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Abstract

The theme of this thesis revolves around three important manifestations of light, namely its
corpuscular, wave and electromagnetic nature. Our goal is to exploit these principles to analyze,
design and build imaging modalities by developing new signal processing and algorithmic tools,
based in particular on sampling and sparsity concepts.

First, we introduce a new sampling scheme called variable pulse width, which is based on the
finite rate of innovation (FRI) sampling paradigm. This new framework enables us to sample
and perfectly reconstruct weighted sums of Lorentzians; perfect reconstruction from sampled
signals is guaranteed by a set of theorems. Weighted sums of Lorentzians provide an interesting
parametric model to describe signals that can be naturally represented by a sum of pulses. For
instance, extensive experiments have shown that it is a particularly suitable model to tackle the
problem of electrocardiogram compression.

Second, we return to the context of light and study its reflection, which is based on the
corpuscular model of light. More precisely, we propose to use our FRI-based model to repre-
sent bidirectional reflectance distribution functions. Such functions are naturally defined on the
sphere, which is also a motivation to generalize our sampling framework to the spherical domain.
We develop dedicated light domes to acquire reflectance functions and use the measurements ob-
tained to demonstrate the usefulness and versatility of our model. In particular, we concentrate
on the representation of specularities, which are sharp and bright components generated by the
direct reflection of light on surfaces.

Third, we explore the wave nature of light through Lippmann photography, a century-old
photography technique that acquires the entire spectrum of visible light via the phenomenon
of interference. This fascinating process captures interferences patterns created by the exposed
scene inside the depth of a photosensitive plate. Following development, the colors of the original
scene can be reproduced by illuminating the plate with a neutral light source. After interacting
inside the plate, the illuminating light is reflected back and its spectrum corresponds to that of
the exposed scene. Based on the original theory by Gabriel Lippmann, who won the 1908 Nobel
Prize for this invention, we propose a mathematical model which precisely explains the technique.
More importantly, we demonstrate that the spectrum reproduction suffers from a number of
distortions due to the finite thickness of the plate and the choice of reflector. In addition to
describing these artifacts, we propose an algorithm to invert them, essentially recovering the
original spectrum of the exposed scene.

Next, the wave nature of light is further generalized to the electromagnetic theory, which
we invoke to leverage the concept of polarization of light. We also return to the topic of the
representation of reflectance functions and focus this time on the separation of the specular
component from the other reflections. We exploit the fact that the polarization of light is
preserved in specular reflections and investigate camera designs with polarizing micro-filters
with different orientations placed just in front of the camera sensor; the different polarizations of
the filters create a mosaic image, from which we propose to extract the specular component. We
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viii Abstract

apply our demosaicing method to several scenes and additionally demonstrate that our approach
improves photometric stereo.

Finally, we delve into the problem of retrieving the phase information of a signal from the
magnitude of its Fourier transform. We assume the original signal to be sparse; this is a natural
assumption in many applications, such as X-ray crystallography, speckle imaging and blind
channel estimation. We propose an algorithm that resolves the phase retrieval problem for
sparse signals in three stages: first, we exploit the finite rate of innovation sampling theory to
super-resolve the auto-correlation function of a sparse signal from a limited number of samples;
second, we design a greedy algorithm that identifies the locations of a sparse solution given the
super-resolved auto-correlation function; third, we recover the amplitudes of the atoms given
their locations and the measured auto-correlation function. Unlike traditional approaches that
recover a discrete approximation of the underlying signal, our algorithm estimates the signal on
a continuous domain, which makes it the first of its kind.

The concluding chapter outlines several avenues for future research, like new optical devices
such as displays and digital cameras, inspired by the topic of Lippmann photography.

Keywords: Color, electrocardiogram, finite rate of innovation, Hilbert transform, hyper-
spectral imaging, interference, inverse problem, Lippmann, phase retrieval, photography, polar-
izing filter, pulse compression methods, reflectance function, sampling, signal denoising, sparsity,
spectral analysis, specularity, spherical harmonics, standing wave, variable width, X-ray crystal-
lography.



Résumé

Le thème de cette thèse s’articule autour de trois manifestations importantes de la lumière, à
savoir sa nature corpusculaire, ondulatoire et électromagnétique. Notre objectif est d’exploiter
ces principes pour analyser, concevoir et construire des modalités d’imagerie en développant de
nouveaux outils de traitement du signal et des algorithmes, basés notamment sur les concepts
d’échantillonnage et de parcimonie.

Premièrement, nous introduisons un nouveau schéma d’échantillonnage appelé variable pulse
width, qui est basé sur le paradigme de l’échantillonnage à taux d’innovation fini (FRI, pour finite
rate of innovation). Ce nouveau concept permet d’échantillonner et de reconstruire parfaitement
des sommes pondérées de Lorentziens ; la reconstruction parfaite à partir de signaux échantillon-
nés est garantie par un ensemble de théorèmes. Les sommes pondérées de Lorentziens présentent
un modèle paramétrique intéressant pour décrire des signaux qui peuvent être naturellement
représentés par une somme d’impulsions. Par exemple, nombre d’expériences ont montré qu’il
s’agit d’un modèle particulièrement approprié pour s’attaquer au problème de la compression de
signaux cardiaques.

Deuxièmement, nous revenons sur le thème de la lumière et étudions le principe de réflexion,
basé sur le modèle corpusculaire de la lumière. Plus précisément, nous proposons d’utiliser notre
modèle d’échantillonage basé sur la théorie FRI pour représenter les fonctions de distribution
de la réflectance bidirectionnelle. De telles fonctions sont naturellement définies sur un domaine
sphérique, ce qui est aussi une motivation pour généraliser notre technique d’échantillonnage aux
signaux définis sur la sphère. Nous développons des dômes de lumière dédiés pour acquérir des
fonctions de réflectance et utilisons les données obtenues pour démontrer l’utilité et la polyvalence
de notre modèle. En particulier, nous nous concentrons sur la représentation des spécularités,
qui sont des composantes effilées et brillantes générées par la réflexion directe de la lumière sur
les surfaces.

Troisièmement, nous explorons la nature ondulatoire de la lumière grâce à la photographie
Lippmann, une technique de photographie plus que centenaire qui capte l’ensemble du spectre
de la lumière visible par le biais du phénomène d’interférence. Ce processus fascinant piège
des motifs d’interférences créés par la scène exposée à l’intérieur de la profondeur d’une plaque
photosensible. Après développement, les couleurs de la scène originale peuvent être reproduites
en éclairant la plaque avec une source de lumière neutre. Suite à son interaction à l’intérieur
de la plaque, la lumière est réfléchie et son spectre correspond à celui de la scène exposée.
Basé sur la théorie originale de Gabriel Lippmann, qui a remporté le prix Nobel en 1908 pour
cette invention, nous proposons un modèle mathématique qui décrit précisément le procédé. Plus
important encore, nous démontrons que la reproduction du spectre souffre de plusieurs distorsions
dues à l’épaisseur finie de la plaque et au choix du réflecteur. En plus de décrire ces artefacts,
nous proposons également un algorithme pour les inverser, retrouvant ainsi le spectre original de
la scène exposée.

Ensuite, la nature ondulatoire de la lumière est généralisée à la théorie électromagnétique,
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x Résumé

que nous invoquons pour tirer parti du concept de polarisation de la lumière. Nous revenons
également sur le sujet de la représentation des fonctions de réflectance et nous focalisons cette fois
sur la séparation de la composante spéculaire des autres réflexions. Nous exploitons le fait que la
polarisation de la lumière est préservée lors de réflexions spéculaires et étudions la conception de
caméras avec des microfiltres polarisants ayant différentes orientations placées juste devant le cap-
teur de la caméra ; les différentes polarisations des filtres créent une image en mosäıque, à partir
de laquelle nous proposons d’extraire la composante spéculaire. Nous appliquons notre méthode
de dématriçage à plusieurs scènes et démontrons entre autres que notre approche améliore le
procédé stéréo photométrique.

Finalement, nous nous penchons sur le problème de l’extraction de l’information de phase
d’un signal à partir de la magnitude de sa transformée de Fourier. Nous supposons que le signal
mesuré est parcimonieux ; c’est une hypothèse réaliste dans de nombreuses applications, telles
que la cristallographie aux rayons X, l’imagerie à granularité et l’estimation aveugle de canal.
Nous proposons un algorithme qui résout le problème d’extraction de phase pour les signaux
parcimonieux en trois étapes : premièrement, nous exploitons la théorie de l’échantillonnage à
taux d’innovation fini pour améliorer la résolution de la fonction d’auto-corrélation du signal
mesuré à partir d’un nombre limité d’échantillons ; deuxièmement, nous estimons les positions
d’une solution parcimonieuse compte tenu de la fonction d’auto-corrélation à super résolution ;
troisièmement, nous calculons les amplitudes des atomes à partir de leur position et de la fonc-
tion d’auto-corrélation mesurée. Contrairement aux approches traditionnelles qui fournissent une
approximation discrète du signal sous-jacent, notre algorithme estime le signal sur un domaine
continu, ce qui en fait le premier du genre.

Le chapitre de conclusion évoque plusieurs pistes pour de futures recherches, comme de nou-
veaux dispositifs optiques tels que des écrans et des appareils photo numériques, inspirés par le
sujet de la photographie Lippmann.

Mots-Clés : Couleur, électrocardiogramme, taux d’innovation fini, transformée de Hilbert,
imagerie hyperspectrale, interférence, problème inverse, Lippmann, extraction de phase, photo-
graphie, filtre polarisant, méthodes de compression d’impulsions, fonction de réflectance, échan-
tillonnage, débruitage, parcimonie, analyse spectrale, spécularité, harmoniques sphériques, ondes
stationnaires, largeur variable, cristallographie aux rayons X.
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Chapter 1

Introduction

Newton thought that light was made up of particles, but then

it was discovered that it behaves like a wave. Later, however

(in the beginning of the twentieth century), it was found that

light did indeed sometimes behave like a particle. [...] Now

we have given up. We say: “It is like neither.”

The Feynman Lectures on Physics

Richard Feynman

1.1 A photographic perspective on light

Since the dawn of civilization, people have tried to understand and explain light. In ancient

Greece for example, Pythagoras believed that vision was due to light rays emitted from the

eye and illuminating objects. Even though light seems a very familiar concept, it took several

centuries for physicists and scientists to establish sound theories that fully characterize and

explain the principles and laws that govern the propagation of light and its interaction with

matter. In fact, a number of theories can explain different phenomena.

Light plays a central role in this thesis. Before diving into the theoretical details, we briefly

review its main properties from a photographic perspective: to do so, let us have a closer look

at Figure 1.1, which summarizes some of the effects and interactions that light can have in a

scene. In vacuum, light propagates in straight lines. However, when traveling in different media

or interacting with objects, light can be subject to various optical phenomena. The most obvious

effect in Figure 1.1 is the reflection of light, embodied by the mountain that appears inverted

1
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Figure 1.1: Mount Rundle and Vermilion Lakes near Banff, AB in Canada. This photograph is

a composite of images that have been taken with a circular polarizing filter having two different

orientations. The three theories of light can be observed in this single picture: the corpuscular

theory can describe among other things the reflection of light on the objects of the scene. The

wave theory is highlighted by the soap bubbles, whose thin layer creates interferences. The

electromagnetic nature of light is embodied by the polarizing filter that almost fully suppresses

the reflection from the surface of the lake on the left side of the image.

in the lake of the foreground. More generally, all the light reaching the camera has undergone

some reflection of some sort as there are no light sources directly visible in the scene: the sun for

instance is already hidden behind the surrounding mountains. A facet of light that usually goes

hand in hand with reflection is absorption. Light is rarely fully reflected by materials; instead,

a certain amount ends up being absorbed by it. This is the reason why the trees appear much

darker than the snow in the scene: the trees absorb some of the light and use it to create energy

via photosynthesis. On the other hand, almost all the light that hits snow patches is reflected.

Refraction is another important aspect of light: when light traverses different media, it can

undergo changes of direction if the indices of refraction of these media are different. It can be

observed for instance by looking through a glass of water. In Figure 1.1, refraction occurs at the

interface between air and the lake.

Another optical phenomenon of interest is interference, which relies on the wave nature of

light and occurs when several waves interact with each other. Water interferences can be created

by throwing two stones into a still lake. The resulting waves either add up constructively or

destructively, producing peaks and valleys on the surface of the water. The same happens with
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(a) Corpuscular theory (b) Wave theory (c) Electromagnetic theory

Figure 1.2: Illustration of the three theories regarding the nature of light used in this thesis.

light, the difference is that light waves have extremely short wavelengths, which makes them

more complicated to observe. A relatively easy way to indirectly visualize interference is with

soap bubbles, which are made of a very thin film of soap. The light reflects back and forth at

the interface between the soap and air and interferes with itself; this results in intriguing colors

that depend on the thickness of the film, as showcased in Figure 1.1.

Lastly, we are interested in polarization. This phenomenon is based on the intuition that light

traveling through space has an orientation. Using a polarizing filter, light can be filtered and

selected according to its different orientations. For example, the photograph in Figure 1.1 has

been realized with a polarizing filter in front of the camera. The difference between the left-hand

side and the right-hand side is that the filter has been rotated by 90 degrees. As a result, the

reflection from the surface of the lake is either preserved or diminished.

There are more properties that are not covered in this dissertation: for instance, the light

can be scattered by objects; this is what happens in the sky and the clouds.

1.2 Understanding light

Now that we are familiar with the main properties of light, let us dive deeper into the mathematics

behind them. We begin our journey by reviewing the main theories that model the different

aspects of light; we explain here a few essential ideas from each of these theories and provide

the necessary background for the later chapters. In order to illustrate these concepts, we pick a

familiar light source—our sun—that will follow us throughout this introductory chapter.

1.2.1 Corpuscular theory

Chronologically, the first rigorous theory of light dates back to the 16th century and is directly

influenced by the mechanical philosophy, a scientific movement that aimed at explaining the world

with mechanical and deterministic principles. The first mathematical model was introduced by

Descartes, who proposed the corpuscular theory in his famous Discours de la Méthode [50]. The

corpuscular theory postulates that light is made of tiny particles that travel in straight lines

and interact with the objects of a scene the same way a ball would interact when it hits other
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Quantity Expression Unit

Flux Φ(A) J/s = W

Irradiance E(x) = dΦ(A)
dA(x) W/m2

Radiosity B(x) = dΦ(A)
dA(x) W/m2

Intensity I(ω) = dΦ
dω W/sr

Radiance L(x,ω) = d2Φ(A)
cos θdA(x)dω W/m2sr

Table 1.1: Basic radiometric quantities

objects. The theory can explain physical phenomena such as reflection and refraction and was

the predominant doctrine in the seventeenth century, being notably supported by Newton [132].

In the corpuscular model, if we know the geometry of a scene and the position and intensity

of the light sources, we can precisely compute how light is scattered in space by simulating

a very large number of light particles bouncing in the environment. This is exactly what is

done in rendering engines, which employ algorithms such as ray tracing to compute synthetic

images [146]. To do so, we also need to precisely measure light; this is the science of radiometry.

Radiometry

Radiometry is of interest here as it allows us to precisely quantify how light is transported,

reflected and scattered in a scene. In this section, we assume that light consists of particles—

photons—with position x and direction of motion ω1; unless specified otherwise, ω is measured

with respect to the surface normal of the object hit by the photon. We briefly review below a

few important radiometric quantities. These quantities are also summarized in Table 1.1.

Flux The radiant flux or radiant power Φ(A) is the total amount of energy passing through

a surface or space A per unit time and its unit of measurement is the Watt (W) or Joule per

second (J/s). Note that the term ‘flux’ is not only reserved to radiometry and is used to describe

various other physical quantities such as the volumetric flux in fluid dynamics. In fact, we can

make the analogy between photons passing through a surface and water flowing in a pipe.

The flux of the sun is the total energy carried by the photons it emits every second and is

called the solar luminosity. Its value is estimated at 3.8 · 1026 W [199].

Radiant intensity Given a pointwise light source, we can compute its radiant intensity I(ω),

which is measured on the unit sphere and corresponds to the angular density of its emitted

power [146]. For instance, computed over the entire unit sphere, the radiant intensity is simply

Φ/4π. More generally, we can calculate it in terms of flux along any differential cone of directions

as

I(ω) = lim
ω→0

ΔΦ

Δω
=
dΦ

dω
.

The quantity dω is called a solid angle and is the 3-dimensional generalization of a planar angle;

it is defined as a surface on the unit sphere and its unit is the steradian (sr). Conversely, the

1As it is standard notation in computer graphics, we use ω for this quantity. This should not be confused
with ω (non-bold), which represents the angular frequency in the context of wave optics.
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Figure 1.3: Lambert’s cosine law: Eθ = E cos θ for different angles θ.

flux is connected to the radiant intensity via

Φ =

∫
S2

I(ω)dω,

where S2 = {x ∈ R3 : ‖x‖ = 1} is the unit sphere. Assuming our sun is an isotropic source—it

emits equally in all directions—its radiant intensity is Φ
4π W/sr.

Irradiance The irradiance E(x) describes the flux density—flux per surface area—received at

point x. Its is expressed in Watt per square meter (W/m2) as a function of flux as

E(x) =
dΦ(A)

dA(x)
.

The irradiance follows the inverse square law, which states that the irradiance of a point source

at distance d is inversely proportional to the square of d. Another relevant property of the

irradiance is the Lambert’s cosine law : the irradiance hitting any surface varies as the cosine

of its incident angle θ. It directly follows from the fact that the flux is spread over an area

proportional to cos θ; hence the larger the angle, the larger the area and the smaller the resulting

irradiance (see Figure 1.3). The analogue of the irradiance for outgoing light is called radiosity.

The total solar irradiance incident on the upper atmosphere of the earth represents the solar

flux that reaches our planet. In this context, it is called the solar constant and its value is about

1.36 kW/m2 [95].

Radiance The radiance denotes the irradiance per solid angle (or equivalently the radiant in-

tensity per unit area). It is the most comprehensive of the radiometric quantities that we expose

here and it is given in Watts per steradian per square meter (W/sr/m2). It can be expressed

using the flux as

L(x,ω) =
d2Φ(A)

cos θdA(x)dω
,

where cos θdA(x) represents the area projected onto the plane that is perpendicular to the

direction of propagation. Other radiometric quantities can be expressed in terms of radiance, for
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(a) Sun behind a pole (b) Soap bubbles (c) Cloud iridescence

Figure 1.4: Phenomena that cannot be explained by the corpuscular theory: (a) the sun rays

do not seem to travel in straight light as light leaks through the pole (additionally, a halo can

also be seen); (b) the thin layer of soap in the bubbles creates interferences which results in

interesting colors; (c) cloud iridescence: the sunlight is scattered and diffracted by tiny droplets

of water or ice crystals in the air.

instance the irradiance is given by

L(x,ω) =
dE(x)

cos θdω
, E(x) =

∫
Ω

L(x,ω) cos θdω,

where the integral is computed over the unit hemisphere Ω. An important property of the

radiance is that it remains constant along a ray. Furthermore, the sensor response of digital

cameras is directly proportional to the radiance. This makes it very useful: as we will see in

Chapter 3, coupled with the theory of bidirectional reflectance distribution functions (BRDFs)

and the rendering equation, the radiance and other radiometric quantities provide a powerful

tool to analyze and simulate the light transport in a scene.

1.2.2 Wave theory

The corpuscular theory cannot explain all the behaviors of light. For instance, in Figure 1.4,

the sun’s light creates some unique phenomena that cannot be predicted by tracing rays in the

scene. More generally, the corpuscular model falls short of providing an explanation to diffraction,

interference and polarization.

A new school of thought appeared when Christian Huygens hypothesized that light behaves

like a wave [80]. His theory was based on the assumption that light moves at different speeds

in different mediums, and provided among other things a simple explanation of refraction. The

wave theory was further strengthened by Thomas Young’s famous double-slit experiment, where

he created interference patterns by splitting and combining the sun’s light.

Augustin-Jean Fresnel was another scientist who played an important role in the acceptance

of the wave theory. In 1817, he submitted a manuscript to the French Academy of Sciences to

explain the phenomenon of interference using wave theory. Siméon Denis Poisson, who was a

convinced corpuscular theorist, was determined to find a flaw in Fresnel’s submission. He thought

he succeeded when Fresnel’s theory was predicting a bright spot in the middle of the shadow
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cast by a circular object illuminated with a point light source. However, to his stupefaction,

experiments showed that the now famous Poisson spot was indeed real.

We now briefly describe the basic concepts regarding the wave nature of light. For more

details, we direct the reader to [35, 145, 160, 167].

The wave equation

An optical wave can be mathematically described by the real scalar function u(r, t), which is a

function of position r = [x, y, z]� and time t. The optical wave u(r, t) satisfies the wave equation:

∇2
ru− 1

c2
∂2u

∂t2
= 0, (1.1)

where c is the speed of light in the medium, and ∇2
r is the Laplacian operator with respect to

the position.

Monochromatic waves

A monochromatic wave u(r, t) represents an optical wave that is composed of a single frequency:

u(r, t) = a(r) cos(ϕ(r) + ωt), (1.2)

where a(r) denotes the amplitude, ϕ(r) the phase and ω the angular frequency (in rad/s).

Additionally, we denote the wavenumber k = ω/c, which represents the spatial frequency. It is

often convenient to express optical waves in a complex form (or phasor notation):

U(r, t) = a(r)ejϕ(r)ejωt = Û(r)ejωt,

where Û(r) = a(r)ejϕ(r) is called the complex amplitude and characterizes the spatial variation

of the wave. Clearly, we have

u(r, t) = Re {U(r, t)} .

The Helmoltz equation If we substitute the expression for the monochromatic wave into the

wave equation (1.1), we obtain the Helmoltz equation:

(∇2
r + k2)U(r) = 0.

Plane waves A plane wave is a wave whose wavefronts are planar and perpendicular to its

direction of propagation k; for U(r, t) to satisfy the wave equation, we need ‖k‖ = k. The

complex amplitude of a plane wave is given by

Û(r) = Ae−jk�r,

where A = A0e
jϕ0 is called the complex envelope. The wavefronts of a plane wave describe infinite

parallel planes that are separated by a distance λ called the wavelength and which relates to the

frequency and the wavenumber via the following relation:

λ =
2π

k
=

2πc

ω
.
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Figure 1.5: Newton’s double prism experiment: white collimated light enters the first prism in

the bottom left. The white light is dispersed and decomposed into the colors of the spectrum as

it exits the prism. The spectrum is then focused with a convex lens and recombined into white

light by the prism in the top right. Simulation created with the computer graphics software

Blender [33] and the physically based renderer LuxCoreRender [107].

Each wavelength has an associated color, ranging from around 400 nm for violet to 700 nm for

red. The decomposition of visible light into colors according to their wavelength is called the

spectrum. Interestingly, the term spectrum was coined by Isaac Newton, a strong advocate of the

corpuscular theory, who first discovered it with his famous crucial experiment [133], reproduced

in Figure 1.5. In this experiment, he created a spectrum by decomposing white light with a

prism. He also showed that white light can be recreated by passing the spectrum through a

second prism.2 This experiment is a beautiful illustration of Fourier analysis, in which signals

are studied and analyzed from their spectral representation.

Spherical waves Other typical functions that satisfy the wave equation include spherical waves,

whose complex amplitude is given by:

Û(r) =
A

‖r − c‖e
−jk‖r−c‖,

where ‖r − c‖ is the distance from the center c of the sphere.

2Newton’s crucial experiment has also been replicated on the cover of [190].
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Polychromatic waves

A polychromatic wave u(r, t) can be thought of as a superposition integral of several monochro-

matic waves (1.2):

u(r, t) =

∫ ∞

0

a(r, ω) cos(ϕ(r, ω) + ωt)dω

= Re

{∫ ∞

0

Û(r, ω)ejωtdω

}
,

where Û(r, ω) = a(r, ω)ejϕ(r,ω) is the complex amplitude for frequency ω. As in the monochro-

matic case, we can express a polychromatic wave as a complex function, which is given by

U(r, t) =

∫ ∞

0

Û(r, ω)ejωtdω, (1.3)

Expression (1.3) is also known as Gabor’s analytic signal. Additionally,

u(r, t) =

∫ ∞

0

a(r, ω)

2

(
ej(ϕ(r,ω)+ωt) + e−j(ϕ(r,ω)+ωt)

)
dω

=
1

2

∫ ∞

0

Û(r, ω)ejωtdω +
1

2

∫ ∞

0

Û∗(r, ω)e−jωtdω

=
1

2

∫ ∞

0

Û(r, ω)ejωtdω +
1

2

∫ 0

−∞
Û∗(r,−ω)ejωtdω.

Since u(r, t) is real, Û must be conjugate symmetric; that is, Û(r,−ω) = Û∗(r, ω). Therefore,

u(r, t) =
1

2

∫ ∞

−∞
Û(r, ω)ejωtdω,

which means that the spectrum is nothing but (twice) the Fourier transform of the wave u(r, t):

Û(r, ω) = 2

∫ ∞

−∞
u(r, t)e−jωtdt.

The pulsed plane wave. The analogue to the monochromatic plane wave for polychromatic

light is called the pulsed plane wave: it consists of the superposition of plane waves traveling in

the same direction and is given by

U(r, t) =

∫ ∞

0

Û(r, ω)ejωtdω

=

∫ ∞

0

A(ω)e−jk(ω)�rejωtdω,

where A(ω) is the complex amplitude of the component with frequency ω.

Intensity of optical waves

It is not possible to physically measure or observe the quantity u(r, t) directly. What we can

observe however is the optical intensity, which is proportional to the time-averaged squared
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Figure 1.6: Double slit experiment: a plane wave passes through two slits in a wall. This

generates cylindrical waves that interfere with each other, creating interference patterns on the

screen.

amplitude. For a monochromatic wave, in phasor notation, this can be expressed as the squared

magnitude of U(r, t):

I(r) = |U(r)|2 = U(r, t)U∗(r, t).

Using Parseval’s theorem [143], we can also compute the intensity of a polychromatic wave with

I(r) =

∫ ∞

−∞
U(r, t)U∗(r, t)dt

= 4

∫ ∞

0

P (r, ω)dω,

where P (r, ω) = U(r, ω)U∗(r, ω) is the spectral density function of polychromatic light.

Note that the problem of recovering U from its intensity is called phase retrieval and is the

topic of Chapter 6.

Properties of light waves

Optical waves can interact with objects or with each other. Two concepts that are particularly

interesting in the context of this thesis are reflections and interference.

Reflection When the light changes the medium in which it travels, a (partial) reflection occurs.

In the process, the wave can undergo a phase shift and be attenuated; this is expressed by the

reflection coefficient r = ρejθ, where ρ is the attenuation factor and θ the phase shift3. With

this notation, we can represent the reflection of planar waves with the following operator:

R{U}(r, t) = rAe−j(k−2(k�n)n)�rejωt.

While this expression represents a general reflection, it can be simplified in some specific cases.

For instance, when we assume that we have a perfect metallic mirror (r = −1) and that the

3Note that we use r = [x, y, z]� for the position and r = ρejθ for the reflection coefficient; these two quantities
should not be confused.
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Unpolarized light

Polarized light

Linear polarizer

Figure 1.7: A linear polarizing filter: unpolarized light is transformed into polarized light that

oscillates in the direction of the polarizing filter.

wave travels in the opposite direction with respect to the surface normal n of the mirror, that

is, when k = −n, we have

R{U}(r, t) = −U∗(r)ejωt.

Interference Let U1 and U2 be two plane waves. Since the wave equation is linear, the principle

of superposition applies: U1+U2 is also a solution to the wave equation, and hence, a valid optical

wave. Given U1 = I
1/2
1 ejϕ1 and U2 = I

1/2
2 ejϕ2 , the result is a wave with complex amplitude

U = U1 + U2

and intensity given by the interference relation

I = |U1 + U2|2
= |U1|2 + |U2|2 + U∗

1U2 + U1U
∗
2

= I1 + I2 + 2
√
I1I2 cos(ϕ).

where ϕ = ϕ2 − ϕ1. When I1 = I2 = I0, the interference relation reduces to

I = 2I0(1 + cos(ϕ))

= 4I0 cos2
(ϕ

2

)
.

The notion of interference is often leveraged to demonstrate the wave-nature of light, as for

instance in the famous double slit experiment. In this experiment, a plane waves goes through

two narrows slits. This results in two circular waves that interfere with each other. By placing

a screen, it is possible to visualize this interference, as illustrated in Figure 1.6.

1.2.3 Electromagnetic theory

We now turn to our third model for light. Again, we refer to the sun to underline where the wave

theory of light as described above is limited. If you have ever worn polarized sunglasses, you
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(a) Without filter (b) With filter

Figure 1.8: Effect of a polarizing filter on a natural scene: the sky is darker and bluer, and some

of the bright reflections on the surface of the lake are diminished, especially near the shore. As

a result, contrasts are increased. The effect is stronger in the directions that are perpendicular

to the sun, which is rising on the left outside of the frame.

probably have noticed that they are extremely efficient at cutting the glare due to large horizontal

surfaces such as lakes or roads. When you rotate them by 90◦ however, their effect is null. The

same phenomenon can be observed in Figure 1.1 which was photographed with a polarizing filter.

On the left side of the photograph, the filter was rotated such that its effect is maximum; as a

result, the surface reflection is strongly reduced. On the right side, its effect is minimum, and

the scene exhibits a strong reflection on the surface of the water. This short experiment suggests

that an ingredient is missing from the wave theory: light seems to have an orientation in addition

to its direction of propagation. Therefore, instead of describing it with a scalar field as in the

wave theory, we need a vector field to represent it, as illustrated in Figure 1.2c. The orientation

of the light is called polarization. Large horizontal surfaces generate horizontally polarized light

and the sunglasses can selectively remove this light, while letting through the light with other

polarizations.

Historically, James Clerk Maxwell is the father of electromagnetism. Not only did he unify

electricity and magnetism, he also considered light as an electromagnetic field, governed by what

is now known as Maxwell’s equations [116]. In this model, light is composed of electric and

magnetic fields that travel perpendicularly to each other. Additionally, Maxwell plays a special

role in the history of color photography: he was the first person to realize color photographs with

the so-called three-color method.

Light polarization

Formally, polarization is a physical property of light that characterizes the orientation of electro-

magnetic transverse waves in space. A wave is said to be polarized when its orientation follows

a regular pattern in space: for example, when the wave oscillates in a fixed direction it is called

linearly polarized, and when the polarization rotates at a constant rate along the wave propaga-

tion axis it is called circularly polarized. In contrast, unpolarized light is composed of a mixture

of electromagnetic waves with different orientations.

As illustrated in Figure 1.7, a linear polarizing filter (or polarizer) is a physical device that
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Figure 1.9: Illustration of Malus’ law: while the intensity of unpolarized light is equally affected

for all polarization orientations, polarized light is attenuated according to a cos2(φ− θ) factor.

only lets through light with a given polarization. Polarizing filters diminish reflections from

shiny surfaces such as wet objects or vegetation. Hence, they are widely used in photography4,

since they allow to reduce undesirable glare and tend to make skies bluer in natural scenes, as

illustrated in Figure 1.8. Another typical use case of polarizers is to reduce reflections from a

body of water; this is what we observed in Figure 1.1. In fact, it is even possible to completely

cut the surface reflection. To achieve this, we would need to position the camera at Brewster’s

angle, which is defined as the angle for which the reflected light is perfectly polarized. For an

interface between air and water, Brewster’s angle is approximately 53◦ with respect to the surface

normal.

Given a light wave polarized in direction φ with initial intensity I0, the polarizing filter

projects it onto its orientation θ. This is summarized by Malus’ law, which quantifies the light

intensity I after it goes through the filter:

I = I0 cos2(φ− θ). (1.4)

Unpolarized light can be thought of as containing all orientations equally, hence the resulting

intensity is simply I0
2 , which is the mean value of I0 cos2(φ− θ) over all orientations. Figure 1.9

illustrates the effect of a linear polarizer on both polarized and unpolarized light, following Malus’

law.

1.2.4 Wave-particle duality

In the twentieth century, physicists revisited the corpuscular theory, describing light as packets of

energy, or photons. They also realized that some behaviors of light could only be explained from

a photonic point of view, while others were only justified by the wave model, essentially leading

to the wave-particle duality theory. The wave-particle duality theory is outside the scope of this

thesis, but research on the topic has ead to significant advancements in the field of photography.

For example, Einstein’s photoelectric effect [58], whereby some metals emit electrons when light

is shone on them, is crucial to build sensors for digital cameras.

4In general, only circular polarizing filters are used in photography; the reason is that linear polarizers interfere
with the auto-focus and light-metering sensors of digital cameras. A circular polarizer can be obtained by adding
a quarter-wave plate to a linear polarizer.
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1.3 Thesis outline and main contributions

In this thesis, we revisit the aforementioned different manifestations of light with a signal pro-

cessing perspective and introduce tools, sampling schemes, algorithms and analyses based on the

various facets of light. An important signal processing concept we regularly rely on is sampling.

Notwithstanding quantum theory and microscopic effects, our world is described by continuous

quantities. However, computers think and work with values that are discrete in time and am-

plitude. Therefore, we need a way to convert a continuous signal to discrete values. Ideally,

it is desirable not to lose information or distort the signals in the process: this is precisely the

role of sampling theorems, which provide conditions and theoretical guarantees regarding the

perfect reconstruction of sampled signals. The most famous sampling theorem is to due to Shan-

non [165, 166], Nyquist [136], Edmund and John Whittaker [195, 196], and Kotelnikov [96]: it

describes the sufficient sampling rate such that a bandlimited continuous signal can be sampled

and perfectly reconstructed. In this dissertation, we explore and propose sampling theorems for

the case when the signals of interest are not bandlimited.

Another recurring theme is the notion of sparsity. Loosely speaking, a signal is said to

be sparse if it can be represented by a relatively small number of parameters. The particular

structure of sparsity is often used to regularize ill-posed problems. Sparse regularization is for

instance the foundation of compressed sensing [53], which enables the recovery of a sparse signal

from a small number of measurements. In the context of this thesis, we take advantage of sparsity

in several chapters.

Chapter 2—Sampling Diracs and Non-Bandlimited Shapes Before we get into the details of

light, we first develop new sampling results for non-bandlimited shapes. We build on the theory

of finite rate of innovation (FRI) and provide theoretical guarantees for sampling and perfect

reconstruction for signals that can be expressed as weighted sums of Lorentzian functions; such

signals can be considered as sparse since they can be represented with few parameters. We call

this new sampling scheme variable pulse width (VPW)-FRI. The VPW-FRI framework is first

developed for 1D signals, and then generalized to higher dimensions and spherical signals.

In the noiseless case, perfect recovery is guaranteed by a set of theorems. In addition, we

verify that our algorithm is robust to model mismatch and noise.

Summary of Contributions in Chapter 2

• We introduce VPW-FRI, a new model for the FRI sampling framework that enables the

use of pulses with variable width to be sampled and perfectly reconstructed.

• We provide a noise analysis of the method.

• We generalize VPW-FRI to higher dimensions and spherical signals.

Chapter 3—Corpuscular Theory: Acquisition of Reflectance Functions The FRI sampling

theory is connected to the topic of light in Chapter 3, which has a more practical flavor. In this

chapter, we start by exposing the background regarding the acquisition of the reflectance function

of materials. We then describe our light domes, which are devices that we built to perform such

acquisition. We then show how the FRI theory is leveraged to acquire the reflectance function

of materials. First, we propose a technique to sample and represent specularities, which are
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narrow pulses that can be challenging to acquire. This technique does not assume the sampling

kernel—in other words the shape of the specularity—to be known a priori. Finally, we apply the

VPW-FRI theory from Chapter 2 to the problem of representating the reflectance function of

materials. Within this framework, we demonstrate applications in 1 and 2 dimensions, as well

as in the spherical domain, which is the natural representation of reflectance functions.

Summary of Contributions in Chapter 3

• We build light domes that we exploit to sample and acquire BRDFs.

• We apply VPW-FRI to the problem of sampling the BRDF.

• We propose another variation of FRI when the sampling kernel is unknown and apply

it to the problem of specularity estimation.

Chapter 4—Wave Theory and Interferences: Lippmann Photography The wave nature of

light is the foundation of Chapter 4, where the theory of wave optics is combined with a signal

processing framework to analyze Lippmann photography. Lippmann (or interferential) photog-

raphy is the first and only analog photography method that can capture the full spectrum of

a scene in a single take. This century old technique records the colors of a scene by creating

interference patterns inside the depth of a photosensitive plate.

Lippmann photography provides a great opportunity to demonstrate several fundamental

concepts in signal processing. Conversely, a signal processing perspective enables us to shed

new light on the technique. For instance, we describe new behaviors whose explanations were

ignored by physicists to date. Furthermore, we show that the spectra generated by Lippmann

plates are in fact distorted versions of the original spectra. More interestingly, we propose

an algorithm to eliminate these artifacts and recover the original spectra. Since most of the

Lippmann plates have been captured in the early 1900s, the combination of these artworks and

our reconstruction algorithm provides a tool to look into the past with hyperspectral glasses.

Finally, we verify our model and algorithms through extensive experiments by creating our own

Lippmann photographs.

Summary of Contributions in Chapter 4

• We propose a rigorous study of the Lippmann process and an analytical model to explain

the reproduction of colors.

• We introduce physically accurate simulations that allow us to study the assumptions

made in the analytical model.

• We precisely characterize the color reproduction of Lippmann plates and we report new

undocumented effects based on the influence of the reflector on the reflected spectrum.

• We study conditions for the inversion of the recording and rendering procedures.

• We create our own Lippmann plates to verify the theory.
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Chapter 5—Electromagnetic Theory: Micro-Polarizer Arrays We then move one step fur-

ther and consider the electromagnetic nature of light and study the polarization phenomenon.

Depending on their nature, reflections of polarized light on surfaces can preserve or not its po-

larization. We take advantage of this observation and study the acquisition of images using

polarizing filters, which provide a powerful way to separate diffuse and specular reflection. Tra-

ditional methods rely on several captures and require proper alignment of the filters. Recently,

camera manufacturers have proposed to embed polarizing micro-filters in front of the sensor,

creating a mosaic of pixels with different polarizations.

In this chapter, we investigate the advantages of such camera designs. In particular, we con-

sider different design patterns for the filter arrays and propose a suite of algorithms to demosaic

an image generated by such camera. This essentially allows us to separate the diffuse and spec-

ular components using a single image. The performance of our algorithm is then compared with

a color-based method using synthetic and real data. Finally, we demonstrate how to retrieve the

normals of a scene using the diffuse images estimated by our method.

Summary of Contributions in Chapter 5

• We investigate different designs for cameras micro-polarizing filter arrays.

• We propose algorithms to separate the diffuse and specular components from a mosaic

of polarized pixels.

• We demonstrate our separation technique on synthetic and real data.

• We show that our separation technique improves the estimation of the surface normals

of a scene.

Chapter 6—Super-Resolution Phase Retrieval We close this thesis as we started it: with a

more signal processing-oriented chapter, where we leverage the FRI sampling theory to solve

the problem of phase retrieval. More specifically, we consider the problem of phase retrieval for

sparse signals, which are defined as a small number of atoms with given locations and amplitudes.

This problem is also relevant in the context of light as the phase information is always lost in

imaging devices. Therefore, phase retrieval algorithms are of great interest in fields such as X-ray

crystallography [91, 119], astronomy [73] or optical imaging [169].

Solving the phase retrieval problem is equivalent to recovering a signal from its auto-correlation

function. We describe an algorithm that tackles the problem in three steps: i) we super-resolve

the auto-correlation function of the signal from a limited number of samples by invoking the

finite rate of innovation sampling theory ii) we design a greedy algorithm that estimates the

locations of a sparse solution given the super-resolved auto-correlation function, iii) we retrieve

the amplitudes of the atoms given their locations and the measured auto-correlation function.

Along with the algorithm, we derive its performance bound with a theoretical analysis and

propose a set of enhancements to improve its computational complexity and noise resilience.

Finally, we demonstrate the benefits of the proposed method via a comparison against Charge

Flipping, a notable algorithm in crystallography.
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Summary of Contributions in Chapter 6

• We apply FRI to super-resolve the autocorrelation function of a signal.

• We propose a greedy algorithm to recover a sparse signal from its autocorrelation func-

tion.

• We analyze our algorithm from a theoretical point of view and through simulations.

• We demonstrate that our solution outperforms the Charge Flipping algorithm, which is

the state-of-the-art in crystallography.





Chapter 2

Sampling Diracs and
Non-Bandlimited Shapes*

If we want to solve a problem that we have never solved be-

fore, we must leave the door to the unknown ajar.

What Do You Care What Other People Think?

Richard Feynman

2.1 Introduction

Sampling theorems provide a bridge between analog signals of the real world and their discrete

representations. In the ideal case, they allow perfect reconstruction of a continuous signal from

only a limited number of discrete samples. The most notable embodiment of this concept is

the well-known Nyquist-Shannon theorem [166]. It states that any signal that belongs to the

shift-invariant subspace of bandlimited functions can be perfectly reconstructed from a set of

uniformly spaced discrete samples, provided that the sampling frequency is at least twice the

bandwidth of the signal. While very powerful, this result falls short for many classes of signals.

*The material in this chapter is the result of joint work with Adam Scholefield, Löıc Baboulaz and Martin
Vetterli. Author contributions: GB, LB and MV designed the initial research on the 1D case; GB, AS and MV
designed the extension to higher dimensions; GB performed research, ran simulations and experiments, and wrote
the chapter based on [10], which was written by himself.

19
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(a) Stream of Diracs (b) Fixed-width (c) Variable-width

Figure 2.1: Signals with finite rate of innovation: (a) stream of Diracs recoverable with the

original FRI theory; (b) fixed-shaped pulses recoverable using Strang-Fix theory; (c) variable-

width pulses, recoverable by the proposed technique.

Over the years, sampling results have emerged for signals belonging to more general classes,

including signals that lie in general shift-invariant subspaces [187] and some other signals with a

finite rate of innovation (FRI) [191], i.e., signals that have a finite number of degrees of freedom

per unit time. This latter class extends the former to many other types of signals such as streams

of Dirac deltas as depicted in Figure 2.1a. Other examples include piecewise polynomials or

piecewise sinusoidal signals [23].

All these schemes assume that we only have access to samples of a filtered version of the

signal; that is, the original continuous-time signal x(t) is filtered with a kernel ϕ(t) before being

uniformly sampled at time instants t = nT . Typically, ϕ(t) is a lowpass filter that is either

chosen by design, or, as is more common, is a characteristic of the acquisition system.

Like traditional Nyquist-Shannon sampling, the original FRI theory was developed for in-

finite support kernels, such as the sinc ideal low-pass filter; however, the results have been

recently extended to physically realizable kernels of compact support that satisfy Strang-Fix

conditions [55, 178]. Another benefit of these more general kernels is that, when applied to

streams of Diracs, they can be used to add more variety to the signals admitted by FRI. For

example, it has enabled FRI theory to be utilised to retrieve streams of short pulses from ultra-

sound imaging [184] and action potentials of neurological data from calcium imaging [137]. Note

that, although this allows more general pulses, as illustrated in Figure 2.1b, each pulse is still

constrained to have the same shape (up to a multiplicative factor).

The question we address in this chapter is the following: Can we find a signal model that

allows a different shape for each pulse? This is motivated by the fact that in nature, several

signals can be parametrized as pulses with various shapes. In what follows, we show that it is

indeed possible by considering signals that consist of sums of Lorentzian1 pulses with variable

width and different degrees of asymmetry. While there are numerous parametric functions—

Gaussians, B-splines, or wavelet basis functions to name a few—that are suitable to model

signals with variable pulse shapes, the choice of Lorentzian functions is not innocuous; indeed,

as we see in the next sections, the auto-regressive nature of their spectral coefficients enables us

to estimate the parameters of the model using spectral estimation techniques such as Prony’s

method . Other algorithms estimating the parameters of sums of Lorentzians are described and

analyzed in [3, 4, 24]; in this chapter, we connect these results to sampling theory.

1A Lorentzian function—also known as Cauchy distribution—is a bell-shaped curve that looks similar to a
Gaussian but with heavier tails.
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(a) Original signal (b) VPW decomposition (c) Estimated signal

Figure 2.2: Example of decomposition of an ECG signal into VPW pulses: (a) one period of

a pulse from the MIT-BIH arrhythmia database [71]; (b) its decomposition into five asymmetric

VPW pulses; (c) the VPW approximation (sum of the five pulses).

In addition to FRI techniques, recent extensions of compressive sensing also enable continuous

parameter estimation but attack the problem from a different angle: while FRI theory relies

on non-linear methods, these approaches enforce sparsity with the atomic norm and convex

relaxations [25, 39, 40, 181].

In this chapter, we demonstrate, via a set of theorems, that sums of Lorentzians can be

sampled and perfectly reconstructed, by adapting standard FRI machinery. Whereas the core

of the original FRI theory is composed of Diracs, the atoms of our signal model are called

variable pulse width (VPW) pulses.2 As highlighted in Figure 2.1c, the VPW model brings more

versatility and flexibility to the set of FRI signals that can be acquired. We present here the

theory of sampling and reconstructing VPW signals and generalize it to higher dimensions and

spherical signals. The VPW model can be used in many applications: as depicted in Figure 2.2,

it provides a faithful and compact representation of ECG signals. In the next chapter, we move

back to the main theme of this thesis—light—and show how the VPW-FRI framework allows us

to efficiently sample and reconstruct reflectance functions.

2.2 Background

Before considering VPW signals, we briefly review the standard FRI theory.

2.2.1 Signals with finite rate of innovation

The rate of innovation ρ of a signal is defined as its number of degrees of freedom per unit

time [191]. Ideally, we seek an algorithm to reconstruct an FRI signal using only ρ parameters

per unit time, in which case sampling at the rate of innovation allows perfect reconstruction. This

is precisely what is achieved by the Nyquist-Shannon theorem, where the degrees of freedom are

embodied by the expansion coefficients in the orthonormal basis formed by shifted sinc functions.

Another archetypal FRI signal is a τ -periodic stream of K weighted Dirac pulses:

f(t) =
∑
n∈Z

K−1∑
k=0

ckδ(t− tk − nτ).

2Variable pulse width (VPW)-FRI was coined in [11, 152] in the context of electrocardiogram (ECG) repre-
sentation. Other notable applications of VPW on multiple lead ECG signals are reported in [122, 123].
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Figure 2.3: Sampling operation. The continuous-time signal f(t) is filtered with the kernel

ϕ(t) and then recorded at time instants t = nT (n ∈ Z) to obtain the discrete-time signal g[n].

Since a Dirac can be completely described by its position and amplitude, one period of the

signal f(t) has precisely 2K free parameters (K positions and K amplitudes) and a rate of

innovation of ρ = 2K/τ .

In what follows, we show how it is possible to reconstruct f(t) from N ≥ 2K + 1 samples

obtained after an ideal low pass filter. To do this, we first demonstrate how we can calculate

some of the Fourier series coefficients of f from its samples and then show how these Fourier

series coefficients can be used to calculate the 2K parameters of the signal.

2.2.2 From samples to Fourier series coefficients

Although we do not have direct access to the Fourier series coefficients of f(t), we can obtain a

subset of them by taking the DFT of the samples obtained from the sampling scheme depicted

in Figure 2.3, with ϕ(t) equal to an ideal low-pass filter. This result was first shown as part

of [191, Theorem 1], and we reproduce it here in the following Lemma.

Lemma 2.1 (Vetterli, Blu and Marziliano 2002) Assume we take N samples of a τ -

periodic function f , according to Figure 2.3; that is, we have

g[n] = 〈f(t), ϕ (t− nT )〉 , n ∈ 0, 1, . . . , N − 1.

Furthermore, assume

ϕ(t) = B sinc(Bt) = B sin(πBt)/(πBt),

with T = τ/N and B satisfying N = 2�Bτ/2� + 1. Define the DFT of g[n] as

G[m] =
N−1∑
n=0

g[n]e−2πjnm/N

and the Fourier series coefficients of f(t) as

F [m] =
1

τ

∫ τ/2

−τ/2

f(t)e−2πjmt/τdt.

Then, F [m] = NG[m] for |m| ≤ �Bτ/2�.

Proof. See Appendix 2.A. �

2.2.3 From Fourier series coefficients to signal parameters
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When f(t) is a τ -periodic stream of K weighted Dirac pulses, its Fourier series coefficients are

given by

F [m] =
1

τ

K−1∑
k=0

cke
−2πjtkm/τ , (2.1)

where m ∈ Z. Thus, our problem is to calculate the parameters ck and tk from a finite number

of Fourier series coefficients, F [m]. This is a common problem in spectral analysis, which can be

solved using, for example, Prony’s method. The idea is to find a filter A[m] that, when convolved

with the signal, produces a null signal; in other words, A[m] annihilates the signal F [m]:

(F ∗A)[m] = 0, ∀m ∈ N. (2.2)

For this reason, Prony’s method is also referred to as the annihilating filter method. Since F [m]

has the form given in (2.1), it is annihilated by the filter whose z-transform is

A(z) =
K∑

k=0

A[k]z−k =

K∏
k=1

(1 − ukz
−1),

where uk = e−2πjtk/τ .

Therefore, given the roots of the annihilating filter, we can compute the locations of the Diracs

as tk = − τ∠uk

2π , where ∠uk is the phase of uk. It remains to show how to find the annihilating

filter coefficients, and thus the roots. To that end, (2.2) can be rewritten in matrix form as

Sh = 0, (2.3)

where S ∈ CK×(K+1) is a Toeplitz matrix of rank K formed by consecutive values of F [m] and h

is a vector containing the K+1 annihilating filter coefficients A[k]. Observe that we need at least

2K+1 consecutive coefficients to solve the system of equations given in (2.3) and fully recover the

annihilating filter; the set of coefficients we choose does not necessarily need to be located around

the DC component, but the most efficient strategy is to pick F [m] for m = −K − 1, . . . ,K, as

it minimizes the frequency at which the signal is sampled. In this case, the bandwidth B of the

low-pass filter ϕ(t) should be larger or equal to (2K + 1)/ρ, which represents one more sample

per unit of time than the rate of innovation of the signal.3

Finally, we need to show how to retrieve the coefficients {ck}K−1
k=0 , which, after calculating

{tk}K−1
k=0 , is a simple linear problem. Taking K consecutive Fourier coefficients (or more) and

letting

V =

⎡⎢⎢⎢⎢⎢⎣
1 1 · · · 1

u0 u1 · · · uK−1

...
...

. . .
...

uK−1
0 uK−1

1 · · · uK−1
K−1

⎤⎥⎥⎥⎥⎥⎦ ,

f =
[
F [0] F [1] · · · F [K − 1]

]�
,

and c =
[
c0 c1 · · · cK−1

]�
,

3The “+1” term is due to a technicality, namely that the DC component of the Fourier series has no phase
information, and in that sense, contributes little to the reconstruction.
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VPW Pulse

Symmetric Pulse

Asymmetric Pulse

Figure 2.4: Example of a VPW pulse and its decomposition. Continuous line: VPW pulse;

dashed line: symmetric pulse; dotted line: asymmetric pulse. The parameters used are t0 =

0.5, r0 = 0.03 and c0 = d0 = 0.1. Only one period is shown.

The expression (2.1) can be written as

1

τ
V c = f . (2.4)

The Vandermonde matrix V is non-singular since uk �= u� for any k �= �. Therefore, the

amplitudes c can be recovered by c = τV −1f .

After this brisk review of FRI sampling and reconstruction, we are ready to extend the model

to more general pulses.

2.3 Pulses with variable width: The 1D case

This section demonstrates how to generalize the Dirac pulse model to account for signals with

variable width and asymmetry. More precisely, we show how to sample and reconstruct variable-

width pulses of the form

fk(t) = fsk(t) + fak (t), (2.5)

where

fsk(t) = ck
∑
n∈Z

rk
π (r2k + (t− tk − nτ)2)

, (2.6)

and

fak (t) = dk
∑
n∈Z

t− tk − nτ

π (r2k + (t− tk − nτ)2)
. (2.7)

Here, fsk(t) and fak (t) are the symmetric and anti-symmetric components of the pulse, respec-

tively. The combination of the symmetric and asymmetric pulses (2.5) is the main building block

of our signal model and we call it a variable pulse width (VPW) pulse. An example of a VPW

pulse and its decomposition into symmetric and asymmetric components is shown in Figure 2.4.

Expressions (2.6) and (2.7) follow naturally from a simple observation about the roots of the

annihilating filter. In particular, in the classical FRI theory for streams of Diracs, the roots of

the z-transform of the annihilating filter all have a magnitude of 1 and thus lie on the unit circle,

as shown in Figure 2.5. Since these roots are complex numbers, they can potentially carry more

information than just the location of the pulses; indeed, in the classical case, only the phase is

extracted and the information regarding the magnitude is simply disregarded.
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(a) Time domain (b) Frequency domain

Re Im

(c) Roots of the filter

Figure 2.5: Classical FRI for streams of Diracs: (a) time-domain signal; (b) real and imaginary

parts of the spectrum, which is made of a sum of complex exponentials; (c) complex roots of the

z-transform of the filter annihilating the spectrum.

2.3.1 Variable width

To leverage the information about the magnitude of the root and control the width of the pulses,

we introduce a new parameter rk called the width and we redefine the roots as

uk = e−2π(rk+jtk)/τ .

With this adjustment and for a single root, we can build the following Fourier series coefficients:

F s
k [m] =

ck
τ
e−2π(rk|m|+jtkm)/τ , m ∈ Z. (2.8)

The absolute value of m is used to ensure conjugate symmetry of the spectrum. The correspond-

ing τ -periodic time-domain signal is precisely the Lorentzian function described in (2.6).

2.3.2 Asymmetry

Pulses such as (2.8) are symmetric; in many practical applications however, asymmetric pulses

are desirable. The symmetric formulation can be generalized by considering the following Fourier

series coefficients:

F a
k [m] = −jdk

τ
sgn(m)e−2π(rk|m|+jtkm)/τ , m ∈ Z,

where dk ∈ R. The signal F a
k is the Hilbert transform of F s

k and its (τ -periodic) time-domain

representation is given in (2.7).

From its Fourier series expression, we can also derive an alternative formula for fk(t), which

avoids the infinite sum and is given by4

fk(t) =
ck
τ

1 − |zk(t)|2
(1 − zk(t))(1 − z∗k(t))

+
dk
τ

2 Im{zk(t)}
(1 − zk(t))(1 − z∗k(t))

,

where zk(t) = e2π(−rk+j(t−tk))/τ .

4The details of the derivations are provided in Appendix 2.B.
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(a) Time domain (b) Frequency domain

Re Im

(c) Roots of the filter

Figure 2.6: VPW pulses: (a) time-domain signal; (b) real and imaginary parts of the spectrum,

which is made of a damped sum of complex exponentials; (c) complex roots of the z-transform

of the filter annihilating the spectrum.

VPW pulses are in essence a generalization of Diracs; by setting dk = 0 and taking the limit

of fk(t) when rk goes to zero, we obtain a Dirac delta with amplitude ck located at time tk.

As illustrated in Figure 2.6, several VPW pulses can be combined to form a VPW signal :

f(t) =

K−1∑
k=0

fk(t) (2.9)

F [m] =
K−1∑
k=0

Fk[m], m ∈ Z.

2.3.3 Recovery of VPW pulse parameters

We now show how to sample and reconstruct a sum of Lorentzian pulses.

Theorem 2.2 Let f be the sum of K continuous τ -periodic asymmetric Lorentzians as de-

scribed in (2.9). Assume we take N samples of f , according to Figure 2.3; i.e., we obtain

g[n] = 〈f(t), ϕ (t− nT )〉 , n ∈ 0, 1, . . . , N − 1.

Furthermore, assume ϕ(t) is such that the Fourier series coefficients of f , denoted F [m], can

be obtained from the samples, for 0 ≤ m ≤ �(N − 1)/2�. For example, if ϕ(t) = B sinc(Bt),

with T = τ/N and B satisfying N = 2�Bτ/2� + 1, this is achieved by Lemma 2.1.

Then, if N ≥ 4K + 1, the samples, {g[n] : n ∈ 0, 1, . . . , N − 1}, are sufficient to recover f .

Proof. To prove the theorem, we first show how to construct the unique annihilating filter for

the Fourier series coefficients of f . We then show how the 4K parameters of f can be retrieved

from this filter. Let

A(z) =
K∑

k=0

A[k]z−k =

K−1∏
k=0

(1 − ukz
−1),
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Algorithm 2.1 VPW-FRI parameter estimation

Input: N ≥ 4K + 1 discrete samples x[n] (n = 0, 1, . . . N − 1) of a VPW-FRI continuous-time

signal x(t) and K its number of pulses.

Output: The locations, widths and amplitudes {tk, rk, ck}K−1
k=0 of x(t).

Compute X[m] the FFT of x[n]

Build the Toeplitz matrix S from the positive X[m] of the spectrum

Denoise S or x[n] according to one of the strategies of Section 2.3.5

Find the annihilating filter coefficients by solving Sh = 0

Compute uk, the roots of h

tk = − τ∠uk

2π

rk = τ log |uk|
2π

Build the Vandermonde matrix V from the roots uk
Solve 1

τV c = x, where x contains the FFT coefficients X[m] and c ∈ C the amplitudes ck

return {tk, rk, ck}K−1
k=0

and F [m] be the Fourier series coefficients of f . Then,

(A ∗ F )[m] =
K∑
�=0

A[�]F [m− �]

=
K∑
�=0

K−1∑
k=0

(ck − jdk)A[�]um−�
k

=

K−1∑
k=0

(ck − jdk)

(
K∑
�=0

A[�]u−�
k

)
umk = 0.

Note that we have restricted ourselves to positive indices (m ≥ 0). This is because, due to its

decaying nature, the VPW spectrum has a cusp at m = 0, which prevents us from performing

the annihilation on both positive and negative values of the spectrum. Finding the unique filter

A requires at least 2K + 1 Fourier series coefficients corresponding to non-negative frequencies.

By Lemma 2.1, this can be achieved with N ≥ 4K + 1 samples of f .

As in the case of streams of Diracs, the locations {tk}K−1
k=0 can be retrieved from the K roots of

A(z): uk = e−2πjtk/τ . Moreover, the widths {rk}K−1
k=0 are given by rk = τ log |uk|/(2π). Finally,

the parameters {ck}K−1
k=0 and {dk}K−1

k=0 are retrieved by solving (2.4) with

c =
[
c0 + jd0 c1 + jd1 · · · cK−1 + jdK−1

]�
. �

The estimation procedure is summarized in Algorithm 2.1. Since the algorithm requires 4K+1

samples to retrieve 4K parameters, it is only one sample away from the rate of innovation.

2.3.4 Sampling kernels

Although we concentrate on the ideal low-pass filter or Dirichlet sampling kernel, VPW signals

are fully compatible with the more general kernels presented in the FRI literature. In particular,

as outlined in Theorem 2.2, we can use any kernel that allows us to retrieve enough Fourier

series coefficients of the continuous-time signal. In [55], it is shown that this can be achieved
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with kernels that satisfy the generalized Strang-Fix conditions, such as cardinal exponential

splines [188] or sum of sinc kernels [184].

Moreover, even if the sampling kernel does not meet these conditions, we can relax the require-

ment of perfect reconstruction and achieve accurate approximations using either the correction

filter proposed in [34] or the framework set out in [189].

2.3.5 Denoising techniques

In practice, it is unlikely that a signal perfectly matches the VPW-FRI model. Even if this is the

case, the acquisition device might introduce some noise in the process. This justifies the need

for a denoising block before the estimation of the parameters. Here, we review several methods

borrowed from spectral estimation theory [177] and evaluate their performance on our estimation

procedure.

We model the noise ε[n] as i.i.d. additive Gaussian with zero mean and covariance matrix σ2I.

Furthermore, we assume that it is introduced after sampling; that is, the noisy measurements

are

f̃ [n] = f [n] + ε[n] n = 0, 1, . . . N − 1.

We denote the noisy Toeplitz matrix built from the samples f̃ [n] as S̃. Several denoising strategies

have been introduced in the classical FRI framework and they are directly applicable to the

VPW-FRI model. We summarize and compare the main techniques below.

Cadzow

Cadzow’s algorithm [37] is an iterative method that alternatively enforces rank K and a Toeplitz

structure for S̃. The low rank approximation is performed by computing the SVD of S̃ and

keeping only its K largest singular values. To ensure that S̃ is Toeplitz, we simply average

across diagonals. In practice, the method seems to converge to a solution that satisfies both

properties, but it should be noted that this has not been proven theoretically. Furthermore,

there is no guarantee that the final solution is close, in any way, to S.

The matrix pencil

Another widely used technique is the matrix pencil method [78]—also known as ESPRIT [158]—

which exploits the rotational invariance property of the underlying signal subspace. Unlike

Cadzow, it is a non-iterative algorithm.

Pisarenko

Pisarenko’s method [150] estimates the annihilating filter by simply extracting the last column

of the matrix V of the SVD of S̃ = UΛV ∗. Indeed, the last columns of V provide an orthogonal

basis for the nullspace of S̃ and in our case, the nullspace of S is one-dimensional. Note that

Pisarenko’s method or the matrix pencil can actually be used sequentially after Cadzow.

Pan’s method

The last method we survey is inspired by IQML [36] and has been recently introduced to the FRI

framework by Pan in [142]. The annihilating filter h is found iteratively and its computation is
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Figure 2.7: Comparison of the effect of different denoising approaches on the estimation of the

location of (a) one and (b) two VPW pulses: 10 Fourier coefficients are used in the estimation

procedure and the experiment has been repeated 5, 000 times and averaged. For the single pulse

case, the Cramér-Rao bound for the estimation of the location has been computed (dashed line).

formulated as
min
̂f ,h

‖f̃ −Bf̂‖22

subject to h ∗ f̂ = 0,

where B is a linear transformation that maps the signal that can be annihilated to the mea-

surements. Unlike the other techniques, this approach is not applied to S̃ but directly to the

measured signal: this can result in significant performance improvements since the transforma-

tion operation from the measurements to the signal to be annihilated sometimes dramatically

alters the structure of the noise. The main ingredient of the algorithm is the matrix B, which

is different for every FRI problem. In the case of VPW-FRI, B is the transform that maps the

denoised DFT coefficients f̂ to the discrete-time measured signal f̃ .
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Figure 2.8: Reconstruction error for different pulse widths. The top row represents noisy

signals with an SNR of 0 dB used as inputs to the VPW estimation and the bottom row shows

the estimated signal in blue as well as the original signal with dotted black lines. The measured

mean squared errors are (a) 0.002, (b) 0.006, (c) 0.012, (d) and 0.030.

In Figure 2.7, we compare the performance of the different denoising methods under various

levels of noise for one and two VPW pulses. We observe that the matrix-pencil and Cadzow have

a similar performance. Furthermore, Pan’s method outperforms all other methods by a fairly

large margin.

Cramér-Rao bound

For one pulse, we also derive and display the Cramér-Rao bound (CRB), which provides a

theoretical lower bound on the best possible performance achievable by any unbiased estimator.

The details of the computations of the CRB are provided in Appendix 2.C. We see that, for a

pulse with width r0 = 0.02, the VPW-FRI estimation procedure is fully efficient down to SNRs

of about 0 dB. Past this threshold, we notice a gap between the estimator and the CRB. Further

analysis on this gap can be found in [16] in the context of FRI for streams of Diracs.

We also notice that the quality of estimation depends on the width parameter: for an equiv-

alent SNR, the narrower the pulse, the better the performance. This effect is showcased in

Figure 2.8. Intuitively, a higher value of rk results in a spectrum that decays faster; this makes

the estimation more challenging and less resilient to noise.

2.4 Pulses with variable width: The 2D case

We now describe how the VPW model generalizes to 2D, by extending results on 2D streams

of Diracs [113]. Later, we will also consider the spherical case, which is particularly relevant to
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Figure 2.9: Example of a 2D VPW signal composed of three pulses. The parameters used are

(xk, yk) = {(0.6, 0.7), (0.7, 0.2), (0.3, 0.5)}, rk = {0.035, 0.02, 0.085}, ck = {0.75, 0.7, 5}, τ = 1.

reflectance functions.

The second dimension introduces more flexibility in the model, allowing us to reproduce

several different shapes. In what follows, we discuss four different pulse shapes, each offering

different properties such as asymmetry or radiality. We also demonstrate how to estimate the

parameters using the FRI algorithm.

We use the pair of variables (x, y) to index 2D spatial measurements and (m,n) to index

2D Fourier series coefficients. We also assume that the 2D sampling kernel is a separable kernel

given by the tensor product of two 1D functions: ϕ(x, y) = ϕx(x)ϕy(y). Therefore, the natural

2D extension of our model is given by the tensor product of two 1D VPW pulses, say fk,x(x)

and fk,y(y). The Fourier series coefficients are given by

Fk[m,n] =
1

τ
Fk,x[m]Fk,y[n]

=
1

τ
e−

2π
τ j(xkm+ykn)e−

2π
τ rk(|m|+|n|),

Similarly, we define a VPW signal as a linear combination of K pulses; that is,

F [m,n] =
K−1∑
k=0

Fk[m,n], m, n ∈ Z. (2.10)

An example of a 2D VPW signal composed of three pulses is shown in Figure 2.9.

2.4.1 Estimation of the parameters

Observe that if we fix one of the frequency indices, say m, the expression (2.10) reduces to

F [n] =
1

τ2

K−1∑
k=0

c̃ke
− 2π

τ jykne−
2π
τ rk|n|, (2.11)

where c̃k = cke
−j 2π

τ xkme−
2π
τ rk|m|. Now that we have reduced the problem to the 1D case, we

can invoke Lemma 2.1 and Theorem 2.2 to connect the DFT coefficients with the Fourier series

coefficients and guarantee the uniqueness of reconstruction of the continuous-space signal. As in
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Figure 2.10: Family of 2D VPW pulses and their spectrum: (a) original formulation, (b) radial

formulation, (c) original anisotropic formulation, and (d) radial anisotropic formulation. The

area of annihilation is represented by a dark overlay.

the 1D case, we cannot exploit the full spectrum for annihilation; due to the singularity at the

DC component, we restrict ourselves to the positive indices m and n. We refer to the sets of

positive n for a fixed m as half-columns and to the sets of positive m for a fixed n as half-rows.

The coefficients used are part of what we call the annihilation region. The spectrum and the

annihilation region of the signal described in (2.10) are shown in Figure 2.10a.

Following (2.11), we see that each half-column of the spectrum can be annihilated indepen-

dently by the same filter. More precisely, we can build Toeplitz matrices with each of these

half-columns and stack them on top of each other to obtain the matrix Sc:

Sc =

⎡⎢⎢⎢⎢⎢⎣
Sc
0

Sc
1

...

Sc
	M/2
−1

⎤⎥⎥⎥⎥⎥⎦ ,

where Sc
m is the Toeplitz matrix corresponding to themth half-column of the spectrum. Similarly,

by fixing n, the half-rows of the spectrum can be annihilated and we can create the matrix Sr.

Both Sc and Sr are block Toeplitz and can be used independently to recover the locations along

the x and y axes, respectively, following the procedure presented in Section 2.3.3.

To solve the annihilation equation, each half-column and half-row of the spectrum must have

at least K+1 elements. Therefore, we need at least (2K+1)2 samples to recover 4K parameters;

unlike in the 1D case, we need to sample the signal at a significantly higher rate than the rate
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of innovation to achieve perfect recovery.5

Another detail needs to be taken care of in 2D. Since we reformulate the estimation of the

parameters as two 1D problems, we obtain two sets of locations {xk}K−1
k=0 and {yk}K−1

k=0 but we

do not know the corresponding pairs of these recovered locations. If K is small, we can solve

this issue by combinatorial search over all the possible pairs; for each combination of locations,

we compute the amplitude of the corresponding pulses and compare the reproduced signal with

the original. We then select the pair whose reproduction corresponds (or, in the noisy case, is

closest) to the measured signal.

Unfortunately, this brute-force approach quickly becomes impractical as K gets larger. To

cope with this issue, we use the following heuristic. Instead of searching through all pairs of K

pulses, we suppose that all combinations are valid, that is, we have K2 potential pulses. We

then compute the amplitude of each of these pulses by solving (2.4). Finally, the correct pairs of

locations are revealed by the K largest pulse amplitudes. This simple approach has no proven

correctness, but experiments have shown that it performs well in practice.

2.4.2 Radial formulation

Observe that the 2D Lorentzian pulse described in (2.10) has heavy tails along the two main

axes. Perhaps a more suitable model is given by

F [m,n] =
1

τ2

K−1∑
k=0

cke
− 2π

τ j(xkm+ykn)e−
2π
τ rk

√
m2+n2

, (2.12)

for m,n ∈ Z. The difference with (2.10) resides in the damping factor: in (2.10), the exponent is

the �1-norm of the Fourier indices, while in (2.12), the �2-norm is used. As a result, the spectrum

of (2.12) does not exhibit the sharp transitions of the original representation; this corresponds

to radial pulses in the primal domain, as shown in Figure 2.10b.

The disadvantage of this representation is that its region of annihilation is not as large as in

the previous model. Such a signal can be annihilated along the DC components, that is, when

we set either m or n equal to zero, but also along the diagonal line defined as m = n. More

generally, the spectrum can be annihilated along the line defined as m = an or n = bm for

a, b ∈ N, as long as we have a sufficient number (at least K + 1) of coefficients on that line. The

annihilation region of this signal can be seen in Figure 2.10b.

2.4.3 Anisotropic pulses

We can further generalize the 2D pulse shape and introduce anisotropy in the model by using a

different width parameter for each axis. For instance, the radial formulation can be rewritten as

F [m,n] =
1

τ2

K−1∑
k=0

cke
− 2π

τ j(xkm+ykn)e−
2π
τ

√
r2m,km

2+r2n,kn
2

,

where rm,k and rn,k are the respective widths along the main axes. Examples of anisotropic

pulses for both the original and radial formulations are illustrated in Figure 2.10c and 2.10d.

5Recent results [141] have shown that it is in fact possible to sample and perfectly reconstruct streams of
Diracs when sampling at the rate of innovation in 2 or more dimensions; this approach can also be generalized to
the VPW pulse shape.
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2.5 Pulses with variable width: On the sphere

Recently, FRI theory has been developed for spherical signals by Deslauriers-Gauthier and

Marziliano [51]. Building on their work, we show that the VPW framework can also be general-

ized to the spherical domain.

2.5.1 Preliminaries

We start by reviewing a few definitions used in spherical signal processing. We refer the interested

reader to [52, 153] for a more thorough introduction.

Functions on the sphere S2 = {x ∈ R3 : ‖x‖ = 1} are usually characterized by elevation and

azimuth angles, denoted θ and φ respectively. The spherical Dirac delta is defined as

δ(θ, φ; θ0, φ0) = δ(cos θ − cos θ0)δ(φ− φ0),

where (θ0, φ0) denotes its location. A sum of weighted Diracs is then defined as

f(θ, φ) =
K−1∑
k=0

ckfk(θ, φ) =

K−1∑
k=0

ckδ(θ, φ; θk, φk).

On the sphere, the spherical harmonic (SH) decomposition provides the analog to the Fourier

series expansion. As shown in [52], for the signal f(θ, φ), it is given by6

f̂�,m = N�,m

K−1∑
k=0

ckP�,|m|(cos θk)e
−jmφk ,

with � = 0, 1, . . . and |m| < �. Here, N�,m is a normalization constant, and P�,m denotes the

associated Legendre polynomial, defined as

P�,m(cos θk) = (−1)m(sin θk)
|m| dm

d(cos θk)m
P�(cos θk),

where P�(·) is the Legendre polynomial. Since P� is of degree �, the degree of P�,m is at most

�−m.

2.5.2 Sampling the hemisphere

Several strategies can be employed to sample a hemisphere; the simplest one is equiangular

sampling, i.e. uniform sampling along the azimuth and elevation angles. The drawback of

this approach is that it results in non-uniform sampling of the hemisphere, as illustrated in

Figure 2.11a: the area around the pole has a higher density than the area near the equator.

Another simple technique that leads to almost uniform sampling is spherical Fibonacci sam-

pling and can be seen in Figure 2.11b. Other strategies such as quasi-random sampling [74, 174]

can also be used in this context. In Chapter 3, we nevertheless use equiangular sampling since

in practice it allows for a faster and more natural scanning of the hemisphere.

6In some of the spherical harmonics related literature, indices are expressed with a superscript/subscript
notation, e.g. fm

� . We choose to include both indices in the subscript, to avoid confusion with powers.
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Figure 2.11: Two possible sampling schemes on the hemisphere: (a) equiangular and (b)

spherical Fibonacci sampling. Each of these hemispheres contains 300 samples.

2.5.3 From samples to spherical harmonic coefficients

We define the bandwidth L of a spherical signal as the smallest L such that f̂�,m = 0 for all � ≥ L.

In [56, Theorem 3], it is proved that the SH coefficients of a spherical bandlimited function can

be exactly computed given a minimum number of equiangular samples. For completeness, we

restate this result below.

Theorem 2.3 (Driscoll and Healy 1994) Let g be the result of convolving the spherical

signal f with an ideal lowpass filter ϕ with bandwidth L. Assume we further sample g at points

(θn, φn′), where θn = πn
2L for n = 0, 1, . . . , 2L− 1 and φn′ = πn′

L for n′ = 0, 1, . . . , 2L− 1. Then

the SH coefficients of g are given by

ĝ�,m =

√
2π

2L

2L−1∑
n=0

2L−1∑
n′=0

αng(θn, φn′)Y ∗
�,m(θn, φn′), (2.13)

where Y ∗
�,m(θn, φn′) are the SH basis functions evaluated at (θn, φn′) and {αn}2L−1

n=0 is the unique

solution to

2L−1∑
n=0

αnP�(cos θn) =
√

2δ�0,

for � = 0, 1, . . . , 2L− 1.

Proof. See [56]. �

Other sampling theorems exists for different sampling strategies: for example, if we choose

N samples uniformly at random on the sphere, we can retrieve the SH coefficients of g when

N ≥ L2, with probability one [18]. Finally, remark that if we have fewer samples, the spectrum

often decays fast enough for (2.13) to yield a good approximation.



36 Sampling Diracs and Non-Bandlimited Shapes

(a) Color plot (b) Planar projection

Figure 2.12: Example a spherical VPW signal composed of two pulses. There are different

ways to display (hemi)spherical signals: (a) a plot of a unit hemisphere where the brightness of

colors represents the intensity, and (b) a projection of the same signal onto the xy plane with

the intensity represented on the z axis.

2.5.4 Retrieving Diracs from sectoral SH coefficients

In [51], the locations and amplitudes of the Diracs are retrieved from the sectoral spherical

harmonics coefficients, which are the coefficients where m = �:

f̂�,� = Ñ�,�

K−1∑
k=0

ck(sin θk)
�e−j�φk . (2.14)

Here, Ñ�,� is a constant that encompasses N�,� as well as the appropriate associated Legendre

coefficient. Since Ñ�,� is known and nonzero, we can divide the expression in (2.14) by it to

obtain

g� =
f̂�,�

Ñ�,�

=

K−1∑
k=0

cku
�
k, (2.15)

where uk = sin θke
−jφk . We recognize in (2.15) the familiar expression of a sum of complex

exponentials, which can be annihilated using Prony’s method to recover the roots {uk}K−1
k=0 . To

find the annihilating filter, we need the bandwidth L of the signal to be at least 2K.

2.5.5 Retrieving VPW pulses from sectoral SH coefficients

We now extend the result of [51], adding width to the Diracs. Like the Cartesian case, we can

introduce a damping factor 0 ≤ rk ≤ 1, which reduces the magnitude of the signal at higher

frequencies. The spherical VPW pulses are thus defined as

f̂�,m = N�,m

K−1∑
k=0

ckP�,|m|(cos θk)e
−jmφke−rk(�+|m|). (2.16)

An example of a spherical VPW signal composed of two pulses is shown in Figure 2.12. The

following theorem shows how to retrieve the parameters of this new signal model.
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Theorem 2.4 Let f be the sum of K continuous spherical VPW pulses as in (2.16). The

spherical harmonics coefficients f̂m� with m = 0, 1, . . . , 2K − 1 and |�| < m are sufficient to

recover f .

Proof. As in [51], we can compute

g� =
f̂�,�

Ñ�,�

=

K−1∑
k=0

cku
�
k, (2.17)

where we now have

f̂�,� = Ñ�,�

K−1∑
k=0

ck(sin θk)
�e−j�φke−2rk�.

The roots, which can be found via the annihilating filter method, become uk = sin θke
−iφke−2rk .

We can extract the azimuth φk from the phase of uk, but the magnitude of uk depends on both

θk and rk and at this point we cannot resolve the ambiguity. What we can do however is find

the amplitude ck by solving the linear system in (2.17). Furthermore, for m = �− 1 and � ≥ 1,

we have

f̂�,�−1 = Ñ�,�−1

K−1∑
k=0

cke
−rk cos θku

�−1
k ,

g�−1 =
f̂�,�−1

Ñ�,�−1

=

K−1∑
k=0

ckbku
�−1
k ,

where bk = e−rk cos θk. Note that, since we know f̂ �−1
� and u�−1

k , we can compute bk. Moreover,

the knowledge of the azimuth φk enables us to calculate

ak =
uk

e−jφk
= sin θke

−2rk .

Finally, combining ak and bk and assuming ak is nonzero, we compute the width

rk =
1

2
log

(
−b2k +

1

2a2k

√
4a2k + b4k

)
(2.18)

by keeping only the positive solution to the square root. Observe that bk is raised to the 4th power

and ak is squared. Furthermore, in the noiseless case7, both terms are real, so the expression

under the square root is always positive. Using (2.18), we obtain θk = arccos
(

bk
erk

)
. �

Like [51], our method suffers from a relatively poor spectrum usage. Indeed, only a small

number of the spherical harmonics coefficients are used for the parameters’ estimation.8 In

Chapter 3, we address this shortcoming by adding a nonlinear optimization routine that uses

the entire spectrum to refine the VPW estimation. VPW-FRI can be used to model a wide

range of signals. In the next chapter, we see how to use it to sample and represent reflectance

distribution functions. Another interesting example is the compression of electrocardiogram

signals, as explained below.
7In the noisy case, it is possible that bk and ak are complex. To prevent negative terms in the square root,

we project them onto the real axis.
8A better spectrum usage was proposed in [52], but we have been unable to generalize their method to VPW.
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2.6 Example: ECG compression

Figure 2.13: Example of an ECG

pulse.

Several signals can be approximated using VPW

pulses; a good example consists of the problem

of sampling and representing electrocardiogram

(ECG) signals. ECG signals are composed of five

types of pulses, labeled P, Q, R, S, T in the medi-

cal literature (see also Figure 2.13). Each of these

pulses represents a different stage in the activity of

the heart and each has a different width and ampli-

tude; while the P and T pulses are fairly wide, the

Q,R,S pulses are narrow and close to each other.

Having a signal model with different pulse widths is paramount here.

Figure 2.14: ECG compression on

record 123 from the MIT-BIH database:

(a) original ECG signal; (b) VPW esti-

mation with 5 pulses for each heart beat;

(c) estimation with 7 Gaussians.

We briefly show how to to use VPW-FRI to

compress ECGs. For our experiments, we use

ECG records from the MIT-BIH database [71].

We compare the VPW-FRI pulse model with

a Gaussian model, as is for example described

in [26]. Each Gaussian pulse is expressed with

3 parameters: location, scale and amplitude.

We fit them to the original signal using non-

linear optimization techniques. Additionally,

we compare the results with ideal lowpass fil-

tering followed by downsampling. Figure 2.14

shows an example of a compressed reconstruc-

tion. On the single record of Figure 2.14, VPW-

FRI achieved a signal-to-residual ratio (SRR) of

22.3 dB compared to 14.0 dB for the Gaussian

pulse model. We also observe that the Gaus-

sian model sometimes fails to identify narrow

pulses. Another disadvantage of this technique

is that it is difficult to initialize the nonlinear

optimization. In fact, in the results presented

here, we initialized it with the VPW-FRI pulse

locations to make it converge faster.

2.7 Conclusion

We have presented variable pulse width, a new parametric model that fits within the FRI frame-

work and allows for a wider range of pulse shapes. We proposed a method for estimating the

parameters and quantified its performance on noisy signals. Moreover, we showed that VPW

can be extended to 2D and spherical signals. In 2 dimensions, we proposed several pulse shapes

and discussed their characteristics. Unlike in 1D, the spectrum usage is not optimal in both 2D

and on the sphere; we need to sample at a rate quadratically higher than the rate of innova-
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tion to ensure perfect recovery. Another limitation is that the spherical case allows only radial

pulses. Nevertheless, this model is applicable to a broad range of signals, such as for example

electrocardiograms. The next chapter showcases applications of the 2D and spherical versions of

VPW-FRI to sample and represent reflectance functions.
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2.A Proof of Lemma 2.1

Since f(t) is periodic, with period τ , it has the following Fourier series expansion:

f(t) =
∑
m∈Z

F [m]e2πjmt/τ .

From the sampling scheme in Figure 2.3,

g[n] = 〈f(t), ϕ (t− nT )〉
=

∑
m∈Z

F [m]
〈
e2πjmt/τ , B sinc (B(t− nT ))

〉
=

∑
m∈Z

F [m]e2πjmnT/τ

∫ ∞

−∞
sinc (t) e2πjmt/(Bτ)dt

=

	Bτ/2
∑
m=−	Bτ/2


F [m]e2πjmn/N .

This is a system of N equations in 2�Bτ/2�+ 1 unknown Fourier series coefficients F [m], which

can be inverted when N ≥ 2�Bτ/2� + 1. When N = 2�Bτ/2� + 1, the system is, up to a 1/N

factor, the N ×N inverse-DFT of F [m]. Therefore,

F [m] = NG[m],

for |m| ≤ �Bτ/2�.

2.B Time-domain formulae for VPW pulse

We show here the details of the derivation of the time-domain formulae for the VPW pulse. The

time-domain representation of F s
k (cf. (2.8)) is computed as

fsk(t) =

∞∑
m=−∞

F s
k [m]ej2πmt/τ

=
1

τ

( ∞∑
m=0

zmk (t) +

∞∑
m=0

(z∗k(t))m − 1

)
(a)
=

1

τ

(
1

1 − zk(t)
+

1

1 − z∗k(t)
− 1

)
=

1

τ

1 − |zk(t)|2
(1 − zk(t))(1 − z∗k(t))

,

where zk(t) = e2π/τ(−rk+j(t−tk)). Note that (a) assumes that rk > 0, which only holds when the

annihilating filter is stable (i.e., when its roots are inside the unit circle).
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We can do the same reasoning for the asymmetric component F a
k of the signal, whose time-

domain representation is

fak (t) =

∞∑
m=−∞

F a
k [m]ej2πmt/τ

=
i

τ

( ∞∑
m=0

zmk (t) −
∞∑

m=0

(z∗k(t))m + 1

)
(d)
=

i

τ

(
1

1 − zk(t)
− 1

1 − z∗k(t)

)
=

1

τ

2 Im{zk(t)}
(1 − zk(t))(1 − z∗k(t)

.

Again, (d) only holds for rk > 0.

2.C Computation of the Cramer-Rao bound for VPW signals

Let Θ =
[
t0, r0, c0

]�
be the vector of unknown parameters. The CRB relies on the Fisher

information matrix, which is given by (cf. [54] for more details)

I(θ) = E

⎡⎣(∂ log f̃ [n])

∂θ

)(
∂ log f̃ [n])

∂θ

)�⎤⎦
=

1

σ2
ε

N−1∑
n=0

∇f [n]∇f [n]�.

Note that f [n] and f̃ [n] also depend on θ, but we have omitted it to simplify the notation.

Given any unbiased estimate θ̂ of the parameters, the CRB provides a lower bound on the

covariance matrix of θ̂:

cov (θ̂) � I−1(θ).

Let our signal f =
[
f [0], f [1], . . . , f [N − 1]

]�
and its DFT f̂ =

[
F [0], F [1], . . . , F [N − 1]

]�
.

Since f = W ∗f̂—where W is the DFT matrix of size N—and we have a closed-form formula for

F [m], we choose to first compute the derivatives for the gradient in the frequency domain and

then perform the inverse DFT to get ∇f [n]. If we restrict ourselves to positive m and a single

VPW pulse, we have, given F [m] = c0e
−2πm(r0+jt0)/τ ,

∂F [m]

∂t0
= −c0 2πjm

τ
e−2πm(r0+jt0)/τ

∂F [m]

∂r0
= −c0 2πm

τ
e−2πm(r0+jt0)/τ

∂F [m]

∂c0
= e−2πm(r0+jt0)/τ .





Chapter 3

Corpuscular Theory:
Acquisition of Reflectance Functions*

It is exciting to think that it costs nothing to create a new

particle.

Lectures on Gravitation

Richard Feynman

3.1 Introduction

We demonstrate in this chapter via four short applications how the finite rate of innovation

(FRI) theory and the variable pulse width (VPW) model can be exploited to acquire and es-

timate the bidirectional reflectance distribution function (BRDF), which is a high-dimensional

function that characterizes how light is reflected by surfaces. Usually, BRDFs contain high fre-

quency components—called specularities—that are difficult to catch with classical sampling the-

ory. Moreover, their shape varies through space, which makes existing FRI models inappropriate.

The acquisition of BRDFs in the spherical domain requires dense sampling of the hemisphere, as

can be seen in [115]. More elaborate techniques propose to perform the acquisition in a transform

*The material in this chapter is the result of joint work with Adam Scholefield, Ivan Domanić and Martin
Vetterli. Author contributions: GB, AS, ID and MV designed the extension from Chapter 2 to make it suitable
for reflectance functions; GB performed research under the guidance of AS and MV; GB ran simulations and
experiments, and wrote the chapter based on [7, 10], which were written by himself.

43
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(a) Original (b) VPW model

Figure 3.1: Bidirectional reflectance distribution function (BRDF) representation in 2D: (a)

example of a measured BRDF and (b) its representation using a single VPW pulse.

domain: for example in [183], the acquisition is done in the spherical harmonics domain, which

substantially reduces the number of samples. The disadvantage is that it requires a specialized

gantry, with a high number of light sources that can recreate the spherical harmonics functions.

In this chapter, we leverage FRI theory to reduce the number of samples directly in the spherical

domain. An example of a specularity approximated with a single spherical VPW pulse is shown

in Figure 3.1; here, the direction of outgoing light is kept fixed.

By utilizing a simple parametric model, we are enforcing a strong prior that is particularly

beneficial in certain scenarios. For example, in the BRDF example, it is typical to only have a

few samples of sharp specularities; it is thus very challenging to obtain an accurate representation

of the underlying reflectance function. Despite this, the proposed approach is able to recover

a good approximation of these specularities, and the continuous representation enables us to

later render the object from any illumination direction. This is in contrast to super-resolution

approaches, where a denser sampling of the BRDF would only allow us to render the object

under certain illumination directions or would force us to apply some other type of interpolation.

In fact, graphics renderers deal with parametric forms of the reflectance function precisely for

these reasons.

We start with a brief review of the BRDF definitions and existing models and then propose

FRI to facilitate the acquisition of specularities. At first, we suggest to use diffusers to blur and

widen specularities; this is equivalent to convolving the specularity with an unknown sampling

kernel. We show that we can adapt the FRI framework to such situations.

Next, we describe three experiments to justify the use of VPW-FRI; each of them focuses on

a different domain (1D, 2D and spherical) and makes use of several data sources: synthetic data,

real data from a publicly-available dataset, as well as our own acquired data using a custom-made

gantry.

3.2 Background

The illumination has a strong influence on the appearance of objects: for example, a shiny

material might look brighter if light is directed at it from a particular angle and darker otherwise.

The role of the BRDF [135] is precisely to describe the reflective characteristics of materials; it
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Figure 3.2: Vectors involved in the BRDF function: ωi is the incoming light direction, ωo is

the outgoing light direction, and n is the surface normal. The vectors �x and �y represent the

projection of ωi onto the xy-plane.

enables us to decouple the reflectance properties of objects from the illumination.

Definition 3.1 (BRDF) The BRDF ρ is a four-dimensional function that measures the radi-

ance Lo that is reflected from a specific point in a direction ωo = [θo, ϕo]
�, given a light source

with irradiance Ei coming from a direction ωi = [θi, ϕi]
�.

ρλ(ωi,ωo) =
dLo(ωo)

dEi(ωi)
=

dLo(ωo)

Li(ωi) cos θidωi
.

The directions ωo and ωi are measured with respect to the surface normal n of the material

at the point of interest. The BRDF is specific to the wavelength, and in practice we often use

a separate reflectance function for each spectral band; for the sake of clarity, we focus here on a

single channel. The BRDF has the following properties and characteristics:

(1) Positivitiy: The BRDF is positive.

ρ(ωi,ωo) ≥ 0, ∀ωi,ωo.

(2) Helmholtz reciprocity: Light traveling along the same path but in the opposite direction

is reflected in the same way.

ρ(ωi,ωo) = ρ(ωo,ωi).

(3) Conservation of energy: The quantity of light reflected must be less than or equal to

the quantity of incident light:∫
Ω

ρ(ωi,ωo) cos θidωi ≤ 1, ∀ωo.

Remark that some of the light hitting the surface might be absorbed by the material or

refracted.
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(a) Acquisition (b) Rendering

Figure 3.3: BRDF acquisition and rendering: (a) a close-up of a US penny under a specifc

illumination and (b) a rendering of the same coin under a different artificial illumination.

(4) Isotropy: Some BRDFs are said to be isotropic, that is, they are unchanged if the incoming

and outgoing vectors are rotated by the same amount about the surface normal.

There exist different generalizations of the BRDF: among others, the spatially varying bidirec-

tional reflectance distribution function (SVBRDF) takes into account spatial variations and the

bidirectional texture function (BTF) encompasses the SVBRDF parameters and adds occlusions

and shadows. Both functions are six-dimensional.

3.2.1 The rendering equation

To understand how the BRDF transforms the incoming light, we need one more ingredient: the

rendering equation. It quantifies the radiance Lo emitted from a point along the direction ωo by

integrating the product of the BRDF ρ and the radiance of the incoming light Li for all possible

directions ω on the hemisphere Ω:

Lo(ωo) =

∫
Ω

Li(ω)ρ(ω,ωo)〈n,ω〉dω. (3.1)

The inner product 〈n,ω〉 = cos(θ), which is often absorbed in ρ, is called the normal attenuation

or cosine term. It accounts for the fact that objects appear darker when ω is closer to grazing

angle.

Despite its generality, the rendering equation does not take into consideration every aspect of

the light’s behavior. For instance, it does not capture inter-reflections, transmission, subsurface

scattering or polarization. Nevertheless, (3.1) is a good approximation of the physics of light

without being too complex. For example, the full knowledge of the BRDF or SVBRDF combined

with the rendering equation allow the creation of realistic scenes under new illuminations and

views. Figure 3.3 shows an example of a coin whose SVBRDF has been captured under several

different illuminations; in Figure 3.3b, the same coin has been rendered under a new different

illumination1.

1A video of the re-illumination of the coin can be found at http://go.epfl.ch/relight.



3.2 Background 47

3.2.2 BRDF acquisition

To acquire the BRDF of an object, we need to illuminate and observe it from several angles:

for each pair (ωi,ωo), we measure the reflected radiance. This process is often performed with

a goniophotometer—a device that takes several photographs of a material under different illu-

minations; for instance in [115], almost 3 million BRDF samples have been acquired for 100

different materials that now compose the publicly available MERL BRDF database. The high

dimensionality of BRDFs and SVBRDFs often results in huge datasets, and it motivates the

need for lower-dimensional approximations and reparametrizations.

One of the approaches to reduce the number of samples needed in BRDF acquisition while

still faithfully capturing the specularity is to extend the area illuminated by the light source.

The earliest example of extended light sources shaped the radiance of the light as a Gaussian

distribution and modeled the BRDF with a cosine and a Dirac pulse [129]. More recently, [65]

suggested acquiring spatially-varying BRDFs of an almost flat surface using a linear light source

and by only varying the inclination of the incoming light θi. Light sources can also take more

elaborate patterns, and enable BRDF acquisition in a different domain, such as the spherical

harmonic domain [183] or the Fourier domain [2].

It is also common to represent the incoming and outgoing light directions in the half-angle

coordinate system [159]. With this parametrization, the BRDF is specified in terms of the half-

angle h and the difference d: h = (θh, ϕh) = ωi+ωo

‖ωi+ωo‖ is the angle that is half way between ωi

and ωo, while d = (θd, ϕd) is the angle between h and ωi. The advantage of this representation

is that it is independent of ϕd for isotropic materials. This is the approach taken in [115] to

reduce the dataset size to three dimensions. Other simplifications consist of fixing the viewing

angle or projecting the vector ωi onto the xy-plane, as in [112]: in Figure 3.2, this projection is

illustrated by the two components �x and �y.

3.2.3 Light domes

While powerful, most goniophotometers do not take into account spatial variations. To address

this need, we constructed our own light domes. Light domes consist of a combination of light

sources and an imaging device to capture slices of the SVBRDF. In our light domes, the light

sources are placed on a hemisphere surrounding the object to be analyzed and a DSLR camera

is located at the zenith. The digital camera enables us to capture the spatial variations of the

SVBRDF. We developed two flavors of light domes.

1. The first design consists of 58 fixed point light sources spread on the hemisphere (see

Figure 3.4a). Its conception is similar to other light domes that have been built by other

research groups [48]. The position of the camera and the object to be analyzed is fixed,

thus we give away outgoing angle information in exchange for spatial information. The

advantage of such a design is that it is fast to turn on and off the lights, making SVBRDF

acquisitions relatively quick. It also makes it possible to perform acquisitions with several

light sources on at the same time. This light dome design is also the genesis of the startup

Artmyn2, which originated from our research group and specializes in the acquisition of

the reflectance function of artworks.

2. Our second light dome consists of an extensible motorized arm with a light source at its

extremity (see Figure 3.4b). The arm can be rotated around the center, where a camera

2https://artmyn.com/
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Figure 3.4: Design and photographs of our light domes: (a) dome with 58 fixed lights, and (b)

dome with movable arm and arbitrary light positions.

is installed, which enables us to position the incoming light at almost any location on the

hemisphere. This light dome started as a student project [6, 124, 175], and its design has

been substantially upgraded over the years. It now has a sturdy chassis and can be mounted

with several different cameras, including a hyperspectral line scanner. Additionally, a

rotating platform that holds the objects of interest can be mounted on the chassis (see

Figure 3.4b, middle): this allows us to orient the objects along different angles and to

acquire outgoing angle information. The advantages of having a moving arm holding the

light source are multiple. First, it makes it possible to sample the incoming light hemisphere

with an arbitrary resolution, while with fixed lights, the sampling patterns are imposed by

the position of the light. Second, it enables us to sample the BRDF along trajectories of

light: this can be done by performed acquisitions with longer exposure times while moving

the arm. In the same vein, we can also use the trajectories of the light to simulate some

extended light sources. Finally, we can also imagine a dynamic sampling scheme that

adapts based on the points of the SVBRDF that have already been measured.

3.2.4 BRDF shape and models

In its elementary form, a BRDF is decomposed into two parts: the diffuse (or Lambertian) part—

a constant term that represents the amount of light that is equally reflected in all directions—and

the specular component—a peak whose direction has the same angle as the incoming light with
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respect to the surface normal. In mathematical terms,

ρ(wi,wo) =
kd
π︸︷︷︸

diffuse

+ ksρs(wi,wo)︸ ︷︷ ︸
specular

,

where kd is the diffuse albedo, ks the specular albedo, and ρs is a function of a few arguments

that represents the shape of the specular peak. A wide range of parametric models have been

proposed to represent ρs [115]; one of the most flexible and accurate [134] being the Cook-

Torrance model [44], also known as the microfacet model. It is given by

ρs(wi,wo) =
F (ωo,h)G(ωi,ωo,h)D(h)

4〈ωi,n〉〈ωo,n〉 ,

where the function F is called the Fresnel factor, G is the geometry term, and D is the microfacet

distribution. While F and G are fairly constant throughout the range of values of θh (except near

grazing angle, where they exhibit a particular behavior), D is the factor we are most interested

in since it describes the global shape of the specularity. Several shapes have been proposed for

D; two of the most widely used are the Beckmann [194] and the GGX [192] distributions:

DBeckmann(h) =
1

πα2〈n,h〉4 exp

(
− tan(θh)2

α2

)
,

DGGX(h) =
α2

π〈n,h〉4(α2 + tan(θh)2)2
,

where θh is the angle between h and n, and α is a roughness parameter. Observe that the

microfacet distribution is 1-dimensional in these models: it depends only on tan(θh).

Another popular and relatively simple model to represent specularities is due to Ward [194].

It represents specularities with elliptical-Gaussian distribution function

ρs,Ward(ωi,ωo) =
ks

4πα2
√〈n,ωi〉〈n,ωo〉

exp

(
− tan(θh)2

α2

)
.

Shortly, we will investigate the use of FRI and the VPW model studied in Chapter 2 to model

ρs.

3.3 FRI with unknown sampling kernel

Our first attempt at adapting the FRI sampling framework to the problem of BRDF acquisition

is based on extended light sources. We model the specularity as a Dirac pulse x(t) located at t0.

Since most BRDFs contain only a single specularity, we restrict ourself to a single pulse model.

The Fourier series coefficients of x(t) are simply given by

X[m] =
1

τ
a0e

−i2πt0m/τ , m ∈ Z.

As seen in Chapter 2, one of the key elements in the FRI theory is the search for an anni-

hilating filter A such that (A ∗ X)[m] = 0, ∀m ∈ Z. For a single pulse, the annihilating filter

coefficients are found by solving the linear system of equations

A[0]X[m] +A[1]X[m− 1] = 0,
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for m = 1, . . . ,M − 1 and M ≥ 2. The single root u0 of this filter satisfies

A(z) = A[0] +A[1]z−1 = 1 − u0z
−1, (3.2)

where A(z) is the z-transform of A.

Now assume that x(t) is convolved with an unknown τ -periodic filter ϕ(t) that represents

the specularity shape combined with the shape of the light source illuminating the object. We

impose the constraint that ϕ(t) must be symmetric (the reason for this is made clear later). Let

y(t) = (x ∗ ϕ)(t). By the convolution theorem, the Fourier series coefficients of y(t) are given by

Y [m] =
1

τ
a0u

m
0 Φ[m], m ∈ Z,

where Φ[m] are the Fourier series coefficients of ϕ(t).

As in (3.2), we can find an annihilating filter for Y [m] of length two: A[0] = 1 and A[1] = −v0,
where v0 is the root of this new filter. Using M ≥ 2 Fourier series coefficients, we can estimate

v0 by solving

y1 = v0y0, (3.3)

with

y0 =

⎡⎢⎢⎢⎢⎢⎣
Y [0]

Y [1]
...

Y [M − 2]

⎤⎥⎥⎥⎥⎥⎦ and y1 =

⎡⎢⎢⎢⎢⎢⎣
Y [1]

Y [2]
...

Y [M − 1]

⎤⎥⎥⎥⎥⎥⎦ .

The closest approximation of v0 in (3.3) is simply given by the orthogonal projection of y1 onto

y0:

v0 =
y∗
0y1

y∗
0y0

=

∑M−1
m=1

(
α0ϕ[m− 1]um−1

0

)∗
(α0ϕ[m]um0 )∑M−2

m=0 (α0ϕ[m]um0 )
∗
(α0ϕ[m]um0 )

=

∑M−1
m=1

(
ϕ[m− 1]∗ϕ[m]|um−1

0 |2)∑M−2
m=0 (|ϕ[m]|2|um0 |2)︸ ︷︷ ︸

purely real

u0.

The key observation is that, since the sampling kernel is assumed to be symmetric, its Fourier

series coefficients are real. Hence the expression multiplying u0 is a real quantity, which implies

that ∠v0 = ∠u0. In other words, the filter annihilating Y [m] allows us to retrieve the location

t0 from its root as long as the unknown filter ϕ(t) is symmetric.

As a final remark, note that even though the kernel shape is not necessary in the estimation

of the location, it is needed for the recovery of the amplitude a0: it is simply impossible to

differentiate the contribution of the kernel ϕ(t) from the contribution of the signal x(t) by

observing y(t) only.
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Figure 3.5: Sampling a single noisy τ -periodic Dirac convolved with a Gaussian kernel (τ =

1, σ = 0.05). Using 2M = 2 · 2 and 2 · 8 samples, we measure the disparity Δt0/τ between the

FRI-estimated t̂0 and t0 for a given input SNR (solid lines) and compare it with the CRB (dotted

lines). Each data point is the average of 10, 000 repetitions.

Extension to 2D signals

As in Section 2.4, the generalization of the above result to 2-dimensional signals is straightforward

if we assume that the sampling kernel is separable; i.e., ϕ = ϕx ∗ϕy, where ϕx is a horizontal and

ϕy a vertical filter (see [113] for more details). The separability of the sampling kernel combined

with the convolution theorem yields the following expression for the 2D Fourier series coefficients:

Y [m,n] =
1

τ2
a0e

−i2πx0m/τe−i2πy0n/τϕx[m]ϕy[n], m, n ∈ Z,

where (x0, y0) is the location of the Dirac pulse and a0 its amplitude. We can reduce the problem

to the 1-dimensional case by selecting the coefficients Y [m, 0] for m ∈ Z:

Y [m, 0] =
1

τ2
A0e

−i2πx0m/τϕx[m],

with A0 = a0ϕy[0]. In the same manner, we can estimate y0 using the coefficients Y [0, n] for

n ∈ Z. We need M ≥ 2 Fourier coefficients in each dimension to find the coordinates (x0, y0).

3.3.1 Noisy case

We now assess the performance of the FRI estimation procedure in the presence of noise with the

following simulation. We generate a single Dirac with a random location t0 ∈ [0, τ), convolved

with a Gaussian kernel of variance σ2 = 0.05. We sample y(t) as

ys[n] = 〈y(t), h (t/T − n)〉 n = 0, 1, . . . , 2M − 1,

where T = τ
2M and h(t) is an ideal lowpass filter whose role is to avoid aliasing in the low-

frequency Fourier coefficients. We then corrupt the samples ys[n] with additive white Gaussian

noise (AWGN) of variance σ2
ε . We compare the efficiency of the FRI estimation procedure with

the Cramér-Rao bound; given 2M discrete uniform samples, the variance var(t̂0) of any unbiased



52 Corpuscular Theory: Acquisition of Reflectance Functions

−π/2 θi π/2

(a)

−π/2 θi π/2

(b)

−π/2 θi π/2

(c)

−π/2 θi π/2

(d)

1
D

 c
a
se

2
D

 c
a
se

Figure 3.6: Example of the estimation of the BRDF parameters with FRI in the 1D (top) and

2D (bottom) cases. (a) original BRDF ρ; (b) signal lowpass-filtered with a Gaussian kernel (σ =

0.5 in 1D and Σ = [0.3, 0; 0, 0.3] in 2D) and sampled; (c) lowpass specularity after subtraction of

the diffuse part; (d) Reconstructed signal: the specularity is estimated with FRI and the diffuse

component with photometric stereo. The parameter θi represents the inclination of the incoming

light vector and (�x, �y) are the coordinates of its projection onto the xy-plane.

estimator t̂0 of t0 is lower-bounded by CRB(t̂0). In the AWGN case and with a single unknown

parameter, the CRB is given by

CRB(t̂0) =
σ2
ε∑2M−1

n=0

(
∂ys[n]
∂t0

)2 .

Results of the simulation can be seen in Figure 3.5 for M = 2 and 8; we consider the FRI-

based estimator to be fully efficient for an SNR above 10dB. Note that our FRI implementation

is coupled with ESPRIT [158] to reduce the effect of the noise.

3.3.2 Application to specularity estimation

We show here how to apply the FRI theory to reconstruct a BRDF from its filtered version and

discuss the technicalities of the application of the algorithm.

First, we reduce the number of dimensions of the BRDF from 4 to 2 by fixing the viewing

angle ωo. Furthermore, we project the normalized incoming light vector ωi onto the xy-plane,

so that we can work in a Euclidean space, where our theory has been developed. We call the 2

components of the projection �x and �y (cf. Figure 3.2).

As stated in Section 3.2.2, the extended light source approach allows us to smooth the spec-

ularity. The resulting acquired signal can be seen as the convolution of a Dirac pulse with two

kernels: its (narrow) pulse shape and the extended light kernel. While we have some control

on the shape of the extended light kernel (if it is not known, we can at least measure it), the

specular pulse shape is unknown. Fortunately, both kernels are symmetric, which makes the

specular peak a suitable candidate for our algorithm.
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BRDF with pointwise light (100 samples)
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FRI location estimation

Figure 3.7: 1D BRDFs of a mirror with pointwise (continuous line) and extended (dashed line)

light source, where θi is the inclination of the light direction. The location (�) is estimated from

20 samples (•).

It should be noted that the BRDF of most materials is a mixture of a diffuse and a specular

component. Since we are only interested in the specular part, we need to subtract the diffuse

component from the acquired signal; luckily, the diffuse component is wide and can be easily

estimated, for instance with a few pointwise light sources.

Simulations

We run numerical experiments in 1 and 2 dimensions to demonstrate the feasability of our

method. First, we generate a BRDF function ρ that follows a Ward distribution with kd =

1, ks = 1/1000, a random surface normal vector n, and α = 0.008, which corresponds to a

relatively narrow specular peak (see Figure 3.6a). Note that the specular peak of the Ward

model is not a separable kernel, but our experiments have shown that it is close to it (it can be

approximated with a Gaussian function, which is separable).

The signal ρ is then convolved with a Gaussian pulse to simulate the effect of a diffuse light

and then sampled at a relatively low rate: 50 samples are taken in the 1D case and 40 samples in

each dimension in the 2D case (Figure 3.6b). Recall that the theory states that the smoothing

kernel should be periodic; this is not the case in our experiments. This difference can however

be neglected as the kernels we use decay fast enough.

The diffuse component parameters (surface normal n and diffuse albedo kd) are estimated

with photometric stereo [62] from a lowpass version of ρ. After we subtract the (filtered) diffuse

component, we are left with a low-frequency version of the specular peak (Figure 3.6c). We run

the FRI algorithm on its DFT coefficients to obtain the location of the specularity.

We then estimate the width of the specularity; this is a nonlinear problem which we tackle

with the Levenberg-Marquardt algorithm. Recall that this procedure requires us to know the

extended light shape. In practice, it can be measured by lighting a purely specular material with

the desired light kernel from several locations. The rendering equation (3.1) shows that when ρ

is a Dirac pulse, Lo directly provides pointwise samples of the shape of the light.

Finally, the BRDF is reconstructed using the recovered parameters (Figure 3.6d). Visually,

the estimation matches closely the original shape. Quantitatively, we measure an SNR of 43.4

dB in the 1D case and 52.2 dB in the 2D case.
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Figure 3.8: Modeling of a few glossy materials from the MERL BRDF database using a GGX

distribution, Beckmann distribution and a VPW pulse.

BRDF acquisition with light dome

To confirm the above results, we perform a practical acquisition with our light dome with moving

light source (see Figure 3.4b); We propose to localize the specularity of a flat mirror (its diffuse

component is considered nil and it does not produce inter-reflections). The shape of the specular

peak is close to a Dirac pulse, which is impossible to acquire with pointwise light sources and

hence justifies the use of an extended sampling kernel. We position it with an angle with respect

to the camera plane such that t0 does not correspond to an inclination of 0.

We focus the camera on the surface of the mirror and take 100 photographs of it; for each

capture, we vary the inclination angle θi of the illumination. Moreover, we use both (almost)

pointwise and extended light sources; the extended kernel is obtained by placing a diffusion

filter of unknown shape in front of the light. For a single pixel selected in the middle of the

frame, the two captured BRDFs are shown in Figure 3.7. By taking only 20 samples from the

filtered BRDF, we can effectively recover the location of the specularity with FRI; this is clearly

impossible from 20 pointwise samples.

3.4 VPW modeling of the BRDF

The main limitation of the above approach is that it can only represent one specularity. Fur-

thermore, it can only recover the location of the specularities, but does not provide information

about their width. To account for multiple specularities and various shapes, we need another

model. In what follows, we demonstrate the practicality of the VPW-FRI model for representing

and sampling specularities.

3.4.1 Modeling glossy materials

First, we show that the VPW parametric model is adequate to characterize glossy materials and

that a single VPW pulse is appropriate to model the specularity ρs; indeed, we observe that

if we formulate it with respect to tan(θh), its shape is similar to the GGX distribution, up to
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Figure 3.9: 2D fit of a specularity: (a) original synthetic specularity generated according to the

Beckmann distribution and (b) its estimation using a VPW pulse. For this experiment, we used

all DFT coefficients corresponding to positive frequencies—in this case 50 in each dimension—in

the estimation algorithm.

a normalization factor and a square root term.3 We compare in Figure 3.8 the fitting of these

models to a few measured BRDFs from the MERL BRDF database [115]. In this experiment, and

as we neglect the Fresnel and geometry terms, we focus on θh in the range [0◦, 60◦]. Within this

range, we see that the VPW model compares favorably to the Beckmann and GGX distributions

and presents a good trade-off between the heavy tails of the GGX distribution and the relatively

narrow Beckmann distribution.

3.4.2 Specularity localization on the plane

Next, we demonstrate on synthetic data how our algorithm and model can be used to estimate

the width and location of a specular peak projected onto the xy-plane. For this experiment,

we fix the viewing angle and only study the variation with respect to the incoming light angle.

The pulse in Figure 3.9a is a specularity generated according to a Beckmann distribution with

α = 0.003 and ks = 0.005; we fit a VPW pulse to it and estimate its parameters using the FRI

procedure coupled with a 2D version of Cadzow’s algorithm. As we can see, a single VPW pulse

provides a good approximation of its shape, as shown in Figure 3.9b.

3.4.3 Specularity localization on the sphere

Finally, we propose to perform a practical acquisition from our dome with movable arm presented

in Figure 3.4b. Depending on the number of angular samples, the acquisition process can be

lengthy and tedious. Moreover, most light domes are composed of a limited number of lights

at fixed positions; this motivates the need for a method that can faithfully estimate the BRDF

from as few samples as possible.

3To account for this difference, we actually fit the square root of the measurements to the VPW pulse.



56 Corpuscular Theory: Acquisition of Reflectance Functions

Figure 3.10: Specularity estimation using spherical VPW-FRI algorithm: (a) 18 samples of the

acquired BRDF; (b) the spectrum computed from the 18 samples; (c) the spectrum estimated

using VPW-FRI with K = 1; (d) the corresponding reconstructed spherical signal; (e) the same

BRDF acquired at a higher sampling rate (450 samples) for comparison.

Using a Nikon D810 full-frame DSLR camera, we acquired samples of the reflectance field

of a painting using N = 18 different light positions; we discretized the azimuth into 6 uniform

bins and the elevation into 3 uniform bins. In practice the light is not a perfect point source;

this fact, combined with the acquisition system, acts as a lowpass filter that eliminates the high

frequency components. Using Theorem 2.3, we can approximate the SH coefficients from the

spatial samples.

We then use spherical VPW-FRI to estimate the parameters of the pulses from these coeffi-

cients; for most BRDFs, one or two pulses suffice to represent the specularity. As a consequence,

we can obtain a good approximation of the specular peak even with a relatively low number

of samples on the sphere. This idea is illustrated in Figure 3.10: from only 18 spherical sam-

ples, we can approximate the spectrum of the reflectance field—see Figure 3.10b—using (2.13).

Moreover, from these SH coefficients, the FRI algorithm allows us to estimate the spectrum, as

illustrated in Figure 3.10c. Since VPW-FRI is a parametric model, its spectrum can have infinite

support. This enables a continuous representation of the reflectance function in the spherical do-

main; Figure 3.10d shows the estimated VPW pulse sampled at 450 locations on the hemisphere.

For the sake of comparison, we also acquired a denser version of the reflectance field—shown in

Figure 3.10e; we observe that the VPW-FRI approximation from 18 samples is extremely close

to the ground truth.

To summarize, the algorithm allows us to accurately estimate the specularity from a few

samples; this reduces the acquisition time as well as storage requirements. Furthermore, given

this continuous VPW representation, we can render objects under virtually any new illumination.

3.4.4 Practical considerations

We already mentioned in Section 2.5 that the method does not exploit the entire spectrum

but only uses its two outer diagonals, i.e. the SH coefficients for m = � and m = � − 1.

Furthermore, as depicted in Figure 3.10b, the energy of a typical BRDF signal is concentrated

along the central column of the spectrum, and these coefficients are unfortunately not used

by the currently proposed algorithm. To achieve better spectrum usage, we add a nonlinear

optimization routine that minimizes the squared error between the model and the measurements

over the full spectrum. As the objective function is non-convex, this method relies on the VPW-

FRI parameters to provide a good initialization. Moreover, to make the VPW-FRI estimation

more robust, we first denoise the SH coefficients with Cadzow’s algorithm.

Another limitation is model mismatch. While our experiments have demonstrated that VPW
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(a) Original (b) VPW model (c) Cosine model

Figure 3.11: Example of model mismatch: (a) a measured BRDF composed only of a Lamber-

tian part, and (b) its spherical VPW approximation. Simpler models such as (c) a cosine can be

used instead.

pulses are adequate to represent specular peaks, there are other components in the BRDF that are

not easily approximated by VPW pulses: the Lambertian component and hard cast shadows are

such examples. The mismatch between the Lambertian component and its VPW approximation

is illustrated in Fig 3.11. Fortunately, the Lambertian part is much less challenging to detect

and represent than the specular part, since it can easily be approximated using a constant value

modulated with the cosine of the azimuth of the incoming light angle θi. Hard shadows are

more difficult to cope with, as they also contain high frequency components, and thus provide

an interesting topic of investigation for future work.

3.5 Conclusion

We applied FRI-based methods to the problem of estimating BRDFs, with emphasis on the

detection of specularities. First, we proposed a new FRI-based technique to estimate the location

of a single Dirac pulse convolved with an unknown symmetric sampling kernel. We tested our

proposed method in numerical simulations and in a practical experiment: in both cases, we

showed that the specularity is well approximated from a small number of samples. Second, we

demonstrated that with the VPW-FRI framework from Chapter 2, we can accurately retrieve and

represent the shape of specularities from just a handful of measurements. In these applications,

we stressed the importance of the data matching the underlying parametric model: when this

condition was satisfied, results were very convincing.





Chapter 4

Wave Theory and Interferences:
Lippmann Photography*

It doesn’t matter how beautiful your theory is, it doesn’t mat-

ter how smart you are. If it doesn’t agree with experiment,

it’s wrong.

The Feynman Lectures on Physics

Richard Feynman

4.1 Introduction

Color photography has been around for about 150 years, since James Clerk Maxwell and Thomas

Sutton proposed and experimented with the three-color method for the acquisition of chromatic

information via three separate channels. This approach, which mimics the way the human eye

sees, is still the main ingredient of almost all analog and digital contemporary color photography

techniques, and is nowadays embodied by color film with dyes and color filter arrays (CFAs).

Leveraging the wave nature of light, Gabriel Lippmann proposed in 1891 an interesting alter-

native approach. Inspired by preliminary work by Herschel [76], Becquerel [19, 20], Wiener [197],

*The material in this chapter is the result of joint work with Arnaud Latty, Michalina Pacholska, Martin
Vetterli and Adam Scholefield [9, 12]. Author contributions: GB, MV, and AS designed research; MP contributed
to numerous meetings and brainstorming sessions; GB, AL, and AS performed research; GB and AL performed
experiments; and GB analyzed data, ran simulations and wrote the chapter.
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Figure 4.1: Principle of Lippmann photography: the scene on the left is focused with a photo-

graphic lens on the plane of the emulsion. At the back of the emulsion is a mercury layer; when

the light field hits the mercury layer, it reflects, and interferes with itself. Its spatially varying

intensity creates patterns that are captured inside the depth of the emulsion (see the close-up).

and Zenker [206], he effectively created the first spatial interferometer [102, 103] by generating

and recording standing waves into the depth of photosensitive material.1 Lippmann achieved

this feat by placing a mercury mirror adjacent to a photographic emulsion made of transparent

gelatin (or albumen) and silver halides, as depicted in Figure 4.1. One of the challenges was to use

extremely fine silver halide grains—around 10 nm—to enable the recording of the interferences

corresponding to the visible light range. The interference patterns created by reflection expose

the emulsion differently at different depths. For example, in the simple case of monochromatic

light—that is with light made of a single wavelength—the interference patterns have the shape

of a sinusoid, effectively creating a Bragg grating inside the photographic plate. Once it has been

exposed, the plate is developed and possibly fixed via standard techniques.

Viewing a Lippmann photograph is achieved by illuminating it with a white or flat-spectrum

light source. After interacting inside the plate, it can be shown that the reflected spectrum

resembles the original spectrum of the scene. The colors reveal themselves only under well

chosen illumination and viewing angles, namely when the direction of viewing corresponds to the

direction of illumination mirrored with respect to the surface normal. Witnessing a Lippmann

plate is a special experience in itself that is difficult to describe in words or even with static

images. Nevertheless, we show in Figure 4.2 a trichromatic approximation of the appearance of

a plate under both ambient illumination and adequate viewing conditions.2

Unfortunately, the technique has been almost completely forgotten today and didn’t make it

into modern camera designs, which are almost exclusively based on 3-layer emulsions in analog

cameras, or CFAs in digital cameras; one of the reasons is that the fineness of the silver halide

crystals decreases the photographic sensitivity and requires excessively long exposure times.

Indeed, the three color-based films and emulsions in analog cameras can be made with much larger

grains than those suitable for Lippmann photography and therefore achieve higher sensitivity.

Also, Lippmann plates are unique originals and essentially cannot be copied, in contrast to

conventional photography, where several copies can be created from a negative; this hampered

1Many more actors were involved in the development of interference photography. For a more exhaustive
history about it, we direct the reader to [43, 120].

2A video of the same plate under different illuminations can be found at https://go.epfl.ch/lippmann.
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(a) Ambient illumination (b) Proper illumination

Figure 4.2: A Lippmann plate, which has been created by photographer Filipe Alves with

a home-made albumen emulsion: under (a) ambient illumination and (b) directed light whose

incoming direction is the mirror of the viewing direction with respect to the surface normal.

the democratization of the Lippmann process.

Nevertheless, Lippmann photochromes strongly influenced and paved the way to other major

fields, such as holography. In fact, Lippmann photography and holography are both based on

the concept of a light field interfering with a reference wave: in the case of Lippmann, the

reference wave is the reflection of the image forming wave in a mirror, whereas in holography it

is a coherent light beam that is used to illuminate the scene. Another fundamental difference

between the two techniques is the fact that, in Lippmann photography, the phase is lost in the

process since the mirror acts as a phase locker.

Unlike three-color methods, Lippmann’s approach has the advantage of recording the entire

spectrum of visible light. Another strength is that, unlike CFA-based techniques, the process

doesn’t trade off spatial resolution to enable the capture of colors, since the spectrum is acquired

along a third dimension. Lippmann was awarded the Nobel Prize in 1908 for his discovery,

which was well received by the scientific community and enabled fruitful research in the early

20th century: among the scientists who contributed to refine the technique and its understanding,

Neuhauss [131], Lehmann [100], and Cajal [154] managed to observe the interference patterns

produced using quasi monochromatic light under optical microscopes by swelling the gelatin. To

avoid the use of a toxic element as reflector, Rothé [157] showed that the interface between the

gelatin and air generates reflections that are sufficiently strong to create interferences, eliminating

the need for mercury. The Lumière brothers [105, 106], Wiener [198] and Ives [81] were also

prominent actors who improved the process, mainly by refining the chemical processes used to

make and develop Lippmann plates.

More recently, a few research groups investigated it, but Lippmann photography remains a

niche topic. Bjelkhagen studied many practical aspects of the technique such as the recording

with holographic plates and the use of the method for security purposes [28–30]. Phillips et

al. [147, 148] precisely described the scattering of the silver grains as well as their size limita-

tions, and established constraints regarding the aperture (f-number) of the lens for a successful

Lippmann photograph. Fournier et al. [63, 64, 114] studied the creation of extremely fine grain

emulsions and analyzed the structure and spectrum reproduction of historical and contemporary

photographic plates. Finally, Nareid and Pederson [125, 126] introduced a mathematical model
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Figure 4.3: Lippmann photography pipeline: (a) the original spectrum P (ω) undergoes a

linear transform and (b) its interference patterns L{P}(z) are captured inside the plate as a

distribution of metallic silver particles; the plate is then developed and (c) its reflectivity R(z) at

depth z is proportional to L{P}(z), modulated by a window D(z); when the plate is illuminated,

the reflected wavefunction (d) Ur(ω
′, t) is similar to filtering P (ω) with HZ(ω, ω′); finally, the

observed spectrum is given by the time-averaged intensity EZ
r {P}(ω′) of Ur(ω, t).

based on local changes in the refractive index of the emulsion.

Motivated by these works and the fact that the largest collection of historical Lippmann

plates sits at Musée de l’Elysée3, a mere 7 km away from our school, we started investigating

the technique. On close inspection of some plates with a hyperspectral imaging device, we

realized that the synthesized spectra contain some oscillations, which had never been documented

previously, and were not predicted by any model. Moreover, existing theory predicts that the

choice of reflector (i.e. mercury or air) should only alter the intensity of the reflected colors, but

when we ran controlled experiments, we discovered that it has a more significant influence on the

resynthesized colors, leading to distortions in the reflected spectrum. Although the Lippmann

process is conceptually simple to understand, it is lacking a rigorous treatment in the literature.

On one hand, a large body of work only handles the monochromatic case. On the other hand,

the details of the polychromatic case are not fully understood from a theoretical point of view.

For instance, a recurring claim in the literature [30, 103] is that the Lippmann process enables

perfect reconstruction of the original spectrum.

We address these questions by presenting a rigorous treatment of Lippmann’s process, adopt-

ing a signal processing perspective; in fact, Lippmann photography is explained with Fourier

analysis and many of its principles are based on signal processing concepts. The different steps

of the Lippmann pipeline are illustrated in Figure 4.3. Their mathematical formulation helps us

characterize the different artifacts that appear in the procedure. We show in this chapter that

even though the spectra reflected by Lippmann plates are a close approximation, they are not

identical to the original spectra, even when assuming plates with infinite thickness. Further-

more, we verify that the thickness of the plate acts as a lowpass filter and in addition generates

oscillations in the synthesized spectra. We also demonstrate how the choice of reflector alters

the synthesized spectrum and results in what we call a skewing effect.

These observations lead naturally to the question of inverting these distortions and recovering

the original spectrum of the scenes captured. This could potentially enable us to transform

3http://www.elysee.ch
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historical Lippmann photographs into hyperspectral windows to the past, revealing spectral

data of scenes and objects dating from before the advent of hyperspectral imaging. Interestingly,

we show that most of the inaccuracies in the color reproduction can in fact be inverted, and

that the original spectrum can be fully recovered under the assumption that its bandwidth is

lower than the one determined by the thickness of the plate. The making of our own Lippmann

photographs, detailed in Appendix 4.A, is used throughout the chapter to demonstrate and

validate the different effects studied.

4.2 Analysis: Recording a Lippmann plate

Lippmann photography essentially works by recording the Fourier cosine transform of the light

spectrum in the depth of a photographic emulsion. The emulsion is usually made of gelatin, and

contains extremely fine silver halide grains that react to exposure with light, as well as color

dyes to make the plate sensitive to all visible wavelengths.4 During the recording, the emulsion

is put in direct contact with a mirror, creating interference patterns inside it. We formalize the

process in this section. For simplicity, we first introduce the 1-dimensional case, that is when

the waves propagate along the z-axis. Moreover, we only describe the phenomenon for a single

‘pixel’, but a Lippmann photograph in fact consists of a continuum of varying interferences in

the xy-plane [114]; the generalization to three dimensions is discussed in Section 4.4.

4.2.1 Standing waves

Throughout this chapter, we model light fields as coherent plane waves. The 1D wavefunc-

tion U0(z, t) of an incident light wave with heterogeneous spectrum can be decomposed into an

infinitesimal sum of individual sine waves, each having an amplitude A(ω):

U0(z, t) =

∫ ∞

0

A(ω)ej(ωt−ωz
c )dω,

where z and t are the spatial and temporal components, respectively, and c = c0/n is the speed

of light in the medium (with c0 being the speed of light in vacuum and n the refractive index of

the medium). Note that plane waves are not actual physical waves, since they extend to infinity

in the directions other than the direction of propagation. They are, however, a reasonable

approximation if the size of the imaged object is much larger than the wavelength, which is true

for artistic photography.

The power spectral density of U0 is constant in space and is simply given by

P (z, ω) = P (ω) = A2(ω).

By convention, we set z = 0 to be the position of the mirror. Upon hitting it, the wavefunction

U0 is reflected back. We define the reflection coefficient of the mirror as r = ρejθ, where ρ is the

attenuation factor and θ the phase shift. This leads to the following expression for the reflected

wave:

U1(z, t) = r

∫ ∞

0

A(ω)ej(ωt+ωz
c )dω.

4Since Lippmann recorded his first photographs, other materials such as photopolymers [27, 64] have been used
to record the interference field. Dichromated gelatin [162] is an example of a photopolymer used in holography.
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Incoming light Photographic emulsion Mirror

Figure 4.4: Lippmann photography with monochromatic light: monochromatic waves enter the

plate and the interference with their reflected version creates standing waves in the photographic

emulsion. Note that this illustration is not to scale.

The resulting wave is then composed of both the incoming and the reflected fields:

U(z, t) = U0(z, t) + U1(z, t)

=

∫ ∞

0

A(ω)ejωt
(
e−j ωz

c + rej
ωz
c

)
dω.

The time-averaged intensity of this wavefunction is therefore given by

E {P} (z) =

∫ ∞

0

A2(ω)
∣∣e−j ωz

c + rej
ωz
c

∣∣2 dω
=

∫ ∞

0

P (ω)

(
1 + ρ2 + 2ρ cos

(
2ωz

c
+ θ

))
dω. (4.1)

What is interesting is that the intensity varies spatially in z and takes the form of standing

waves5, or more generally partial standing waves when ρ < 1. Since this is happening inside the

depth of a photosensitive plate, these interference patterns expose the photographic emulsion

differently at different depths. In the case of monochromatic light, the interference pattern takes

the form of cosines, whose frequency of oscillation depends on the wavelength (see Figure 4.4).

To simplify notation, we introduce the Lippmann operator Lr. Given a power spectral density

P (ω), we define it as

Lr{P}(z) = (1 + ρ2)Fθ{P}(0) + 2ρFθ{P} (z) , (4.2)

where Fθ is the generalized Fourier cosine transform operator:

Fθ{P}(z) =

∫ ∞

0

P (ω) cos

(
2ωz

c
+ θ

)
dω. (4.3)

5Technically speaking, standing waves only form in the monochromatic case. In the polychromatic case, we
can think of the shape of the resulting wave as an infinite sum of standing waves.



4.2 Analysis: Recording a Lippmann plate 65

400 λ (nm) 700

(a) Spectrum

0 Depth (μm) 5

(b) Interference patterns

Figure 4.5: Example of (a) a Gaussian spectrum and (b) the interference pattern generated by

its reflection on a perfect mirror (r = −1).

In the literature [30, 103, 126], perfect reflection is often assumed, that is either r = −1 or r = 1,

depending on whether there is a phase inversion at the interface:

L1{P}(z) = 2

∫ ∞

0

P (ω)

(
1 + cos

(
2ωz

c

))
dω,

L−1{P}(z) = 2

∫ ∞

0

P (ω)

(
1 − cos

(
2ωz

c

))
dω.

We choose to maintain the seemingly more sophisticated model from (4.2) as it allows for more

precise analysis; as we will see later in Section 4.5.3, the value of r has a strong influence on the

resulting spectrum.

To summarize, the interference patterns inside a Lippmann plate are standing waves and are

given by the sum of a constant and an oscillating term: this is showcased in Figure 4.5, which

illustrates the pattern created by a Gaussian spectrum with r = −1.

4.2.2 Development

After the plate has been exposed, the next step is to develop it. From a chemical point of view,

the exposure to light has broken some of the bonds between silver particles and halide crystals.

Once free, these metallic silver particles form tiny specks that combine into a latent image, and

their density is proportional to the intensity of the exposing standing waves.6

Loosely speaking, the role of development is to increase the concentration of metallic silver

in the exposed areas. It is important to note that the development is not uniform throughout

the depth of the plate and deeper layers are generally less developed than the top layers. We

propose to model the development influence as a modulation of the recorded intensity; this is

the topic of Section 4.5.2.

After the development bath, a fixing process is optionally applied to wash out dyes, halide

crystals and silver halides [75, 173], so that the plate is no longer sensitive to light. We refer

6In practice, the response of a photographic plate to light is only linear in a certain regime, and it reaches
saturation after a certain point; it can be described more accurately with the so-called Hurter and Driffield curves.
See Appendix 4.A.2 for more details.
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(a) Lippmann plate with prism (b) Light paths

Incoming
light

Reflected
light

Surface
reflection

Figure 4.6: Lippmann plate prepared for visualization after development; (a) the glass plate

has been painted in black to minimize back reflections and a prism has been mounted on the

face that was in contact with the mercury layer to enhance contrast; (b) the light rays reflecting

at the surface of the prism do not coincide with the rays reflected from the plate.

the reader to Appendix 4.A.3 for more details about the development process and the different

chemical recipes.

4.3 Synthesis: Viewing a Lippmann plate

After exposure, the mirror is removed. To visualize a processed plate, we turn it upside-down

and illuminate it with a light source with a power spectral density denoted as L(ω′). The incom-

ing light is scattered by the silver particles inside the plate and the silver particle distribution

creates local Bragg networks such that, for specific wavelengths, the reflected light waves add

constructively. From a higher level, these networks can be thought of as elementary partially

reflective mirrors, whose reflectance is proportional to the intensity of the exposing interference

field.

Remark that here we strictly describe the interaction of the light inside the plate, but do

not take into account the reflection of the light at the surface of the emulsion. This reflection is

generally strong compared to the optical wave reflected from the plate. To cope with this issue,

a prism with a refractive index relatively close to that of gelatin is usually attached to the top

of the plate; this prevents the surface reflection from mixing with the internal reflections (see

Figure 4.6).

4.3.1 Analytical model

Gabriel Lippmann chose to explain his recording technique in an analytical fashion, which led

to an equation which he recognized as being a Fourier integral. We follow the same path here,

but adopting a more rigorous style. In Lippmann’s original paper [103], it is assumed that
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the reflectance at depth z in the plate is proportional to the intensity of the exposing wave.7

This model makes a couple of additional assumptions that simplify the behavior of light inside

the plate. First, all but the first-order reflections are neglected. In other words, this assumes

that each of the mirrors formed by the metallic silver particles only reflect direct light and

we neglect all inter-reflections. Second, it is supposed that the amount of light that hits each

layer is always the same regardless of the thickness. This is clearly not the case in reality: deeper

layers cannot receive as much light as shallow layers, since some light is already reflected by these

shallow layers. Nevertheless, these assumptions are reasonable when the amount of reflected light

remains relatively small. More importantly, they enable us to derive a closed-form solution of the

Lippmann procedure, which we describe below. In Section 4.3.2, we relax these assumptions and

quantify the estimation error of this analytical model using the theory of wave-transfer matrices.

Modeling

Defining the depth of the entrance of the plate—i.e. the air-gelatin, or prism-gelatin interface—as

z = 0 (see Figure 4.6b), we denote the amount of light that is reflected at depth z by a reflectance

function R(z) that is proportional to the intensity of the exposing interference field:

R(z) = εLr {P} (z). (4.4)

Note that in practice, the development and processing of the plates is a non-linear process that

is difficult to characterize; here, like Lippmann, we assume linearity, which leads to a closed

form analytic expression. The parameter ε controls the amount of light exiting the plate, which

typically cannot be larger than the quantity of light entering the plate. For now, we assume it

to be constant; later, we will modulate it with a decaying window that is dependent on z, such

that it can encompass the effects due to a nonuniform development and processing of the plate.

Each monochromatic component of L(ω′) reflected at depth z travels a round trip distance

of 2z between the entrance of the plate and the depth z: this corresponds to a phase shift of

2ω′z/c. The optical wave reflected from the depth z and measured at the entrance of the plate

is therefore given by

dUr(z, ω
′, t) =

√
L(ω′)R(z)ej(ω

′t− 2ω′z
c )dz.

The total reflected wavefunction Ur is then the integral from 0 to Z over all partial reflected

waves:

Ur(ω
′, t) =

∫ Z

0

dUr(z, ω
′, t)

=
√
L(ω′)ejω

′t
∫ Z

0

R(z)e−j 2ω′z
c dz. (4.5)

Using (4.2) and (4.4), it is convenient to express this integral as

Ur(ω
′, t) = ε

√
L(ω′)ejω

′t
∫ ∞

0

P (ω)HZ(ω, ω′)dω, (4.6)

7To be more precise, Lippmann originally assumed that the reflectance was proportional to the amplitude of
the wave, which is physically less intuitive.
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400 500 600 700

Wavelength (nm)

Figure 4.7: The filter SZ(ω′ − ω) for Z = 5 μm and ω′ = 2πc
550 nm . The real part is represented

by the colorful line and the imaginary part by the gray line. Notice that the period of the

oscillations is regular with respect to the frequency ω; it appears to be changing here as we show

the spectrum as a function of the wavelength, which is inversely proportional to the frequency.

where we define the function HZ(ω, ω′) as

HZ(ω, ω′) =

∫ Z

0

(
1 + ρ2 + 2ρ cos

(
2ωz

c
+ θ

))
e−j 2ω′z

c dz. (4.7)

Observe that expression (4.6) resembles a filtering operation. At this point, it is interesting

to consider the hypothetical case where we extend the reflectance R(z) to negative values of

z. Even though the use of such a function does not make sense in the context of Lippmann

photography—it is obviously impossible to acquire the interference field beyond the mirror—it

contributes to a better understanding of the process. Let

hZ(ω, ω′) =
1

2

∫ Z

−Z

(
1 + ρ2 + 2ρ cos

(
2ωz

c
+ θ

))
e−j 2ω′z

c dz

=
1

2

∫ Z

−Z

(
1 + ρ2

)
e−j 2ω′z

c dz +
1

2

∫ Z

−Z

(
rej

2ωz
c + r∗e−j 2ωz

c

)
e−j 2ω′z

c dz

=
r

2
sZ(ω′ − ω) +

1 + ρ2

2
sZ(ω′) +

r∗

2
sZ(ω′ + ω), (4.8)

where the filter sZ(ω) is defined as

sZ(ω) = Z sinc

(
2Zω

c

)
and sinc(x) = sin(x)/x is the cardinal sine or sinc function. From (4.7), we observe that HZ is

the Fourier transform of a function that is zero for depths z < 0. In signal processing terms, we

call HZ the analytic signal of hZ . The frequency domain representation of HZ can be derived

using the Hilbert transform of hZ :

HZ(ω, ω′) = hZ(ω, ω′) + j

∫ ∞

−∞

hZ(ω, ω′ − ν)

πν
dν (4.9)

=
r

2
SZ(ω′ − ω) +

1 + ρ2

2
SZ(ω′) +

r∗

2
SZ(ω′ + ω),



4.3 Synthesis: Viewing a Lippmann plate 69

Figure 4.8: Wave-transfer matrix theory: the medium is subdivided into thin layers (2 are

shown here); at each boundary, the matrix captures the relationship between the forward and

backward waves on each side of the boundary. Illustration inspired from [160].

with

SZ(ω) = Z sinc

(
2Zω

c

)
+ jc

1 − cos(2Zω/c)

2ω

=
c

2jω

(
1 − e−2j Zω

c

)
.

An example of such a function is shown in Figure 4.7. Finally, we do not observe directly Ur(ω
′, t)

but rather its time-averaged intensity, which is given, for each wavelength ω′, by

EZ
r {P} (ω′) = ε2L(ω′)

∣∣∣∣∫ ∞

0

P (ω)HZ(ω, ω′)dω
∣∣∣∣2 . (4.10)

This expression is the squared magnitude of an analytic signal and it is often called the envelope.

4.3.2 Wave-transfer matrix model

The more rigorous analytic model that we have just described can explain a certain number of

phenomena regarding the color reproduction. Before exploring them, we assess the validity of

some of the assumptions of this model. In particular, recall that, like Lippmann, our analytic

model does not take into account higher-order reflections and light intensity decay inside the

plate. To quantify this approximation and its deviation from a physically accurate model, we

make use of wave-transfer matrices.

Wave-transfer matrices

Sometimes, the interactions of waves inside a medium with varying composition can be complex

to characterize analytically. In such cases, wave-transfer (or transmission) matrices can be used

to describe and numerically simulate a number of stacked optical phenomena. The idea is to

decompose a medium into elementary thin layers (see Figure 4.8) and to express each layer and

the interface between them with a matrix [160]. Such a matrix M connects the optical waves

on each side as follows: [
U

(+)
2

U
(−)
2

]
=

[
m11 m12

m21 m22

]
︸ ︷︷ ︸

M

[
U

(+)
1

U
(−)
1

]
.
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Here, U1 represents the resulting wave at the entrance of the layer and U2 the resulting wave on

the other side of it. Furthermore, U
(+)
1 describes a forward resulting wave (traveling toward the

first layer) and U
(−)
1 a backward resulting wave (traveling away from the layer). Similarly, U

(+)
2

characterizes a forward wave that travels toward the second layer, and so on...

Wave-transfer matrices are used to characterize a wide range of optical components and

phenomenons such as mirrors, beam splitters, reflection, refraction, or propagation.

Application to Lippmann’s theory

Lippmann plates can be approximated by a succession of two basic layers: a transport layer

and a semi-reflective layer. An elementary semi-transparent reciprocal mirror at depth z can be

described by the matrix [160]

M(z) =
1

T (z)

[
1 jR(z)

−jR(z) 1

]
,

where T (z) is the transmittance and R(z) is the reflectance as defined in (4.4). The two quantities

are such that |T (z)|2 + |R(z)|2 = 1; that means we assume that all the light is either transmitted

or reflected, but not absorbed—absorption occurs when the sum of squares is strictly less than

1. This is an approximation as in practice, silver particles do absorb some amount of light.

Furthermore, the propagation in a homogeneous medium of refractive index n over a distance

Δz can be represented by the following matrix operation:

P (Δz, k0) =

[
e−jϕ 0

0 ejϕ

]
,

where Δz is the distance between two mirrors and ϕ = nk0Δz is the phase difference (with k0
the wave number in vacuum).

With this notation at hand, we can represent the total transmitted and reflected light by

combining elementary mirrors and propagation matrices. We assume that the plate is subdivided

into L thin layers located at depths z = 0,Δz, 2Δz, . . . , (L − 1)Δz. Then the resulting wave-

transfer matrix Mtot(k0) for a given wavenumber k0 is computed as

Mtot(k0) =

L−1∏
�=0

P (Δz, k0)M(�Δz).

In our model, the amount of light reflected is controlled by the parameter ε. Simulations

for different values of ε are shown in Figure 4.9; we observe that for low reflectance values, the

analytic expression developed in Section 4.3.1 matches the spectra obtained with wave-transfer

matrices. However, when the reflectance becomes more important, we enter a saturation regime

that is not predicted by the analytical model. Fortunately, our experience have shown that in

Lippmann photography the reflectance is relatively low and we are in a regime that is well below

saturation.

Note that oscillations are present in the reflected spectra of Figure 4.9. They are due to the

finite thickness of the plate; we will study this effect in more details in Section 4.5.1.
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400 Wavelength (nm) 700

(a) ε = 106

400 Wavelength (nm) 700

(b) ε = 5 · 106

400 Wavelength (nm) 700

(c) ε = 107

400 Wavelength (nm) 700

(d) ε = 2 · 107

Figure 4.9: Saturation curves for the reflection-based model on the spectrum of Figure 4.5

for different values of ε. The dotted line represents the spectrum predicted by the Lippmann

assumption while the spectral line is the one obtained with wave-transfer matrices.

4.4 The 3D case: Oblique illumination and viewing angles

In Sections 4.2 and 4.3, we considered ‘one pixel’ Lippmann photographs, that is the recording

of a plane wave propagating in the z direction and a plate perpendicular to z. In this section, we

extend the theory to the recording and viewing of Lippmann plates along arbitrary directions. It

is known that when the viewing angle is not perpendicular to the plate, the rendered spectrum

suffers a color shift toward the blue [151]. Using our model, we can easily explain this phenomenon

too; additionally, we demonstrate what happens when the plate is not perpendicular to the

wavefronts during the exposure. This is also what happens in practice, as the light rays of

the scene hit the image plane with a small angle after passing through the photographic lens.

Interestingly, Ives proposed to leverage this phenomenon to create interferential filters using

Lippmann plates [82].

4.4.1 Recording

Suppose that we have a plane wave traveling along the direction d = [dx, dy, dz]
�, where ‖d‖ = 1.

It can be described at position r = [x, y, z]� and time t as

U0(r, t) =

∫ ∞

0

A(ω)ej(ωt−ω
c d�r)dω.

We assume that the wave is reflected on a mirror with reflection coefficient r that is perpendicular

to the z-axis. As in the 1D case, the wave U0 interferes with its reflection, resulting in the

expression

U(r, t) = U0(r, t) + r

∫ ∞

0

A(ω)ej
ω
c (ct−dxx−dyy+dzz)dω

=

∫ ∞

0

A(ω)
(
e−j ωdzz

c + rej
ωdzz

c

)
ej

ω
c (ct−dxx−dyy)dω.

The last step is to compute the intensity of U . Observe that due to the position of the mirror,

the interferences patterns are only created along the z-axis and not along the x- and y-axes. Let

dz = cos(α), where α is the angle between d and the z-axis. We can generalize the Lippmann
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Figure 4.10: Reflected waves given the spectrum from Figure 4.5 for different combinations

of recording angle α and viewing angle β. The first column represents the interference patterns

captured in a plate of thickness 5 μm and with r = −1. For every spectrum we display the

corresponding RGB color on top of the graph. When α = β, the synthesized spectrum has a

shape similar to the original one, the only difference is that the period of the oscillations increases

with the angle: this is due to the fact that oblique angles artificially decrease the relative thickness

of the plate.

operator as

Lr,α{P}(z) =

∫ ∞

0

P (ω)

(
1 + ρ2 + 2ρ cos

(
2ωz

c
cos(α) + θ

))
dω

= (1 + ρ2)F0{P}(0) + 2ρFθ{P} (z cos(α)) .

The result is surprisingly close to (4.2). The only difference is the cos(α) factor, which creates a

dilation of the interference patterns.
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Figure 4.11: Spectrum shift due to different viewing angles: the plate from Figure 4.2 is

photographed under eight different angles θi, ranging from 0◦ to 35◦. Note that θi is measured

with respect to the surface normal of the prism (which has an angle of 10◦) and not the plate

(see Figure 4.6b). We observe that the image suffers from perspective distortion and the scene

appears shorter for larger angles. Remark that the images have been acquired with an RGB

camera, which cannot reproduce the richness and complexity of the spectra.

4.4.2 Viewing

The dual problem to recording a Lippmann plate at a specific angle is observing it from a different

angle: we now assume that we do not necessarily watch the Lippmann plate under the angle

ωo = [0, 0, 1]�. Assuming that the silver particles behave as purely specular bodies8, the only

contribution of the light is from the angle ωr, which is defined as the mirror of ωo with respect

to the surface normal n = [0, 0, 1]�.

Observe that the round-trip distance covered by the light between the entrance of the plate

and a depth z is given by 2z/ cosβ, where β is the angle between ωo and n (see Figure 4.6b).

The second main difference is that, since the viewing angle is oblique, the integral path changes.

Therefore, we should generalize the reflectance function R(z) of the plate to be spatially varying

in x and y. However, since the thickness of the plate is relatively small, we can assume that the

8We measured the bidirectional reflectance distribution function (BRDF) of Lippmann plates and we verified
that a perfectly specular model is a good approximation to characterize the reflectance function of the silver
particles.



74 Wave Theory and Interferences: Lippmann Photography

(a) Original plate

400 Wavelength (nm) 700

(b) 531 nm

400 Wavelength (nm) 700

(c) 547 nm

400 Wavelength (nm) 700

(d) 566 nm

(b) (c)(a)

Figure 4.12: Spectrum shift due to different incident angles: (a) a Lippmann plate exposed

under a monochromatic light (531 nm) arriving at different incident angles. The extreme left of

the disk corresponds to an angle of 0◦ with respect to the surface normal. As we move towards the

right side of the disk, the incident angle increases. After development, the plate is photographed

with a hyperspectral camera at the marked spots. The resulting spectra are shown in (b), (c),

and (d), along with the measured wavelength of the peak.

spatial variation is negligible; this allows us to simplify notation. We further assume spatially-

uniform lighting and factor the term L(ω′) outside of the integral. With these assumptions, the

reflected wavefunction (4.5) can be rewritten as

Uβ(ω′, t) =
√
L(ω′)ejω

′t
∫ Z

0

R(z)e−j 2ω′z
c cos β dz.

The key difference with (4.5) is the term cosβ in the exponential. Following a similar reasoning

as in Section 4.3.1, we obtain

Uβ(ω′, t) = ε
√
L(ω′)ejω

′t
∫ ∞

0

P (ω)HZ

(
ω,

ω′

cosβ

)
dω.

Therefore, the wavelengths λ′ of the original spectrum will be scaled down by a factor cosβ. When

represented with respect to the wavelength, spectra appear to undergo a color shift towards the

blue colors. Figure 4.10 shows the reflected spectrum for a few pairs of recording/viewing angles.

Interestingly, for α = β, the two effects neutralize each other. Yet, there is a notable difference

in the sense that the oscillations do not have the same period. In fact, their period increases as

α and β increase. This is due to the fact that the effective thickness of the plate is scaled down

by a factor cosα.

4.4.3 Experiment

The effect due to different viewing angles can be easily verified by photographing a Lippmann

plate from different view points. Figure 4.11 shows the plate from Figure 4.2, photographed

under eight different angles θi. These angles are measured with respect to the surface normal of

the prism mounted on the plate and they range from 0◦ to 35◦. As predicted by our analytical

model, we observe a shift of the spectrum toward the blue colors.

Similarly, the shift caused by different incident angles can also be observed experimentally.

Figure 4.12 shows a plate that we created with a laser beam. The beam was first expanded and

then made divergent with a convex lens in such a way that the rays hit the plate with increasingly
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large incident angles. More precisely, the rays hit the left side of the plate perpendicularly with

respect to the surface normal, and the further to the right, the larger the incident angle. The

plate has then been developed and photographed with a hyperspectral camera. As showcased

in Figure 4.12b-d, we can observe a spectrum shift towards the red colors as predicted by our

model.

4.5 Color and spectrum reproduction

We now use our mathematical model to study the effects and artifacts generated by Lippmann’s

procedure. A common misconception in the literature is that the Lippmann method enables

perfect reconstruction of the original spectrum, at least from a theoretical point of view; that

is, assuming a plate of infinite thickness, perfectly uniform development and a re-illumination

with a flat spectrum. In fact, Lippmann himself made such a claim in his 1894 paper, using the

premises of Fourier analysis [103]:

“en d’autres termes, la couleur de l’image est la même que celle de l’objet.”9

More recently, H. Bjelkhagen, an expert in Lippmann photography and holography, wrote [30]:

“The light is reflected from these fringes, creating precisely the colours that correspond to

the original ones that had produced them during the recording.”

Both these claims are backed up with equations that unfortunately contain errors. We see

in this section that even though colors are reproduced relatively accurately, the synthesized

spectrum is not the same as the original one, even in a ‘perfect’ world, assuming an infinitely thick

plate and no windowing due to the processing. To gain some intuition, we refer to Figure 4.13a,

which shows monochromatic and Gaussian spectra, and Figures 4.13b-d, which illustrate their

reproduced spectra as predicted by (4.10) for plates of differing thicknesses. We notice that, while

the overall shape of the synthesized spectra is relatively accurate, it contains several artifacts.

To simplify the analysis of these distortions, we assume that the illuminating light source has a

constant power spectral density10 and we rewrite the expression (4.10) as

EZ
r {P} (ω′) =

∣∣∣∣∫ ∞

0

P (ω)HZ(ω, ω′)dω
∣∣∣∣2

=

∣∣∣∣r2PZ(ω′) +
1 + ρ2

2
QZ(ω′) +

r∗

2
(PZ)∗(−ω′)

∣∣∣∣2 ,
where

QZ(ω′) = SZ(ω′)
∫ ∞

0

P (ω)dω,

PZ(ω′) =

∫ ∞

0

P (ω)SZ(ω − ω′)dω.

Aided by Figure 4.13, we identify four effects that are worth further investigation.

9“in other words, the color of the image is the same as that of the object.” (translated by the author)
10In practice, this is not the case, but we can always measure it and calibrate our measurements accordingly.
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Figure 4.13: Influence of the thickness of the plate on the reflected spectrum. Given (a)

a spectrum recorded in a plate of thickness Z, we show the reflected spectrum for (b) Z =

2.5 μm, (c) Z = 10 μm, and (d) Z = ∞. The value Z controls two effects: the sharpness of

the synthesized spectrum (this is especially noticeable with monochromatic light that has high

frequency components) and the frequency Z/(πc) of the ringing artifacts. Shaded areas represent

visible light.
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1. First, recall that we do not observe directly Ur(ω
′, t), but rather its corresponding time-

averaged intensity, which is proportional to the squared magnitude of Ur(ω
′, t). As a result,

the filtered power spectral density P is squared; this contributes to increase the contrast

in the synthesized colors and explains why Lippmann plates tend to exhibit a wider tonal

range as well as strong and bold colors.

2. Second, SZ acts as a lowpass filter on the spectrum. This effect confirms early experi-

ments conducted by Ives [81], who reported that the thickness of the plate controls the

spectral resolution. Additionally, the imaginary part of SZ distorts the overall shape of

the spectrum: since we observe the squared magnitude of the analytic signal Ur, its real

and imaginary parts are blended together. This results in broader spectra.

3. Third, the termQZ(ω′) contains some strong oscillations that leak into the visible spectrum,

as illustrated in Figures 4.13b-c. As seen in Figure 4.5, the interference patterns tend to

stabilize around a value proportional to the energy of P (ω). The relative strength of the

oscillations is influenced by this value: a signal with its energy spread over the entire visible

spectrum will have more pronounced relative oscillations.

4. Finally, the heavy tails of the term QZ(ω′) and in particular its imaginary component also

influences the visible spectrum. Perhaps surprisingly, this effect depends on the reflection

coefficient r.

To the best of our knowledge, points 2 to 4 have never been documented. We will now

investigate these concepts in more detail.

4.5.1 Thickness of the plate

The recording of interference patterns in the plate is in fact a generalized Fourier cosine transform

of the original spectrum, where lower frequencies are located at the entrance of the plate and

higher frequencies deeper in the plate. From that perspective, it is clear that the thickness of

the plate has a lowpass effect on the synthesized spectrum. Not only are the high frequencies

clipped in the synthesized spectrum, but also the sharp cutoff at the end of the plate results in

ringing artifacts due to the Gibbs phenomenon, which can be observed in Figure 4.13.11

Another direct consequence of the finite thickness of the plate is the middle componentQZ(ω),

which also generates oscillations whose frequency depends on Z.

Plate with infinite thickness

When we assume that the plate has infinite thickness, we have

S∞(ω) = lim
Z→∞

SZ(ω) =
πc

2
δ(ω) +

jc

2ω
. (4.11)

As mentioned, it is often claimed in the literature [30, 103] that an infinite thickness is a condition

for a perfect recovery of the spectrum (up to the square factor described above). While this might

11To gain better intuition regarding the influence of components located outside of the visible spectrum, we
choose to display spectra as a function of the frequency—as opposed to a function of the wavelength as is often
the case.
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(a) Lippmann plate

400 Wavelength (nm) 700

(b) green spectrum

400 Wavelength (nm) 700

(c) red-orange spectrum
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Figure 4.14: Hyperspectral acquisition of the Lippmann plate from Figure 4.2: (a) close-up

of the plate in RGB colors; (b) a green spectrum; (c) a red-orange spectrum measured on the

pot. The spatial location of the spectra displayed is shown in (a) and the uniform band on top

of each spectrum plots represents the corresponding RGB color.

seem true for a monochromatic spectrum, it is in general not the case. Given (4.11), the reflected

wavefunction is given by

Ur(ω
′, t) = ε

√
L(ω′)ejω

′t
(
r

2
P∞(ω′) +

1 + ρ2

2
Q∞(ω′) +

r∗

2
(P∞)∗(−ω′)

)
.

We see that the Hilbert component of the signal is still present in the reconstruction. In other

words, when Z goes to infinity, Ur(ω
′, t) contains the analytic signal P∞ of P , defined as the

sum of P and its Hilbert transform:

P∞(ω) =
πc

2
P (ω) +

jπc

2

∫ ∞

−∞

P (ω − ν)

πν
dν.

Moreover, the term Q∞(ω′) located around frequency zero does not vanish and its imaginary part

still alters the synthesized spectrum by boosting its tails in the visible range. In this case, the

amplitude of Q∞(ω′) is controlled by the energy of the spectrum. In the example of Figure 4.13,

we see that the Gaussian spectrum has more energy than the monochromatic one, therefore the

influence of Q∞(ω′) is more pronounced. The observed intensity is then proportional to the

squared magnitude of Ur(ω
′, t).

Experiment

As shown in Figure 4.14, we performed a hyperspectral acquisition of the plate from Figure 4.2.

It is clear that the spectra exhibit the oscillations predicted by our reflection-based theoretical

model. Furthermore, we can approximate the thickness of the plate from these oscillations. The

spectra from Figures 4.14b and 4.14c present 8 oscillations in the visible frequency range Δω, so

they have a period of T = Δω
8 . Comparing this value with the expression for SZ(ω), we deduce

that 2π
T = 2Z

c , or Z ≈ 3.7 μm. This value is in line with the reported plate’s thickness.
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Figure 4.15: The filter SZ
τ (ω′ − ω) for Z = 5 μm, τ = 2 and ω′ = 2πc

550 nm . Compared to

Figure 4.7, the oscillations are less pronounced.

4.5.2 Processing and windowing effect

Like the thickness of the plate, the development, and more generally the processing, also influ-

ences the shape of the resulting spectrum. For instance, as the developer diffuses into the depth,

the bottom of the plate will be less affected by the development than the top.

The concentration D(z, t) of the developer—at depth z and after time t—obeys the diffusion

equation, whose solution is given by the complementary error function [140]:

D(z, t) = 1 − erf

(
τ0

z√
t

)
, (4.12)

for some constant τ0. The cumulated effect of the diffusion can then be represented by integrat-

ing (4.12) over the development time T . For ease of calculation, we approximate this expression

with a decaying exponential:

Dτ (z) ≈ e−
τz
Z ,

where τ is the decay rate. Taking into account the development, we can replace the expres-

sion (4.4) for the silver density R(z) with

R(z) = εDτ (z)Lr {P} (z).

Note that this windowing function can also encompass other effects; for instance, the drying and

hardening of the plate, the light intensity decay and the decrease of fringe visibility inside the

plate can all be modeled by a decaying windowing function.

We can also generalize the filter SZ such that it depends on the decay parameter. Following a

similar reasoning as in (4.8) and (4.9), we can compute a closed-form formula for this generalized

filter:

SZ
τ (ω) =

∫ Z

0

Dτ (z)e
−j 2ω′z

c dz

=
cZ

cτ + 2jωZ

(
1 − e−2j Zω

c −τ
)
.



80 Wave Theory and Interferences: Lippmann Photography

0.0 2.5 5.0 7.5

Depth (μm)

(a) FIB image

0.0 2.5 5.0 7.5

Depth (μm)

(b) Column averaging

Figure 4.16: Capture of the interference patterns: (a) Electron microscope image of a slice of a

Lippmann plate created with a 531 nm laser. After fixing, we can observe interference patterns

created by the varying distribution of the metallic silver grains. These patterns are clearly visible

after averaging the columns (b).

An example of such a filter is shown in Figure 4.15. Due to its decaying nature, the development

curve attenuates the high frequencies and has a smoothing effect on the oscillations created by

the sharp cutoff at the end of the plate.

Experiment

To underline the effect of the development, we propose to look directly at the distribution of

developed silver inside a plate. The variations in the distribution of metallic silver are complicated

to observe with optical microscopes since the size and spacing of the patterns are below their

resolving power. At the beginning of the last century, physicists found workarounds by first

soaking the plates in water, essentially dilating the plate by an order of magnitude [81]. Another

manoeuvre was to slice the plates with an angle, thereby expanding the length of the observed

face and the shape of the silver patterns.

Nowadays, we can use electron microscopy to obtain sub-wavelength resolution imaging.

Electron microscopes cannot distinguish between undeveloped silver halide and metallic silver

particles. To see interference patterns, it is necessary to wash out the remaining silver halide;

this can be done by fixing the plate. Figure 4.16 shows an example of the metallic silver particles

density resulting from the exposure of a plate to a 531 nm laser.

The interference pattern is clearly noticeable in the micrograph from Figure 4.16a as well as

when averaging it across pixels located at the same depth in Figure 4.16b. Additionally, we can

observe in Figure 4.16b a decay as the depth increases, and while we cannot precisely identify

which phenomenon (development, drying, light absorption, ...) causes it, we notice that it can

be modeled, fairly accurately, with an exponential function.

4.5.3 Dependance on the reflection coefficient

Another parameter that alters color rendition is the reflection coefficient r = ρejθ. We voluntarily

described our model as a function of r and did not restrict it to r = 1 or r = −1 as is commonly

done in the literature. We now investigate the effects of changing it. In Lippmann photography,
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Figure 4.17: Skewing effect on the reflected spectrum by an infinite plate that recorded the

Gaussian spectrum from Figure 4.5 is for (a) r = −1 and (b) r = 1. The left column shows the

complex wavefunction (the blue curve is the real part and the gray curve the complex part) and

the right column its observed intensity. We observe that the top reflected spectrum (r = −1)

exhibits a negative skew and the bottom reflected spectrum (r = 1) a positive skew.

there are essentially two mediums that are used to create interferences: mercury and air. For

an interface between glass and mercury ρ = 0.71 and θ = −148◦, and for an interface between

glass and air r = 0.2, or equivalently, ρ = 0.2 and θ = 0. It is evident that different values of r

will generate different interference patterns inside the plate. For example, with r = 1 a peak is

formed at the entrance (z = 0) of the plate, whereas with r = −1, a node is located at z = 0.

What interests us here is how these different values influence the synthesized spectra. Let us

observe the expression for HZ in (4.9). The side components PZ and (PZ)∗ are modulated with

r and r∗, hence they undergo a rotation in the complex plane that is determined by the value of

θ. On the other hand, the center component QZ is modulated by 1 + ρ2 and is never rotated.

This means that these two kinds of components interfere with each other differently for different

values of r.

Figure 4.17 shows what we call a skewing effect on the spectrum. For r = −1, the imaginary

part of SZ(ω′) and −SZ(ω′ − ω) add up constructively for red colors and destructively for blue

colors, as seen in Figure 4.17a. On the other hand, for r = 1, Figure 4.17b shows the opposite

phenomenon, namely the spectrum is skewed such that it favors blue colors over red colors. In

practice, when the reflection is due to the interface with air, we have r = 0.2, so we should
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Figure 4.18: Skewing effect on the spectrum: Given an original Gaussian spectrum centered

at the different visible wavelengths and with σ = 30 · 10−9, we show the reproduced colors for

(a) varying amplitudes ρ and (b) phases θ of the reflection coefficient r. The spectra are first

converted to the CIE 1931 XYZ color space and then to RGB.

expect stronger blues, to the detriment of the reds since θ < π/2. With mercury we have

ρ = 0.7 and θ = −148◦ and therefore, red colors should predominate since θ > π/2. Given a

Gaussian spectrum centered around a specific wavelength, Figure 4.18 illustrates the expected

reproduced colors for different values of ρ and θ. It suggests that bright reds are more challenging

to reproduce with air, and blues are harder to represent with mercury. We also notice a shift

of the reflected spectra: for instance, greens should appear blueish with air and yellowish with

mercury. Moreover, a smaller value |ρ| leads to darker colors; this explains why, in general, plates

made with mercury appear brighter than those made with air.

As a final remark, note that the strength of the skewing effect is correlated with the spread of

the energy of the original spectrum. A spectrum that is concentrated around a single frequency

will have a relatively much weaker center component, and as a consequence the skewing effect

is less noticeable. In the extreme case where the original spectrum is a Dirac, the tails of

the center component are not strong enough to influence the visible spectrum, as illustrated in

Figure 4.13c-d.

Experiments

Monochromatic light To analyze the skewing effect, we decomposed white light through a

prism with a setup similar to Newton’s crucial experiment (see Figure 1.5). This experiment was

also famously created on photosensitive plates with a piece of glass coated with silver by Wiener

in 1890 [197]. All visible wavelengths are represented and the light of the spectrum obtained
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Figure 4.19: Color reproduction experiment: (a) simulated colors and (b) measured colors. To

measure the colors, we first decomposed white light into monochromatic colors with a prism and

recorded Lippmann photographs using mercury (Hg) and air reflectors. The resulting reflected

spectra and the original spectrum were then recorded using a digital camera. The black speckles

in the plate with mercury are due to tiny particles of dust floating on the mercury surface.

from this decomposition is locally monochromatic. Under such light, we exposed two Lippmann

plates: one using mercury as reflector and one using the interface with air. We then developed

these two plates and photographed them. For reference, we also photographed the light spectrum

coming from the prism: the original spectrum along with the spectra of the two plates are shown

in Figure 4.19b.

To quantify the accuracy of our model, we also run a simulation of this experiment using our

analytical model, illustrated in Figure 4.19a. To be as close as possible to the experiment, we

set the thickness of the plate to Z = 7 · 10−6 μm and combined it with a development window

D(z) = 1 − erf (3z/Z). We observe that the measured colors closely resemble the ones from

our simulations. In particular, the purple colors are weaker in plates made with mercury while

the plates made with air struggle at reproducing bright reds. Also, the reproduced spectra are

subject to some shifts: for instance, the green colors tend to have a stronger red tint when using

mercury and a more dominant blue component with air.

Gaussian-shaped light We run a second experiment by placing Gaussian-shaped bandpass fil-

ters having a bandwidth of approximately 10 nm in front of a halogen light source. As before, we

create two plates: one with mercury and one with air as reflectors. Photographs of the resulting

plates along with the color of the filters are shown in Figure 4.20a. For this experiment, we also

acquired hyperspectral measurements of the original spectra as well as the spectra reflected by
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Figure 4.20: Skewing effect on Gaussian-shaped spectra: (a) the left column shows the five

filters used to expose the plates, while the middle and right columns show the resulting plates

after development. Additionally, we show the spectral data corresponding to each of these five

bands: (b) 450 nm, (c) 500 nm, (d) 550 nm, (e) 600 nm, and (f) 650 nm.

these plates (see Figures 4.20b-f). We see that the reproduced colors are in agreement with our

predictions. Indeed, the spectra of the plates realized with a mercury reflector exhibit a negative

skew while those made with an air reflector have a positive skew. Moreover, the synthesized

spectra appear broader that the original one; the main reason is that the imaginary part of

the reflected wave combines with the real part in the squared magnitude operation, resulting in



4.6 An alternative: A refractive index based model 85

400 Wavelength (nm) 700

(a) r = −0.1

400 Wavelength (nm) 700

(b) r = −0.25

400 Wavelength (nm) 700

(c) r = −0.5

400 Wavelength (nm) 700

(d) r = −1

Figure 4.21: Reflected spectra based on the Gaussian spectrum from Figure 4.5, for r =

−0.1,−0.25,−0.5,−1. We observe that the oscillations are proportionally more important in

spectra with lower intensities. The spectra have been rescaled such that they appear similar, but

in practice the proportion of reflected light is higher for higher absolute values of r.

larger spectra.

Regarding the oscillations, we notice two effects: first, they are not so significant, which

suggests that they are damped by a development curve strongly decaying with the depth; second,

their amplitude is slightly larger in the plates made with air. This latter effect is studied in greater

detail in the next section.

Strength of oscillations

Besides skewing the reflected spectrum, the reflection coefficient also has some influence on

the strength of the oscillations. When ρ < 1, the interferences patterns take the form of partial

standing waves. The baseline term in (4.1) is multiplied by the value 1+ρ2 and the oscillating part

by the value 2ρ. Subsequently, the baseline becomes relatively stronger than the relevant part of

the signal as ρ becomes smaller. This baseline is then directly mapped to the center component

QZ(ω) in the reflected spectrum. As a result, the spectrum contains stronger oscillations for

smaller values of ρ. This effect is illustrated in Figure 4.21. It also explains why the oscillations

are more intense in plates made with air reflectors than those made with mercury reflectors.

4.6 An alternative: A refractive index based model

In the previous sections, we assumed that the creation of colors was due to the direct reflection of

light from the silver particles. A second school of thought was first suggested by Lippmann [103]

and further discussed in an article by Wiener [198]; they postulated that the refractive index

n(z) at depth z of the exposed plate could be modified proportionally to the intensity of the

light field, or more precisely to the varying part of the intensity of the interference field:

n(z) = n0 + γFθ{P} (z) ,

where n0 is the refractive index of the medium before exposition. Since the density of silver

particles in the gelatin is proportional to Fθ{P} (z), the index of refraction varies accordingly.

Because silver has a higher index of refraction than gelatin, the overall refracting index increases

when the density of silver is higher. An analysis similar to the one from Section 4.3.1 has been

conducted by Nareid and Pederson [126], but focusing on this refractive index based model.
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Figure 4.22: Simulation of (a) the spectrum from Figure 4.5 reflected by a plate of width

Z = 5 μm, r = −1 and with a constant illumination L(ω) = 1 according to (b) the reflection-

based model and (c) the refractive index based model.

Using the so-called first Born approximation [200], and assuming relatively small changes in

the index of refraction of the medium, it is possible to obtain a closed-form solution similar

to (4.6); indeed, we can extend Nareid and Pederson’s analytic model using the principles from

Section 4.3.1. This results in

Ur(ω
′, t) = γ

ω′

c

√
L(ω′)ejω

′t
∫ ∞

0

P (ω)FZ(ω, ω′)dω, (4.13)

where the function FZ(ω, ω′) is defined as

FZ(ω, ω′) =
r

2
SZ(ω′ − ω) +

r∗

2
SZ(ω′ + ω).
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As in (4.10), the time-averaged intensity of the reflected wavefunction is

EZ
r {P} (ω′) = ε2

(
ω′

c

)2

L(ω′)
∣∣∣∣∫ ∞

0

P (ω)FZ(ω, ω′)dω
∣∣∣∣2 .

4.6.1 Comparison with the reflection-based model

An example of a spectrum and its synthesized version according to the reflection-based and

refractive index based models is shown in Figure 4.22. Due to the similarities between the two

models, the analysis performed in Section 4.5 can be easily applied to this alternative model. If

anything, some parts can be simplified due to the absence of the component located at frequency

zero. As a consequence, the reproduced spectra due to each theory differ on a couple of points.

First, there is an additional squared dependency on the frequency in (4.13). Another notable

difference is stressed in Figure 4.22c: the refractive index based hypothesis does not contain

oscillations. Indeed, FZ(ω, ω′) does not incorporate the term QZ(ω′) which leaks into the visible

spectrum. As a consequence, this model is not subject to the spectrum skewing effect. The

presence or absence of these effects in a measured plate can help us identify the model and

consequently the dominant underlying physical process involved.

Experiments

Interestingly, both models are legitimate, each in its own specific domain of application. We

claim that depending on the developing procedure, the dominating effect recreating the reflected

spectrum can be either due to a variation of the reflectivity or local changes of the refractive

index. More precisely, if bleaching—a post-development bath which essentially converts the

grains of metallic silver back into silver halide crystals—is applied after development, we are in a

regime dominated by the refractive index based model. On the other hand, when no bleaching is

applied, we are in a reflection-based regime. To illustrate this statement, we created two plates

using the 550 nm bandpass filter from Figure 4.20d. One plate was developed using the historical

Lumière developer, which was one of the typical Lippmann developers in the early 1900s, and

the other one was developed and bleached with holographic recipes.12 The spectra synthesized

by these plates are shown in Figure 4.23. We notice that the spectrum from Figure 4.23a clearly

exhibits the skewing effect as well as moderate oscillations; to the contrary, the spectrum from

Figure 4.23b is relatively symmetric and does not present any of these effects.

We choose to exclusively focus the rest of our analysis on the reflection-based model, as it

can easily be extended to the somewhat simpler refractive index based model.

4.7 Can we invert the Lippmann operations?

In Section 4.5, we concluded that the spectra reflected from Lippmann plates are distorted

versions of the originals. If we could invert these artifacts, we would have access to 100 year

old hyperspectral measurements of natural scenes by applying hyperspectral imaging techniques

on historical Lippmann plates. We investigate below which of these artifacts can be digitally

reversed, the goal being to get as close as possible to the original spectrum of the photographed

scenes.

12For more details about the different types of developers and development techniques, refer to Appendix 4.A.3.
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Figure 4.23: Two different development procedures and their effects: (a) the Lumière developer

results in spectra that can be explained with the reflection-based model, and (b) holographic

recipes produce spectra that can be inferred from the refractive index based model.

4.7.1 Recording

The recording operation is represented by the operator Lr{P}(z) in (4.2) and is made of the

sum of two terms: a constant term (1 + ρ2)Fθ{P}(0) and an oscillating term 2ρFθ{P} (z). To

remove the influence of the former, we simply subtract the mean μ of Lr{P}(z):

L0
r(z) = Lr{P}(z) − μ. (4.14)

We are left with the generalized cosine transform from (4.3), for which there exists an analytic

solution: as shown in [121], (4.14) can be inverted as

P (ω) =
2

cπΓ(ν + 1)

∫ ∞

0

(ωz)ν
(

1F1

(
1; 1 + ν; j

2ωz

c

)
+ 1F1

(
1; 1 + ν;−j 2ωz

c

))
L0
r(z)dz,

where Γ(·) is the Gamma function, 1F1( · ; · ; · ) is Kummer’s confluent hypergeometric func-

tion [97], and ν = 2θ/π ∈ [0, 1]. Notice that the above inversion assumes an infinite plate. For

plates of finite thickness, the higher frequency components are obviously lost in the process. In

this case, perfect inversion is guaranteed for bandlimited signals; otherwise, the above formula

gives the projection of P (ω) onto the subspace of bandlimited functions.

4.7.2 Viewing

The viewing operation is slightly more complex to analyze. Even when we assume an infinitely

thick plate, it appears more challenging to recover either the interference patterns or the original

spectrum from an observed synthesized spectrum. The observed spectrum given by (4.10) is

the squared magnitude of an analytic signal, and its phase information is irremediably lost in

the process. The problem of recovering the phase from the magnitude of a signal is known as

phase retrieval [83]. In general, unless we introduce prior information and further constrain the

problem, it does not have a unique solution. The reason for this is that all functions with the

same magnitude but arbitrary phase will lead to the same measured intensity. For instance,

Figure 4.24 shows two very different interference patterns that generate the same spectrum.

Constraints that guarantee unique reconstruction [22] of the phase include sparse signals [155],
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Figure 4.24: Two different interference patterns that generate the same spectrum. The sec-

ond interference pattern also contains negative values, which is not practical in the Lippmann

framework.

that is when the support of observed signals has few nonzero entries. Another prior information

that is sometimes considered is the (partial) knowledge of the magnitude of the signal in the

primal domain [21]. In Chapter 6, we further explore the phase retrieval problem: under the

sparsity assumption, we propose an algorithm which, coupled with the FRI theory, can both

recover the phase and super-resolve a signal.

In the Lippmann case however, we can take advantage of two crucial observations. First, P (ω)

is a power spectrum; hence it is real, non-negative and zero for negative frequencies. This means

that not all interference patterns are possible. For example, the second pattern in Figure 4.24

does not originate from a valid power spectrum. Second, even though the wavefunction Ur(ω, t)

is complex, it is analytic and thus its real and imaginary parts are fully correlated. These

additional pieces of information are very valuable and we see below how to leverage them to fully

recover the original spectrum P (ω). The only restriction we impose is that we only recover a

bandlimited version of P (ω); indeed, we have seen in Section 4.5.1 that the bandwidth of the

synthesized spectrum is limited by the thickness of the plate Z. Assuming P (ω) is bandlmited,

we can express it with a linear combination of sinc functions:

PZ(ω) =
∑
n∈Z

pn sinc

(
π(ω − nΩZ)

ΩZ

)
, (4.15)

where ΩZ = πc/2Z is the sampling period controlled by the thickness Z and the entries pn are

lowpass samples of PZ(ω).
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Spectrum recovery from the complex wavefunction

Before we look at the algorithm for the general case, let us consider the simplified unrealistic

setup where we have access to the phase, that is, we assume we measure Ur(ω, t) instead of

|Ur(ω, t)|2. Furthermore, since the acquisition device only provides us a discretized version of

the spectrum, we consider um = Ur(mΩs, 0), which is a sampled version of Ur(ω, t), where Ωs

is the sampling period and m ∈ Z. We assume that Ωs < ΩZ , which means that we sample the

spectrum at a bandwidth that is higher than that determined by the thickness of the plate. This

is a realistic assumption since current hyperspectral cameras can now acquire a few hundred

spectral bands in the visible spectrum. On the other hand, the thickness of Lippmann plates

is usually around 5 μm and rarely above 10 μm; the latter corresponds to a sampling period of

ΩZ = πc/2Z = 3.14 ·1013, or 46 samples in the visible spectrum, which is well below the spectral

resolution of the best hyperspectral cameras.

The representation of P (ω) with a finite number of coefficients in (4.15) allows us to devise a

matrix-based algorithm. More specifically, assuming L(ω′) and ε are equal to 1, we express the

sampled reflected wave function um using (4.15). From (4.6), we have

um = Ur(ω
′, 0)

∣∣
ω′=mΩs

=

∫ ∞

0

P (ω)HZ(ω,mΩs)dω

=
∑
n∈Z

pn

∫ ∞

0

HZ(ω,mΩs) sinc

(
π(ω − nΩZ)

ΩZ

)
dω

=
∑
n∈Z

pnΦm,n, (4.16)

where we define

Φm,n =

∫ ∞

0

HZ(ω,mΩs) sinc

(
π(ω − nΩZ)

ΩZ

)
dω

= HZ(nΩZ ,mΩs).

Since HZ(ω,mΩs) is already 2Z
c -bandlimited, the effect of the convolution with the sinc is void.

This result connects the sequence—or infinite vector—of power spectral data pn with the sequence

of measured reflected wave function um. In practice, we are only interested in a finite number of

elements of these sequences (in general, the ones corresponding to visible light). We call V(Ω)

the set of indices that correspond to the range of frequencies of interest

V(Ω) =

{
n | n ∈ Z and nΩ ∈

[
2πc

λmax
,

2πc

λmin

]}
,

where λmin and λmax are the minimum and maximum wavelengths, respectively. For visible

light, λmin = 390 nm and λmax = 700 nm. We define the vector p ∈ RN , whose entries are

given by pn, where n ∈ V(ΩZ) and N is the size of V(ΩZ). Analogously, we define u ∈ CM ,

whose entries are um, where m ∈ V(Ωs) and M is the size of V(Ωs). This notation allows us to

reformulate (4.16) as a matrix-vector operation:

u = Φp, (4.17)

where Φ ∈ CM∈N and Φm,n = HZ(nΩZ ,mΩs) for m ∈ V(Ωs) and n ∈ V(ΩZ). Note that the

truncation of (4.16) into (4.17) leads to an exact result only if we assume that pn = 0 for n
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outside of V(ΩZ). This assumption is reasonable, since glass does not let ultra-violet light go

through and most modern cameras contain an infrared cut-off filter. Observe that Φ is a tall,

full-rank matrix; thus, we can invert (4.17) by computing

p = Φ†u, (4.18)

where Φ† is the Moore-Penrose pseudoinverse. Since Φ is full-rank, Φ† = (Φ∗Φ)−1Φ∗ is a

left inverse and Φ†Φ = I. In other words, we can fully recover the power spectrum from the

measured wave function. This result is summarized in the following lemma.

Lemma 4.1 (Spectrum recovery from complex wavefunction) Let P (ω) be a power

spectrum acquired by a Lippmann plate and Ur(ω, t) the resynthesized complex wavefunction

given in (4.6) assuming a flat illumination L(ω) = 1. Furthermore, let u ∈ CM be a sampled

version of Ur(ω, t) such that um = Ur(mΩs, 0) for m ∈ V(Ωs) and Ωs < ΩZ .

If P (ω) is bandlimited such that (4.15) holds and such that its coefficients pn are zero for

n /∈ V(ΩZ), then we can exactly recover it by computing

p̂ = Φ†u,

and further interpolate it using (4.15). If P (ω) is not bandlimited, then p̂ gives the closest

bandlimited approximation of P (ω).

Practical consideration Lemma 4.1 assumes that pn is zero for indices n that are outside the

range of visible light; this may not be the case in practice. Since the values un depends on pn for

all n ∈ Z in (4.16), some artifacts might appear in p̂. To attenuate these artifacts, we assume

that the boundary values of pn are repeated outside of the visible range.

Improving noise resilience When the measurements u are noisy, it can happen that the esti-

mated power spectrum p̂ has negative and/or complex entries, which violates the definition of a

power spectrum. We enforce the positivity of p̂ by replacing (4.18) with

p̂ = NNLS(Φ,u), (4.19)

where NNLS(Φ,u) solves a nonnegative least-square problem [99]. Similarly, we make p̂ real by

solving (4.19) over R; this is done by vertically stacking the real and imaginary parts of Φ and

u as follows:

p̂ = NNLS

([
Re{Φ}
Im{Φ}

]
,

[
Re{u}
Im{u}

])
. (4.20)

Phase retrieval

Next, we estimate the reflected complex wavefunction u from its measured spectrum v = |u|2.
To that end, we propose an iterative algorithm inspired by [60] that successively enforces the

following two properties:
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Algorithm 4.1 Spectrum recovery

Input: The measured intensity v

Output: The spectrum p̂ such that |Φp̂|2 = v

û0 = 1
k = 0

Estimate the thickness of the plate Z and the development parameters ε and τ

Construct Φ from Z and τ

repeat

ûk+1 = ûk

√
v

|ûk|
Compute p̂k+1 by solving (4.20) with Φ and ûk+1

ûk+1 = Φp̂k+1

Estimate the thickness of the plate Z and the development parameters ε and τ

Update Φ with the new values of Z and τ

k = k + 1

until convergence

return p̂k

1. A consistent spectrum. A spectrum P̂ (ω) is consistent with respect to the measurements

when the magnitude of the corresponding reproduced spectrum is equal to the magnitude

of the measured spectrum. More formally, we want |u| =
√
v. To enforce this, we correct

our current estimate ûk as follows:

ûk+1 = ûk

√
v

|ûk| .

2. A valid bandlimited power spectrum. We call a wavefunction ûk valid when it

originates from a power spectrum p̂ ∈ RN through (4.17). Mathematically speaking, we

would like ûk to be in the range of Φ. We can further ensure that ûk is issued from a real

and positive power spectrum by computing p̂k from ûk using (4.20). Then, to enforce the

validity of ûk, we perform the forward transform on p̂k:

ûk+1 = Φp̂k.

This ensures that ûk+1 results from a bandlimited, real and positive power spectrum.

We conjecture that this recovery is unique, under the condition that P (ω) is a valid and

bandlimited power spectrum. Even though we do not provide a formal proof here, extensive

simulations have shown that our algorithm always converges to the correct spectrum.

Estimation of thickness and development parameters

In addition to the shape of the original spectrum, there are a few extra parameters that we need

to estimate to achieve a faithful reconstruction, namely the thickness of the plate Z, the scaling

factor ε and the development decay τ . The oscillations present in synthesized spectra provide a

very valuable clue regarding the value of the thickness of the plate: from the Fourier transform of

v, we can identify a peak that corresponds to the frequency of the oscillations created by QZ(ω).

Furthermore, we can refine the estimation using our forward model (4.10) and by performing a
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Figure 4.25: Spectrum recovery algorithm: the top row shows the original spectrum, the

corresponding reflectance function with some decay due to the development and a reflected

spectrum corrupted with Gaussian noise; the bottom row shows the estimated spectrum using

Algorithm 4.1 and the corresponding reflectance function and reflected spectrum.

line search on the parameter Z and identifying the value that minimizes the discrepancy between

our model and the measurements. We estimate the development parameters τ and ε in a similar

fashion. Doing so at each round of the algorithm also strengthens the forward model by adapting

the filter parameters.

With this, we have all the ingredients to devise an algorithm to estimate the original spectrum.

By iteratively enforcing the aforementioned properties, our results show that the procedure

converges toward PZ
r (ω′). This is summarized in Algorithm 4.1 and demonstrated on synthetic

data in Figure 4.25. What is interesting to note is that the synthesized version of the spectrum

can be fairly different from the original spectrum, contradicting the common belief that the

reflected spectrum is equal to the original. Even when this is the case, our algorithm manages

to faithfully estimate the underlying original spectrum.

Experiments

To test our reconstruction algorithm and study the color reproduction of Lippmann plates on

arbitrary spectra, we created a Lippmann photograph of an X-Rite ColorChecker using air as

reflector. Figure 4.26a shows the reference image and Figure 4.26b the colors reflected from the

developed plate. The color reproduction is on par with the experiment from Figure 4.19 in the
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(a) Original scene (b) Lippmann plate

b

c

d e

f

Figure 4.26: Color reproduction of a Lippmann plate: an X-Rite ColorChecker (a) has been

acquired under a xenon light source. The resulting Lippmann plate is shown in (b); aesthetically,

we could correct for the blue cast by soaking the plate in a sorbitol solution (see Appendix 4.A.3

for more details).

sense that we observe a shift of the colors towards the blue colors. The red tones are also fainter

and harder to properly reproduce.

In addition, we acquired hyperspectral measurements of the original scene and of the image

reflected from the plate. We tested our spectrum recovery algorithm using the spectral data of

the replayed scene and report the results for a few colors in Figure 4.27. We notice the following

three observations. First, our algorithm is fairly efficient at recovering the global shape of the

original spectra and the original colors. It is also effective at eliminating the skewing effect, see

for instance Figure 4.27a. On the other hand, it only retrieves a lowpass version of the spectra,

which is a direct consequence of the finite thickness of the plates. Second, the red colors are

almost nonexistent: this is probably due to the choice of dyes in the making of the plates, a

parameter that is not under our control. As a consequence, the estimated spectra also lack

the red component; this is particularly visible in Figures 4.27d and 4.27f. Third, we observe

that sometimes the amplitude of the oscillations decays rather quickly between the red and the

blue colors and we somewhat fail to capture this effect. We postulate that this is due to the

relative simplicity of our development model. We believe that using a more elaborate model

could improve the estimation, perhaps at the expense of not being able to derive an analytic

solution for SZ
τ (ω). To summarize, our algorithm offers a noticeable improvement from the

reflected spectra and manages to retrieve the global shape of the original spectra relatively well.

4.8 Conclusion

It is legitimate to question the purpose of analyzing a 100 year-old forgotten photography tech-

nique. First, the contributions of Gabriel Lippmann [103] are the cornerstone of spectroscopy

and holography and they deserve close attention. From that perspective, reading Lippmann’s
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Figure 4.27: Spectrum recovery on real measured data: (a) 550 nm bandpass filter from Fig-

ure 4.20, (b)-(f) selected squares from the ColorChecker from Figure 4.26a (indicated with white

letters). The first column shows the original spectrum; the second column shows the measured

spectrum reflected from the plate; the third column shows our estimation using Algorithm 4.1;

and the last column shows the estimated density derived from the estimated spectrum.
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manuscripts can be compared to studying Leibnitz publications on differential calculus. Second,

a thorough inspection of Lippmann’s Nobel prize winning paper [103] enabled us to elucidate a

misconception that went unnoticed for more than a century regarding the perfect reconstruction

of the synthesized spectrum with infinite plates. Furthermore, our formulation provided a clear

explanation of the color reproduction of Lippmann plates. This allowed us to characterize and

describe various effects such as the role of lowpass filter played by the thickness of the plate, the

skewing effect induced by the choice of reflector, and the presence of oscillations in the synthe-

sized spectra. Third, we proposed an algorithm to recover original spectra from their distorted

synthesized versions. This has the potential to enable retrieval of true hyperspectral data from

Lippmann plates from the early 1900s and, effectively opening hyperspectral windows to look

into the past. Last but not least, technology has evolved and we can develop Lippmann’s ideas

using modern technology. We will elaborate more on this topic in the final conclusion.
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4.A Practical aspects

We summarize here the more practical aspects of Lippmann photography, which remains a chal-

lenging technique that requires care and precision to be successful. In hindsight, it is remarkable

that the physicists and chemists of the late 19th and early 20th century managed to put all

the pieces together to make the technique work. In order to verify our model and findings, we

created our own Lippmann photographs and experiments. To achieve this feat, we were lucky to

be supported by people from fields as varied as physics, chemistry and material science. We also

had the chance to be assisted by Filipe Alves13, who is one of the few contemporary Lippmann

photographers. We provide in this section a brief overview of the chemical processes involved.

We also review the different techniques for making and developing Lippmann plates, both from

a historical perspective and with a more recent point of view. We stress that photochemists have

extensively studied this field in both academia and industry for more than a century. Therefore,

our aim is not to provide an exhaustive reference but rather present a high-level overview for

people who do not have a strong background in analog photography or holography.

4.A.1 Lippmann plates

The creation of Lippmann plates is very similar to classical analog photography. We review here

the main concepts, while stressing the differences between Lippmann and traditional photography

plates. For more exhaustive explanations, we refer the reader to [14, 30, 32, 70].

One of the main ingredients to make a photographic plate are silver salts, which have the

interesting property that they transform into metallic silver when in contact with light. Of all

the silver salts, the family of so-called sliver halides was found to be particularly suitable for

photography. In the context of Lippmann photography, the key difference between metallic silver

and silver salts is that the former reflects much more light than the latter.

Emulsion Now that we have photosensitive materials in silver halides, the next step is to isolate

them in tiny grains, which are distributed uniformly at random throughout a medium. This is

precisely the role of a photographic emulsion (see Figure 4.29a). Several components have been

tested to find the perfect emulsion for photography, and some of the most appropriate are gelatin,

albumen, polyvinyl acetate [182], or collodion. The size of the silver halide grains has a direct

influence on the sensitivity of the photographic emulsion, where larger grains are synonyms of

higher sensitivity and shorter exposure times. Translated to the digital camera jargon, the grain

size could be broadly equated to signal gain applied to the sensor. In Lippmann photography,

it is important to have extremely fine grains—of the order of 10 nm—to be able to capture

the small variations of standing waves. An advantage of the use of extremely fine grains is

that the resolution of the recording material is phenomenal: in fact, the resolution of Lippmann

photographs is only limited by the resolving power of the optics of the camera, but not by the

emulsion.

Dyes Once the emulsion has been prepared, it is usually coated on a glass plate. At this point,

we have a photographic plate that is sensitive to light. Unfortunately, silver salts react only to

blue and violet light, and are almost unresponsive to red light [87]. In order to make the emulsion

panchromatic and extend the sensitivity to all visible colors, sensitizing dyes are put in contact

13http://www.lippmannphotography.com
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Figure 4.28: A Hurter and Driffield curve.

with the silver halide grains. In addition to dyes, other sensitizers are often added to boost the

sensitivity of the silver-halide crystals. The choice of dyes is crucial to determine the spectral

response of the plate, the goal being to make it as isochromatic as possible. A large body of

work has been historically dedicated to finding the best combination of dyes [87], and the most

convincing results in terms of color reproduction have been arguably obtained by Lehmann, who

blended together pinacyanol, orthochrome T and acridine orange [85].

4.A.2 Hurter and Driffield curve

In Section 4.2.2, we assumed that the density of metallic silver was linear with respect to the

intensity of exposing light. This is obviously not entirely true: there should be some threshold of

intensity such that the density saturates and some threshold such that the silver density is at its

minimum. By plotting the density of silver against the intensity of light, we obtain the Hurter

and Driffield [79], or characteristic curve, an example of which is shown in Figure 4.28.

In essence, the Hurter and Driffield curve characterizes how the photographic films packs

the dynamic range of a scene into the variation of silver densities. One of the effects of the

characteristic curve is the clipping of the highlights and shadows of a scene. This is the reason

why it is important to properly meter and expose a scene, since an imprecise exposure heavily

compresses the shadows or the highlights. A properly exposed image should capture intensities

that span the entire gray area in Figure 4.28.

4.A.3 Development and processing

Another essential part of interferential photography is the processing stage, which encompasses

development, fixing, bleaching, and drying. Regarding development, the basic concept is identical

to classical photography, where the developing bath accelerates the reduction of silver halide

and its transformation into metallic silver (see Figure 4.29c). The silver specks that constitute

the latent image serve as catalyst for this reaction. A developer contains the following three

components: a developing agent, an accelerator, and a restrainer. The role of the developing

agent is to convert the silver halide to metallic silver. The restrainer has the opposite effect and

helps containing the chemical reaction. More precisely, it prevents unexposed areas from being

developed. As its name suggests, the function of the accelerator is to speed up the development

procedure.
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Lumière [105] Cajal [202] Filipe Alves

Pyrogallol 1 g/l 0.52 g/l 0.83 g/l

KBr 15 g/l 7 g/l 8.3 g/l

Ammonia 4.5 g/l 1.2-1.8 g/l 1.25 g/l

Temperature 15◦ C ? ?

Time 1-3 min ? ∼ 1 min

Table 4.1: Different development processes based on the Lumière developer.

A notable difference is that, in classical photography, the development usually creates a

negative, in which the more exposed silver specks appear darker than the less exposed areas.

This negative image needs to be inverted: the inversion process can be done for instance by

washing away all the metallic silver and later exposing and redeveloping the remaining silver

halides. This step is not needed in Lippmann photography, as a high density of metallic silver

is synonym of a larger amount of light reflected. Interestingly, we cannot categorize Lippmann

photography as a positive or negative photography technique, since the silver grain density

through the depth corresponds to a Fourier-based representation of the image.

At the end of the 19th century, significant efforts have been made to devise developers suit-

able for Lippmann photography. The brothers Auguste and Louis Lumière led the movement

and conceived the Lumière developer, which consists of pyrogallol for development, potassium

bromide (KBr) as restrainer and ammonia as accelerator [105]. The proportion of each compo-

nents was found by trial and error and can substantially depend on external parameters such as

the temperature of the bath and, mainly, the hardening of the gelatin. Inspired by their recipe,

other scientists and artists devised their own variations of the Lumière developer: Table 4.1 sum-

marizes a few development solutions found in the literature or shared by Filipe Alves based on

the Lumière recipe. The Lumière developer is known to be more active on the surface and does

not penetrate deeply into the plate. As a consequence, it smoothes out the higher frequencies of

the Fourier transform of the recorded spectra and damps the oscillations. This is however not

necessarily an issue as the most important spectral information is usually located in the first few

fringes.

An alternative to the Lumière developer is the so-called GP2 solution, which contains hy-

droquinone [31]. Ives [81] observed that hydroquinone-based developers generate brighter colors

and better defined spectra thanks to a better diffusion inside the depth of the plate. Holographic

developers can also be used for the development of Lippmann plates, since holographic plates

are strictly identical to Lippmann plates, besides the choice of dyes.

Fixing After development, a plate still contains silver halide crystals that are sensitive to light.

If it is exposed to light and redeveloped, the original image will be lost. Even without develop-

ment, a prolonged exposure to light slowly creates a latent image that can irremediably wash

out the original image. To eliminate the residual silver halide as well as the dyes and halide

crystals resulting from the development, it is necessary to apply a fixing bath (see Figure 4.29d).

Historically, fixing baths were made of potassium cyanide [30] but nowadays, common fixing

solutions are made with sodium thiosulfate.

A side effect of the fixing process is that it tends to shrink the plates, which results in shifting
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Figure 4.29: Chemistry of photography: (a) the unexposed plate emulsion contains silver halide

crystals; (b) during exposure to light, the crystals that are in contact with light start transforming

into metallic silver; (c) development accelerates this transformation and fully transforms the

crystals into metallic silver; (d) fixing washes out the remaining unexposed silver halides; (e)

re-halogenating bleaching.

the spectra toward the blue colors. For that reason, many Lippmann photographers suggests to

skip this step. If fixing is applied, the shrinking can be counterbalanced with additional baths.

For example, in [30], a pre-hardening step (before the development) is suggested to make the

gelatin harder and more resilient to shrinkage. Another option is to apply an expanding bath

such as an aqueous solution of sorbitol after fixing to compensate for the shrinkage.

Bleaching Another optional step is bleaching [32], whose goal is to obtain a transparent plate

that contains only silver halides and no more metallic silver. There are two main variations of

the bleaching process. The first one is called rehalogenating bleach, which basically converts the

grains of metallic silver back into silver halide crystals. This bleaching bath is typically applied

after fixing such that these newly formed silver halides are not confounded with the grains that

have not been exposed to light (see also Figure 4.29e); but in certain holographic development

procedures, it can also be applied without fixing, in which case it is called fixation-free [32, 173].

The other option is to apply a reversal bleach, which makes the metallic silver soluble and

washable. What remains after a reversal bleach is the unexposed silver halides, so the final image

is essentially the negative of the image obtained with a rehalogenating bath.

Drying

The drying of the plates is also a crucial step as it can potentially modify the silver density

patterns if not done properly. More precisely, drying can lead to chirping, in which the silver

density is expanded or shrinked at different depths. This can lead to artifacts in the reproduced

spectrum; nevertheless, we ignored this effect in this manuscript.

4.A.4 Thickness of plate and choice of development technique

Very often in the literature (see for example [102, 103]), scientists differentiate the monochromatic

from the polychromatic case. As we have seen in this chapter, these two cases can be unified

under one single theory; however, from a practical point of view, it can be useful to differentiate

them. Polychromatic light typically has a short coherence length, which means that the relevant

information is confined within the first couple of micrometers from the surface of the plate (see
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(b)(a)

(c) (d)

Figure 4.30: The effect of different developers: (a) holographic developer (Ultimate devel-

oper14) followed by bleaching; (b) holographic developer without bleaching; (c)-(d) Lumière-

based developer. The last plate presents an example of fogging, which occurs when the surface

overdevelops and becomes almost mirror-like; this typically happens when the proportion am-

monia/KBr is too high or when the development time is too long.

for instance Figure 4.5). After the coherence length, only the baseline remains, which is not

adding any meaningful information to the replayed spectrum.

On the other hand, monochromatic light theoretically has infinite coherence. In this regime,

the deeper the plate the finer the spectral resolution of the reproduced spectrum. Hence better

results are obtained with thicker plates. This difference also influences the development pro-

cess. For polychromatic scenes, practitioners tend to favor shallower plates and development

techniques, whereas for the monochromatic case, deeper development and plates are preferred.

The bleaching step is also often added to the development of monochromatic plates, since silver

halides enable more light to pass through than metallic silver, allowing the deeper layers to be

reached.

4.A.5 Modern Lippmann photography

Nowadays, no more research is dedicated to the creation of Lippmann plates and their develop-

ment solutions. However, scientists are still active on the front of holography, which bears several

similarities with the Lippmann technique. Holographic plates constitute the perfect medium for

recording Lippmann photographs. The only problem is that such plates are usually only made

sensitive to one or two (three for color holography) spectral bands. Besides the difference of

dyes, holographic plates are strictly identical to Lippmann plates. There are a few companies

that produce holographic plates; for our experiments, we chose to order plates made by Yves

Gentet [67] from Ultimate Holography14. Thanks to holography, appropriate developers have

also been elaborated. In our study, we also tried the holographic developer made by Yves Gentet

whose composition is not disclosed.

From a more practical point of view, there are also a few contemporary artists currently

making Lippmann photographs. To our knowledge, Filipe Alves from Portugal and Darran

14http://www.ultimate-holography.com/
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Green [31] from England studied the art of Lippmann photography and make their own emulsions

to produce beautiful artworks.

Brief comparison of developers The development is one of the most crucial steps in Lippmann

photography as it can dramatically change the final result. To illustrate the difficulty, we created

four plates with the same exposure—4 seconds under a green laser light having a wavelength of

531 nm—and we only changed the development formula; these plates can be seen in Figure 4.30.

We observe that the reproduced colors are severely influenced by the developer. In fact, it

took us several attempts to identify the ideal developer for our needs. After many trial-and-

error experiments with three different developers (Ultimate14, Lumière developer and GP2), we

obtained our most conclusive results with a variation of the Lumière formula.



Chapter 5

Electromagnetic Theory:
Micro-Polarizer Arrays*

From a long view of the history of mankind—seen from, say,

ten thousand years from now—there can be little doubt that

the most significant event of the 19th century will be judged

as Maxwell’s discovery of the laws of electrodynamics.

The Feynman Lectures on Physics

Richard Feynman

5.1 Introduction

In Chapter 3, we described algorithms to represent specularities from multiple images. To isolate

the specular components, we either ignored the diffuse term or removed an estimation of its shape

by fitting a cosine function to it. Unfortunately, this strategy lacks stability when the measured

SVBRDF contains more complex shapes such as for example occlusions. In this chapter, we

propose to separate the diffuse and specular term using dedicated hardware, namely cameras

with polarizing micro-filter arrays.

*The material in this chapter is the result of joint work with Laurent Jospin and Adam Scholefield. Author
contributions: GB and AS designed research; LJ, GB and AS performed research; LJ carried out experiments
and simulations; and GB wrote the chapter based on [88], which was written by GB, AS and LJ.
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The separation of the diffuse and specular components in a photo is useful in many differ-

ent imaging applications. For example, photometric stereo [201] estimates surface normals from

images taken under different illuminations; however, like many algorithms, the process assumes

that the scene is Lambertian, i.e. the reflection is purely diffuse. As a second example, con-

sider the problem of estimating spatially-varying bidirectional reflectance distribution functions

(SVBRDFs). Typically, one fits a parametric model to samples obtained by capturing images

with different viewing and lighting directions. Although for very simple materials the specular

and diffuse components of the model can be fit from only the shape of the SVBRDF, often this

process can be done much more accurately if the two components are separated prior to model

fitting. Other applications that benefit from this separation include tracking, object recognition,

image segmentation and the problem of removal of glare.

5.1.1 Related work

There are a number of approaches to perform the separation of the diffuse and specular compo-

nents, using either single or multiple images [5]. Most single-image approaches are color-based:

this process was pioneered by Shafer [164], with the so-called dichromatic reflection model. A

key observation is that, for dielectrics, the spectrum of the specularity is similar to the spectrum

of the light source, whereas the diffuse spectrum also encompasses information about the color

of the surface: this results in a T-shaped space [92] whose limbs represent the diffuse and spec-

ular components in the dichromatic reflection model. Approaches based on this model [69, 93]

assume that the scene has been segmented into different parts with a uniform diffuse distri-

bution, which make them unpractical for highly textured scenes. More recent work alleviates

the need for segmentation by integrating spatio-temporal information [110]. Similar approaches

with different colorspaces such as HSI [203], rotated RGB [111], or custom spaces [15, 170, 180]

have also been proposed. As well as color-based techniques, the so-called neighborhood analysis

methods [109, 179, 204] leverage the information from neighboring pixels to infer the reflective

component at a given point.

Multi-image approaches use strategies as varied as structured illumination [98, 108, 130],

different viewing angles [86, 101], or light-field imaging [117, 193]. Another multiple image

approach makes use of polarizing filters. With a single filter in front of the lens, Nayar et

al. [127] recast the separation problem as a linear system using multiple captures under different

polarizations. Building on their work, a number of methods propose to combine color information

with polarizing filters to separate the reflective components [90, 108, 128, 185].

Ma et al. [108] and Debevec et al. [49] suggest the use of filters both in front of the camera

and the light sources, which leads to a slightly different model for the recorded intensity.

Recently, cameras have been manufactured with an array of polarizing micro-filters placed just

in front of the image sensor [1, 61, 149, 156]. Analogously to a Bayer filter, the micro-filter of each

pixel is oriented in one of a finite number of possible directions (see Figure 5.1). Polarization is of

interest here because the diffuse and specular reflections affect polarization differently. Specular

reflections are caused by direct reflection of the incoming light at an object’s surface. Therefore,

this type of reflection preserves the polarization of the incoming light. Diffusion is slightly more

complex. The diffusion created by the surface reflections can be thought of as the combination

of several specular reflections in all orientations due to the rough nature of most materials at the

microscopic level. The polarization of the light reflected by this model is not preserved. On the

other hand, some of the light is also scattered inside the medium and the polarization of such

light is retained.



5.2 Problem statement 105

Figure 5.1: Illustration of the concept of a filter array with different polarization orientations.

The micro-filters are represented with disks and the arrow indicates the direction of polarization.

We can leverage this observation to separate diffuse and specular reflection. In fact, we

separate polarized and unpolarized light, which we can associate to the specular and diffuse

components as long as the subsurface scattering is relatively weak. Potentially, micropolarizer

cameras can enable the separation of the diffuse and specular components from a single image

with the accuracy and robustness of multi-image polarization methods.

5.1.2 Proposed approach

In this chapter, we investigate the feasibility of using these types of cameras for the separation

of specularities by proposing an algorithm to demosaic images generated with polarizing micro-

filter arrays. Unfortunately, we were unable to obtain a real micro-polarizing camera and we thus

simulate such a setup from our own rendered images, real world data from [170] and our own

acquisitions. While this is not ideal, it does give us some additional advantages. In particular,

the aforementioned camera designs are based on regular patterns with four different orientations;

however, we also study random arrangements with varying numbers of orientations and show

that these arrangements offer advantages over regular patterns.

In addition to demosaicing, we demonstrate the usefulness of micro-filter arrays for photo-

metric stereo. By placing polarizers with different orientations in front of the light sources of

the dome described in Section 3.2.3, we show that the separation of the diffuse and specular

components can significantly improve the estimation of the surface normals of objects. This

approach is essentially the dual of [46], where a camera with micro-polarizers is combined with

a multi-view approach to infer the shape of objects.

5.2 Problem statement

Suppose we have a scene illuminated by a single light source polarized with an angle φ; this can

be achieved by placing a linear polarizer in front of it. For now, assume that φ is known; later,

we show that this is unnecessary as it can be easily estimated. Furthermore, suppose we have a

digital camera with a filter array of linear polarizers with K different orientations in front of its

sensor. We describe the image formation process as follows. Let Xk ∈ RN×N , k = 1, 2, ...,K,

be a collection of K images, each filtered with a distinct orientation θk. From Malus’ law (1.4),
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we can express each individual image as the sum of a constant diffuse term and a specular term

that is modulated according to the polarization of the filters:

Xk =
1

2
Zd + Zs cos2(φ− θk), (5.1)

where Zd and Zs are the diffuse and specular components, respectively. Equivalently, we can

rewrite (5.1) by flattening Xk into a vector xk = vec(Xk)
1:

xk =
[
1
2I cos2(φ− θk)I

]
︸ ︷︷ ︸

Ck

[
zd

zs

]
.

Here, zd = vec(Zd) ∈ RN2

, zs = vec(Zs) ∈ RN2

and Ck ∈ RN2×2N2

is the matrix that modulates

the specularity with the correct attenuation and combines the diffuse and specular terms.

To model a camera with a micro-array of polarizing filters, we need to select only one po-

larization orientation for each pixel. To model this, let yk = Akxk, where Ak ∈ RN2×N2

is a

mask that zeroes the measurements that we do not have access to; it has the form of a diagonal

matrix with a 1 where the pixel is selected and a 0 otherwise. Note that, since we have one

polarizing filter per pixel,
∑K

k=1 Ak = I. At this stage, we make no assumption about the filter

orientations: they can be regularly or irregularly structured over the array. Finally, the measured

image is given by

y =

K∑
k=1

yk = AC

[
zd

zs

]
,

where A = [A1,A2, . . . ,AK ] ∈ RN2×KN2

and C = [C1,C2, . . . ,CK ]� ∈ RKN2×2N2

.

Using this formulation, our aim is to estimate zd and zs given the measurements y and the

downsampling matrix S = AC. To simplify notation we denote the “superimage” with both

diffuse and specular components as z = [zd, zs]
�.

5.3 Algorithms

We propose a general approach to separate the diffuse and specular components. Finding both

components using only a single image is an under-constrained problem, which we propose to

regularize using the TV norm:

ẑ = arg min
z

‖y − Sz‖22 + T (z), (5.2)

where T (z) = γd ‖Zd‖TV + γs ‖Zs‖TV is the regularization term. Here γd, γs are regularization

parameters and ‖ · ‖TV is the total variation (TV) norm2. Typically, the TV norm is defined

as the �1-norm of the first order differential operator, although some authors also consider the

�2-norm of the same differential operator. A compromise between the two approaches is the

Huber norm or Huber loss, defined as L(x) =
∑
L(xi), where

L(x) =

{
1
2x

2 for |x| < 1

|x| − 1
2 otherwise.

1Note that we use bold uppercase letters for matrix notation and the same letter in lowercase for its flattened
version. Throughout this chapter, we interchangeably use both notations to denote the same object.

2Technically, the TV norm is only a semi-norm.
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We show below how to solve (5.2) with these different variations of the TV norm. The

advantage of the �1 approach is that, since it favors solutions that have a sparse first order

derivative, it maintains edges in the image. In contrast, the �2 approach can blur edges but

performs well on other parts of the image. The �2 formulation can also lead to faster algorithms.

5.3.1 Minimizing the �2 TV norm

Although general optimization packages can be used to solve (5.2), the sampling matrix S is

very large and therefore these techniques are limited to relatively small-sized images. In order

to overcome this, we observe that (5.2) can be expressed as a sparse linear system. To see this,

note that T (·), in the case of the �2 TV norm, can be written as

T (z) = z�D�WDz,

where D is the 2D discrete differential operator matrix and W encapsulates the effect of γd and

γs. Finally, setting the derivative of (5.2) to zero yields the following sparse linear system:

(S�S + D�WD)ẑ = S�y.

Although this system is very large, the matrix S�S+D�WD is sparse, symmetric and positive

definite, and thus can be efficiently solved using approaches such as the conjugate gradient

method. This leads to an algorithm that has linear complexity in the number of pixels.

5.3.2 Minimizing the �1 TV norm

Unfortunately, unlike the �2 case, we cannot find a closed form solution with the �1-norm. Instead,

we propose to use the split Bregmann method [72] to solve (5.2) iteratively. In particular, (5.2)

can be written as

ẑ = arg min
z,d

‖y − Sz‖22 + γd ‖dd‖1 + γs ‖ds‖1 s.t.

[
dd

ds

]
= D

[
zd

zs

]
,

so that each step of the Bregmann iteration algorithm consists of solving

(zk+1,dk+1) = arg min
z,d

‖y − Sz‖22 + γd ‖dd‖1 + γs ‖ds‖1 + λ
∥∥d−Dz − bk

∥∥2

2
, (5.3)

where bk+1 = bk + (Dzk+1 − dk+1). To solve (5.3), we can alternate between minimizing over

z and d:

zk+1 = arg min
z

‖y − Sz‖22 + λ
∥∥dk −Dz − bk

∥∥2

2
, (5.4)

dk+1 = arg min
d

γd ‖dd‖1 + γs ‖ds‖1 + λ
∥∥d−Dzk+1 − bk

∥∥2

2
. (5.5)

The main advantage of this approach is that (5.5) is now decoupled over space, and thus has

a closed form solution. Additionally, (5.4) is now an �2 minimization, which again has a closed

form solution. In practice, only a few iterations of the split Bregmann algorithm are needed to

converge so the method is acceptably fast and has linear complexity in the number of pixels in

the image.
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Figure 5.2: Influence of the number of orientations with a random filter design: comparison of

our proposed algorithm, which performs the separation in one shot, with a two stage approach,

which first interpolates the different channels and then extracts the specularity by fitting a cosine.

Both methods use the �2 TV-norm as regularizer.

5.3.3 Minimizing the Huber TV norm

When using the Huber norm regularization, the minimization problem (5.2) becomes

ẑ = arg min
z,d

‖y − Sz‖22 + γdL (Dszd) + γsL (Dszs) .

Setting the derivative to 0, we obtain

2S�Sz − 2S�y + γdD
�
d L

′ (Dszd) + γsD
�
s L

′ (Dszs) = 0. (5.6)

As L(z) is twice differentiable, (5.6) is easy to solve using, for example, Newton’s method. To

initialize the iteration, we propose to use the solution of the �2 TV norm.

5.3.4 Unknown light polarization

In the above description, we assumed that the polarization angle φ of the incoming light was

known. Although it can be directly measured in controlled experiments, this is not necessary

since it can be accurately estimated using the following procedure. First, for each image xk, we

estimate its mean from the available pixels: μk =
∑N2

n=1[yk]n/
∑N2

n=1[Ak]nn. Using the linearity

of the mean, we have ⎡⎢⎢⎢⎢⎢⎣
μ1

μ2

...

μK

⎤⎥⎥⎥⎥⎥⎦ = μd +

⎡⎢⎢⎢⎢⎢⎣
cos(φ− θ1)

2

cos(φ− θ2)
2

...

cos(φ− θK)2

⎤⎥⎥⎥⎥⎥⎦μs,

where μd and μs are the mean values of zd and zs. For K > 3, this set of non-linear equations

is overdetermined, and finding φ, μd and μs corresponds to solving the following minimization
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Figure 5.3: Filter designs with 4 different orientations: example of (a) a regular grid vs. (b)

a random grid design. Simulated image acquisitions using (c) a regular grid and (d) a random

grid filter design. The last column illustrates the estimation of the diffuse component using our

algorithm.

problem: ⎡⎢⎢⎣
φ̂

μ̂d

μ̂s

⎤⎥⎥⎦ = arg min
φ,μd,μs

K∑
k=1

(
μk − μd − μs cos(φ− θk)

2
)2
.

5.4 Practical considerations

Before evaluating and comparing our proposed approach to existing methods, we discuss below

a few algorithmic and design choices.

5.4.1 One-step vs. two-step algorithm

Our proposed algorithm separates the components and interpolates the images in a single step.

One might wonder how much we gain by performing this estimation in a single step as opposed

to an approach where we first demosaic every individual image Xk and then fit a cosine to the

interpolated images to identify the specular and diffuse components.

We tested such a two-step approach on a number of simulated images and reported our results

in Figure 5.2, which shows a comparison of our direct reconstruction algorithm with a two-stage

approach. Here, the same �2 TV-norm regularization is used for both the direct approach and

the interpolation step of the two-stage approach.

Even though the two approaches are close in performance when the number of orientations is

4, the two-stage approach performance clearly worsens when the number of orientations increases.

Also, the two-stage approach peaks at 39.7 dB, whereas the direct reconstruction continues to
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Figure 5.4: Comparison of the reconstruction error on the diffuse component with regular

versus random grid designs.

increase to 40.95 dB. While the observed performance gain is not huge, it is significant for many

applications. The versatility of our algorithm over the two-stage approach is also an advantage

when investigating different filter design patterns. In this regard, we observe that the direct

reconstruction saturates at around 8-10 orientations, suggesting that existing camera designs

based on 4 orientations are not optimal. In the rest of this chapter, we exclusively use the

one-step approach.

5.4.2 Filter design patterns and number of orientations

There are a number of ways to design the micro-filter array, including (pseudo) random patterns

and regular grids. Examples of images acquired with these designs are depicted in Figures 5.3c

and 5.3d. To obtain these images, we use 3D computer graphics software Blender with the

raytracing engine Cycles [33] and create ground truth diffuse and specular images from different

render passes. We then simulate the effect of the filters by appropriately weighting and mixing

the diffuse and specular components. The corresponding estimated diffuse components are shown

in Figures 5.3e and 5.3f. Additionally, in Figure 5.4, we compare the average performance of

these two designs for a selection of synthetic images. Overall, we observe that the filter design

does not significantly influence the peak signal-to-noise ratio (PSNR). Nevertheless, as shown in

Figures 5.3e and 5.3f, random patterns lead to a slightly better qualitative estimation and, more

importantly, the reconstruction artifacts induced by random patterns are more pleasing to the

eye.

5.4.3 Cost of introducing the filter array

Finally, it is also interesting to investigate how much is lost by using a polarizing micro-filter,

compared to a traditional camera, when one does not wish to separate the diffuse and specular

components. In Figure 5.5, we see that the sum of our diffuse and specular estimations is

very close to the original image, suggesting that, even if the separation fails, the sum is almost

indistinguishable from the output of a traditional camera.
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Figure 5.5: Comparison of (a) the ground truth image to (b) the sum of our diffuse and specular

estimations (PSNR = 43.8 dB). The difference (c) is almost zero suggesting that very little is

lost by introducing a polarizing micro-filter.

5.5 Experiments

We test our �2 TV norm-based algorithm in three different scenarios: rendered images, real

images with simulated polarizing filters, and real images with real polarizers. Simulated data

is again generated with Blender Cycles raytracing engine [33]. The second scenario consists of

real images captured by Shen and Zheng [170]: they provided the ground truth of the diffuse

components along with the original images. We also provide our own captured images, taken

under fixed polarized light sources, using a Nikon D810 DSLR camera with a polarizer in front

of its lens. Note that even though the polarizing filter is not placed directly in front of the

sensor, we neglect the effect that the lens might have on the light polarization. In practice,

it may slightly change the polarization phase, but this would be accounted for in the device

calibration. To obtain a diffuse ground truth, we capture one image with the polarizing filter

oriented orthogonal to the light’s polarization. For all setups, we first generate all complete

images Xk for k = 1, 2, . . . ,K and then apply the downsampling operator A to simulate the

effect of the polarized filter array.

5.5.1 Single image diffuse and specular separation

Given the results from Figure 5.4, we focus on a random filter array design and sixteen orienta-

tions for our algorithm. For all experiments, we set γd = 0.01 and γs = 0.002. It is possible to

obtain slightly improved results with parameter tuning, but we avoided it.

To provide context, we compare our approach with the single image color-based technique

proposed by Shen and Zheng in [170]. We should emphasize that their method takes as input

a standard image while ours takes an image captured with the proposed filter array. Rather

than being a fair comparison between algorithms, this experiment allows us to quantify the

performance improvement offered by the proposed setup.

Performing this comparison raises a number of challenges in terms of color management. In

particular, our algorithm operates in a linear color space, whereas [170] uses the sRGB space.

To deal with this, we run our algorithm in the linear space and convert our estimated images to

sRGB for comparison. Additionally, the images provided by [170] are in sRGB format and we

convert them to a linear color space to apply our algorithm.

Figures 5.6 and 5.7 depict the results for two images from each of the three different scenarios

previously mentioned. For all images, our custom setup significantly outperforms [170]. This is

particularly true for images with complex surfaces such as Figure 5.6b and 5.7b.
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Figure 5.6: Performance evaluation on two synthetic images and one real image with a simulated

polarizer: (a) the Stanford dragon [176], (b) a digital painting with a computer-generated normal

map, and (c) the fruits image from [170].
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Figure 5.7: Performance evaluation on three real images, one with a simulated polarizer and

two with real polarizers: (a) the animals image from [170], (b) a jade dragon, and (c) a painting.
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Figure 5.8: Estimation of the normal map of three different scenes: (a) a rendered painting,

(b) an owl figurine, and (c) a close-up of a real painting. From top to bottom, we show the

original image, the ground truth normals, the normal estimation using the original image, the

normal estimation using the proposed diffuse estimate and the normal estimation using the diffuse

estimate from [170].

5.5.2 Multiple image photometric stereo

We also evaluate our algorithm in a multiple image situation and demonstrate how it can improve

photometric stereo [201]. Photometric stereo infers surface normals from multiple images under

different lighting by assuming that the surface of the objects consists of Lambertian materials.
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Unfortunately, this assumption is rarely satisfied as scenes often contain specular components

and occlusions. The idea is to use our algorithm to first obtain a solid approximation of the

diffuse part of a scene and later use it to recover its normals.

In this experiment, we use our light dome composed of 58 lamps (see Figure 3.4a) and we

install linear polarizing filters with unknown orientation in front of each light source as well as

in front of the camera. We capture several images, one under each illumination of the fixed

lights for four different polarization orientations of the filter positioned in front of the camera;

these four orientations are used to create mosaiced images on which we apply our algorithm to

estimate the diffuse component. These diffuse images are then fed to the photometric stereo

algorithm [201]. In Figure 5.8, we compare the normal map generated by our algorithm with the

normal map obtained from unprocessed images (i.e. with no separation of the diffuse component)

as well as from Shen and Zheng’s algorithm [170]. Note that the ground truth normal maps are

computed using the non-mosaiced images. In all scenes, the gain of using our algorithm is clearly

noticeable.

5.6 Conclusion

We studied the benefits of using a camera equipped with polarizing micro-filters for the separation

of diffuse and specular terms. We presented a simple algorithm to demosaic images produced by

such cameras and extract the diffuse term. Regarding the diffuse extraction, we have shown that

our relatively simple algorithm can significantly outperform other single-image based techniques.

A more accurate knowledge of the diffuse term can then be leveraged in other imaging applications

such as photometric stereo; we demonstrate that our technique improves the estimation of the

normal maps on various scenes. For future work, we believe that including more elaborate priors

based on, for example some of the existing color-based techniques, will improve the estimation.





Chapter 6

Super-Resolution Sparse Phase
Retrieval*

All things are made of atoms—little particles that move

around in perpetual motion, attracting each other when they

are a little distance apart, but repelling upon being squeezed

into one another. In that one sentence, you will see, there is

an enormous amount of information about the world.

Six Easy Pieces

Richard Feynman

6.1 Introduction

Imagine that instead of hearing a song you can only see the absolute value of its Fourier transform

(FT) on a graphic equalizer. Can you recover the song from just this visual information? The

general answer is “No” as there exist infinitely many signals that fit the curve displayed by the

equalizer. However, if we have additional information (or priors) about the song, we may be

able to recover it successfully. The reconstruction process is the subject of this chapter and is

generally known as phase retrieval (PR).

*The material in this chapter is the result of joint work with Miranda Kreković, Juri Ranieri, Amina Chebira,
Yue M. Lu and Martin Vetterli. Author contributions: JR, AC, YL and MV designed research; JR devised the
support recovery algorithm and its performance bound; GB and MK proposed algorithmic improvements and
carried out experiments; and GB wrote the chapter based on [8], which was written by GB, MK and JR.
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Beside this day-to-day example, PR is of great interest for many real-world scenarios, where

it is easier to measure the FT of a signal instead of the signal itself. During the measurement

process, it may happen that the phase of the FT is lost or distorted. Phase loss occurs in many

scientific disciplines, particularly those involving optics and communications; the reason is that

optical waves oscillate extremely fast—around 1015 Hz and above. These waves are measured

with systems that convert photons to electrons. To date, no detection device can operate in such

a high frequency range, and current systems only measure the photon flux1, which is proportional

to the squared magnitude of the electromagnetic wave [169]. A few typical examples involving

phase loss are given below.

• X-ray crystallography: we measure the diffraction pattern of a crystallized molecule—that

is the magnitude of its FT—and we would like to recover the structure of the molecule

itself [119].

• Speckle imaging in astronomy: we measure many images of an astronomical subject and

the phase of the images is compromised by the atmospheric distortion. We would like to

recover the subject without the resolution downgrade imposed by the atmosphere [94].

• Blind channel estimation of multi-path communication channels: we measure samples of

the channel output without knowing the input. We would like to estimate the impulse

response of the channel to optimize its capacity [17].

In Chapter 4 on Lippmann photography, we also encountered an instance of PR, since the phase

of the resynthesized spectrum is lost when viewing a Lippmann plate. As we saw in Section 4.7.2,

the knowledge of the phase is crucial to enable the recovery of the original spectrum.

6.1.1 Previous work

The field of phase retrieval was born along with X-ray crystallography, when the first structures

were solved with trial-and-error methods leveraging crystal symmetries. These initial attempts

prepared the ground for more systematic approaches, a first example of which was proposed

by Patterson in 1935 [144]. The Patterson method is based on locating the peaks of the auto-

correlation function of the electron density to determine pairwise differences between the locations

of the atoms constituting a molecule.

In the 1950s, a rich family of approaches exploiting the unique relationships between inten-

sities and phases of measured diffraction patterns was developed, e.g. Cochran [42], Sayre [163],

Karle [89]. These methods operate in the Fourier space and are known as direct methods because

they seek to solve the phase problem directly based on the observed intensities.

We would also like to emphasize the relevance of dual-space algorithms, where both spatial

and Fourier domains play a fundamental role in reconstructing the signal. While the origin of

these methods dates back to 1972 with the work of Gerchberg and Saxton [68], a lot of interest

was recently sparked by the introduction of Charge Flipping [138, 139].

This short literature review of phase retrieval algorithms in X-ray crystallography is focused

on ab initio methods, which attempt to solve the phase problem with zero or very little prior

information about the structure we are trying to infer. Hence, ab initio methods are considered

very challenging, given the minimal amount of information they have access to. Successful

1Note that the phase of optical waves can still be measured and recorded by indirect means; such is the case
in holography for instance.
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Figure 6.1: Typical PR measurement pipeline: the signal of interest fs(x) generates the auto-

correlation function as(x), which is first filtered by the scattering function ψ(x) (here an ideal

lowpass filter) to yield a(x) and then sampled, resulting in an. Note that the spatial samples an
can be obtained via the inverse discrete FT of the Fourier samples Am, when the periodicity in

the two domains holds. Darker colors represent higher intensities.

methods hinge on the design of an abstract data structure that reduces the degrees of freedom

of the desired signal and simplifies its reconstruction. For example, direct methods exploit

statistical relationships between the phases to reduce the number of unknowns, while Charge

Flipping considers a discretization of the electron density.

In this chapter, we focus on the PR problem on sparse signals. The sparsity assumption is

legitimate and encountered in many applications; for example atoms in crystallography form a

sparse structure. We consider the most compact structure one can imagine for a sparse signal:

a set of K atoms defined by their locations xk and their amplitudes ck,

f(x) =

K∑
k=1

ckφ(x− xk) = fs(x) ∗ φ(x), (6.1)

where fs(x) =
∑K

k=1 ckδ(x − xk) represents the structure, x is a spatial variable defined over

RD (with D being the dimensionality of the signal), φ(x) is the scattering function induced by

one atom and ∗ is the convolution operator.

Even if the advantage of the compact model defined in (6.1) looks appealing, the associated

algorithmic challenges are often overwhelming. Computer scientists attempted to design a scal-

able (i.e. with a computational complexity that is polynomial in the number of atoms K) and

stable to noise algorithm that could solve all possible instances of this problem without much

success; to date, it is not even clear that such an algorithm would exist [172]. In other words,

we encounter a nontrivial trade-off between the compactness of such data structures (i.e. the

number of unknown variables) and the ease of solving the PR problem using them. For example,

Charge Flipping easily solves many PR problems in X-ray crystallography, but it is based on a

discrete spatial structure, which is not the most compact representation.

Recently, we observed the emergence of new PR algorithms leveraging the notion of sparsity

while assuming a discrete spatial domain. Two notable examples are GrEedy Sparse PhAse Re-

trieval (GESPAR) [168], based on the 2-opt algorithm [45], and Two-stage Sparse Phase Retrieval

(TSPR) [84], where the support is recovered by solving the discrete turnpike problem [47, 171].

Both algorithms differ from our approach in that their models are discrete and the locations are

bound to a discrete grid. Even though it was not designed with continuous setups in mind, TSPR

can theoretically recover locations on a continuous domain. However, while it handles noise on

the measured coefficients, it does not tolerate noise in the support, which makes it impractical

for continuous setups.
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The major benefit of having a continuous parametric model is that it enables the estimation of

the locations and amplitudes avoiding any discretization. In such a case, the achievable resolution

is theoretically infinite and only limited by the noise corrupting the measurements. This is what

we call super resolution phase retrieval.

6.1.2 Main contributions and outline

We propose a three-stage framework that precisely determines a sparse signal from the absolute

value of its FT. In Section 6.2, we formalize the problem and describe the typical PR measurement

pipeline. In Section 6.3, we give a high-level overview of our modular approach, discuss the main

challenges and introduce a few relevant properties. Algorithms to solve these different modules

are proposed in Section 6.4. We then describe the details of the proposed method to recover the

support, which constitutes the critical element of the pipeline: its complexity analysis can be

found in Section 6.5, together with a method to reduce its computational cost, while Section 6.6

identifies a theoretical bound (confirmed by numerical simulations) to successfully recover the

signal support in a noisy regime. Then in Section 6.7, we propose a few improvements and

variations of the algorithm to make it more robust to noise. In Section 6.8, we discuss the influence

of the support configuration on the resulting reconstruction. Finally, Section 6.9 compares our

PR pipeline with the state-of-the-art.

6.2 Problem statement

We consider the FT of the signal defined in (6.1),

F (ω) =
K∑

k=1

cke
−jω�xkΦ(ω), (6.2)

where ω is the frequency variable and Φ(ω) is the FT of the known kernel φ(x).

In practice, it is impossible to measure the whole FT (6.2), hence we sample it. Furthermore,

due to limitations of the measurement setup, we are usually only able to measure the absolute

values of such samples, that we denote |Fm|, where Fm = F (mΩ), m = ZD and Ω is the

sampling frequency. As previously mentioned, the PR problem has infinite solutions without

a priori knowledge of the signal f(x), since we can assign any phase to the measurements and

obtain a plausible reconstruction. The role of structures, such as (6.1), is to constrain the PR

problem to a correct and possibly unique solution. Under the sparsity assumption, retrieving

the phase is equivalent to retrieving the locations and amplitudes of f(x).

The auto-correlation function (ACF) a(x) of f(x) is given by the inverse FT of |F (ω)|2:

a(x) = f(x) ∗ f(−x) = F−1
[|F (ω)|2] ,

where F−1 is the inverse FT operator [190]. Interestingly, the ACF structure is completely
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inherited from the signal (6.1):

a(x) =

K∑
k=1

K∑
�=1

ckc�ψ(x− (xk − x�))

=

[
K∑

k=1

K∑
�=1

ckc�δ(x− (xk − x�))

]
∗ ψ(x)

= as(x) ∗ ψ(x), (6.3)

where the kernel ψ(x) is the ACF of φ(x) and as(x) is the ACF of the sparse structure of the

train of Diracs fs(x). Equivalently, in the Fourier domain, we have

A(ω) =

K∑
k=1

K∑
�=1

ckc�e
−jω�(xk−x�)|Φ(ω)|2. (6.4)

The PR acquisition pipeline can be summarized as the filtering of the ACF as(x) followed

by sampling, where the filtering represents the scattering operation, as illustrated in Figure 6.1.

We now have all the ingredients to state the core problem of this chapter.

Problem 6.1 Given Fourier samples Am = A(mΩ) of the sparse ACF defined in (6.3), recover

the support X = {xk}Kk=1 and amplitudes {ck}Kk=1 determining the signal f(x).

Note that the information we are interested in is hidden behind two walls: the convolution

with the kernel ψ(x) that spatially blurs the sparse structure of the ACF and the phase loss of

the original sparse signal, fs(x), that usually characterizes any PR problem.

6.3 A three-stage approach

We propose to solve Problem 6.1 in three distinct stages: i) reconstruct the continuous ACF

a(x) from a set of its discrete Fourier coefficients, ii) estimate the support X of f(x) given a(x),

and iii) estimate its amplitudes {ck}Kk=1.

The first step is a classical sampling problem where we would like to fully characterize a

continuous signal from a set of discrete measurements.

Problem 6.1.A (Sparse ACF super resolution) Given samples Am of the sparse ACF

as defined in (6.3), recover its continuous version A(ω).

The most well-known sampling result is due to Nyquist-Shannon-Kotelnikov and guarantees

perfect recovery for signals that lie in the subspace of bandlimited functions, provided that the

sampling rate is high enough.

In our case, f(x) and a(x) are obviously not bandlimited, but we assume that such signals

are sparse, as in (6.1). Sparsity has two antagonistic effects on PR: it makes the problem combi-

natorial and hence hard to solve, but at the same time enables a divide-and-conquer approach,
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in which we first recover the support X and then the amplitudes of f(x). We argue that the

support contains more information than the amplitudes, hence we choose to estimate it first. As

an example, if all the atoms have the same amplitude, then only the support is useful to recover

the original signal. On the other hand, if all the atoms have the same location, the problem is

trivially solvable.

Problem 6.1.B (Support recovery) Assume we are given the complete set of unlabeled

differences D = {dk,�}k,� = {xk − x�}k,�, recover the support X of the sparse signal f(x).

In most real-world scenarios, the unlabeled differences of Problem 6.1.B are corrupted by

noise. Hence, we assume additive Gaussian noise affecting dk,�:

d̃k,� = dk,� + νk,�, (6.5)

where νk,� ∼ N (0, σI). Furthermore, we denote the set of measured differences as D̃ = {d̃k,�}k,�.
For simplicity of notation, we convert the pairs of indices (k, �) to n ∈ {1, . . . , N}, where N =

K2 − K + 1, and order them such that ‖d̃1‖ ≤ ‖d̃2‖ ≤ . . . ≤ ‖d̃N‖. We do not assume any

ordering on the elements of X .

In what follows, we state a few interesting observations related to Problem 6.1.B. First, when

we measure a set of differences, some information is inevitably lost.

Observation 6.2 A set of points can be reconstructed from their pairwise differences, even

when labeled, only up to shifts and reflections.

To show that, we first translate and reflect the set of points X as X ′ = −X + x̄, where we

overload the arithmetic operators on sets to transform each point as x′
k = −xk + x̄. Then, the

set of differences of the transformed points is equivalent to the original one,

d′
k,� = x′

k − x′
� = −xk + x̄ + x� − x̄ = x� − xk = −dk,�,

where the natural symmetry of D compensates for the negative sign.

Second, while excluding shifts and reflections does not lead to a unique solution in general,

we can still prove uniqueness under certain assumptions.

Observation 6.3 Assume that the points xk are drawn independently at random from a

sufficiently smooth distribution, then the solution is unique [155].

Third, we briefly discuss the occurrence of collisions in the ACF. We say that there is a colli-

sion in the ACF when two different pairs of distinct points from X map to the same difference in

D. Since we consider a continuous domain for the support, it inherently prevents the appearance

of collisions.2

2The support recovery algorithm proposed in this chapter can in fact also handle collisions and could be used
on a discretized space as well. However, assuming no collisions simplifies the recovery of the amplitudes and
enables a few improvements to make the algorithm more resilient to noise.
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Observation 6.4 If the locations of the points are independently drawn uniformly from a

finite interval, then collisions in the ACF occur with probability zero.

Last, we note that the set of differences D contains many valid solutions. In particular, we can

construct two solutions from every element of X ; this is a direct consequence of Observation 6.2.

Observation 6.5 The set of differences D is a superset of 2K valid solutions X̂ to Prob-

lem 6.1.B and such solutions always contain the point zero, that is 0 ∈ X̂ .

To verify this, we pick an element of the support, e.g. x�, and build the following tentative

solution:

X̂ = {xk − x� | k = 1, . . . ,K}. (6.6)

Then, we notice that i) X̂ is a valid solution with the shift fixed as −x�, ii) X̂ ∈ D and iii)

we have a solution for every element of X . Moreover, we can exploit the symmetry of the ACF

to reach the aforementioned 2K solutions. Such an observation can be extended to the noisy

case, assuming we allow the solution to be noisy as well. This property is essential to the greedy

algorithm for support recovery proposed in the next section.

Once the support X̂ of the solution has been retrieved, it remains to find the amplitudes

{ck}Kk=1 of the signal f(x).

Problem 6.1.C (Amplitude recovery) Given an ACF a(x) as defined in (6.3) together

with the estimated support X̂ of f(x), find the amplitudes {ck}Kk=1.

6.4 Algorithms

In this section, we lay down our solutions to Problems 6.1.A, 6.1.B and 6.1.C, effectively providing

an end-to-end framework to solve the sparse PR problem.

6.4.1 ACF super resolution

When we look at (6.3), we notice that a(x) is completely defined by the locations xk−x� and the

amplitudes ckc�. Hence, we can recast Problem 6.1.A as a parameter estimation problem given

the measured samples Am of the FT of the ACF. As we have seen in Chapter 2, an effective

approach to do so is finite rate of innovation (FRI) sampling. Recall that the essential ingredient

in FRI is to represent the signal of interest as a weighted sum of complex exponentials in the

following form:

bm =

N∑
n=1

αnu
m
n . (6.7)
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Note that in this subsection, we restrict ourselves to the 1-dimensional case for clarity, even

though our implementation is generalized to higher dimensions (see [113, 141] for more details).

The formulation (6.7) has several similarities with (6.4); to see this, we define tn = xk − x�,

substitute αn = ckc� and un = exp(−jΩtn) and rewrite the sampled ACF Am as follows,

Am =

N∑
n=1

αnu
m
n |Φ(mΩ)|2. (6.8)

We remark that |Φ(mΩ)|2 does not allow us to express (6.8) as a sum of complex exponentials

yet. However, if we assume that the kernel function φ(x) is an ideal low-pass filter3, i.e. a

sinc function, its FT becomes a box function. Thus, we can ignore such a kernel for some

neighborhood of m around zero, since Φ(mΩ) = 1 for |mΩ| smaller than the bandwidth of the

signal.

Then, from (6.8), we can fully recover the locations {dn}Nn=1 by identifying the filter annihi-

lating the signal Am (see Section 2.2.3 for more details). Our situation differs from usual FRI

applications in the sense that the locations of the ACF describe a symmetric structure. As a

consequence, all roots un come in conjugate pairs (except for the one corresponding to the zero

location).

Once the locations are known, the amplitudes αn = ckc� are found by injecting un in (6.8)

and solving a linear system of equations.

6.4.2 Support recovery

For the recovery of the support, we propose a novel greedy algorithm that is initialized with a

partial solution X̂2, which contains two locations. At a given iteration k, we generate a partial

solution X̂k+1 composed of k + 1 locations, hence the algorithm has a total of K − 2 iterations

indexed from 2 to K − 1.

Initialization

From Observation 6.5, we know that the solution set X̂ is contained in D̃ and 0 ∈ X ; this gives

us the first point of the solution, that is x̂1 = 0. Next, we identify the element d̃N in D̃ with the

largest norm, so that we maximize the noise resilience of our algorithm. Indeed, assuming that

the locations are corrupted by identically distributed noise, picking the largest norm ensures the

maximal SNR of our initial solution. The value d̃N is the noisy difference between two unknown

locations of f(x); without loss of generality, we call them x1 and x2. The elements x̂1 = 0

and x̂2 = d̃N are nothing but x1 and x2 + ν2,1 translated by −x1. Therefore, we are always

guaranteed that the initialized solution X̂2 = {0, d̃N} is a (noisy) subset of the set of locations

X − x1.

Referring again to Observation 6.5, we know that the set of differences D̃ contains the rest of

the points {xk − x1 + νk,1}Kk=3, that should belong to the final solution X̂ = X̂K . Furthermore,

since we do not want to duplicate points in X̂k, we initialize a set of possible elements of the

solution P2 = D̃ \ {d̃1, d̃N}. Due to noise, the vector 0 is not in D̃, so we remove the closest

element d̃1.

3As mentioned in Section 2.3.4, the FRI theory has also been generalized to a wide range of kernels such as
combinations of B-splines and E-splines [55, 186, 188] or even arbitrary sampling kernels [189], where a linear
operation enables us to obtain the desired form (6.7) from (6.8).
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Algorithm 6.1 Support recovery

Input: A set of N = K2 −K + 1 differences D̃ = {d̃n}Nn=1 ordered by their norms

Output: A set of K points X̂ such that their pairwise differences generate D̃
X̂2 = {0, d̃N}
P2 = D̃ \ {d̃1, d̃N}
for k = 2, . . . ,K − 1 do

x̂k+1 = arg minp∈Pk

∑
x̂∈ ̂Xk

min
˜d∈ ˜D

∥∥∥p− x̂− d̃
∥∥∥2

X̂k+1 = X̂k ∪ x̂k+1

Pk+1 = Pk \ x̂k+1

end for

return X̂K

Main algorithm

At each step k, we identify the element in Pk that, when added to the partial solution X̂k,

minimizes the error with respect to the measured set of differences D̃. More precisely, at every

iteration k we solve the following optimization problem,

x̂k+1 = arg min
p∈Pk

∑
x̂∈ ̂Xk

min
˜d∈ ˜D

∥∥∥p− x̂− d̃
∥∥∥2

. (6.9)

Intuitively speaking, we would like to identify the element x̂k+1 ∈ Pk such that the set of

pairwise differences of the points in X̂k+1 = X̂k ∪ x̂k+1 is the closest to a subset of the measured

D̃. The main challenge is that we do not know the correct labeling between these two sets. In

the noiseless case, we are looking for a set X̂k+1, whose pairwise differences form exactly a subset

of D̃. Hence, we can solve the labeling by matching identical elements. In the noisy case, we

cannot leverage the definition of a subset. Therefore, we loosen the equality between elements

and determine the labeling by searching for the differences in D̃ that are closest in �2-norm to

the pairwise differences of the elements in X̂k+1. This procedure is summarized in Algorithm 6.1

and its application on the ACF as(x) from Figure 6.1 is illustrated in Figure 6.2.

6.4.3 Amplitude recovery

If we assume that collisions can occur, recovering the amplitudes with a given ACF and support

is equivalent to solving a system of quadratic equations. However, if there are no collisions, we

suggest a simple but efficient algebraic solution to Problem 6.1.C, inspired from [155]. Our new

approach is different in that it avoids a matrix inversion step and hence, it is both faster and

more robust to noise.

Let c = [c1, c2, . . . , cK ]� be a vector made of the amplitudes to be recovered. If we define a

matrix C = cc�, all the elements outside of the diagonal of such a matrix are the amplitudes

of the measured ACF, that is Ci,j = cicj . Notice that we cannot observe the diagonal entries

Ci,i = c2i,i as we just have access to their sum as0 =
∑

i c
2
i,i, which is the value of the ACF at

0. This is unfortunate since they are precisely the values we are interested in, up to a squaring

operator.

We recast Problem 6.1.C as a matrix completion problem, where we would like to estimate

the diagonal entries Ci,i under the constraint of C being a rank-one matrix. The first step of
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Figure 6.2: Instance of Algorithm 6.1 on the ACF as(x) from Figure 6.1. First, we identify

x̂1, the element with the smallest norm and set it to zero. Second, we find x̂2, the point with

the largest norm. Then, points x̂3 to x̂5 are selected in a greedy way according to (6.9). The

solution coincides with the initial signal fs(x) displayed in Figure 6.1.

our proposed method is to introduce a matrix L such that

Li,j =

{
log(Ci,j) = �i + �j for i �= j

0 otherwise,

where �i = log(ci). The sum of the ith row of L is given by

K∑
j=1

Li,j = (K − 1)�i +

K∑
j=1

�j − �i = (K − 2)�i +

K∑
j=1

�j ,

where the term
∑

j �j does not vary between rows. Hence, its value can be obtained from

summing all the entries in L,

s =
K∑
i=1

K∑
j=1

Li,j = (K − 2)

K∑
i=1

�i +K

K∑
j=1

�j = 2(K − 1)

K∑
j=1

�j .

Then, we recover the vector � = [�1, �2, . . . , �K ]� for K > 2 as

� =
1

K − 2

⎛⎝ K∑
j=1

Li,j − s

2(K − 1)
1

⎞⎠ ,

where 1 is the all-ones vector.4 Finally, it suffices to compute ci = exp(�i) to retrieve the

amplitudes.

Note that this solution assumes that C is symmetric; this might not be the case in a noisy

setup, but we enforce it by replacing C with 1
2 (C + C�). This strategy yields the symmetric

4When K = 2, the entries 
1, 
2 can be recovered by solving a system of two equations.
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Figure 6.3: Comparison of the average run time of the original algorithm and its cached version.

The times reported are the average of 100 runs of the algorithm. The dashed lines represent

curves of the form CKα that are fitted to the data. For the method without caching, we have

C = 4.25 · 10−6 and α = 5.06, while for the method with caching we have C = 3.88 · 10−6 and

α = 4.37. Remark how the caching is reducing the polynomial degree of the computational cost

by approximately one.

matrix that is the closest to C with respect to the Frobenius norm. In case of collisions, the

problem does not have an algebraic solution and a possible convex relaxation is provided in [84].

In practice, this is often not a concern due to Observation 6.4.

In what follows, we study and propose improvements to the performance of our PR algorithm,

focusing our attention on the support recovery step, i.e. Algorithm 6.1. In fact, the first step—the

super-resolution with FRI—is well represented in literature, where theoretical analyses, extensive

simulations in noisy scenarios and efficient denoising schemes have been proposed [54, 113, 142];

Chapter 2 also provides a more thorough analysis of the method. On the other hand, the

amplitude recovery, while being novel, only consists of simple algebraic manipulations that are

not computationally costly.

6.5 Complexity analysis

Algorithm 6.1 has K rounds. In each of these rounds, we go through all points in the existing

solution set X̂k, and for each point we compute the difference with all the values in D̃. Since there

are O(K) points in X̂k and O(K2) elements in D̃, this is done in O(K3) operations. Furthermore,

for each of these computed differences, we need to find the closest element in D̃, which requires

additional O(K2) comparisons. In total, the complexity of our algorithm is O(K6). Even though

this is high and limits the field of application to reasonable sizes, it compares favorably to an

exhaustive search strategy, which grows exponentially with K.

It is possible to trade time complexity for storage complexity. Indeed, we observe that we
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compute at each round the following values

d̃i,j = arg min
˜d∈ ˜D

‖pj − x̂i − d̃‖2, (6.10)

for every point x̂i ∈ X̂k and candidate pj ∈ Pk. However, since we are just moving one element

from Pk to X̂k+1 at each iteration, we propose to cache the values (6.10) in a lookup table to

reduce the total computational cost. By doing so, we only need to update each d̃i,j when the

corresponding candidate pj is removed from Pk to be added to X̂k+1.

The theoretical complexity when caching d̃i,j is not trivial to analyze, but in practice we

notice a significant improvement, as illustrated in Figure 6.3.

6.6 Performance analysis

In what follows, we study the expected performance of Algorithm 6.1 in the presence of noise.

More precisely, we estimate the expected mean squared error (MSE) of the support recovery

algorithm when the correct solution is obtained in Section 6.6.1. Then, we approximate the

probability of the algorithm to find such a correct solution in Section 6.6.2. We consider the

problem with D = 1 dimension to lighten notation and simplify the discussion. However, all the

results can be easily generalized to the multidimensional setup introduced in Problem 6.1.B.

6.6.1 Expected performance

After K − 2 iterations and if the algorithm successfully finds any correct solution as defined

in (6.6), then this solution will be noisy as it is constructed by selecting noisy elements from

D̃, see (6.5). If we assume Gaussian noise affecting the support, then the MSE of the support

recovery solution can be computed as

MSE = ‖X − X̂‖22 =
K∑

k=2

‖νk,1‖2 = σ2QK−1,

where QK ∼ χ2
K follows a chi-squared distribution with K degrees of freedom. Therefore, the

expected value of the MSE of any correct solution is

E[MSE] = (K − 1)σ2.

6.6.2 Probability of success

We model the probability that Algorithm 6.1 finds the correct solution as a function of the noise

variance σ2 and the number of elements K to characterize its performance. Such a probability

can be factored as K − 2 iterations

P (σ,K) =

K−1∏
k=2

Pk(σ,K),

where P (σ,K) is the probability of success of the support recovery algorithm and Pk(σ,K) is

the conditional probability of success at iteration k, given that the algorithm was correct until

iteration k − 1.
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We focus our attention on what happens at iteration k, i.e. we study the probability Pk(σ,K).

First, we split the set of possible elements of the solutions Pk as the union of two disjoint sets:

Ck containing the elements that when picked by the algorithm generate a correct partial solution

at iteration k, and W containing the elements that when picked corrupt the partial solution.

Second, we generalize the cost function used in the main optimization problem (6.9) to a generic

set of 1D elements A as,

g(A, X̂k) = min
p∈A

∑
x̂∈ ̂Xk

min
˜d∈ ˜D

(
p− x̂− d̃

)2

. (6.11)

Below, we use g(A, X̂k) with both sets and single elements as arguments: in other words, the

expression g(a, X̂k) is interpreted as g({a}, X̂k).

Then, we compute the probability that the support recovery algorithm picks an element from

Ck instead of an element from W, when searching for the solution of (6.9). This happens if the

cost of Ck is smaller than the one of W measured via (6.11),

Pk(σ,K) = P(g(Ck, X̂k) < g(W, X̂k))

= P(∃c ∈ Ck|g(c, X̂k) < g(W, X̂k))

= 1 − P(�c ∈ Ck | g(c, X̂k) < g(W, X̂k))

= 1 − P(∀c ∈ Ck | g(c, X̂k) ≥ g(W, X̂k)). (6.12)

We assume that the events g(c, X̂k) ≥ g(W, X̂k) are independent for all c ∈ Ck and obtain

Pk(σ,K) = 1 −
∏
c∈Ck

P

(
g(c, X̂k)

g(W, X̂k)
≥ 1

)
. (6.13)

This is a crude simplification, but it enables us to compute an approximation of Pk(σ,K) that

will not impair the quality of the end result, as we will demonstrate later. With a similar

development as (6.12), we can write

P

(
g(c, X̂k)

g(W, X̂k)
≥ 1

)
= 1 − P

(
∀w ∈ W ∣∣ g(c, X̂k)

g(w, X̂k)
< 1

)
.

Again, we approximate Pk(σ,K) assuming the independence of the events g(w, X̂k) as

Pk(σ,K) = 1 −
∏
c∈Ck

(
1 −

∏
w∈W

P

(
g(c, X̂k)

g(w, X̂k)
< 1

))
. (6.14)

Then, we focus our attention on the term P
(

g(c, ̂Xk)

g(w, ̂Xk)
< 1

)
. First, we compute the cost of

adding an element c from Ck to X̂k+1,

g(c, X̂k) =
∑
x̂∈ ̂Xk

min
˜d∈ ˜D

(
c− x̂− d̃

)2

=

k∑
�=1

min
˜d∈ ˜D

(
c− (x� − x1 + ν�,1) − d̃

)2

, (6.15)
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where each x̂ ∈ X̂k is a shifted noisy version of an element of X . Following a similar reasoning,

the newly added element c can be expressed as c = xk+1 − x1 + νk+1,1. By substituting this

expression into (6.15), we further obtain

g(c, X̂k) =

k∑
�=1

min
˜d∈ ˜D

(
xk+1 + νk+1,1 − x� − ν�,1 − d̃

)2

(a)≈
k∑

�=1

(νk+1,1 − ν�,1 − νk+1,�)
2

= 3σ2Q
(1)
k , (6.16)

where Q
(1)
k ∼ χ2

k, and in (a) we approximate g(c, X̂k) by selecting the difference d̃ = xk+1 −x� +

νk+1,�. We select this specific d̃ as it is likely to be picked, provided that the noise variance σ2 is

small compared to the values xi. This also significantly simplifies (6.16) by dropping the random

variables x1, xk+1, and x�.

Second, we analyze the cost of making an error g(w, X̂k) at iteration k—that is selecting any

element w ∈ W given X̂k:

g(w, X̂k) =
∑
x̂∈ ̂Xk

min
˜d∈ ˜D

(
w − x̂− d̃

)2

. (6.17)

We express the minimum in (6.17) as an exhaustive check of all the possible selections of k

differences from D̃. To do so, we define Mk as the set containing all the k-permutations of D̃,

and rewrite the probability of selecting a correct location c instead of a wrong one w for any

given c and w from (6.14) as follows,

P

(
g(c, X̂k)

g(w, X̂k)
< 1

)
= P

(
g(c, X̂k)

e(w,π, X̂k)
< 1, ∀π ∈ Mk

)
.

Here, we introduced e(w,π, X̂k) as the cost for a given permutation π,

e(w,π, X̂k) =

k∑
i=1

(w − x̂i − πi)
2
, (6.18)

where the elements in π and X̂k are indexed with i.

Once more, we assume that all these selections are independent to obtain

P

(
g(c, X̂k)

g(w, X̂k)
< 1

)
=

∏
π∈Mk

P

(
g(c, X̂k)

e(w,π, X̂k)
< 1

)
. (6.19)

Finally, we discuss the probabilistic aspects of (6.18). The terms ω, x̂i and πi are each made

of the difference between two points plus a noise value. Indeed, they have the form

p = xi − xj + νi,j ,

for some specific indices i and j. Assuming that the points in X are uniformly distributed

between −0.5 and 0.5, and the noise is Gaussian with zero mean and variance σ2, we can
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approximate (6.18) as

e(w,π, X̂k)
(a)≈

k∑
�=1

⎛⎝ 6∑
i=1

Yi +

3∑
j=1

Zj

⎞⎠2

(b)≈
k∑

�=1

⎛⎝W +
3∑

j=1

Zj

⎞⎠2

=

(
3σ2 +

1

2

)
Q

(2)
k ,

where Q
(2)
k ∼ χ2

k, Yi ∼ U [−0.5, 0.5], Zj ∼ N (0, σ2) and W ∼ N (0, 12 ). In (a), we approximate the

sum by assuming independence between all the random variables and in (b) we approximate the

sum of six random variables uniformly distributed on [−0.5, 0.5] with a normal random variable

with variance σ2 = 1
2 .

We now have all the ingredients to compute the probability of success at iteration k (6.14),

as

Pk(σ,K) = 1 −
∏
c∈Ck

(
1 −

∏
w∈W

P

(
g(c, X̂k)

g(w, X̂k)
< 1

))

≈ 1 −
∏
c∈Ck

(
1 −

∏
w∈W

∏
S∈Mk

P

(
Q

(1)
k

Q
(2)
k

<
3σ2 + 1

2

3σ2

))

= 1 −
⎛⎝1 − P

(
Q

(1)
k

Q
(2)
k

<
3σ2 + 1

2

3σ2

)|Mk||W|⎞⎠|Ck|

= 1 −
(

1 − F

(
3σ2 + 1

2

3σ2
, k, k

)|Mk||W|)|Ck|

, (6.20)

where F(x, k1, k2) is the cumulative distribution function of an F-distribution with parameters

k1 and k2; it can be calculated using regularized incomplete beta functions. Last, we determine

the size of the sets as

|Ck| = K − k,

|W| = N −K = K2 − 2K + 1,

|Mk| = Nk.

Note that, as the number of points K increases, these exponents grow faster and push any

probability that is not 1 to 0; hence, we expect a steep phase transition.

Along the path of our analysis, we made a few rough assumptions that we cannot theoretically

justify regarding the independence of events, e.g. in (6.13), (6.14) and (6.19). While we would

like to be more rigorous, we provide below numerical evidence that such assumptions hold in

practice as the algorithm’s performance exhibits a phase transition matching closely the derived

theoretical bound (6.20).
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Figure 6.4: Comparison of the (a) theoretical and (b) empirical probability of success for

Algorithm 6.1 in 2 dimensions with respect to the size of the problem K and the noise σ affecting

the set of differences. In both plots, the white line represents P (σ,K) = 0.5.

6.6.3 Numerical simulations

We define the index-based error as a binary metric that is equal to 0 if the solution set X̂ is of

the form (6.6), and 1 otherwise. This error can be used to empirically measure the probability of

success of Algorithm 6.1: we approximate it by running several experiments with different levels

of noise σ and numbers of points K. In Figure 6.4, we report the results of such an experiment

and compare it with our theoretical result obtained in (6.20). We confirm that P (σ,K) exhibits

a sharp phase transition—we can identify pairs (K,σ) for which the algorithm always succeeds

and pairs for which it always fails. However, the empirical phase transition is less sharp than

the theoretical one and this is probably due to our approximations regarding the independence

of events. Nonetheless, the two phase transitions are closely aligned for each value of K.

These experimental results are rather surprising given the shortcuts we took in Section 6.6.2,

and we would like to alleviate the astonishment by developing some intuition that may explain

why these approximations appear to be so good. We claim that, even though not all events are

pairwise independent, most of them are. As an example, when we look at

g(p, X̂k) =
∑
x̂∈ ̂Xk

min
˜d∈ ˜D

(
p− x̂− d̃

)2

,

for two different values p1 and p2 of p, the respective cost functions g(p1, X̂k) and g(p2, X̂k)

probably share a few common differences d̃. However, we observe that at round k, only k out

of K2 − 2K + 1 differences are selected, one for every x̂ ∈ X̂k. Then, assuming that most

pairs
(
g(p1, X̂k), g(p2, X̂k)

)
are independent is practically equivalent to assuming that we select

the differences d̃ uniformly at random within the minimization. Moreover, we believe that the

few dependent events ignored by such assumptions are one of the likely causes of the different

steepness exhibited by the theoretical and observed phase transition.
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6.7 Improving noise resilience

We now discuss strategies and variations of our support recovery algorithm aiming at improving

the quality of the solution in noisy settings. We chose not to include them in the analysis as

they make it more intricate.

6.7.1 Deleting solutions from the set of differences

When a new point x̂k+1 is added to X̂k, Algorithm 6.1 ignores some useful information. Assuming

that there are no collisions and no noise, we know that the values X̂k − x̂k+1 and x̂k+1 − X̂k in

D cannot belong to the solution X̂ as they are part of W. Thus, as soon as x̂k+1 is added to the

solution set, we can remove all values of the form X̂k − x̂k+1 and x̂k+1 − X̂k from D.

The same reasoning applies to the noisy case, but we pick the closest values in D̃ as we do

not have exact differences. More formally, when we add a new point x̂k+1 to the solution X̂k,

we dispose of the following 2k elements of D̃,

d̃∗ = arg min
˜d∈ ˜D

‖ ± x̂∓ x̂k+1 − d̃‖2, ∀x̂ ∈ X̂k.

This approach results in two opposing effects. On one hand, we introduce the risk of erroneously

discarding a point d̃∗ that belongs to the solution. On the other hand, we are pruning many

elements out of D̃ and naturally reduce the risk of picking an erroneous candidate later on in the

recovery process. As we will show in Section 6.7.4, the benefits outweight the risks.

6.7.2 Symmetric cost function

Next, we replace the cost function (6.9) with a symmetric one to leverage the natural symmetry

of the ACF.

In Algorithm 6.1, we search for the vectors in D̃ closest to the computed differences p−X̂k for

each candidate p. We strengthen its noise resilience by jointly searching for the vectors closest

to ∓X̂k ± p and choosing the candidate p that minimizes the sum of both errors. Specifically,

we rewrite the cost function (6.9) as

x̂k+1 = arg min
p∈Pk

∑
x̂∈ ̂Xk

min
˜d, ˜d′∈ ˜D

∥∥∥p− x̂− d̃
∥∥∥2

+
∥∥∥x̂− p− d̃′

∥∥∥2

.

We stress that this improvement is compatible with the idea of caching introduced in Sec-

tion 6.5. We can in fact cache the following pairs

(d̃, d̃′)i,j = arg min
˜d, ˜d′∈ ˜D

‖pj − x̂i − d̃‖2 + ‖x̂i − pj − d̃′‖2,

for each x̂i ∈ X̂k and pj ∈ Pk and recompute them when pj gets added to the solution X̂k+1.

6.7.3 Denoising of partial solutions

At each iteration k of Algorithm 6.1, we have a partial solution X̂k+1 and, from (6.9), we identify,

for each pair x̂i, x̂j ∈ X̂k+1, a difference d̂i,j that is the closest to x̂i − x̂j . In other words, we
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Figure 6.5: Average error for the different combinations of improvements of the algorithm. We

create X from K = 6 1D points chosen uniformly at random from the interval [0, 1], create D
accordingly and add Gaussian noise N (0, σ2) to its elements. The �2 and the index-based errors

are computed for different levels of noise σ and different improvements of the original algorithm.

are simultaneously labeling the differences d̂i,j using our current partial solution; such a labeling

is completed as k reaches the final iteration K − 1.

This partial labeling can be exploited to denoise the set X̂k+1 as it provides unused addi-

tional constraints and mitigates the error propagation between the iterations. More precisely,

we propose to find a set of points {x̂i}k+1
i=1 that minimizes the following cost function

J
({x̂i}k+1

i=1

)
=

∑
i,j

‖d̂i,j − (x̂i − x̂j)‖2. (6.21)

The solution to (6.21) is derived in closed-form by setting its first derivative to 0. As it is based

on a least-square-error criterion, it is then optimal when the differences are corrupted by additive

Gaussian noise.

This leads to a simple but effective strategy: refine the estimate of the solution set at each

step by taking the average of the differences related to each point x̂i ∈ X̂k+1 as

x̂i =
1

k + 1

k+1∑
j=1

d̂i,j ,

where we recompute all x̂i as they are used in the k + 1 iteration. To see why this works, we

separate the sum as

1

k + 1

k+1∑
j=1

d̂i,j = xi − 1

k + 1

k+1∑
j=1

xj +
1

k + 1

k+1∑
j=1

νi,j .

We observe that − 1
k+1

∑k+1
j=1 xj is the same translation for all points x̂i. The consequence of

this approach is that the total noise is reduced as we average its different realizations over k+ 1

values. Note that since Algorithm 6.1 assumes that x̂1 = 0 in X̂k, we also translate back all the

points by −x̂1 after each update.
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Unfortunately, the idea of caching the differences introduced in Section 6.5 is not compatible

with the denoising of the partial solutions. Since at each step we modify the partial solution set

X̂k, the differences between X̂k and D̃ change accordingly, which makes it impossible to cache

them. Hence, there exists a hard trade-off between quality and complexity, and we should pick

the right strategy depending on the requirements of each specific practical scenario.

6.7.4 Comparison of improvement strategies

Last, we evaluate the significance of our proposed improvements on Algorithm 6.1. We quantify

the results using the index-based error introduced in Section 6.6, as well as the �2 error, which

we define as the �2-norm of the difference between the underlying points X and their estimation

X̂ .5

The comparison of the different improvement strategies is illustrated in Figure 6.5. In this

experiment, we draw K = 6 one-dimensional points uniformly at random from the interval [0, 1]

and add Gaussian noise N (0, σ2) on their pairwise differences. We run Algorithm 6.1 and the

proposed improvements for different noise levels σ. It is clear that all the proposed strategies

enhance the original algorithm, with respect to both the index-based error and the �2 error.

Moreover, we also observe that different strategies combine constructively: for example, the

symmetric cost function decreases the �2 error by 5% on average, while deleting solutions from

the set of differences improves the results by 27% on average. When combined together, the

average error decreases by 59%. Including the denoising further enhances the algorithm, as the

average error decreases by 62%. Similarly, for the index-based error there is an evident shift

between the phase transitions of the original algorithm with and without improvements.

6.8 Influence of the point locations

The algorithm performance around the phase transition in Figure 6.4 also seems to indicate that

some configurations of points are easier to recover than others. In this section, we run a small

experiment to visualize the challenges posed by certain configurations.

We consider a low-complexity setup (K = 4, and D = 1), fix the support boundaries, that

is x1 = 0 and x2 = 1, and study the reconstruction error for various pairs (x3, x4) ∈ [0, 1]2.

We generate several instances of this problem and perturb the differences in D with additive

Gaussian noise with zero mean and σ = 0.01. We measure the performance of Algorithm 6.1

(with all the improvements introduced in Section 6.7) using both the index-based and the �2

error. The average errors are then shown in Figure 6.6, where we observe that there exist some

combinations of points that lead to a significantly higher error.

We now develop intuition about a few interesting cases that emerged from the previous

experiment. For the sake of simplicity, we consider a noiseless setting where collisions in the

ACF or non-uniqueness of the solution are the only causes of challenging configurations.

1. Collision between a difference and a point. When a difference and a point collide, it can

happen that the difference is mistaken for the point. This does not influence the �2 error,

but causes an index-based error. An example of such a case is when x3 = x4 (the main

diagonal in Figure 6.6): both the difference x4−x3 and x1 have value 0. As a consequence,

5This requires to first align the two sets of points X and ̂X by minimizing the 
2-norm between their elements,
subject to any shift and/or reflection.
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Figure 6.6: Influence of the points’ locations on the estimation errors. We solve a 1D instance

of the problem with K = 4, x1 = 0, and x2 = 1. The locations x3 and x4 vary along the x- and

y-axis.

the sets X ′ = {x1, x2, x3, x4} and X ′′ = {x4 − x3, x2, x3, x4} are both equal to X =

{0, 1, x3, x3}, but the latter is not of the form (6.6).

2. Constant difference 0.5. When x4 = x3 ± 0.5, we can actually find more than one set of

4 points that map to a subset of the given differences. In the case x4 = x3 + 0.5, the

differences are D = ±{0, 1, x3, x3 + 0.5, 1 − x3, 0.5 − x3, 0.5}; thus, D contains all pairwise

difference from both X ′ = {0, 1, x3, x3 + 0.5} and X ′′ = {0, 1, 0.5, x3}. However, X ′′ does

not lead to a zero �2 error.

3. Collision of differences when adding a new point to the solution set. This is for example the

case of x4 = 1−2x3 with D = ±{0, 1, x3, 1−2x3, 1−x3, 2x3, 1−3x3}. The differences 0 and

1 are always selected in the first and the second step. In the third step, we could potentially

add 2x3 to X2 = {0, 1} and reduce the set of differences to D = ±{x3, 1 − x3, 1 − 3x3}.
Next, we select x3 as a new point. We can verify that the differences of x3 and the values

in X3 = {0, 1, 2x3} exist in D. However, in this verification we use the value x3 in D twice:

once as the difference between x3 and 0, and once as the difference between x3 and 2x3.

The set of pairwise differences of X4 = {0, 1, 2x3, x3} is indeed contained in the original D,

but neither its �2 error nor its index-based error is zero. Notice that if we swap the third

and the fourth step, this confusion would be avoided as x3 would be removed from the set

of differences in the third step.

These three cases explain all the segments visible in Figure 6.6. Such an analysis also applies

to noisy regimes; the main difference is that we move from very localized configurations to blurrier

areas where the solution is ambiguous. In fact, we introduced some noise into the experiment in

Figure 6.6 to enable the visualization of the lines identifying challenging patterns—a noiseless

setting would have just led to infinitesimally thin lines. Such patterns become blurrier and wider

as noise increases. These areas where reconstruction is harder also explain the not-so-sharp phase

transition in Figure 6.4: when drawing supports of K elements at random, the probability of
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Figure 6.7: PR pipeline for Charge Flipping and our algorithm. First the signal a(x) is

sampled and we observe the magnitude of its DFT, Am, which also corresponds to a discrete

version of its ACF. These DFT coefficients are directly used by Charge Flipping to recover a

discretized support of f(x). Our approach proceeds in two stages: first, using FRI we compute

a super-resolved version of the ACF, and then by applying the proposed algorithm, we recover

the continuous version of f(x).

hitting a challenging pattern significantly grows with the noise. To the limit, these blurred lines

cover the entire domain and the probability of success is null.

6.9 Comparison with Charge Flipping

In this section, we evaluate the performance of the proposed PR algorithm in comparison with

other state-of-the-art methods. Recall that our algorithm is, to the best of our knowledge, the

first to operate in a continuous-support setup, whereas other algorithms assume discrete signals.

Indeed, the vast majority of PR methods are simply not designed to work with continuous sup-

ports; examples are PhaseLift [38], which recasts the PR problem as a semi-definite program,

and GESPAR [168], which linearizes the PR problem with the damped Gauss-Newton method.

In general, these approaches assume that the signals of interest are sparse vectors. As seen in

Figure 6.1, when the locations are not aligned with the sampling grid, the discretized signal con-

tains very few—if any—nonzero entries as the scattering function spreads the sharp continuous

locations.

A few algorithms can be adapted to work with continuous supports, but they fall short when

the measured support D̃ is noisy. This is the case of TSPR [84], which relies on the triangle

equality between locations to recover the support; as soon as the locations are corrupted with

noise, these equalities do not hold anymore.

The closest point of comparison to our method is the Charge Flipping algorithm [138, 139];

even though it operates in a discrete domain, our experiments have shown that it is resilient to

some noise on the ACF support.
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6.9.1 Charge Flipping

Charge Flipping is one of the reference algorithms in crystallography. It belongs to the class of

dual-space algorithms as it alternatively acts on the spatial and Fourier domains, designated real

and reciprocal space in crystallography. After randomly assigning a phase to the observed mag-

nitudes of the discrete Fourier transform (DFT) coefficients, it iteratively performs the following

two operations:

1. In the real space, it flips the sign of the values that are below some fixed threshold δ.

2. In the reciprocal space, it enforces that the magnitude of the signal corresponds to the

measured magnitude.

Charge Flipping directly takes as input the DFT coefficients of the ACF, while our support

recovery algorithm operates on a continuous version of the ACF. This is a significant advantage

of our algorithm over Charge Flipping as we do not assume that the support of the points is

aligned with a grid. To have an adequate comparison between the two, we need to consider

the entire pipeline, combining the three algorithms exposed in Section 6.4; this is illustrated in

Figure 6.7.

6.9.2 Experimental setup and results

We consider sparse signals of the form (6.1), where φ(x) is an ideal lowpass filter. Under this

form, f(x) corresponds to a stream of Diracs, which is the typical FRI signal; remark that other

sampling kernels or different pulse shapes—such as the VPW pulses described in Chapter 2—

could also be used. We then generate the corresponding DFT coefficients, discard their phase

information, and corrupt them with zero-mean Gaussian noise. Notice that in Sections 6.6

and 6.7, we assume noise on the support of the points; here, we are dealing with noise that is

applied to the DFT coefficients instead. Obviously, these noisy DFT coefficients also lead to

a noisy support of the super-resolved ACF, but it is not Gaussian anymore. In fact, as FRI

algorithms rely on nonlinear methods, the noise of its output is difficult to characterize.

The discretization of the Fourier domain is equivalent to a periodization of the spatial domain.

As a consequence, the squared magnitude of the DFT coefficients corresponds to a circular ACF.

While it is certainly possible to adapt Algorithm 6.1 to handle circular ACFs by testing all the

possible 2D quadrants for every observed d̃ ∈ D̃, we chose to zero-pad the support of f(x) until

its ACF is not circular anymore.

Regarding Charge Flipping, we notice that its performance highly depends on the initial

solution as well as the choice of the threshold δ. To avoid giving an unfair advantage to our

algorithm, we run Charge Flipping 10 times for each experiment and pick the best solution;

practical experiments show that the performance gain is marginal when going above such a

number of repetitions. Furthermore, best practice [139] suggests to pick δ = bθ, where b is a

constant around 1-1.2 and θ is the standard deviation of the measured signal. Our experiments

showed that progressively decreasing the value of δ also improves the performance of Charge

Flipping. This mimics the behavior of the simulated annealing algorithm, where the temperature

is steadily decreased until convergence.

Then, given noisy DFT coefficients as input, we compare the �2 error on the support of

the points for both algorithms, as well as a probability of successfully recovering the support.

To define the latter, we say that an algorithm fails when the �2 error is higher than a specific

threshold. Figure 6.8 shows that our FRI super-resolution algorithm surpasses Charge Flipping
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Figure 6.8: Comparison of our algorithm with Charge Flipping. The performance is evaluated

for K = 5 1D points chosen uniformly at random from [0, 1]. The number of DFT coefficients

is 200. Figure (a) shows the �2 reconstruction error on the locations for different values of the

input SNR. Figure (b) reports the percentage of success: we consider that the algorithms fail

when the resulting �2 error is larger than some threshold 0.04.

in terms of both metrics. It is not surprising that our algorithm exhibits a superior performance

in a low noise regime—it even achieves exact reconstruction in the absence of noise—since it is

not bound to a grid. On the other hand, Charge Flipping always suffers from approximation

errors due to the implicit discretization: in the noiseless case and for a grid of size 200, we

calculate that the expected �2 error on the support of K = 5 points is about 0.0056, which is in

adequacy with the baseline observed in Figure 6.8a. Simulations also indicate that our algorithm

outperforms Charge Flipping in high noise environments. Indeed, the reconstruction error is

consistently lower and its phase transition compares favorably as well.

6.10 Conclusion

We presented a novel approach to solve the phase retrieval problem for sparse signals. While

conventional algorithms operate in discretized space and recover the support of the points on

a grid, the power of FRI sampling combined with the sparsity assumption on the signal model

enables us to recover the support of the points in continuous space. We provided a mathematical

expression that approximates the probability of success of our support recovery algorithm and

confirmed our result via numerical experiments. We observed that, while our algorithm runs in

polynomial time with respect to the sparsity number of the signal, it remains relatively costly.

To alleviate the computational costs without impacting the quality of the reconstruction, we

introduced a caching layer to avoid repeating calculations. Furthermore, we proposed several

improvements that contribute to enhance the quality of estimation in the presence of noise.

Finally, we showed that our super resolution PR algorithm outperforms Charge Flipping, one of

the state-of-the-art algorithms, both in terms of average reconstruction error and success rate.





Conclusion

Words can be meaningless. If they are used in such a way

that no sharp conclusions can be drawn.

The Meaning of It All

Richard Feynman

We are reaching the end of our journey in the land of light, sampling and sparse signals. In

this dissertation, we conceived new algorithms and theories and proposed applications revolving

around the corpuscular, wave, and electromagnetic nature of light.

In Chapter 2, we presented variable pulse width-finite rate of innovation (VPW-FRI), a new

parametric model to represent sparse signals having variable pulse width. While the classical

FRI result is only applicable for streams of Diracs and pulses with fixed shapes, it has to be noted

that most signals in nature consist of pulses with variable widths; such is the case of ECG signals,

which are the ideal candidate for our pulse model. Along with the VPW model, we introduced

sampling theorems building on the finite rate of innovation paradigm. These sampling theorems

guarantee perfect reconstruction from only a limited number of samples in 1D, 2D and in the

spherical domain.

In Chapter 3, our FRI-based sampling theorems were used to acquire BRDFs and in particu-

lar, specularities, which can present several challenges when using classical sampling theory. The

sparse structure of specularities indeed fits perfectly within the finite rate of innovation frame-

work introduced in the previous chapter. In addition to developing a sampling theory for BRDFs,

we built light domes, which are specialized devices designed to acquire the reflectance function

141
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of objects. These light domes are very versatile in the sense that they allow the acquisition of

BRDFs with arbitrary resolutions. Furthermore, they enable new sampling schemes that were

not discussed in this thesis: two examples that come to mind are sampling along trajectories and

adaptive sampling.

In Chapter 4, we revived Lippmann photography and, with a signal processing perspective,

presented a new model to explain and analyze the process. This allowed us to discover and de-

scribe new phenomena regarding the color reproduction of Lippmann photochromes; specifically,

we showed that the spectra synthesized by a Lippmann plate are only a distorted version of the

original spectra. We precisely characterized the distortions introduced in the process and, more

importantly, proposed a way to eliminate these distortions and recover the original spectrum.

We verified our theoretical results and algorithm with extensive experiments and through the

creation of our own Lippmann plates.

Specularities were again the central theme in Chapter 5, where we exploited the polarization

state of light to separate the diffuse and specular components. We investigated cameras with

micro-filter arrays having different polarization orientations and proposed demosaicing schemes

to retrieve the diffuse and specular components of a scene from the output of such cameras. We

demonstrated that our approach outperformed single-image based techniques at that task. The

separation of the diffuse and specular components is crucial to many applications; in this thesis,

we showed that our method can significantly improve the estimation of the surface normals of a

scene based on our reliable estimation of the diffuse component.

Finally, in Chapter 6, we presented a new algorithm to solve the phase retrieval problem under

a sparsity assumption. Our approach diverges from traditional applications in the sense that it

does not discretize the position of the atoms to be estimated; this provides a virtually unlimited

spatial resolution. We proposed a theoretical analysis of our algorithm as well as numerous

strategies to improve its resilience to noise. Lastly, we showed through numerical experiments

that our algorithm outperforms charge flipping, the state-of-the-art in crystallography, in setups

with varying amounts of noise.

Outlook

After this brief summary, we now turn to the future and describe a few areas of ongoing work as

well as propose topics of research to be further investigated. In particular, we chose to highlight

a number of ideas related to Lippmann photography.

The historical Lippmann process

Our complete study of the historical Lippmann process enabled us to acquire a better under-

standing of these artworks. This knowledge can be applied to better showcase and underline the

beauty of Lippmann plates. We distinguish three ways to promote and exhibit this photography

technique: i) conceive display devices to enhance the visualization of existing plates, ii) create

replicas of Lippmann plates to reach a larger audience, and iii) provide a digital experience of

Lippmann photochromes through live rendering.

Visualization of historical Lippmann plates and exhibitions As mentioned in Chapter 4, our

work on Lippmann was born from our interactions with the Elysée museum, which owns the

largest collection of historical Lippmann plates in the world. Our collaboration was very fruitful;



143

(c) Interference display(a) Lippmann display device (b) Interference digital camera

reflectance0 1

0

d
is

ta
n
ce

(μ
m

)

Figure 6.9: Ideas for future work: (a) a Lippmann display device that consists of a moving

platform to hold the photographic plates as well as a lighting equipment surrounding the platform;

(b) prototype of an interference-based digital camera based on a Michelson interferometer; (c)

interference-based display using two partially reflective mirrors in a Fabry-Pérot design which

shows the colors we can reproduce by changing the distance between mirrors and their reflectance.

for instance, in winter 2017, we provided our expertise to design the lighting conditions to illumi-

nate three Lippmann plates, displayed as part of the Sans limite exhibition6. More recently, we

designed a display device in collaboration with Kjell Sverre Høyvik Bergum and Tarjei Nygaard

Skulstad, as illustrated in Figure 6.9a. Such a device allows the public to visualize Lippmann

plates under proper lighting and a moving platform enables us to witness the color changes when

the plate is viewed under different angles. These devices will be used in a large exhibition7 in

2021 to communicate with the general public about the science behind Lippmann photography.

In the meantime, the equipment will be operated in our laboratory to showcase our research.

Making replicas of Lippmann plates Another area of research worth investigating relates to

copying and printing Lippmann plates. Due to the extremely small size of the silver halide

grains, it is generally believed that Lippmann plates are impossible to copy [30]. We argue that

it is feasible. Exploiting our spectrum recovery algorithm from Chapter 4, we can precisely

reconstruct the spectra of scenes captured in Lippmann plates. From these spectra, it is actually

possible to create replicas of Lippmann plates; the idea is as follows. First, we acquire the

full spectrum of a Lippmann plate using modern hyperspectral imaging techniques. Second, we

retrieve the original spectra with Algorithm 4.1. Third, we need to somehow engrave or print

diffraction patterns corresponding to the recovered spectrum. To that end, we propose the design

of Figure 6.10 to reproduce a plate with the recovered spectrum, which is inspired from Newton’s

experiment in Figure 1.5. In this setup, we use a first prism to decompose white light into its

spectrum, which is then collimated using a plano-convex lens. This combination of prism and

lens can be interpreted as an analysis operation on the input light. The light spectrum can

then be recombined into a light ray using a second pair of plano-convex lens and prism. This

second arrangement is essentially a symmetry of the first arrangement and acts as a synthesis

operator on the spectrum. As such, this design just acts as an identity operator on the light.

6http://www.elysee.ch/expositions-et-evenements/expositions/sans-limite/
7http://www.elysee.ch/en/exhibitions-and-events/events/detail/news/rising-to-the-challenge-digital-

innovation-in-museums/
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Figure 6.10: Replicating Lippmann plates: the first pair of prism and plano-convex lens acts as

an analysis operator on the ray of white light. The decomposed spectrum can then be modulated

using the SLM in the middle of the image. In this specific example, the SLM cuts off blue colors

and preserves reds and greens. Finally, the modulated spectrum is recombined with a second

pair of plano-convex lens and prism that plays the role of a synthesis operator. This enables us

to create a ray of light with the spectral shape of our choice.

Things become more interesting when we place a spatial light modulator (SLM) [57] between the

two plano-convex lenses. As their name suggests, SLMs spatially modulate the light to specific

amplitudes. In our context, we can use the SLM to change the spectrum of a light ray to any

arbitrary shape. This light ray can then be projected onto a photosensitive plate to create a

‘pixel’ with the desired color; a spatial array of such pixels combined together then recreates

an image. Finally, the exposed plate is developed using standard Lippmann techniques. For a

better efficiency, it is also possible to replace the light ray with a plane of light and use the second

dimension of the SML to spatially modulate it. In this case, each plane of light corresponds to

a full row and the combination of several rows produces the final image. An advantage of our

proposed approach is that it is non-invasive in the sense that it does not require us to destroy the

original plate to infer its interference pattern or equivalently the original spectrum; this makes

it useable on historical Lippmann plates.

Rendering Another topic that we did not cover in this dissertation is that of digital rendering.

Our focus was mainly on the acquisition pipeline, but the synthesis of images using the acquired

data is also very relevant. As mentioned in Chapter 3, our laboratory has been the cradle of the

startup Artmyn, which specializes in both the acquisition of BRDFs and rendering of paintings

and artworks under dynamic lighting: the knowledge of the reflectance function of an artwork

combined with live rendering enables the 3D exploration and re-illumination of digitized artworks.

Live rendering was tackled using lightweight BRDF models, essentially trading off accuracy for

speed.

We are particularly interested in providing a similar experience with Lippmann plates. We

already experimented with our mathematical model in an off-line rendering framework and the

results are convincing8; the next step is to streamline the process and provide instantaneous

rendering for the visualization of digitized Lippmann plates.

8See for example https://go.epfl.ch/lippmann-rendering
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Bringing Lippmann to the XXI century

Our study on Lippmann photography also raises the question of how to transfer this ancient

photography technique to the XXI century. Nowadays, we have tools and technologies that are

more modern and elaborated than those available to Lippmann when he devised his interference

photography technique. Equipped with this additional knowledge, we propose displays and

optical designs that share the main ingredients as those found in Lippmann photography.

New camera designs Lippmann photography suggests the comparison with existing hyperspec-

tral camera designs. The goal of hyperspectral imaging is to capture the hyperspectral cube,

made of 2 spatial dimension and 1 spectral dimensions. What is remarkable is that Lippmann

photographs actually capture the 3 dimensions of the hyperspectral cube in a single take, a

feat that is not achieved with modern hyperspectral cameras. Indeed, due to the planar nature

of photosenstive sensors, modern cameras can only acquire 2 dimensions in a single take; the

third dimension being captured by taking a series of shots. There are two main ways to obtain

a hyperspectral cube: spectral scanning—where each image contain the entire spatial informa-

tion but only one spectral band—and spatial scanning, or push-broom—where the individual

images are made of the spectral dimension and only 1 spatial dimension. Spectral scanning is

usually performed using (tunable) bandpass filters [66]. Inspired by Lippmann photography, we

propose an interference-based spectral scanning camera design. In our laboratory, we recently

constructed a prototype of such a camera based on a Michelson interferometer (see Figure 6.9b).

The advantages of such a design is that it provides a direct representation of the two spatial

dimensions of the scanned objects. Moreover, the number of bands is easily adjustable.

We can also think of a device capturing both polarization and spectral information along

with 2 spatial dimensions, essentially borrowing ideas from Chapters 4 and 5.

Lippmann and interference-based displays The design described in Figure 6.10 could also be

exploited to create hyperspectral displays; just like an electron gun in cathode ray tube (CRT)

displays, we could use it to create 2D images with arbitrary spectra, one row at a time. This is

essentially the dual of push-broom hyperspectral cameras.

Another approach to create interference-based displays is the following. Inspired by the design

of Fabry-Pérot resonators [59], we propose to build a display where each pixel is made of two

tiny stacked partially reflective mirrors. The distance between the two mirrors could be adjusted,

driven by piezoelectric motors. Another parameter we can play with is the reflectance of the

mirrors. In Figure 6.9c, numerical simulations show the range of colors we could reproduce by

varying these two values. Perhaps not surprisingly, these colors closely match the ones one can

observe in soap bubbles (see Figure 1.4b), in which the interface between the thin layer of soap

and air plays the role of partially reflective mirrors. Even though the range of colors might seem

limited at first glance, one could imagine fast moving mirrors coupled with temporal or spatial

averaging to extend the range of reproducible colors, just like RGB-based displays. This display

design has two notable advantages over conventional displays: a much lower energy consumption

due to the absence of a backlight and a higher brightness in outdoor environments since it uses

ambient light as its illumination source. We note that a very similar design is already in use in

displays relying on the interferometric modulator (IMOD) technology [77, 118, 161]. Inspired by

the structure of the wings of blue Morpho butterflies, IMOD displays also generate interferences

with Fabry-Pérot resonators. The main difference with our proposal is that the distance between

the two mirrors is fixed in such displays, essentially restricting every pixel to a single color—red,
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green and blue—as in a traditional display. Spatial dithering is then exploited to create other

colors by combining these three channels.

Printing interference patterns Finally, modern means can also be used to recreate colors from

tailored interference gratings. In the previous section and Figure 6.10, we already proposed a

way to shape light to a desired spectrum and imprint it into a plate. We now see other ways of

creating interference gratings without the need for chemistry.

A known way of generating colors from interference is via diffraction grating dots [205].

Loosely speaking, diffraction grating dots consist of tiny bubbles which are printed inside a glass

plate and contain regular patterns whose spacing is of the order of the wavelength of visible

light. These regular patterns can be tuned to a specific frequency and reproduce monochromatic

light. By combining several dots together, it is possible to reproduce a wide range of colors.

One limitation of the technique is that it is restricted to regular patterns and thus, it cannot

reproduce arbitrary spectra.

More recently, the emerging field of femtosecond laser engraving [41] can provide an alterna-

tive to diffraction grating dots. The principle behind femtosecond lasers is the concentration of

a very large energy over a very short period of time. Usually, laser light passes through glass

without modifying it, but if its energy is large enough, it triggers permanent modifications in the

refractive index of the glass. These non-linear effects can be applied locally with a subwavelength

precision and enable to print custom patterns and reproduce arbitrary spectra. Such a technique

makes it possible to modulate the refractive index of a piece of glass in areas as small as 100-200

nm. We stress that we are talking about changing the refractive index, not the local reflectance

of the material; this phenomenon can be studied using the model described in Section 4.6.

Closing remark This concludes this dissertation. Hopefully our modest contributions have

stimulated your interest and will spark further connections between the fascinating worlds of

light and signal processing. As Gabriel Lippmann declared in his Nobel Prize lecture: “Life is

short and progress is slow” [104].
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[59] C. Fabry and A. Pérot, “On a new form of interferometer,” The Astrophysical Journal,

vol. 13, p. 265, 1901.
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[121] E. Moiseev, A. Prudnikov, and U. Skórnik, “On the generalized Fourier sine- and cosine-

transforms,” Integral Transforms and Special Functions, vol. 7, no. 1-2, pp. 163–166, 1998.

[122] A. Nair and P. Marziliano, “Noisy channel detection using the common annihilator with an

application to electrocardiograms,” in Proc. IEEE International Conference on Acoustics,

Speech and Signal Processing, pp. 5972–5976, 2015.

[123] A. Nair, P. Marziliano, R. F. Quick, R. E. Crochiere, and G. Baechler, “Multichannel

ECG analysis using VPW-FRI,” in Proc. International Conference on Sampling Theory

and Applications, pp. 125–128, 2013.



Bibliography 155

[124] V. T. Namy, “Computer-controlled light dome,” 2014, semester project report.

[125] H. Nareid, “A review of the Lippmann colour process,” The Journal of Photographic Sci-

ence, vol. 36, no. 4, pp. 140–147, 1988.

[126] H. Nareid and H. M. Pedersen, “Modeling of the Lippmann color process,” Journal of the

Optical Society of America A, vol. 8, no. 2, pp. 257–265, 1991.

[127] S. K. Nayar, X.-S. Fang, and T. Boult, “Removal of specularities using color and polar-

ization,” in Proc. IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, pp. 583–590, 1993.

[128] ——, “Separation of reflection components using color and polarization,” International

Journal of Computer Vision, vol. 21, no. 3, pp. 163–186, 1997.

[129] S. K. Nayar, K. Ikeuchi, and T. Kanade, “Determining shape and reflectance of hybrid

surfaces by photometric sampling,” IEEE Transactions on Robotics and Automation, vol. 6,

no. 4, pp. 418–431, 1990.

[130] S. K. Nayar, G. Krishnan, M. D. Grossberg, and R. Raskar, “Fast separation of direct and

global components of a scene using high frequency illumination,” in Proc. ACM Transac-

tions on Graphics, vol. 25, no. 3, pp. 935–944, 2006.

[131] R. Neuhauss, Die Farbenphotographie nach Lippmann’s Verfahren: neue Untersuchungen

und Ergebnisse. Knapp, 1898.

[132] I. Newton, Opticks or A Treatise of the Reflections, Refractions, Inflections and Colours

of Light. Royal Society, London, 1703.

[133] ——, “A letter of Mr. Isaac Newton, professor of the mathematicks in the University of

Cambridge; containing his new theory about light and colors: Sent by the Author to the

Publisher from Cambridge, Febr. 6. 1671/72; In Order to be Communicated to the Royal

Society,” Philosophical Transactions, vol. 6, no. 69-80, pp. 3075–3087, 1972.

[134] A. Ngan, F. Durand, and W. Matusik, “Experimental analysis of BRDF models,” Proceed-

ings of the Eurographics Symposium on Rendering, pp. 117–126, 2005.

[135] F. E. Nicodemus, “Directional reflectance and emissivity of an opaque surface,” Applied

Optics, vol. 4, no. 7, pp. 767–775, Jul 1965.

[136] H. Nyquist, “Certain topics in telegraph transmission theory,” Transactions of the Ameri-

can Institute of Electrical Engineers, vol. 47, no. 2, pp. 617–644, April 1928.
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tographie des Couleurs, vol. 2, no. 7, pp. 97–101, 1907.



Bibliography 157

[155] J. Ranieri, A. Chebira, Y. M. Lu, and M. Vetterli, “Phase retrieval for sparse signals:

Uniqueness conditions,” arXiv preprint arXiv:1308.3058, 2013.

[156] Ricoh Imaging Company Ltd, “Polarization camera,” https://www.ricoh.com/technology/

tech/051 polarization.html, 2018.
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Photographic Credits

All photographs and figures in this thesis have been captured or made by the author (and in

a few cases by his collaborators). The photographs that serve as title for each chapter often

involved several hours of hiking and overnight stays in remote places to catch the golden hour.

Below is a short description of them as well as their connection to the topic of their respective

chapters.

Acknowledgments

The Troll of Skógafoss Waterfall, South Iceland. 14 June 2015. We can distinguish one or

two faces in the moss on the left side, as this passage is dedicated to people. The rainbow

is also an allusion to the theme of the thesis.

Chapter 1

Finsteraarhorn and Schreckhorn from Oberaarhorn at dawn, Bernese Alps, Switzerland. 28

July 2016. The first light of the day announces the start of our journey in the land of light.

Chapter 2

Kirkjufell mountain, Snæfellsnes peninsula, Iceland. 5 June 2015. The shape of the moun-

tain closely resembles a VPW pulse.

Chapter 3

Lacs de Fenêtre, Swiss Alps. 26 July 2015. The reflection of light is showcased here by the

inverted view of the mountains on the surface of the lake.

Chapter 4

Hv́ıtserkur rock formation, North-West Iceland. 7 June 2015. The waves of the ocean leave

patterns in the sand, just like light waves imprint interference patterns in Lippmann plates.

Note that the patterns from the photograph are not created from interfering waves, but

are instead due to a phenomenon called saltation [13].

Chapter 5

Reflection of Wetterhorn, Schreckhorn and Finsteraarhorn in Bachalpsee, Bernese Alps,

Switzerland. 18 July 2018. The connection with Chapter 5 is that the photograph has

been captured with a circular polarizing filter, giving this blue color to the sky and cutting

some of the glare on the lake.
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Chapter 6

Sunset on Resurrection Bay, Kenai peninsula, Alaska. 5 September 2012. The wooden

poles are a direct reference to streams of Diracs and sparse signals.

Conclusion

Ibex on the slopes of Vanil Noir, Fribourg, Switzerland. 21 August 2013. The ibex is

reaching the top of the mountain and contemplates the next challenges ahead. Interestingly,

EPFL is located in the mist in the top right corner of the photograph.
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Software Engineering Intern
Implementation of a backend system for the automated intrusion de-
tection software used by the security team. Several features and bugs
resolved on the system.



Sep 2013 – Jul 2014 Morphean SA – Fribourg, Switzerland
Research and Development Engineer
Research and development on machine learning and video analysis. In
particular, study on the feasibility of a fall detection algorithm based on
video streams and implementation in a video surveillance product.

Sep 2011 – Apr 2012 Qualcomm Inc. – San Diego CA, United States
Research Intern
Research on ECG signals and finite rate of innovation sampling. Intro-
duction and investigation of a new sampling scheme for ECG signals,
called variable pulse width finite rate of innovation.

Jul – Aug 2011 LCAV, EPFL – Lausanne, Switzerland
Summer Intern
Projects on finite rate of innovation sampling to get familiar with the tools
and theories developed at the laboratory.

Feb – Jul 2010 Alcatel-Lucent Bell Labs – Murray Hill NJ, United States
Research Intern
Research on cryptography: secure multi-party computing, study of state-
of-the-art algorithms and proposition of speed improvements.

Jun – Aug 2009 Infoteam SA – Fribourg, Switzerland
Summer Intern
Development of a news management system for the administration of
the canton of Fribourg and demo apps in Android.

SKILLS

Programming Python, Go, Java, C/C++, Scala, Perl, Shell Script, .NET and C#

Mobile dev. Google Android, iOS

Databases Google Spanner, MySQL, SQL Server

Math Numpy/Scipy, Matlab, Mathematica, Sage Math, Pari/GP, LATEX

Languages French, English, German (basic)

PROFESSIONAL ACTIVITIES

Reviewer for IEEE Transactions on Signal Processing
Member of the IEEE Signal Processing Society

PUBLICATIONS

Journal Articles

[17] G. Baechler, A. Latty, M. Pacholska, M. Vetterli, and A. J. Scholefield, “Shedding light on
Lippmann photography”, 2018, Manuscript to be submitted for publication.

[16] G. Baechler, A. Latty, M. Pacholska, M. Vetterli, and A. J. Scholefield, “Lippmann photography:
A signal processing perspective”, IEEE Transactions on Signal Processing, 2018, Manuscript
to be submitted for publication.
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