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Abstract
During the past decade, model order reduction (MOR) has been successfully applied to
reduce the computational complexity of elliptic and parabolic systems of partial differ-
ential equations (PDEs). However, MOR of hyperbolic equations remains a challenge.
Symmetries and conservation laws, which are a distinctive feature of such systems,
are often destroyed by conventional MOR techniques, resulting in a perturbed and
often unstable reduced system. The goal of this thesis is to study and develop model
order reduction techniques that can preserve nonlinear invariants, symmetries, and
conservation laws and to understand the stability properties of these methods com-
pared to conventional techniques. Hamiltonian systems, as systems that are driven
by symmetries, are studied intensively from the point of view of MOR. Furthermore, a
conservative model reduction of fluid flow is presented. It is illustrated that conserving
invariants, conservation laws, and symmetries not only result in a physically mean-
ingful reduced system, but also result in an accurate and robust reduced system with
enhanced stability.

Keywords: Model Order Reduction, Structure-Preserving, The Greedy Basis Gener-
ation, Symplectic Galerkin Method, Weighted Norm, Hamiltonian Systems, Skew-
Symmetric Formulation, Symplectic Geometry.
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Résumé
Au cours de la dernière décennie, la réduction d’ordre de modèle (ROM) a réussi à
réduire la complexité de calcul des systèmes elliptiques et paraboliques d’équations
aux dérivées partielles (EDP). Cependant, ROM des équations hyperboliques reste un
défi. Les symétries et les lois de conservation, qui sont une caractéristique distinctive
de tels systèmes, sont souvent détruites par les techniques conventionnelles de ROM
qui aboutissent à un système réduit perturbé et souvent instable. Le but de cette thèse
est d’étudier et de développer des techniques de réduction d’ordre de modèle pouvant
préserver les invariants nonlinéaires, les symétries et les lois de conservation et de
comprendre les propriétés de stabilité de ces méthodes par rapport aux techniques
conventionnelles. Les systèmes Hamiltoniens, en tant que systèmes pilotés par des
symétries, sont étudiés de maniére intensive depuis le point de vue ROM. De plus, une
réduction modérée du débit de fluide est présentée. Il est illustré que la conservation
des invariants, des lois de conservation et des symétries non seulement aboutit à un
système réduit physiquement significatif, mais construit également un système réduit
robuste avec une stabilité accrue.

Mots-clés: Réduction d’Ordre de Modèle, Conservation de Structure, Génération de
Bases, Méthode de Galerkin Symplectique, Norme Pondérée, Systèmes Hamiltoniens,
Formulation Asymétrique, Géométrie Symplectique.
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1 Introduction

Mathematical modeling and scientific computing has become an inseparable part of
engineering and science, thanks to advances in computational science and technology.
Models expressed as partial differential equations (PDEs) can be found in a wide
range of disciplines from social sciences, biology, cosmology, modern and classical
physics, and engineering to industrial applications. The overwhelming success of
such models for approximately describing nature has encouraged the development
of complex mathematical models in order to attain higher accuracy in representing
physical phenomena. The complexity of many modern applications, however, is
computationally prohibitive with classical approaches. The curse of dimensionality for
multi-dimensional parameter sets, i.e. the exponential growth in the computational
costs for problems in higher dimensions, is an example of a computational inefficiency
that inhibits progress.

Reduced order modeling (ROM), as opposed to high-fidelity modeling, has emerged as
a successful attempt to reduce the intrinsic computational inefficiencies of modern
complex models [51, 86, 14, 4]. ROM aims to accurately represent a high-dimensional
model with a few degrees of freedom, by exploiting empirical or physical structure in
data. As a result of confining the model to only these degrees of freedom, the computa-
tional costs can be substantially reduced. Although these methods do not eliminate the
need for high-fidelity modeling, they significantly accelerate the evaluation of outputs
of interest when the repeated evaluation of the high-fidelity model is required [51].

The recognition of patterns in data makes ROM comparable with machine learning
techniques, e.g. in computer science and statistics developed during the past decades
[74]. However, the deterministic nature of PDEs, Combined with the control in the
choice of data generation process, gives ROM a distinct take.

This difference between ROM and conventional machine learning techniques becomes
more apparent with time-dependent problems. Time-symmetries of high-fidelity mod-
els are lost in the assembly of data, which sometimes, result in an ill-represented ROM
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Chapter 1. Introduction

[4]. Although this inaccuracy in the representation is less evident for parabolic PDEs,
the development of ROMs for hyperbolic PDEs, where symmetries are a fundamental
feature, remains a challenge [2, 60, 35, 10, 23, 9, 81].

The main aim of this thesis is to develop ROM techniques that capture symmetries in
a system of PDEs. The conservation of such symmetries not only results in a robust
ROM, but helps with the construction of a meaningful reduced order model. Time, as
a parameter, plays a crucial role in the existence and the conservation of symmetries.
Therefore, this thesis puts a particular emphasis on the treatment of the time variable
by studying systems that depend on none, or otherwise very small number of additional
parameters. This might, at first glance, sounds counter intuitive in the context ROM.
However, the isolation of time provides remarkable insight into the theory of ROM,
and into the mathematical modeling. Nevertheless, the main results of this thesis can
be extended to the general parameter setting while retaining all the benefits associated
with the conservation of symmetries.

In what is left of this chapter, we discuss the difficulties involved in treating time as a
parameter in the context of ROM, and conclude by briefly discussing the content of
the thesis.

1.1 Space and Time in ROM

Reduced basis (RB) methods are among the most popular techniques to develop ROMs.
These methods have been successful in reducing the computational complexity of
large scale systems of partial differential equations, and have been used in many
disciplines in engineering and science and also applied in industry. Many applications
of RB methods can be found in [51, 86, 14, 4] and the references therein.

RB methods are based on the assumption that a state of a solution to a system of
PDEs can be well approximated by a few degrees of freedom, chosen from a low-
dimensional linear subspace. A basis for this subspace, referred to as the reduced basis,
is constructed to accurately represent the state of the system for a particular empirical
setting. A projection operator, often of a linear type, is constructed to confine the state
of the system to this subspace. This constructs a new system of partial differential
equations that is described by a few independent variables. In principle, this system
can be evaluated at an accelerated rate, compared to the high-fidelity system.

In the context of the finite element method (FEM) where a solution to a PDE is de-
scribed as a linear combination of basis functions, RB methods can be represented
visually. Consider the equation governing a one-dimensional wave in a periodic do-
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1.1. Space and Time in ROM

(a) FEM basis functions (b) RB basis functions

Figure 1.1 – spatial representation of MOR

main.

∂2

∂t2
u(t, x) +

∂2

∂x2
u(t, x) = 0, x ∈ [0, 1], (1.1)

together with some initial condition u(t, x) = u0(x). A standard finite element dis-
cretization requires u to be a linear combination of n, time and problem independent,
basis functions ϕi(x) as

u(x, t) ≈
n∑

i=1

ci(t)ϕi(x), (1.2)

where ci(t) are the expansion coefficients that yield the degrees of freedom. In this
setting, the choice of ϕi is independent of (1.1). Exploiting some problem-specific pat-
terns, e.g., in the initial or the boundary conditions, problem geometry, or numerical
properties, allows us to introduce a new, but potentially smaller, set of basis functions
ψi. By

u(x, t) ≈
k∑

i=1

c′i(t)ψi(x), (1.3)

where ψi are chosen such that (1.3) delivers comparable accuracy to (1.2). If k � n, we
gain acceleration by evaluating only k coefficients rather than n. Often, RB methods
require the relation between ψi and ϕi to be a linear relation, i.e.

ψi =

n∑
j=1

rijϕj , i = 1, . . . , k. (1.4)

A rough sketch of basis functions ϕi and ψi is illustrated in Figure 1.1. This is a spatial
perspective of reduced order modeling.

3



Chapter 1. Introduction

(a) original vector fields (b) transformation of vector fields

(c) symplectic transformation of vector fields

Figure 1.2 – temporal representation of MOR

To be able to visualize the temporal aspect of MOR, we simplify (1.1) to obtain an
ordinary differential equation (ODE) ü(t)− u(t) = 0, which can be expressed in terms
of first order ODEs as{

u̇(t) = v(t),

v̇(t) = −u(t).
(1.5)

Introduction of the new variable v is not only an algebraic tool, but carries a deeper
insight into the dynamics of the original second order ODE. For instance, H(u, v) = u2+

v2 is a constant quantity, and can be interpreted as the energy of (1.5). Therefore, the
value of v is restricted by H in a nonlinear sense. Another insight into the dynamics of
(1.5) is revealed when we consider vector fields in (u, v) coordinate system, commonly
referred to as the phase space. Figure 1.2a shows the vectors fields ∇H and (u̇, v̇)T . We
immediately notice the orthogonality of the two vector fields. Periodic behaviour of
(1.5) is a result of this delicate relation. Such properties of (1.5) that are unchanged
along a trajectories of (1.5) are often referred to as symmetries of (1.5).

Let us now study the symmetries of (1.5) in a transformed coordinate system. Fig-

4



1.2. Overview of The Thesis

ure 1.2b shows the transformation of ∇H and (u̇, v̇)T over some linear transformation
(ũ, ṽ) = T (u, v). We notice that the orthogonality of the two vector fields is destroyed.
Although, the dynamics of the original and the transformed system are the same, the
transformed system carries less symmetry. For some class of linear transformations,
symplectic transformations, the orthogonality of the two vector fields is preserved. This
can be seen in Figure 1.2c where a linear symplectic transformation is applied to ∇H

and (u̇, v̇)T .

In a numerical approximation, loss of symmetries can have profound consequences
for the overall dynamics of a system. For example, the periodic trajectory of (1.5),
which is a distinctive feature of the dynamics, may no longer remain periodic in a
non-symmetric coordinate system.

In the context of MOR basis functions, e.g., those in Figure 1.1a, can be viewed as
a basis for the phase space. Subsequently, a solution expanded in this basis can be
translated as a vector in the phase space. The relation (1.4) is therefore interpreted as a
change in the coordinate system. This is the temporal perspective of MOR.

Similar to (1.5), we can define orthogonal vectors fields for (1.1) as∇H and (∂u/∂t, ∂v/∂t)T

with v = ∂u/∂t and H(u, v) =
∫
v2 + (∂u/∂x)2 dx. Therefore, we expect a general RB

method to result in a non-symmetric phase space. In particular since the patterns in
the ensemble of solutions to (1.1) does not reveal the subtle relation between the two
vector fields.

Nonlinear invariants and symmetries, such as those discussed above, are a fundamen-
tal feature of hyperbolic system of PDEs. Loss of symmetries in such systems can help
explain challenges in MOR of hyperbolic problems.

The main aim of this thesis is to seek RB techniques that construct a reduced phase
space that captures the symmetries of the high-fidelity system of PDEs. This ensures
conservation of some nonlinear invariants and, subsequently, a good approximation of
the overall dynamics in the reduced system. Hamiltonian systems, as systems that are
driven by symmetries, are studied intensively from MOR view point. We then develop
methods that preserve symmetries of a fluid flow.

1.2 Overview of The Thesis

The overall goal of this thesis is to study and develop RB techniques that preserve
nonlinear invariants, symmetries, and conservation laws. Furthermore, it aims to
understand the stability and robustness properties of these methods, compared to con-
ventional RB techniques. This thesis mainly focuses on the MOR of time-dependent
and, in particular, hyperbolic PDEs. A particular emphasis is put on model order re-
duction of Hamiltonian systems to understand the role of time in structure-preserving
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Chapter 1. Introduction

MOR. The main results are then generalized to construct MOR methods for fluid flow.

Chapter 2 surveys the background on smooth manifolds and Hamiltonian systems.
We introduce the concept of geometric symmetry and how it relates to the dynamics
of a time-dependent differential equations. We also briefly introduce methods for
conserving these symmetries in a numerical evaluation.

An overview of the theory of model order reduction is presented in Chapter 3. We
present conventional RB techniques, e.g. proper orthogonal decomposition and the
greedy method, for generating an accurate reduced basis. Galerkin and Petrov-Galerkin
projection is then discussed to construct a reduced system. This chapter discusses
the efficient evaluation of nonlinear terms by introducing the empirical interpolation
method.

Symplectic MOR for Hamiltonian systems is developed in Chapter 4. It is discussed how
symplectic transformations can be used to construct a reduced Hamiltonian system
that preserves the dynamics of the high-fidelity Hamiltonian system. We present a
greedy method for the generation of a symplectic basis as well as other SVD-based
symplectic model reduction techniques. Accuracy, stability, and efficiency of the
method are discussed and illustrated by numerical experiments.

In Chapter 5 we couple the symplectic model order reduction with a weighted inner-
product. We show that this can be viewed as a natural generalization of the symplectic
MOR. Numerical experiments are presented to illustrate how this method can be
beneficial when an unstructured numerical discretization is used in the high-fidelity
system.

Chapter 6 presents symplectic MOR in the context of dissipative Hamiltonian system.
It is discussed how a canonical extension of the dissipative Hamiltonian system yields
a closed and conservative system. An application of a symplectic MOR on an extended
system can help with a correct evolution of the Hamiltonian. The performance of
this method is illustrated through simulations of dissipative Hamiltonian and port-
Hamiltonian systems.

A conservative model reduction of fluid flow is presented Chapter 7. It is explained
how the skew-symmetry of differential operators in a fluid flow can help to recover
the conservation of quadratic invariants, e.g., energy, at the level of reduced system.
It is discussed how this gives rise to a physically meaningful reduced system with
quadratic invariants with respect to the reduced variables. Stability properties of the
method is illustrated through various numerical experiments of incompressible and
compressible fluids.
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2 Symplectic Geometry and Hamilto-
nian systems

In preparation for later chapters, we recall basic background regarding differential
geometry and symplectic geometry. Although the applications of MOR, as presented in
this thesis are mostly described on a linear vector space, the theory of smooth manifold
can provide a substantial insight into the geometric MOR. The main goal of this chapter
is to introduce the concepts of “symmetry” and “structure” which play an important
role in Lagrangian and Hamiltonian mechanics. Exploiting these symmetries and
structures in MOR help to provide robustness and long-time stability of the reduced
system.

This chapter is presented as a reminder of concepts in symplectic differential geometry
and differential forms, as well as to introduce the notations used in the rest of this
thesis. For a complete introduction to differential geometry we refer the reader to
[1, 52, 69].

2.1 Smooth Manifolds

Let M be a topological Hausdorff space [43]. The pair (x, U), where U is an open
subset of M, x : U → V is a bijective map, and V is an open subset of Rm, is called
a coordinate chart. We call two coordinate charts (x1, U1) and (x2, U2) compatible, if
U1 ∩ U2 �= ∅, x1(U1 ∩ U2) and x2(U1 ∩ U2) are open subsets of Rm and the mappings
x2 ◦ x−1

1 |x1(U1∩U2) and x1 ◦ x−1
2 |x2(U1∩U2) are C∞.

M is called a differentiable manifold [69] if

(a) M is covered by a collection of coordinate charts, i.e., every point p of M belongs
to at least one chart.

(b) M can be written as a union of compatible charts. The union of such charts is
referred to as an atlas.

7



Chapter 2. Symplectic Geometry and Hamiltonian systems

Throughout this thesis, we assume that there exists a global coordinate chart (x, U),
i.e., an atlas that contains a single coordinate chart.

Vectors tangent to a manifold allow us to describe the local dynamics of an object
moving on a smooth manifold. There are multiple ways to define such tangent vectors.
The most intuitive way, however, uses curves defined on a smooth manifold.

A mapping γ : R → M is called a smooth curve on M passing through p ∈ M if γ(t) = p,
for some t ∈ R, if x ◦ γ : R → Rm is C∞. Without loss of generality, we assume that γ
passes through p at t = 0. We define an equivalence relation between smooth curves
that pass through p as follows: γ1 and γ2, two smooth curves on M, are equivalent if

d

dt
(x ◦ γ1)|t=0 =

d

dt
(x ◦ γ2)|t=0, (2.1)

for a coordinate chart x. It is easily checked that this definition is chart independent
[1], i.e., the equivalent classes do not depend on the choice of the coordinate chart.

Definition 2.1. A tangent vector v at a point p ∈ M is an equivalence class of curves
on M that pass through p. The set of all tangent vectors at p is denoted by TpM and is
called the tangent space of M at point p.

It is well known that there is a natural vector space structure on TpM [1, 90] by consid-
ering the directional derivative of differentiable real-valued functions defined on an
open neighborhood of a point on M. Therefore, a basis for TpM is often denoted as
{∂/∂xi}mi=1 and a vector v ∈ TpM can be written as

m∑
i=1

vi
∂

∂xi
, (2.2)

where vi ∈ R for i = 1, . . . ,m. Note that the symbol for the partial derivative is rather
symbolic since the direction xi is not defined explicitly on TpM. To compute the
coefficients vi, for i = 1, . . . ,m, let γ be a curve that is a representative of the equivalent
class v ∈ TpM, the components of v in a given chart x are defined by the derivatives of
the curve x ◦ γ : R → Rm, i.e.,

vi = [
d

dt
(x ◦ γ)]i|t=0.

To compute a tangent vector for a given chart x and a given smooth function f : M → R

one considers

m∑
i=1

vi
∂

∂xi
(f) :=

m∑
i=1

vi
∂

∂xi
(f ◦ x−1), (2.3)

where the partial derivatives that appear on the right hand side are the conventional

8



2.1. Smooth Manifolds

partial derivative operators on a Euclidean space.

The dual space to TpM is denoted by T ∗
pM and is referred to as the cotangent space.

The natural isomorphism between TpM and T ∗
pM implies that the cotangent space is

also an m-dimensional linear vector space. Given {∂/∂xi} as a basis for TpM, a dual
basis for T ∗

pM is a set of basis vectors {dxi}mi=1 that satisfy

dxi(
∂

∂xj
) = δij , i, j = 1, . . . ,m, (2.4)

where δij is the Kronecker’s delta function.

To define a vector field on a manifold, we assign a tangent vector to every point on a
manifold. Such an object belongs to a structure that, informally, is obtained by glueing
the tangent space TpM to every point p ∈ M. This structure is referred to as the
tangent bundle, denoted as TM, and is defined as TM := {(p, v)|p ∈ M, v ∈ TpM}.

Remark 2.1. [90] The tangent bundle TM is a smooth manifold.

Proof. Here we present a sketch of the proof and refer the reader to [1] for the complete
proof. We define a natural projection operator π : TM → M as

π : (p, v) → p. (2.5)

It is easily checked that π−1({p}) is the m-dimensional linear vector space TpM. Now
assume that (x, U) is a coordinate chart for M, such that p ∈ U . We construct a
coordinate chart (x̄, π−1(U)) for TM as follows

x̄ : π−1(U) ⊂ TM → R
m × R

m,

x̄ : (p, v) → (x(p), v1, . . . , vm),
(2.6)

where v1, . . . , vm ∈ R are components of v in Rm. It can be seen that for two intersecting
coordinate charts (xα, Uα) and (xβ , Uβ), the transition map x̄α ◦ (x̄β)−1 is a C∞ map.
Thus, TM is a smooth manifold, and (2.6) suggests it is 2m-dimensional.

In a similar fashion, we may obtain a smooth manifold by gluing the cotangent space
T ∗
pM to the manifold M to obtain the cotangent bundle, denoted as T ∗M.

Definition 2.2. A continuous map X : M → TM is called a vector filed, if π ◦X = idπ,
where π is the natural projection defined in (2.5), and idπ is the identity map.

In other words, X|p ∈ TpM, for any point p ∈ M. Similarly, we can define a covector
field, as a continuous map X∗ : M → T ∗M.

9



Chapter 2. Symplectic Geometry and Hamiltonian systems

Definition 2.3. Suppose that X is a vector field on a smooth manifold M. A smooth
curve c : (a, b) → M, (a, b) ⊂ R, is called an integral curve of X if

d

dt
c(t) = X(c(t)), ∀t ∈ (a, b). (2.7)

Furthermore, we say that c passes through p if c(t) = p, for some t ∈ (a, b). We may
assume that a curve passes through p at t = 0 without loss of generality.

Given a coordinate chart x, one can solve (2.7) for c. It is known from the theory of
ordinary differential equations that (2.7) has a unique solution [102].

Definition 2.4. A vector field X on M is complete if for any point p, there exists an
integral curve c : R → M, such that c(0) = p, i.e., c(t) is defined for −∞ < t < ∞.

Definition 2.5. The flow of a complete vector field X is the unique map ϕ : R×M → M,
such that ϕt(p) = ϕ(t, p) is an integral curve through p.

Note that we have ϕ0 = id, the identity map. Furthermore, the uniqueness of the
integral curves implies the following important property of flows

ϕt+s = ϕt ◦ ϕs. (2.8)

In the study of MOR, transformations between vector spaces emerge naturally. In
a more general setting, it is beneficial to restrict the study transformations between
smooth manifolds. Later in this chapter, we discuss how some manifold structures can
be preserved over such transformation, laying the foundation for geometric MOR.

Let M and N be an m-dimensional and an n-dimensional smooth manifolds, respec-
tively. Furthermore, let φ : M → N be a smooth mapping. The differential map of φ at
a point p ∈ M, denoted by Tpφ, is a map between the tangent spaces TpM and Tφ(p)N
defined as

Tpφ(v) =
d

dt
(φ ◦ γ(t))|t=0, (2.9)

for some tangent vector v ∈ TpM and some curve γ in the equivalence class of v. It can
be shown that Tpφ(v) only depends on v and not the choice of the curve γ [90]. The
inverse function theorem [92] indicates that if Tpφ is a vector space isomorphism then
there is a neighborhood U of p and a neighborhood V of φ(p), such that φ : U → V is a
diffeomorphism.

10



2.2. Tensors and Differential Forms

2.2 Tensors and Differential Forms

Quantities that appear in physics are often linearly dependent on the vectors and
covectors that describe them. Examples of such a quantity are the measurement of
the magnetic field with linearly independent directions of measurement [107], or the
strength of resistance in dissipative fluid flows. Tensors and differential forms allow
us to describe such objects, and provide the possibility to establish a relationship
between vectors and vectors fields. In the following sections, we seek to align the flow
of a system with respect to some vector field, in the context of symplectic geometry.

Definition 2.6. Let p ∈ M and

Λp : T
∗
pM× · · · × T ∗

pM (k times)× TpM× · · · × TpM (l times) → R,

be a smooth map, i.e., if Xi and X∗
j , for i = 1, . . . , k and j = 1, . . . , l, are C∞ vector

fields and covector fields, respectively, the map p �→ Λp(X1, . . . , Xk, X
∗
1 , . . . , X

∗
l ) is a

smooth map. Λp is called a (k, l)-tensor, if it is multilinear. A (k, 0)-tensor Ωp is called a
differential k-form, if Ωp is also skew-symmetric, i.e.,

Ωp(v1, . . . , vi, . . . , vj , . . . , vk) = −Ωp(v1, . . . , vj , . . . , vi, . . . , vk).

We may drop the superscript p when the location of p on M is not important.

Given a coordinate chart x and a basis {e1, . . . , em} for TpM, multilinearity of a k-form
implies that

Ω(v1, . . . , vk) = ωi1,...,ikv
i1
1 . . . vikk , sum over 1 ≤ i1, . . . , ik ≤ m (2.10)

where ωi1,...,ik = Ω(ei1 , . . . , eik) and vill is the ilth component of vl with respect to the
coordinate chart x. Therefore, any k-form is completely described by Ω(ei1 , . . . , eik),
for 1 ≤ i1, . . . , ik ≤ m. A simple calculation confirms a similar results for (k, l)-tensors
[107].

We now introduce some basic tensor operators, which allows the construction of higher
order tensors and differential forms, from simpler building blocks.

Definition 2.7. Let Γ1 and Γ2 be a (k1, ll)-tensor and a (k2, l2)-tensor, respectively. Their
tensor product Γ1 ⊗ Γ2 is a (k1 + k2, l1 + l2)-tensor defined as

(Γ1 ⊗ Γ2)(v
∗
1, . . . ,v

∗
k1+k2 ;w1, . . . wl1+l2) =

Γ1(v
∗
1, . . . , v

∗
k1 ;w1, . . . wl1) · Γ1(v

∗
k1+1, . . . , v

∗
k1+k2 ;wl1+1, . . . wl1+l2).

To be able to construct differential forms from (0, k)-tensors, we need an operator that
skew-symmetrizes tensors. The alternation operator, is a tensor operator that achieves

11
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this and is defined as

A(Γ)(v1, . . . , vl) =
1

l!

∑
π∈Sl

sgn(π)Γ(vπ(1), . . . , vπ(l)). (2.11)

Here Γ is a (0, l)-tensor, Sl is the permutation group of the set {1, . . . , l} and sgn(π)
returns 1 if π is an even permutation, and −1 if π is an odd permutation. It is easily
checked that A(Γ) is skew-symmetric. Hence, A constructs a mapping from Λ0,k(M)

to Λk(M).

Note that a tensor product of two differential forms is not a differential form, since
the skew-symmetry property will be lost. The exterior product allows us to construct
higher order differential forms while preserving the skew-symmetry.

Definition 2.8. Let Ω1 and Ω2 be a differential k1-form and a k2-form, respectively. The
exterior product of Ω1 and Ω2 is a (k1 + k2)-form defined as

Ω1 ∧ Ω2 =
k1! + k2!

k1!k2!
A(Ω1 ⊗ Ω2). (2.12)

It is well known that the exterior product is associative, bilinear and anti-commutative
[69]. The following theorem states that any differential k-form can be written as a
linear combination of exterior products of co-vectors. We refer the reader to [1] for the
proof.

Theorem 2.2. Any k-form Ω can be written locally as

Ω =
∑

i1<···<ik

ωi1,...,ikdxi1 ∧ · · · ∧ dxik , (2.13)

where ωi1,...,ik are called the components of Ω. It is easily verified that Ω = 0 implies
ωi1,...,ik = 0 for all i1 < · · · < ik. Differential maps are often useful to transfer mani-
fold structures from a known manifold to an unknown manifold. For example, for a
mapping φ : M → N , Tpφ allows us to identify the tangent space of N at φ(p) using
the tangent space of M at p. Similarly, we may use the differential maps to construct
differential forms and tensors for unknown manifolds.

Definition 2.9. Let φ : M → N be a smooth manifold mapping and Ω be a differential
k-form on N . Then the pull-back of Ω with φ, is a k-form on M, denoted by φ∗Ω, defined
as

(φ∗Ω)p(v1, . . . , vk) = Ωφ(p)(Tpφ(v1), . . . , Tpφ(vk)),

for any p ∈ M and v1 . . . , vk ∈ TpM. In case φ is a diffeomorphism, the push-forward
operator, denoted as φ∗, is defined by φ∗ = (φ−1)∗.

12
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Another basic operator on tensors and differential forms, is the contraction operator.

Definition 2.10. Let Ω be a differential k-form and X be a smooth vector field on a
smooth manifold M. The contraction of Ω with respect to X is a (k − 1)-form defined by

(iXΩ)p(v1, . . . , vk−1) = Ω(X(p), v1, . . . , vk−1).

The contraction operator is sometimes referred to as the interior product.

There are multiple ways to generalize the notion of differentiation to the manifold
setting. The challenge in defining a unique derivative operator that is consistent with
the conventional derivative operator in calculus, is that a general manifold setting does
not provide an algebraic method to compare points on a manifold. To establish such a
relation, the pull-back of a differential form can be used. The Lie derivative of points
on a smooth manifold, employs this idea to generalize the notion of differentiation to
the manifold setting.

Definition 2.11. Let M be a smooth manifold and Ω be a differential k-form on M.
Given a vector field X on M with the flow map ϕt, the Lie derivative of Ω with respect to
X is defined as

LXΩ = lim
t→0

1

t
(ϕ∗

tΩ− Ω) =
d

dt
ϕ∗
tΩ|t=0. (2.14)

Note that the flow map can be viewed as a mapping ϕt : M → M, and thus, the
differential map Tpϕt defines a mapping from TpM to Tϕt(p)M. Therefore, the Lie
derivative measures infinitesimal differences in Ω when evaluated at p and at ϕt(p).
The following theorem summarizes some basic properties of the Lie derivative.

Theorem 2.3. Suppose that X is a smooth vector field defined on a smooth manifold M
with ϕt being the flow of X. Furthermore, suppose that Ω is a differential k-form. The
following statements hold:

(a) for a smooth scalar function f : M → R, LXf = X ·f , where X ·f is the directional
derivative of f along X.

(b) The Lie derivative formula

d

dt
ϕ∗
tΩ = ϕ∗

tLXΩ.

(c) In case Ω is a time dependent differential form, i.e. Ω = Ωt, we have

d

dt
ϕ∗
tΩt = ϕ∗

tLXΩ+ ϕ∗
t

d

dt
Ωt.

13



Chapter 2. Symplectic Geometry and Hamiltonian systems

Proof. (a) follows from the definition of the Lie derivative. To show (b), we have

d

dt
ϕ∗
tΩ = lim

h→0

1

h
(ϕ∗

t+hΩ− ϕ∗
tΩ) = ϕ∗

t ( lim
h→0

1

h
(ϕ∗

hΩ− Ω)) = ϕ∗
tLXΩ, (2.15)

where the second equality is due to the fact that ϕt+h = ϕt◦ϕh. To show (c), assume that
vectors v1 . . . , vk ∈ TpM at some point p ∈ M are provided . We define the function
α(t, s) : R2 → R as α(t, s) = ϕ∗

tΩs(v1, . . . , vk). Therefore, d
dtϕ

∗
tΩt|p is the directional

derivative of α(t, s) along the direction (1, 1). We have

D(1,1)α(t, s) = ∂tα(t, s) + ∂sα(t, s) = ∂tϕ
∗
tΩs|t=s + ϕ∗

t (∂sΩs)|t=s

= ϕ∗
tLXΩt + ϕ∗

t (
d

dt
Ωt).

(2.16)

Here, D(1,1) is the conventional directional derivative and all terms are evaluated at
the point p. In the second equality, we used statement (b) and the linearity of ϕ∗.
Since the choice of the point p and vectors v1, . . . , vk is arbitrary, the formula holds
independently. What is left, is to show that α(t, s) is differentiable. Given that Ωt is
continuously differentiable, we see from above that the partial derivatives of α(t, s) is
continuous, thus, is differentiable.

For a k-form Ω, the exterior derivative is a (k+1)-form dΩ, that captures the differential
changes in Ω and for a given coordinate chart x is defined as

dΩ =
∂ωi1,...,ik

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik , (2.17)

summing over j and i1 < · · · < ik. Note that the above definition can be shown
to be to be chart independent [93]. Straight forward calculation shows [1] that for
v0, v1 . . . , vk ∈ TpM and p ∈ M we have

dΩp(v0, v1, . . . , vk) =

k∑
i=1

(−1)i∇Ω · vi(v0, . . . , v̊i, . . . , vk), (2.18)

where ∇Ω · vi =
∑

j

∑
i1<···<ik

vji ∂ωi1,...,ik/∂xj . Here, v̊i implies that the vector vi is

dropped, and vji is the jth component of vi.

The following theorem expresses the Lie derivative of a differential form with respect
to the exterior derivative and the contraction oprator. We state the theorem without a
proof as it is legthly and out of context. We refer the reader to [1] for the full proof.

Theorem 2.4. [1] (Cartan’s Magic Formula) Let X be a smooth vector field and Ω be a
differential k-form on a manifold M. We have

LXΩ = diXΩ+ iXdΩ. (2.19)
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A differential k-form Ω is called closed, if dΩ = 0, and is called exact if there is a
differential (k− 1)-form Γ such that Ω = dΓ. The symmetry in the partial derivatives of
smooth functions implies that the exterior derivative of any differential form is closed,
i.e., d2Ω = 0 for any differential k-form Ω. However, not all differential forms are exact.
We close this section by showing the sufficient condition for a differential form to be
exact.

Theorem 2.5. (Poincaré Lemma) Let M be a smooth n-dimensional manifold with Ω

a differential k-form, defined on M. If Ω is closed then for any point p ∈ M, there is a
neighborhood U of p where Ω|U is exact.

Proof. We remind the reader that a shorter proof of this theorem is available using
Cartan’s Magic Formula [1]. Here we provide a stand alone proof. Let (x, U) be a
coordinate chart around p ∈ M. Without loss of generality, we assume that x(p) = 0

and that the image of U under x contains an open ball around the origin. We show that
the pull-back of Ω to any point on this ball is exact.

The condition dΩ = 0 implies that

∑
l

∑
j1<···<jk−1

∂ωj1,...,jk

∂xl
dxl ∧ dxj1 ∧ · · · ∧ dxjk = 0.

Note that the indices l, j1, . . . , jk are not in the proper order. It is easily checked that a
reordering of the indices in the above expression yields∑

n1<···<nk+1

λn1,...,nk+1
dxn1 ∧ · · · ∧ dxnk+1

= 0,

with

λn1,...,nk+1
=

k+1∑
m=1

(−1)m+1∂ωn1...̊nm...nk+1

∂xnm

,

which implies λn1,...,nk+1
= 0, for all n1 < · · · < nk+1. Here n̊m implies that nm is

omitted. Now we construct a (k − 1)-form Γ and claim that dΓ = Ω:

Γ(x1,...,xn) =

(∫ 1

0
tk−1ωji1...,ik−1

(tx1, . . . , txn)xj dt

)
dxi1 ∧ · · · ∧ dxik−1

.

Taking the exterior derivative of Γ gives

dΓ =

(∫ 1

0
tk−1 ∂

∂xl

(
ωji1...,ik−1

(tx)xj
)
dt

)
dxl ∧ dxi1 ∧ · · · ∧ dxik−1

.

Here tx denotes the point (tx1, . . . , txn). Let cli1···k−1
be the coefficients in this expres-

sion. Similar to the above, we can construct a reordering of the indices to obtain the
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coefficient of dxj1 ∧ · · · ∧ dxjk for j1 < · · · < jk as

k∑
m=1

(−1)m+1cjmj1...̊jm...jk
.

It follows that

k∑
m=1

(−1)m+1cjmj1...̊jm...jk

= −
k∑

m=1

(−1)m
∫ 1

0
tk−1 ∂

∂xjm

(
ωjj1...̊jm...jk

(tx)xj
)
dt

= −
k∑

m=1

(−1)m
∫ 1

0
tk−1

(
txj

∂ωjj1...̊jm...jk

∂xjm
(tx) + ωjmj1...̊jm...jk

(tx)
)
dt

=

∫ 1

0
tk−1

(
xjt

k∑
m=1

(−1)m+1
∂ωjj1...̊jm...jk

∂xjm
(tx) + kωj1...jk(tx)

)
dt

=

∫ 1

0
tk−1

(
xjkt

∂ωj1...jk

∂xj
(tx) + ktk−1ωj1...jk(tx)

)
dt

=

∫ 1

0

∂

∂t
(tkωj1...jk(tx)) dt

= ωj1...jk(x),

which implies dΓ = Ω. Here, we used the condition λn1,...,nk+1
= 0 and the chain rule

to obtain the result.

2.3 Hamiltonian Systems on a Symplectic Manifold

It is often useful to describe small changes in a state of a system with respect to some
potential or a vector field. Hamiltonian systems are systems where the changes in the
state of the system are determined by a Hamiltonian vector field. Such systems appear
in quantum physics, particle physics, celestial mechanics, cosmology, fluid mechanics,
and classical mechanics. Conserved quantities, e.g. the system energy, are at the core
of the dynamics of such systems. Consequently, the integral curve of these systems is
aligned with the Hamiltonian vector field such that these quantities are conserved.

Differential forms are tools that allow us to align an integral curve with one or more
vector fields. To study Hamiltonian systems, we therefore need to study basic features
of differential 2-forms.

Definition 2.12. Let M be a smooth manifold and p ∈ M. The differential 2-form Ωp

is called non-degenerate if Ωp(v1, v2) = 0, for all v2 ∈ TpM, implies that v1 = 0. Ω is
called non-degenerate, if Ωp is non-degenerate for all p ∈ M.
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If a non-zero vector v ∈ TpM is given, then Ω�
p(v) := Ωp(v, ·) : TpM → R can be

viewed as a co-vector. Therefore, a non-degenerate Ωp constructs an injective map
Ω�
p : TpM → T ∗

pM.

Definition 2.13. Let P be a smooth m-dimensional manifold and Ω be a closed, non-
degenerate 2-form defined on P . The pair (P,Ω) is called a symplectic manifold.

Note that the condition for Ω to be closed is indeed required to construct a well-defined
symplectic manifold. In the following theorem, we see that closedness of the 2-form
is required to locally approximate a symplectic manifold with a symplectic linear
vector space. This is especially important in the context of symplectic MOR where we
approximate a high dimensional symplectic manifold with a low dimensional linear
vector space.

Theorem 2.6. (Darboux’ Theorem) Let M be a manifold and Ω1 and Ω2 be two strongly
non-degenerate and closed 2-forms defined on M, such that Ω1 = Ω2, at some p ∈ M.
Then there are neighborhoods U and V of p such that the mapping ϕ : U → V is a
diffeomorphism with ϕ∗Ω2 = Ω1

Proof. The idea is to construct a family of continuously varying 2-forms:

Ωt = (1− t)Ω0 + tΩ1 = Ω0 + tΩ,

where Ω = Ω1−Ω0. Now we would like to find a smooth vector field Xt with the flow ϕt

such that d
dtϕ

∗
tΩt = 0. We construct U so small that Ωt is strongly non-degenerate. This

can be done since Ω0 = Ω1 and is constant at p, so the compactness of [0, 1] implies that
there is an open ball around p such that Ωt is strongly non-degenerate for all t ∈ [0, 1].
We have

d

dt
ϕ∗
tΩt = ϕ∗

tLXtΩt + ϕ∗
t

d

dt
Ωt

= ϕ∗
t (diXtΩt + iXtdΩt) + ϕ∗

tΩ = ϕ∗
t (diXtΩt +Ω).

Here we used the Lie derivative formula for time dependent differential forms, Cartan’s
magic formula, closedness of Ωt, and the linearity of pull-back operator. Since Ω is a
closed form and strongly non-degenerate, we can apply the Poincaré lemma 2.5 to
obtain Ω = dΓ for some 1-form Γ. The above expression becomes

d

dt
ϕ∗
tΩt = ϕ∗

t (d(iXtΩt + Γ)).

Therefore, it is sufficient to define Xt to be the vector field associate to the relation
iXtΩt = −Γ. Note that the non-degeneracy of Ωt in U guarantees the uniqueness of Xt.
Thus, ϕ∗

1Ω1 = ϕ∗
0Ω0 = Ω0
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Corollary 2.7. Let (P,Ω) be a symplectic manifold. There is a local coordinate chart
(x, U) around each point z ∈ P for which Ω is constant.

Proof. Fix a point z0 ∈ P . Take Ω0 = Ω and Ω1 = Ωz0 , i.e., Ω1 is a constant differential
form Ω|z=z0. The rest follows from the proof of Darboux’ theorem. The constructed
flow ϕt provides a coordinate chart that transforms Ω into the constant form Ω1.

Corollary 2.8. Let (P,Ω) be a finite-dimensional symplectic manifold. ThenP is even di-
mensional and we can find a local coordinate chard (x, U)withx = (e1, . . . , en, f1, . . . , fn)

around each point z ∈ P such that

Ω =
n∑

i=1

dei ∧ dfi. (2.20)

This local coordinate chart is referred to as the canonical basis.

Proof. (The symplectic Gram-Schmidt) Suppose that (x, U) is a local coordinate chart
around z provided by the Darboux’ theorem such that Ωz is constant, i.e., Ωz = Ω.
Let e1 ∈ TzP be a nonzero tangent vector. Non-degeneracy of Ω implies that there
is a vector f1 ∈ TzP such that Ω(e1, f1) = c1 �= 0. This ensures that e1 and f1 are
linearly independent.1 We can swap and scale e1 and f1 to guarantee that c1 = 1. Let
E1 = span{e1, f1} and E2 = {v ∈ TzP|Ω(v, e) = 0, ∀e ∈ E1}. It is easily verified that
E1 ∩ E2 = {�0}. Furthermore, for any v ∈ TzP , v − v̄ ∈ E2 where v̄ = −Ω(v, f1)e1 +

Ω(v, e1)f1 ∈ E1, therefore TzP = E1 ⊕ E2. Finally, since Ω is non-degenerate, it is also
non-degenerate on E2 as a subspace of TzP . Thus, we can continue inductively. Since
P is finite dimensional this process ends, e.g., after n steps. Furthermore, the sequence
of basis vectors A = {e1, . . . , en, f1, . . . , fn} forms a basis for TzP . In this basis, Ω takes
the canonical form

Ω(u, v) = ξT J2nη, J2n =

(
0n In
−In 0n

)
. (2.21)

Here, ξ, η ∈ R2n with ξi = dxi(u) and ηi = dxi(v), i = 1, . . . , 2n for any u, v ∈ TzP . This
is the matrix notation of the form in (2.20).

Due to non-degeneracy of Ω, vectors f1, . . . , fn can be interpreted as co-vectors such
that Ω�(ei) = fi, for i = 1, . . . , n. By abusing the notation, the co-vector property of
these vectors is denoted by f∗

1 , . . . , f
∗
n.

1If e1 and f1 are not linearly independent, then f1 = αe1, for some 0 �= α ∈ R. Therefore, Ω(e1, f1) =
αΩ(e1, e1) = 0.
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2.3. Hamiltonian Systems on a Symplectic Manifold

Definition 2.14. Let (P1,Ω1) and (P2,Ω2) be two symplectic manifolds. The transfor-
mation ϕ : P1 → P2 is called a symplectic transformation if

ϕ∗Ω2 = Ω1. (2.22)

Now we are ready to define Hamiltonian systems on a symplectic manifold.

Definition 2.15. Let (P,Ω) be a symplectic manifold. We refer to a vector field XH as a
Hamiltonian vector field, if we can find a real function H : P → R such that

iXH
Ω = dH. (2.23)

We call H the Hamiltonian function. In this case, the equations of evolution is given by

ż = XH(z), (2.24)

and is referred to as Hamilton’s equation of evolution.

Proposition 2.9. [69] When P is 2n-dimensional and a canonical system of coordinates
(qi, pi) is given, Hamilton’s equation take the form

dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H

∂qi
, i = 1, . . . , n. (2.25)

The following proposition shows that the flow of a Hamiltonian vector field is a sym-
plectic map.

Proposition 2.10. Let ϕt be the complete flow of a Hamiltonian vector field XH . Then
ϕt : P → P is a symplectic transformation.

Proof. We have

d

dt
ϕ∗
tΩ = ϕ∗

tLXH
Ω = ϕ∗

t (iXH
dΩ+ diXH

Ω) = ϕ∗
t (iXH

dΩ+ d2H).

However, closedness of Ω implies dΩ = 0. Furthermore, since any exact differential
form is closed, then d2Ω = 0. Thus, d

dtϕ
∗
tΩ = 0 and ϕ∗

tΩ = ϕ∗
0Ω = Ω.

Corollary 2.11. The Hamiltonian is conserved along the Hamiltonian flow.

Proof. It follows that

d

dt
H(ϕt(z)) = dH

(
d

dt
ϕt(z)

)
= dH (XH(z)) = iXH(z)Ω(XH(z))

= Ω(XH(z), XH(z)) = 0.
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Therefore, H ◦ ϕt is constant in time.

2.4 Hamiltonian Systems on a Symplectic Linear Vector Space

In the symplectic MOR, the flow of a Hamiltonian system is projected on a low di-
mensional symplectic linear vector space. Therefore, it is beneficial to investigate
symplectic linear vector spaces. In this section we assume that a symplectic manifold
(P,Ω) is also a linear vector space, i.e., we identify both P and TzP with a linear vector
space Z .

Definition 2.16. Let Z be a finite dimensional linear vector space with Ω a constant
2-form defined on Z. The pair (Z,Ω) is called a symplectic linear vector space if Ω is
non-degenerate.

Note that Corollary 2.8 indicates that Z is even-dimensional. Furthermore, the sym-
plectic Gram-Schmidt process can construct a canonical basis, in which Ω(u, v) =

ξT J2nη, where u, v ∈ Z, ξ, η ∈ R2n are the expansion coefficients of u and v and J2n is
defined in (2.21). However, in a non-canonical basis, the symplectic form Ω takes the
form Ω(u, v) = ξTJ2nη, where J2n is a full rank and skew-symmetric matrix. Therefore,
when the matrix form of Ω is discussed, we may refer to Ω as J2n or J2n, depending on
the coordinate chart.

A symplectic linear vector space can be equipped with an inner product to form a
inner product space. However, a symplectic basis is not necessarily well-conditioned
(or orthonormal) with respect to a general inner-product. The following proposition
provides a natural inner product defined on a symplectic linear vector space that
carries the conditioning of a canonical basis.

Consider the linear mapping Ω� : Z → Z∗ and let e∗i and f∗
i be the image of ei and fi

under Ω�, respectively for i = 1, . . . , n. Non-degeneracy of Ω� indicates that e∗i and f∗
i

are unique and non-zero, and that A∗ = {e∗1, . . . , e∗n, f∗
1 , . . . , f

∗
n} forms a basis for Z∗.

We construct a linear map T : Z∗ → Z by prescribing its action on elements of A∗ as

T (e∗i ) = fi, T (f∗
i ) = −ei, i = 1, . . . , n.

Note that T is bijective.

Proposition 2.12. Let (Z,Ω) be a 2n-dimensional symplectic linear vector space. Fur-
thermore, let A = {e1, . . . , en, f1, . . . , fn} be a canonical basis for Z with respect to Ω.
Then

< u, v >= T−1(u)(v),

defines an inner product on Z and A is orthonormal with respect to < ·, · >.

20



2.4. Hamiltonian Systems on a Symplectic Linear Vector Space

Proof. It is straight forward to check that < ·, · > is symmetric, bilinear and positive-
definite. Furthermore, we have

< ei, ej >= T−1(ei)(ei) = −f∗
i (ej) = −Ω(fi, ej) = Ω(ei, fj) = δij .

for i, j = 1, . . . , n. Similarly we can show

< fi, fj >= δij , < ei, fj >= 0, i, j = 1, . . . , n.

Corollary 2.13. Let A = {ei, fi}ni=1 be a canonical basis for Z, the inner product con-
structed in Proposition 2.12 is the Euclidean inner product.

Proof. Let u, v be a two vectors in Z , and v∗ be the image of v under Ω�. Let ξ, η ∈ R2n,
be the expansion coefficients vector of u and v in the basis of A, respectively. Recall
that Ω(u, v) = ξT J2nη in a canonical coordinate system.

We have

T−1(u) = T−1

(∑
i

(αiei + α′
iei)

)
=
∑
i

(
αiT

−1(ei) + α′
iT

−1(fi)
)

=
∑
i

(−αif
∗
i + α′

ie
∗
i

)
,

(2.26)

where αi and α′
i are the ith and the (n+ i)th element of ξ, respectively. It follows

< u, v >= T−1
u (v) =

(∑
i

(−αif
∗
i + α′

ie
∗
i

))⎛⎝∑
j

(
βiei + β′

ifi
)⎞⎠

=
∑
i

αiβi + α′
iβ

′
i = ξT η.

(2.27)

Here, βi and β′
i are the ith and the (n + i)th element of η, respectively. Furthermore,

in the last step, we used the fact that e∗i fj = Ω(ei, fj) = δij , for i, j = 1, . . . , n, and the
skew-symmetry of Ω. Furthermore, If we represent a co-vector as a transpose of a
vector, (2.26) implies that the expansion coefficients of u∗ is given by J2nξ.

An inner product defined in Proposition 2.12 is especially useful since one can switch
between computing the 2-form Ω and the inner production <,>, as needed. However,
when dealing with a subspace of Z, further structures are required to guarantee that
such inner-product exists.

Definition 2.17. [1] Let (Z,Ω) be a symplectic linear vector space and E ⊂ Z be a
subspace. The symplectic complement of E , referred to as E⊥, is a linear subspace
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defined as

E⊥ = {a ∈ Z|Ω(a, b) = 0, for all b ∈ E}.

Furthermore, we call E an isotropic subspace if E ⊂ E⊥, a symplectic subspace if Ω|E×E
is non-degenerate, and a Lagrangian subspace if both E and EC are isotropic, where EC

is vector space complement of E2.

Proposition 2.14. [1] Let (Z,Ω) be a symplectic linear vector space and E ⊂ F is a linear
subspace. Then the following are equivalent:

(a) E is a Lagrangian subspace.

(b) E = E⊥.

(c) E is isotropic and dim(E) = 1
2dim(Z).

Proof. We first prove that (a) implies (b). Since a Lagrangian subspace is isotropic
then E ⊂ E⊥. Let F = EC and take Take v ∈ E⊥. It is easily verified that Z = E ⊕ F .
Therefore, v = e+ f , where e ∈ E and f ∈ F . Since E is isotropic then Ω(e, u) = 0 for
all u ∈ E . As v ∈ E⊥, it follows that for any u ∈ E

0 = Ω(v, u) = Ω(e, u) + Ω(f, u) = Ω(f, u).

But since F is isotropic then Ω(f, u) = 0 for all u ∈ F . This implies that Ω(f, u) = 0 for
all u ∈ E ∪ F = Z. Non-degeneracy of Ω implies that f = 0 and v = e ∈ E . Therefore
E⊥ ⊂ E .

Now we show that (b) implies (c). Consider the mapping Ω� : Z → Z∗. Note that E⊥ is
in the kernel of Ω�|E : E → (Z\E⊥)∗. Since Ω� is injective, dim(E) ≤ dim(Z)− dim(E⊥).
Furthermore, Ω�|E can be viewed as a mapping from Z to E∗ where the kernel is exactly
E⊥. Therefore, dim(E) ≥ dim(range(Ω�|E)) = dim(Z)− dim(E⊥). The two inequalities
imply dim(Z) = dim(E) + dim(E⊥) which, together with (b), provide the result.

Finally, we show that (c) implies (a). Note that from the above results we conclude
that dim(E) = dim(E⊥). But since E ⊂ E⊥, then E = E⊥. Now we show that F = EC

is isotropic. Take f1 /∈ E , and define F1 = span{f1}. Since E ∩ F1 = ∅, it follows3

that E + F⊥
1 = Z. Therefore, we can pick f2 ∈ F⊥

1 such that f2 /∈ E , and define
F2 = span{f2}+ F1. We continue this process inductively to construct Fn such that
Z = E ⊕ Fn. It follows that

Fn = span{f1, . . . , fn} ⊂ span(f1)⊥ ∩ · · · ∩ span(fn)⊥

= (span(f1) + · · ·+ span(fn))⊥ = F⊥
n .

2EC is a vector space complement of E if Z = E ⊕ EC .
3For subsets E and F we have (E ∩ F )⊥ = (E⊥⊥ ∩ F⊥⊥)⊥ = (F⊥ + E⊥)⊥⊥ = F⊥ + E⊥ [1].
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2.5. Symplectic Integration of Hamiltonian Systems

The second step uses the fact that each fi is taken from F⊥
i−1. Therefore F = Fn is

isotropic. This completes the proof.

Proposition 2.14 suggests that a Lagrangian subspace is a maximal isotropic subspace.
We are now ready to state the following theorem.

Theorem 2.15. [1] Let (Z,Ω) be a 2n-dimensional symplectic linear vector space. Fur-
thermore, suppose that X ⊂ Z is a 2k-dimensional linear subspace with k < n. If
the pair (X ,Ω|X ) contains a Lagrangian subspace, then (X ,Ω|X ) is also a symplectic
subspace.

Proof. We show that Ω|X is non-degenerate on X . Let E be a Lagrangian subspace of
X . Since F = EC and dim(F ) = dim(E) = dim(X )/2 then, by Proposition 2.14 (c), F
is also a Lagrangian subspace. Furthermore, Proposition 2.14 implies that E = E⊥ and
F = F⊥. Now assume that there is u ∈ X such that Ω|X (u, v) = 0 for all v ∈ X . Then
v ∈ E⊥ = E and v ∈ F⊥ = F . Therefore v ∈ E ∩ F = {0}.

Once a linear Lagrangian subspace of a symplectic linear vector space is identified, one
can induce a reduced symplectic form Ω|X . This is particularly important in the context
of MOR where a low dimensional symplectic reduced vector space is constructed. The
induced symplectic form Ω|X can then be used to construct an ortho-symplectic basis
on the low dimensional symplectic subspace.

2.5 Symplectic Integration of Hamiltonian Systems

In section 2.3 we saw two intrinsic feature of Hamiltonian systems: conservation of the
Hamiltonian, expressed in Corollary 2.11, and the symplecticity of the Hamiltonian
flow, discussed in Proposition 2.10. Since the exact flow of a Hamiltonian system is
not generally available, the approximation of this flow has been a main topic of study,
offen referred to as geometric numerical integration [50, 18]. However, there are no
known methods that can preserve both the conservation of the Hamiltonian and the
symplecticity of the flow for a general Hamiltonian system. Symplectic numerical
integration, is a class of methods that approximate the flow of a Hamiltonian systems
while preserving the symplecticity of the flow. Although these methods tend to violated
the conservation of the Hamiltonian, robustness over long-time integration makes
them the method of choice in wide range of application, e.g. molecular dynamics
simulation [34] and celestial mechanics [96]. In this section we investigate the theory
behind symplectic integration and introduce some common symplectic numerical
integrators. We assume, in this section, that (Z,Ω) is a symplectic linear vector space
(often Z = R2n) with a constant Ω. Furthermore, we assume a canonical coordinate
system, in which Ω takes the matrix form J2n. We emphasize this by writing Ω = ΩJ2n .
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Proposition 2.16. Let (R2n,ΩJ2n) be a 2n-dimensional symplectic linear vector space
and let ψ : R2n → R2n be a smooth symplectic diffeomorphism, then

(ψ′)T J2nψ′ = J2n. (2.28)

Here, ψ′ is the Jacobian matrix of ψ.

Proof. Let v1, v2 ∈ R2n. Symplecticity of ψ implies that

ΩJ2n(v1, v2) = ψ∗ΩJ2n(v1, v2) = ΩJ2n(Tzψ(v1), Tzψ(v2)) = ΩJ2n(ψ
′ · v1, ψ′ · v2),

Therefore,

vT1 J2nv2 = vT1 (ψ
′)T J2nψ′v2.

Since this is true for any v1, v2 ∈ R2n, (2.28) must hold.

Definition 2.18. When ψ is a linear transformation, i.e., ψ(z) = Az with A ∈ R2n×2n,
(2.28) takes the form

AT
J2nA = J2n. (2.29)

In this case the matrix A is referred to as a symplectic matrix.

To explain the intuition behind a symplectic transformation, we use the geometric
interpretation of a symplectic transformation form [50]. Suppose that f : U → R2n,
with U a compact subset of R2, a 2-dimensional smooth surface in R2n. The manifold
S = f(U) can be viewed as the union of infinitesimal parallelograms spanned by
vectors ∂f/∂x and ∂f/∂y. We now define an area operator that recovers the area of the
surface by summing over the area of all parallelograms:

Area(M) :=

∫
U
ΩJ2n(

∂f

∂x
,
∂f

∂y
) dxdy. (2.30)

Given a symplectic diffeomorphism ψ : R2n → R2n, we have

Area(ψ(M)) =

∫
U
ΩJ2n(

∂(ψ ◦ f)
∂x

,
∂(ψ ◦ f)

∂y
) dxdy = Area(M).

Therefore, the area, defined in (2.30), is preserved under a symplectic transformation.
We extend this idea to the volume of a compact subset of a hypersurface by introducing
the volume form

V =
−1n(n−1)/2

n!
ΩJ2n ∧ · · · ∧ ΩJ2n︸ ︷︷ ︸

n times

.
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This differential 2n-form is referred to as the Liouville volume [69] form and the coeffi-
cient −1n(n−1)/2/n! is chosen such that V takes the form

V = de1 ∧ · · · ∧ den ∧ df1 ∧ · · · ∧ dfn. (2.31)

in a canonical coordinate. Given vectors v1 . . . , v2n ∈ Z, the Liouville volume form
computes the volume of a hyper dimensional parallelepiped spanned by v1 . . . , v2n.
The symplecticity of ΩJ2n , implies that for a symplectic diffeomorphism ψ : R2n → R2n,
ψ∗V = V and, thus, a symplectic transformation preserves the volume with respect to
the Liouville volume form.

Definition 2.19. Let ϕt be the flow of a smooth vector field X defined on R2n. The
mapping Φ : R× R2n → R2n, for some initial condition z0 ∈ R2n, is a one step method
of order p if

Φh(z0)− ϕh(z0) = O(hp+1). (2.32)

Furthermore, Φ is called a symplectic one step method if ϕt is a Hamiltonian flow and
Φ is a symplectic transformation.

Definition 2.20. Φ∗
h is called the adjoint of a one step method Φh, when it is the inverse

map of Φh with the reversed time step −h, i.e.,

Φ∗
h = Φ−1

−h. (2.33)

Since the exact flow of a Hamiltonian system is generally unknown, we approximate it
with a stepping method, e.g. a one step method. The symplecticity of the Hamiltonian
flow contributes to many geometrical symmetries, e.g. preservation of volume as
discussed above. Thus, it is natural to expect a one step method to share this property in
a numerical evaluation of Hamiltonian systems. Note that a general stepping schemes
is not volume preserving and can result in a qualitatively wrong approximation of
a Hamiltonian flow [50]. On the other hand, area preservation of symplectic time
stepping schemes ensures excellent long-time behaviour [50, 18].

Definition 2.21. Let H(q, p) be a smooth Hamiltonian where q, p ∈ Rn are vectors
containing the coefficients of a vector in a canonical basis A = {ei, fi}ni=1. The one step
method

qk+1 = qk + h · ∇pH(qk+1, pk), pk+1 = pk − h · ∇qH(qk+1, pk) (2.34)

is called the symplectic Euler scheme and approximates the flow of the Hamiltonian
system ż = J∇zH , with z = (q, p)T . Here, ∇x indicates the gradient operator with respect
to the vector x.
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Theorem 2.17. [50] The symplectic Euler methods is a symplectic one step method of
order 1.

Proof. Let Φh(qk, pk) = (qk+1, pk+1) be the one step method representing the symplec-
tic Euler method. It follows(

In + hHT
pq 0

−hHqq I

)
Φ′
h =

(
I −hHpp

0 I + hHpq

)
,

where Hyx is an n× n matrix containing ∂2H/(∂yj∂xi) in its i-th row and j-th column,
evaluated at qk+1, pk. It is straightforward to check that (Φ′)T J2nΦ′ = J2n. Furthermore,
a Taylor expansion verifies that this method is of order 1 [50].

The adjoint of the symplectic Euler is also a symplectic one step method of order 1 [50],
and is given by

qk+1 = qk + h · ∇pH(qk, pk+1), pk+1 = pk − h · ∇qH(qk, pk+1). (2.35)

It is straightforward to show that the composition of symplectic time stepping methods
is again a symplectic method. Thus, one way to construct higher order methods is to
compose one step methods.

Theorem 2.18. The Störmer-Verlet time stepping scheme, given by

qk+1/2 = qn +
h

2
· ∇pH(qk+1/2, pk),

pk+1 = pk − h

2
· (∇qH(qk+1/2, pk) +∇qH(qk+1/2, pk+1/2)),

qk+1 = qk+1/2 +
h

2
· ∇pH(qk+1/2, pk+1/2),

(2.36)

or

pk+1/2 = pn − h

2
· ∇pH(qk, pk+1/2),

qk+1 = qk +
h

2
· (∇pH(qk, pk+1/2) +∇pH(qk+1/2, pk+1/2)),

pk+1 = pk+1/2 −
h

2
· ∇pH(qk+1/2, pk+1/2),

(2.37)

is a symplectic time stepping method of order 2.

Proof. One checks that (2.36) and (2.37) are obtained by composing two symplectic
Euler methods with step h/2 as Φh/2 ◦ Φ∗

h/2 and Φ∗
h/2 ◦ Φh/2, respectively. This implies

that the Störmer-verlet scheme is of order 2.
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Theorem 2.19. The implicit midpoint scheme for a Hamiltonian system

zk+1 = zk + h · J2n∇zH(
1

2
(zk+1 + zk)), (2.38)

is a symplectic scheme of order 2.

Proof. Let Φh(zk) = zk+1 be the one step method corresponding to the implicit mid-
point rule. It follows

(I − h

2
J2n∇2

zH)Φ′
h = (I +

h

2
J2n∇2

zH),

where∇2 indicates the Hessian operator. It is straight forward to show that (Φ′
h)

TJ2nΦ
′
h =

J2n. Note that the implicit midpoint rule is a symmetric scheme, i.e., Φ∗
h = Φh. This

symmetry implies that the method is of an even order [50], therefore is at least of order
2.
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3 Model Order Reduction

Mathematical simulation is increasingly important in engineering, science, and related
domains, thanks to substantial advances in computational sciences and the rapid
growth in computational capacity during the past decades. Numerical evaluation of
partial differential equations (PDEs) lies at the core of these disciplines which includes
design, optimization, and prediction of inputs and outputs of interest. However, the
need for accuracy, the complexity of multi-physics applications, and inefficiencies
in evaluating multi-query systems makes conventional approaches for solving large
systems of partial differential equations impractical.

To cope with these limitations, reduced order modelling (ROM), apposed to full-order
or high-fidelity modelling, has been an area of active research for the past decade.
These methods eliminate the redundant physical or computational complexities of
the full-order problem to construct a low dimensional reduced-order system. This
approximation in return significantly accelerates the evaluation of the system of PDEs.
Reduced basis (RB) methods are among the most successful ROMs and are used
throughout academia and industry. RB methods seek a low dimensional reduced
subspace that accurately represents the full-order solution. Confining the system to
this subspace, through a projection, allows to accelerate the evaluation of the system.

In this chapter we summarize the fundamentals of model order reduction (MOR) and
especially RB methods. We present various conventional techniques and algorithms
for linear and nonlinear problems. Since time, as a parameter, is particularly important
in the context of Hamiltonian systems, we will develop this chapter with an emphasis
on time-dependent problems.
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Chapter 3. Model Order Reduction

3.1 Solution Manifold and Reduced Basis Methods

We consider parametric dynamical systems of the type⎧⎨
⎩

d

dt
u(t;μ) = f(t, u;μ),

u(0;μ) = u0(μ).
(3.1)

Here u, u0 ∈ Rn, f : R× Rn × P → Rn is a Lipschitz linear or nonlinear function, and
μ ∈ P, where P is a compact subset of Rd. It is well known that for a fixed μ, (3.1) has
a unique solution if f is continuous with a continuous derivative [92]. Note that for
parametric PDEs, we may use the method of lines [32] to obtain a dynamical system of
the form (3.1).

To obtain a numerical solution to (3.1) for a fixed μ, we may use some time integration
method, e.g. the Runge-Kutta methods [32]. This provides an approximate solution
ũ(ti) ≈ u(ti) for time instances i = 1, . . . , Nt. Throughout this chapter we assume that
ũ can be obtained arbitrary close to u and, by abuse of the notation, we may omit
the overscript “~”. In the MOR literature, u is often referred to as the full-order or the
high-fidelity solution [51, 86].

Definition 3.1. The solution manifold is a set of all solutions to (3.1) under the variation
of the parameter vector μ, i.e.

Mu = {u(t;μ)|t ∈ [0, T ], μ ∈ P}. (3.2)

Note that the solution manifold may not be smooth. A main assumption in an RB
method is that Mu has a low dimensional representation. This allows us to chose a
small number of basis vectors Ek = {w1, . . . , wk}, with k � n, where Wk = span(Ek)

represents Mu with a small error. Ek is often referred to as the reduced basis. To
understand when a low dimensional reduced basis exists and to quantify the error
in the approximation, we need to introduce the notion of the Kolmogorov n-width
[63, 83].

Definition 3.2. Let W be a subset of a Banach space X . The distance of a point x ∈ X
from W is given by

dist(x,W) := inf
w∈W

‖x− w‖. (3.3)

where ‖ · ‖ is the norm defined on X .

We can look at dist(x,W) as a measure on how well we can approximate x with ele-
ments in W .
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Definition 3.3. LetS be a compact subset of a Banach space X . The Kolmogorov n-width
of S is defined as

dn(S) = inf
Wn

sup
s∈S

dist(s,Wn), (3.4)

where the infimum is carried over all possible linear subspaces Wn of dimension n.

Therefore, the n-width measures how well S can be approximated by a linear subspace
of dimension n. Note that when X is also equipped with an inner product operator
< ·, · >: X × X → R, such that ‖ · ‖ =

√
< ·, · >, then dist(x,W) = ‖x − P<,>,W(x)‖,

where P<,>,W is the projection operator with respect to < ·, · > onto W . In this case
dist(x,W) is often referred to as the projection error.

RB method seeks to approximate Mu with a low dimensional subspace Wk, making it
natural to use the n-width terminology. To achieve an accurate RB approximation we
truncate the sequence d1(Mu), d2(Mu), . . . , dn(Mu) such that the truncation error is
controlled, i.e.∑k

i=1 di(Mu)∑n
i=1 di(Mu)

< δ, (3.5)

for some small tolerance δ. Therefore, it is desirable that the above sequence has a
rapid decay, in which case Mu is referred to as reducible. In general, the dimension k

must be chosen small enough to enable computational gain. Once the subspace Wk is
chosen, we can construct the projection operator P<,>,Wk

to write the reduced-order
system⎧⎨

⎩
d

dt
P<,>,Wk

(u(t;μ)) = P<,>,Wk
(f(t, u;μ)),

P<,>,Wk
(u(0;μ)) = P<,>,Wk

(u0(μ)).
(3.6)

Note that in this thesis, we assume that the projection operator P<,>,Wk
(and subse-

quently the reduced space Wk) is not time dependent1. Therefore, we may commute
the projection operator with the time derivation operator. Given that k � n, (3.6) has
a lower order than (3.1). However, reducibility of Mu does not say anything about
the stability of (3.6). As the matter of fact, (3.6) could be unstable even if (3.1) is a
stable dynamical system [81, 2]. In Chapters 4 to 6 we discuss how we can enhance the
stability of (3.6) given that (3.1) is a Hamiltonian system.

In the following we summarize numerical methods for choosing the dimension k, find-
ing the reduced space Wk, constructing the projection operator P<,>,Wk

and, finally,
efficient ways to construct and integrate the reduced system (3.6).

1We refer the reader to [78, 37] for dynamically orthogonal reduced basis method: an RB method with
a time varying basis.
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3.2 Proper Orthogonal Decomposition

To numerically recover Wk, we first discretize the solution manifold Mu into a point
cloud MΔ

u defined as

MΔ
u := {u(ti;μ)|1 ≤ i ≤ Nt and μ ∈ P

Δ}, (3.7)

where PΔ = {μ1, . . . , μNP
} is a finite set, representing P. Note that the choice of PΔ is

generally not trivial and is often problem dependent. We refer the reader to [86] for
more information on discretizing the parameter space.

Each member of MΔ
u is a vector in Rn and is commonly referred to as a snapshot.

Suppose that we can find k basis vectors w1, . . . , wk ∈ Rn, orthonormal with respect
to some inner product operator < ·, · >, and with a space Wk which approximately
represents the span(MΔ

u ). As discussed in Section 3.1, the projection error of a member
of MΔ

u by an element in Wk is given by

eWk
(s) := ‖s− P<,>,Wk

(s)‖, s ∈ MΔ
u , (3.8)

where ‖ · ‖ is the norm associated with < ·, · > and P<,>,Wk
is the orthogonal projection

operator given by

P<,>,Wk
(s) =

k∑
i=1

< s,wi > wi. (3.9)

The proper orthogonal decomposition method then identifies Wk (for a fixed k) that
minimizes the collective projection error, corresponding to the minimization problem

minimize
Wk

∑
s∈MΔ

u

‖s− P<,>,Wk
(s)‖2,

subject to < wi, wj >= δi,j , 1 ≤ i, j ≤ k.

(3.10)

This formulation is comparable with the discrete version of the Kolmogorov n-width.

3.2.1 Euclidean Inner Product

When < ·, · > is the classical Euclidean inner product, i.e. < a, b >= aT b for a, b ∈ Rn,
we can rewrite the projection operator in (3.9) as

PI,Wk
(s) = WkW

T
k s. (3.11)

Here Wk = [wi]
k
i=1 is the matrix containing the basis vectors of Wk (Note that we used

the subscript I to indicate the Euclidean inner product in PI,Wk
. To avoid confusion, we

may also use this subscript for < ·, · >I ). Furthermore, the constraints in minimization
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3.2. Proper Orthogonal Decomposition

(3.10) simplify to W T
k Wk = Ik. Thus, (3.10) becomes

minimize
Wk∈Rn×k

∑
s∈MΔ

u

‖s−WkW
T
k s‖22,

subject to W T
k Wk = Ik.

(3.12)

Here ‖·‖2 is the Euclidean norm. Finally, if we collect all the snapshots into the snapshot
matrix

S = [u(ti;μj)], 1 ≤ i ≤ Nt, 1 ≤ j ≤ NP, (3.13)

we can use basic results in linear algebra [104] to reformulate (3.10) as

minimize
Wk∈Rn×k

‖S −WkW
T
k S‖F ,

subject to W T
k Wk = Ik.

(3.14)

Here ‖ · ‖F denotes the Frobenius norm [104].This minimization is nonlinear and
generally non-convex. However, a remarkable result in numerical analysis relates
the solution to this minimization problem with an eigenvalue problem on S. We
summarize this in the following theorem and refer the reader to [68] for the proof.

Theorem 3.1. (Eckart-Young-Mirsky-Schmidt) Suppose that D ∈ Rm×n (m < n) has
the singular value decomposition (SVD) [68], D = UΣV T . Consider the partitioning for
U , Σ and V as

U = [U1U2], Σ =

[
Σ1 0

0 Σ2

]
, V = [V1V2], (3.15)

where U1 ∈ Rn×r, U2 ∈ Rn×(n−r), Σ1 ∈ Rr×r, Σ2 ∈ R(n−r)×(n−r), V1 ∈ Rn×r and
V2 ∈ Rn×(n−r). Then the rank r matrix, resulting from the truncation of the SVD
decomposition

D̃ = U1Σ1V
T
1 , (3.16)

solves the minimization problem

minimize
M∈Rm×n

‖D −M‖F ,

subject to rank(M) = r.
(3.17)

Furthermore, ‖D − D̃‖F =
∑m

i=r+1 σi, where σi is the i-th singular value of D.

With this, we immediately find the solution to (3.14).

Theorem 3.2. [4] Let S = UΣV T be the SVD decomposition of S with U = [ui]
n
i=1. Then
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Chapter 3. Model Order Reduction

W = U1 is the solution to the minimization problem (3.14) where S̃ = U1Σ1V
T
1 is the

rank k approximation of S in Theorem 3.1.

Proof. Let S̃ = U1Σ1V
T
1 be the matrix that minimizes ‖S − S̃‖F in Theorem 3.1 and let

Σ̃ be defined as

Σ̃ =

[
Σ1 0

0 0

]
. (3.18)

It is easily verified that S̃ = U1Σ1V
T
1 = U Σ̃V T . This yields

S̃ = U Σ̃V T = U Σ̃Σ−1UTS = U1U
T
1 S. (3.19)

Therefore, minimizing ‖S − S̃‖F for a rank k matrix S̃ is equivalent to minimizing
‖S − U1U

T
1 S‖F for all U1 such that UT

1 U1 = Ik.

As the minimization problem (3.14) is closely related to the Kolmogorov n-width of Mu,
Theorem 3.1 suggests that the decay of the singular values of S is an indicator of the
decay of the Kolmogorov n-width of Mu. This is a numerical approach to understand
the reducibility of Mu. Algorithm 3.1 summarizes POD to generate an orthonormal
basis with respect to the Euclidean inner product.

Algorithm 3.1 POD for constructing an orthonormal reduced basis with respect to the
Euclidean inner product
Input: snapshot matrix S, tolerance value δ.

1: compute the SVD decomposition S = UΣV T .
2: pick k as the largest number such that∑n

i=k+1 σi∑n
i=1 σi

< δ.

3: define Wk = [ui]
k
i=1.

Output: reduced basis Wk.

3.2.2 Non-Euclidean Inner Product

Now suppose that <,> is a non-Euclidean inner product. One can associate such an
inner product with a symmetric and positive definite matrix X (and denote <,>X)
such that < a, b >X= aTXb for all a, b ∈ Rn. Given an orthonormal basis matrix
Wk = [wi]

k
i=1 with respect to this inner product, it is easy to verify that the orthogonal
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3.2. Proper Orthogonal Decomposition

projection onto Wk = col span(Wk) is given by

PX,Wk
(s) = WkW

T
k Xs, s ∈ R

n. (3.20)

With this, the minimization problem (3.10) becomes

minimize
Wk∈Rn×k

∑
s∈MΔ

u

‖s−WkW
T
k Xs‖2X ,

subject to W T
k XWk = Ik.

(3.21)

Here ‖ · ‖X =
√
< ·, · >X and the constraint arises from < wi, wj >X= wT

i Xwj = δij for
i = 1, . . . , k. It follows that∑

s∈MΔ
u

‖s−WkW
T
k Xs‖2X =

∑
s∈MΔ

u

‖X1/2s−X1/2WkW
T
k Xs‖22

=
∑

s∈MΔ
u

‖X1/2s−X1/2WkW
T
k X1/2X1/2s‖22

= ‖X1/2S −X1/2WkW
T
k X1/2X1/2S‖2F .

(3.22)

Here X1/2 is the matrix square root of X defined as

X1/2 = V Λ1/2V T , (3.23)

where X = V ΛV T is the eigenvalue decomposition of X. Now if we define S̄ = X1/2S

and W̄k = X1/2Wk, we can rewrite (3.21) as

minimize
W̄k∈Rn×k

‖S̄ − W̄kW̄
T
k S̄‖F ,

subject to W̄ T
k W̄k = Ik.

(3.24)

Following Theorems 3.1 and 3.2, the solution W̄k to this minimization problem is
the rank k approximation of S̄. We can then recover Wk form Wk = X−1/2W̄k. Con-
structing a POD basis with respect to a non-Euclidean inner product is presented in
Algorithm 3.2.

For large scale problems, the computation of the square root of X may be compu-
tationally demanding. Let S̄ = UΣV be the SVD decomposition of S̄ with {ui}ni=1,
{vi}ni=1, and {σi}ni=1 the left singular vectors, the right singular vectors, and the singular
values, respectively. We have

STXSvi = S̄T S̄vi = σiS̄
TuTi = σ2

i vi. (3.25)

Here we used the properties of an SVD decomposition [104]. This suggests that {σ2
i }ni=1

and {vi}ni=1 are the eigenvalues and the eigenvectors of STXS, respectively. The matrix
G := STXS is commonly referred to as the Gramian matrix. To obtain the POD basis,
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Chapter 3. Model Order Reduction

Algorithm 3.2 POD for constructing an orthonormal reduced basis with respect to a
non-Euclidean inner product
Input: snapshot matrix S, weight matrix X, and tolerance value δ.

1: compute S̄ = X1/2S.
2: compute the SVD decomposition S̄ = UΣV T .
3: pick k as the largest number such that∑n

i=k+1 σi∑n
i=1 σi

< δ.

4: define W̄k = [ui]
k
i=1.

5: compute Wk = X−1/2W̄k.

Output: reduced basis Wk.

we can then write

wi = X−1/2ui = σ−1
i X−1/2S̄vi = σ−1

i Svi. (3.26)

Thus, the computation of X1/2 can be avoided. We summarize the computationally
efficient way to find a POD basis with respect to a non-Euclidean inner product in
Algorithm 3.3.

Algorithm 3.3 POD for constructing an orthonormal reduced basis with respect to a
non-Euclidean inner product
Input: snapshot matrix S, weight matrix X.

1: compute the Gramian matrix G = STXS.
2: solve the eigenvalue problem Gvi = σ2

i vi.
3: compute wi = σ−1

i Svi.
4: define basis Wk = [wi]

k
i=1.

Output: reduced basis Wk.

3.3 The Greedy Basis Generation

For the purpose the of most efficient computation, it is important to separate expensive
high-dimensional quantities from the cheaper low-dimensional ones. This Separation
of quantities, according to their computational cost, is referred to as the offline/online
decomposition [86]. We tolerate some amount of computational complexity in the
offline phase to achieve substantial computation acceleration during the online phase.
In the context of RB methods, one seeks to restrict computations regarding the high-
fidelity solution to the offline phase. Subsequently, we can expect fast computations
by restricting all computations to the reduced space during the online phase.
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3.3. The Greedy Basis Generation

Assembling the snapshot matrix S (3.13) requires the evaluation of the high-fidelity
solution for possibly a large sample set of the parameter space P. Moreover, performing
an SVD decomposition on S can be computationally demanding and often impractical
during the offline phase. A greedy basis generation is an iterative process in which
basis vectors are identified and added, one at a time, to improve the overall accuracy
of the reduced basis. As the high-fidelity solution is only evaluated once per iteration,
the assembly and the SVD decomposition of S is avoided, saving considerable com-
putational effort in the offline phase. Note that Theorem 3.1 indicates that the SVD
provides the best possible basis of a given size k in L2. The greedy approach, on the
other hand, provides an optimal basis in L∞. However, the two methods often result
in a basis of a comparable size and accuracy [86].

Since a key step in a greedy method is the identification of the best possible candidate
for a basis vector, the availability of an error indicator is essential. Let Wk = [wi]

k
i=1 be

an orthonormal reduced basis with Wk as the reduced space spanned by the column
vectors of Wk. Inspired by the Kolmogorov n-width, we use the projection error to
identify the snapshot s that is worst approximated by a member of Wk:

s∗ := arg max
s∈S

dist(s,Wk) = arg max
s∈S

‖s− PX,Wk
(s)‖X . (3.27)

Here, s∗ is then a candidate for the next basis vector. Let wk+1 be the vector obtained
by orthonormalizing s∗ with respect to Wk. The next basis matrix is then defined as

Wk+1 = [wi]
k+1
i=1 , Wk+1 = col span(Wk+1). (3.28)

Note that the choice of an orthonormalization process is important when constructing
a reduced basis with a low condition number. Therefore, a backward stable method is
preferred. The process discussed above is referred to as the strong greedy method [86].
The following theorem from approximation theory shows that the convergence rate of
the strong greedy method, is as fast as the decay of the Kolmogorov n-width.

Theorem 3.3. [16] Let S ⊂ Rn have an exponentially small Kolmogorov n-width
dn(S) ≤ c · exp(−αn) with α > log 2. Then there exists β > 0 such that the subspace Wk

constructed by the strong greedy process is exponentially accurate in the sense

‖s− PX,Wk
(s)‖X ≤ C · exp(−βk), s ∈ S. (3.29)

The proof for this theorem is lengthy but straight forward. Orthonormality of Wk is
exploited in the proof. Therefore, for cases where a non-orthonormal reduced basis is
considered, additional constraints must be checked to guarantee convergence of the
method. It is worth mentioning that the inequality (3.29) has been improved in [19]
under further assumptions on the reducibility of S.
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Chapter 3. Model Order Reduction

The maximization problem (3.27) still contains computational inefficiencies, since
the high-fidelity solution s needs to be evaluated over the entire parameter space.
The weak greedy method avoids this by finding a surrogate function η : P → R that
approximates (3.27) at a low cost. This restricts the search for the new basis vector to
only the parameter space, rather than the high-fidelity space. Let Mk = {μi}ki=1 be a
set of chosen parameters and Ek = {wi}nk

i=1 be the set of basis vectors with Wk as the
corresponding reduced space. Using η, the next parameter can be chosen as

μk+1 := arg max
μ∈P

η(μ). (3.30)

We may then compute the snapshots St,μk+1
= [u∗(ti)]Nt

i=1, where u∗(ti) = u(ti, μk+1).
We eliminate the common subspace between the spaces of St,μk+1

and Wk by comput-
ing the errors

eμk+1
= [u∗(ti)− PX,Wk

(u∗(ti))]Nt

i=1 . (3.31)

For a given tolerance δ, we add the truncated POD basis vectors of eμk+1
, e.g. vectors

{wμk+1

i }nm+1

i=1 , to the previously computed basis vectors

Ek+1 = Ek ∪ {wμk+1

i }mk+1

i=1 , Wk+1 = span(Ek+1), nk+1 = nk +mk+1, (3.32)

and we denote by Wk+1 the corresponding basis matrix. This approach is referred to
as the POD-greedy method [48]. Given a proper error indicator function η, the POD-
greedy method can also provide an exponentially accurate reduced space [48, 46]. We
summarize the POD-greedy method in Algorithm 3.4 and refer the reader to [51, 46]
for further details.

Algorithm 3.4 the POD-greedy for extending a reduced basis
Input: parameter space P, reduced basis Wk of size nk, truncation tolerance δ.

1: find μ∗ := arg max
μ∈P

η(μ).

2: compute temporal snapshots St,μ∗ .
3: compute the error vectors Eμ∗ .
4: Wk+1 ← Wk ∪ POD(Eμ∗ , δ).
5: nk+1 ← nk +mk+1.

Output: reduced basis Wk+1.

3.4 The Galerkin and the Petrov-Galerkin Projection

In Sections 3.2 and 3.3 we outlined computational methods to construct a reduced
basis Wk, and subsequently, a reduced space Wk. In this section we elaborate on how
to use a reduced basis to construct a reduced system, as in (3.6).
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3.5. Efficient Evaluation of the Non-Linear Terms

LetWk be an orthonormal basis for a reduced spaceWk. We assume u(t;μ), the solution
to (3.1), can be well approximate in this basis as u ≈ ũ = Wkv, where v ∈ Rk is the
vector of coefficients. Substituting this in (3.1) results in

Wk
d

dt
v(t;μ) = f(t,Wkv;μ) + r(t, u;μ), (3.33)

and r is the error in this approximation. Now, we can use the properties of the projec-
tion operator PI,Wk

= WkW
T
k to eliminate Wk from the left hand side. The Galerkin

projection requires r to be orthogonal to Wk and results in the reduced system⎧⎨
⎩

d

dt
v(t;μ) = W T

k f(t,Wkv;μ),

v(0;μ) = W T
k u0(μ).

(3.34)

Here we used the fact that W T
k Wk = Ik. We may instead use a non-Euclidean inner

product, with the projection operator PX,Wk
= WkW

T
k X, to obtain⎧⎨

⎩
d

dt
v(t;μ) = W T

k Xf(t,Wkv;μ),

v(0;μ) = W T
k Xu0(μ).

(3.35)

The Petrov-Galerkin projection, on the other hand, requires r in (3.33) to be orthog-
onal to some k-dimensional linear subspace U . Given U as the basis matrix for this
subspace, and requiring UTWk to be invertible, a projection operator that projects the
elements of the high-fidelity space onto Wk orthogonal to U can be constructed as
Π = Wk(U

TWk)
−1U . This results in the reduced system⎧⎨

⎩
d

dt
v(t;μ) = (UTWk)

−1f(t,Wkv;μ),

v(0;μ) = (UTWk)
−1u0(μ).

(3.36)

Although reduced systems in (3.34), (3.35) and (3.36) are of a lower order as compared
to the high-fidelity system, the evaluation of f(t,Wkv;μ) should be performed in the
high-fidelity space for a general f . In the following section we discuss how this can be
avoided.

3.5 Efficient Evaluation of the Non-Linear Terms

In this section we discuss the efficiency of evaluating nonlinear terms in the context of
projection based reduced models. Suppose that the right hand side in (3.1) is of the
form f(t, u;μ) = L(μ)u+ g(t, u;μ), where L reflects the linear part, and g is a nonlinear
function. Now assume that a k-dimensional reduced basis W ∈ Rn×k is provided. The
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reduced system using a Petrov-Galerkin projection takes the form

d

dt
v = UTLW︸ ︷︷ ︸

L̃

v + UT g(t,Wv;μ)︸ ︷︷ ︸
h(t,v;μ)

. (3.37)

Here, L̃ is a k × k matrix which can be computed in the offline phase. However, the
evaluation of h(t, v;μ) has a complexity that depends on n, the size of the original
system. Suppose that the evaluation of g with n components has the complexity α(n),
for some function α. Then the complexity of evaluating h is O(α(n) + 4nk) which
consists of 2 matrix-vector operations and the evaluation of the nonlinear function,
i.e. the evaluation of the nonlinear terms can be as expensive as solving the original
system.

To overcome this bottleneck we take a reduced basis approach [26, 8]. Assume that
the manifold Mg = {g(t, u;μ)|t ∈ [0, T ], u ∈ Rn, μ ∈ P} is low dimensional and that g
can be approximated by a linear subspace of dimension m � n, spanned by the basis
{yi}mi=1, i.e.

g ≈ Y c. (3.38)

Here Y ∈ Rn×m contains basis vectors yi and c ∈ Rm is the vector of coefficients. Now
suppose p1, . . . , pm are m indices from {1, . . . , n} and define an n×m real matrix

P := [ep1 , . . . , epm ], (3.39)

where epi is the pi-th column of the identity matrix In. Multiplying P T with g selects
components p1, . . . , pm of g. If we assume that P TU is non-singular, the coefficient
vector c can be uniquely determined from

P T g̃ = (P TY )c. (3.40)

Here, the overscript “~” emphasises that g̃ is an approximation to g. Finally we have

g(t, u;μ) ≈ Y (μ)c(t, u) = Y (P TY )−1P T g(t, u;μ), (3.41)

which is referred to as the Empirical Interpolation (EIM) approximation [8]. Applying
EIM to the reduced system (3.37) yields

d

dt
u = L̃u+ UTY (P TY )−1P T g(t, u;μ). (3.42)

Note that the matrix UTY (P TY )−1 can be computed offline and since g is evaluated
only at m of its components, the evaluation of the nonlinear term in (3.42) does not
depend on n.
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3.5. Efficient Evaluation of the Non-Linear Terms

To obtain the projection basis U , the POD can be applied to the matrix Sg that contains
the snapshots of the nonlinear term g

Sg = [g(ti, u;μj)], 1 ≤ i ≤ Nt, 1 ≤ j ≤ NP. (3.43)

Note that there is no additional cost associated with computing these snapshots, since
they are generated when computing the trajectory snapshot matrix S.

The interpolating indices p1, . . . , pm can be constructed as follows. Given the projection
basis Y = {y1, . . . , ym}, the first interpolation index p1 is chosen according to the
component of u1 with the largest magnitude. The rest of the interpolation indices,
p2, . . . , pm correspond to the component of the largest magnitude of the residual vector
r = yl − Y c. It is shown in [26] that if the residual vector is a nonzero vector in each
iteration then P TU is non-singular and thus the reduced system (3.42) is well defined.
The application of the POD for generating a basis for the nonlinear term together with
the greedy selection of interpolating indices is referred to as the Discrete Empirical
Interpolation Method (DEIM). We summarized the process of selecting interpolating
indices for DEIM in Algorithm 3.5.

Algorithm 3.5 Discrete Empirical Interpolation Method
Input: Basis vectors {u1, . . . , um} ⊂ Rn

1: pick p1 to be the index of the largest component of u1.
2: U ← [u1].
3: P ← [p1].
4: for i ← 2 to m
5: solve (P TU)c = P Tui for c.
6: r ← ui − Uc.
7: pick pi to be the index of the largest component of r.
8: U ← [u1, . . . , ui].
9: P ← [p1, . . . , pi].

10: end for

Output: Interpolating indices {p1, . . . , pm}.

The numerical integration of (3.42) may involve the computation of the Jacobian of
the nonlinear function g(t, u;μ) with respect to the reduced state variable v

Jv(g) = UTJu(g)W, (3.44)

where Jα(g) is the Jacobian matrix of g with respect to the variable α = u, v. The
complexity of (3.44) is O(α(n) + 2n2k + 2nk2 + 2nk), comprising several matrix-vector
multiplications and an evaluation of the Jacobian which depends on the size of the
original system. Approximating the Jacobian in (3.44) is usually both problem and
discretization dependent. Often the nonlinear function g is evaluated component-wise
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i.e.

g(u) =

⎛
⎜⎜⎜⎜⎝
g1(u1, . . . , un)

g2(u1, . . . , un)
...

gn(u1, . . . , un)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
g1(u1)

g2(u2)
...

gn(un)

⎞
⎟⎟⎟⎟⎠ . (3.45)

In such cases the interpolating index matrix P and the nonlinear function g commute,
i.e.,

h(v) ≈ UTY (P TY )−1P T g(Wv) = UTY (P TY )−1g̊(P TWv) (3.46)

Here, g̊ indicates that the elements of g, that are not in the index set P , are omitted. If
we now take the Jacobian of the approximate function we recover

Jv(g) = UTY (P TY )−1Ju(̊g(P
TWv))P TW. (3.47)

The matrices UTY (P TY )−1 ∈ Rk×m and P TW ∈ Rm×k can be computed offline and
the Jacobian is evaluated only for m×m components. Hence the overall complexity of
computing the Jacobian is now independent of n. We refer the reader to [26, 8, 86, 51]
for more detail.
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4 Symplectic Model Order Reduction

Parameterized partial differential equations often arise as a model for many problems
in engineering and the applied sciences. While the need for more accuracy has led to
the development of exceedingly complex models, the limitations in computational
cost and storage often make direct approaches impractical. Hence, we must seek
alternative methods, such as those introduced in Chapter 3, that allow us to approx-
imate the desired output under variation of the input parameters while keeping the
computational costs to a minimum.

As we discussed in Chapter 3, SVD based model reduction method, such as POD,
often require the exploration of the entire parameter space [64, 5, 87, 55, 56, 57, 82].
This leads to a very expensive and often impractical offline stage when dealing with
multi-dimensional parameter domains. On the other hand, sampling techniques,
usually of a greedy nature, search through the parameter space selectively, guided by
an error estimate to certify the accuracy of the basis. This approach, accompanied with
an efficient sampling procedure, balances the cost of computation with the overall
accuracy of the reduced-basis [28, 91, 51].

Besides computational complexity, another aspect of reduced order modeling is the
preservation of structure and, in particular, the stability of the original model. In
general, reduced order models of the type discussed in Chapter 3 do not guarantee
that such properties are preserved [85].

In the context of Hamiltonian and Lagrangian systems, recent work suggests modifi-
cations of POD to preserve some geometric structures. Lall et al. [65] and Carlberg et
al. [23] suggest that the reduced-order system should be identified by a Lagrangian
function on a low-dimensional configuration space. In this way, the geometric struc-
ture of the original system is inherited by the reduced system. Model reduction for
port-Hamiltonian systems can be found in the works of Beattie et al. [25], Polyuga et al.
[84] and references therein. These works construct a reduced port-Hamiltonian system
using Krylov or POD methods that inherit the passivity and stability of the original
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system. For Hamiltonian systems, Peng et al. [81], using a symplectic transformation,
constructs a reduced Hamiltonian as an approximation to the Hamiltonian of the
original system. As a result, the reduced system preserves the symplectic structure. Al-
though these methods preserve the geometric structure, they use a POD-like approach
for constructing the reduced basis. If the numerical evaluation of the original model is
computationally demanding, performing POD can be excessively expensive [86].

In this chapter, we present a greedy approach for the construction of a reduced system
that preserves the geometric structure of Hamiltonian systems. This technique results
in a reduced Hamiltonian system that mimics the symplectic properties of the original
system and preserves the Hamiltonian structure and its stability over the course of
time. On the other hand, since time integration of the original system is only required
once per iteration, the proposed method saves substantial computational cost during
the offline stage as compared to alternative POD-like techniques. It is well known that
structured matrices, e.g. symplectic matrices, generally are not well-conditioned [61].
The greedy update of the symplectic basis presented here yields a ortho-symplectic
basis and is therefore a norm bounded. Moreover, we demonstrate that assumptions,
natural for the set of all solutions of the original Hamiltonian system under the vari-
ation of parameters, lead to exponentially fast convergence of the greedy algorithm.
For nonlinear Hamiltonian systems, we show how the basis can be combined with
the DEIM [26, 8] to enable a fast evaluation of nonlinear terms while maintaining the
symplectic structure.

This chapter is organized as follows. In Section 4.1 the symplectic Galerkin projection to
construct a Hamiltonian reduced system is discussed. Sections 4.2 and 4.3 discuss the
greedy generation of a symplectic reduced basis as well as other SVD-based symplectic
model reduction techniques. Accuracy, stability, and efficiency of the greedy method
compared to other SVD-based methods are discussed in Section 4.6. Finally we offer
some concluding remarks in Section 4.7.

The main contribution of this chapter is the introduction of a greedy generation of a
symplectic basis. Furthermore, the convergence of the greedy method is investigated
with respect to the Kolmogorov n-width. A symplectic DEIM for accelerated evaluation
of the nonlinear terms is proposed that preserves the symplectic structure of Hamil-
tonian systems. Although this method is identical to the one proposed in [81] for an
ortho-symplectic basis, this method can also be used for construction of a basis that is
not orthonormal with respect to the Euclidean norm.

4.1 Symplectic Galerkin Projection

We now discuss how to modify conventional MOR methods to ensure that the resulting
scheme preserves the symplectic structure of the Hamiltonian system.
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4.1. Symplectic Galerkin Projection

Let (Z,Ω) be a 2n-dimensional symplectic linear vector space and H : Z → R be a
smooth Hamiltonian function. Furthermore, suppose that there is a canonical basis
Z = {ei, fi}ni=1 such that the Hamiltonian equation of evolution takes the form⎧⎨

⎩
d

dt
z = J2n∇zH(z),

z(0) = z0.
(4.1)

Here z = [q1, . . . , qn, p1, . . . , pn]
T ∈ Z is the state vector (compare to (2.25)). Suppose

that the solution manifold MH of (4.1) is well approximated by a low dimensional sym-
plectic subspace (A,Ω) of dimension 2k (k � n). We can then construct a symplectic
basis E = {ẽi, f̃i}ki=1 for A and assemble the matrix

A = [ẽ1, . . . , ẽk, f̃1, . . . , f̃k] ∈ R
2n×2k, (4.2)

to approximate the solution to (4.1) as

z ≈ Ay. (4.3)

This constructs a mapping φ : A → Z given by φ(y) = Ay. Symplecticity of A implies
that a symplectic differential form is available on A. One can use the pull-back of Ω
along φ to construct a symplectic form on A:

Ω̃ = φ∗Ω = AT
J2nA = J2k. (4.4)

Note that in (2.29) a linear symplectic transformation was a square matrix, however,
here A is a rectangular matrix. Since Ω̃ is a symplectic differential form, (A, Ω̃) forms a
symplectic linear vector space. Furthermore, since the matrix form of Ω̃ is J2k we can
construct a projection operator (similar to the projection used in the symplectic GS
process Corollary 2.8) as

P
symp
A (z) =

k∑
i=1

−Ω(z, f̃i)ẽi +Ω(z, ẽi)f̃i, z ∈ Z. (4.5)

It is easily verified that P symp
A is idempotent, i.e., that P symp

A ◦P symp
A = P

symp
A . Therefore,

this operator is indeed a projection operator onto A and is known as the symplectic
projection. In matrix notation, the symplectic projection takes the form

P
symp
A = AJT2kA

T
J2n. (4.6)

The matrix A+ := JT2kA
T J2n is known as the symplectic inverse of A in canonical

coordinates. We summarize the properties of A+ in the following proposition.

Proposition 4.1. [81] Let A ∈ R2n×2k be a symplectic matrix. The symplectic projection
takes the form P

symp
A = AA+.The symplectic inverse of A satisfies the following
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(a) A+A = I.

(b)
((

(A+)
T
)+)T

= A.

(c) (A+)T is a symplectic matrix.

(d) If A is an ortho-symplectic of the form A = [e1, . . . , ek, J
T
2ne1, . . . , J

T
2nek], then

(A+)T = A.

Proof. The proof of (a)-(c) follows immediately from symplecticity of A. For (d) A takes
the form

A =

[
A11 −A21

A21 A11

]
.

It follows

(A+)T = J
T
2nAJ2k = J

T
2n

[
A11 −A21

A21 A11

]
J2k =

[
−A21 −A11

A11 −A21

]
J2k =

[
A11 −A21

A21 A11

]
= A.

We can use the symplectic projection operator to project (4.1) onto A. Substituting
(4.3) into (4.1) yields

A
d

dt
y = J2n∇zH(Ay) + r(z). (4.7)

We use the chain rule and property (b) in Proposition 4.1 to write

∇zH(Ay) = (A+)T∇yH(Ay). (4.8)

Note that the symplectic inverse is not unique, in general, for a non-square matrix.
Furthermore, the symplectic projection yields

d

dt
y = A+

J2n(A
+)T∇yH(Ay) +A+r(z). (4.9)

Proposition 4.1 (a) ensures that (A+)T is a symplectic matrix i.e., A+J2n(A
+)T = J2k.

By defining the reduced Hamiltonian H̃ : A → R as H̃(y) = H(Ay) and assuming that
the error vector r is symplectically orthogonal (J2n-orthogonal) to A we obtain the
reduced system⎧⎨

⎩
d

dt
y = J2k∇yH̃(y),

y0 = A+z0.
(4.10)

46



4.1. Symplectic Galerkin Projection

Equation (4.10) is called the symplectic Galerkin projection of (4.1) onto A. The reduced
system obtained from the Petrov-Galerkin projection in (3.37) is not a Hamiltonian
system and does not guarantee conservation of the symplectic structure, volume of
the phase space, or the Hamiltonian. On the other hand, we observe that the reduced
system in (4.10) is a Hamiltonian system, and therefore, the symplectic structure will
be conserved along integral curves of (4.10). Note that the high-fidelity system and the
reduced system are endowed with different Hamiltonians. In the next proposition we
show that the error in the Hamiltonian is constant in time.

Proposition 4.2. Let z(t) be the solution of (4.1) at time t. Further suppose that z̃(t) is
the approximate solution of the reduced system (4.10) in the original coordinate system.
Then the error in the Hamiltonian, defined as

ΔH(t) = |H(z(t))−H(z̃(t))|, (4.11)

is constant for all t ∈ R.

Proof. Let ϕt and ϕ̃t be the Hamiltonian flow of the original and the reduced system
respectively. By definition, z(t) = ϕt(z0) and y(t) = ϕ̃t(y0). Using the definition of the
reduced Hamiltonian H̃ and Corollary 2.11 we have

H(z̃(t)) = H(Ay(t)) = H̃(y(t)) = H̃(ψt(y0)) = H̃(y0) = H̃(A+z0) = H(AA+z0). (4.12)

The error in the Hamiltonian can then be written in terms of z0 and the symplectic
basis A as

ΔH(t) = |H(z0)−H(AA+z0)| (4.13)

The following theorems provide a strong indication of the stability of the reduced
system.

Definition 4.1. [15] Consider a dynamical system of the form ż = f(z) and suppose
that ze is an equilibrium point for the system so that f(ze) = 0. ze is called nonlinearly
stable or Lyapunov stable if, for any ε > 0, we can find δ > 0 such that for any trajectory
φt, if ‖φ0 − ze‖2 ≤ δ, then for all 0 ≤ t < ∞, we have ‖φt − ze‖2 < ε, where ‖ · ‖2 is the
Euclidean norm.

The following proposition, also known as Dirichlet’s theorem [15], states a sufficient
condition for an equilibrium point to be Lyapunov stable. We refer the reader to [15]
for the proof.
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Chapter 4. Symplectic Model Order Reduction

Proposition 4.3. [15] An equilibrium point ze is Lyapunov stable if there exists a scalar
function W : Rn → R such that ∇W (ze) = 0, ∇2W (ze) is positive definite, and that for
any trajectory ϕt defined in the neighborhood of ze, we have d

dtW (ϕt) ≤ 0. Here ∇2W is
the Hessian matrix of W .

The scalar function W is referred to as the Lyapunov function. In the context of the
Hamiltonian systems, a suitable candidate for the Lyapunov function is the Hamilto-
nian function H .

Lemma 4.4. Consider a Hamiltonian system of the form (4.1) with a Hamiltonian
H ∈ C2. Let ze be a strict local minimum of H . There is an open ball S of ze such that
∇2H(z) > 0 and H(z) < c, for all z ∈ S and some c ∈ R, and H(z∗) = c for some
z∗ ∈ ∂S, where ∂S is the boundary of S.

Proof. Since ze is a strict local minimum of H and H ∈ C2, then there is an open
neighborhood N1 around ze such that ∇2H(z) > 0 for all z ∈ N1.

Let ce = H(ze). Since ze is a strict local minimum and H is continuous, there is an
open ball N2 of ze such that H(z) < c1, for all z ∈ N2 and some c1 > ce. We require N2

to be small enough such that N2 ⊂ N1. Let c2 = inf∂N2 H(z), where ce < c2 ≤ c1. We
can require N2 to be small enough such that H(z) < c2, for all z ∈ N2, but H(z∗) = c2

1

for some z∗ ∈ ∂N2
2. We then let c = cN1 and S = N2 = N1 ∩N2.

Theorem 4.5. Consider a Hamiltonian system of the form (4.1) with a Hamiltonian H ∈
C2 together with the reduced system (4.10). Suppose that ze is a strict local minimum
of H and let S be the open set defined in Lemma 4.4. If we can find an open ball
neighborhood S of ze such that Range(A) ∩ S �= ∅, then the reduced system (4.10) has a
stable equilibrium point in Range(A) ∩ S.

Proof. Since ze is a local minimum of H , smoothness of H implies that ∇zH(ze) = 0,
and therefore ze is a Lyapunov stable point for (4.1).

Let SA = Range(A)∩ S. Since Range(A) is a linear vector space, then SA is an open set.
Furthermore, for any z ∈ SA, H(z) < c.

We now show that H|SA
attains its minimum inside SA. Let cmin = infz∈SA

H(z). cmin

exists since H has a minimum on S. We can find a sequence {H(zi)}∞i=1, with zi ∈ SA,
such that H(zi) → cmin < c. This implies that zi → z0, for some z0 ∈ SA, since H is

1c2 depends on N2
2Since H is continuous and ze is a strict local minimum, then level curves of H around ze are bounded.

We can start with an open ball B around ze small enough such that H(z) < c2 for all z ∈ B̄, the closure of
B. We can then continuously increase the radius of B until H(z∗) = c2 for some z∗ ∈ ∂B and H(z) < c2
for all z ∈ B.
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continuous. Note that SA is bounded since S is bounded. However, z0 does not belong
to ∂SA since infz∈∂S W (z) = c > cmin. Therefore z0 ∈ SA.

We claim that ye = JT2kA
T J2nz0 is a stable equilibrium point for the reduced system

(4.10). Let H̃(y) = H(Ay). Note that H̃ attains its local minimum at ye. Furthermore,
∇W̃ (ye) = 0. Also we have

∇2H̃ = AT∇2HA (4.14)

is a positive definite matrix. Finally, since the reduced system is a Hamiltonian system,
Corollary 2.11 implies that any trajectory ϕt of (4.10) satisfies d

dtH̃(ϕt) = 0. Therefore
H̃ is a Lyapunov function for (4.10) and ye is a stable equilibrium point for (4.10), in
the Lyapunov sense.

While the symplectic structure is not guaranteed to be preserved in the reduced sys-
tems obtained by the Petrov-Galerkin projection, the reduced system obtained by the
symplectic projection guarantees the preservation of the Hamiltonian up to the error
(4.11). In the next section we discuss different methods for recovering a symplectic
basis.

4.2 Proper Symplectic Decomposition

Let S be the snapshot matrix of the Hamiltonian system (4.1). Suppose that a sym-
plectic basis A of size 2n× 2k for the symplectic subspace A is provided. The proper
symplectic decomposition (PSD) requires that the error in the symplectic projection
onto A be minimized. Hence, the PSD symplectic basis of size 2k is the solution to the
minimization problem

minimize
A∈R2n×2k

‖S −AA+S‖F ,

subject to AT
J2nA = J2k.

(4.15)

Compared to the minimization problem for POD in (3.14), in the above minimization,
the orthogonal projection is replaced with a symplectic projection AA+. At first, the
minimization looks similar to the one obtained by POD. However, it is well known that
symplectic bases are not generally orthogonal, and therefore not norm bounded. This
means that numerical errors may become dominant in a symplectic projection [61]
which makes the minimization (4.15) a harder problem than (3.14).

As the optimization problem (4.15) is nonlinear, the direct solution is usually expensive.
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Chapter 4. Symplectic Model Order Reduction

A simplified version of this optimization can be found in [81], but there is no guarantee
that the method provides a near optimal basis.

Finding eigen-spaces of Hamiltonian and symplectic matrices is studied in the context
of optimal control problems [11, 13, 109, 20] and model reduction of Riccati equations
[13], where also an SVD-like decomposition for Hamiltonian and symplectic matrices
has been proposed [111]. The computation of Lagrangian subspaces of large scale
Hamiltonian matrices using a CS-decomposition is presented in [71, 70]. However, the
computation of a large snapshot matrix and the use of the methods to compute its
eigen-spaces, is usually computationally demanding. Also, these methods generally
do not guarantee the construction of a well-conditioned symplectic basis.

In Section 4.2.1 we briefly outline non-direct methods for finding solutions to (4.15),
proposed in [81], assuming a specific structure for A. In Section 4.3 we propose a
greedy approach for the symplectic basis generation.

4.2.1 SVD Based Methods for Symplectic Basis Generation

The methods presented in this section are taken from [81].

Cotangent lift: Suppose that A is of the form

A =

(
Φ 0

0 Φ

)
, (4.16)

where Φ ∈ Rn×k is an orthonormal matrix. It is easy to check that A is a symplectic
matrix, i.e., AT J2nA = J2k. The construction of A suggests that the range of Φ should
cover both the potential and the momentum spaces of the Hamiltonian problem.
Hence, we can construct A by forming the combined snapshot matrix

Scomb = [q1, . . . , qn, p1, . . . , pn], zi = (qTi , p
T
i )

T , (4.17)

and define Φ = [u1, . . . , uk], where ui is the i-th left singular vector of Scomb. It is shown
in [81] that among all symplectic bases of the form (4.16), the cotangent lift minimizes
the projection error in L2.

Complex SVD: Suppose instead that A takes the form

A =

(
Φ −Ψ

Ψ Φ

)
, (4.18)

where Φ,Ψ ∈ Rn×k are real matrices of size n× k satisfying

ΦTΦ+ΨTΨ = Ik, ΦTΨ = ΨTΦ. (4.19)
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It can be checked that A forms a symplectic matrix [69]. To construct A we first define
the complex snapshot matrix

Scomp = [q1 + ip1, . . . , qn + ipn]. (4.20)

Each left singular vector of Scomp now takes the form um = rj + isj . We define

Φ = [r1, . . . , rk], Ψ = [s1, . . . , sk]. (4.21)

One can easily check that (4.19) is satisfied since the matrix of singular vectors is unitary.
It is shown in [81] that among all symplectic bases of the form (4.18) the complex SVD
minimizes the projection error in L2.

4.3 The Greedy Approach to Symplectic Basis Generation

We discussed the greedy generation of a reduced basis in Section 3.3. In this section we
generalize the method to construct a symplectic basis.This method adds the two best
possible basis vectors to the symplectic basis to enhance overall accuracy measured
in L∞. In contrast to the cotangent lift and the complex SVD methods, the greedy
approach does not require the symplectic basis to have a specific structure. This
typically results in a more compact basis and/or a more accurate reduced systems. For
parametric problems, the greedy approach only requires one numerical solution to
be computed per iteration, hence saving substantial computational cost in the offline
stage.

The orthonormalization step is an essential step in most greedy approaches for basis
generation in the context of model reduction [51, 86]. However common orthonormal-
ization methods, e.g. the QR method, destroy the symplectic structure of the original
system [20]. Here we use a variant of the QR method known as the SR [95] method that
is based on the symplectic GS method, introduced in Corollary 2.8.

As discussed in Section 2.4, any finite dimensional symplectic linear vector space can
be equipped with a canonical basis. Furthermore, Corollary 2.8 and Proposition 2.12
provides an iterative process for constructing an ortho-symplectic basis [95]. To briefly
describe the SR method, suppose E2k = {ei, T−1(ei)}ki=1 is a given ortho-symplectic
basis with respect to the Euclidean inner product, where T is the transformation
defined in Proposition 2.12. For the Euclidean inner product, it is easily verified that
T−1(ek+1) = JT2nek+1. Furthermore, let A2k be the matrix that contains these vectors in
its columns and let z be a given vector such that z �∈ A2k, the span space of E2k. We
first remove the contribution of E2k from z to obtain

z̃ = z − P
symp
A2k

(z). (4.22)

51



Chapter 4. Symplectic Model Order Reduction

If we introduce ek+1 = z̃/‖z̃‖2, it is easily checked that ek+1 is also orthogonal to A2k

with respect to the Euclidean inner product. Therefore, span{e1, . . . , ek+1} forms a
Lagrangian subspace. Furthermore, the basis E2k+2 = E2k ∪ {ek+1, J

T
2nek+1} forms an

ortho-symplectic basis. Finally we can assemble the matrix for the reduced basis of
size 2k + 2 as

A2k+2 = [e1, . . . , ek+1, J
T
2ne1, . . . , J

T
2nek+1]. (4.23)

Note that the SR method is chosen due to its simplicity. It can be replaced with back-
ward stable routines such as the isotropic Arnoldi or the isotropic Lanczos methods
[72], if required.

A key element of the greedy algorithm is the availability of an error indicator which
efficiently evaluates the error associated with the reduced model [51]. In the framework
of symplectic model reduction for a parametric Hamiltonian system, one possible
candidate is the error in the Hamiltonian (4.11). Correctly approximating symplectic
systems relies on preservation of the Hamiltonian, hence the error in the Hamiltonian
arises as a natural choice. Moreover, since the error in the Hamiltonian depends on
the initial condition and the reduced symplectic basis, evaluation of the error does
not require the time integration of the full system. On the other hand, the error in the
Hamiltonian fails to identify the best snapshot when z0 ∈ E2k, where z0 is the initial
condition in (4.1).

Suppose that a 2k-dimensional ortho-symplectic basis E2k is generated at the k-th
step of the greedy method and we seek to enrich it by two additional vectors. Using
the error in the Hamiltonian (4.13) we search the parameter space to identify the value
that maximizes the error in the Hamiltonian

μk+1 := argmax
μ∈PΔ

ΔH(μ). (4.24)

Here, PΔ ⊂ Rd is the discretized parameter space. The goal is to approximate the
Hamiltonian function as well as possible. We compute the temporal snapshots of (4.1)
with respect to μk+1 and form the temporal snapshot matrix

St,μk+1
= [z(ti;μk+1)]

Nt
i=1. (4.25)

The next basis vector is the snapshot that maximises the projection error

z := arg max
s∈St,μk+1

‖s− P
symp
A2k

(s)‖2. (4.26)
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Finally, we update the basis as

ek+1 = z̃, E2k+2 = E2k ∪ {ek+1, J
T
2nek+1}, (4.27)

where z̃ is the vector obtained after symplectic orthonormalization of z with respect
E2k. Finally A2k+2 can be assembled according to (4.23).

Note that the greedy-POD method, introduced in Section 3.3, cannot be directly ap-
plied in the symplectic setting since the union of two disjoint symplectic bases (as
apposed to orthogonal bases) is not guaranteed to be symplectic.

Since the maximization over the entire parameter space P is impossible, we discretize
the parameter set into a grid with N points: PN = {μ1, . . . , μN}. However, since the
selection of parameters only require the evaluation of the error in the Hamiltonian and
not time integration of the original system, then PN can be chosen to be rich.

We summarize the greedy algorithm for the generation of a symplectic basis in Algo-
rithm 4.1.

Algorithm 4.1 the symplectic greedy for extending a symplectic reduced basis

Input: parameter space PΔ, error indicator function η , symplectic reduced basis A2k.

1: find μ∗ := arg max
μ∈PΔ

η(μ).

2: compute the temporal snapshots St,μ∗ .
3: Find the snapshot with maximum projection error

z := arg max
s∈St,μk

‖s−A2kA2k
+s‖2.

4: Apply symplectic orthonormalization on z to obtain ek+1.
5: Assemble A2k+2 = [e1, . . . , ek+1, J

T
2ne1, . . . , J

T
2nek+1].

Output: symplectic reduced basis A2k+2.

4.4 Convergence of the Greedy Method

In Section 3.3 we discussed that the conventional greedy basis generation, in the strong
sense, is exponentially accurate. In this section we show that the symplectic greedy
process, with the symplectic projection error as an error estimator, maintains this
property.

Suppose that we are given a compact subset S of R2n. Our intention is to find a set
of vectors E2k = {ei, fi}ki=1 such that E2k forms an orthosymplectic basis and any
s ∈ S is well approximated by elements of the subspace A2k = span(E2k). The greedy
process using the projection error for generating basis vectors ei and fi is as follows.
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In the initial step we pick e1 such that ‖e1‖2 = maxs∈S ‖s‖2. And define f1 = JT2ne1. As
discussed in Section 4.3, E2 = {e1, f1} is orthosymplectic, so E2 is the first subspace
that approximates elements of S. In the k-th step of the greedy method, suppose
we have a basis E2k = {e1, . . . , ek, f1, . . . , fk}, with A2k the matrix that contain these
vectors in its column. Let P symp

A2k
be the symplectic projection onto A2k and define

σ2k(s) := ‖s− P
symp
A2k

(s)‖2, (4.28)

as the projection error. Moreover we denote by σ2k the maximum approximation error
of S using elements in span(A2k) as

σ2k := max
s∈S

σ2k(s). (4.29)

The next set of basis vectors in the greedy selection are

ek+1 := arg max
s∈S

σ2k(s), fk+1 := J
T
2nek+1. (4.30)

We emphasize that the sequence of basis vectors generated by the greedy is in general
not unique [86, 51].

To estimate the quality of the reduced subspace, it is natural to compare it with the best
possible 2k-dimensional subspace in the sense of the minimum projection error (not
necessarily in the symplectic sense). For this we use the Kolmogorov n-width [63, 83],
see Definition 3.3. To recall, for a given subspace Wn,

dist(S,Wn) = sup
s∈S

dist(s,Wn), (4.31)

measures the worst possible projection error of elements in S onto Wn. Hence the
Kolmogorov n-width quantifies how well S can possibly be approximated by an n-
dimensional subspace.

We seek to show that the decay of σ2k, obtained by the greedy algorithm, has the same
rate as d2k(S), i.e., the greedy method provides the best possible accuracy attained by
a 2k-dimensional subspace.

We start by J2n-orthogonalizing the vectors provided by the greedy algorithm as

ξ1 = e1, ξ̄1 = J
T
2nξ1,

ξi = ei − P2(i−1)(ei), ξ̄i = J
T
2n, ξi i = 2, 3, . . .

(4.32)

The projection of a vector s ∈ S onto A2k can be written using the symplectic basis as

P
symp
A2k

(s) =
k∑

i=1

(
αi(s)ξi + ᾱi(s)ξ̄i

)
, (4.33)
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where αi(s) and ᾱi(s) for i = 1, . . . , k are the expansion coefficients

αi(s) = − Ω(ξ̄i, s)

Ω(ξi, ξ̄i)
, ᾱi(s) =

Ω(ξi, s)

Ω(ξi, ξ̄i)
, (4.34)

for any s ∈ S. Since ξ̄i is J2n-orthogonal to A2k−2 we have

|αi(s)| = |Ω(ξ̄i, s)|
|Ω(ξi, ξ̄i)|

=
|Ω(ξ̄i, s− P

symp
A2k−2

(s))|
|Ω(ξi, ξ̄i)|

≤
‖ξ̄i‖2‖s− P

symp
A2k−2

(s)‖2
‖ξi‖2‖ξ̄i‖2

=
‖s− P

symp
A2k−2

(s)‖2
‖ei − P

symp
A2k−2

(ei)‖2
≤ 1.

(4.35)

Here, we use the fact that |Ω(ξi, ξ̄i)| = ‖ξi‖22 = ‖ξ̄i‖22 with the last inequality following
from the greedy algorithm which maximizes ei. Similarly we deduce that |ᾱi(s)| ≤ 1.

We write

ξj =

j∑
i=1

(
μj
iei + γji fi

)
, ξ̄j =

j∑
i=1

(
λj
iei + ηji fi,

)
, j = 1, 2, . . . (4.36)

with

μj
j = 1, γjj = 0,

μj
i =

j−1∑
l=i

(
−αl(fj)μ

l
i + ᾱl(fj)γ

l
i

)
, γji =

j−1∑
l=i

(
−αl(fj)γ

l
i + ᾱl(fj)μ

l
i

)
,

λj
i = −γji , ηji = μj

i ,

(4.37)

for j = 2, 3, . . . . By induction and using the bound in (4.35) we recover

μj
i , γ

j
i , λ

j
i , η

j
i ≤ 3j−i, for j ≥ i. (4.38)

Now let 2k be the dimension of the desired reduced space. By the definition of Kol-
mogorov n-width we observe that for any θ > 1 we can find a subspace W2k such that
dist(S,W2k) ≤ θd2k(S,R

n). Hence we can find vectors v1, . . . , vk, u1, . . . , uk ∈ W2k such
that

‖ei − vi‖2 ≤ θd2k(S,R
n),

‖fi − ui‖2 ≤ θd2k(S,R
n).

(4.39)

Now we construct a set of 2(k + 1) new vectors

ζj =

k+1∑
i=1

μj
ivi + γji ui, ζ̄j =

k+1∑
i=1

λj
ivi + ηji ui. (4.40)
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for j = 1, . . . , k + 1. Note that since ui and vi belong to W2k so does their linear
combination including all ζj and ζ̄j . We can use the inequality (4.38) to write

‖ξi − ζi‖2 ≤ 3iθd2k(S,R
n), ‖ξ̄i − ζ̄i‖2 ≤ 3iθd2k(S,R

n). (4.41)

Moreover since W2k is of dimension 2k we find κi, i = 1, . . . , 2(k + 1) such that

2(k+1)∑
i=1

κ2i = 1,
k+1∑
i=1

κiζi +
k+1∑
i=1

κi+k+1ζ̄i = 0. (4.42)

We have∥∥∥∥∥
k+1∑
i=1

κiξi +

k+1∑
i=1

κi+k+1ξ̄i

∥∥∥∥∥
2

=

∥∥∥∥∥
k+1∑
i=1

κi(ξi − ζi) +

k+1∑
i=1

κi+k+1(ξ̄i − ζ̄i)

∥∥∥∥∥
2

≤ 2 · 3k+1
√

2(k + 1)θd2k(S,R
n).

(4.43)

We know there exists 1 ≤ j ≤ 2k + 2 such that κj > 1/
√
2(k + 1). Without loss of

generality let us assume that j ≤ k + 1. This yields∥∥∥∥∥∥ξj + κ−1
j

k+1∑
i=1,i 	=j

κiξi + κ−1
j

k+1∑
i=1

κi+k+1ξ̄i

∥∥∥∥∥∥
2

≤ 4 · 3k+1(k + 1)θd2k(S,R
n). (4.44)

Define c = κ−1
j

∑k+1
i=1,i 	=j κiξi + κ−1

j

∑k+1
i=1 κi+k+1ξ̄i. Using that JT2nc is J2n-orthogonal to

ξj we recover

‖ξj‖2 ≤ ‖ξj‖2 + ‖c‖2 = Ω(ξj , J
T
2nξj) + Ω(c, JT2nc)

= Ω(ξj , J
T
2nξj) + Ω(c, JT2nc) + Ω(ξj , J

T
2nc) + Ω(c, JT2nξj)

= Ω(ξj + c, JT2n(ξj + c)) = ‖ξj + c‖2
(4.45)

Combining this with (4.44) yields

‖ξj‖2 ≤ 4 · 3k+1(k + 1)θd2k(S,R
n). (4.46)

Finally using the definition of ξj for all s ∈ S we have

‖s− P2(j−1)(s)‖2 ≤ ‖fj − P2(j−1)(fj)‖2 = ‖ξj‖2 ≤ 4 · 3k+1(k+ 1)θd2k(S,R
n) (4.47)

Hence, for any given λ > 1

‖s− P2k(s)‖2 ≤ ‖s− P2(j−1)(s)‖2 ≤ 4 · 3k+1(k + 1)θd2k(S,R
n). (4.48)

This establishes the following theorem.

Theorem 4.6. Let S be a compact subset of R2n with exponentially small Kolmogorov
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n-width dk ≤ c exp(−αk) with α > log 3. Then there exists β > 0 such that the symplectic
subspaces A2k generated by the greedy algorithm provide exponential approximation
properties such that

‖s− P
symp
A2k

(s)‖2 ≤ C exp(−βk) (4.49)

for all s ∈ S and some C > 0.

Note the convergence property in Theorem 4.6 does not in general hold when the
error in the Hamiltonian, introduced in (4.11), is used as an error indicator. However,
the evaluation of the projection error is often expensive. Therefore, the error in the
Hamiltonian can be a cheap surrogate. A numerical comparison between the two error
estimators is presented in Section 4.6.3 and also in [89].

4.5 Symplectic Discrete Empirical Interpolation Method (SDEIM)

In Section 3.5 we discussed the computational challenges associated with evaluating
nonlinear terms in the context of RB methods. In general, conventional methods, e.g.
EIM, destroy the symplectic structure of a Hamiltonian system. In this section we
discuss how such methods can be modified to accelerate the evaluation of nonlinear
terms, while preserving the symplectic structure.

Consider the Hamiltonian system (4.1) and its reduced system (4.10) equipped with a
symplectic transformation A. One can split the Hamiltonian function H = H1 +H2

such that ∇H1 = Lz and ∇H2 = g(z), where L is a constant matrix in R2n×2n and g is a
nonlinear function. Substituting this in (4.10) yields

d

dt
y = J2k A

TLA︸ ︷︷ ︸
L̃

y +A+
J2ng(Ay). (4.50)

Here, we used the fact that ∇yH1 = ATLA and Proposition 4.1. As discussed in
Section 3.5, the complexity of evaluating the nonlinear term still depends on n, the
size of the original system. To overcome this computational bottleneck we consider
the DEIM approximation for evaluating the nonlinear function g as

d

dt
y = J2kL̃y +A+

J2nV (P TV )−1P T g(Ay)︸ ︷︷ ︸
N(y)

, (4.51)

where V is a basis for the nonlinear snapshots Sg = [g(zi)]
Nt
i=1 and P is the index

matrix for interpolation in Algorithm 3.5. For a general choice of V the system (4.51)
is not guaranteed to be a Hamiltonian system, impacting long time accuracy and
stability. However, we can guarantee that (4.51) is a Hamiltonian system by choosing
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V = (A+)T . To see this, note that the system (4.51) is a Hamiltonian system if and only
if N(y) = J2k∇yH̄(y) for some scalar function H̄ . Also we have

g(Ay) = ∇zH2(z) = (A+)T∇yH2(Ay), (4.52)

Substituting this into N we obtain

N(y) = A+
J2nV (P TV )−1P T (A+)T∇yH2(Ay). (4.53)

Taking V = (A+)T yields

N(y) = A+
J2n(A

+)T∇yH2(Ay) = J2k∇yH2(Ay), (4.54)

since (A+)T is a symplectic matrix. Hence, V = (A+)T is a sufficient condition for
(4.51) to be Hamiltonian.

Regarding the construction of the projection space, suppose that we have already con-
structed a symplectic basis A = {e1, . . . , ek, f1, . . . fk} using the greedy algorithm. Note
that (A+)T is a symplectic basis and (A+)+ = A. Thus, we can move between these two
symplectic bases by simply using the transpose operator and the symplectic inverse
operator. Let Sg be the nonlinear snapshots. We form (A+)T = {e′1, . . . , e′k, f ′

1, . . . , f
′
k}

and use a greedy approach to add new basis vectors to (A+)T . At the i-th iteration of
the symplectic DEIM, we use (A+)T to approximate elements in Sg and choose the
vector that maximizes the error as the next basis vector

s∗ := argmax
s∈Sg

‖s− (A+)TA+s‖2. (4.55)

After applying the symplectic Gram-Schmidt on s∗, we update (A+)T using vectors

e′k+i+1 =
s∗

‖s∗‖2 , f ′
k+i+1 = J

T
2ne

′
k+i+1. (4.56)

Finally when (A+)T approximates elements Sg with the desired accuracy, we transpose
and symplectically invert (A+)T to obtain A. We summarize the symplectic DEIM
algorithm in Algorithm 4.2.

When the symplectic reduced basis is an ortho-symplectic basis of the form A =

[e1, . . . , ek, J
T
2ke1, . . . , J

T
2kek], Proposition 4.1 suggests that (A+)T = A. Therefore, A can

be directly enriched with nonlinear snapshots. This is also suggested in [81]. However,
when A is not orthonormal (when A is only symplectic) (A+)T �= A, and therefore,
the method proposed in [81] can no longer be applied. The symplectic DEIM in
Algorithm 4.2, on the other hand, can be modified to account for any symplectic basis
A. This feature is exploited in Section 5.5, where the reduced symplectic basis is no
longer orthonormal with respect to the Euclidean inner-product.
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4.5. Symplectic Discrete Empirical Interpolation Method (SDEIM)

Algorithm 4.2 the symplectic DEIM for extending a symplectic basis A2k

Input: nonlinear snapshots Sg, symplectic reduced basis A2k.

1: compute B2k := (A+
2k)

T = [e′1, . . . , e′k, J
T
2ne

′
1, . . . , J

T
2ne

′
k]

2: find s∗ := argmax
s∈Sg

‖s−BB+s‖2.

3: Apply symplectic orthonormalization on s∗ to obtain e′k+1.
4: Assemble B2k+2 = [e′1, . . . , e′k+1, J

T
2ne

′
1, . . . , J

T
2ne

′
k+1].

5: Compute A2k+2 = (B+)T .

Output: symplectic reduced basis A2k+2.

Note that Proposition 4.1 implies that (A+)T = A, therefore it suffices to ensure
that A is also a basis for Sg, the nonlinear snapshots. Suppose that we have already
constructed a symplectic basis E = {e1, . . . , ek, f1, . . . fk} using the symplectic greedy
in Algorithm 4.1. We seek to enrich it with the nonlinear snapshots. We can use the
projection error to identify the nonlinear snapshot that is worst approximated by
A = span(E) as

s∗ := arg max
s∈Sg

‖s−AA+s‖2. (4.57)

We then symplectically ortho-normalize s∗ to obtain ek+1 and fk+1 = JT2nek+1 and add
them to E. We can continue this process until E approximates the nonlinear snapshots
with the desired accuracy. Therefore, we may simply call Algorithm 4.1 while passing a
symplectic basis A with the nonlinear snapshots Sg as its arguments.

When using an implicit time integration scheme we face inefficiencies when evaluating
the Jacobian of nonlinear terms, as discussed in Section 3.5. We recall that a key
ingredient to a fast approximation of the Jacobian is that the interpolating index matrix
P , obtained in the DEIM approximation, commutes with the nonlinear function.
Nonlinear terms in Hamiltonian systems often take the from

g(z) = g(q, p) =

⎛
⎜⎜⎜⎜⎝

g1(q1, p1)

g2(q2, p2)
...

g2n(qn, pn)

⎞
⎟⎟⎟⎟⎠ , gi : R

2 → R, 1 ≤ i ≤ n. (4.58)

Thus, the interpolating index matrix, obtained by Algorithm 3.5 does not necessarily
commute with the function g. To overcome this, when index pi with pi ≤ n or pi > n is
chosen in Algorithm 3.5 we also include pi+n or pi−n, respectively. Simple calculations
verify that g and P then commute.

In case g is not of the form (4.58) one can use MDEIM [22, 79] to accelerate the assembly
of the Jacobian matrix.

59



Chapter 4. Symplectic Model Order Reduction

4.6 Numerical Results

In this section, we illustrate the performance of the greedy generation of a symplec-
tic basis. The parametric linear wave equation is considered to compare SVD based
methods with the greedy method. The symplectic model reduction of nonlinear sys-
tems is then illustrated by considering the parametric nonlinear Schrödinger equation.
Finally we discuss the numerical convergence of the greedy method introduced in
Algorithm 4.1.

4.6.1 Parametric Linear Wave Equation

Consider the parametric linear wave equation{
utt(x, t, ω) = κ(ω)uxx(x, t, ω),

u(x, 0) = u0(x),
(4.59)

where x belongs to a one-dimensional torus of length L, ω = (ω1, . . . , ω4) and

κ(ω) = c2

(
4∑

l=1

1

l2
ωl

)
. (4.60)

Here ωl ∈ [0, 1] for l = 1, . . . , 4 and c ∈ R is a constant number. By rewriting (4.59)
in canonical form, using the change of variable q = u and ∂q/∂t = p, we obtain the
symplectic form{

qt(x, t, ω) = p(x, t, ω),

pt(x, t, ω) = κ(ω)qxx(x, t, ω),
(4.61)

with the associated Hamiltonian

H(q, p, ω) =
1

2

∫ L

0
p2 + κ(ω)q2x dx. (4.62)

We discretize the torus into N equidistant points and define Δx = L/N , xi = iΔx,
qi = q(t, xi, ω) and pi = p(t, xi, ω) for i = 1, . . . , N . Furthermore, we discretize (4.61)
using a standard central finite differences scheme to obtain

d

dt
z = J2NLz, (4.63)

where z = (q, . . . , qN , pq, . . . , pn)
T and

L =

(
In 0N
0N κ(ω)Dxx

)
, (4.64)
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with Dxx the central finite differences matrix operator. The discrete Hamiltonian can
finally be written as

HΔx(z) =
Δx

2

N∑
i=1

(
p2i + κ(ω)

(qi+1 − qi)
2

2Δx2
+ κ(ω)

(qi − qi−1)
2

2Δx2

)
. (4.65)

The initial condition is given by

qi(0) = h(10× |xi − 1

2
|), pi = 0, i = 1, . . . , N (4.66)

where h(s) is the cubic spline function

h(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1− 3

2
s2 +

3

4
s3, 0 ≤ s ≤ 1,

1

4
(2− s)3, 1 < s ≤ 2,

0, s > 2.

(4.67)

This will result in waves propagating in both directions on the torus.

For numerical time integration we use the Störmer-Verlet scheme (2.36). As the Hamil-
tonian is separable, i.e. H(q, p) = U(q) +K(p), the Störmer-Verlet scheme becomes an
explicit time stepping scheme. The high-fidelity system uses the following parameter
set

Domain length L = 1

No. grid points N = 500

Space discretization size Δx = 0.002

Time discretization size Δt = 0.01

Wave speed c2 = 0.1

We compare the reduced system obtained by the greedy algorithm with the methods
based on SVD. To generate snapshots, we discretize the parameter space [0, 1]4 into in
total of 54 equidistant grid points. For the SVD based methods and POD, snapshots
are gathered in the snapshot matrices S, Scomb and Scomp, respectively, and the SVD
is performed to construct the reduced basis. The greedy method is applied following
Algorithm 4.1; as input, the tolerance for the error in the Hamiltonian is set to δ =

5× 10−3. All reduced systems are taken to have an identical size (k = 80 for POD and
k = 40 for the symplectic methods). We use the Störmer-Verlet scheme for symplectic
methods and a second order Runge-Kutta method for the POD. The choice of different
time integration routines is justified by the fact that the POD destroys the canonical
form of the original equations and a symplectic integrator cannot be applied. One can
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Figure 4.1 – The solution q at t = 0, t = 1 and t = 2 of the linear wave equation for
parameter value c = 0.1019 different from training parameters. Here, the solution of
the full system together with the solution of the POD, cotangent lift, complex SVD and
the greedy reduced system is shown.

alternatively use separate reduced subspaces for the potential and the momentum
spaces, which, however, is not a standard model reduction approach and requires
further analysis. Finally we transform the reduced solution into the high-fidelity space
for illustration purposes.

The cost is reduced by 50% in the offline stage when using the greedy method as
compared to SVD-based methods (cotangent lift and complex SVD method). This
is because the SVD-based methods require time integration of the full system for all
discrete parameter points, while the greedy method picks a number of parameters
from the parameter space.

Figure 4.1.(a) shows the solution of the linear wave equation for parameter values
(ω1, ω2, ω3, ω4) = (0.8456, 0.1320, 0.9328, 0.5809) or κ(ω) = 0.1019, chosen to be differ-
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Figure 4.2 – (a) The L2-error between the solution of the full system and the reduced
system for different model reduction methods for t ∈ [0, 30]. (b) Plot of the Hamiltonian
function for t ∈ [0, 30].

ent from training parameters, at t = 0, t = 1 and t = 2. While we see instability
and divergence from the exact solution for the POD reduced system, the symplectic
methods provide a good approximation of the full model.

The decay of the singular values for the POD are shown in Figure 4.5.(a). The decay of
the singular values suggests that a low dimensional solution manifold indeed exists.
However, since the linear subspace, constructed by the POD, is not symplectic, we
observe blow up of the Hamiltonian function in Figure 4.2.(b) and the instability of the
solution in Figure 4.1. The symplectic methods (using a reduced basis of the same size
as POD) preserve the Hamiltonian function as shown in Figure 4.2.(b).

Figure 4.2.(c) shows the L2-error between the solution of the full model and the re-
duced systems constructed by different methods. We note that the error for the POD
reduced system rapidly increases, confirming the instability of the reduced system. Fur-
thermore, the symplectic methods provide a better approximation since the geometric
structure of the original system is preserved. Although the greedy method constructs a
basis almost twice as fast compared to the SVD-based methods and the redulting basis
is not guaranteed to be optimal in L2, its accuracy is comparable. The cotangent lift
method provides a more accurate solution, on the other hand the cotangent lift basis
(4.16) takes a less general form and is usually computationally more demanding than
the greedy method.

For complex systems, were the solution of the full system is expensive, and for high
dimensional parameter domains, POD-based methods become impractical [51, 86].
However, the greedy method requires substantially fewer (proportional to the size of
the reduced basis) evaluation of the time integration of the original system.
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4.6.2 Nonlinear Schrödinger Equation

Let us consider the one-dimensional parametric nonlinear Schrödinger equation{
iut(t, x, ε) = −uxx(t, x, ε)− ε|u(t, x, ε)|2u(t, x, ε),
u(0, x) = u0(x),

(4.68)

where u is a complex valued wave function, i is the imaginary unit, | · | is the modulus
operator and ε is a parameter that belongs to the interval Γ = [0.9, 1.1]. We consider
periodic boundary conditions, i.e., x belongs to a one-dimensional torus of length L.
We consider the initial condition

u0(x) =

√
2

cosh(x− x0)
exp(i

c(x− x0)

2
), (4.69)

for a positive constant c. In quantum mechanics, the quantity |u(t, x)|2 represents the
probability of finding the system in state x at time t. For the choice of ε = 1, |u(x, t)|
becomes a solitary wave, and the initial condition will be transported in the positive
x direction with a constant speed. For other choices of ε, the solution comprises an
ensemble of solitary waves, moving in either direction [33].

By introducing the real and imaginary variables u = p + iq, we can rewrite (4.68) in
canonical form as{

qt = pxx + ε(q2 + p2)p,

pt = −qxx − ε(q2 + p2)q,
(4.70)

with the Hamiltonian function

H(q, p) =

∫ L

0
(q2x + p2x) +

ε

2
(q2 + p2)2 dx. (4.71)

We discretize the torus into N equidistant points and take Δx = L/N , xi = iΔx,
qi = q(t, xi, ε) and pi = p(t, xi, ω) for i = 1, . . . , N . A central finite differences scheme is
used to discretize (4.70) as

d

dt
z = J2NLz + J2Ng(z). (4.72)

Here z = (q1, . . . , qN , p1, . . . , pn)
T and

L =

(
Dxx 0N
0N Dxx

)
. (4.73)
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Here g is a vector valued nonlinear function defined as

g(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(q21 + p21)q1
...

(q2N + p2N )qN
(q21 + p21)p1

...
(q2N + p2N )pN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.74)

We discretize the Hamiltonian to obtain

HΔx(z) = Δx
N∑
i=1

(
qiqi−1 − q2i

Δx2
+

pipi−1 − p2i
Δx2

+
ε

4
(p2i + q2i )

2

)
, (4.75)

and use a Störmer-Verlet (2.36) scheme for time integration. Since the Hamiltonian
function (4.75) is non-separable, this scheme is implicit. Hence, in each time iteration,
a system of nonlinear equations is solved using Newton’s iteration. We summarize the
physical and numerical parameters for the full model in the following table

Domain length L = 2π/l

Domain scaling factor l = 0.11

wave speed c = 1

No. grid points N = 256

Space discretization size Δx = 0.2231

Time discretization size Δt = 0.01

Regarding computation of the nonlinear terms of reduced systems, we compare the
DEIM with the symplectic DEIM. For generation of the DEIM we apply Algorithm 3.5
to the set of nonlinear snapshots. The method discussed in Section 4.5 is used to
construct a reduced basis appropriate for the symplectic DEIM. The tolerance for the
projection error is set to δ = 10−4.

We compare the reduced system, obtained using the greedy algorithm, with that
obtained by the cotangent lift, the complex SVD, DEIM, the symplectic DEIM and also
POD. For the SVD-based methods, we discretize the parameter space [0.9, 1.1] into M =

500 equidistant grid points across the discrete parameter space ΓM = {ε1, . . . , εM},
and recover trajectory snapshots for each εi for i = 1, . . . ,M in the snapshots matrix
S. All reduced systems are taken to have identical sizes (k = 90 for the symplectic
methods and k = 180 for the POD method). Following Algorithm 4.1 we construct the
reduced system using the same discrete parameter space ΓM . The tolerance for the
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Figure 4.3 – The solution |u(t, x)| =
√

q2 + p2 at t = 0, t = 10 and t = 20 of the Nonlinear
Schrödinger equation for parameter value ε = 1.0932. Here the solution of the full
system, together with the solution of the POD, cotangent lift, complex SVD and the
greedy reduced system, is shown.

error in the Hamiltonian is set to δ = 10−3. Moreover, for DEIM and symplectic DEIM,
we construct bases of size k′ = 80. Note that the reduced system, generated in the
symplectic DEIM, will be of size k + k′ = 170.

The cost of the offline stage is reduced by 80% when using the greedy method for
constructing a symplectic basis of size k = 90, as compared to the SVD-based methods.
The online stage, i.e., time integration for a new parameter in Γ, is generally more
than 3 times faster than for the original system. We point out that the efficiency of the
reduced systems are implementation and platform dependent and we expect further
reduction as the size of the problem increases.

Figure 4.3 shows the solution of the Schrödinger equation for parameter value ε =

1.0932 at t = 0, t = 10 and t = 20. We first compare the reduced system obtained by
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Figure 4.4 – (a) Plot of the Hamiltonian function for t ∈ [0, 30]. (b) The L2-error between
the solution of the full system and the reduced system for different model reduction
methods for t ∈ [0, 30].

the greedy algorithm with the POD, the cotangent lift, and the complex SVD method.
The size of the reduced systems are taken identical for all methods (k = 180 for POD
and k = 90 for the rest). Although the decay of the singular values in Figure 4.5.(b)
suggests that the accuracy of the POD reduced system should be comparable to that
of the other methods, we observe signs of instabilities in the solution at t = 10. The
greedy, the cotangent lift and the complex SVD method, on the other hand, generate a
stable reduced system that accurately approximates the solution of the full model.

In Figure 4.4.(b) we observe that the symplectic methods preserve the Hamiltonian
function, unlike the POD and the DEIM methods. We emphasise that the use of the
reduced basis, obtained by the greedy, with the DEIM (purple line) does not preserve
the symplectic structure as suggested in this figure.

Figure 4.4.(c) illustrates the L2-error between the solution of the full model with the
reduced systems, generated by different methods. We first observe that symplectic
methods yield a lower computational error when compared to non-symplectic meth-
ods. Secondly, we observe that although the reduced systems from the cotangent lift
and the complex SVD are of the same size, their accuracy differs by an order of magni-
tude. We notice that the greedy algorithm is slightly less accurate than the cotangent
lift method while its offline computational cost is reduced by 80% when compared to
the cotangent lift. Lastly we notice that the combination of the greedy reduced basis
and DEIM yields large errors in the solution while the solution using the symplectic
DEIM is very accurate. The symplectic DEIM is even more accurate than the greedy
itself since it has been enriched by the nonlinear snapshots.
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Figure 4.5 – (a) Convergence of the greedy method for the wave equation. (b) Conver-
gence of the greedy method for the nonlinear Schrödinger equation equation.

4.6.3 Numerical Convergence

In this section we discuss the numerical convergence of the symplectic greedy method
introduced in Section 4.3. The exponential convergence properties of the conventional
greedy was discussed in Section 3.3. Theorem 4.6 suggests that the symplectic greedy
method has similar properties. To illustrate this we compare the convergence of the
conventional greedy with the convergence of the symplectic greedy method through
the numerical simulations in Sections 4.6.1 and 4.6.2.

The decay of the singular values of the snapshot matrix for the parametric wave equa-
tion and the nonlinear Schrödinger equation are given in Figure 4.5. The decay rate of
the singular values is a strong indicator for the decay rate of the Kolmogorov n-width
of the solution manifold. We expect that the conventional greedy method and the
symplectic greedy method provide a similar rate in the decay of the error.

Figure 4.5 shows the maximum L2-error between the original system and the reduced
system at each iteration of the different greedy methods. In this figure we find the
conventional greedy with the orthogonal projection error as a basis selection criterion
(orange), the symplectic greedy method with a symplectic projection error as a basis
selection criterion (green), and the symplectic greedy method with energy loss ΔH as
a basis selection criterion (red).

We observe that the decay rate of the error for the greedy method with the orthogonal
projection and the greedy with the symplectic projection is similar to the decay of the
singular values. This matches our expectation from Theorem 4.6. We also notice that
the greedy method with the loss in Hamiltonian provides an excellent error indication
as a basis selection criterion. However, as discussed in Section 4.4, the error in the
Hamiltonian can sometimes fail to identify the best possible snapshot, e.g., when the
initial condition is included in the reduced basis.
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4.7 Conclusion

In this chapter, we have presented a greedy approach for the construction of a reduced
system that preserves the geometric structure of Hamiltonian systems. An iteration
of the greedy method comprises searching the parameter space using an error esti-
mator,e.g. the error in the Hamiltonian, to find the best basis vectors that increase
the overall accuracy of the reduced basis. We argue that for a compact subset with
exponentially small Kolmogorov n-width we recover exponentially fast convergence
of the greedy algorithm. For the fast approximation of nonlinear terms, the basis
obtained by the greedy was combined with a symplectic DEIM to construct a reduced
system with a Hamiltonian that is arbitrary close to the Hamiltonian of the original
system.

The numerical results demonstrate that the greedy method can save substantial com-
putational cost in the offline stage as compared to alternative SVD-based techniques.
Furthermore, since the reduced system obtained by the greedy method is Hamiltonian,
the greedy method yields a stable reduced system. The symplectic DEIM effectively
reduces the computational cost of approximate evaluation of nonlinear terms while
preserving the stability and structure. Hence, the greedy method is an efficient model
reduction technique that provides an accurate and stable reduced system for large-
scale parametric Hamiltonian problems.
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5 Symplectic Model Order Reduction
With a Weighted Inner Product

In the previous chapters we discussed how MOR methods can substantially reduce the
computational complexity of the problem by constructing a reduced configuration
space. Exploration of the reduced space is then possible with significant acceleration
[51, 47].

During the past decade, RB methods have demonstrated substantial lowering of the
computational costs of solving elliptic and parabolic differential equations [55, 57].
However, as seen in Chapter 4, Development of MOR for hyperbolic problems remains
a challenge. Such problems often arise from a set of conservation laws and invariants
and this intrinsic structure is lost during MOR, resulting in a qualitatively wrong, and
sometimes unstable reduced system [3].

Recently, the construction of RB methods that conserve intrinsic structures has at-
tracted attention [2, 60, 35, 10, 23, 9, 81]. Structure preservation in MOR not only results
in a physically meaningful reduced system, but can also enhance the robustness and
stability of the reduced system. In system theory, conservation of passivity can be
found in the work of [84, 45]. Energy preserving and inf-sup stable methods for finite
element methods (FEM) are developed in [35, 6]. Also, a conservative MOR technique
for finite-volume methods is proposed in [21].

Moreover, the simulation of reduced models incurs solution errors and the estimation
of this error is essential in applications of MOR [49, 94, 36]. Finding tight error bounds
for a general reduced system has shown to be computationally expensive and often
impractical. Therefore, when one is interested in a cheap surrogate for the error or
when the conserved quantity is an output of the system, it becomes imperative to
preserve system structures of the reduced model.

In the context of Lagrangian and Hamiltonian systems, recent work provides a promis-
ing approach to the construction of robust and stable reduced systems. Carlberg,
Tuminaro, and Boggs [23] suggest that a reduced order model of a Lagrangian system
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be identified by an approximate Lagrangian on a reduced order configuration space.
This allows the reduced system to inherit the geometric structure of the original system.
A similar approach has been adopted in the work of Peng and Mohseni [81] and in the
method discussed in Chapter 4 for Hamiltonian systems. They construct a low-order
symplectic linear vector space, i.e. a vector space equipped with a symplectic 2-form,
as the reduced space. Once the symplectic reduced space is generated, a symplectic
projection results in a physically meaningful reduced system. A suitable time-stepping
scheme then ensures preservation of the Hamiltonian structure of the reduced system.
It is shown in [2, 81] that this approach preserves the overall dynamics of the original
system and enhances the stability of the reduced system. Despite the success of these
methods for MOR of Hamiltonian systems, these techniques are only compatible with
the Euclidean inner product. Therefore, the computational structures that arise from a
natural inner product of a problem will be lost during MOR.

Weak formulations and inner-products, defined on a Hilbert space, are at the core of
the error analysis of many numerical methods for solving partial differential equations.
Therefore, it is natural to seek MOR methods that consider such features. At the
discrete level, these features often require a Euclidean vector space to be equipped
with a generalized inner product, associated with a weight matrix X. Many works
enabled conventional MOR techniques to be compatible with such inner products
[97]. However, a MOR method that simultaneously preserves the symplectic symmetry
of Hamiltonian systems remains unknown.

In this chapter, we seek to combine a classical MOR method, derived with respect to a
weight matrix, with the symplectic MOR. A reduced system is constructed by orthogo-
nally project a generalized Hamiltonian system onto the reduced space, with respect to
a weighted inner product. The reduced system, however, carries the Hamiltonian struc-
ture and also the symplectic symmetry. It is shown that the new method can be viewed
as the natural extension of to the one discussed in Chapter 4, and therefore retains
the structure preserving features, e.g. symplecticity and stability. We also present a
greedy approach for the construction of a generalized symplectic basis for the reduced
system. Structured matrices are in general not norm bounded [61]. However, we show
that the condition number of the basis generated by the greedy method is bounded by
the condition number of the weight matrix X. Finally, to accelerate the evaluation of
nonlinear terms in the reduced system, we present a variation of the discrete empirical
interpolation method (DEIM) that preserves the symplectic structure of the reduced
system.

The main contribution of this chapter is presenting a symplectic MOR technique that
minimizes the model reduction error with respect to a general norm associated with a
positive definite weight matrix X. A greedy method is proposed for the construction
of a reduced basis that is both symplectic and ortho-normal with respect to the X-
norm. Furthermore, the DEIM is modified to efficiently evaluate nonlinear terms while
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preserving the symplectic structure of the reduced system.

5.1 Generalization of the Symplectic Galerkin Projection

The error analysis of methods for solving partial differential equations often requires
the use of a weighted inner product. This is particularly important when dealing with
Hamiltonian systems, where the system energy induces a norm that is fundamental
to the dynamics of the system. Furthermore, as we discussed in Section 3.2, the
projection operator associated to an RB method is closely related to the inner-product
defined on the high-fidelity space. We saw how a Galerkin projection operator can be
constructed using a general inner-product in Section 3.2.2. However, the symplectic
Galerkin projection introduced in Chapter 4 is only compatible with the Euclidean
inner-product.

Recall the formulation of a Hamiltonian system defined on a 2n-dimensional sym-
plectic linear vector space (Z,Ω), Z ∼= R2n, with a canonical basis Z = {ei, fi}ni=1

⎧⎨
⎩

d

dt
z = J2n∇zH(z),

z(0) = z0.
(5.1)

Here, H : Z → R is the Hamiltonian and z ∈ Z is the state vector. Suppose that Z is
equipped with an inner-product < ·, · >X : Z × Z → R such that < a, b >X= aTXb, for
all a, b ∈ Z and some symmetric and positive-definite matrix X. Z is not in general
orthonormal with respect to <,>X . As the matrix form of Ω is J2n, Corollary 2.13
implies that Z is orthonormal with respect to the Euclidean inner product. Note that
z ∈ Z implies that we can find αi, α

′
i ∈ R, for i = 1, . . . , n, such that z = αiei + α′

ifi. It
yields

z = αiei + α′
ifi = αiX

1/2X−1/2ei +X1/2X−1/2α′
ifi. (5.2)

By defining basis vectors ẽi = X−1/2ei, ẽi = X−1/2fi, and Z̃ = {ẽi, f̃i}ni=1 we recover

z = X1/2
(
αiẽi + α′

if̃i

)
= X1/2z̃. (5.3)

where z̃ = αiẽi + α′
if̃i. We verify that Z̃ forms an orthonormal basis with respect to

< ·, · >X

< ẽi, f̃j >X= ẽTi Xf̃j = eTi X
−1/2XX−1/2fj = eTi fj = 0. (5.4)

Here we used the orthonormality of Z. Similarly we can show that < ẽi, ẽj >X= δij
and < f̃i, f̃j >X= δij , for i = 1, . . . , n. Furthermore, we can verify that Z̃ is a symplectic
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basis with respect to the symplectic form ΩJ2n(a, b) = aTJ2nb, with J2n = X1/2J2nX
1/2

ΩJ2n(ẽi, f̃j) = ẽTi J2nf̃j = eTi X
−1/2X1/2

J2nX
1/2X−1/2fj = eTi J2nfj = δij . (5.5)

Here we used symplecticity 1 ofZ with respect to J2n. We can also verify thatΩJ2n(ẽi, ẽj) =

ΩJ2n(f̃i, f̃j) = 0, for i = 1, . . . , n. Using the state transformation z = X1/2z̃, the Hamil-
tonian system (5.1) takes the form 2

⎧⎨
⎩

d

dt
z̃ = J−1

2n ∇z̃HX(z̃),

z̃(0) = X−1/2z0.
(5.6)

where HX = −H(X1/2z̃).

Definition 5.1. A matrix Ã ∈ R2n×2k is called J2n-symplectic, if it transforms J2n into
the standard symplectic matrix J2k, i.e.,

ÃTJ2nÃ = J2k. (5.7)

Definition 5.2. The symplectic inverse of a J2n-symplectic matrix Ã ∈ R2n×2k is defined
as

Ã+ := J
T
2kÃ

TJ2n. (5.8)

Note that since this definition is an extension of the symplectic inverse defined in Sec-
tion 4.1, we may use the “+” superscript for both. The following theorem summarizes
the properties of the symplectic inverse in this generalized setting.

Proposition 5.1. Let Ã ∈ R2n×2k be a J2n-symplectic basis where J2n ∈ R2n×2n is a full
rank and skew-symmetric matrix. Furthermore, suppose that Ã+ = JT2kÃ

TJ2n is the
symplectic inverse. Then the following holds:

(a) Ã+Ã = I2k.

(b) (Ã+)T is J−1
2n -symplectic.

(c)

(((
Ã+
)T)+

)T

= Ã.

1ΩJ2n(ei, fi) = eTi J2nfj
2substituting z = X1/2z̃ in (5.1) yields

d

dt
X1/2z̃ = J2n∇zH(X1/2z̃) = −J

−1
2nX

−1/2∇z̃H(X1/2z̃)

=⇒ d

dt
z̃ = X−1/2

J
−1
2nX

−1/2∇z̃(−H(X1/2z̃))
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(d) Let J2n = X1/2J2nX
1/2. Then Ã is ortho-normal with respect to the <,>X , if and

only if (Ã+)T is ortho-normal with respect to the <,>X−1 .

Proof. It is straightforward to show all statements using the definition of a symplectic
basis.

Note statement (d) in Proposition 4.1 does not hold in the generalized setting, i.e., when
Ã is orthonormal with respect to <,>X , (Ã+)T �= Ã. This is particularly important
when constructing a basis for nonlinear terms in Section 5.5.

In this chapter, we indicate a non-standard symplectic matrix/transformation/sub-
space with “~” overscript. We are now ready to motivate the choice of the basis Z̃ in
(5.6).

Lemma 5.2. A full rank J2n-symplectic linear transformation Ã ∈ R2n×2n transforms
(5.6) into the standard Hamiltonian form.

Proof. Let Ã ∈ R2n×2n be a J2n-symplectic mapping. We define the state transforma-
tion z̃ = Ãy. Note that since Ã is a square matrix, we can indeed require this relation to
be an equality. This transforms (5.6) into

d

dt
y = Ã+J−1

2n (Ã+)T∇yHX(Ãy). (5.9)

However, Proposition 5.1 indicates that (Ã+)T is J−1
2n -symplectic, thus,

d

dt
y = J2n∇yHX(Ãy). (5.10)

Note that even though (5.1) and (5.10) are both in the standard form, they are not
identical. Furthermore, the form of (5.6) is preferred from the MOR standpoint, since
an orthonormal basis with respect to <,>X can be constructed such that it preserves
the Hamiltonian form (Lemma 5.2).

Suppose that a 2k-dimensional linear vector space Ã2k, with k � n, is provided such
that it approximates well the solution manifold MH of (5.6). Let Ẽ = {ẽi, f̃i}ki=1 be the
basis for this subspace and construct the matrix

Ã2k = [ẽ1, . . . , ẽk, f̃1, . . . , f̃k] ∈ R
2n×2k. (5.11)

We require Ã2k be a J2n-symplectic basis and approximate a solution to (5.6) as z̃ ≈
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Ã2ky to write

Ã2k
d

dt
y = J−1

2n (Ã+
2k)

T∇yHX(Ã2ky) + J−1
2n r(z). (5.12)

Assuming that the error vector r is symplectically orthogonal to Ã2k and using Lemma 5.2,
we recover⎧⎨

⎩
d

dt
y = J2k∇yHX(Ã2ky),

y(0) = Ã+
2kz̃0.

(5.13)

The projection operator that projects members of Z̃ onto Ã2k is the generalized sym-
plectic Galerkin projection and is defined as

P
symp
X,Ã2k

(z̃) = Ã2kÃ
+
2kz̃. (5.14)

Finally, as the final goal is to approximate z, the solution to (5.1), we write⎧⎨
⎩

d

dt
y = J2k∇yH̃(y),

y(0) = J
T
2nA

TXJ2nz0.
(5.15)

Where A2k = X−1/2Ã2k and H̃(y) = −H(XA2ky) is the reduced Hamiltonian. Accord-
ingly, the projection operator P symp

X,A2k
: Z → A2k can be written as

P
symp
X,A2k

(z) = X−1/2Ã2kÃ
+
2kX

1/2z = A2kJ
T
2kA

T
2kXJ2nXz. (5.16)

We can check that P symp
X,A2k

is indeed a projection operator

P
symp
X,A2k

◦ P symp
X,A2k

= A2k J
T
2kA

T
2kXJ2nXA2k︸ ︷︷ ︸
=Ã+Ã=I2k

J
T
2kA

T
2kXJ2nX = P

symp
X,A2k

(5.17)

Sections 5.2 and 5.4 discuss how to efficiently construct the reduced basis A2k.

5.2 Proper Symplectic Decomposition Revisited

Let S be the snapshot matrix of the Hamiltonian system (5.6). Similar to the approach
presented in Sections 3.2 and 4.2, we seek to minimize the projection error with
respect to the P

symp
X,A , defined in (5.16), and the X-norm, i.e., finding the solution to the

minimization

minimize
A∈R2n×2k,s∈S

∑
s∈S

‖s− P
symp
X,A (s)‖2X ,

subject to J
T
2kA

TXJ2nXA = I2k.

(5.18)
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Here, the constraint ensures that P symp
X,A is a projection operator, see (5.17). It follows

∑
s∈S

‖s− P
symp
X,A (s)‖2X =

∑
s∈S

‖s−AJT2kA
TXJ2nXs‖2X

=
∑
s∈S

‖X1/2s−X1/2AJT2kA
TXJ2nXs‖22

= ‖X1/2S −X1/2AJT2kA
TXJ2nXS‖2F

= ‖S̃ − ÃÃ+S̃‖2F .

(5.19)

Here S̃ = X1/2S, Ã = X1/2A and Ã+ = JT2kÃ
TJ2n is the symplectic inverse of Ã with

respect to the skew-symmetric matrix J2n = X1/2J2nX
1/2, introduced in Section 5.1.

With this notation, the constraint in (5.18) can be reformulated as Ã+Ã = I2k which is
equivalent to ÃTJ2nÃ = J2k. In other words, this condition implies that Ã has to be a
J2n-symplectic matrix. Finally we can rewrite the minimization (5.18) as

minimize
Ã∈R2n×2k

‖S̃ − P
symp
X,Ã

(S̃)‖F ,

subject to ÃTJ2nÃ = J2k.
(5.20)

where P
symp
X,Ã

= ÃÃ+ is the symplectic projection with respect to the X-norm onto A,

the column span of A. At first glance, the minimization (5.20) looks similar to (4.15).
However, since Ã is J2n-symplectic, and the projection operator depends on X, we
need to seek an alternative approach to find a near optimal solution to (5.20).

Direct approaches for solving (5.20) are impractical. Furthermore, there are no known
SVD-type methods to solve (5.20). However, the greedy generation of the symplectic
basis can be generalized to generate a near optimal basis Ã. The generalized greedy
method is discussed in Section 5.4.

5.3 Stability Conservation

We discussed in Section 4.1 that a Hamiltonian reduced system, constructed by the
projection P

symp
I,A , preserves the stability of stable equilibrium points of (4.10), and

therefore, preserves the overall dynamics. In this section, we establish that the stability
of the equilibrium points is also conserved using the projection operator P symp

X,Ã
.

Theorem 5.3. Consider a Hamiltonian system of the form (5.1) with a Hamiltonian H ∈
C2 together with the reduced system (5.15). Suppose that ze is a strict local minimum
of H and let S be the open set defined in Lemma 4.4. If we can find an open ball
neighborhood S of ze such that Range(XA) ∩ S �= ∅, then the reduced system (5.15) has
a stable equilibrium point in Range(XA) ∩ S.

Proof. Since ze is a local minimum of H , smoothness of H implies that ∇zH(ze) = 0,
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and therefore ze is a Lyapunov stable point for (5.1).

Let SA = Range(XA)∩S. Since Range(XA) is a linear vector space, then SA is an open
set. Furthermore, for any z ∈ SA, H(z) < c.

We now show that H|SA
attains its minimum inside SA. Let cmin = infz∈SA

H(z). cmin

exists since H has a minimum on S. We can find a sequence {H(zi)}∞i=1, with zi ∈ SA,
such that H(zi) → cmin < c. This implies that zi → z0, for some z0 ∈ SA, since H ∈ C2.
Note that SA is bounded since S is bounded. However, z0 does not belong to ∂SA since
infz∈∂S W (z) = c > cmin. Therefore z0 ∈ SA.

We claim that ye = JT2kA
TXJ2nz0 is a stable equilibrium point for the reduced system

(5.15). Let W̃ (y) = −H̃(y) = H(XAy). Note that W̃ attains its local minimum at ye.
Furthermore, ∇W̃ (ye) = 0. Also we have

∇2W̃ = ATX∇2HXA (5.21)

is a positive definite matrix. Finally, since the reduced system is a Hamiltonian system,
Corollary 2.11 implies that any trajectory ϕt of (5.15) satisfies d

dtW̃ (ϕt) = 0. Therefore
W̃ is a Lyapunov function for (5.15) and ye is a stable equilibrium point for (5.15), in
the Lyapunov sense.

A reduced basis that is constructed accurate enough that satisfy the conditions in
Theorem 5.3, guarantees to preserve the stability of the stable equilibrium points, and
therefore, preserves the overall dynamics of the high-fidelity system.

5.4 Greedy Generation of a J2n-Symplectic Basis

In this section we modify the greedy algorithm introduced in Section 4.3 to construct
a J2n-symplectic basis. We recall that ortho-normalization is an essential step in
greedy approaches to basis generation. Here, we summarize a variation of the GS
orthogonalization process, known as the symplectic GS process.

Suppose that ΩJ2n is a symplectic form defined on Z = R2n such that ΩJ2n(x, y) =

xTJ2ny, for all x, y ∈ R2n and some full rank and skew-symmetric matrix J2n =

X1/2J2nX
1/2. Let Ẽ2k = {ẽi, T−1(ẽi)}ki=1 be an ortho-symplectic basis with respect

to <,>X and ΩJ2n , where the linear transformation T is defined in Proposition 2.12. It
can be verified that T−1(z) = X−1/2JT2nX

1/2z. Furthermore, let Ã2k be the matrix that
contains these vectors in its columns and Ã2k the space spanned by columns of Ã2k.
We seek to add z �∈ Ã2k to Ã2k to enhance the overall accuracy of the reduced basis
measured in the L∞ norm. We J2n-orthogonalize z with respect to the basis vectors in
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Ẽ2k, i.e., we construct the vector

ẑ = z − P
symp
X,Ã2k

(z). (5.22)

Let us introduce ẽk+1 = ẑ/‖ẑ‖X . According to Proposition 2.12, the next pair of basis
vectors {ẽk+1, T

−1(ẽk+1)} are ortho-symplectic to Ẽ2k. Finally, the basis generated at
the (k + 1)-th step of the greedy method is Ẽ2k+2 = Ẽ2k ∪ {ẽk+1, T

−1(ẽk+1)} and the
corresponding matrix is assembled as

Ã2k+2 = [ẽ1, . . . , ẽk+1, T
−1(ẽ1), . . . , T

−1(ẽk+1)]. (5.23)

We note that the symplectic GS orthogonalization process is chosen due to its simplicity.
However, in problems where there is a need for a large basis, this process might be
impractical. In such cases, one may use a backward stable routine, e.g. the isotropic
Arnoldi method or the isotropic Lanczos method [72].

It is well known that a symplectic basis, in general, is not norm bounded [61]. The
following theorem guarantees that the greedy method for generating a J2n-symplectic
basis yields a bounded basis.

Theorem 5.4. The basis generated by the greedy method for constructing a J2n-symplectic
basis is orthonormal with respect to the X-norm.

Proof. Let Ã2k = [ẽ1, . . . , ẽk, T
−1(ẽ1), . . . , T

−1(ẽk)] be the J2n-symplectic basis gener-
ated at the kth step of the greedy method. Using the fact that Ã2k is J2n-symplectic,
one can check that

〈ẽi, ẽj〉X =
〈
T−1(ẽi), T

−1(ẽj)
〉
X

= ΩJ2n(ẽi, T
−1(ẽj)) = δi,j , i, j = 1, . . . , k, (5.24)

and

〈
ẽi, T

−1(ẽj)
〉
X

= ΩJ2n(ẽi, ẽj) = 0 i, j = 1, . . . , k, (5.25)

where δi,j is the Kronecker delta function. This ensures that ÃT
2kXÃ2k = I2k, i.e., Ã2k is

an ortho-normal basis with respect to the X-norm.

We note that if we take X = I2n, then the greedy process generates a J2n- symplectic
basis. With this choice, the greedy method discussed reduces to the greedy process
discussed in Section 4.3. Therefore, the symplectic model reduction with a weight
matrix X is a generalization of the method discussed in Chapter 4.

We notice that X1/2 does not explicitly appear in the reduced Hamiltonian system
(5.15). Therefore, it is desirable to compute A2k = X−1/2Ã2k without requiring the
computation of the matrix square root of X. It is easily checked that the matrix
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B2k := X1/2Ã2k = XA2k is J2n-symplectic and orthonormal. We can modify the
J2n-orthogonalization to obtain a J2n-orthogonalization, i.e., we seek α ∈ R2k such
that

ΩJ2n (w +B2kα, ȳ) = 0, ∀ȳ ∈ colspan(B2k), (5.26)

where w = X1/2z. From Chapter 4 we know that (5.26) has the unique solution
αi = −ΩJ2n(z, J

T
2nêi) for i ≤ k and αi = ΩJ2n(z, êi) for i > k, where êi is the ith column

vector of B2k. Furthermore, we take

êk+1 = ẑ/‖ẑ‖2, ẑ = w +B2kα, (5.27)

and the next basis matrix is assembled as

B2k+2 = [ê1, . . . , êk+1, J
T
2nê1, . . . , J

T
2nêk+1]. (5.28)

One can recover ek+1 from the relation ek+1 = X−1/2êk+1. However, since we are
interested in the matrix A2k+2 and not Ã2k+2, we can solve the system

XA2k+2 = B2k+2, (5.29)

for A2k+2. This eliminates the need to compute of X1/2.

To identify the best vectors to be added to a set of basis vectors, we may use error
functions similar to those introduced in Chapter 4. The projection error can be used to
identify the temporal snapshot that is worst approximated by a given basis Ã2k:

zk+1 := arg max
z∈{z(ti)}Nt

i=1

‖z − P
symp
X,A (z)‖X , (5.30)

where P
symp
X,A is defined in (5.16). Alternatively we can use the loss in the Hamiltonian

(4.13) for parameter dependent problems. We summarize the greedy method for
generating a J2n-symplectic matrix in Algorithm 5.1.

It was discussed in Section 4.4 that under natural assumptions on the solution manifold
of a Hamiltonian system, the symplectic greedy method for symplectic basis generation
converges exponentially fast. We expect the generalized greedy method, equipped
with the error function (5.30), to converge as fast, since the X-norm is topologically
equivalent to the standard Euclidean norm [43], for a full rank matrix X.

5.5 Efficient Evaluation of Nonlinear Terms

As discussed previously, the evaluation of the nonlinear term in (5.15) retains a compu-
tational complexity proportional to the size of the full order system (5.1). To overcome
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Algorithm 5.1 the generalized symplectic greedy for generating a symplectic reduced
basis
Input: weight matrix X, parameter space P, error indicator function η , symplectic
reduced basis A2k.

1: find μ∗ := arg max
μ∈P

η(μ).

2: compute the temporal snapshots St,μ∗ .
3: Find the snapshot with maximum projection error

z := arg max
s∈St,μk+1

‖s− P
symp
X,A2k

(s)‖X .

4: compute ẑ = Xz and B2k = XA2k.
5: apply J2n-orthonormalization on ẑ to obtain êk+1.
6: solve Xek+1 = êk+1 and Xfk+1 = JT2nêk+1 for ek+1 and fk+1.
7: assemble

A2k+2 = [e1, . . . , ek+1, f1, . . . , fk+1].

Output: symplectic reduced basis A2k+2.

this, we take an approach similar to that in Section 4.5. Let H(z) = H1(z) +H2(z) such
that ∇zH1(z) = Lz, for some L ∈ R2n×2n and ∇zH2(z) = g(z), where g : R2n → R2n

is a vector valued function. We use a J2n-symplectic reduced basis Ã to construct a
reduced Hamiltonian system from (5.6) as

ẏ = Ã+X−1/2
J2n∇zH1(z) + Ã+X−1/2

J2n∇zH2(z)

= Ã+X−1/2
J2nX

−1/2(Ã+)T∇yH1(X
1/2Ãy) + Ã+X−1/2

J2n∇zH2(z)

= −J2kA
TXLXAy + Ã+X−1/2

J2ng(z).

(5.31)

Here we used ∇yH1(X
1/2Ãy) = ATXLXAy. The matrix Lr := ATXLXA can be

computed in the offline phase. To accelerate the evaluation of the nonlinear term, we
apply the DEIM on g(z) to obtain

ẏ = −J2kLry + Ã+X−1/2
J2nU(P TU)−1P T g(XAy). (5.32)

Here U is a basis for the nonlinear snapshots, and P is the interpolating index matrix
(see Sections 3.5 and 4.5). For a general choice of U , the reduced system (5.32) does not
maintain a Hamiltonian form. Note that g(z) = ∇zH2(z) = X−1/2(Ã+)T∇yH2(X

1/2Ãy).
Substituting this into (5.32) yields

ẏ = −J2kLry + Ã+X−1/2
J2nU(P TU)−1P TX−1/2(Ã+)T∇yH2(X

1/2Ãy). (5.33)
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Freedom in the choice of the basis U allows us to require U = X−1/2(Ã+)T which
reduces the expression in (5.33) to

ẏ = −J2kLry − J2k∇yH2(X
1/2Ãy). (5.34)

This is a Hamiltonian function identified by the reduced Hamiltonian H̃ = −1
2y

TLry−
H2(X

1/2Ãy). The reduced system yields{
ẏ(t) = −J2kLry − J2k(P

T
J
T
2nXAJ2k)

−1P T g(z),

y(0) = J
T
2kA

TXJ2nz0.
(5.35)

Let us now discuss how to ensure that X−1/2(Ã+)T is a basis for the nonlinear snap-

shots. Note that if z ∈ colspan
(
X−1/2(Ã+)T

)
then X1/2z ∈ colspan

(
(Ã+)T

)
. There-

fore, it is sufficient to require (Ã+)T to be a basis for X1/2St,μ, the nonlinear snapshots.
Proposition 5.1 suggests that (Ã+)T is a J−1

2n -symplectic basis and that the transforma-
tion between Ã and (Ã+)T does not affect the symplectic feature of the bases. Con-
sequently, from Ã we may recover (Ã+)T and enrich it with the nonlinear snapshots
{X1/2s}s∈Sg . Once (Ã+)T represents the nonlinear term with the desired accuracy,

we may compute Ã =

((
(Ã+)T

)+)T

to obtain the reduced basis for (5.35). Proposi-

tion 5.1 implies that (Ã+)T is ortho-normal with respect to the X−1-norm. This affects
the ortho-normalization process. We note that greedy approaches to basis generation
do not generally result in a minimal basis in the L2 norm, but rather an optimal one in
the L∞ norm.

As discussed in Section 5.4 it is desirable to eliminate the computation of X±1/2. Hav-

ing z ∈ colspan
(
X−1/2(Ã+)T

)
implies that z ∈ colspan(JT2nXAJ2k). Note that Al-

gorithm 5.1 constructs a J2n-symplectic matrix XA and JT2nXAJ2k is the symplectic
inverse of XA with respect to the standard symplectic matrix J2n. Given e as a candi-
date for enriching X−1/2(Ã+)T we may instead enrich JT2nXAJ2k with e. This process
eliminates the computation of X±1/2. We summarize the process of generating a basis
for the nonlinear terms in Algorithm 5.2.

5.6 Numerical Results

Let us now discuss the performance of the symplectic model reduction with a weighted
inner product. In Sections 5.6.1 and 5.6.2 we apply the model reduction to equations
of a vibrating elastic beam without and with a cavity, respectively. We examine the
evaluation of the nonlinear terms in the model reduction of the sine-Gordon equation,
in Section 5.6.3.
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Algorithm 5.2 generation of a DEIM basis in the generalized setting
Input: reduced basis A from Algorithm 5.1, Nonlinear snapshots Sg, Tolerance δ

1: compute B = XA.
2: compute (B+)T = JT2nBJ2k = [e1, . . . , ek, J

T
2ne1, . . . , J

T
2nek].

3: while ‖s− P
symp
I,(B+)T

(s)‖2 > δ for any s ∈ Sg do

4: s∗ := arg max
s∈Sg

‖s− P
symp
I,(B+)T

(s)‖2.

5: J2n-orthogonalize s∗ to obtain ek+1.
6: assemble (B+)T = [e1, . . . , ek+1, J

T
2ne1, . . . , J

T
2nek+1].

7: end while
8: set XA =

((
B+)T

)+)T
.

Output: J2n-symplectic basis XA.

5.6.1 The Elastic Beam Equation

Consider the equations governing small deformations of a clamped elastic body Γ ⊂ R3

as ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

utt(t, x) = ∇ · σ + f, x ∈ Γ,

u(0, x) = �0, x ∈ Γ,

σ · n̂ = τ, x ∈ ∂Γτ ,

u(t, x) = �0, x ∈ ∂Γ\∂Γτ ,

(5.36)

and

σ = λ(∇ · u)I + μ(∇u+ (∇u)T ). (5.37)

Here u : Γ → R3 is the unknown displacement vector field, subscript t denotes a
derivative with respect to time, σ : Γ → R3×3 is the stress tensor, f is the body force
per unit volume, λ and μ are Lamé’s elasticity parameters for the material in Γ, I is the
identity tensor, n is the outward unit normal vector at the boundary and τ : ∂Γτ → R3

is the traction at a subset of the boundary ∂Γτ [67]. We refer to Figure 5.1.(a) for a
snapshot of the elastic beam.

We define a vector valued function space as V = {u ∈ (L2(Γ))3 : ‖∇ui‖2 ∈ L2, i =

1, 2, 3, u = �0 on ∂Γτ}, equipped with the standard L2 inner product (·, ·) : V × V → R,
and seek the solution to (5.36). To derive the weak formulation of (5.36), we multiply
it with the vector valued test function v ∈ V , integrate over Γ, and use integration by
parts to obtain∫

Γ
utt · v dx = −

∫
Γ
σ : ∇v dx+

∫
∂Γτ

(σ · n) · v ds+
∫
Γ
f · v dx, (5.38)
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(a) (b)

Figure 5.1 – (a) initial condition and a snapshot of the 3D beam. (b) initial condition
and a snapshot of the 2D beam with a cavity.

where σ : ∇v =
∑

i,j σij(∇v)ji is the tensor inner product. Note that the skew-
symmetric part of ∇v vanishes over the product σ : ∇v, since σ is symmetric. By
prescribing the boundary conditions to (5.38) we recover∫

Γ
utt · v dx = −

∫
Γ
σ : Sym(∇v) dx+

∫
∂Γτ

τ · v ds+
∫
Γ
f · v dx, (5.39)

with Sym(∇v) = (∇v + (∇v)T )/2. The variational form associated to (5.36) is

(utt, v) = −a(u, v) + b(v), u, v ∈ V, (5.40)

where

a(u, v) =

∫
Γ
σ : Sym(∇v) dx, b(v) =

∫
∂Γτ

τ · v ds+
∫
Γ
f · v dx. (5.41)

To obtain the FEM discretization of (5.40), we triangulate the domain Γ and define
vector valued piece-wise linear basis functions {φi}Nh

i=1. We define the FEM space Vh,
an approximation of V , as the span of those basis functions. Projecting (5.40) onto Vh

yields the discrete weak form

((uh)tt, vh) = −a(uh, vh) + b(vh), uh, vh ∈ Vh. (5.42)

Any particular function uh can be expressed as uh =
∑Nh

i=1 qiφi, where qi, i = 1, . . . , Nh,
are the expansion coefficients. Therefore, by choosing test functions vh = φi, i =

1, . . . , Nh, we obtain the system of ODEs

Mq̈ = −Kq + gq. (5.43)

where q = (q1, . . . , qNh
)T are unknowns, the mass matrix M ∈ RNh×Nh is given as

Mi,j = (φi, φj), the stiffness matrix K ∈ RNh×Nh is given as Ki,j = a(φj , φi) and gq =

(b(v1), . . . , b(vNh
))T . Now introduce the canonical coordinate p = Mq̇ to recover the
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Hamiltonian system

ż = J2Nh
Lz + gqp, (5.44)

where

z =

(
q

p

)
, L =

(
K 0

0 M−1

)
, gqp =

(
0

gq

)
, (5.45)

together with the Hamiltonian function H(z) = 1
2z

TLz + zT JT2Nh
gqp. An appropriate

FEM setup leads to a symmetric and positive-definite matrix L. Hence, it seems
natural to take X = L, the energy matrix associated to (5.44). The system parameters
are summarized in the table below. For further information regarding the problem, we
refer to [67].

Domain shape box: lx = 1, ly = 0.2, lz = 0.2

Time step-size Δt = 0.01

Gravitational force f = (0, 0,−0.4)T

Traction τ = �0

Lamé parameters λ = 1.25, μ = 1.0

Degrees of freedom 2Nh = 1650

Projection operators PX,V , P symp
I,A and P

symp
X,Ã

are constructed following Algorithms 3.2,

4.1 and 5.1, respectively, with δ = 5 × 10−4, 2 × 10−4 and 1 × 10−4. The reduced
systems, obtained from P

symp
I,A and P

symp
X,Ã

, are integrated in time using the Störmer-

Verlet scheme to generate the temporal snapshots. The reduced system obtained from
PX,V is integrated using a second order implicit Runge-Kutta method. Note that the
Störmer-Verlet scheme is not used since the canonical form of a Hamiltonian system
is destroyed when PX,V is applied.

Figure 5.2.(a) shows the decay of the singular values of the temporal snapshots S

and XS, respectively. The difference in the decay indicates that the reduced systems
constructed using P

symp
I,A and P

symp
X,Ã

would have different sizes for a similar prescribed
accuracy.

Figure 5.2.(b) shows the conservation of the Hamiltonian for the methods discussed
previously. This confirms that the symplectic methods preserve the Hamiltonian
and the system energy. However, the Hamiltonian blows up for the reduced system
constructed by the projection PX,V .

Figure 5.2.(c) shows the L2 error between the projected systems and the full order
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Figure 5.2 – Numerical results related to the beam equation. (a) the decay of the
singular values, (b) conservation of the Hamiltonian, (c) error with respect to the
2-norm, (d) error with respect to the X-norm.

system, defined as

‖e‖L2 =
√
(e, e) ≈

√
(q − q̂)TM(q − q̂), (5.46)

where e ∈ V is the error function and q̂ ∈ R2n is an approximation for q. We notice
that the reduced system obtained by the non-symplectic method is unstable and the
reduced system, constructed using PX,V , is more unstable as k increases. On the other
hand, the symplectic methods yield a stable reduced system. Although the system,
constructed by the projection P

symp
X,Ã

, is not based on the 2-norm projection, the error

remains bounded with respect to the 2-norm.

We define the energy norm ‖ · ‖E : V → R as

‖(u, u̇)‖E =
√
a(u, u) + (u̇, u̇) ≈ ‖z‖X . (5.47)

Figure 5.2.(d) shows the MOR error with respect to the energy norm. We observe that
the classical model reduction method based on the projection PX,V does not yield a
stable reduced system. However, the symplectic methods provide a stable reduced
system. We observe that the original symplectic approach also provides an accurate
solution with respect to the energy norm. Nevertheless, the relation between the two
norms depends on the problem set up and the choice of discretization [29].
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, δ = 2.5 · 10−3

P symp

X,Ã
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Figure 5.3 – Numerical results related to the beam with cavity. (a) the decay of the
singular values, (b) conservation of the Hamiltonian, (c) error with respect to the
2-norm, (d) error with respect to the energy norm.

5.6.2 Elastic Beam With Cavity

In this section we investigate the performance of the proposed method on a two
dimensional elastic beam that contains a cavity. In this case a nonuniform triangulated
mesh is desirable to balance the computational cost of a FEM discretization with the
numerical error around the cavity. Figure 5.1.(a) shows the nonuniform mesh used
in this section. System parameters are taken to be identical to those in Section 5.6.1.
Numerical parameters are summarized in the table below.

cavity width lc = 0.1

Time step-size Δt = 4× 10−4

Degrees of freedom 2Nh = 744

Figure 5.3.(a) shows the decay of the singular values for the snapshot matrix S and
XS. The divergence of the two curves indicates that to obtain the same accuracy
in the reduced system, the basis constructed from S and XS would have different
sizes. Projection operators PX,A, P symp

I,A and P
symp
X,Ã

are constructed according to the

Algorithms 3.2, 4.1 and 5.1. The error tolerated is set to δ = 2.5 × 10−3, δ = 1 × 10−3

and δ = 5× 10−4.
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The 2-norm error and the error in the energy norm are presented in Figure 5.3.(c) and
Figure 5.3.(d), respectively. We notice that although the non-symplectic method is
bounded, it results in larger errors compared to the symplectic methods. Moreover,
we notice that the error generated by the symplectic methods is consistently reduced
under basis enrichment. It is observed that in the energy norm, the projection P

symp
X,Ã

provides a more accurate solution by comparing to Figure 5.2. This is due to the
nonuniform mesh on which the weight matrix X associates higher weights to the
elements that are subject to larger error. Therefore, we expect the reduced system
constructed with the projection P

symp
X,Ã

, to outperform the one constructed with P
symp
I,A

on a highly nonuniform mesh.

Figure 5.3.(b) shows the error in the Hamiltonian. Comparing to Figure 5.2, we notice
that the energy norm strengthens the boundedness of the non-symplectic method.
However, the symplectic methods preserves the Hamiltonian at a higher accuracy

5.6.3 The sine-Gordon equation

The sine-Gordon equation arises in differential geometry and quantum physics [73],
as a nonlinear generalization of the linear wave equation of the form⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut(t, x) = v, x ∈ Γ,

vt(t, x) = uxx − sin(u),

u(t, 0) = 0,

u(t, l) = 2π.

(5.48)

Here Γ = [0, l] is a line segment and u, v : Γ → R are scalar functions. The Hamiltonian
associated with (5.48) is

H(q, p) =

∫
Γ

1

2
v2 +

1

2
u2x + 1− cos(u) dx. (5.49)

One can verify that ut = δvH and vt = −δuH , where δv, δu are standard variational
derivatives. The sine-Gordon equation admits the soliton solution [73]

u(t, x) = 4arctan
(
exp

(
±x− x0 − ct√

1− c2

))
, (5.50)

where x0 ∈ Γ and the plus and minus signs correspond to the kink and the anti-kink
solutions, respectively. Here c, |c| < 1, is the wave speed. We discretize the segment
into n equi-distant grid point xi = iΔx, i = 1, . . . , n. Furthermore, we use a standard
finite-differences scheme to discretize (5.48) and obtain

ż = J2nLz + J2ng(z) + J2ncb. (5.51)
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Here z = (qT , pT )T , q(t) = (u(t, x1), . . . , u(t, xN ))T , p(t) = (v(t, x1), . . . , v(t, xN ))T , cb is
the term corresponding to the boundary conditions and

L =

(
DT

xDx 0N
0N In

)
, g(z) =

(
sin(q)
�0

)
, (5.52)

where Dx is the standard matrix differentiation operator. We may take X = L as the
weight matrix associated to (5.51). The discrete Hamiltonian takes the form

HΔx = Δx · 1
2
‖p‖22 +Δx · ‖Dxq‖22 +

n∑
i=1

Δx · (1− cos(qi)). (5.53)

The system parameters are given as

Domain length l = 50

No. grid points n = 500

Time step-size Δt = 0.01

Wave speed c = 0.2

The midpoint scheme (2.38) is used to integrate (5.48) in time and generate the snap-
shot matrix S. Similar to the previous subsection, projection operators PX,V , P symp

I,A

and P
symp
X,Ã

are used to construct a reduced system. To accelerate the evaluation of

the nonlinear term, the symplectic DEIM and the generalized symplectic DEIM, Al-
gorithm 5.2, are coupled with the projection operators P symp

I,A and P
symp
X,A , respectively.

Furthermore, the DEIM approximation is used for the efficient evaluation of the re-
duced system, obtained by the projection PX,V . The midpoint rule is also used to
integrate the reduced systems in time. Figure 5.4 shows the numerical results obtained
with the reduced models without approximating the nonlinearity, while the results for
the accelerated evaluation of the nonlinear term are presented in Figure 5.5.

Figure 5.4.(a) shows the decay of the singular values of matrices S and XS. As previ-
ously, we observe a saturation in the decay of the singular values of XS compared to
the singular values of S. This indicates that the reduced basis, based on a weighted
inner product, should be chosen to be larger to provide an accuracy similar to based
on the Euclidean inner product.

Put differently, unweighted reduced bases, when compared to the weighted ones, may
be highly inaccurate in reproducing the underlying physical properties of the system.

Figure 5.4.(b) displays the error in the Hamiltonian. It is again observed that the
symplectic approaches conserve the Hamiltonian. However, the classic approaches
do not necessarily conserve the Hamiltonian. We point out that using the projection
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Figure 5.4 – Numerical results related to the sine-Gordon equation. (a) the decay of
the singular values, (b) the error in the Hamiltonian, (c) the error with respect to the
2-norm, (d) the error with respect to the energy norm.

operator PX,V ensures the boundedness of the Hamiltonian. The contrary is observed
when we apply the POD with respect to the Euclidean inner-product, i.e. applying
the projection operator PI,V . This can be seen in the results presented in [81], where
the unboundedness of the Hamiltonian is observed when PI,V is applied to the sine-
Gordon equation. Nevertheless, only the symplectic model reduction consistently
preserves the Hamiltonian.

Figure 5.4.(c) shows the error with respect to the Euclidean inner-product between the
solution of the projected systems and the original system. The behavior of the solution
is investigated for k = 100, k = 125 and k = 150. We observe that all systems that
are projected with respect to the X-norm are bounded. As the results in [81] suggest,
the Euclidean inner-product does not necessarily yield a bounded reduced system.
Moreover, we notice that the symplectic projection P

symp
X,Ã

results in a substantially

more accurate reduced system compared to the reduced system yielded from PX,V .
This is because the overall behavior of the original system is translated correctly to the
reduced system through the symplectic projection.

The error with respect to the X-norm between the solution of the original system and
the projected systems is presented in Figure 5.4.(d). We observe that the behavior
of the X-norm error is similar to that in the Euclidean norm. However, the growth
of the error is slower for methods based on a weighted inner product. Note that the
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Figure 5.5 – Numerical results related to the sine-Gordon equation with efficient evalu-
ation of the nonlinear terms. Here, “DEIM” indicates classical model reduction with
the DEIM, “s.+DEIM” indicates symplectic model reduction with the DEIM and “s.”
indicates symplectic model reduction with symplectic treatment of the nonlinear term.
(a) error with respect to the Euclidean norm, (b) error with respect to the X-norm, (c)
error in the Hamiltonian.

connection between the error in the Euclidean norm and the X-norm is problem and
discretization dependent. We also observe that symplectic methods are substantially
more accurate.

Figure 5.5 shows the performance of the different model reduction methods, when
an efficient method is adopted for evaluating the nonlinear term in (5.51). This figure
compares the symplectic approaches against non-symplectic methods. For all simula-
tions, the size of the reduced basis for (5.51) is chosen to be k = 100. The size of the
basis of the nonlinear term is taken as kn = 75 and kn = 100. For symplectic methods,
a basis for the nonlinear term is constructed according to Algorithm 5.2, whereas for
non-symplectic methods, the DEIM is applied. Note that for symplectic methods, the
basis for the nonlinear term is added to the symplectic basis A. This means that the
size of the reduced system is larger when compared to the classical approach.

5.7 Conclusion

This chapter presents a model reduction approach that combines the classic model
reduction method, defined with respect to a weighted inner product, with symplectic
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model reduction. This allows the reduced system to be defined with respect to norms
and inner-products that are natural to the problem and most suitable for the method
of discretization. Furthermore, the symplectic nature of the reduced system preserves
the Hamiltonian structure of the original system, which results in robustness and
enhanced stability in the reduced system.

It is demonstrated that including the weighted inner-product in the symplectic model
reduction can be viewed as a natural extension of the unweighted symplectic method.
Therefore, the stability preserving properties of the symplectic method generalize
naturally to the new method.

Numerical results suggest that classic model reduction methods with respect to a
weighted inner product can help with the boundedness of the system. However, only
the symplectic treatment can consistently increase the accuracy of the reduced system.
This is consistent with the fact the symplectic methods preserve the Hamiltonian
structure.

We also show that to accelerate the evaluation of the nonlinear terms, adopting a
symplectic approach is essential. This allows an accurate reduced model that is consis-
tently improving when the basis for the nonlinear term is enriched.

Hence, the symplectic model-reduction with respect to a weighted inner product
provides an accurate and robust reduced system that allows the use of the norms and
inner products most appropriate to the problem.

92



6 Symplectic Model Order Reduc-
tion of Dissipative Hamiltonian
Systems
It was discussed in Chapters 4 and 5, that if the basis for the reduced space is not
chosen carefully, the symplectic symmetry of Hamiltonian will be destroyed by model
reduction. To resolve this issue, the symplectic MOR constructs a reduced order
configuration space that inherits symmetries of the full configuration space. By using
a proper time integrator scheme, the symmetries are preserved in the reduced system.
A greedy-type algorithm is developed in Algorithms 4.1 and 5.1 for construction of a
basis for such a reduced configuration space.

Most models in engineering appear as a dissipative perturbation of a Hamiltonian
system. In these systems, conservation of energy is taken as a fundamental principle
of the system dynamics, while dissipative forces, e.g. friction, can change the energy
of the system [106]. As the energy is no longer preserved for such systems, existing
methods can no longer be applied directly [81].

For dissipative and forced Hamiltonian system, Peng et al. [80] suggest a symplectic
model reduction method that preserves the Hamiltonian and the dissipative structure
of the original system. However, since this method uses a symplectic integrator for
a non-conservative system, there is no guarantee that the evolution of the energy is
translated correctly to the reduced system.

In the context of network modeling and circuit simulation, considerable work has been
done in the development of structure preserving, and in particular energy preserving,
model reduction techniques. Model reduction for port-Hamiltonian systems are given
in [84, 9, 25] and the references therein. These methods use a Krylov or a Proper
Orthogonal Decomposition (POD) approach to construct a reduced port-Hamiltonian
system that preserves the passivity, and, thus, the stability of the original system.
However, these methods do not generally guarantee the correct distribution of the
energy among the energy consuming and energy storing units. Furthermore, over long
time integration, accumulation of local errors might produce an erroneous solution.
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This chapter presents the reduced dissipative Hamiltonian (RDH) method as a struc-
ture preserving model reduction approach for dissipative Hamiltonian systems. A
key difference between this method and the other existing methods is that the RDH
enables the reduced system to be integrated using a symplectic integrator. By con-
sidering a canonical heat bath, also known as hidden strings [39, 38], the reduced
system is extended to a closed and conservative system. Therefore, a symplectic time
integrator can be used to guarantee conservation of the system energy and the correct
dissipation of energy. Furthermore, the hidden strings assure that the local errors in
the dissipation of energy do not accumulate, resulting in a correct evolution of the
system energy.

This chapter is organized as follows: Section 6.1 covers the required background on
dissipative Hamiltonian systems and the Hamiltonian extension. In Section 6.2 we
introduce the reduced dissipative Hamiltonian (RDH) method. Accuracy, stability
and efficiency of the RDH method is discussed in Section 6.3, and illustrated through
simulation of the dissipative wave equation and a linear port-Hamiltonian system of
an electrical circuit. We offer conclusive remarks in Section 6.4.

The main contribution of this chapter is presenting an application of symplectic model
reduction for dissipative Hamiltonian systems. The connection of a Hamiltonian
extension (conservative extension) with the symplectic model reduction is discussed.

6.1 Dissipative Hamiltonian Systems and Hamiltonian Exten-
sions

Many systems in engineering and science appear as a perturbation of a Hamiltonian
system, where the perturbation can be regarded as dissipation. In these systems,
the energy tends to decrease over time, and thus, the symmetry expressed in Propo-
sition 2.10 and the conservation law in Corollary 2.11 are violated. Therefore, it is
common to take the conservation of energy as a fundamental principle and consider
the dissipative system coupled with a heat bath that absorbs the dissipated energy of
the original system.

To account for dissipation in a quadratic Hamiltonian H(z) = 1
2z

TKTKz, we refor-
mulate a Hamiltonian system as a time dispersive and dissipative (TDD) [39] system

{
ż = J2nK

T f(t, z),

z(0) = z0,
(6.1)
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where f is the solution to the Volterra integral equation [58, 27]

f(t, z) +

∫ t

0
χ(t− s)f(s, z) ds = Kz. (6.2)

Here χ : R+ → R2n×2n is a bounded matrix valued function with respect to the Frobe-
nius norm and is called the general susceptibility. Note that the integral term in (6.2)
accounts to the accumulation of the dissipation, whereas χ(s) = 0 implies (6.1) is
equivalent to (4.1). Furthermore, under suitable assumptions on K, both (4.1) and
(6.1) are well-posed [39].

Example 6.1. Consider the dynamics of the damped harmonic oscillator

q̈ + rq̇ + kq = 0 (6.3)

where k is the Hooke’s constant and r is the spring’s damping factor. Note that without a
damping term, (6.3) is a Hamiltonian system. The TDD formulation for the damped
harmonic oscillator takes the form (6.1) with

z =

(
q

q̇

)
, K =

(
1 0

0
√
k

)
, χ(t) = r. (6.4)

Here J2n = J2, (q, q̇)T is the canonical coordinate and the susceptibility is the constant
function r.

It is shown in [39, 38] that under natural assumptions on the linear susceptibility
χ(t) (see below), one can couple a TDD system of the form (6.1) with a canonical
heat bath where the dissipated energy is captured in the heat bath in a canonical
sense. In other words, one can construct a Hilbert space H and an isometric injection
I : R2n → R2n ×H2n where the solution z to (6.1) is the projection of x onto R2n, and x

is the solution to

ẋ = J2n
δHex

δx
. (6.5)

Here, x ∈ R2n × H2n, Hex : R2n × H2n → R is an extended quadratic Hamiltonian
function and J2n is the symplectic operator defined on R2n ×H2n respectively.

Theorem 6.1. [39] Suppose that K is full rank and χ(t) is symmetric. Then there is a
quadratic extension to (6.1) of the form (6.5), if

Im(ξχ̂(ξ)) ≥ 0, ∀ξ = ω + iη, η ≥ 0, (6.6)

where χ̂ is the Fourier-Laplace transform of χ

χ̂(ξ) =

∫ ∞

0
eiξtχ(t) dt. (6.7)

95



Chapter 6. Symplectic Model Order Reduction of Dissipative Hamiltonian Systems

When χ is a constant symmetric matrix, condition (6.6) corresponds to χ being positive
semi-definite [39]. In this case the Hamiltonian extension to (6.1) reads

ż(t) = J2nK
T f(t), (6.8a)

∂tφ(t, x, , z) = θ(t, x, z), (6.8b)

∂tθ(t, x, z) = ∂2
xφ(t, x, z) +

√
2δ0(x) · √χf(t, z), (6.8c)

together with the initial condition

z(0) = z0, φ(0, ·, ·) = 0, θ(0, ·, ·) = 0. (6.9)

Here θ and φ are vector valued functions in H2n, δ0(s) is the Dirac’s delta function,
√
χ

is the matrix square root of χ and f is the solution to the equation

f(t, z) +
√
2 · √χφ(t, 0, z) = Kz(t). (6.10)

Equations (6.8b) and (6.8c) are equations for a vibrating string, and can be solved
analytically

φ(t, x, z) =

√
2

2

∫ t−|x|

0

√
χf(s, z) ds, θ(t, x, z) =

√
2

2
· √χf(t− |x|, z). (6.11)

We can recover (6.2) by substituting (6.11) into (6.10). The extended Hamiltonian Hex

for the system Equations (6.8a) to (6.8c) takes the quadratic form

Hex(z, φ, θ) =

∫
Γ

1

2

(‖Kz − φ(t, 0, z)‖22 + ‖θ(t, z)‖2H2n + ‖∂xφ(t, z)‖2H2n

)
dz, (6.12)

where z ∈ Γ, ‖ · ‖2 is the Euclidean norm on R2n and ‖ · ‖H2n is the induced norm from
the inner product on H2n.

Equations (6.8b) and (6.8c) are called the hidden strings. The dissipation of energy
in the original system (6.1) is carried away, as vibrations, along the added strings
making the extended system conservative. The Hamiltonian extension of the damped
harmonic oscillator in Example 6.1 is exactly the Lamb model [66] which is a harmonic
oscillator coupled with a vibrating string, and the tension in the string causes linear
dissipation in the dynamics of the harmonic oscillator.

Note that the time integration of Equations (6.8a) to (6.8c) involves the integration
of f in (6.11). In general, the history of f(t, z) must be stored and may cause storage
limitation in long-time integration. However, we are interested solely in finding z(t, z)

which depends on f at time t, and φ(t, 0, z), i.e. the integral of the history of f . So by
carefully choosing a quadrature rule that uses the same quadrature nodes as the time
integrator we can avoid storing the history of f . For example for the trapezoidal rule,
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we recover the recursive relation∫ tn

0
f(s, z) ds ≈ Δt

2
f(tn, z) +

Δt

2
f(tn−1, z) +

∫ tn−1

0
f(s, z) ds, (6.13)

where Δt is the time step. The recursive relation in (6.13) suggests that storing the
value of the integral term together with the state of f in the previous time step suffices
to evaluate the integral for the new time step. For other interpolation based quadrature
rules, we can construct similar recursive rules of the form

∫ tn

0
f(s, z) ds ≈

k∑
i=0

ωif(tn−i, z) +

∫ tn−k

0
f(s, z) ds (6.14)

for some quadrature weights ωi, i = 1, . . . , k with k � n. Thus, time integration of
Equations (6.8a) to (6.8c), only requires storage of k evaluations of f .

6.2 The Reduced Dissipative Hamiltonian Method

Since the symplectic model reduction discussed in Chapters 4 and 5 are based on the
conservation law in Theorem 2.11, it can no longer be applied to dissipative Hamilto-
nian systems. Instead in the reduced dissipative Hamiltonian method, we consider
a Hamiltonian extension to a dissipative Hamiltonian system to construct a closed
system. A symplectic model reduction can then be naturally applied to conserve the
total energy.

Consider a dissipative Hamiltonian system of the form (6.1) with a quadratic Hamilto-
nian, H(z) = zTKTKz. Since KTK is symmetric and positive definite, it has a unique
Cholesky factorization KTK = LTL where L is upper triangular [100]. So we can write

H(z) = zTLTLz. (6.15)

Further, suppose that the solution z(t) lies on a low-dimensional symplectic subspace
such that z ≈ Ay, where A is an ortho-symplectic matrix of the size 2n× 2k satisfying
condition (d) in Proposition 4.1, and y is the expansion coefficients of z in the basis of
A. Writing (6.1) in terms of the reduced coordinates y reads

Aẏ(t) = J2nL
T f(t, Ay) + r(z), (6.16)

together with the complementary equation

f(t, Ay) +
√
2 · √χφ(t, 0, y) = LAy. (6.17)
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The symplectic Galerkin projection implies

ẏ(t) = J2kA
TLT f(t, Ay), (6.18)

AT f(t, Ay) +
√
2AT√χφ(t, 0, Ay) = ATLAy, (6.19)

where we use the fact that A+J2n = J2kA
T . If we define

f̃ = A+f, φ̃ = A+φ, θ̃ = A+θ, L̃ = ATLA,

and the reduced susceptibility as χ̃ = ỸỸ , where Ỹ = AT√χA, we recover the reduced
Hamiltonian system

ẏ(t) = J2kL̃
T f̃(t, y), (6.20a)

∂tφ̃(t, x, y) = θ̃(t, x, y), (6.20b)

∂tθ̃(t, x, y) = ∂2
xφ̃(t, x, y) +

√
2δ0(x, y) · Ỹ f̃(t, y), (6.20c)

together with the auxiliary equation

f̃(t, y) +
√
2Ỹφ̃(t, 0, y) = L̃y. (6.21)

Equations (6.20a) to (6.20c) is a Hamiltonian system on the symplectic linear vector
space R2k ×H2k and contributes to the reduced TDD system

ẏ = J2kL̃
T f̃(t, y), f̃(t, y) +

∫ t

0
χ̃ · f̃(s, y) ds = L̃y. (6.22)

with the Hamiltonian defined as

H̃(y) = yT L̃T L̃y. (6.23)

Therefore, the system energy will be conserved along integral curves of Equations (6.20a)
to (6.20c).

We point out that the transformation that connects Equations (6.8a) to (6.8c)) to
Equations (6.20a) to (6.20c) is given by

A =

(
A 0

0 A

)
: R2n ×H2n → R

2k ×H2k. (6.24)

This is a symplectic transformation, since ATJ2nA = J2k. Furthermore, the dissipa-
tion of energy in the reduced system only depends on the reduced susceptibility. Thus,
the choice of A should be independent of the hidden strings (φ, θ). In other words, if
the reduced space is chosen to be a symplectic subspace, then the actions of model
reduction and Hamiltonian extension commute. We summarize the algorithm for
model reduction of dissipative Hamiltonian systems in Algorithm 6.1.
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Algorithm 6.1 The Reduced Dissipative Hamiltonian Method (RDH)

1: Construct the Hamiltonian extension Equations (6.8a) to (6.8c)) to the original
TDD system (6.1).

2: Collect the snapshots z(ti), i = 1, . . . , N through time integration of the extended
Hamiltonian.

3: Construct an ortho-symplectic basis A.
4: Define L̃ = ATLA, χ̃ = ATχA and construct the reduced dissipative Hamiltonian

system Equations (6.20a) to (6.20c)

Note that Algorithm 6.1 does not depend on the choice of the method to construct
an ortho-symplectic basis A. Thus, for basis generation, the symplectic greedy or any
SVD-based methods discussed in Chapter 4 can be used.

The main advantage of the RDH method compared to the existing methods is that
it enables the reduced system to be integrated using a symplectic integrator. The
reduced system constructed using the RDH is a closed Hamiltonian system, therefore
the conservation law in Corollary 2.11 holds and a symplectic integrator guarantees
that the total energy is preserved in the reduced system. Alternative methods, e.g.
[80, 84, 9], either integrate the reduced system with a non-symplectic integrator, or do
not construct a closed reduced system which result in accumulation of local errors or
unstable solution during long time integration, respectively [50].

The following theorem provides an indication for the boundedness of the reduced
system.

Theorem 6.2. Consider the TDD system (6.1) together with the initial condition (6.9).
If in the absence of dissipation (χ = 0), a bounded open neighborhood U ⊂ R2n of z0
exists such that H(z) < c, for all z ∈ U , and for some constant value c > H(z0), then the
RDH method yields a bounded reduced system.

Proof. For a Hamiltonian of the form (6.15), H(z) ≥ 0 for all z ∈ R2n. It is shown in
[39, 38] that for a symmetric and positive definite χ, d

dtH(z(t)) ≤ 0. Therefore, for all
0 ≤ t < ∞, H(z) < c which implies z(t) ∈ U . Now suppose that the symplectic basis A
is used to construct the RDH reduced system (6.20a)-(6.20c) such that y0 = A+z0. It
is easily checked that V = Range(A) ∩ U is a bounded open neighborhood of z0 and
that H(z) = H(Ay) < c for all z ∈ V . Since H̃(y) = H(Ay) is a Hamiltonian function
for the dissipative Hamiltonian system (6.22) and that χ̃ is symmetric and positive
definite, then d

dtH̃(y) ≤ 0. This implies that H̃(y) < c and y(t) ∈ U for all 0 ≤ t < ∞.
Also it is easy to check that the boundedness of the solution of the original TDD system
implies boundedness of the extended system in R2n ×H2n with respect to the norm
‖(x, f)‖ex = ‖x‖2 + ‖f‖H2n .
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Note that in practice, ensuring d
dtH(z(t)) ≤ 0, requires a careful time integration of the

dissipative system. The symplectic time integration of the extended system guarantees
the correct evolution of the Hamiltonian.

We conclude this section by showing that the RDH method preserves the stability of
the equilibrium points of the extended system. This provides a strong indication that
the overall dynamics and stability of the original system system is translated into the
RDH system.

Theorem 6.3. [2] Consider a Hamiltonian system of the form Equations (6.8a) to (6.8c)
with a quadratic Hamiltonian H = LTL. The reduced reduced system Equations (6.20a)
to (6.20c) is also stable.

Proof. Note that a quadratic Hamiltonian result in a linear Hamiltonian system with.
The Hamiltonian extension is as well a linear Hamiltonian system with a quadratic
Hamiltonian. Furthermore, the application of the symplectic model reduction also
result in a quadratic linear reduced Hamiltonian system with the Hamiltonian H̃ =

L̃T L̃. Therefore, the reduced system remains stable.

6.3 Numerical Results

In the following we illustrate the performance of the method through the reduced
order model of the dissipative wave equation and a port-Hamiltonian model for a
dissipative circuit.

6.3.1 Dissipative wave equation

Consider the dissipative linear wave equation⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qt(t, x) = p(t, x),

pt(t, x) = c2qxx(t, x)− r(x)p(t, x),

q(0, x) = q0(x),

p(0, x) = 0.

(6.25)

where x belongs to a one-dimensional torus of length L and r : [0, 1] → [0, 1] is a
positive semi-definite real valued function.

We discretize the torus into NΔx equidistant points and define Δx = L/NΔx, xi = iΔx,
qi = q(t, xi) and pi = p(t, xi) for i = 1, . . . , NΔx. The discretization of r corresponds to a
diagonal and semi-positive definite matrix rΔ. Furthermore, we discretize (6.25) using
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a standard central finite differences schemes to obtain

ż = J2nK
TKz −Rz, (6.26)

where z = (q1, . . . , qNΔx
, p1, . . . , pNΔx

) and K and R are given as

KTK =

(
I 0

0 c2DT
xDx

)
, R =

(
0 0

0 rΔ

)
, (6.27)

with DT
xDx = Dxx as the central finite differences matrix operator. Writing (6.26) in a

TDD formulation yields

ż = J2nK
T f(t), f(t, z) +R

∫ t

0
f(s, z) ds = Kz. (6.28)

Since R is not time dependent, it commutes with the integration operator. The Hamil-
tonian extension of (6.28), then takes the form (6.8a) to (6.8c).

The initial condition used is given by

qi(0) = h(10× |xi − 1

2
|), pi = 0, i = 1, . . . , N, (6.29)

where h(s) is the cubic spline function

h(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1− 3

2
s2 +

3

4
s3, 0 ≤ s ≤ 1,

1

4
(2− s)3, 1 < s ≤ 2,

0, s > 2.

(6.30)

For the numerical time integration of the extended Hamiltonian system, the Strömer-
Verlet time stepping scheme (2.36) is used. In each time step, the system of linear
equations (6.10) is solved to recover z. System parameters are summarized below.

Domain length L = 1

No. grid points N = 500

Space discretization size Δx = 0.002

Time discretization size Δt = 0.002

Wave speed c2 = 0.1

The first numerical experiment corresponds to an inhomogeneous dissipative media.
Here, rΔ is a diagonal matrix with diagonal elements ri := 0.1 + 0.9(i/NΔx), for i =
1, . . . , NΔx.
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Figure 6.1 – (a) The solution to the original dissipative wave equation (6.25), (b) The
decay of the singular values for the POD, the PSD, and the RDH methods, (c) The L2-
error for the different methods, (d) Evolution of error in the Hamiltonian for different
methods, (e) Energy preservation of the Hamiltonian extension for the original and
the reduced system. “FM” and “RM” refer to the full model and the reduced model,
respectively. (f) The L2-error between the solution to the reduced system and the full
system in a near-zero dissipation regime.
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6.3. Numerical Results

Figure 6.1.(a) shows the solution of the original dissipative wave equation (6.25) at
t ∈ {0, 2.5, 5, 7.5}. For a nonzero rΔ the solution will converge to (q(t = ∞, x), p(t =

∞, x)) = (ρ, 0) where ρ is the center of mass of q0.

We construct the RDH reduced system according to the Algorithm 6.1 using a basis
constructed by the greedy basis selection described in Algorithm 4.1. The performance
of the method is then compared to the POD and the PSD proposed in [80]. The PSD
method constructs a symplectic basis using the cotangent lift method [80]. Note the
cotangent lift method can also be used to construct a basis for the RDH method.
However, the greedy method and the cotangent lift yield very similar results, inline
with the results in previous works [2].

Figure 6.1.(b) illustrates the decay of the singular values of the snapshot matrix [51],
for the POD, PSD, and the RDH methods. Note that the snapshots for the PSD and
the RDH are different since they have different canonical representations. The fast
decay of the eigenvalues in all methods is a strong indicator for the existence of a low
dimensional reduced system. The reduced bases are then constructed using 20, 40 and
60 number of modes.

The L2-error between the full system and the RDH, the PSD, and the POD methods
are presented in Figure 6.1.(c). We notice that the symplectic methods provide a more
accurate solution when compared to the POD method. In fact, the POD method does
not yield a stable reduced system. Furthermore, it is seen that enriching the PSD
reduced basis does not yield a significant improvement in the accuracy of the reduced
system. This happens as the PSD method, numerically integrate a non-conservative
system with a symplectic integrator. This results in an incorrect evolution of the energy
and eventually, in a qualitatively wrong numerical solution.

On the other hand, we notice that the RDH method with 40 modes provides a sig-
nificantly more accurate solution compared to the PSD method with 60 modes. The
RDH method provides a conservative reduced system where the dissipated energy is
absorbed by the hidden strings and the conservation of the energy is then guaranteed
by using a symplectic integrator. Therefore, we observe remarkable increase in the
accuracy by enriching the RDH reduced basis.

Figure 6.1.(d) shows the conservation of the energy in the different methods. The
conservation law expressed in Theorem 2.1 is destroyed through the POD model reduc-
tion and as a consequence we observe blow-up of the system energy. The symplectic
methods preserves the energy significantly better. As discussed above, enriching the
PSD basis does not significantly improve the preservation of energy. On the contrary,
the RDH provides a substantial improvement in the accuracy of the energy.

In Figure 6.1.(e) we show the transfer of the energy from the TDD system to the hidden
strings, for the full system and the RDH reduced system. We notice that the RDH
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method preserves the total energy of the extended Hamiltonian system. Furthermore,
the transfer of energy to the hidden strings in the full model is correctly translated in
the reduced system.

The second numerical experiment is the dissipative wave equation (6.25) in a near-
zero dissipation regime. The numerical setting is taken to be identical to the previous
numerical experiment, but with the difference that ri = 10−5, for i = 1, . . . , NΔx. Figure
6.1.(f) shows the L2-error between the solution to the reduced system and the full
system, for the POD, the PSD, and the RDH methods. We notice that the POD does not
yield a stable reduced system as the symplectic structure is lost via model reduction.
Furthermore we notice that error for the PSD and the RDH coincide as the two methods
become identical as ‖χ‖∞ → 0. Note that in this case the basis for the RDH method
and PSD method are both generated using the cotangent lift method in order to show
the convergence.

6.3.2 The sine-Gordon equation

Consider the one-dimensional dissipative nonlinear wave equation⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qt(t, x) = p(t, x),

pt(t, x) = qxx(t, x)− sin(q)− r(x)p(t, x),

q(0, x) = q0(x), q(t, 0) = a, q(t, L) = b,

p(0, x) = p0(x).

(6.31)

defined on a domain of length L, which is known as the sine-Gordon equation. In the
absence of dissipation, r(x) = 0, the kink solution to (6.31) is given as

q(t, x) = 4 arctan

(
exp

(
(x− x0 − vt)√

1− v2

))
, (6.32)

where |v| < 1 is the wave speed. In the presence of dissipation, where r(x) ≥ 0, the
traveling wave de-accelerates and stops. The TDD formulation for (6.31) takes the
form

ż = J2nK
T f(t) + J2ng(z)− J2nzbd, f(t, z) +R

∫ t

0
f(s, z) ds = Kz. (6.33)

where z, K, R and f are defined similar to (6.28), with rΔ = rIn, and

g(z) = (sin(q1), . . . , sin(qNΔx
), 0, . . . , 0)T , (6.34)
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Figure 6.2 – (a) The L2-error for the different methods, (a) Evolution of error in the
kinetic energy for different methods.

and zbd is the term corresponding to the Dirichlet boundary condition. Note that the
extended Hamiltonian Hex takes the form

Hex(z, φ, θ) =
1

2

(‖Kz − φ(t, 0)‖22 + ‖G(z)‖22 + ‖θ(t)‖2H2n + ‖∂xφ(t)‖2H2n

)
, (6.35)

where G(z) is a potential for g(z) given as G(qi) = 1− sin(qi), for i = 1, . . . , NΔx . System
parameters are summarized below

Domain length L = 50

No. grid points N = 500

Space discretization size Δx = L/N

Time discretization size Δt = 0.02

Wave speed v = 0.5

Boundary conditions a = 0, b = 1

Dissipation coefficient r = 0.1

The RDH reduced system is constructed following Algorithm 6.1. To reduce the com-
plexity of the nonlinear term, we used the symplectic DEIM discussed in Section 4.5.
The performance of the method is then compared to the SVD based method intro-
duced in Section 4.2.1 (here referred to as the “PSD”) and the POD. To reduce the
complexity of the nonlinear terms we compare the symplectic DEIM with the method
proposed in [81] and the classical DEIM in Section 3.5

Figure 6.2.(a) shows the L2-error between the full system and the RDH, the PSD, and
the POD methods. Although the Hamiltonian system of the sine-Gordon equation
is nonlinear, the errors for the different methods show a similar behavior as those
in Section (6.3.1). We observe that the POD does not yield a stable reduced system
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u = I R1 L1, φ1

C1, q1 C2, q2 Cn, qn

Rn Ln, φn

Rn+1

Figure 6.3 – n-dimensional ladder network

while the symplectic methods provide a high accuracy. Furthermore, we notice that
enriching the PSD basis does not significantly enhance the accuracy of the method.

The evolution of error in the kinetic energy K(p) = ‖p‖22/2 is illustrated in Figure 6.2.(b).
We see that the POD does not conserve the evolution of the kinetic energy. The RDH
method conserves the kinetic energy of the system with a higher accuracy than the
PSD method. Furthermore, the accuracy of the RDH method is better scaled under
enrichment of the reduced basis, compared to the PSD method.

It is observed in Figure 1 that the symplectic treatment of the nonlinear terms is
essential in correct model reduction of Hamiltonian systems. In addition, the SDEIM
can be combined with the RDH method to construct a reduced Hamiltonian system
that can be integrated using a symplectic integrator. Thus, the combination preserves
the system energy and the symplectic symmetry of Hamiltonian systems.

6.3.3 Port-Hamiltonian Systems

Port-Hamiltonian systems are popular in network modeling and electrical engineering.
In the framework of port-Hamiltonian modelling, energy conservation and Hamilto-
nian structure is the fundamental principle of the dynamics of the system. Ports in
the system network then allow the exchange of energy with the environment in the
form of sources, capacitors, and dissipations [106]. Port-Hamiltonian systems can be
viewed as a forced and dissipative Hamiltonian system.

Consider the n-dimensional linear ladder network in Figure 6.3. Here Ci, Li and Ri,
i = 1, . . . , n, are the capacitance, inductance and resistance of the corresponding
capacitors, inductors, and resistors, respectively, and Rn+1 is the load capacitor. The
port-Hamiltonian model of the linear ladder network takes the form

ẋ = (J2n −R)QTQx+ u. (6.36)

Here x = (c1, φ1, . . . , cn, φn)
T where ci and φi, for i = 1, . . . , n, are the charge and the

flux of Ci and Li respectively. Q and R are given as

Q = diag(C−1
1 , L−1

1 , . . . , C−n
n , L−n

n ), R = diag(0, R1, . . . , 0, Rn +Rn+1), (6.37)
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u = (1, 0, . . . , 0)T is a constant input current and J2n is a skew-symmetric 2n × 2n

matrix with -1 and 1 on the superdiagonal and subdiagonal, respectively.

The energy associated with a port-Hamiltonian system of the form (6.36) at time t,
is given as H(x(t)) = 1

2x
TQTQx. Since J2n is skew symmetric we have that d

dtH(x) =

uTQTQx − xTQTQRQTQx ≤ uTQTQx which is referred to as the passivity of the
system (6.36) [105, 110].

Since J2n is full rank, one can always find a coordinate transformation x = T x̃ such
that T−1J2nT

−T = J2n. The dissipative Hamiltonian formulation of (6.36) takes the
form

˙̃x = J2nQ̃
T Q̃x̃− R̃x+ ũ, (6.38)

where Q̃ = QT , R̃ = T−1RT−TQTQ and ũ = T−1u. Note that in this case, R̃ is
symmetric and semi-positive definite since T is orthogonal and R is diagonal. The
TDD formulation of (6.38) takes the form

˙̃x = J2nQ̃
T f(t, x̃) + ũ, f(t, x̃) + R̃

∫ t

0
f(t, x̃) = Q̃x̃. (6.39)

The extended Hamiltonian formulation Equations (6.8a) to (6.8b) with a quadratic
Hamiltonian Hex can be carried out following Section 6.1. We note that due to the
input ũ, the Hamiltonian Hex is time dependent. In fact d

dtHex = ũT Q̃T Q̃x̃. If we define
◦
Hex : R2n ×H2n × R2 → R as

◦
Hex(x̃, φ, θ, t, e) = Hex(x̃, φ, θ, t) + e, ė = −∂tHex, (6.40)

it is easily checked that d
dt

◦
Hex = 0 [50]. However for the time integration of the

Hamiltonian system related to
◦
Hex we can apply a symplectic integrator directly on

(6.40), since the evolution of x̃, φ and θ does not explicitly depend on e. Thus, the
passivity of (6.36) will be preserved through a symplectic time integration of (6.39).

Using an ortho-symplectic reduced basis A, the reduced dissipative Hamiltonian
method can be applied to (6.39) to construct a reduced system of the form (6.20a) to
(6.20b) together with the extended Hamiltonian H̃ex. We note that the method is also
passivity preserving since d

dtH̃ex = (A+ũ)TAT Q̃T Q̃Ay. Furthermore, the dissipative
Hamiltonian structure of the reduced system indicates that the reduced system also
carries a port-Hamiltonian structure.

We consider a 100-dimensional (n = 50) port-Hamiltonian system for the ladder
network discussed above. We take Ci = 1, Li = 1, Ri = 0.2 for i = 1, . . . , 50, and
R51 = 0.4. We construct the RDH reduced system following Algorithm 6.1.
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Figure 6.4 – Error between the full model and the reduced model obtained by the
reduced dissipative Hamiltonian method “RDH” and the moment matching method
“MM”. (a) The average temporal error of charge in capacitors. (b) the average temporal
error of the flux in inductors. (c) The error in C1.

The solution of the RDH method is compared to the main results of [84], where a
passivity-preserving model reduction is developed using a moment matching method
at infinity. The charge in C1 is chosen to be the single out put for the moment matching
method.

Reduced bases of size 2k = 10, 2k = 20 and 2k = 30 are constructed with the RDH and
the moment matching method. Figure 6.4.(c) shows the error in the charge in C1 for
the two methods. We observe that although the moment matching method is bounded
over long-time integration, the RDH method provides a significantly more accurate
solution. In the moment matching method, the passivity of the reduced system implies
that the energy of the system will be bounded by the input energy. However, there is
no guarantee that the dissipation of energy in the reduced system mimics the one of
the original system. On the other hand, the RDH method allows a correct dissipation
of energy through the hidden strings and the symplectic time integration in the RDH
method guarantees that the total energy is preserved.

Over short-time integration, we notice that the moment matching method with 10
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modes provides a more accurate solution than the RDH with 10 modes. Furthermore,
the moment matching method with 20 and 30 modes provide a comparable accuracy
to the RDH method with 20 and 30 modes. However, the RDH method maintains the
high accuracy during long-time integration, while the moment matching method loses
up to 3 orders of magnitude in the accuracy, independent of the number of modes.

Figure 6.4.(a) and Figure 6.4.(b) show the average temporal error in the charge and flux
of the capacitors and inductors, respectively. The RDH method provides a significantly
better accuracy compared to the moment matching method. This is because the
charge of C1 is specified as the output of interest in the moment matching method and
so it is expected that that method provides low accuracy for computing other outputs.
On the other hand, the RDH method not only provides high accuracy in computing
the charge for C1 but also high accuracy for all components of the system.

6.4 Conclusion

In this chapter we presented the reduced dissipative Hamiltonian method. The method
preserves the symplectic structure of dissipative Hamiltonian systems and guarantees
the correct dissipation of energy through time integration. The RDH method couples
the reduced system with a canonical heat bath such that the reduced system forms a
closed system.

The main advantage of the RDH method compared to the existing methods is that
it enables the reduced system to be integrated using a symplectic integrator which
naturally preserves the Hamiltonian structure and the symplectic symmetry of the
Hamiltonian systems. Applying a symplectic integrator to a non-conservative system
or using a non-symplectic integrator for the reduced system can cause accumulation
of local errors or wrong qualitative solution over long-time integration, respectively.

The numerical simulations illustrate that the RDH method preserves the system energy
with significantly higher accuracy than other methods. Furthermore, it is shown that
the hidden strings assure that the dissipation of energy in the reduce system mimics
the dissipation of energy in the full system. This ensures that the local error do not
accumulate over long-time integration.
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7 Conservative Model Order Reduc-
tion of Fluid Flow

In Chapters 4 to 6 it is discussed how MOR can be modified to ensure conservation of
symmetries and invariants in the context of Hamiltonian system. A reduced Hamilto-
nian, as an approximation of the Hamiltonian for the original system, is introduced for
the reduced system. Conservation of a skew-symmetric form can then ensure correct
evolution of the reduced system and conservation of the reduced Hamiltonian. In this
chapter, we apply the same principle to construct a MOR technique for the fluid flow
that conserves energy of the flow.

Large scale simulations of fluid flows arise in a wide range of disciplines and indus-
tries. Therefore, MOR of fluid flows, specially when advective terms are dominant, is
important. It is well known that conservation of the energy, specially kinetic energy,
is essential for a qualitatively correct numerical integration of fluid flows. Conven-
tional model reduction techniques often violate conservation of mass, momentum
[21], or energy in fluid flows which result in an unstable reduced system, in particular
for long time-integration. In [7] an entropy stable model reduction method for lin-
ear compressible flows is presented by considering an entropy-stable formulation of
linearized compressible flows. Furthermore, a conservative model reduction for finite-
volume models is presented in [21] that that conserves any quantity conserved by the
finite-volume scheme. This method finds a reduced linear subspace that ensures con-
servation of quantities by solving an optimization problem with, generally nonlinear,
equality constraints. The constrained optimization problem is solved online, and is
only slightly more expensive than solving the unconstrained optimization problem
associated with a typical Galerkin ROM.

Skew-symmetric formulation of fluid flows constructs a skew-symmetric differen-
tial operator, acting on the momentum vector field, that ensures conservation of
quadratic invariants, such as energy. Combined with centered time and space dis-
cretization schemes, typically a finite differences discretization method, they recover
time-symmetries of a fluid at the discrete level. Such discretization schemes are stud-
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ies comprehensively over the past few decades and can be found in the works of
[75, 76, 30, 101, 88] and the references therein.

This chapter discusses how to preserve skew-symmetry of the differential operators at
the level of the reduced system. This results in conservation of quadratic invariants.
The conservation of quantities in the proposed method is guaranteed through the
mathematical formulation of the reduced system, for any orthonormal reduced basis.
Therefore, the offline and online computational costs of this method is comparable
with conventional MOR techniques. However, other conservative model reduction
methods, e.g. [21], often require solving multiple nonlinear optimization problems to
ensure conservation which can increase the computational costs. Furthermore, we
show that the reduced system, as a system of coupled differential equations, contains
quadratic invariants and an associated energy which approximates the energy of
the high-fidelity system. Therefore, a proper time stepping scheme preserves the
reduced representation of the energy, and therefore, the loss in energy due to model
reduction remains constant in time.Furthermore, we demonstrate, through numerical
experiments, that a quasi-skew-symmetric form of fluid flow, i.e. a formulation where
only spacial differential operators are in a skew-symmetric form, offer remarkable
stability properties in terms of MOR. This allows an explicit time-integration to be
utilized while recovering robustness of skew-symmetric forms at the reduced level.

The rest of this chapter is organized as follows. We discuss skew-symmetric and con-
servatives methods for compressible and incompressible fluid flows in Section 7.1.
Conservative and energy-preserving model reduction of fluid flows is discussed in Sec-
tion 7.2. We evaluate the performance of the method through numerical simulations of
incompressible and compressible fluid flow in Section 7.3. We also apply the method
to construct a reduced system for the continuous variable resonance combustor, a
one dimensional reaction-diffusion model for a rocket engine. Finally, we present
conclusive remarks in Section 7.4.

The main contribution of this chapter is the introduction of a conservative model
reduction technique for compressible and incompressible fluids in skew-symmetric
form.

7.1 Skew Symmetric and Centered Schemes for Fluid Flows

In this section we summarize the conservation properties of skew-symmetric forms
and discretization schemes, following, closely, the works of [75, 76, 101, 88].
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7.1.1 Conservation Laws

In the context of fluid flows, transport of conserved quantities, can be expressed as

∂

∂t
ρϕ+∇ · (ρuϕ) = ∇ · Fϕ defined in Ω ⊂ R

d. (7.1)

Here, d = 1, 2 or 3, ρ : Ω → R is the density, u : Ω → Rd is the velocity vector field, ϕ
is a measured scalar quantity of the flow, and Fϕ is the flux function associated to ϕ.
Integration of (7.1) over Ω yields

d

dt

∫
Ω
ρϕ dx =

∫
∂Ω

(Fϕ − ρuϕ) · n̂ ds, (7.2)

where ∂Ω is the boundary of Ω, and n̂ is the unit outward normal vector to ∂Ω. This
means that the quantity (ρϕ) is explicitly conserved over control volumes. Therefore,
(7.2) is referred to as the conservative form and the convective term in (7.1) is referred
to as the divergence form. However, using the continuity equation

∂

∂t
ρ+∇ · (ρu) = 0, (7.3)

we can rewrite (7.1) as

ρ
∂

∂t
ϕ+ (ρu) · ∇ϕ = ∇ · Fϕ. (7.4)

The convective term in this formulation is referred to as the advective form. The skew-
symmetric form of the convective term is obtained by the arithmetic average of the
divergent and the advective form:

1

2

(
ρ
∂

∂t
ϕ+

∂

∂t
(ρϕ)

)
+

1

2
((ρu) · ∇ϕ+∇ · (ρuϕ)) = ∇ · Fϕ. (7.5)

Multiplying (7.5) with ϕ yields

1

2

(
ρϕ

∂

∂t
ϕ+ ϕ

∂

∂t
(ρϕ)

)
+

1

2
((ρuϕ) · ∇ϕ+ ϕ∇ · (ρuϕ)) = ϕ∇ · Fϕ. (7.6)

Using the product rule, we recover

∂

∂t
ρϕ2 +∇ · (ρuϕ2) = ϕ∇ · Fϕ. (7.7)

Therefore, ρϕ2 is a conserved quantity for a flux-free ϕ. Since the divergence, the
advective and the skew-symmetric forms are identical at the continuous level, ϕ2 is
a conserved quantity for all forms. However, the equivalence of these forms is not
preserved through a general discretization scheme and we can not expect ϕ2 to be
a conserved quantity at the discrete level. To motivate numerical advantages of the
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skew-symmetric form consider the operator

Sρu(·) = 1

2
([∇ · ρu](·) + (ρu) · ∇(·)), (7.8)

where [∇ · ρu](x) = ∇ · (ρux). With a proper set of boundary condition, this operator is
a skew-adjoint operator on L2. Here, [·] indicates that the inside of the brackets act as a
differential operator. This skew-adjoint property is used later to show the conservation
of some quadratic quantities in (7.1). Similarly, we can define a skew-adjoint operator
with respect to the time variable as

Sρ,∂t =
1

2

(
ρ
∂

∂t
+ [

∂

∂t
ρ]

)
. (7.9)

Here, the subscript ∂t is to emphasize that Sρ,∂t is a differential operator with respect
to t. A proper time and space discretization of Sρu and Sρ,∂t can preserve the skewness
property.

Numerical time integration of (7.5) can be challenging since the time differentiation of
different variables is present. Following [75], we have

1

2

(
∂

∂t
(ρϕ) + ρ

∂

∂t
ϕ

)
=

(
∂

∂t
(ρϕ)− ϕ

2

∂

∂t
ρ

)
=

(
ρ
∂

∂t
ϕ+

ϕ

2

∂

∂t
ρ

)
=

√
ρ
∂

∂t
(
√
ρϕ),

(7.10)

where the product rule is used in the last step. Substituting this into (7.5) yields

√
ρ
∂

∂t
(
√
ρϕ) + Sρu(ϕ) = ∇ · Fϕ. (7.11)

Time integration of this form is presented in [75, 88]. Note that one can also generate a
quasi-skew-symmetric form [17, 77] of (7.1) as

∂

∂t
(ρϕ) +

1

2
(∇ · (ρuϕ) + ρu · ∇ϕ+ ϕ∇ · (ρu)) = ∇ · Fϕ. (7.12)

Here, we substitute the convective term in (7.1) with

∇ · (ρuϕ) = 1

2
(2∇ · (ρuϕ)) = 1

2
(∇ · (ρuϕ) + ρu · ∇ϕ+ ϕ∇ · (ρu)) . (7.13)

Even though this is not a fully skew-symmetric form (skew-symmetric only in space),
the numerical stability of this form is significantly better than the divergence and
advective form [75, 17, 77]. Note that this quasi-skew-symmetric form is identical to
the skew-symmetric form in the incompressible limit.
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7.1.2 Incompressible Fluid

Consider the governing equations of an incompressible fluid with skew-symmetric
convective term:⎧⎨

⎩
∇ · u = 0,

∂

∂t
u+ Su(u) +∇p = ∇ · τ,

(7.14)

defined on Ω. Here, p : Ω → R+ is the pressure, τ : Ω → Rd×d is the viscous stress
tensor, and Su = 1

2([∇ · u] + u · ∇). It is straight forward to check

d

dt
K +∇ · (Ku) +∇ · (pu) = ∇ · (τu)− (τ∇) · u, (7.15)

where K = 1
2

∑d
i=1 u

2
i is the kinetic energy and we used

u · Su(u) = ∇ · (Ku). (7.16)

The only non-conservative term in (7.15) is −(τ∇) ·u, which corresponds to dissipation
of kinetic energy. Therefore, in the absence of the viscous terms, K is a conserved
quantity of the system, and d

dt

∫
ΩK dx < 0 when τ �= 0. Note that as long as ∇ · u = 0,

as discussed in Section 7.1.1, the divergence, the convective, and the skew-symmetric
forms are identical for the incompressible fluid equation. Thus, kinetic energy is
conserved for all forms. However, for a general discretization scheme, these forms are
not identical and often conservation of kinetic energy (in the discrete sense) may be
violated.

A skew-symmetric discretization of (7.14) is a centered scheme that exploits the skew-
adjoint property of Su, and ensures conservation of kinetic energy at the discrete
level. We uniformly discretize Ω into N points and denote by u ∈ RN×d, p ∈ RN ,
and T ∈ RN×d×d the discrete representation of u, p, and τ , respectively. Let Dj be
the centered finite difference scheme for ∂/∂xj , and for j = 1, . . . , d. The momentum
equation in (7.14) is discretized as

d

dt
ui + Suui +Dip =

d∑
j=1

DjTij , i = 1, . . . , d, (7.17)

where Su is the discretization of Su given by

Su =

d∑
j=1

DjUj + UjDj , (7.18)

and Ui contains components of ui on its diagonal. We require Di to satisfy
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1. Di = −DT
i

2. Di1 = 0, where 1 and 0 are vectors of ones and zeros, respectively.

Conditions 1 and 2 yield

Su = −ST
u , 1TSuui = 0, i = 1, . . . , d. (7.19)

Conservation of momentum in the discrete sense is expressed as

d

dt

d∑
i=1

1Tui =

d∑
i=1

⎛
⎝−1TSuui − 1TDip+

d∑
j=1

1TDjTij

⎞
⎠ = 0. (7.20)

Similarly, it is verified that

d

dt

d∑
i=1

(
1

2
uT
i ui

)
= −

d∑
i,j=1

TijDjui ≤ 0. (7.21)

Conditions 1 and 2 for Di are easily checked for a centered finite differences scheme on
a periodic domain. For other types of boundaries, e.g., wall boundary and inflow/out-
flow, we refer the reader to [76, 30] for the construction of the proper discrete centered
differentiation operator. We note that the finite differences schemes are chosen here
for illustration purposes. It is easily checked that any discrete differentiation operator
that satisfies discrete integration by parts, e.g. summation by part (SBP) methods and
discontinuous Galerkin (DG) methods, also satisfies conditions 1 and 2 and can be
used to construct a skew-symmetric discretization.

7.1.3 Compressible Fluid

Consider the equations governing the evolution of a compressible fluid in a skew-
symmetric form in one spacial dimension⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂

∂t
ρ+

∂

∂x
(ρu) = 0,

Sρ,∂t(u) + Sρu(u) +
∂

∂x
p =

∂

∂x
τ,

∂

∂t
ρE +

∂

∂x
(uE + up) =

∂

∂x
(uτ − φ).

(7.22)

Here E = e + u2/2 is the total energy per unit mass, with e = p/ρ(γ − 1) being the
internal energy, γ the adiabatic gas index, and φ = −λ∂T

∂x is the heat flux, with λ as
the heat conductivity. The remaining variables are the same as those discussed in
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Section 7.1.2. Following [88], the evolution of the momentum equation is

∂

∂t
(
ρu2

2
) +

∂

∂x
(ρu

u2

2
) =

1

2
u(

d

dt
ρu+ ρ

d

dt
u) +

1

2
u([

∂

∂x
ρu]u+ ρu

∂

∂x
u)

= −u
∂

∂x
p+ u

∂

∂x
τ.

(7.23)

Substituting this into the energy equation in (7.22), while assuming a constant adia-
batic index, yields

1

γ − 1

d

dt
p+

γ

γ − 1

∂

∂x
up− u

∂

∂x
(p) = −u

∂

∂x
τ +

∂

∂x
(uτ − φ). (7.24)

We discretize the real line, uniformly, into N grid points and denote by r,u,p ∈ RN , the
discrete representations of ρ, u, and p, respectively. Using the matrix differentiation op-
erator D ∈ RN×N (we omit the subscript “i” for the one dimensional case), introduced
in Section 7.1.2, we define the skew-symmetric matrix operator Sru = 1

2(DUR+RUD),
where R is the matrix that contains r in its diagonal. Semi-discrete expression of (7.22)
and (7.24) takes the form⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d

dt
r+DUr = 0,

Sr,∂t(u) + Sruu+Dp = DT,

1

γ − 1

d

dt
p+

γ

γ − 1
DUp− UDp = −UDT +D(UT − φ).

(7.25)

Recalling conditions 1 and 2 for D, discussed in Section 7.1.2, it is easily verified that

ST
ru = −Sru, 1TSruu = −uTDUr. (7.26)

Conservation of mass is expressed as

d

dt
(1T r) = −1TDRu = 0. (7.27)

Furthermore, we recover conservation of momentum in the discrete sense as

d

dt
(rTu) =

1

2

d

dt
(rTu) +

1

2

(
rT

d

dt
u+ uT d

dt
r

)
=

1

2
uT d

dt
r+ 1TSr,∂t(u)

= −1

2
uTDUr− 1TSruu− 1TDp+ 1TDT = 0.

(7.28)
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Here we used (7.26) and the mass and the momentum equation in (7.25). Similarly, for
conservation of the total energy, we have

d

dt

(
1

γ − 1
1Tp+

1

2
(Ru)Tu

)
=

d

dt

(
1

γ − 1
1Tp

)
+

1

2
uTSr,∂t(u) = 0. (7.29)

In addition to the conservation of the total energy, the skew-symmetric form of (7.25)
also conserves the evolutions of the kinetic energy:

d

dt
(
1

2
uTRu) = uTSr,∂t(u) = −uTSruu− uTDp+ uTDT

= uTDp+ uTDT.
(7.30)

Here, we used the skew-symmetry of Sru. Therefore, only the pressure and the viscous
terms contribute to a change in the kinetic energy.

We point out that there are other methods to obtain a skew-symmetric form for
(7.22), that result in the conservation of other quantities. An entropy preserving skew-
symmetric form can be found in [98]. Furthermore, a fully quasi-skew-symmetric
form for (7.22), where all quadratic fluxes are in a skew-symmetric form, is shown to
minimize aliasing errors [54, 53]

7.1.4 Time integration

Following [88, 75] we can construct a fully discrete second order accurate scheme for
(7.1.3) as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

2

√
r
n+1/2

√
r
n+1 −√

r
n

Δt
+DUn+1/2rn = 0,

√
r
n+1/2

√
R

n+1
un+1 −√

R
n
un

Δt
+ Srnunun+1/2

α +Dpn = DTn,

1

γ − 1

pn+1 − pn

Δt
+

γ

γ − 1
DUnpn − UnDpn = −UnDTn +D(UnTn − φn).

(7.31)

Here, Δt is the time step,
√
R is a square matrix containing elements of

√
r on its

diagonal, superscript n denotes evaluating at t = nΔt, superscript n+ 1/2 denotes the
arithmetic average of a variable evaluated at t = nΔt and t = (n + 1)Δt, the square
root sign denotes element-wise application of square root, and

un+1/2
α =

√
R

n+1
un+1 +

√
R

n
un

2
√
r
n+1/2

. (7.32)

As discussed in [88], this time discretization scheme preserves the symmetries ex-
pressed in (7.21), (7.28), (7.29), and (7.30). In the incompressible case, the method
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reduces to the implicit mid-point scheme [50]. For further information see [88, 75].

7.2 Model Order Reduction of Fluid Flow

A straight-forward model reduction of (7.14) and (7.22) does not, in general, preserve
symmetries and conservation laws, presented in Section 7.1. In this section we discuss
how to exploit the discrete skew-symmetric structure of (7.17) and (7.25) to recover
conservation of mass, momentum, and energy at the level of the reduced system.

Let Vr, Vru, and Vui be the reduced bases for the snapshots of r, Ru, and ui, respectively.
For the one dimensional case, the subscript “i” is omitted and for an incompressible
fluid, Vr and Vru are not computed. For the purpose of simplicity, we assume that all
bases have the size k. We seek to project Su and Sru onto the reduced space, such that
the projection preserves the skew-symmetric property. To obtain a reduced system,
the continuity equation and the momentum equation is multiplied from the left with
V T
r and V T

ru, respectively. The projected operators read

Sr
u = V T

ui
SuVui , i = 1, . . . , d, (7.33)

and

Sr
r,∂t = V T

ruSr,∂tVu, Sr
ru = V T

ruSruVu. (7.34)

Note that Sr
r,∂t

is not computed explicitly. It is clear that Sr
u is already in a skew-

symmetric form. On the other hand, Sr
r,∂t

and Sr
ru are not, in general, skew-adjoint and

skew-symmetric, respectively. This can be ensured, however, by requiring Vru = Vu.
We denote such a basis by Vru,u.Using (7.33) and (7.34), a Galerkin projection of the
momentum equation in (7.17) and the governing equations for a compressible fluid in
(7.25) take the form

d

dt
ur

i + Sr
uu

r
i + V T

ui
Dip =

d∑
j=1

V T
ui
DjTij(Vuiu

r
i ), i = 1, . . . , d, (7.35)

and⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d

dt
rr +

k∑
i=1

V T
r DUiVrr

r = 0,

Sr
r,∂tu

r + Sr
ruu

r + V T
ru,uDVpp

r = V T
ru,uDT,

1

γ − 1

d

dt
pr +

γ

γ − 1
V T
p DUVpp

r − V T
p UDVpp

r = −V T
p UDT + V T

p D(UT − φ),

(7.36)

respectively. Note that in (7.36), dependency of T on Vru,u is not shown for abbrevi-
ation. In (7.35) and (7.36), Di is always multiplied from the left with a basis matrix
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or a diagonal matrix. Therefore, the telescoping sum, discussed in Condition 2 in
Section 7.1.1, cannot be used to show conservation of mass and momentum. However,
POD preserves linear properties of snapshots. To demonstrate this, let the overscript
“~” denote the representation of a reduced variable in the high-fidelity space. An ap-
proximated variable, e.g. density, can be represented as a linear combination of some
snapshots as r ≈ r̃ =

∑k
i=1 ciri, for some snapshots ri and some coefficients ci ∈ R, for

i = 1, . . . , k. Conservation of mass, evaluated by r̃, reads

d

dt
1T r̃ =

k∑
i=1

ci

(
1T

d

dt
ri

)
= −

k∑
i=1

ci
(
1TDRiui

)
= 0, (7.37)

where we used the fact that 1TD = 0T . Similarly, we recover conservation of momen-
tum

d

dt
(r̃T ũ) =

1

2

d

dt
(r̃T ũ) +

1

2

(
r̃T

d

dt
ũ+ ũT d

dt
r̃

)

=

k∑
i,j=1

dicj

(
uT
i

d

dt
rj +

(
rTj

d

dt
ui + uT

i

d

dt
rj

))
= 0.

(7.38)

Here, ũ =
∑k

i=1 diui, for some snapshot ui and coefficients di ∈ R. Denoting by {Ru}r
the reduced representation of Ru in basis Vru,u, the evolution of kinetic energy is
expressed as

d

dt

(
1

2
ũT R̃ũ

)
=

d

dt

(
1

2
urTV T

ru,uVru,u{Ru}r
)

=
d

dt

(
1

2
urT {Ru}r

)

=
1

2

(
urT d

dt
{Ru}r + {Ru}r d

dt
ur

)

=
1

2

(
urTV T

ru,uVru,u
d

dt
{Ru}r + {Ru}r d

dt
V T
ru,uVru,uu

r

)
= urTSr

r,∂tu
r = urTVru,uDVpP

r + urTV T
ru,uDT.

(7.39)

In the missing steps in the last line, skew-symmetry of Sr
ru is used. Note, that only the

reduced pressure and the viscous term contribute to the evolution of kinetic energy.
Furthermore, the quantity 1

2u
rT {Ru}r is the kinetic energy associated with the reduced

system (7.36), approximating the kinetic energy of the high-fidelity system (7.25), and
is a quadratic form with respect to the reduced variables. Conservation of kinetic
energy for (7.35) follows similarly. It is straight-forward to check that

d

dt

(
1

γ − 1
1T p̃+

1

2
ũT R̃ũ

)
= 0, (7.40)

i.e., the total energy is conserved. We immediately recognize that pr/(γ − 1) is the
internal energy of the reduced system. However, the total internal energy of (7.36)
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is a weighted sum, bTpr/(γ − 1), with b = V T
p 1 which is an approximation of the

total internal energy in (7.25). From (7.37), (7.38), (7.39), and (7.40) we conclude the
following proposition.

Proposition 7.1. The loss in the mass, momentum and energy associated with the model
reduction in (7.36) is constant in time, and therefore, bounded.

7.2.1 Assembling Nonlinear Terms and Time Integration

Nonlinear terms that appear in (7.35) and (7.36) are of quadratic nature. These terms
can be evaluated exactly using a set of precomputed matrices as proposed in [12]. As
an example, consider

Sr
u = V T

u (DU + UD)V T
u . (7.41)

We write U as a linear combination of matrices as U =
∑k

j=1 u
r
jUj , where ur

j is the jth
component of ur, and Uj contains the jth column of Vu on its diagonal. It follows

Sr
u =

k∑
j=1

ur
j

(
V T
u (DUj + UjD)V T

u

)
. (7.42)

The matrices V T
u (DUj + UjD)V T

u can be computed prior to the time integration of the
reduced system. However, the form of the fully discrete system in (7.31) introduces
cubic and even quartic terms. In principle, the same method can be applied to as-
semble the nonlinear terms. However, the number of precomputed matrices grows
proportional to the order of the nonlinear term.

To accelerate assembly of the nonlinear terms we may approximately evaluate them
using the DEIM, see Section 3.5. Since this is an approximate evaluation, we do
not expect conservation of invariants, discussed in Section 7.2. However, numerical
experiments in Section 7.3.3 suggest conservation of invariants when an accurate
DEIM approximation is used for evaluating nonlinear terms.

To integrate (7.36) in time, the fully discrete system (7.31) is modified prior to model
reduction, by dividing the mass and momentum equation with

√
r
n+1. Note that

since the new form is identical to (7.31), it does not affect the conserved quantities.
Subsequently, a basis for

√
r, denoted by V√

r, is constructed. The nonlinear terms are
evaluated exactly using the quadratic expansion or approximated using the DEIM.
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7.3 Numerical Experiments

7.3.1 Vortex Merging

Consider the 2-dimensional incompressible Euler equation (7.14) on a square domain
Ω = [0, 2π]2, with periodic boundary conditions. Spatial derivatives are discretized
using a Fourier spectral method. To capture the fine details characterizing the solution,
256× 256 modes is used for both the velocity and pressure. We consider the evolution
of three vortices, with the initial structure given by

ω = ω0 +
3∑

i=1

αie
−
(x− xi)

2 + (y − yi)
2

β2
. (7.43)

Here, ω = ∇× u is the vorticity, (x, y) represents the spatial coordinates, (xi, yi) is the
center of the ith vortex, αi its maximum amplitude, and β controls the effective radius
of the vortex. In this example, the center of three vortices are

(x1, y1) = (0.75π, π) , (x2, y2) = (1.25π, π) , (x3, y3) = (1.25π, 1.5π) , (7.44)

close to the center of the domain. Two of the vortices have a positive spin with α1 =

α2 = π and the third rotates in the opposite direction with α3 = −0.5π. The effective
radius of all the vortices is set to β = 1/π. This arrangement of vortices is an interesting
initial condition to study the process of vortex merging. This phenomenon is often
a result of fast-moving dipoles of vortices with the same spin facing another vortex
[31] of opposite spin. The merging process transfers the vorticity from the initial
configuration into long, narrow, and spiral-shaped strips of intense vorticity [62]. The
formation of such thin vorticity filaments in the fluid may pose numerical challenges,
due to aliasing.

In the context of MOR, conservation of energy and stability is crucial to capturing fine
structures. With the absence of natural dissipation, straight forward application of
MOR techniques for the Euler equation is often unstable.

To define the initial conditions in terms of the velocity components u and the pressure
p, we define a stream-function Ψ, the solution to the equation

−ΔΨ = ω. (7.45)

The initial velocity is then given by ∇×Ψ. To solve the stream-function problem (7.45),
we require

∫
Ω ω dx = 0. It is easily verified that this requirement implies ω0 = 0.038.

The pressure is recovered by solving the related Poisson pressure equation

Δp = −∇ · Su(u),

122



7.3. Numerical Experiments

0 2 4 6 8 10 12 14 16 18

0.5

0.6

0.7

t

K

Skew Symmetric form
Divergence form
Advective form

(a)

100 200 300 400 500
10−17

10−13

10−9

10−5

10−1

Basis POD

σ
j

∑
iσ

i

(b)

Figure 7.1 – (a) The kinetic energy K for the advective, divergence and the skew-
symmetric formulations. (b) The decay of the singular values for the vortex merging.

obtained by applying the divergence operator to (7.14) and using the incompressibility
condition. The implicit midpoint scheme, to mimic the time integration scheme
presented in (7.31), is used to integrate in time. The merging phenomenon is simulated
for a total of 18 time units using a temporal step Δt = 0.004.

Figure 7.1a illustrates the evolution of the kinetic energy for the advective, divergence,
and the skew-symmetric form of the high-fidelity system. It is observed that only
the skew-symmetric form preserves the kinetic energy, confirming the discussion in
Section 7.1.2.

A total of 5000 temporal snapshots is used to construct a reduced basis, following
Algorithm 3.2. The decay of the singular values, used as an indication of the reducibility
of the problem, is presented in Figure 7.1b. The first 35 POD modes correspond to over
99% of the modes of the high fidelity solution. This suggests that an accurate reduced
system can be constructed using a small number of basis vectors. To illustrate the
effectiveness of the method, smaller bases are also considered.

For a qualitative analysis, in Figure 7.2, four solutions at different times are shown for
the high fidelity system and the reduced system with k = 17 and k = 35 modes. The
overall dynamics of the problem, and in particular the formation and development of
vorticity filaments, are correctly represented, even with a moderate number of basis
vectors. Although small details are not captured by the reduced system with a small
number of basis vectors, the position and the spreading of the vortices are comparable.

Figure 7.3a shows the L2 error between the high-fidelity solution and the reduced
solution. The error decreases, consistently, as the number of basis vectors increases.
Furthermore, the accuracy is maintained over the period of time integration.

The conservation of the kinetic energy is presented in Figure 7.3b. Even for a small
number of basis vectors, where the solution is not well approximated, the kinetic
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Figure 7.2 – Snapshots of the high-fidelity system and the reduced system at t =
{4, 8, 12, 18}. From left to right: the solution of the reduced model with k = 17, k = 35
and the high fidelity solution.

energy remains constant. Furthermore, the error in the kinetic energy, due to MOR, is
constant in time. This is central for the robustness of the reduced system during long
time-integration.

7.3.2 2D Kelvin-Helmholtz instability

Consider the 2-dimensional compressible Euler equation (7.22) in a periodic square
box [0, 1]2. Unlike the incompressible example in Section 7.3.1, a centered finite dif-
ference scheme of fourth order is used to discretize (7.22). The physical domain is
discretized into a grid of 256× 256 nodes.

124



7.3. Numerical Experiments

0 2 4 6 8 10 12 14 16 18

10−1

100

t

‖u
−

ũ‖
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Figure 7.3 – (a) Evolution of L2 error in velocity, between the high-fidelity system and
the reduced system. (b) Conservation of the kinetic energy.

The initial conditions are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r =

{
2, if 0.25 < y < 0.75,

1, otherwise ,

ux = a sin(4πy)

⎛
⎜⎝e

−
(y − 0.25)2

2σ2 + e
−
(y − 0.75)2

2σ2

⎞
⎟⎠ ,

uy =

{
0.5, if 0.25 < y < 0.75,

−0.5, otherwise ,
,

p = 2.5,

where a = 0.1 and σ = 5
√
2 · 10−3. This corresponds to contacting streams of fluid with

different densities. For specific choices of parameters describing the jets, fine struc-
tures and vortices emerges at the interface between the streams. Such an instability is
referred to as the Kelvin-Helmholtz instability [24].

As centered schemes are often dissipation free, resolving the discontinuous initial data
requires some artificial viscosity. In the high-fidelity model, the method discussed in
[112] is used as an artificial viscosity. However, at the level of the reduced system, this
is replaced with a low pass filter on the expansion coefficients of POD basis vectors.

The fully discrete skew-symmetric form (7.31) is used as a time marching scheme with
Δt = 5 · 10−4 over a period of 1 time unit.

Figure 7.4 illustrates that the accuracy of the method consistently improves as a higher
number of POD basis modes are considered. Furthermore, the skew-symmetric form
preserves the accuracy over the period of time integration. It is observed in Figure 7.6
that all features of the flow are correctly represented in the reduced system, even with
a low number of basis vectors.
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Figure 7.4 – Evolution in time of the error between the high fidelity solution of the
Kelvin-Helmoltz and the reduced solution for different number of basis k. As error
measure we use e(t) =

√‖r− rr‖2 + ‖uxr− uxrr‖2 + ‖uyr− uyrr‖2 + ‖p− pr‖2.

Conservation of mass, momentum and energy is presented in Figure 7.5. The accuracy
of the method in approximating these invariants improves as the size of the basis is
increased. Furthermore, Figure 7.5c shows how the kinetic energy associated with the
reduced system mimic the kinetic energy of the high-fidelity system. This helps to
ensure the correct evolution of kinetic energy, and thus, the internal energy.

7.3.3 1D Shock problem

In this section we study the 1-dimensional compressible Euler problem, (7.22) without
viscous terms, with a steady state discontinuous solution. This is in preparation for
Section 7.3.4, where development and propagation of shock waves is discussed. Here
we asses how the skew-symmetric form of (7.22) can recover moving discontinuities at
the level of the reduced system. Consider a periodic boundary conditions on Ω = [0, 1]

with the initial condition⎧⎪⎪⎨
⎪⎪⎩

r = 0.5 + 0.2 cos(2πx),

u = 1.5,

p = 0.5 + 0.2 sin(2πx).

The domain is discretized into N = 2000 nodes and a centered finite differences
scheme is used to assemble the discrete Euler equation in skew-symmetric form, as
discussed in Section 7.1.3.

The fully discrete skew-symmetric form (7.31) is used for time integration over a time
interval [0, 0.3]. To resolve the discontinuous solution we use an artificial viscosity with
τ = μ∂u/∂x, where μ = 0.5 · 10−4.

Figure 7.7 shows the evolution of conserved quantities for the high-fidelity and reduced
system. Here, the high-fidelity model is also considered in the divergence and advective
form in addition to the skew-symmetric form. It is clear that when the reduced systems
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Figure 7.5 – Difference between the high fidelity solution of the Kelvin-Helmholtz
problem and the reduced solution of the mass (a), the momentum (b), and the total
energy (c).

is not in skew-symmetric form, it violates conservation of mass, momentum, and
energy. Even while the high-fidelity systems in divergence and advective forms are
stable, the constructed reduced system is unstable, independently by the number
of basis vectors. On the other hand, the skew-symmetric form yields a stable and
conservative reduced system. Note that the loss in the energy associated with the skew-
symmetric form, illustrated in Figures 7.7b, 7.7d and 7.7f, is due to the application of
an artificial viscosity.

Figure 7.8 shows the total error, when the reduced system captures a discontinuous
solution at t = 0.16. It is observed that the formation of a discontinuity affects the
accuracy of the method. This is expected as a sharp gradient is approximated by a
relatively few POD modes. However, the method remains robust and stable during the
period of time integration.

In Figure 7.9 we compare the numerical artifacts of different formulations of the Euler
equation. The advective formulation is not presented since it does not yield a stable
reduced system. It is observed that the reduced system based on the skew-symmetric
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Figure 7.6 – Solutions of the Kelvin-Helmholtz problem at t = {0.4, 0.6, 0.8, 1}. From
left to right we show the solution of the reduced model with k = 200, k = 500 and the
high fidelity solution.

formulation accurately represent the overall behavior of the high-fidelity solution. On
the other hand, a Gibbs-type error [103] appears near sharp gradients, for the reduced
system based on the divergence form of the Euler equation. The well-representation
of the skew-symmetric form is due the low aliasing error property.

As discussed in Section 7.2, the DEIM approximation needed for an efficient evalua-
tion of the nonlinear components of (7.22), can affect the conservation properties of
the skew-symmetric form. Figure 7.10 shows the decay of the singular values of the
nonlinear snapshots. The decay of these snapshots is significantly slower than the tem-
poral snapshots of (7.22). This indicates that to maintain the accuracy of the reduced
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system, the DEIM basis should be chosen richer than the POD basis. Figure 7.11a and
Figure 7.11b present the error and the conservation of total energy when the DEIM
is used to approximate the nonlinear term. The conservation of energy is recovered
once DEIM approximates the nonlinear terms with enough accuracy. In this numerical
experiment, evaluation of the nonlinear terms in (7.22) using the DEIM is ten times
faster than the high-fidelity evaluation.
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Figure 7.7 – (left) Evolution of the three conserved quantities for the reduced solution
of the compressible Euler equation (mass, total momentum and total energy). The
divergent, advective and skew-symmetric formulations have been considered and
k = 102, 204 basis are used in the reduced model. (right) Evolution of the conserved
quantity for a stable reduced model using the skew-symmetric formulation.
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Figure 7.8 – Evolution in time of the error between the high fidelity solution of the 1D
compressible Euler and the reduced solution for different number of basis k. As error
measure we consider e(t) =

√‖r− rr‖2 + ‖ur− urr‖2 + ‖p− pr‖2.

7.3.4 Continuous Variable Resonance Combustor

CVRC is a model rocket combustor, designed and operated at Purdue University (In-
diana, U.S.) to investigate combustion instabilities [113]. This setup is called the
Continuously Variable Resonance Combustor (CVRC) because the length of the oxi-
dizer injector can be varied continuously, allowing for a detailed investigation of the
coupling between acoustics and combustion in the chamber [44]. The 2D/3D high-
fidelity simulations of CVRC are expensive. Thus to get a fast analysis tool, a quasi-1D
model has been proposed by Smith et al. [99] and further developed by Frezzotti et al.
[41, 40, 42].

The CVRC consists of three parts: oxidizer post, combustion chamber and exit nozzle,
as shown in Fig. 7.12. The oxidizer is injected from the left end of the oxidizer post and
meets the fuel, injected through an annular ring around the oxidizer injector, at the
back-step. The combustion happens in a region around the back-step. The combustion
products flow through the chamber and exit the system from the nozzle. Both the
injector and the nozzle are operated at choked condition during the experiment. The
length of the oxidizer post Lop of the CVRC can be varied continuously, leading to
different dynamics. Here, we focus on the case with Lop = 14.0 cm, in which the
combustion is unstable.

The geometry parameters of the quasi-1D CVRC with a oxidizer post length Lop = 14.0

cm are shown in Table 7.1. The back-step and the converging part of the nozzle are
sinusoidally contoured to avoid a discontinuity of the radius that will invalidate the
quasi-1D governing equations presented in the next subsection.

The fuel is pure gaseous methane. The oxidizer is a mixture of 42% oxygen and 58%
water (per unit mass), and is injected in the oxidizer post at a temperature Tox = 1030K
so that both water and oxygen are in the gaseous phase. The operating conditions are
listed in Table 7.2.
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Figure 7.9 – Qualitative comparison between different formulations for the reduced
model in terms of density (left) and pressure (right) at t = 0.1, 0.3 and 1s. Results for
the advective formulation are not showed here because the related reduced solutions
are unstable after a few time steps.

For the combustion, we consider the one-step reaction model

CH4 + 2O2 → CO2 + 2H2O.

We assume that the fuel reacts instantaneously to form products, allowing us to neglect
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Figure 7.10 – Decay of the singular values of the snapshot matrix related to POD and
DEIM algorithms for the 1D compressible Euler problem.
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Figure 7.11 – Comparison between standard POD and POD with DEIM treatment of
the nonlinear term in terms of the error (a) and the total energy (b).
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Figure 7.12 – Geometry of quasi-1D CVRC model.

intermediate species and finite reaction rates. As the equivalence ratio is less than
one, there is oxidizer left after the combustion. Therefore, only two species need to be
considered: oxidizer and combustion products.

The governing equations that describe the conservation of mass, momentum, and
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Table 7.1 – Geometry parameters of the quasi-1D CVRC with an oxidizer post length
Lop = 14 cm.

Section
Oxidizer post

Chamber
Nozzle

injector back-step converging part diverging part

Length (cm) 12.99 1.01 38.1 1.27 3.4
Radius (cm) 1.02 1.02 ∼ 2.25 2.25 2.25 ∼ 1.04 1.04 ∼ 1.95

Table 7.2 – CVRC operating conditions.

Parameter Unit Value

Fuel mass flow rate, ṁf kg/s 0.027
Fuel temperature, Tf K 300
Oxidizer mass flow rate, ṁox kg/s 0.32
Oxidizer temperature, Tox K 1030
O2 mass fraction in oxidizer, YO2 – 42.4%
H2O mass fraction in oxidizer, YH2O – 57.6%
Mean chamber pressure MPa 1.34
Equivalence ratio, Er – 0.8

energy of the quasi-1D CVRC flow, are the quasi-1D unsteady Euler equations for
multiple species, expressed in conservative form as

∂

∂t
v +

∂

∂x
Fv = sA + sf + sq. (7.46)

The conserved variable vector v and the convective flux vector F are

v =

⎛
⎜⎜⎜⎜⎝

ρA

ρuA

ρEA

ρYoxA

⎞
⎟⎟⎟⎟⎠ , F =

⎛
⎜⎜⎜⎜⎝

ρuA(
ρu2 + p

)
A

(ρE + p)uA

ρuYoxA

⎞
⎟⎟⎟⎟⎠ , (7.47)

where ρ is the density, u is the velocity, p is the pressure, E is the total energy, Yox is
the mass fraction of oxidizer, and A = A(x) is the cross sectional area of the duct. The
pressure p can be computed using the conserved variables as

E =
p

ρ(γ − 1)
+

u2

2
− CpTref , (7.48)

where Tref is the reference temperature and is set as 298.15 K. The temperature T is
recovered from the equation of state p = ρRT . The gas properties Cp, R and γ are
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computed as Cp =
∑

CpiYi, R =
∑

RiYi and γ = Cp/(Cp −R), respectively.

The source terms are

sA =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

p
dA

dx

0

0

⎞
⎟⎟⎟⎟⎟⎟⎠ , sf =

⎛
⎜⎜⎜⎜⎜⎝

ω̇f

ω̇fu

ω̇f

(
hf0 +Δhrel0

)
ω̇ox

⎞
⎟⎟⎟⎟⎟⎠ , sq =

⎛
⎜⎜⎜⎜⎝

0

0

q′

0

⎞
⎟⎟⎟⎟⎠ , (7.49)

where ω̇f is the depletion rate of the fuel, ω̇ox is the depletion rate of the oxidizer, hf0 is
the total enthalpy of the fuel, Δhrel0 is the heat of reaction per unit mass of fuel and q′ is
the unsteady heat release term. sA accounts for area variations, sf and sq are related
to the combustion. sf represents the addition of the fuel and its combustion with
the oxidizer, which in turn results in the creation of the combustion products. The
depletion rate of the fuel is

ω̇f =
kfṁfYox (1 + sinξ)

lf − ls
, (7.50)

where

ξ = −π

2
+ 2π

x− ls
lf − ls

, ∀ ls < x < lf . (7.51)

The setting of the fuel injection restricts the combustion to the region ls < x < lf . The
reaction constant kf is selected to insure that the fuel is consumed within the specified
combustion zone. The depletion rate of the oxidizer is computed by

ω̇ox = Co/f ω̇f , (7.52)

where Co/f is the oxidizer-to-fuel ratio.

The unsteady heat release term q′, also called the combustion response function,
models the coupling between acoustics and combustion. Here, we use the combustion
response function designed by Frezzotti et al. [40, 42], which is a function of the
velocity, sampled at specific abscissa x̂ that is almost coincident with the antinode of
the first longitudinal modal shape with a time lag t0, i.e.,

q′ (x, t) = αg (x)A (x) [u (x̂, t− t0)− ū (x̂)] . (7.53)

Here ū is the time averaged velocity, estimated with the steady-state quasi-1D model
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assuming q′ = 0, and g(x) is a Gaussian distribution

g (x) =
1√
2πσ2

exp

(
−(x− μ)2

2σ2

)
, (7.54)

where μ is the mean and σ is the standard deviation. The amount of heat release due
to velocity oscillations is controlled by the parameter α, in (7.53).

The boundary conditions for the quasi-1D CVRC flow include the fixed mass flow
rate and the stagnation temperature at the head-end of the oxidizer injector, and the
supersonic outflow at the exit of the nozzle.

Prior to the unsteady simulation, the quasi-1D CVRC needs to be excited, which is
achieved by adding a perturbation to the steady-state solution. The perturbation is
added by forcing the mass flow rate with a multi-sine signal

ṁox (t) = ṁox,0

[
1 + δ

K∑
k=1

sin (2πkΔft)

]
, (7.55)

where ṁox,0 is the oxidizer mass flow rate in Table 7.2, Δf is the frequency resolution
and K is the number of frequencies. In this paper, Δf = 50 Hz and K = 140, resulting
in a minimal frequency of 50 Hz and a maximal frequency of 7000 Hz. δ is required to
be small to control the amplitude of the perturbation and is set as 0.1%.

The procedure of the unsteady simulation of the quasi-1D CVRC flow includes three
steps:

1. Compute the steady-state solution by setting ṁox = ṁox,0 and q′ = 0.

2. Excite the system by adding a perturbation to the oxidizer mass flow rate accord-
ing to (7.53) and setting q′ = 0.

3. Perform the unsteady simulation by turning on the combustion response func-
tion q′ in (7.49) and turning off the oxidizer mass flow rate perturbation by setting
ṁox = ṁox,0.

Introduction of an artificial viscosity is essential for a robust and long time-integration
of (7.49). Common discretization schemes for (7.49) are often dissipative, e.g., the
Lax-Friedrich scheme used in [108]. Since the skew-symmetric discretization is non-
dissipative, we modify (7.49) as

∂

∂t
v +

∂

∂x
F = sA + sf + sq + d, d = (0,

∂

∂x
τ, 0, 0)T , (7.56)

with τ = μ∂(uA)/∂x, and μ = 6× 10−5. This type of artificial viscosity is chosen for its
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simplicity. This, however, can be replaced with a more moderate and sophisticated
method.

Note that the right hand side in (7.56) suggests that, in general, mass, momentum,
and energy is not conserved. Furthermore, the complex coupling of the variables in
(7.49) and the non-constant adiabatic gas index prohibit the application of complex
and implicit time integration schemes. Therefore, a quasi-skew-symmetric form,
introduced in (7.12), is used for (7.49). It is straight-forward to check [98], for t, s ∈ RN

1

2
δx(st)j +

1

2
sjδx(t)j +

1

2
tjδx(s)j =

1

4
δ+x (sj + sj−1)(tj + tj−1). (7.57)

where δx(v)j = (vj+1 − vj−1) /Δx is centered finite difference approximation of the
space derivative and δ+x (vj) = (vj+1 − vj) /Δx, for some v ∈ RN . Therefore,

FΔ
i+1/2(sjtj , sj+1tj+1) = (sj + sj−1)(tj + tj−1), (7.58)

can be interpreted as an approximation of a quadratic flux function at the boundary
of two adjacent finite volume cells. A better approximation of the flux in (7.58) corre-
sponds to a higher order skew-symmetric form for a quadratic variable st in (7.57). We
discretize the real line into N uniform cells of size Δx. A quasi-skew-symmetric form
for (7.56) now takes the form

d

dt
qij + δ+FΔ

i+1/2(q
i
jr

i
j , q

i
j+1r

i
j+1)− δ+FΔ

d (dij , d
i
j+1) + δ+FΔ

p (pj , pj+1)

=

∫
cj

sA + sf + sq dx.
(7.59)

for j = 1, . . . , N . Here, cj is the jth cell, qij =
∫
cj
vi dx is the cell average of the ith

component of v, FΔ
p is the flux approximation of the pressure term, FΔ

d is the flux
approximation for the viscous term and r = (u, u, u, u)T .

The three-stage Runge-Kutta (SSP RK3) [59] is used to integrate (7.56) in time. The
pressure profile for the steady state, with q′ = 0, and the pressure oscillatory mode in
the unsteady phase is presented in Figures 7.13a and 7.13b, respectively.

The discontinuities that appear in the solution of (7.56) suggest that a relatively large
basis is required to resolve fine structures in the solution. Here, a POD basis is gen-
erated with k = 200, k = 300 and k = 400 number of basis vectors. To avoid basis
changes in the reduced system, only one POD basis is considered for ρ, ρu ρE and
ρYox. The explicit SSP RK3 is then used to integrate the reduced system in time, for
the unsteady system. The source terms are evaluated in the high-fidelity space and
projected onto the reduced space. However, in principle, the DEIM can be applied to
accelerate the evaluation of this component.
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Figure 7.13 – (a) Pressure profile of the steady state. (b) Oscillatory mode of pressure
located at x = 0.36 for the unsteady flow. (c) Relative error between the high-fidelity
and approximated pressure. (d) Approximation of the oscillations.

Figure 7.13c shows the approximation error of the pressure, due to MOR. It is ob-
served that the approximation is consistently improved as the number of basis vectors
increases. Furthermore, the approximate solution maintains high accuracy over a
relatively long time-integration. The oscillation of pressure is demonstrated in Fig-
ure 7.13d. The overall behaviour of pressure is well approximated by the reduced
system. Similar results are obtained for a POD basis with higher number of modes.

We note that the discrete form of (7.56) is not in the full skew-symmetric form. Nonethe-
less, the quasi-skew-symmetric discretization offers remarkable stability preservation.

7.4 Conclusions

Conservation of nonlinear invariants are not, in general, guaranteed with conventional
model reduction techniques. The violation of such invariants often results in a qualita-
tively wrong or unstable reduced system, even when the high-fidelity system is stable.
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This is particularly important for fluid flow, where conservation of the energy, as a
nonlinear invariant of the system, is crucial for a correct numerical evaluation.

In this paper, we discuss that conservative properties of the skew-symmetric form
for fluid flow can naturally be extended to the reduced system. Conventional MOR
techniques preserve the skew-symmetry of differential operator which result in the
conservation of quadratic invariants at the level of the reduced system. Furthermore,
the reduced system also contains quadratic invariants with respect to the reduced
variables that approximates the invariants of the high-fidelity system. This results in
the construction of a physically meaningful reduced system, rather than a mere couple
systems of differential equations.

Numerical experiments for the incompressible and compressible Euler equation con-
firm conservation of mass, momentum and energy for the reduced model with the
skew-symmetric discretization. In contrast, when a non-skew-symmetric form, e.g.
divergence form or advective form, is considered, MOR does not necessarily yield a
stable reduced system. On the other hand the skew-symmetric form consistently yields
a robust reduced system over long time-integration, even when the reduced space
does not represent the high-fidelity solution accurately.

Finally, a MOR of a quasi-skew-symmetric form for the CVRC model is presented.
Although this model is not in a full skew-symmetric form and an explicit Runge-Kutta
method used for time-integration, we still recover a reduced model with excellent
stability properties.
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8 Conclusions

During the past decades, the need to solve complex, multi-physics, and multi-scale
applications have become central in science, engineering and across many indus-
trial domains. The numerical evaluation of such models using classical approaches,
however, is often prohibitive due to limitations in computational capacities. In such
situations, model order reduction is playing an increasingly important role in ad-
vancements in scientific computing and high-performance computing by reducing
the intrinsic computational complexity of many modern models.

Despite the success of model order reduction for elliptic and parabolic PDEs, model
reduction for hyperbolic systems remains a challenge. Symmetries, invariants, and
conservation laws are a fundamental feature of such models, and are often destroyed
during model order reduction. The violation of such features not only results in an
inaccurate model, but may also cause numerical instabilities in the reduced order
model.

This thesis studies and develops model order reduction techniques that conserve
certain invariants and symmetries of hyperbolic systems of PDEs. Conserving such
structures not only result in a physically meaningful reduced model, but provides
robust long time behaviour and a stable reduced model.

To achieve this goal, we study model order reduction from a geometric point of view.
The crucial role of time is highlighted for the construction of symmetry-preserving
model order reduction. We furthermore investigate why conventional model order
reduction techniques often break the symmetries of hyperbolic problems.

Hamiltonian systems, as a special case of highly symmetric PDEs, are intensively
studied in this thesis. We discuss how the symplectic structure, the symmetry of Hamil-
tonian systems, can be conserved in model order reduction. A greedy approach for
construction of a reduced basis is presented. And we discuss how a symplectic Galerkin
projection constructs a reduced Hamiltonian system that carries the symmetries of
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the original Hamiltonian system. The reduced Hamiltonian, as an approximation to
the original Hamiltonian, is a conserved quantity for the reduced system. Hence, the
loss in the Hamiltonian due to model order reduction remains constant and can be
controlled.

To adapt the symplectic model reduction to an unstructured numerical discretization,
the method is coupled with a weighted norm. A reduced system is constructed by
orthogonally projecting a generalized Hamiltonian system onto the reduced space,
with respect to a weighted inner product. The reduced system, however, carries the
Hamiltonian structure and also the symplectic symmetry. It is shown that the new
method can be viewed as a natural extension of the symplectic model reduction, and
therefore retains the structure preserving features, e.g. symplecticity and stability.

In many applications in engineering, models appear as a dissipative perturbation of
Hamiltonian system. In such models, the Hamiltonian systems is no longer symplectic.
In this thesis, we consider a canonical extension of dissipative Hamiltonian systems,
by coupling the dissipative system with a canonical heat bath, resulting a closed and
conservative system. A symplectic model reduction method can then be applied to
conserve the symmetries of the extended model, and, consequently, conserve the
evolution of energy and dissipation at the level of the reduced system. It is shown
that the extension of the system does not pose a significant additional computational
burden.

The numerical experiments in this thesis illustrate that the proposed methods consis-
tently result in a robust reduced system with excellent stability. Conventional model
reduction techniques, even when the reduced basis is chosen to yield a high accuracy,
may yield an unstable or poorly performing reduced system. Numerical experiments
confirm that the conservation of symmetries can significantly enhance the overall
dynamics of the reduced system.

To generalize the symplectic model reduction to more complex problems, a conser-
vative model reduction technique of fluid flow is proposed. Skew-symmetric models
for fluid flow are well-known for conserving quadratic invariants of a fluid flow in a
numerical evaluation. The key ingredient in these methods is the construction of a dis-
crete skew-symmetric operator. A proper model order reduction method preserves the
skew-symmetry of such differential operators. This helps to define quadratic invariants
in the reduced system that approximate the quadratic invariants of the high fidelity
system. Numerical experiments suggest that the skew-symmetric form consistently
yields a robust reduced system over long time-integration, even when the reduced
model does not represent the high-fidelity solution accurately.

What is less emphasised in this thesis is the question of reducibility of general hyper-
bolic problems. Transport of information, potentially throughout the entire domain,
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is a distinctive feature of hyperbolic problems. This often covers patterns in the en-
semble of snapshots of the system and inhibits the possibility of describing the system
as a linear combination of a relatively few basis vectors. The construction of efficient
reduced order models for such cases, therefore, can be a possible extension to this
work.

Although conservation of symplectic symmetry and quadratic invariants is discussed
intensively in this thesis, conservation of general conservation laws or invariants is
to be investigated. An extension of symplectic model order reduction may be to seek
the conservation of the Poisson structure, or the multi-symplectic structure, on a
symplectic manifold. In addition, the conservation of integral curves over model order
reduction, in order to recover a stable reduced system, remains future work.

This thesis provides a promising approach to the construction of robust, accurate,
physically meaning-full reduced system for Hamiltonian systems and fluid flow. It also
extends the understanding of what can be achieved with model order reduction and
reduced basis methods. Indeed, the conservation of general nonlinear invariants, e.g.
for Hamiltonian systems, in a linearly transformed and approximated system is a key
achievement.

Modeling is the art of approximately describing nature with understandable tools.
Therefore, constructing a simplified and reduced model that resembles the symme-
tries and distinctive features and invariants of a complex system is another step in
mathematical modelling. What is presented in this thesis highlights the potential role
of structure-preserving model reduction in the future advancements of modeling.
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