigation and planning through trajectory events.

However, both the feedforward weights and recurrent weights were assumed to be pre…learned,

potentially through slow feature analysis. Here, we examine how geodesic place “elds of

various sizes (i.e. place “elds that respect the topology of the environment) could arise from

the simple representations of the environment upstream of the hippocampus, and how a local

learning rule could result in the recurrent weights implementing an attractor network.

We consider two types of spatial neural responses as input to the place cell network: grid

cells (Fyhn et al. [2004], Hafting et al. [2005], brie”y introduced in Chapter 1) and border

cells [Solstad et al., 2008]. Grid cells, found in the entorhinal cortex (an input pathway to the

place cell network of the hippocampus) exhibit spatially periodic “ring across an environment,

typically resembling a hexagonal grid, at multiple spatial scales along the dorsoventral axis.

Border cells, also discovered in the entorhinal cortex, tend to “re at a rate inversely related to

the animal•s distance to an environmental boundary at a particular orientation. For instance,

a cell might respond more strongly as the animal approaches any south…facing wall in its

enclosure.

While several theorists have shown that local place cell responses can arise from selectivity to

grid cells at multiple spatial scales [McNaughton et al., 2006, Solstad et al., 2006, Rolls et al.,

2006], we show how additional selectivity to border cells can result in small…scale place “elds

that respect the local geometry of the environment (e.g. “ring on one side of a wall but not

the other, as observed in experiments [Gustafson and Daw, 2011]). We then show how these

small-scale place cell responses can, in turn, act as a basis for large…scale place “elds like

those observed in the ventral hippocampus [Jung et al., 1994, Kjelstrup et al., 2008]. Finally,

we show how a local recurrent learning rule could induce attractor weights adapted to the

environmental topology.
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Chapter 4. Learning Place Cell Maps for Navigation

4.2 Grid and border cell input to the place cell network

Following Solstad et al. [2006], we de“ne a set of grid cell responses according to

agc
j (x) = ggc 2

3

� 1

3

3�

l =1
cos(sT

l j (x Š r0j )) +
1

2

�
, 4.1

where [s1j ,s2j ,s3j ] correspond to a set of 2D sinusoidal gratings offset by 0, 60 and 120 degrees

from a particular phase angle 
 , x corresponds to the animal•s 2D position in the environment,

and the constants enforce that the grid cell response varies between 0 and ggc across the

environment. The grid cell scale is determined by the (equal) wavelength of the three gratings.

Each cell is therefore de“ned by uniformly sampling a grating wavelength from a given range,

as well as a a phase
 and a 2D offset r0j . The interference pattern of the sinusoidal gratings

produces a hexagonal pattern (Figure 4.1A).

Solstad et al. [2006] determine appropriate grid…to…place cell weights algorithmically. Here,

we instead follow Sheynikhovich et al. [2009] and •recruitŽ a place cell i when the animal is at

a location x by setting the feedforward weights according to the normalized presynaptic grid

cell activities, i.e.

w i j =
agc

j (x)
� 
 N gc

m=1 agc
m (x)2

, 4.2

re”ecting the stable solution of a fast self…normalizing competitive Hebbian learning rule,

such as Oja•s rule [Oja, 1982]. The response of place cell i is then given by

apc
i (x) =

�
N gc�

j =1
w gc

i j agc
j (x) Š � pc

�

+

, 4.3

where � pc corresponds to a threshold (or bias), and [ ·]+ indicates a recti“ed linear response

function. Equation 4.3 can be seen as a discrete time version of the cell model considered

in Chapter 3, with a small time constant (and the addition of an explicit threshold � pc).

Given a suf“ciently rich grid cell population, the weight learning rule in Equation 4.2 combined

with the interference pattern of the grid cells active at the location that the cell is recruited

results in local “ring “elds centered at the recruitment position (Figure 4.1B left, similar to the

results of Sheynikhovich et al. [2009] for a different grid cell model). Throughout this chapter,

when we refer to a cell being •recruitedŽ, we mean that its feedforward input weights are “xed

according to the current normalized presynaptic activity from an upstream population, as

in Equation 4.2.

This approach, a combination of the models by Solstad et al. [2006] and Sheynikhovich
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4.2. Grid and border cell input to the place cell network

A C

B D

Figure 4.1 …Local place “elds from combined grid and border cell input . [A] Example grid
cell responses of differing scale and orientation generated according to Equation 4.1. [ B] Cells
recruited with weights according to Equation 4.2 produce spatially localized place cell…like
responses in open “eld regions of the environment, but can produce non…local responses
near boundaries. [ C] Example border cell responses, generated according to Equation 4.4. [ D]
Combined grid and border input generates spatially localized responses.

et al. [2009], is effective in open…“eld environments. However, if the grid cell basis does

not respect boundaries or obstacles, neither will the resulting place cells (Figure 4.1B right).

Evidence suggests that grid cells will form a global pattern unaffected by barriers across

an environment [Carpenter et al., 2015], like the pattern resulting from Equation 4.1. In

contrast, place cell responses in non…ambiguous environments are generally local and respect

boundaries [Skaggs and McNaughton, 1998, Gustafson and Daw, 2011].

We therefore investigate whether entorhinal border cells could allow place cell responses to

disambiguate between regions separated by an obstacle. Following Barry et al. [2006], we

model border cells according to

abc
k (x) = gbc

�
�

Š�

exp
�
Š l � (x)2/2� 2

r ad

�

�
2�� 2

r ad

exp
�
Š (� Š 
 k )2/2� 2

ang

�

�
2�� 2

ang

d � 4.4

where l � (x) corresponds to the shortest distance to a boundary in direction � from the current

position x in the environment, 
 k determines the border cell•s preferred direction vector, and

the widths � r ad and � ang (which we take to be “xed) determine how quickly the cell•s response

is attenuated with distance from a boundary and the cell•s preferred direction, respectively.

Equation 4.4 is a simpli“ed version of the •boundary…vector cellŽ model developed by Barry

et al. [2006]. Unlike that model, where the cell•s maximal response could occur at an arbitrary

distance from the boundary, the cell described by Equation 4.4 always responds maximally at
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Chapter 4. Learning Place Cell Maps for Navigation

distance 0 from the boundary, and therefore more closely resembles the border cell response

found in entorhinal cortex [Solstad et al., 2008].

Combining the grid and border cell populations, we set the feedforward weights of a grid cell

j and border cell k to a place cell i at the position of recruitment x to

w gc
i j =

agc
j (x)

� 
 N gc

m=1 agc
m (x)2 +


 N bc

n=1 abc
n (x)2

and w bc
ik =

abc
k (x)

� 
 N gc

m=1 agc
m (x)2 +


 N bc

n=1 abc
n (x)2

, 4.5

with a total of N gc grid cells and N bc. The place cell•s response is then given by

apc
i (x) =

�
N gc�

j =1
w gc

i j agc
j (x) +

N bc�

k=1
w bc

ik abc
k (x) Š � pc

�

+

. 4.6

By scaling the relative strengths ggc and gbc of the grid cells and border cells and the threshold

� pc, the resulting place cells respond on only one side of a thin barrier (Figure 4.1D), despite

the place “eld half…width extending beyond the width of the barrier. This occurs because the

border cell population response is effectively anticorrelated across the barrier, resulting in a

sharp division between place cell responses across the barrier despite similar grid cell “ring

patterns.

4.3 Learning large geodesic place “elds from entorhinal input

In open…“eld environments, large place “elds can be learned simply by restricting place cell

input to low…frequency grid cells [Solstad et al., 2006]. This solution is intuitively appealing,

since both grid “elds [Hafting et al., 2005] and place “elds [Jung et al., 1994, Kjelstrup et al.,

2008] increase in size moving along the dorsoventral axis; it is then reasonable that (large…

scale) ventral place cells receive input primarily from (large…scale, low spatial frequency)

ventral grid cells [Solstad et al., 2006]. We therefore consider whether local “elds could develop

by combining large…scale grid input with border cell input.

As shown in Figure 4.2A, the combined input often results in multiple “ring “elds instead of a

single place cell response. Cells typically develop multiple “elds de“ned by a •local border

cellŽ response; i.e. responding like border cells constrained to one section of the environment.

Alternatively, we considered how large place “elds could develop by successive local clustering

along the dorsoventral axis of hippocampus (Figure 4.2B). At the “rst level (re”ecting small…

scale, dorsal place “elds) cells had their weights “xed at random locations in the environment

according to Equation 4.5. We used 1500 grid cells, 1500 border cells and 3000 place cells. We

then trained a hierarchical succession of place cell populations, each on the output from the
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4.3. Learning large geodesic place “elds from entorhinal input
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Figure 4.2 …Large place “elds from progressive clustering along the dorsoventral axis . [A]
Direct grid and border cell input using only low…frequency grid cells typically results in mul-
tiple “ring “elds. [ B] Direct grid and border cell input including high…frequency grid cells
can generate local “ring “elds. By iteratively applying the same weight learning rule across
multiple populations, each trained on the output from the previous, large geodesic place “elds
arise. Example place “elds are illustrated for population 1 (trained directly on grid and border
cell output) and populations 4, 7 and 10.

previous population, i.e.

w f f ,n
ik =

apc,nŠ1
k (x)

� 
 N nŠ1

m=1 (apc,nŠ1
m (x))2

, 4.7

where w f f ,n
ik denotes the feedforward weight from neuron k in population n Š 1 to neuron i in

population n, and apc,nŠ1
j (x) is the response of neuron k to the position x. In total, we trained

10 place cell populations, where population n = 1 was trained directly on grid and border cell

input and each population n > 1 was trained on the output of population n Š 1. This pattern

of connectivity is consistent with the observation of dense associational “bers that extend

between CA3 cells along the dorsoventral axis of the hippocampus [Amaral and Witter, 1989].

We linearly decreased the cell population size by 200 cells at each level.

We found that the resulting place “elds gradually increased in size, re”ecting clustering of

smaller, local place “elds into larger place “elds at each level (Figure 4.2B right). While the

“elds generally maintained locality, there was a gradual spread in the direction of navigable

corridors, consistent with intermediate and ventral place “elds observed in the hippocam-

pus [Kjelstrup et al., 2008]. Like the place cell responses observed in intermediate and ventral
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Figure 4.3 …Learned large place “elds capture global environment properties . [A] Singular
value decomposition of the population response of large place “elds across the environment
reveals singular vectors resembling [ B] the eigenvectors of a random…walk transition matrix.
[C] Place “elds often display peaks far from the recruited position, particularly if the cell is
recruited in a corner/edge of the environment. [ D] Conversely, the activity pro“le of all cells in
the population plotted according to each cell•s recruited position is generally smooth, with cells
recruited close to the current position in the environment having the strongest response. [ E]
Plotting the same activity as in D as a function of the shortest path distance between each cell•s
recruited position and the circled position reveals a slow and nearly monotonic relationship.
[F] After normalizing across the population activity at each point in the environment, the large
place “elds were smooth and peaked at the recruitment position.

hippocampus, these “elds also had reduced spatial coherence (sometimes resulting in multi-

ple “eld peaks, as in population 10 in Figure 4.3B).

We analyzed the population activity of the large place “eld units using singular value de-

composition, and found that the dominant singular vectors bore a close resemblance to the

dominant eigenvectors of the random…walk transition matrix (Figure 4.3A and B, using the lo-

cal transition function considered in Section 3.5), suggesting that the “elds capture important

global information about the environment. Population activity was unevenly distributed by

position, with cells generally responding more strongly far from the edges of the maze. For

instance, in Figure 4.3C, a cell that was recruited in the corner of the maze has a “eld peak

near the center of the hallway. However, the population activity pro“les at a given position

were smooth (Figure 4.3D and E, plotted for the same cell•s recruited position). Place “elds

were smooth and peaked near the cell•s recruited position after normalizing the population

activity at each position (Figure 4.3F). The shifted “elds re”ect both the randomly recruited

positions of the cells in the previous layers, and asymmetry effects when a new cell is recruited

close to an environment boundary; since there are no cells in the previous layer active on

the opposite side of the boundary, the new place “eld tends to shift away from the boundary

towards the interior of the environment. The dependence of the activity rates on the position

52



4.4. Learning the attractor map in recurrent weights

input could be mitigated by online normalization of the total network activity at each level,

using e.g. a pool of recurrently connected inhibitory neurons.

4.4 Learning the attractor map in recurrent weights

Finally, we examine whether a local learning rule could result in recurrent weights that im-

plement an arbitrary attractor network in the place cell population. After simplifying the

system to discrete time dynamics, a learning rule for the recurrent weights arises naturally

from segregating feed…forward and recurrent input to the place cell population.

Until now, we have considered activities arising from a single feedforward pass through the

populations for a given “xed combination of grid and border cell activities. Here, in order to

consider the impact of recurrent weights, we introduce the argument t to denote the discrete

time step. We use •feedforwardŽ to refer to long…distance connections from more dorsally…

located CA3 cells with smaller place “elds (i.e. population n Š 1), and •recurrentŽ to refer to

connections between cells within the same region along the dorsoventral axis (i.e. population

n). We consider the case where feedforward weights have already been learned (e.g. via the

process considered in the last section).

We denote the feedforward postsynaptic activation as v f f ,n
i (x, t ) =



k w f f ,n

ik apc,nŠ1
k (x, t ) for

the input position x, i.e. the weighted place cell activities in population n Š1 at the current time

step. After introducing the recurrent weights, we denote the recurrent activation vrec,n
i (x, t ) =



j w rec

i j apc,n
j (x, t ), i.e. the weighted place cell activities in population n at the current time

step. The total activation is then vn
i (x, t ) = v f f ,n

i (x, t ) + vrec,n
i (x, t ).

The place cell population behaves like an integrator if, for some total activation vn
i (x, t Š 1) to

each cell i , it is approximately matched by the resulting recurrent activation vrec,n
i (x, t ) on the

next time step, i.e.

apc,n
i (x, t + 1) =

�
N nŠ1�

k=1
w f f ,n

ik apc,nŠ1
k (x, t ) +

N n�

j =1
w rec,n

i j apc,n
j (x, t ) Š � pc

�

+

=

�

v f f ,n
i (x, t ) + vrec,n

i (x, t ) Š � pc

�

+




�

v f f ,n
i (x, t ) + vn

i (x, t Š 1)Š � pc

�

+

. 4.8

In this case, the population activity will remain approximately constant after the input is re-

moved. The set of all inputs x for which vrec,n
i (x, t ) 
 vn

i (x, t Š 1) de“nes the attractor manifold.

The formulation here differs slightly from that in Chapter 3 in that we do not include the

weights (1 Š 	 ) and 	 that result in a low…pass “lter of the input rather than an integrator,
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Figure 4.4 …Learning attractor dynamics in recurrent networks . [A] We used the discrete…
time, step…based rule (Equation 4.10) to learn recurrent weights based on position inputs
resulting from a random walk in the environment. The learned incoming weights for one
unit are shown, plotted according to the recruited position of the presynaptic neuron. If a
place cell was never recruited at a given position, it is plotted in white. [ B] Attractor network
weights could be learned using the difference in steady…state postsynaptic activation between
compartments dominated by feedforward and recurrent input, with activity driven by the
feedforward compartment during the learning stage.

although the resulting attractor network activity is similar.

We assume that the feedforward inputs to the place cell network (that the network receives

during exploration of the environment) correspond to samples from the attractor manifold.

If we restrict the time course to t = [0,1] and start the network in a quiescent state ( apc,n
i =

0 � i � N n ), then vn
i (x,0) = v f f ,n

i (x,0). In this case, the error function for an integrator is then

given by

E =
1

2

�

t

�

i

�
v f f ,n

i (x,0) Š vrec,n
i (x,1)

	 2
d t , 4.9

which is a restatement of the error function considered in Chapter 3 (Equation 3.10) in activa-

tion space, with the assumption that each feedforward input de“nes a target for the attractor

manifold. Taking the partial derivative with respect to a recurrent weight gives

�E

� w rec
i j

= Š apc,n
j (x,1)(v f f ,n

i (x,0) Š vrec,n
i (x,1))

� w rec,n
i j = � · apc,n

j (x,1)(v f f ,n
i (x,0) Š vrec,n

i (x,1)). 4.10

We used Equation 4.10 in discrete time to learn recurrent weights for the large place “eld

network, population n = 10, based on input from the grid/border cell population “ltered

through the “rst 9 place cell populations. We trained the network based on a 50 000 step

random walk in the environment with the learning rate annealed over time. For each position,
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starting from no activity in the population, we “rst determined (a) the feedforward activations

v f f ,n
i (x,0), then (b) the resulting activities apc,n

j (x,1), and “nally (c) the new recurrent acti-

vations vrec,n
i (x,1). These three terms are suf“cient to calculate one iteration of the weight

update rule. The resulting incoming weights for one cell are shown in Figure 4.4A.

The learning rule in Equation 4.10 requires the neuron to maintain separate estimates of the

feedforward and recurrent activations in order to calculate the weight update. Biologically, one

possibility is that the activations correspond to the local potential in two different regions or

compartments of the postsynaptic cell: one dominated by local (recurrent) CA3 input and the

other by long…distance (feedforward) CA3 input from a more dorsal region. Assuming that the

activity of cells in the attractor network is dominated by the feedforward compartment during

the learning phase (i.e. the recurrent activation is not integrated into the total activation),

then vn
i (x, t ) = v f f ,n

i (x, t ). In addition, at steady…state, v f f ,n
i (x, t ) 
 v f f ,n

i (x, t Š 1). The weight

change in the recurrent synapses at steady…state would then be proportional to the presynaptic

activity and postsynaptic difference in potential between the compartments (Figure 4.4B).

Notably, a similar rule has been developed for spiking neurons by Urbanczik and Senn [2014].

After learning the weights, we relaxed the dynamics of the network to continuous time to

evaluate the attractor dynamics; i.e. taking

�
dapc,n

i (x)

d t
= Š apc,n

i (x) +

�
N nŠ1�

k=1
w f f ,n

ik apc,nŠ1
k (x) +

N n�

j =1
w rec,n

i j apc,n
j (x) Š � pc

�

+

. 4.11

We observed the evolution of the network activity after supplying brief input corresponding to

a location. The network displayed bump attractor dynamics, with bumps of activity remaining

stable after the input was removed for much longer than the time constant � (Figure 4.5A; note

that we did not use a decay term 	 when learning the recurrent weights, so the magnitude of

the population activity does not noticeably decrease over time). Similarly, the bump moved

along a path between locations when the network was consecutively stimulated with two

different locations in the environment (Figure 4.5B). These trajectories were decoded into

headings according to the recruited position of the most active neuron before and after

stimulation (Figure 4.5C). We found that the decoded heading accuracy was best for long…

distance trajectories, and generally worse in the near vicinity of the goal, particularly for goals

near the edges of the environment; this re”ects both the low precision of the large…scale

bumps and the uneven network response near environment boundaries (shown in Figure 4.3).

4.5 Discussion

In this chapter, we considered how the geodesic place “elds described in Chapter 3 could be

learned from the types of spatial representations found in entorhinal cortex. In addition, we

proposed a learning rule for the recurrent weights required to implement attractor network

dynamics in arbitrary environments.
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Figure 4.5 …Learned large…scale bump attractor dynamics . [A] The network was initialized
with the steady…state activities apc,n

j (x,1) resulting from a feedforward activation at a particular
spatial position (marked •InitialŽ). The feedforward input was then removed and the network
activity evolved according to Equation 4.11. The learned weights resulted in a sustained
bump…like activity pro“le after the stimulus was removed, with some drift. [ B] After the
same initialization, the activity evolved under a feedforward activation corresponding to the
position marked •GoalŽ. [ C] Headings decoded from initial bump movement after stimulating
the network with two locations, according to the change in the recruited position of the most
active neuron before and after stimulating the network with the goal position.

Unlike several other models examining the response of spatial cells near barriers [Gustafson

and Daw, 2011, Stachenfeld et al., 2017], we assume that grid cells are invariant to boundaries

and obstacles. In our grid…to…place cell model, place cells become responsive to boundaries

under the in”uence of border cells. Grid cell barrier invariance is supported by evidence
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suggesting that grid cells form a globally coherent response as rats discover that different areas

on each side of a boundary are in the same environment [Carpenter et al., 2015], although

different interpretations of the same data have been proposed [Stachenfeld et al., 2017]. Our

model does not necessarily require that grid input is boundary invariant; it only proposes that

boundary sensitivity of grid cells is unnecessary when combined with border cell input.

Developmental evidence in rat pups suggests that strong periodicity in grid cell “ring arises

1…2 weeks later than stable place cell responses [Langston et al., 2010, Wills et al., 2010], calling

into question the necessity of grid cells in the formation of place cell responses. Border cell

responses, however, are present from the same time as place cells [Bjerknes et al., 2014]. The

combination of entorhinal border cell input with weakly periodic (yet multi…peaked [Langston

et al., 2010, Wills et al., 2010]) proto…grid cell input may therefore form a rich enough basis

for early place “elds, especially given the dense input provided from grid and border cells to

hippocampal neurons [Moser et al., 2015].

In our model, large place “elds are learned by successive clustering of smaller, local place “elds.

This dorsal…to…ventral model of place “eld development contrasts with the ventral…to…dorsal

model of preplay activity considered in Section 3.4. While the clustering approach shows how

local “elds could develop despite non…local grid input, it seems unlikely that ventral place cells

are always activated via a multisynaptic cascade along the dorsoventral axis. One possibility

is that, after the “elds and recurrent dynamics have been shaped, the cells could be directly

reactivated by entorhinal or dentate gyrus input, in combination with the soft winner…take…all

dynamics of the attractor network.

Finally, we considered how the weights required to implement an attractor network might arise

from a two…compartment neuron model. As discussed, the learning rule is qualitatively similar

to that described by Urbanczik and Senn [2014], although here it was derived to minimize

the error in Equation 3.10. Here, the learning rule was carried out in discrete time, although

attractor dynamics were illustrated in continuous time; a continuous time implementation

of the learning rule remains for future work. The rule relies on separate estimates of long

distance vs. local input to a neuron. CA3…to…CA3 synapses can occur in both the apical and

basal dendritic compartments of a CA3 neuron, although a distance…based segregation has

not yet been reported [Andersen et al., 2007].

While a learning rule has been proposed before to minimize the least…squares error in Equa-

tion 3.10 [MacNeil and Eliasmith, 2011], it uses a (potentially high…dimensional) external error

signal to tune the recurrent weights. Conversely, the learning rule here requires only local,

scalar information, under the assumption that the feedforward input itself de“nes a target for

the recurrent dynamics.
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5 Deep Reinforcement Learning with
Of”ine Episodic Control

5.1 Introduction

In Chapter 1, we considered the problem of learning in an environment without “xed reward

locations. To maximize reward ef“ciently, we discussed how the rat (or more generally, the

agent) can leverage a model…based approach by learning a •mapŽ of the environment that can

be reused to solve multiple tasks (i.e. reward landscapes). In this chapter we describe, from a

machine learning perspective, an approach for learning and utilizing such an environment

model to quickly adapt to non…stationary rewards.

When the task is rapidly changing, the agent needs to adjust quickly and build a new policy

with very little data; otherwise, it will never learn to exploit the present reward landscape

before it changes again. In contrast, given a long…running task with stationary rewards, the

learning period will be negligible compared to the total rewards that the agent can expect

to receive after reaching asymptotic performance. We can therefore see the model…based

approach as one potential way to solve the basic issue of sample ef“ciency faced by the agent:

how to best leverage the little experience the agent has in the new reward landscape.

Model…based methods improve sample ef“ciency by allowing the agent to reuse the expe-

rience that does not change between reward landscapes: the structure of the environment.

However, it is still critical that a new policy can be learned and exploited quickly. This can

be a particular issue if the policy is built on a deep neural network with weights trained by

gradient descent; this approach can achieve impressive results but tends to be extremely

data inef“cient, requiring tens of millions of observations (e.g. Mnih et al. [2015, 2016]). In

contrast, Model…Free Episodic Control ( MFEC) [Blundell et al., 2016] stores returns to a lookup

table and performs no gradient descent on the value function. It achieves signi“cantly higher

performance than deep model…free algorithms in the initial stages of learning on complex

deterministic tasks like Atari games.

Here, we combine episodic control and model…based approaches to build an agent that can

adapt rapidly to changing rewards. We use a Variational Autoencoder ( VAE) [Kingma and
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Welling, 2013, Rezende et al., 2014] to map observations (corresponding to states) to a normal

distribution in latent space. In addition to learning to reconstruct the input observations, the

model learns to approximate the transition function between states in the latent space.

Conceptually, our algorithm is inspired by Dyna…Q [Sutton, 1990]. Q…values in the environ-

ment are updated based on both real (online) and simulated (of”ine) experiences, which

are generated according to the learned transition model. Simulated of”ine experiences are

generated by sampling initial states from the Normal prior over the latent space, and produc-

ing an on…policy rollout through the state space according to the learned transition function

(choosing actions according to the approximated Q…values). Unlike existing approaches, the

returns from these simulated experiences are stored in a lookup table memory alongside the

returns from real episodes, allowing the simulated episodes to rapidly update the policy. The

rewards, terminal states, and Q…values are estimated using a k…Nearest…Neighbour (kNN )

classi“er over real and simulated experiences, such that all three are learned without adjusting

the network weights. By storing simulated experiences in a lookup memory (a non…parametric

approach) rather than using them to train a deep network, the network can leverage them to

update the policy faster. In addition, the kNN memory naturally limits the impact of model

error by returning exact matches from real…world experience when possible.

5.2 Background

MFEC [Blundell et al., 2016] can be seen as a variant of the more general class of episodic

controllers introduced in Chapter 2. Following an episode lasting T steps and ending in a

terminal state sT , the values of state…action pairs (s0,a1),(s1,a2), . . . ,(sT Š1,aT ) visited during

the episode are updated according to

Q(st ,at +1 ) �

�
�

�
Rt +1 if ( st ,at +1 ) � T

max


Q(st ,at +1 ),Rt +1

�
otherwise,

5.1

where Rt +1 = r t +1 + �r t +2 +· · ·+� T Št Š1r T corresponds to the future discounted returns received

from step t , and T is the set of all state…action pairs in the agent•s lookup table memory.

The use of the max operator for estimating the future returns only works in deterministic

environments; otherwise, the Q…value update can be signi“cantly biased by observing a high

value but low probability stochastic return. During inference, the agent estimates the Q…values

of new ( s,a) pairs using a kNN average over the Q…values of existing states in memory where

the action a has been taken.

The low…dimensional st is determined from the high…dimensional raw observations ot in one

of two ways: by using a “xed random projection to the low…dimensional space, or by learning

a low…dimensional embedding with a VAE[Kingma and Welling, 2013, Rezende et al., 2014].

Our model builds on the second approach.

A VAEis an unsupervised deep learning algorithm based on variational Bayes, that maps input
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observations to a (typically Normal) distribution in N…dimensional latent space. The objective

function is given by

L (� , 
 ;ot ) = log p(ot ) Š DK L(q
 (st |ot )||p� (st |ot ))

= Eq
 (st |ot )[log p� (ot |st )] Š DK L(q
 (st |ot )||N (0, I)) 5.2

and corresponds to the evidence lower bound (or ELBO) of the observations, using a learned

generative distribution (or •decoderŽ) p and an auxiliary posterior distribution (or •encoderŽ)

q, assuming a “xed prior p(s) = N (0, I). The encoder is parameterized by 
 and the decoder

by � . The gradients are determined using the second line of Equation 5.2; however, we can

interpret the training procedure using the “rst line as “nding a model that maximizes the

lower bound of the evidence log p(ot ) (since the KL…divergenceDK L(q
 (st |ot )||p� (st |ot )) is

non…negative).

Training proceeds by using the encoder to map each observation ot to two N…dimensional

vectors sµ
t and s�

t . Using the reparameterization trick [Kingma and Welling, 2013], a new

vector st 	 q
 (s|ot ) is then sampled, where q
 (s|ot ) = N (sµ
t ,diag((s�

t )2)) (and diag indicates

a diagonal matrix formed from the entries in ( s�
t )2). The vector st is then used by the de-

coder to perform gradient descent on the reconstruction cost log p� (ot |st ). The second term

in Equation 5.2 pressures the posterior distribution q
 (st |ot ) = N (sµ
t ,diag((s�

t )2)) generated

by the encoder to match the prior distribution p(s) = N (0, I). Note that the learned encoder

output s�
t introduces stochasticity into sampling st , which causes the VAE to map observations

from the environment to some continuous region around the mean sµ
t (such that all training

observations taken together can be approximately mapped to a continuous prior N (0, I)).

Typically, a VAE is used to generate new example observations by sampling from the prior

s 	 N (0, I) after training and evaluating E� [o|s]. In MFEC, the posterior model q
 (st |ot ) can

instead be used to map the observations to a structured latent space. In particular, when the ob-

servations correspond to a 2D image, q
 is parameterized using a deep Convolutional Neural

Network ( CNN) [Krizhevsky et al., 2012], and p� is parameterized by a deep deConvolutional

Neural Network ( DCNN) [Goodfellow et al., 2014], the latent space can incorporate features

like translation invariance that are not well…represented by random projections.

In MFEC, the latent embedding stored to memory is taken as the concatenation of sµ
t and

log s�
t ; in our model, we use only the mean vector sµ

t .

5.3 The model and training procedure

Our model consists of a VAE(composed of an an encoder and a decoder), an auxiliary tran-

sition learning network, and a kNN lookup table, illustrated in Figure 5.1. During an initial

learning phase, the network is trained to both generate the state observations and to predict

the next state under a state…action pair, using the transition network. After the initial learning

phase, the agent explores the environment while updating Q…value estimates based on real
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A C

B

Figure 5.1 …Of”ine episodic control network. The network consists of [ A] an encoder network,
[B] a decoder and transition network, and [ C] a kNN lookup table, which can be accessed in
both online mode (from the encoder, storing experiences to Q(W )) and of”ine mode (from the
decoder, storing experiences to Q(S)). Blue boxes denote convolutional/deconvolutional layers
and grey boxes denote fully connected layers. The next state estimate �sµ,a

t +1 is the expectation
E[sµ,a

t +1 |a,st ].

and simulated episodes.

5.3.1 Learning environment structure with a VAE

We use an initial learning phase to allow the agent to develop a model of the environment,

ignoring any rewards. In this phase, the agent explores according to a random walk, observing

triplets of ( ot , at +1 , ot +1 ) that are added to a replay memory. Triplets are presented to the

network in minibatches. Here, we train the network to optimize the evidence lower bound

L (� , 
 ;ot ) of a state observation ot along with an additional loss term Lt (
 , � ;ot ,ot +1 ,at +1 ),

according to

Lt (� , 
 , �) = L (� , 
 ;ot ) + Lt (
, �; ot ,ot +1 ,at +1 )

= Eq
 (s|ot )[log p� (ot |s)] Š DK L(q
 (s|ot )||p(s)) 5.3

+ Eq
 (s|ot )[log p� (sµ
t +1 (ot +1 )|s,at +1 )]

where � represents the parameters of the transition network.

The “rst two terms in Eq. 5.3 correspond to the VAE reconstruction and latent/prior losses

in Equation 5.2. Using the third loss term, we also train the VAEto generate an estimate of

sµ
t +1 , the latent space embedding of the next state observation ot +1 , conditioned on the action

at +1 . Conditioning on the action is achieved by evaluating a speci“c branch of the transition

network, where the number of branches is equal to the number of possible actions (Figure 5.1).
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Algorithm 2 Latent Learning with a Random Walk.
Initialize replay memory M

1: Observe o0 and store in M
2: for t = 0, . . . ,T do
3: Select a random action at +1

4: Observe ot +1

5: Store transition ( at +1 ,ot +1 ) in M .
6: if t mod Iupdate == 0 then
7: Sample a random minibatch of transitions (o i ,ai +1 ,oi +1 ) from M
8: for Sample in minibatch do
9: Processsµ

i , s�
i , sµ

i +1 using the encoder on oi and oi +1

10: Sample si 	 N (sµ
i ,diag((s�

i )2))
11: ProcessE[oi |si ] using the decoder on si

12: ProcessE[sµ,ai +1

i +1 ] using the transition network on si and ai +1

13: Perform a gradient descent step on Li (� , 
 , �)
14: end for
15: end if
16: end for

5.3.2 Learning value functions

After the initial latent learning phase, the agent explores the environment observing tuples

of (ot , at +1 , r t +1 , Tt +1 ), where r t +1 denotes the reward received at step t + 1 and Tt +1 = {0,1}

indicates whether the state reached at step t + 1 was found to be terminating (1) or non…

terminating (0). During this phase, the agent updates the estimates r (sµ
t ) and T (sµ

t ) in the

lookup table according to

r (sµ
t ) � r (sµ

t ) + � r (r t Š r (sµ
t )) 5.4

T (sµ
t ) � T (sµ

t ) + � T (Tt Š T (sµ
t )) ,

where � r and � T are learning rates. Note that we assume that the status of a state as terminal

or non…terminal can change, just like the reward function.

At certain step intervals during exploration, the agent simulates N…step trajectories (truncated

episodes) of”ine using the learned transition network and the lookup table (Figure 5.3B). A

simulated episode �sµ
0 . . . �sµ

t . . . �sµ
N is generated by “rst sampling s 	 N (0, I), and evaluating a

random branch of the transition network to determine �sµ
0 . This state is then wrapped back into

the transition network (dotted line in Figure 5.1) and an action branch is evaluated according

to at +1 = argmaxa
�Q( �sµ

t ,a) with probability 1 Š � or a random action with probability � . The

same process is repeated for N steps. The simulated returns �Rt observed after taking an action
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at from state �sµ
t Š1 are given by

�Rt = �r t + � · �r t +1 (1Š �Tt ) + . . .

+
�
� nŠt · �r n

N Š1�

i = t
(1Š �Ti )

�
+

�
� N Št +1 ·max

a
�Q( �sµ

N ,a)
N�

i = t
(1Š �Ti )

�
, 5.5

where � denotes the discount factor [Peng and Williams, 1996]. The values of �r t and �Tt are

determined by a kNN lookup on the associated key �sµ
t ; the (1Š �Ti ) factors prevent value signals

from propagating through a learned terminal state. We found that we achieved better results

by discarding the return estimate from the “rst state �sµ
0 in the sequence, which also tended to

have greater error in observation space (Figure 5.3).

The simulated returns are used to update the Q…values in the lookup table, according to

Q(S)( �sµ
t ,at ) � �Q(S)( �sµ

t ,at ) + � Q( �Rt Š �Q(S)( �sµ
t ,at )), 5.6

where the S superscript denotes Q…values estimated from simulated trajectories. The estimate
�Q(S)( �sµ

t ,at ) on the right side is obtained from a kNN lookup. In addition, we maintained a sep-

arate lookup table for Q…values obtained from online (or •real…worldŽ) episodes, Q(W )(sµ
t ,at ).

This table is updated using the MFEC algorithm (Equation 5.1) at the end of an episode. Note

that the learning rule for simulated Q…values in Equation 5.6 involves averaging over existing

table entries, unlike Equation 5.1. We found that this averaging helped to mitigate the impact

of model error for simulated rollouts.

During inference, we use a kNN lookup over both real…world and simulated Q…values in the

table,

�Q(sµ
t ,a) =

�
�

�

1
k


 k
i =1 Q(sµ

i ,a) if ( sµ
t ,a) � (W � S)

Q(sµ
t ,a) otherwise,

5.7

where W are the keys in the real…world lookup table, S are the keys in the simulated rollout

lookup table, and i = 1. . .k indexes the k keys closest to sµ
t already existing in either lookup

table. If the key sµ
t is suf“ciently close to an existing state in the lookup table, the Q…value for

that approximately matching state is returned; if it is close to both a real and simulated key, the

real key is returned. In both real and simulated episodes, the agent•s policy is determined by

an � …greedy strategy. Following Blundell et al. [2016], we used a least…recently used approach

to remove keys from the two lookup tables (with a maximum of 1500 entries in each lookup

table).

In general, lookup keys obtained from simulated rollouts exist off the manifold of real states

due to model error (Figure 5.2). As a result, the estimate Equation 5.7 is dominated by real…

world memories in regions of the environment that the agent has recently explored (i.e. where

there are many matching keys in W ). In addition, the greater the model error in a certain
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