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Abstract

As hardware evolves, so do the needs of applications. To increase the performance of an

application, there exist two well-known approaches. These are scaling up an application,

using a larger multi-core platform, or scaling out, by distributing work to multiple machines.

Both approaches are typically implemented using the shared-memory and message-passing

programming models. In both programming models, and for a wide range of workloads, there

is contention for access to data, and applications need synchronization. On modern multi-

core platforms with tens of cores and network interconnects with sub-millisecond latencies,

synchronization bottlenecks can significantly limit the scalability of an application.

This dissertation studies the scalability of synchronization in shared-memory settings and

focuses on the changes brought upon by modern hardware advances in processors and

network interconnects. As we show, current approaches to understanding the scalability of

applications, as well as prevalent synchronization primitives, are not designed for modern

workloads and hardware platforms. We then propose methods and techniques that take

advantage of hardware and workload knowledge to better serve application needs.

We first look into better understanding the scalability of applications, using low-level perfor-

mance metrics in both hardware and software. We introduce ESTIMA, an easy-to-use tool for

extrapolating the scalability of in-memory applications. The key idea underlying ESTIMA is

the use of stalled cycles in both hardware (e.g., cycles spent waiting for cache line fetches or

busy locks), as well as software (e.g., cycles spent on synchronization, or on failed Software

Transactional Memory transactions). ESTIMA measures stalled cycles on a few cores and

extrapolates them to more cores, estimating the amount of waiting in the system.

We then focus on locking, a common way of synchronizing data accesses in a shared-memory

setting. Typically, contention for data limits the scalability of an application. A poor choice

of locking algorithm can further impact scalability. We introduce GLS, a middleware that

makes lock-based programming simple and effective. In contrast to classic lock libraries, GLS

does not require any effort from the programmer for allocating and initializing locks, nor for

selecting the appropriate locking strategy. GLS relies on GLK, a generic lock algorithm that

dynamically adapts to the contention level on the lock object, delivering the best performance

among simple spinlocks, scalable queue-based locks, and blocking locks.

Finally, we study the performance of distributed systems that offer transactions, by expos-

ing shared-memory semantics. Recently, such systems have seen renewed interest due to
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Abstract

advancements in networking hardware for datacenters. We show how such systems require

significant manual tuning to achieve good performance in a popular category of workloads

(OLTP), and argue that doing so is error-prone, as well as time-consuming, and it needs to be

repeated when the workload or the hardware change. We then introduce SPADE, a physical

design tuner for OLTP workloads on modern RDMA clusters. SPADE automatically decides on

data partitioning, index and storage parameters, and the right mix of direct remote data ac-

cesses and function shipping to maximize performance. To achieve this, SPADE uses low-level

hardware and network performance characteristics gathered through micro-benchmarks.

Keywords: Multi-cores, scalability, synchronization, extrapolation, performance counters,

locking, adaptive locks, RDMA, tuning, OLTP
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Résumé

Les besoins des applications évoluent avec les progrès en hardware. Il existe deux façons bien

connues pour améliorer les performances d’une application : utiliser une plateforme multi-

cœur, ou distribuer le calcul sur de multiples machines. Ces deux approches sont typiquement

implémentées à l’aide de modèles de mémoire partagée et de passages de messages. Pour une

grande gamme de charges de calculs, il y a d’étranglement au niveau de l’accès aux données, et

les applications ont besoin de synchronisation. Sur les plateformes modernes avec des dizaines

de cœurs et des interconnections de réseaux performantes, les exigences de synchronisation

peuvent significativement limiter la mise à l’échelle d’une application.

Cette dissertation étudie la mise à l’échelle de la synchronisation sur la mémoire partagée. Elle

s’intéresse aux changements exigés par les avancées modernes en hardware des processeurs

et des réseaux. Comme on le montre, les approches traditionnelles pour comprendre la mise à

l’échelle de la synchronisation, ainsi que les primitives de synchronisation prédominantes,

ne sont pas adaptées aux charges et aux plateformes hardware modernes. On propose des

méthodes et des techniques qui exploitent au mieux la connaissance de la charge et du

hardware pour répondre aux besoins des applications.

On commence par chercher à mieux comprendre la mise à l’échelle des applications, à l’aide

de métriques de performance de bas niveau, à la fois en termes hardware et software. On

introduit ESTIMA, un outil pour extrapoler la scalabilité d’applications. L’idée clé derrière

ESTIMA est l’utilisation de cycles retardés, en hardware (e.g., les cycles des requêtes de caches

perdus) aussi bien qu’en software (e.g., les cycles passés en synchronisation, ou les transactions

en Software Transactional Memory qui ont échoué). ESTIMA mesure les cycles retardés dans

quelques cœurs et les extrapole, en estimant le temps que le système passe à attendre.

On se concentre ensuite sur le verrouillage, une approche commune de synchronisation. La

contention pour l’accès aux données typiquement limite la mise à l’échelle d’une application.

Un mauvais choix d’algorithme de verrouillage peut davantage impacter sa scalabilité. On

introduit GLS, un middleware qui rend la programmation avec des verrous simple et efficace.

Contrairement aux bibliothèques classiques, GLS ne requiert aucun effort de la part du pro-

grammeur pour allouer et initialiser les verrous, ni pour choisir l’ algorithme. GLS utilise GLK,

un algorithme de verrouillage générique qui adapte dynamiquement au niveau de contention

pour chaque verrou, atteignant la meilleure performance parmi des verrous tournants simples,

des verrous scalables à base de queue, et les verrous de blocage.
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Résumé

Enfin, on étudie les systèmes distribués qui permettent les transactions. On montre que de tels

systèmes nécessitent d’importants réglages à la main pour atteindre de bonnes performances

pour des charges OLTP. On se soutien que cette approche est chronophage et sujette aux

erreurs. On introduit SPADE, un système de réglage physique pour les charges OLTP sur les

clusters RDMA. SPADE décide automatiquement du partitionnement des données, des para-

mètres de stockage et d’indexage, et du bon mix entre accès directs et le lancement de fonction

à distance pour maximiser les performances. Pour y arriver, SPADE utilise les caractéristiques

de performance de hardware et de réseau, collectées via des micro-benchmarks.

Keywords : Multi-cœurs, scalabilité, synchronisation, extrapolation, compteurs de perfor-

mance, verrouillage, verrou adaptatif, RDMA, réglage, OLTP
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1 Introduction

In 1965, Gordon Moore described a doubling of the density of components in integrated

circuits every two years. This observation is nowadays known as Moore’s Law [118]. For

decades, Moore’s Law went hand in hand with the Dennard Scaling Rule, which described that

as circuit density increases, power density remains constant, resulting in an increase of the

performance of circuits [42]. The result was increased performance for applications without

significant effort from the part of the developers, as each generation of processors would bring

performance improvements.

In the early 2000s, the Dennard Scaling Rule’s validity came to an abrupt end, when current

leakage prevented further lowering of the threshold voltages, limiting transistor performance

gains [23]. Processor designers moved towards utilizing the increasing transistor density

to add more processing cores on the same die. Commodity processors became multi-core

processors. Applications stopped seeing performance improvements and developers began

transforming their applications into multi-threaded ones. As modern processors keep adding

more cores and features such as deep cache hierarchies, multi-threaded applications take

advantage of hardware, scaling their performance with the resources available in a machine.

We say that such applications scale up. Additionally, even before processors hit the end of

Dennard scaling, applications that needed more resources than a single machine could offer,

opted for distribution of work. That refers to systems consisting of multiple machines, often

interconnected by fast networks (as allowed by each generation of networking hardware), and

applications that spread work among these machines. We say that such applications scale out.

Developing applications for both scaling methods involves distributing work between the

processes that make up the application. These processes might run on the same machine, or

different machines. For some workloads, called embarrassingly parallel, distributing the work

is straightforward, and minimal communication is necessary between the processes. Such

applications typically scale with very little effort, as the resources available (processing cores

and/or machines) increase. However, for a wide range of applications, distributing work is

not as trivial, and processes have shared state. In those cases, to ensure correctness, there is a

need for synchronization, that is coordination of access to this shared state.
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Applications nowadays follow one of two main programming models: shared-memory, or

message-passing. In the first model, all the threads of an application have access to a common

memory, and communicate by accessing common variables, or data structures. Examples

of such communication are shared counters, shared flags, and more. In the second model,

threads compute independently, and communicate with other threads when there is a need for

exchange of state. For example, threads can compute partial results, exchange their computed

parts, and continue computing towards a final result.

While the two programming models have typically lent themselves to the two scaling meth-

ods, with shared memory being primarily used for scaling up and message-passing used to

scale out, the boundaries have become blurred, as modern hardware has evolved. Modern

multi-core systems resemble small-scale distributed processing cores, and research projects

have proposed message-passing inside a single machine [19]. Similarly, shared-memory ab-

stractions can be built on top of a cluster of machines, where the global address space can be

distributed over the physical memory of the machines. Such implementations have typically

been prohibitively expensive computationally. However, modern network interconnects have

offered fast ways to access remote memory, through Remote Direct Memory Access capabili-

ties. This advancement has made it feasible to offer shared-memory abstractions over clusters

of interconnected machines, using commodity hardware [8, 32, 52, 88, 106, 174].

In this dissertation, we focus on shared-memory model systems and applications. In such

systems, memory is exposed to all the threads of an application, in a shared global address

space. Threads are free to read and write any part of the memory. Memory can either be a

physical memory module attached to a processor running all the threads of an application,

a physical memory module attached to a remote processor on the same machine (i.e., a

different Non-Uniform Memory Access Domain), or physical memory attached to a remote

machine exposed over a local network. In such distributed settings, we only focus on machines

interconnected in a local environment with fast network interconnects, such as a datacenter.

1.1 Shared-Memory Scalability and Synchronization

Synchronization on shared-memory systems is traditionally achieved through locking. Devel-

opers choose the granularity of data that need to be protected from concurrent accesses (e.g.,

a node in a linked list) and choose a locking algorithm to implement their locking strategy.

During execution, the algorithm acquires and releases locks, based on the operation to be

performed. Synchronization through locking can be a significant bottleneck, but can also

affect the correctness of an application, since lock implementations can suffer from problems

such as deadlocks and livelocks [33, 76]. Another method of synchronizing access to data is

through lock-free algorithms [63, 77], which typically use hardware-provided primitives (such

as Compare-and-Swap) to avoid using locks.

Alternatively, applications can use transactions. Transactions are indivisible sets of operations

in an application, that typically satisfy a series of properties. In shared-memory systems,
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applications that use transactions rely on either hardware-provided abstractions (e.g., Intel’s

TSX [81]), or runtimes that offer transactional abstractions (e.g., SwissTM [49]).

Nowadays, modern multi-core machines become bigger and more diverse. Processors on

server machines typically contain tens of cores, and hundreds of gigabytes of main memory.

This allows them to achieve performance by holding big parts (or the entirety) of their dataset

in main memory. At the same time, it also means that new bottlenecks are becoming more

important. Synchronization is one of them. The performance degradation of synchronization

algorithms and implementations that are not designed to scale to this large number of cores is

significant. If the synchronization primitives in a synchronization-heavy application do not

scale, the scalability of the application suffers.

In this dissertation, we focus on understanding and improving the scalability of synchroniza-

tion in the shared-memory setting. We propose techniques and methodologies for predicting

the scalability potential of applications and understanding the bottlenecks that may limit

scalability. We then set out to improve two common synchronization primitives used in

shared-memory applications: locking in multi-core systems and transactions in distributed

shared-memory systems. We do so, by adapting to the contention and workload, showing that

static approaches can significantly limit scalability.

1.2 Understanding the Scalability of Shared-Memory Applications

Modern multi-core machines nowadays have large main memories, allowing for a wide range

of applications to keep their data in-memory, avoiding slow secondary storage and networks.

However, many application still exhibit poor performance in large production machines. Un-

derstanding the reasons behind this can be difficult: developers typically use smaller machines

to develop and test applications than the ones used in production settings. Additionally, pro-

cessors and memory systems evolve, meaning that applications tested today even on high-end

multi-cores, in a few years will be run on significantly larger machines.

To better understand the scalability of applications, various approaches and methodolo-

gies have been proposed, including performance evaluation and detailed models of applica-

tions [70, 109]. In the first part of this dissertation, we argue that such approaches are not only

time-consuming and error-prone, and look for an alternative that not only makes the process

easier, but also provides high accuracy.

In Chapter 4 we present ESTIMA, an easy-to-use tool for extrapolating the scalability of in-

memory applications. ESTIMA is designed to perform a simple, yet important task: given the

performance of an application on a small machine with a handful of cores, ESTIMA extrapolates

its scalability to a larger machine with more cores, while requiring minimum input from the

user. The key idea underlying ESTIMA is the use of stalled cycles in hardware (e.g., cycles

that the processor spends waiting for missed cache line fetches or busy locks) and software

(focusing on cycles spent on synchronization). ESTIMA measures stalled cycles on a few cores
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and extrapolates them to more cores, estimating the amount of waiting in the system. ESTIMA

can be effectively used to predict the scalability of in-memory applications for bigger execution

machines. We extensively evaluate our solution and show the effectiveness of ESTIMA on a

large number of in-memory benchmarks.

1.3 Improving the Scalability of Shared-Memory Applications

In the second part of this thesis, we focus on two synchronization primitives commonly used in

shared-memory applications: locking and transactions. We first identify the shortcomings of

existing designs and implementation, and present two systems that improve the performance

of these primitives, tailoring them to modern hardware platforms.

A priori, locking seems easy: To protect shared data from concurrent accesses, it is sufficient to

lock before accessing the data and unlock after. Nevertheless, making locking efficient requires

fine-tuning (a) the granularity of locks and (b) the locking strategy for each lock and possibly

each workload. As a result, locking can become very complicated to design and debug.

In Chapter 5 we present GLS, a middleware that makes lock-based programming simple and

effective. GLS offers the classic lock-unlock interface. However, in contrast to classic lock

libraries, it does not require any effort from the programmer for allocating and initializing

locks, nor for selecting the appropriate locking strategy. GLS is based on GLK, a generic lock

algorithm that dynamically adapts to the contention level on the lock object. GLK delivers the

best performance among simple spinlocks, scalable queue-based locks, and blocking locks.

Furthermore, GLS offers several debugging options for easily detecting various lock-related

issues, such as deadlocks. We evaluate GLS and GLK on two modern multi-core platforms,

using several software systems and show how GLK improves their performance by 23% on

average, compared to their default locking strategies. We also illustrate the simplicity of using

GLS and its debugging facilities by rewriting the synchronization code for Memcached and

detecting two potential correctness issues.

Distributed transactions on modern RDMA clusters promise high throughput and low latency.

However, achieving good performance requires tuning the physical layout of the data store

to the application and the characteristics of the underlying hardware. Manually tuning the

physical design is error-prone, as well as time-consuming, and it needs to be repeated when

the workload or the hardware change.

In Chapter 6 we quantify the effect of this tuning on the performance of OLTP workloads and

present SPADE, a physical design tuner for OLTP workloads on modern RDMA clusters. SPADE

automatically decides on the partitioning of data, tunes the index and storage parameters,

and selects the right mix of direct remote data accesses and function shipping to maximize

performance. To achieve this, SPADE combines information derived from the workload

and the schema with low-level hardware and network performance characteristics gathered

through micro-benchmarks. We implement and evaluate SPADE on top of FaRM [52, 53], and
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show how tuning can achieve up to 2.2x higher performance over manual designs for two

widely used OLTP benchmarks.

1.4 Thesis Statement and Contributions

This dissertation studies the effect of synchronization on applications that employ the shared-

memory programming model. As we show, existing ways of understanding and extrapolating

the scalability of applications developed for the shared-memory setting, as well as existing

synchronization primitives, are workload agnostic and not tailored to the modern hardware

landscape. In this dissertation, we propose using new sources of information to extrapolate the

scalability of applications and show how synchronization primitives that consider workload

and hardware characteristics can help shared-memory applications scale better.

In detail, this dissertation makes the following intellectual contributions:

• It introduces the use of stalled cycles in hardware and software for extrapolating the

scalability of in-memory applications.

• It introduces a new locking paradigm, in which lock management and lock algorithm

selection is abstracted from the programmer and handled by a locking runtime.

• It identifies and quantifies the effect of tuning On-Line Transaction Processing (OLTP)

applications on modern RDMA clusters and shows how this tuning can be automated.

1.5 Roadmap

The rest of this dissertation is organized as follows:

• Part I provides some background on synchronization and modern hardware trends

(Chapter 2) and discusses related work (Chapter 3).

• Part II presents a new technique for understanding and extrapolating the performance

of in-memory applications (Chapter 4). It also shows how developers can identify the

root cause of poor scalability in their applications.

• Part III shows how we can improve the scalability of applications that use two popular

synchronization abstractions, locking and transactions. Chapter 5 proposes a locking

runtime that improves the scalability of applications and minimizes the development

effort for lock-based programming. Chapter 6 presents our analysis of the effect of tun-

ing on OLTP applications running on modern RDMA-enabled clusters and introduces

SPADE, a physical design tuner for OLTP workloads built in FaRM [52, 53].

• Part IV presents directions for future work and concludes this dissertation (Chapter 7).
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2 Background

In this chapter, we present some background related to this thesis. We begin by describing

modern multi-cores and the trends that have affected them. We then continue by presenting

some background on performance counters and stalled cycles, which form the basis of our

work in Chapter 4. We continue by presenting lock-based programming, which we set out

to improve in Chapter 5. Finally, we highlight recent hardware trends and how they affect

distributed transactions, which is the topic of Chapter 6.

2.1 Modern Multi-Core Platforms

The shift of processor manufacturers from high-frequency, single-core processors in the early

2000s drastically changed the design of software. While before applications typically would

benefit from the increase in the performance of processors, suddenly developers had to start

developing multi-threaded applications, explicitly handling aspects of their applications such

as data splitting and workload distribution. Even more, as more and more cores were added to

processors, the single-thread performance of an application stopped being the most important

performance metric, and scalability, or the ability of an application to use additional cores,

became the most important performance characteristics of an application.

To better take advantage of the increasing transistor density on processors, manufacturers

have added additional levels of cache memory, and additional processing units in each core.

The additional levels of cache have been added to mitigate the growing gap between CPU

and memory performance [73]. Nowadays, server processors typically have 3 levels of cache

memory, with tens of MB of shared L3 cache memory per processor. However, multi-core

processors need to solve a significant problem when caching is introduced: they need to

ensure cache coherence, that is maintaining a consistent view of data, as it is modified by the

private caches of different cores. To achieve that, they utilize coherence protocols, the most

prominent of which is the MESI protocol [128].
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Including more processing units in the same core is done to improve thread-level parallelism.

While an executing thread stalls (e.g., because of data dependencies, or waiting on a memory

transfer), more threads can run on the same core, using the additional processing units in it.

In modern processors, such processing units are presented as simultaneous multi-threading

(SMT) threads [162]. While SMT threads can execute in parallel, the fact that they share

significant resources, such as caches and pipelines, means that they can also interfere with

each other and degrade performance.

The last hardware trend in modern processors is regarding the interconnection of multiple

processors in the same machine, to create multi-processor machines. Typically, each processor

is housed in a different die, with a locally attached memory module. We refer to these configu-

rations as multi-socket configurations. Manufacturers typically have specialized interconnects

between sockets, such as Intel’s QuickPath [80] and AMD’s Hyper Transport [36]. The result of

such configurations is that data accesses and shared data among cores residing on different

sockets can incur higher latencies, thus limiting scalability. As such, taking NUMA effects into

account becomes important, especially for machines with multiple sockets.

2.2 Stalled Cycles and Performance Counters

2.2.1 Stalled cycles

During the execution of an application, CPU cycles are spent to produce useful work, while

part of the cycles is spent stalling (called stalled cycles), either at the hardware level (i.e.,

waiting on a cache line miss), or at the software level (i.e., spinning on a busy lock). In an

ideal scenario, stalled cycles would not constitute a significant part of the execution time and

cycles that produce useful work would be evenly distributed across processors, resulting in

linear speedup for the application (assuming that the instructions executed do not change

significantly when running on more cores).

However, this is rarely the case. Stalled cycles can comprise a significant part of execution time,

increasing with the number of cores. Stalled cycles exist both in hardware and software. At the

hardware level, stalls are the result of unavailability of processing units or data, which degrades

the performance of an application as the number of cores increases. Parallel applications

additionally need synchronization, which causes further increases in stalled cycles at the

software level. These stalls minimize the benefits from scaling up an application and could be

the reason behind even slowdown for higher core counts.

2.2.2 Hardware stalled cycles

Hardware stalls can be divided into two big categories, depending on the stalled execution

stage. Frontend stalls are stalled cycles in the fetch and decoding phase of an instruction exe-

cution, while backend stalls are stalled cycles during the rest of the execution of an instruction.
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Frontend stalls can typically be attributed to waiting on an instruction fetch that missed in the

instruction cache, or a target fetch after a branch misprediction. Backend stalls are typically

the result of resources or data not being available during execution. Both categories of stalled

cycles have a negative effect on the performance of an application. However, frontend stalled

cycles do not change significantly for increasing core counts. In contrast, backend stalled

cycles have a direct impact on the scalability of an application, as they significantly increase

when adding more cores.

2.2.3 Software stalled cycles

Previous research has shown that Instructions-Per-Cycle (IPC) related metrics are not always

useful in predicting the performance of an application [11]. Stalled cycles are closely related to

IPC calculations and can thus face the same problem. A processor can spend time executing

instructions that do not contribute to useful work. If only hardware stalls are considered, this

choice can be the source of prediction inaccuracies. Stalls at the software level can typically

be found in synchronization of threads. This includes both lock-based synchronization (e.g.,

spinning on a busy lock), as well as optimistic concurrency control mechanisms, such as

software transactional memory (STM) [74, 144]. In applications that use STM libraries, aborted

transactions discard all work done inside the transaction.

Our work on ESTIMA ( Chapter 4) solves this problem by enabling the use of software stalled

cycles. These represent cycles during which the application is executing instructions that do

not produce useful work. Software stalls are optional: users can use a runtime that reports

software-level stalled cycles, or modify their applications to provide such information, in order

to improve the accuracy of predictions.

2.2.4 Extrapolating time

A straightforward approach for scalability predictions is to extrapolate the execution time of

an application, measured for low core counts. Indeed, such approaches already exist [17] and

provide high accuracy for the workloads they target. They typically function as follows: initially,

they take measurements of the execution time of the application for different core counts.

The next step is to use analytic functions to approximate the measurements, and extrapolate

the measurements to higher core counts. An important drawback of this approach is that

extrapolation requires scalability trends to be present in the existing measurements. When

that is not the case, such as in the case of kmeans, shown in Figure 2.1, directly extrapolating

time can lead to erroneous conclusions. In this case, the time extrapolation method predicts

that the application will continue scaling for up to 48 cores, which is not the case. Similar

cases can appear when small changes in the execution time steer the extrapolation towards

wrong predictions. In Chapter 4) we show how ESTIMA compares against time extrapolation,

as well as cases where ESTIMA is able to capture the scalability of applications for which trends

are not visible in measurements.
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Figure 2.1 – Time extrapolation for kmeans.

2.3 Lock-based Programming

Locks are objects with two states: busy or free. A lock can be either free, or have a single owner,

namely the thread that holds the lock. Locks ensure mutual exclusion: Only the owner can

proceed with its execution, while any concurrent threads are waiting behind the lock. Locks

offer two operations: lock and unlock. The former is used to acquire the lock (i.e., make the

current thread the owner of that lock). Unlock releases the lock so that it can be subsequently

acquired by another thread.

There are numerous lock algorithms. These algorithms mostly differ in the way they handle

contention, namely the situation where threads are waiting for a busy lock to become free.

Typical designs employ either busy waiting, or blocking for waiting. With busy waiting, waiting

threads remain active, polling the lock until they manage to acquire it. With blocking, waiting

threads release their hardware context to the OS. The OS is responsible for unblocking these

“sleeping” threads when the owner releases that lock.

There exist various busy-waiting locking algorithms. Simple spinlocks, such as test-and-set

(TAS), test-and-test-and-set (TTAS), and ticket lock [111] (TICKET), use a single memory location

on which threads are busy waiting. Spinlocks are fast under low contention due to their

simplicity. However, simple spinlocks might generate a lot of coherence traffic on the single

memory location (i.e., cache line) of the lock [13]. Queue-based locks (e.g., MCS [111], CLH [37])

generate a queue of waiting nodes so that each thread is spinning on a unique location when

busy waiting. Queue-based locks thus remove the single-memory-location bottleneck of

simple spinlocks.
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The most well-known blocking lock is the mutex-lock (MUTEX), part of the pthread library.

Because the overheads of the OS for blocking and unblocking a thread are high, blocking locks

typically employ a busy-waiting period before putting threads to sleep.

At a first glance, programming with locks looks simple. Locking is appealing precisely because

of this simplicity. Nevertheless, using locks efficiently (i.e., achieving correct and fast designs)

can become cumbersome, mainly because of various correctness and performance problems

that are often associated with locks.

2.3.1 Programming with locks

In short, programming with locks involves the following steps:

1. Recognizing the various critical sections and the data they protect (i.e., the granularity

of each lock).

2. Selecting and using concrete lock implementations.

3. Declaring the lock objects. Non-statically allocated locks must not only be declared, but

allocated as well.

4. Initializing the locks.

5. Using the locks through their interface (i.e., lock, trylock, unlock) in order to protect the

critical sections.

6. Destroying and possibly deallocating the locks.

If the developer implements any of these steps improperly, correctness and performance

issues can emerge.

2.3.2 System correctness with locks

The most well-known bugs associated with locks are deadlocks. In a deadlock, a thread has

acquired a lock l0 and is waiting for an already acquired lock l1, the owner of which is waiting

for a different acquired lock l2 and so forth. Finally, there is a thread that has acquired ln and

is waiting for l0, in which case none of the threads can make progress. Deadlocks are often a

result of acquiring locks in the wrong order and are notoriously hard to debug.

Another hard-to-detect issue with locks is using uninitialized locks (i.e., trying to (un)lock a

non-initialized lock object). This issue results in executions where the system may or may not

work properly, depending on the initial value of the lock object’s memory. Other common

mistakes with locks are trying to lock the same object twice, unlocking a lock that is already

free, or releasing a lock that has been acquired by another thread.1 As with uninitialized locks,

the latter issues can break the system.

1 Releasing a lock owned by another thread, or acquiring a lock twice, can be also used as a feature.
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These issues are common in practice [33]. In §5.3.2, we present an easy-to-use debugging

extension of GLS for detecting all of these issues. In fact, we use GLS to detect and solve two of

these issues in Memcached (§5.4.1).

2.3.3 System performance with locks

In addition to correctness problems, locks might become a performance bottleneck, mainly

due to two different reasons.

First, highly-contended locks can easily become a bottleneck (e.g., the global lock in Mem-

cached v1.4.13 [59] or in the Linux kernel [21, 104]). Removing these bottlenecks might require

significant effort. The designer must redesign the critical sections and change the granularity

of the locks. This process is of course prone to the correctness issues discussed earlier.

The second and more important reason is that different lock algorithms are suitable for

different workloads [40, 66]. As we show in Figure 5.1, simple spinlocks shine under very-

low contention, queue-based locks are by far the best under medium to high contention,

and blocking locks are necessary under multiprogrammed workloads. Choosing the “wrong”

algorithm under multiprogramming can lead to livelocks, situations where although the

threads execute, the system throughput is close to zero (see MySQL in §5.4.2).

Naturally, while designing and implementing a general-purpose system, the designer cannot

predict every single deployment or potential runtime fluctuation of the behavior of the work-

load. Therefore, she must choose the common-denominator lock algorithm (i.e., the one that

works even on multiprogramming), namely mutex. Unfortunately, studies have shown that

mutex is slow compared to other algorithms in the absence of multiprogramming [40].

2.4 Distributed Transactions and Modern Hardware

2.4.1 Modern hardware trends

Modern hardware clusters follow two main trends: large main memories and fast network

interconnects. Indeed, commodity machines nowadays typically contain a few hundreds of

gigabytes of main memory at very low prices. This enables handling tens of terabytes of data

with only a small cluster of machines, benefiting from the low latency and high throughput of

main memory and avoiding complex buffering mechanisms [149].

Ensuring data durability in main memory requires persistent logging. In order to avoid

the overheads of logging to disks or SSDs, machines of a cluster can be equipped with a

"distributed uninterruptible power supply" (distributed UPS) [53, 114] that writes the contents

of the memory to an SSD when a power failure occurs, effectively making all DRAM non-

volatile. New Non-Volatile RAM (NVRAM) technologies that have been proposed [99, 113, 137,

150] provide an alternative, but have not been widely deployed yet.
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At the same time, datacenter networking has also evolved. Commodity Network Interface

Controllers (NICs) nowadays support Remote Direct Memory Access (RDMA). Current imple-

mentations include InfiniBand, RoCE (RDMA over Converged Ethernet) and iWARP (internet

Wide Area RDMA Protocol). Connection-based implementations support one-sided RDMA

requests. Applications register memory regions with the NIC, after which the NIC can serve

one-sided RDMA requests (e.g., remote read or write requests) without involving the CPU.

Remote reads and writes are currently only supported in reliable connection-based implemen-

tations. RDMA has been exploited to increase performance in a number of different systems

and scenarios [18, 79, 89, 100, 116, 146, 151, 161].

2.4.2 Distributed transactions

Distributed database transactions are old, but still an active area of research [90, 155, 170].

Recently, various systems have utilized fast networks and modern hardware to achieve millions

of OLTP transactions at the sub-millisecond scale [8, 32, 52, 88, 106, 174]. Most of these systems

either build (or rely on) message-passing abstractions (typically Remote Procedure Calls –

RPCs), utilize one-sided RDMA operations to directly access the memory of remote machines,

or use a combination of the two (e.g., one-sided RDMA reads and writes with RPCs).

There are two main execution models for distributed transactions. In the first [32, 52, 88],

often referred to as symmetric, all the machines participate in storing data and executing

transactions. Each server is responsible for storing parts of the data (and possibly replicas of

the data stored by other machines of the cluster), as well as running distributed transactions.

The second model [106, 174] distinguishes between computation and storage nodes. The

former run transactions, utilizing RDMA to access the data stored in the memory of the latter.

We use FaRM[52, 53] as our target platform. In FaRM, objects are stored in the memory of the

cluster with a global address. FaRM uses one-sided RDMA accesses for lock-free reads, as well

as message-passing for read-write transactions. It offers an API that allows applications to

create and execute transactions. It also includes implementations of a distributed hashtable

and a distributed B-Tree.

2.4.3 The cost of performance on modern RDMA networks

Distributed transaction systems typically offer APIs for low-level operations within transac-

tions. Some of them also include implementations of data structures that can be used for

OLTP workloads. More specifically, [8, 32, 52, 88, 106, 174] have a hashtable implementation,

while [32, 52, 106, 174] have a B-Tree [35] implementation. Even with the available APIs and

data structures, implementing OLTP workloads using such an API is not straightforward. For

example, given only two of the queries of TATP benchmark [120], GET_SUBSCRIBER_DATA

and UPDATE_LOCATION (shown in Listing 2.1 and Listing 2.2), there are a few crucial choices

to get performance out of the underlying hardware. For the Subscriber table, these are:
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1. Table storage. This includes data partitioning and deciding on how the data is stored,

for example inlining data in an index, or flat storage of data.

2. Indexes. By examining the queries, in addition to a primary hash index on s_id, a

secondary hash index on sub_nbr is necessary. Based on the choices in the previous

step, each index needs additional tuning to get the best performance of the underlying

network, based on characteristics such as the record size, the operation mix and the

neighbourhood size of the hash index.

3. Remote data access. Possible options here include: a) remotely accessing the data using

RDMA, b) doing an RPC to the server holding the data, or c) a combination of the two.

Choosing when to remotely access data and when to send a message can be fine-tuned

based on the length of the operations and the size of transfers necessary.

SELECT s_id , sub_nbr ,
bit_1 , bit_2 , bit_3 , bit_4 , bit_5 ,
bit_6 , bit_7 , bit_8 , bit_9 , bit_10 ,
hex_1 , hex_2 , hex_3 , hex_4 , hex_5 ,
hex_6 , hex_7 , hex_8 , hex_9 , hex_10 ,
byte2_1 , byte2_2 , byte2_3 , byte2_4 ,
byte2_5 , byte2_6 , byte2_7 , byte2_8 ,
byte2_9 , byte2_10 ,
msc_location , vlr_location

FROM Subscriber
WHERE s_id = <rnd >;

Listing 2.1 – TATP’s GET_SUBSCRIBER_DATA query.

UPDATE Subscriber
SET vlr_location = <rnd >
WHERE sub_nbr = <rnd >;

Listing 2.2 – TATP’s UPDATE_LOCATION query.

Making the correct choices is not only cumbersome, but also error prone. In fact, workloads

typically contain a mix of operations for each table and queries can touch data on more than

one tables (and possibly machines). Deciding on a set of parameters for each table, based on

the workload and the hardware it will execute on quickly becomes overwhelming, and making

the wrong choices can have a significant impact on performance, as we showed in Figure 6.1.

Additionally, changing the workload requires repeating the entire process, which is time-

consuming if done manually. Previous work has implemented and studied the performance

of OLTP transactions on modern RDMA clusters, but has not looked at the trade-offs of tuning,

or quantified the effect that these choices have on the performance of an OLTP workload on

modern RDMA networks.
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3 Related Work

In this chapter we present related work to the topics addressed by this dissertation. We begin

with work related to our scalability prediction tool (presented in Chapter 4) in Section 3.1. We

then present work on locking for multi-cores and adaptive locking in Section 3.2, which relates

to our work in Chapter 5. Finally, in Section 3.3, we describe work in the area of distributed

transactions on modern hardware, which relates to our work presented in Chapter 6.

3.1 Scalability Prediction and Performance Analysis

The work that is most closely related to ESTIMA (Chapter 4) is that of Crovella et al. [38], in

which the authors identify two categories of stalls at the software level: productive cycles

and stalled cycles. They collect measurements of the two categories of cycles and use them

to predict the performance of an application. As we show in Chapter 4 using low-overhead

performance counters offered by modern hardware can reduce overheads. At the same

time, adding software-level stalls to measure synchronization overheads can further improve

accuracy, making a solution applicable to a wider variety of workloads.

Various research projects have studied the scalability of parallel and distributed applications.

Barnes et al. [17] use linear logarithmic functions to predict the scalability of message-passing

scientific applications on large-scale parallel systems. The number and the configuration

of CPUs are the inputs and the process uses linear logarithmic functions. In [98], statistical

techniques and regression analysis are used to build piecewise black-box polynomial and

neural network models of scientific programs. Neural networks are also used in [83] to build

models of SMG2000 applications executing on two different large-scale machines. In [124],

the author extrapolates address stream profiles, using low-level metrics collected on memory

access patterns, in order to study the memory performance of an application under strong

scaling. Finally, in [34], the authors use call path profiles and expectations on the cost dif-

ferences between executions to estimate the scalability costs incurred by different parts of

the program. Our work in Chapter 4 focuses on the scalability of in-memory applications, on
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machines with significantly higher number of CPUs available, and uses both hardware and

software stalls to extrapolate the scalability of the application as a whole.

Several systems combine predictions of the sequential performance of single-node tasks

performed by distributed cores with models of communication between them [27, 109, 175].

Similar cross-platform performance predictions for large-scale machines using a combination

of known relative performance of the two systems and partial execution of the workload

are described in [172]. Various formal modeling techniques for distributed and concurrent

systems have also been proposed [84], including petri nets and queuing theory [131]. They

were used to develop detailed analytic models for several applications [78, 93]. These models

are very accurate. They require however in-depth understanding of the applications and the

system. In contrast, ESTIMA (Chapter 4) can be used with little effort on any parallel in-memory

application.

Models based on discrete-time Markov chains were developed for several STM algorithms [69,

70, 71] to compare different STM designs. Usui et al. [163] use a simple cost-benefit analysis

to choose between locking and transactions. The performance model from [134] focuses

on modeling transactional conflict behavior. Unlike ESTIMA, this approach requires heavy

instrumentation of the application memory accesses.

Performance counter research has mainly focused on profiling of applications. In [147]

and [164], the authors use performance counters to increase power efficiency, through thread

scheduling and placement. In [166], the authors use performance counters to capture per-

formance impacts as a function of resource usage. Srikanthan et al. [148] use performance

counters for online workload scheduling in multiprogrammed environments. Jiménez et

al. [85] devise a model based on performance counters to predict total power consumption.

While performance counters have been used for many different goals, the low-level informa-

tion they provide has not yet been exploited for scalability predictions, as in ESTIMA.

Finally, numerous projects have focused on identifying bottlenecks in parallel applications.

Liu et al. [105] develop ScaAnalyzer, a tool that uses event-based sampling to identify memory-

related bottlenecks in parallel applications and suggest optimizations that improve scaling.

In [173], the author proposes a set of new performance counters, which, together with a new

analysis method can identify performance bottlenecks in out-of-order processors. Torrellas

et al. [156] use hardware performance counters to identify scalability bottlenecks in parallel

applications running on distributed shared-memory multiprocessors. The main goal of

our work in Chapter 4 is to predict the scalability of an application for larger machines. By

pinpointing the sources of stalled cycles predicted by ESTIMA, developers can also identify

bottlenecks that will appear in their applications. This, however, does not replace tools

specifically built for performance tuning and bottleneck identification.
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3.2 Locking for Multi-Core Processors

Lock algorithms. Apart from the traditional spinlock algorithms (e.g., test-and-set, ticket

locks [111]), there are several efforts towards designing more scalable locks. Mellor-Crummey

et al. [111] and Anderson [13] introduce several alternatives, such as queue-based locks.

Luchangco et al. [108] design a hierarchical CLH lock [37] for NUMA architectures. Dice et

al. [46] generalize the design of NUMA-aware hierarchical locks by introducing a technique

for converting any lock algorithm to be hierarchical. Chabbi et al. [28] and Zhang et al. [176]

design locks for NUMA systems, delivering performance in various contention scenarios.

David et al. [40] analyze various lock algorithms on different platforms and point out that

“every lock has its fifteen minutes of fame.” Our GLS middleware and GLK algorithm ( Chapter 5)

directly build on top of the observations and the results of such prior work. Concurrently with

our work, Guiroux et al. [66] study the performance of lock algorithms in applications and

confirm the previous findings. Their LiTL library uses a similar approach to GLS, but with the

aim of easily switching between lock algorithms.

Adaptiveness in locks. Karlin et al. [92] analyze the cost of busy waiting and blocking and

show that adaptive techniques (i.e., adapting the amount of spinning before threads block)

deliver the best performance. Similarly, Falsafi et al. [57] design a mutex algorithm that

dynamically adapts the amount of spinning when locking/unlocking, to achieve higher energy

efficiency. Many modern lock designs, such as the classic mutex lock, both on Linux [1] and

on Solaris [153], include this type of adaptiveness. Similarly, the Hotspot 7 JVM modifies its

semaphore algorithm at runtime to save memory, based on the idea of thin locks [16]. If

there are no threads waiting behind the lock, the JVM represents the lock with just a few bits,

otherwise it converts the lock to keep track of the queue of waiting threads. Lock elision [60,

138, 139] aims at reducing the overhead of locking when critical sections do not actually

conflict. A thread can optimistically execute its critical section without acquiring a lock. If a

data conflict appears, then the thread rolls back and executes the critical section normally.

Diniz and Rinard [47] introduce dynamic feedback, where the compiler generates various

synchronization policies that can then be selected at runtime based on sampling.

Lim and Agarwal [101] propose reactive locks, an adaptive synchronization scheme that

switches between different protocols and waiting strategies. In this sense, GLK can be viewed

as an instance of reactive locks. However, GLK is a fully practical adaptive lock algorithm,

tailored to modern multi-cores. GLK includes three concrete lock algorithms which cover the

needs of modern software systems, tuned approaches for collecting contention statistics for

the locks, as well as a low-overhead method for detecting multiprogramming and switching to

a blocking lock when necessary.

Johnson et al. [87] present a locking technique (LC) that decouples waiting from thread

scheduling. A global monitor controls how many threads must block, while the remaining

threads use time-published MCS locks [68]. The background thread we use in GLS is similar to
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this global monitor. However, in our work, every lock object is a “normal” lock with just a hint

on whether it should employ the mutex mode.

Debugging locks. Debugging locks is notoriously hard. The main techniques available today

can be categorized into static and dynamic. Static techniques identify deadlocks by analyzing

the lock and flow graphs of an application and by employing heuristics for identifying the

prerequisites for a deadlock [55, 119, 167]. Dynamic deadlock-detection techniques employ

ways of monitoring the acquired locks for each thread and discovering cycles in the locks

that are being locked [94, 135, 142, 160]. More specifically, Koskinen et al. [94] implement a

deadlock detection algorithm that allows lock operations to expire. Pyla et al. [135] implement

a runtime for deadlock detection for applications that use pthreads. Samak et al. [142] use

dynamic analysis and execution traces to identify possible deadlocks. GLS includes a low-

overhead, dynamic debugging mode, which can identify issues in lock-based applications.

Alternatives to traditional locks. Transactional memory, in software (STM) [51, 117, 145] or

in hardware (HTM) [45, 75], replaces locks with transactions as a concurrency-control mecha-

nism. On the one hand, STMs are typically slower than locks, due to their instrumentation

overhead. On the other hand, HTMs are not mature enough and cannot yet fully replace

locking [169]. Flat combining [72] is a technique for optimizing coarse-grained locks (e.g., the

global lock of a queue). With flat combining, a critical section translates to a message to a

dedicated server thread that executes the request on behalf of the invoking thread. Similarly to

flat combining, RCL [107] overloads the lock function for highly-contended locks with remote

procedure calls on a dedicated server thread. Unlike flat combining and RCL, GLK optimizes

both lightly- and highly-contended locks.

Locks in systems. There are various efforts in operating systems to minimize sharing [24],

to remove lock-related bottlenecks [25, 26], or to completely avoid locks [15, 19] in order to

resolve scalability bottlenecks. Similarly, in data stores and DBMSs, recent projects [48, 59,

65, 86, 107, 110] show significant performance improvements in systems such as Memcached

and RocksDB, mainly by removing contended locks. GLS is designed to make development of

such systems easier, while achieving high performance.

3.3 Distributed Transactions in the Datacenter

3.3.1 Distributed transactions and modern hardware

Distributed transactions on traditional hardware and networks has a long history of research.

However, in the past, networks imposed a significant bottleneck that dominated performance.

As such, a large body of research has focused on partitioning schemes [39, 126, 129, 136, 143]

to avoid crossing partitions, or relaxation of the consistency of transactions [95].
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Recently, a number of research projects and commercial systems have taken advantage of

modern network characteristics, such as high throughput and low latencies, as well as RDMA

capabilities, to implement fast distributed transactions. FaRM [52, 53] uses one-sided RDMA

verbs and optimistic concurrency control to implement serializable distributed transactions.

FaRM uses primary-backup replication to ensure fault-tolerance, a fast failure detection mech-

anism, and a recovery protocol that ensures that transactions are not blocked when failures

occur. FaSST [88] implements serializable distributed transactions on top of unreliable, un-

ordered, non-congestion-friendly RPC implementation. FaSST also uses primary-backup

replication and a similar optimistic commit protocol. Tell [106] decouples processing nodes

from storage nodes, using one-sided RDMA accesses to ship data to processing nodes. Tell

implements a distributed snapshot isolation protocol that uses a centralized commit man-

ager. NAM-DB [174] also separates computation from storage, however it uses a distributed

snapshot isolation algorithm that relies on a scalable timestamp oracle. DrTM+R [32] provides

serializable transactions by using both RDMA accesses and Hardware Transactional Memory

(HTM), relying on primary-backup and an optimistic replication scheme.

All the above systems [32, 52, 53, 88, 106, 174] take advantage of modern hardware to imple-

ment distributed transactions. Moreover, they all implement some type of distributed index

structures. In Chapter 6 we present SPADE, which optimizes for the physical design of data,

such as tuning indexes and remote accesses, which is applicable to distributed systems that

leverage modern RDMA networks in general.

3.3.2 Index tuning

Databases require a significant amount of tuning to achieve performance. Research on

automatically tuning indexes has been meticulous [7, 64, 91, 130, 165]. Additionally, DBMS

vendors provide tools that aid administrators in tuning a database. Microsoft’s SQL Server has

the Database Tuning Advisor [5], which can both tune existing indexes for performance, as well

as recommend new ones. Oracle Server has both self-tuning [20, 44, 177] and performance

analysis capabilities [171]. DB2 has offered the Performance Wizard tool [96]. Recent research

projects have also looked into machine learning [10], adaptive sampling [54] and regression

models [157] to choose the best parameters for DBMSs.

In Chapter 6 we focus on a distributed setting. We argue that, in addition to previous efforts for

tuning of indexes, modern transactional systems require an additional level of tuning. SPADE

takes into account the network and hardware characteristics to tune index parameters. This

way, applications take full advantage of the performance of modern networks, which, as we

show, can have a significant impact on performance.
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3.3.3 Partitioning and remote accesses

Partitioning has played a role of paramount importance in the past for distributed transac-

tions. Schism [39] is an off-line approach to data partitioning for distributed shared-nothing

databases, which minimizes the number of distributed transactions. SWORD [136] employs

an incremental data repartitioning technique for OLTP workloads in database-as-a-service

cloud settings. Pavlo et al. [129] automatically partition workloads using large neighborhood

search and analytical models. Clay [143] is an on-line partitioning approach that uses dynamic

blocks to incrementally partition data minimizing the number of distributed transactions.

JECB [158] uses a divide-and-conquer strategy to partition workloads for large clusters. Sun et

al. [152] use a bottom-up approximate approach to partition data.

With the advent of fast networks and one-sided remote operations, partitioning is no longer

the determining factor, but rather an optimization. With new ways to access remote data,

partitioning now imposes a new problem, that of determining how to do so in a way that

takes full advantage of the network characteristics. As such, SPADE’s optimization of remote

accesses plays an important role, as we show in our evaluation.
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Part II

Understanding the Scalability of
Shared-Memory Applications





4 Extrapolating the Scalability of In-
Memory Applications

4.1 Introduction

Commodity machines nowadays have hundreds of gigabytes of memory. This enables building

performance-critical parallel applications, such as databases and key-value stores, that keep

their datasets in main memory. This way, applications avoid slow secondary storage and

networks, leaving the CPU as the main performance bottleneck [43, 58, 102, 121]. Understand-

ing the performance of these applications proves to be hard, since the number of CPU cores

available during the deployment of a parallel application can be significantly higher than that

during its development and testing. Applications developed today can be tested on machines

with 16 or 24 cores, but in a few years the same applications are likely to be run on machines

with 64 or even more cores.

Consequently, the crucial question about performance of in-memory applications is that of

their scalability on an increasing number of cores. Answering this question is very hard. Typical

approaches include performing extensive performance evaluation or developing detailed

models of applications [70, 109], which are time-consuming, error-prone, and require detailed

knowledge of each application and the machine it executes on.

In this chapter we present ESTIMA, a practical tool that enables developers and users to

predict the scalability of parallel in-memory applications in a simple way, without having to

understand in detail the internals of the application or the machine it will run on. ESTIMA

enables developers to visualize the scalability of their applications, as well as to discover

bottlenecks that might not be evident during initial performance benchmarking. ESTIMA

can be applied with little effort to any parallel in-memory application, in contrast to other

approaches that heavily rely on application-specific information [17, 27, 84, 93, 98, 122, 175].

Instead, ESTIMA leverages stalled cycles to extrapolate the scalability of an application. These

are cycles the application spends on non-useful work, such as waiting for a cache line to be

fetched from memory or waiting on a busy lock. Contention for shared resources typically

increases with the number of cores used by an application, resulting in an increase in stalled
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cycles that directly impact the application’s scalability. The application’s performance keeps

improving as long as adding cores mainly increases the number of useful cycles. As soon as

adding more cores mostly results in stalls, performance stops improving, or even degrades:

the application stops scaling.

ESTIMA measures stalled cycles in both hardware and software and extrapolates them (using

analytic functions) to higher core counts to predict the overheads of using more cores. Then,

ESTIMA correlates stalls to execution time in order to produce predictions of the execution

time of the application at higher core counts. In addition to predicting scalability, analyzing

the dominating stalled cycle categories reported by ESTIMA can reveal bottlenecks that will

appear for higher core counts and guide developers’ optimization efforts. To the best of our

knowledge, ESTIMA is the first system to use stalled cycles for scalability extrapolations.

By default, ESTIMA uses hardware performance counters to measure hardware stalls. These

are counters offered by modern hardware that can collect the values of events that stall the

execution of an application with low overhead. Measuring software stalls requires configuring

or instrumenting runtime libraries, such as pthreads or a transactional memory library. In

our experience, software stalls can be exposed with minimal changes to the runtime libraries,

but because they are not always available, ESTIMA does not require software stalled cycles to

function.

Our evaluation shows that ESTIMA’s simple approach yields accurate predictions. We illustrate

the use of ESTIMA to successfully predict the performance of a memcached and a SQLite
workload on a server machine based on measurements on a desktop. We then extensively

evaluate ESTIMA using 21 workloads that span a wide range of application characteristics and

synchronization techniques on two different platforms: a 4-socket, 48-core AMD Opteron

machine and a 2-socket, 20-core Intel Xeon machine. We conduct both strong scaling and

weak scaling experiments. Finally, we pick two applications that exhibit poor scalability

(streamcluster and intruder from our benchmark workloads) and show how stalled cycles

can help identify bottlenecks. More specifically:

• ESTIMA accurately extrapolates scalability between different machines with similar archi-

tectures on real-world workloads. For our memcached and SQLite workloads measured

on a desktop machine, ESTIMA predicts their scalability on a server machine with errors

lower than 30% and 26% respectively.

• ESTIMA successfully captures the scalability of all applications we consider for its evalua-

tion, correctly identifying the number of cores for which the applications stop scaling,

for both strong and weak scaling predictions. The predictions are fairly accurate in

absolute terms too. ESTIMA can predict performance when doubling the number of

cores with errors lower than 15% on more than half of the workloads.

• Prediction errors do not result in prediction of a different behavior. In other words, there

are no cases where ESTIMA predicts that an application will scale, when in fact it does

not.

26



4.2. ESTIMA: Insights

• ESTIMA can help identify bottlenecks as we illustrate through two parallel applications

that exhibit poor scalability, intruder and streamcluster from the STAMP and PAR-

SEC benchmark suites respectively.

In summary, the main contribution of this work is ESTIMA, a practical tool that uses stalled

cycles from both hardware and software sources to extrapolate the scalability of in-memory

applications. ESTIMA can help users make better decisions regarding the deployment of their

application. To the best of our knowledge, ESTIMA is the first system to use stalled cycles

for scalability extrapolations. It showcases the power of stalled cycles in extrapolating the

scalability of an application, while being applicable to a wider range of application than

existing tools and methodologies.

The rest of this chapter is organized as follows. We present the insights behind ESTIMA in

Section 4.2. We explain how ESTIMA works in Section 4.3. We present the implementation, as

well as our extensive evaluation of ESTIMA in Section 4.4. We discuss some interesting findings

of our work in Section 4.5 and conclude the chapter in Section 4.6.

4.2 ESTIMA: Insights

In this section, we present the insights behind ESTIMA. We first recall what stalled cycles

are, their main sources, and how they affect scalability. We discuss why we use stalled cycles

in ESTIMA, in contrast to the straightforward approach of extrapolating time. Finally, we

present some of the decisions we have made when designing ESTIMA and how they affect its

capabilities.

4.2.1 Stalled cycles for scalability predictions

ESTIMA uses the number of stalled cycles per core to predict the scalability of an application

as the number of cores increases. We show two examples of applications, presenting the

stalled cycles per core and the execution time in Figure 4.1. They are the intruder and

blackscholes benchmarks from the STAMP [115] and PARSEC [22] suites respectively. For

both applications, the correlation of the number of stalled cycles per core to execution time

is 1.00. We evaluate the correlation of stalled cycles to execution time more extensively in

Section 4.5.1.

ESTIMA leverages stalled cycles for its predictions. By default, ESTIMA uses hardware perfor-

mance counters, dedicated CPU registers, used to monitor performance events, such as the

number of instructions executed, cache misses per cache level, stalled cycles, as well as I/O

requests and memory accesses. Different architectures offer various performance counter

events that measure a wide range of backend stalled cycles. There usually exist aggregate

events that measure the total backend hardware stalled cycles, as well as more detailed events

that measure different types of backend stalled cycles individually [12, 82]. ESTIMA does not
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(a) intruder stalled cycles per core.
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(b) intruder execution time.
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(c) blackscholes stalled cycles per core.
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(d) blackscholes execution time.

Figure 4.1 – Stalled cycles and execution time correlation.

use the aggregate events. Instead, it uses the performance counters that measure fine-grain

backend stalled cycles on each architecture. These counters are low-level enough to provide

insights into the behavior of the application for higher core counts. In addition, when com-

bined, they give the same high-level image of the scalability of the application as aggregate

events.

The insight behind using fine-grain stall events is the following: using an aggregate event

would be similar to extrapolating the execution time itself, since the two follow the same trends.

For example, from the aggregate backend stalls shown in Figure 4.1, with measurements up

to 12 cores, we do not see trends that show the poor scalability of the applications for higher

core counts. Using aggregate events would not capture significant changes in the scalability of

applications, which is the main goal of ESTIMA. By using fine-grain stalls, trends appear in their

values for lower core counts, before the effect on the scalability of the application is significant.

These trends are helpful in predicting scalability changes that are otherwise difficult to capture

(we give more details in the prediction example in Section 4.3.2). A second reason for using

the individual stalled cycles is that aggregate events do not provide any information on the

scalability bottlenecks. By using the detailed events and pinpointing the parts of the code

they come from, ESTIMA can help identify the area that inhibits scalability, as we show in

Section 4.4.6.
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Figure 4.2 – Constructing extrapolations with ESTIMA.

4.2.2 Other performance counters

Prior work [166] has used performance counters to measure events such as cache misses and

branch mispredictions to identify bottlenecks in applications. A similar approach in ESTIMA

would involve extrapolating counters such as cache misses for the different levels of cache and

incorporating them in the prediction process. The problem with this approach is that cache

misses require a very detailed model that takes into account the memory access patterns of the

application. This is necessary in order to translate the misses captured to time and quantify

their effect to the scalability of the application. Quantifying the interactions between misses

and scalability requires detailed knowledge of the application, which is against the generic

purpose of ESTIMA. For this reason, we chose not to use cache misses in our predictions.

However, their effect is captured by the stalled cycles that ESTIMA uses. In this case, their actual

effect on scalability is captured through its manifestation in stalls in the pipeline.

4.3 ESTIMA

The prediction scheme of ESTIMA is depicted in Figure 4.2. It involves three main steps: (A) first,

ESTIMA executes the application on the measurements machine, collecting different types of

stalled cycles from hardware and optionally from software. (B) Then, ESTIMA extrapolates the

values of these stalls to higher core counts, using regression analysis and a set of pre-defined

function kernels. (C) Finally, ESTIMA combines the extrapolated values and calculates the

stalled cycles per core. By correlating stalled cycles to execution time, ESTIMA predicts the

execution time of the application for higher core counts. In the next sections, we provide

a detailed description of the internals of this process and present a step-by-step execution

example of ESTIMA.

4.3.1 Prediction process

Stalled cycles collection. The first step of the prediction process of ESTIMA is to execute the

application for different core counts, up to the number of cores available on the measurements

machine, collecting hardware performance counters and software-reported stalls. During the
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execution of the application, ESTIMA also measures the application’s execution time. ESTIMA

uses these measurements for the execution time predictions in the last step of the process.

For hardware stalls, ESTIMA collects the backend stalled cycles (as available by the architecture).

Choosing the backend stalls for an architecture involves identifying the counters that measure

stalled cycles in the pipeline. From this set, we discard the events that refer to instruction

fetching, keeping only the stalls in the execution phase of an instruction. We also discard

events that significantly overlap, such as aggregate events for backend stalls. Intuitively, stalls

that overlap can make predictions pessimistic, depending on the extent to which they overlap.

Processor families typically share the same set of counters, and using ESTIMA with different

processors of the same family requires no changes in its configuration. Adding support for

a new processor family requires consulting the developer’s manual of the processor and

identifying these backend stalls. For the machines that we had available, identifying the stalls

to be used was a simple task that was necessary only once for each manufacturer. The same

counters were then used for both desktop and server machines, without the need to choose

different counters.

When choosing the software stalls to be (optionally) collected, the developer needs to consider

the parts of (mainly synchronization) code that, when executed, produce no useful work for

the workload. Such cases include (but are not limited to) spinning on locks and looping on
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Figure 4.3 – The regression analysis of ESTIMA.
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trylock operations. An interesting case is Software Transactional Memory, where deciding on

the cycles that are not producing useful work is straightforward (aborted transactions), and an

STM runtime can report these measurements directly.

Stalled cycles regression analysis. This step consists of regressing the stalled cycles mea-

surements. ESTIMA uses function approximation [4] to construct a set of functions for each

stall category. Function approximation takes the measurements, a function type (e.g., a poly-

nomial function of degree d) and constructs a function that closely fits the measurements

(e.g., calculates the coefficients of the polynomial). ESTIMA chooses one function for each stall

category and uses it to extrapolate the measured values. The approximation process, shown in

Figure 4.3, consists of the following steps, assuming m measured values for a specific category

of stalled cycles:

1. From the m available measurements, ESTIMA designates the c measurements with the

highest core counts as checkpoints. In our experiments, we set c to 2 and 4.

2. Using the first n measurements (n = m − c), ESTIMA creates functions from the pre-

defined kernels in Table 4.1. These functions are used based on the approximation

library used (see Section 4.4.1), discarding the function types that produce functions

that are not realistic for this approximation. The process is repeated for i in 3..n, to avoid

over-fitting the function to the available measurements. Intuitively, small deviations in

the measurements sometimes steer the function in the wrong direction, resulting in less

accurate predictions.

3. For each of the constructed functions, ESTIMA calculates the root mean square error

(RMSE) at the checkpoints. By using only the checkpoints, functions that have deviations

for low core counts but approximate performance counter values accurately for higher

core counts are considered as possible choices.

4. ESTIMA chooses the function that minimizes the error and subsequently uses it to

approximate the stalled cycle values for higher core counts.

Translating stalled cycles to execution time. After all the stalled cycle events have been

approximated, ESTIMA calculates the total stalled cycles per core, using the approximated

values. The total stalled cycles per core and the execution time have similar curves, including

Table 4.1 – Extrapolation function types.

Name Function

Rat22 a0+a1n+a2n2

1+b1n+b2n2

Rat23 a0+a1n+a2n2

1+b1n+b2n2+b3n3

Rat33 a0+a1n+a2n2+a3n3

1+b1n+b2n2+b3n3

CubicLn a +b ln(n)+ c ln(n)2 +d ln(n)3

ExpRat e
a+bn
c+dn

Poly25 y = a +bx + cx2 +d x2.5
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minima and maxima points. However, they represent different quantities. An example has

already been introduced in Figure 4.1, where execution time and stalled cycles are shown

for the intruder and blackscholes applications. The two quantities are not similar, in the

sense that there is no constant number that connects them. Their similarity factor is rather a

function of the number of cores.

ESTIMA uses the stalled cycles and the execution time measurements, collected during the

execution of the application, to calculate the values of the scaling factor function for the

available core counts. It then extrapolates this function using the same kernels as before

(Table 4.1). In this case, ESTIMA no longer chooses the function that best fits the points. In

contrast, it chooses the function that produces execution time predictions that have the

highest correlation to the total stalled cycles per core. The reason is that we have already

argued that execution time and stalled cycles have a very high correlation. As such, the

produced execution time values should retain high correlation to the total stalled cycles per

core that were calculated in the previous step. After the factor function has been created,

ESTIMA uses the stalled cycles per core (from step B) and the factor function to calculate the

execution time of the application for higher core counts.
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extrapolation.
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(d) Performance counter 0D7h
extrapolation.
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(e) Performance counter 0D8h
extrapolation.

 0

 2x10
12

 4x10
12

 6x10
12

 8x10
12

 1x10
13

 0  10  20  30  40  50

C
o

u
n

te
r 

V
a

lu
e

Cores

Measured Values
Predicted Values

(f) STM aborted transaction cycles
extrapolation.

 0

 1x10
11

 2x10
11

 3x10
11

 4x10
11

 5x10
11

 0  10  20  30  40  50

S
ta

lle
d

 C
y
c
le

s
 /

 C
o

re

Cores

Measured Values
Predicted Values

(g) Stalled cycles per core.

 0

 0.5

 1

 1.5

 2

 0  10  20  30  40  50

S
c
a

lin
g

 F
a

c
to

r

Cores

Measured Factor
Approximated Factor

(h) Scaling factor extrapolation.

 0

 20

 40

 60

 80

 100

 120

 140

 0  10  20  30  40  50

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Cores

Measured Time
ESTIMA

(i) Execution time prediction.

Figure 4.4 – intruder prediction example.
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4.3.2 Prediction example

To better explain the prediction process, we use intruder from the STAMP benchmark suite

as an example. intruder is a signature-based network intrusion detection system (NIDS)

benchmark that scans network packets and matches them against a set of intrusion signatures.

It emulates Design 5 of the NIDS described by Haagdorens et al. in [67]. Packets are processed

in parallel and go through three phases: capture, reassembly, and detection. In the version

included in STAMP, the capture and reassembly phases are each enclosed in STM transactions.

For this example, we use a machine with four AMD Opteron 6172 processors, each containing

two chips with 6 cores each, clocked at 2.1GHz (48 cores in total). ESTIMA uses only one

processor of the machine (12 cores) for measurements and targets a machine with four such

processors. Hence, the measurements machine is a 12-core machine, while the target machine

is a 48-core machine. We then execute the application on the target machine and measure the

stalled cycles and execution time for up to 48 cores. We present the extrapolated and measured

values in Figure 4.4. The vertical lines in the figures represent the maximum number of cores

used for the measurements.

The first step of the process is to collect performance counters for executions of the appli-

cation when using up to 12 cores (the application is configured to use as many threads as

cores available). For this AMD Opteron machine, the performance counters that measure

backend stalled cycles are the ones presented in Table 4.2 [12]. intruder uses software trans-

actional memory as a concurrency control mechanism. We configure the SwissTM software

transactional memory runtime [49] to report aborted transaction cycles for the application

and configure ESTIMA to use these cycles.

ESTIMA then approximates each stalled cycle category individually. It creates multiple func-

tions for each category and chooses the function that minimizes the RMSE at the checkpoints.

With one function for each stalled cycle category, ESTIMA can extrapolate the stall values for

higher core counts. In Figures 4.4a-f we present the result of this process. ESTIMA uses the

measurements left of the vertical line and produces the functions presented. In each figure,

we also show the measured values on all 48 cores of the Opteron machine.

After the performance counter values have been approximated, ESTIMA computes the stalled

cycles per core, shown in Figure 4.4g. It is important to note here that although the stalled

Table 4.2 – Hardware performance counters used for the Opteron machine.

Event Code Event Description
0D2h Dispatch Stall for Branch Abort to Retire
0D5h Dispatch Stall for Reorder Buffer Full
0D6h Dispatch Stall for Reservation Station Full
0D7h Dispatch Stall for FPU Full
0D8h Dispatch Stall for LS Full
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cycles for each category increase, the total number of stalled cycles divided by the number

of cores decreases for up to 12 cores. This quantity starts increasing for more cores, hinting

at a slowdown for the application for higher core counts. Intuitively, as the application runs

on more cores, stalled cycles increase “faster”. That means that by scaling up the application,

we introduce overheads that surpass the benefits in terms of performance. This observation

validates the reasons behind ESTIMA’s use of fine-grain stalls in the place of an aggregate event

(as discussed in Section 2.2.4). By only examining the total number of backend stalls (which

is what an aggregate performance counter would report) in Figure 4.4g, we notice that the

slowdown of the application is not visible for measurements with up to 12 cores. As a result, if

ESTIMA simply extrapolated the values of such an aggregate counter, it would fail to predict

the behavior of intruder for higher core counts, similarly to the time extrapolation method.

In contrast, by using fine-grain stalls, ESTIMA captures the behavior of each stall cycle category

and extrapolates them individually. The resulting values, when combined, are able to predict

the fast increase in the total number of stalls, resulting in accurate predictions.

The correlation of stalled cycles to execution time involves a scaling factor that connects the

two quantities. ESTIMA computes the values of this factor for up to 12 cores using the stalled

cycles per core and the execution time values collected. It then approximates this factor. For

this approximation, it chooses the function that produces execution time predictions that

have the highest correlation to stalled cycles per core. The approximation of the scaling factor

is presented in Figure 4.4h. Finally, using this scaling factor, ESTIMA predicts the execution

time of the application. We then measure the execution time of intruder for up to 48 cores

of the machine and use the measurements to evaluate our prediction. Both the predicted

and measured execution times are presented in Figure 4.4i. ESTIMA successfully predicts the

scalability of the application and the slowdown it exhibits for higher core counts.

4.4 Evaluation

4.4.1 Implementation

We implement ESTIMA in Python. We integrate the functionality in an easy-to-use tool. For the

function approximation, we use the pythonequation Python library from [132] in order to

create functions based on specific kernels and fit them to collected values of stalled cycles.

ESTIMA offers a variety of options for different prediction scenarios. It can either discover

the number of cores of the machine it runs on, or take the number of cores to use as an

input parameter. ESTIMA discovers the topology of the cores and uses cores within the same

socket first. It supports current x86 processor families by both Intel and AMD, and uses all

the available events for backend stalls on each architecture. Extending ESTIMA to support

additional families of processors is straightforward, by adding the necessary performance

counters that need to be collected.
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In order to improve the accuracy of predictions, ESTIMA enables the use of plugin components.

The user can specify additional categories of stalled cycles that can be used for the predictions,

either at the hardware, or the software level. ESTIMA takes a configuration file that includes

the path to the file the stalls are reported in (including special files like stdout or stderr),

as well as the expression that is used to report the cycles. ESTIMA can apply a function

to the collected values (e.g., min, max, sum, average) and use the resulting values for its

predictions. For example, extending ESTIMA to take into account Intel’s RTM [82] would

require including additional stalled cycle events (currently there are no available events that

measure aborted RTM transaction cycles, but rather only aborted transactions). The way

ESTIMA collects additional stalls can vary between applications. In our evaluation, for the

collection of synchronization overheads we use a thin wrapper around the pthread library.

For the applications that use transactional memory, we use SwissTM [49, 50] with detailed

statistics enabled, which reports the duration of committed and aborted transactions.

4.4.2 Evaluation setup

We evaluate ESTIMA using three different machines. The first is a desktop Intel Core i7 Haswell

machine with 4 cores clocked at 3.4GHz (8 hardware threads in total). The second machine is

a 4-processor AMD Opteron 6172 one, with each CPU containing two chips with 6 cores each,

clocked at 2.1GHz (48 cores in total). In the remainder of the text we refer to this machine as

Opteron. We also use a machine that has 2 Intel Xeon E5-2680 v2 processors with 10 cores

each, clocked at 2.80GHz (40 threads in total). We refer to this machine as Xeon20.

We use several applications to evaluate ESTIMA. These span a variety of workloads, with

different lengths of critical sections, levels of contention and synchronization techniques. In

total, we use 21 different workloads, among which 8 are STM-based.

4.4.3 Extrapolating to different machines

We start our evaluation with two production applications, in a realistic setting. We use

memcached and a SQLite application. We use a desktop machine for our measurements

and predict the scalability of the applications on a server machine. We then execute the

applications on the server machine and evaluate the accuracy of our predictions.

In our first experiment, we use ESTIMA to predict the scalability of memcached. We use ESTIMA

on the desktop Haswell machine and target Xeon20 with our predictions. We run clients on the

same machine as the memcached server to remove any network effects. The client and dataset

are from cloudsuite [61], with a scaling factor of 10x. We use the number of workers and

connections that produces the highest throughput. The workload is read-mostly and objects

have a size of 550 bytes.

ESTIMA collects stalled cycles and execution time from the memcached server using up to 3

hardware threads of the desktop machine (clients run on all other hardware contexts) and
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Table 4.3 – Hardware performance counters used for the latest Intel processors.

Event Code Event Description
0487h Stalled cycles due to IQ full
01A2h Cycles allocation stalled due to resource-related reasons
04A2h No eligible RS entry available
08A2h No store buffers available
10A2h Re-order buffer full

extrapolates its performance to a machine 7 times its size. The performance counters that

measure backend stalled cycles for our Intel machines are presented in Table 4.3 [82]. As

presented in Section 4.3.1, ESTIMA uses measured execution time to correlate stalled cycles to

the execution time of the application for higher thread counts. In this experiment, because

the machines have processors with different frequencies, the measured execution time is also

scaled using the ratio of execution frequencies.

We then measure the execution time of the workload on the full Xeon20 machine. We execute

the memcached server on one socket of the machine and the clients on the other socket (20

hardware contexts each). We present ESTIMA’s prediction and the measured execution time in

Figure 4.5a. ESTIMA successfully predicts the scalability of the application. The absolute errors

are below 30% for all core counts. ESTIMA successfully predicts that the server will stop scaling,

using only three cores for the measurements, while predicting for up to 7 times more cores.

The second experiment uses the SQLite DBMS, and a TPC-C workload with 10GB of data. We

use the same desktop machine and target Xeon20 again. We use tmpfs to avoid IO bottlenecks

for logging. ESTIMA collects stalled cycles and execution time from the SQLite process for up

to 4 cores of the desktop machine and extrapolates its performance to a machine 5 times its

size. We measure the same stalled cycles and scale the execution frequencies as before.

We then measure the execution time of the workload on the server machine, using all 20

cores. We keep the threads on the same processor when possible. The result of the prediction
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(a) memcached execution time prediction.
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(b) SQLite execution time prediction.

Figure 4.5 – Predictions for memcached and SQLite.
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produced by ESTIMA, as well as the actual time measurements from the server machine are

presented in Figure 4.5b. ESTIMA successfully predicts the scalability of the application on

the server machine. The execution time errors are below 26% for all core counts. ESTIMA

successfully predicts that the server will stop scaling, as well as the number of cores for which

this will happen. It does so using only four cores for the measurements and predicting for a

machine with 5 times more cores.

4.4.4 Scaling-up applications

In our previous experiments, we show how we use ESTIMA to extrapolate the scalability of pro-

duction applications. We now evaluate the extent to which our tool can predict the scalability

of applications by using 3 suites of in-memory benchmarks: STAMP [115], Parsec [22] and

standard data structure micro-benchmarks (used in [50]). We also use a modified k-nearest

neighbors (KNN) calculation kernel, commonly used in recommender systems. The bench-

Table 4.4 – Maximum prediction errors with measurements on 1 processor of each machine
(12 cores for Opteron and 10 cores for Xeon20).

Opteron Errors (%) Xeon20 Errors (%)
Benchmark 2 CPUs 3 CPUs 4 CPUs 2 CPUs
lock-based HT 7.8 8.3 8.9 41.7
lock-based SL 27.7 24.3 21.4 16.1
lock-free HT 3.3 3.4 3.7 15.8
lock-free SL 13.2 10.4 9.9 24.8
stamp:

genome 4.4 4.4 4.6 6.3
intruder 9.2 22.1 31.9 30.0
kmeans 50.3 50.9 17.0 30.2
labyrinth 15.4 15.0 18.4 9.9
ssca2 2.8 4.6 8.1 21.4
vacation-high 14.7 14.3 10.3 16.8
vacation-low 18.9 18.5 25.0 10.0
yada 8.1 23.0 15.1 40.3
parsec:

blackscholes 3.7 4.4 2.9 13.9
bodytrack 1.3 3.0 5.9 8.5
canneal 10.7 12.4 8.3 6.4
raytrace 2.7 3.6 4.6 1.7
streamcluster 15.6 59.0 88.8 20.1
swaptions 10.6 14.7 20.3 9.3
K-NN 11.5 22.5 32.0 13.1
Average 11.3 16.8 17.7 17.7
Std. Dev. 11.2 15.0 18.9 11.0
Max. 50.3 59.0 88.8 41.7
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mark suites we use are written in C/C++ and compiled using GCC, while the KNN calculation

kernel is written in Java and compiled using GCJ. We use one CPU of the Opteron and Xeon20

machines for our measurements (12 and 10 cores respectively) and then predict for up to 4

and 2 CPUs respectively (the full machines).

In Table 4.4, we present the summary of the predictions produced by ESTIMA for Opteron and

Xeon20. The errors presented are the maximum errors observed when using one processor

and targeting up to the full machines with our predictions (2, 3 and 4 processors of Opteron

and 2 processors of Xeon20). For brevity, we present results using Opteron, for which we have

predictions for higher core counts. In our examples, we also present the results of the time

extrapolation method presented in Section 2.2.4 (time extrapolation). This method involves

directly extrapolating time measurements of an application, using the function kernels that

ESTIMA uses to extrapolate stalled cycle measurements. This approach is similar to using

aggregate events for our measurements. It fails to predict changes in the application behavior

that are not evident from the measurements, which explains the significant differences in

accuracy when compared to ESTIMA. We highlight the biggest of these differences in accuracy

between time extrapolation and ESTIMA in Figure 4.6.

Our benchmark evaluation shows that ESTIMA is successful in predicting the scalability of

most benchmarks with small prediction errors. Out of 19 workloads used for the evaluation of

ESTIMA:

• ESTIMA is successful in predicting the scalability of the applications used. There are no

 0

 20

 40

 60

 80

 100

intru
der

kmeans

raytra
ce

stre
amcluster

vacatio
n

yada

M
a
x
im

u
m

 E
rr

o
r 

(%
)

ESTIMA 24 Cores
Time Extrapolation 24 Cores

ESTIMA 36 Cores
Time Extrapolation 36 Cores

ESTIMA 48 Cores
Time Extrapolation 48 Cores

Figure 4.6 – Comparison of errors between ESTIMA and time extrapolation.

38



4.4. Evaluation

cases where ESTIMA incorrectly predicts that an application will or will not scale. ESTIMA

also successfully predicts the core counts for which an application will stop scaling,

• When extrapolating from one socket of Xeon20 to the full machine (double the number

of cores used for the measurements), 15 workloads have execution time prediction

errors lower than 25% and 9 of them have errors lower than 10%.

• When extrapolating from one socket of Opteron to the full machine (four times the num-

ber of cores used for the measurements), 16 workloads have execution time prediction

errors lower than 25% and 9 of them have errors lower than 10%.

In Figure 4.7a we present an example of a prediction result, using raytrace from the PARSEC

benchmark suite. raytrace is an Intel RMS application which uses a version of the raytracing

method that would typically be employed for real-time animations such as computer games,

optimized for speed rather than realism. ESTIMA accurately predicts its scalability, with the

maximum execution time prediction error observed for predictions for up to 48 cores being

4.6%. This is in contrast to the time extrapolation method, which produces errors up to 17.3%.

The main advantages of ESTIMA appear when predicting changes in the behavior of an ap-

plication, such as the ones seen in intruder and yada from the STAMP benchmark suite,

presented in Figures 4.7b and 4.7c. intruder has already been introduced in Section 4.3.2.

yada implements Ruppert’s algorithm for Delaunay mesh refinement [141]. The input consists

of an initial mesh and threads identify the triangles of the mesh for which the minimum angle
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(a) raytrace execution time prediction.
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(b) intruder execution time prediction.
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(c) yada execution time prediction.
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(d) kmeans execution time prediction.

Figure 4.7 – Predictions using ESTIMA.
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is below some threshold. Once such triangles are found, new points are added to the mesh

and the process continues with new triangulations. For both workloads ESTIMA successfully

predicts the changes that appear, as well as the scalability of the applications. These cases

demonstrate the advantage of using stalled cycles for our predictions, as the trends in stalled

cycles appear before their effect in performance is significant enough. This is unlike time

extrapolation, which fails to predict the scalability trends and has higher prediction errors (up

to 81% and 130% higher for intruder and yada respectively).

Another interesting example is kmeans from the STAMP suite. kmeans is a partition-based

clustering benchmark that represents a cluster by the mean value of all objects contained in it.

We present a scalability prediction for kmeans on the Opteron machine in Figure 4.7d. Although

the maximum prediction error for kmeans is 50.9% in Table 4.4, the prediction is accurate. The

high error value is the result of fluctuations in kmeans’ execution time for different core counts,

which the prediction does not follow. Nevertheless, ESTIMA successfully predicts the scalability

of the application. As with intruder and yada, the scalability degradation of kmeans is not

evident in the performance on the measurement machine. However, ESTIMA successfully

captures the trends in stalled cycles and predicts the performance degradation accurately.

4.4.5 Weak scaling

Using a larger machine enables users to also use bigger datasets, due to the bigger amount of

memory typically available. To evaluate how we can use ESTIMA with changing workload sizes,

we use measurements of an application on a machine and predict its scalability on a machine

with double the number of cores, but also with twice as large a dataset. We use genome and

intruder from the STAMP benchmark suite, introduced earlier in this section. We run our

experiments on the Xeon20 machine. We use both applications with the default datasets from

the STAMP suite.

ESTIMA executes measurements on one processor of the Xeon20 machine and targets the

full machine. We configure ESTIMA with a target dataset size of 2x. ESTIMA uses the same
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(a) genome execution time prediction.
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(b) intruder execution time prediction.

Figure 4.8 – Predictions with changing workload sizes.
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technique for extrapolating the scalability of the applications, but also measures the memory

footprint of the execution. During the extrapolation process, ESTIMA scales the extrapolated

values accordingly, in order to produce predictions for the target machine and dataset, for

both applications.

We then execute the applications on the full Xeon20 using the bigger dataset. We present both

ESTIMA’s prediction, as well as the measured execution time in Figure 4.8. ESTIMA successfully

predicts the scalability for both applications. The predictions are accurate in absolute terms

too. The maximum errors (excluding single core performance) are 28% for intruder and 29%

for genome. The most significant errors appear for single core performance of intruder on

the bigger machine. This can be explained due to the simple scaling that we use in order to

target the bigger dataset, which does not accurately connect the performance on a single core.

Although with higher errors than their strong scaling counterparts, these predictions show

how, with a simple technique, ESTIMA can scale both the workload size and together the

core counts at the same time, while maintaining the generality and wide applicability of

ESTIMA, that is without using complex models for the interaction between the workload and

the different cache levels. We expect more complex methods, such as scaling different stalled

cycle categories differently based on measurements, to be able to produce even more accurate

predictions for different workload sizes.

4.4.6 Identifying future bottlenecks

In our evaluation so far, we present how ESTIMA can be used to extrapolate stalled cycles in

order to predict the scalability of an application. A question that arises is the following: can

ESTIMA help developers identify the sources of poor scalability in their applications, before such

poor scalability even appears? We now show how we can use ESTIMA to identify bottlenecks in

two examples. We use two applications that use different concurrency control mechanisms:

streamcluster and intruder. For both applications ESTIMA collects stalled cycles from

both hardware and software sources. For streamcluster, we create a thin wrapper around

the pthread library calls. For intruder, we simply configure the SwissTM runtime library to

report aborted transaction cycles.

ESTIMA extrapolates the scalability of the two applications on Opteron. It uses measurements

on one processor of the machine (12 threads) and extrapolates to all four processors (48

threads). We show the results of these extrapolations in Figure 4.9. Both applications exhibit

slowdown for high core counts. We observe the individual stalled cycle category extrapolations

and identify the ones that contribute most to stalls for higher core counts. We then use the perf

linux tool to pinpoint the most significant sources of the reported stalls in our measurements.

For streamcluster, we notice a high number of stalled cycles in the pthread_mutex_trylock

function of the PARSEC barriers. This leads us to identify the mutexes used as a potential

scalability bottleneck. For intruder, we similarly notice a high number of stalled cycles

from aborted STM transactions in the processPackets function, and more specifically in the
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Figure 4.9 – Predictions for streamcluster and intruder using ESTIMA.

TMDECODER_PROCESS call. By examining the function code, we understand that aborted

transactions are the result of contention for a shared data structure.

In order to fix the problems identified, we modify the two applications. For streamcluster,

we replace the standard pthread mutexes used by PARSEC with test-and-set spinlocks, which

incur lower synchronization overheads. For intruder, we modify the application to decode

more elements in every step. The measurements on the full Opteron machine validate our

findings for the scalability bottlenecks. We show the original and modified applications’

performance in Figure 4.10. For streamcluster, we improve its execution time by up to 74%.

Similarly, our optimization improves intruder’s performance by up to 70%. Evidently, the

applications continue to scale poorly. There do exist more bottlenecks that we could identify

and try to remove. Nevertheless, the goal of this example is to showcase how ESTIMA can be

used to identify future scalability bottlenecks. It is important to note here that identifying

bottlenecks is not the main goal of ESTIMA, and as such, it cannot replace tools specifically

designed for this purpose.
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Figure 4.10 – Improving the scalability of streamcluster and intruder using ESTIMA’s pre-
dictions.

42



4.5. Discussion

4.5 Discussion

4.5.1 Stalled cycles and scalability

The main insight behind ESTIMA is the usage of backend stalls for scalability extrapolations.

This assumes that stalled cycles contain the necessary information about the scalability of an

application. Our evaluation shows that indeed, by using backend stalls from both hardware

and software, ESTIMA successfully extrapolates the scalability of a wide range of applications.

We notice that for some workloads and platforms, prediction errors are higher. Although these

cases are limited, it is crucial to understand the cause of such errors. In order to do so, we

need to first consider where errors can occur in ESTIMA. The two main components of the

extrapolations ESTIMA performs are the following:

1. The extrapolation of stalled cycles from hardware (and optionally software).

Table 4.5 – Correlation of stalled cycles per core with execution time for the full machines.

Opteron Xeon20 Xeon48
Benchmark
lock-based HT 0.71 0.66 0.93
lock-based SL 1.00 1.00 1.00
lock-free HT 1.00 1.00 1.00
lock-free SL 0.83 0.81 0.70
stamp:

genome 1.00 1.00 1.00
intruder 1.00 0.97 0.92
kmeans 0.88 0.98 0.96
labyrinth 0.99 1.00 1.00
ssca2 0.99 1.00 1.00
vacation-high 1.00 1.00 0.99
vacation-low 0.99 1.00 0.98
yada 0.62 0.95 0.77
parsec:

blackscholes 1.00 1.00 1.00
bodytrack 1.00 1.00 1.00
canneal 0.97 0.99 0.95
raytrace 0.94 0.98 0.96
streamcluster 0.84 1.00 0.81
swaptions 1.00 1.00 1.00
K-NN 1.00 1.00 0.99
Average 0.93 0.97 0.94
Std. Dev. 0.11 0.08 0.09
Min. 0.62 0.66 0.70
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2. The correlation of the extrapolated stalled cycles to execution time, and the extrapolation

of the scaling factor that connect the two quantities.

Both are potential sources of errors. Function approximation can produce functions that

do not extrapolate accurately a category of stalled cycles or the scaling factor that connects

stalled cycles to execution time. In this last step, inaccuracies can result in significant errors

in the prediction. Nevertheless, ESTIMA assumes that stalled cycles can tell the full story of

scalability, and errors are due to the limitations of function approximation. If this does not

hold true, extrapolation errors can be significantly higher. Even worse, ESTIMA could predict

that an application will continue scaling, while in fact it will not.

To evaluate this assumption, we conduct an experiment using an Intel machine with 4 E7-4830

v3 processors (48 cores – Xeon48). We execute all benchmarks for all core counts and measure

both stalled cycles and execution time. We then calculate the correlation between stalled

cycles per core and execution time. Ideally this correlation should be 1.0, so that errors are

mainly due to function approximation. More importantly, such a high correlation would

indicate that stalled cycles follow the changes of execution time and will correctly predict

whether an application will stop scaling, as well as the core count for which this will happen.

Correlations across applications and machines (Table 4.5) are higher than 0.95 for the vast

majority of cases, supporting ESTIMA’s use of stalled cycles. What this implies is that errors in
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(a) lock-based hash table on Xeon20.
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(b) lock-free skip list on Xeon48.

Figure 4.11 – Execution time and stalled cycles for two data structure microbenchmarks.
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predictions are mainly due to function approximation errors. These numbers include software

stalls for the applications of the STAMP benchmark suite, as well as streamcluster from the

PARSEC suite. In the presented results, we notice cases with lower correlation, namely the

lock-based hash table microbenchmark on the Xeon20 machine and the lock-free skip list on

the Xeon48 machine. We present the execution time and stalled cycle measurements for both

workloads in Figure 4.11. Execution time and stalled cycles per core have similar curves. The

correlation is lower because of small changes in core to core measurements that are not in

sync for the two curves. However, in both cases ESTIMA accurately extrapolates scalability, as

we show in our evaluation (Table 4.4).

4.5.2 Backend vs. frontend stalled cycles

When designing ESTIMA, we opted to use backend stalled cycles as our main tool. As discussed

in Section 4.2, there also exist frontend stalls, which mainly refer to instruction fetch stalls

(e.g., misses in the instruction cache). We chose to not use these stalls for two reasons: (a)

bottlenecks that hinder scalability do not typically stem from instruction fetching, but rather

the execution, and (b) there is a limit to the number of hardware counters that modern

platforms can accurately monitor at the same time without imposing additional overheads to

an application.

In order to verify the extent to which frontend stalls indeed do not contribute to the accuracy of

ESTIMA, we extend the experiment of the previous subsection. We measure both frontend and

backend stalls and calculate the correlation between the number of stalled cycles (including

frontend stalls) per core and the execution time of a workload. We present the differences in

correlation to execution time between with and without including frontend stalled cycles in

Table 4.6. Positive values in the table signify that using frontend stalls improves the correla-

tion, while negative values signify that using frontend stalled cycles degrades the correlation

between the two quantities.

As seen from the table, the average improvement in the results is either close to zero, or

negative. This indicates that frontend stalls do not contribute additional information about the

scalability of the applications. In some cases using frontend cycles can decrease correlation to

execution time by more than 10%, which can result in significant prediction errors for ESTIMA.

These findings confirm our decision to not include frontend cycles in ESTIMA.

Similarly to frontend stalls, we could omit stalls that have an insignificant effect. Indeed,

not all backend stall categories contribute equally to the total. However, the most important

stalled cycle category varies per application. For example, while the 0D7h event (Table 4.2)

contributes less than 0.01% of the total number of stalls for vacation-high and less than 0.1%

for intruder on Opteron, it contributes more than 30% of the total stalls for blackscholes on

the same machine. As such, ESTIMA uses all the available backend stall events of a processor.
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Table 4.6 – Frontend+backend stalled cycles improvement over backend-only stalls (%).

Opteron Xeon20 Xeon48
Benchmark
lock-based HT 2.09 -6.93 -2.63
lock-based SL 0.00 -0.52 0.00
lock-free HT 0.01 0.00 -0.16
lock-free SL 7.52 6.76 3.53
stamp:

genome 0.02 0.02 -0.10
intruder 0.08 1.31 -9.98
kmeans 2.86 -12.07 5.67
labyrinth 0.37 -0.28 -0.02
ssca2 -0.71 -0.05 -0.46
vacation-high 0.00 -0.02 -0.03
vacation-low -0.04 -0.01 -0.10
yada 3.43 -0.10 5.57
parsec:

blackscholes 0.00 0.00 -0.01
bodytrack 0.00 -0.01 -0.04
canneal -0.03 0.01 -0.11
raytrace 0.13 -0.03 0.13
streamcluster 0.80 -14.79 -2.67
swaptions 0.00 0.00 0.00
K-NN 0.05 0.52 -0.12
Average 0.87 -1.38 -0.08
Std. Dev. 1.89 4.73 3.16
Max. 7.52 6.76 5.67
Min. -0.71 -14.79 -9.98

4.5.3 Software stalled cycles

ESTIMA by default uses only hardware stalls for its extrapolations. However, as presented

in Section 4.4.1, users can configure ESTIMA via plugins to also include software stalls in its

extrapolations. This way the accuracy of its predictions can be improved.

We measure software stalled cycles for all applications from the STAMP suite, by configuring

the STM runtime to report aborted transaction cycles. Because of the nature of STM, the effect

of software stalls is expected to be high: contention for resources and data memory locations

leads to aborted transactions. Thus, although at the hardware level instructions are executed,

all the work is discarded when a transaction is aborted, not contributing to useful work at the

application level.

We additionally measure software stalled cycles due to synchronization for applications that

use the pthread library. We do so by writing a thin wrapper around the library that measures

46



4.5. Discussion

 0

 20

 40

 60

 80

 100

 120

genome

intru
der

km
eans

labyri
nth

ss
ca

2

str
eamclu

ste
r

va
ca

tio
n-h

igh

va
ca

tio
n-lo

w
ya

da

M
a
x
im

u
m

 E
rr

o
r 

(%
)

24 Cores w Software Cycles
24 Cores w/o Software Cycles

36 Cores w Software Cycles
36 Cores w/o Software Cycles

48 Cores w Software Cycles
48 Cores w/o Software Cycles

Figure 4.12 – Comparison of prediction errors with and without software stalled cycles.

the cycles each threads spends spinning on locks and barriers. We measure these synchroniza-

tion cycles for streamcluster from the PARSEC suite, as well as for genome and ssca2 from

the STAMP suite.

In Figure 4.12 we present all the applications for which we configure ESTIMA to additionally use

software stalled cycles. We show the prediction errors for the applications with and without

software cycles. We observe that using software cycles can significantly improve the prediction

accuracy: by 57% on average, and for certain applications (e.g., genome) by up to 87% when

targeting a machine with four times the number of cores.

An application for which hardware stalls alone do not accurately capture its scalability is

streamcluster from the PARSEC benchmark suite. For streamcluster, synchronization

overheads introduce a significant bottleneck (one that we identify using ESTIMA in Sec-

tion 4.4.6). The execution time of streamcluster on our Opteron machine can be seen

in Figure 4.13a. When using only hardware stalls (Figure 4.13b), stalled cycles per core do

not show the synchronization bottleneck, resulting in lower correlation with execution time

(0.86). When incorporating the cycles spent on synchronization, stalled cycles per core give a

more complete image of the scalability of the application (Figure 4.13c), resulting in very high

correlation to execution time (0.98).
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Figure 4.13 – Effect of software stalled cycles for streamcluster.

4.5.4 Limitations

Table 4.4 shows that predictions for streamcluster from the PARSEC benchmark suite exhibit

high absolute prediction errors. streamcluster is a clustering benchmark, which, for a

stream of input points, finds a predetermined number of medians, so that each point is

assigned to its nearest center. We show both the extrapolated and measured execution time of

the application in Figure 4.14a.

The behavior of streamcluster changes significantly for more than 30 cores. ESTIMA suc-

cessfully captures the slowdown of the application, but with higher absolute errors, because

there is no hint of this performance change in the measured stalls. When using 24 cores

for the measurement (2 sockets of Opteron), the prediction is significantly better, as seen in

Figure 4.14b. This shows the main limitation of ESTIMA. Although stalled cycles show trends

before they have an impact on performance, as discussed in Section 4.2, there are cases where

significant changes in the application happen for higher core counts. In this example, the

synchronization overheads, together with memory bandwidth saturation cause slowdown

for core counts greater than 36. This behavior is not captured by stalled cycles when using

measurements for up to 12 cores.
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(a) streamcluster execution time prediction.
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Figure 4.14 – Predictions for streamcluster.
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Moreover, ESTIMA is not a silver bullet for predicting the scalability of parallel applications.

ESTIMA’s main use case involves predictions for machines with similar architectures. ESTIMA

successfully predicts the performance of an application across such machines, as we show

in our evaluation. However, cross-platform predictions with significant differences between

the measurements and target architectures (e.g., using measurements from an Intel machine

to predict performance on a SPARC machine), will typically result in higher errors. Similarly,

ESTIMA is not meant to predict the performance of an application for very different workload

configurations, as it does not rely on static or dynamic analysis of the target application. We

believe that these shortcomings are outweighed by the simplicity and generality of ESTIMA.

4.5.5 NUMA effects

Because of its nature, ESTIMA does not capture effects that are not present in the measure-

ments machine. As an application scales to more sockets, effectively changing the underlying

architecture (e.g., introducing NUMA effects), prediction accuracy will be lower. The effect

of NUMA accesses on the scalability of an application varies with the application, the target

machine and the dataset. Capturing the interaction of such factors would require a detailed

model of the application (e.g., memory access patterns), which is against ESTIMA’s goal of wide

applicability and ease of use.

However, this is not the case on our Opteron machine. The reason lies in its architecture,

which enables ESTIMA to account for NUMA effects. Each processor of Opteron consists of

two chips, each containing 6 cores (12 in total per processor). Thus, memory accesses on one

processor introduce remote accesses between the two chips. With these effects present in

measurements, ESTIMA accurately extrapolates their impact, resulting in predictions with high

accuracy.

When observing the results for Xeon20, we see the average prediction errors are higher. Con-

trary to Opteron, Xeon20 is a typical NUMA machine with two sockets. As such, single-socket

execution measurements do not include the effects of NUMA accesses. Thus, ESTIMA fails to
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Figure 4.15 – Predictions with NUMA effects captured.
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capture the trends that they cause, resulting in higher prediction errors for high core counts.

Including these effects significantly improves the accuracy of predictions. For example, using

measurements with more than 10 cores involves cores from the second socket, capturing

non-local accesses and improving the prediction accuracy. We present two examples of such

extrapolations in Figure 4.15.

To further demonstrate how non-uniformity can be accounted for in measurements, we

conduct an experiment with our two Intel platforms. We use ESTIMA to execute and measure

stalled cycles for all of the benchmarks used in our evaluation on both sockets of Xeon20,

targeting the Xeon48 machine introduced in Section 4.5.1 (2.5x the number of cores). We

then execute the application on the Xeon48 machine and measure the execution time for the

same workload. Table 4.7 presents the maximum prediction errors for each application. In

the same table we have also copied the errors observed when extrapolating the scalability

of one socket of Xeon20 to the full machine (from Table 4.4). The results clearly show that

Table 4.7 – Maximum prediction errors for predictions targeting our Xeon48 machine (Xeon20
prediction errors from Table 4.4 for comparison).

Xeon20 Errors (%) Xeon20 to Xeon48 Errors (%)
Benchmark
lock-based HT 41.7 19.8
lock-based SL 16.1 18.4
lock-free HT 15.8 6.8
lock-free SL 24.8 23.1
stamp:

genome 6.3 8.2
intruder 30.0 5.2
kmeans 30.2 30.0
labyrinth 9.9 18.0
ssca2 21.4 15.3
vacation-high 16.8 12.8
vacation-low 10.0 10.9
yada 40.3 15.2
parsec:

blackscholes 13.9 13.4
bodytrack 8.5 11.4
canneal 6.4 8.9
raytrace 1.7 4.0
streamcluster 20.1 21.1
swaptions 9.3 11.6
K-NN 13.1 9.2
Average 17.7 13.9
Std. Dev. 11.0 6.5
Max. 41.7 30.0
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prediction accuracy is significantly improved. The average prediction error falls from 17.7% to

13.9% (an improvement of 21.47%). Additionally, and more importantly, the prediction errors

have a lower standard deviation (6.5 instead of 11). What this implies is that errors are better

clustered around the average, rather than having multiple very small values, and a few very

large ones. This is also evident in the absence of significant errors in the results: the maximum

error observed is 30%, down from 41.7%, (an improvement of 28.06%).

4.6 Conclusion

In this chapter we introduced ESTIMA, a practical tool for extrapolating the scalability of in-

memory parallel applications. ESTIMA is designed to help developers and users predict the

scalability of applications with minimum effort, without the need for detailed models. To

achieve that, ESTIMA uses stalled cycle measurements at the hardware and optionally at the

software level, and function approximation on the collected values. ESTIMA is general and

easy to use. It can be applied to any in-memory parallel application with minimum effort. It

can also take advantage of application-specific user input to further improve the accuracy of

its predictions.

ESTIMA produces accurate predictions, as conveyed by our extensive evaluation. We success-

fully used ESTIMA to predict the scalability of production applications, as well as a wide range

of benchmarks. The errors when predicting for a machine up to four times larger than the

one available for measurements were lower than 15% for more than half of the applications.

Moreover, ESTIMA successfully captured the scalability behavior of all the applications used.

Finally, we used ESTIMA to identify scalability bottlenecks in two applications, showing how

developers can benefit from ESTIMA during the development phase.
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5 Locking Made Easy

5.1 Introduction

Locking is arguably the most widely-used synchronization technique in concurrent program-

ming. Essentially, every modern system makes use of locks. Most operating systems (e.g., the

Linux kernel), DBMSs (e.g., MySQL), and key-value stores (e.g., Memcached) heavily rely on

locks. The wide adoption of locking can be mainly attributed to the need for a simple and fast

technique for synchronization. Indeed, locking seems simple at a first glance. However, in

practice, there is more to using locks efficiently in systems than meets the eye.

Typically, the programmer must (i) map data to locks, (ii) declare locks, (iii) allocate and

initialize locks, (iv) use the locks (i.e., lock and unlock), and (v) destroy and deallocate the

locks. Of course, she has to also select which lock algorithm(s) to use.

These steps are inflexible and error-prone. Every lock object must be explicitly declared, hence,

changing the mapping of data to locks can be cumbersome. For example, moving away from

the global lock in the Linux kernel required significant effort [21, 104]. Common mistakes

during lock-based programming include [33]: (i) accessing uninitialized locks, (ii) trying to

acquire the same lock twice, (iii) releasing an already free lock, (iv) releasing a lock that belongs

to another thread, and, of course, (v) deadlocks. Theses issues can be difficult to debug.

To make things even more complicated, in order to achieve good performance, one has to

fine-tune the locking strategies in use. Indeed, there is no one-size-fits-all lock algorithm [40,

66]. Consider Figure 5.1 that depicts the performance of different locking strategies under

increasing contention. Simple spinlocks are very fast on low contention but do not scale well.

Queue-based locks scale well, but are slower than spinlocks on low contention and suffer on

multiprogrammed environments (i.e., when the number of threads is larger than the number

of hardware contexts). Blocking locks (e.g., pthread mutexes) are suitable on that latter case,

but are very slow on non-multiprogrammed environments.
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Figure 5.1 – Different lock strategies under varying contention.

Consequently, selecting the “wrong” algorithm can have detrimental performance results. For

example, recent work [40, 59, 65, 66, 110] has shown significant performance improvements

in middleware software, such as Memcached and LevelDB, by modifying locking. Accordingly,

the designer must select the appropriate locking technique for each lock object in order to

optimize her system as much as possible. However, the “correct” lock algorithm strongly

depends on the lock contention levels which, in turn, depend on the workload. Additionally,

workloads tend to change over time, thus the correct lock algorithm is a function of time.

Ideally, we would like a single lock algorithm that can dynamically adapt to the workload,

delivering the best performance among spinlocks, queue-based locks, and blocking locks, at

any point in time.

In this chapter, we question whether we can have the cake and eat it too. We present GLS, a

generic locking service designed to solve all the aforementioned intricacies related to lock-

based programming. GLS is a middleware that provides the traditional lock interface, with

two main functions to acquire and release a lock. However, in contrast to traditional lock

libraries, the locks are fully controlled by GLS, thus the developer does not need to select a

lock algorithm, nor to declare, allocate, or initialize any locks. In fact, any arbitrary memory

address can be used as a parameter to gls_lock(). GLS takes care of mapping the input

address to a lock object.

Under the hood, GLS uses a fast concurrent hash table for mapping addresses to objects. As

most locks are repeatedly used, this hash table converges to a read-mostly hash table, thus

incurring low overhead. Having a central data structure, where all locks are kept, allows

us to develop very useful debugging extensions on top of GLS. GLS can detect accesses to

uninitialized locks, double locking, etc. Additionally, in §5.3.2, we show how to build low-

overhead deadlock detection on top of GLS, as well as lock profiling tools.

More importantly, the programmer does not need to select the lock algorithm for each indi-

vidual lock; GLS automatically adapts the lock algorithm to the workload. GLS comes with an
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adaptive lock called GLK, standing for generic lock. GLK keeps track of the contention levels in

order to dynamically adapt the algorithm to the needs of the workload. On low contention,

GLK behaves as a simple spinlock (i.e., ticket lock [111]). On high contention, GLK turns into a

scalable queue-based lock (i.e., MCS lock [111]). On high system load (multiprogramming),

GLK transforms to a blocking lock (i.e., mutex lock). The adaptiveness of GLK is per lock, thus

a system might contain various locks that operate on different modes depending on their

contention levels (e.g., MySQL in §5.4.2). Naturally, in a system with locking already in place,

GLK can be used with or without GLS to minimize the overhead.

Additionally, GLS offers explicit interfaces for many state-of-the-art lock algorithms: test-and-

set, test-and-test-and-set, ticket, MCS, CLH [37], and mutex, and allows for easy deployment

of more algorithms. These interfaces can be used to manually specify the lock algorithm

to be employed for a specific lock object. In §5.4.1, we show how we use this interface to

re-implement locking in Memcached from scratch. The resulting implementation contains

26% less lock-related code than the initial design and delivers 14% higher throughput on our

benchmarks.

Table 5.1 – Hardware platforms used in this chapter.

Name Model #Cores Freq L1 L2 LLC

Haswell E5-2680 v3 12 2.5GHz 32KB 256KB 30MB

Ivy E5-2680 v2 10 2.8GHz 32KB 256KB 25MB

We evaluate GLS and GLK on various microbenchmarks and software systems on two modern

multi-core platforms from Intel. We detail the characteristics of these platforms in Table 5.1.

Based on microbenchmark results, we show that GLS adds low overheads compared to di-

rectly using locks. Additionally, we show that GLK is always able to capture the needs of the

underlying workload, thus adapting to the best algorithm for each workload phase. We plug

GLK in various systems: HamsterDB, Kyoto Cabinet, Memcached, MySQL, and SQLite, by

overloading the pthread mutex library. We improve the performance of these systems by 23%

on average, with essentially zero effort. Finally, using the debugging facilities of GLS, we detect

two potential correctness issues in Memcached.

The main contributions of this chapter are as follows:

• GLS, a middleware locking service that simplifies lock-based programming;

• GLK, a practical lock algorithm that dynamically adapts to the contention of the underly-

ing workload;

• Efficient implementations of GLS and GLK in our locking libraries – available at https:
//lpd.epfl.ch/site/gls;

• A novel approach for dynamically detecting correctness issues in lock-based systems.
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Figure 5.2 – The three modes of GLK.

Of course, neither GLS, nor GLK are silver bullets. GLS adds both latency and memory overheads

compared to plain locking. Additionally, the adaptiveness of GLK adds a low performance

overhead compared to directly using the corresponding lock algorithm. Therefore, a fully-

customized system, for a fixed workload configuration, with every lock object set to the correct

lock algorithm, will inevitably be slightly faster than with GLK. Finally, one can devise scenarios

where GLK will be frequently switching modes. However, we never observe such behavior in

practice.

The rest of the chapter is organized as follows. We introduce GLK in §5.2 and use it in GLS

in §5.3. We use GLS and GLK to simplify and optimize modern software systems in §5.4 and

conclude the chapter in §5.5.

5.2 GLK: A Generic Lock Algorithm

As we explained in Section 2.3, different lock algorithms are suitable for different workloads.

Simple spinlocks (e.g, ticket locks) are the fastest locks under low contention. Queue-based

spinlocks are more suitable under high contention. For instance, MCS locks were recently

introduced in the Linux kernel to improve scalability of highly-contended locks [26]. Neverthe-

less, spinlocks cannot properly handle multiprogrammed environments. Due to busy waiting,

threads waiting behind a spinlock might occupy a hardware context instead of a thread that

could perform some useful work. This phenomenon is exacerbated in fair locks,1 where the

thread that is next in acquiring the lock might not be scheduled.

Accordingly, we design the generic lock algorithm (GLK), based on the premise that there is

no one-size-fits-all lock algorithm. GLK adapts to the workload in order to select the most

suitable way of waiting behind a busy lock. In brief, GLK collects contention information and,

based on this information, periodically adapts the mode it operates in, between ticket, mcs

and mutex (Figure 5.2). We use TICKET instead of other simple spinlocks, as TICKET is fair

1 Fair locks, such as ticket locks, offer FIFO ordering of lock acquisitions. Queue-based locks are FIFO by design
because they are implemented as queues.
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and more scalable than TAS and TTAS [40]. In what follows, we first describe the design of GLK

and then perform a sensitivity analysis for the configuration parameters of GLK on our target

platforms.

typedef struct glk {
glk_type_t lock_type;
glk_ticket_lock_t ticket_lock;
glk_mcs_lock_t mcs_lock;
glk_mutex_lock_t mutex_lock;
uint32_t num_acquired;
uint32_t queue_total;

} glk_t;

Listing 5.1 – The GLK structure.

The GLK structure. Listing 5.1 includes the code for the GLK structure. The structure con-

tains a lock_type flag that indicates the current mode of the lock, the three lock objects

for ticket, mcs, and mutex, and two counters for gathering statistics (num_acquired and

queue_total). The former counter measures the number of completed critical sections,

while the latter contains the amount of queuing behind the lock.

Measuring contention. GLK contains a configuration parameter on how often to collect

contention statistics. On spinlock-mode (i.e., ticket or mcs), we measure contention as the

amount of queuing behind the lock.

Ticket locks provide this queuing information by design [111]. A ticket lock comprises two

counters: ticket and owner. To acquire the lock, the thread grabs a ticket t by atomi-

cally incrementing (and fetching) the ticket field. It then spins until t becomes equal to

lock->owner. To release the lock, the owner simply increments the owner field. Consequently,

lock->ticket − lock->owner shows how many threads are waiting behind the lock (plus

one for the current owner).

MCS creates a queue of waiting nodes. To measure the amount of queuing, we count the

number of nodes while traversing the queue. It is important that this traversal is infrequent,

because it breaks the “each node is accessed by a single thread” design goal of MCS.

Finally, the aforementioned queuing information is not sufficient for detecting multiprogram-

ming. Multiprogramming does not relate to the contention of a single lock, but rather to the

overall processor load. In other words, multiprogramming might be caused by other appli-

cations executing on the machine. Accordingly, to detect multiprogramming, GLK compares

the number of running tasks to the number of available hardware contexts. On the first GLK

invocation, a background thread is spawned. This background thread is shared across all

GLK objects in a system and checks whether there is oversubscription of threads to hardware

contexts at the system level, and whether GLK locks must switch to mutex mode.
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Selecting the GLK mode. We perform a sensitivity analysis on when TICKET is faster than

MCS (see §5.2.1). TICKET is consistently faster than MCS when up to three concurrent threads

are accessing the lock. We thus configure the transition from ticket to mcs to happen when

the amount of average queuing on a lock is more than three. To avoid frequent, unnecessary

transitions, we configure the opposite transition, from mcs to ticket, to happen when queuing

drops below two. Additionally, we keep the exponential moving average of the statistics in

order to hide possible short-term workload fluctuations.

The periodic background thread that detects multiprogramming wakes up approximately

every 100 us. If the thread detects multiprogramming, it sets a library-wide flag to inform locks

that they must switch to mutex when they next try to adapt. However, locks switching to mutex

mode might cause a system-load decrease, as threads block on mutex. Thus, the locks might

continuously fluctuate between mutex and the other modes. To avoid this effect, we detect

and avoid consecutive transitions from mutex to spinlocks, by exponentially increasing the

number of consecutive rounds with no oversubscription required to switch away from mutex.

Additionally, locks that face close-to-zero contention do not cause a problem on multipro-

gramming. In fact, these locks should be simple spinlocks in order to complete these critical

sections as fast as possible. Therefore, GLK objects that operate with minimal queuing do not

switch to mutex, but remain in ticket mode.

We implement a version of MUTEX for GLK that incorporates the collection of statistics re-

quired for adaptation. We also modify the lock to support deadlock detection. Our MUTEX

implementation is more lightweight than the one in the pthread library, as it does not include

the various sanity checks of the latter. These sanity checks (and more) are provided by GLS in

debug mode (see §5.3.2).

Adapting the GLK mode. GLK contains a configuration parameter on how often adaptation

must be attempted. When adaptation is triggered, the thread currently holding the lock checks

the lock statistics and decides which GLK mode to use.

To acquire the lock, a thread (i) accesses the lock_type flag, (ii) acquires the corresponding

“low-level” lock object, (iii) checks that lock_type has not been modified (if it has been

modified, the thread releases the low-level lock object and restarts), and (iv) performs the

adaptation (if needed). This approach has the benefit that the lock and unlock functions of

TICKET, MCS, and MUTEX can be used almost unmodified. The only modifications in their lock

functions are to update the queuing and the number of completed critical sections statistics.

The GLK lock function is presented in Listing 5.2. The glk_try_adap function first checks

whether it should try to adapt the GLK’s mode and then checks the statistics to decide on which

mode the lock will execute on. If a mode-transition happens, glk_try_adap returns true,

hence the lock operation is restarted (line 15).
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1 void glk_lock(glk_t* lock) {
2 do {
3 glk_type_t curr_type = lock ->lock_type;
4 switch(curr_type) {
5 case TICKET_LOCK:
6 glk_ticket_lock(lock);
7 break;
8 case MCS_LOCK:
9 glk_mcs_lock(lock);

10 break;
11 case MUTEX_LOCK:
12 glk_mutex_lock(lock);
13 }
14

15 if (lock ->lock_type == curr_type && !glk_try_adap(lock , curr_type))
16 break;
17 else glk_unlock_type(lock , curr_type);
18 } while (1);
19 }

Listing 5.2 – The GLK lock function.

Correctness. The correctness of GLK is not obvious at a first glance. To understand GLK, we

need to consider all possible interleavings of executions. First, we can differentiate between

executions with and without concurrent adaptation(s). In the latter case, without any GLK

adaptation, GLK is trivially correct because it acts exactly as the low-level lock indicated by

lock->lock_type.

Then, we will show that only a single thread t can succeed the if statement in line 15 of List-

ing 5.2 at a time. If t succeeds lock->lock_type == curr_type, then no other thread can

succeed this statement before t either adapts the lock, or releases the low-level lock. Any

other concurrent thread that uses the same lock type as t will block at the low-level lock. All

other concurrent threads will fail the statement. Accordingly, just t (i.e., one thread at a time)

has the chance to trigger adaptation and enter the critical section. If no adaptation happens,

glk_try_adap returns false and t enters the critical section. Otherwise, glk_try_adap re-

turns true, thus t releases the low-level lock and re-runs the while loop. In that case, any

thread can take the position of t in succeeding the first clause of line 15, without breaking the

correctness of our algorithm.

Including additional lock algorithms. In GLK, we chose to use a minimum number of algo-

rithms to cover the needs of most workloads. As such, we included a TICKET spinlock algorithm

for low contention cases, an MCS queue lock algorithm for contended locks and a MUTEX lock

algorithm in order to cope with oversubscription of threads to hardware contexts. In our

experience, and as we show in our evaluation of GLK, these locks are sufficient for a wide range

of workloads. However, additional lock algorithms can be included in GLK: By modifying the

lock selection algorithm previously described and by introducing new selection criteria, users

can add more specialized lock algorithms to address cases where such algorithms could yield

better performance (e.g., cohort locks [46]).
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Figure 5.3 – Performance crosspoint: The number of threads that should be concurrently
accessing a lock object so that MCS outperforms TICKET.

5.2.1 GLK sensitivity analysis

We perform a sensitivity analysis of the three most important parameters of GLK: (i) the

contention thresholds that control the switch from/to ticket mode, (ii) adaptation period, and

(iii) queue sampling period. Based on our analysis, we set the default GLK settings, which we

believe are suitable for most workloads and x86 hardware platforms (in our evaluation we did

not need to change any of the settings). However, our scripts for this sensitivity analysis can

be used to fine-tune GLK for specific hardware platforms and workloads, if necessary.

Ticket vs. mcs mode. Figure 5.3 shows how many threads must contend for a single lock in

order for an MCS lock to outperform a TICKET lock. On both of our platforms, TICKET is typically

faster than MCS on up to three threads. Accordingly, we configure GLK in our experiments to

switch from ticket to mcs mode when the average queuing behind the lock is more than three.

Adaptation and queue sampling periods. Figure 5.4 shows the relative throughput of GLK

compared to GLK with adaptation disabled, in the extreme scenario of empty critical sections.
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Figure 5.4 – Relative throughput of GLK in ticket and mcs modes compared to GLK with adap-
tation disabled, depending on the adaptation period (left) and the queue sampling period
(right).

62



5.2. GLK: A Generic Lock Algorithm

For the 2-thread execution we fix the non-adaptive GLK to ticket mode, while for the 8-thread

execution to mcs mode. For both experiments the results show that – as expected – short

adaptation periods incur a high performance overhead. In both cases, the results stabilize as

we increase the adaptation period. Accordingly, in our experiments, we set the adaptation

period to 4096 critical sections and the sampling period to 128 critical sections. With these

settings, we obtain a sufficient number (4096/128 = 32) of queuing samples per adaptation.

5.2.2 GLK evaluation

We start by evaluating the overhead of GLK due to its adaptiveness. We then compare the

performance of GLK with TICKET, MCS, and MUTEX on a set of microbenchmarks. In §5.4, we

plug in and compare the performance of these algorithms in software systems. Before we

proceed with the evaluation, we describe the experimental settings in our microbenchmarks.

Experimental methodology. Threads execute in a loop, performing lock and unlock opera-

tions on lock object(s). On every run, we configure (i) the number of threads, (ii) the number

of lock objects, and (iii) the duration of the critical section (in CPU cycles). Furthermore, after

every loop iteration, threads wait for a short duration to avoid long runs [112]. On every loop

iteration, each thread selects a lock object at random. Our results use the median value of 11

repetitions of 10 seconds each. We do not pin threads to cores, but let the OS do the scheduling.

Additionally, for fairness and for avoiding false cache-line sharing, we pad all locks to 64 bytes

(one cache line). Due to space limitations, we only show the results on our Haswell machine

(see Table 5.1). We get very similar results on our Ivy machine.

Overhead. We evaluate the overhead of GLK due to its adaptiveness. Compared to the vanilla

TICKET, MCS, and MUTEX algorithms, GLK additionally executes the following steps: (i) it

accesses the lock_type flag, (ii) it increments the num_acquired counter on almost every

critical section,2 (iii) it updates the queuing statistics of the lock every 128 critical sections,

(iv) it tries to adapt the lock type every 4096 critical sections, and (v) it checks the lock_type
flag for a second time. Additionally, the conditional statement on whether adaptation should

be attempted is executed on every lock acquisition.

Figure 5.5 shows the throughput of GLK on three distinct configurations, each suitable for

TICKET, MCS, and MUTEX, respectively. On the single-thread execution, all acquires and releases

are local and uncontested (we use empty critical sections). GLK operates on ticket mode but

is 22% slower than TICKET, mainly because of the switch statement on the lock_type when

locking and unlocking. Even if we turn adaptation off (i.e., overhead steps (ii)-(iv)), GLK is still

19% slower than TICKET. This comparison reveals an inherent overhead of GLK: An adaptive

lock must access a flag to find the lock type to use. Still, GLK delivers 24% and 30% more

throughput than MCS and MUTEX, respectively.

2 In TICKET mode, we take advantage of the current counter of the lock to avoid incrementing the num_acquired
counter.

63



Chapter 5. Locking Made Easy

0,
78

0,
93

0,
99

0
0,2
0,4
0,6
0,8

1

1 thread 10 threads multiprog.

Re
la

tiv
e 

Th
ro

ug
hp

ut
TICKET

MCS

MUTEX

GLK

Figure 5.5 – Relative throughput of GLK compared to the best per-configuration lock on various
configurations.

The second workload includes 10 threads and empty critical sections, a configuration suitable

for MCS locks. In this case, GLK is 7% slower than MCS. Again, even if we remove adaptation

from GLK, GLK is still 6% slower than MCS. The overhead in mcs mode is lower than in ticket,

because there is actual contention behind the lock, thus the overhead is partly hidden by

waiting. Again, regardless of the overhead of GLK, GLK is still significantly faster than TICKET

and MUTEX, respectively.

Finally, the third configuration of Figure 5.5 involves 10 threads and multiprogramming (we

initialize 48 additional threads that just spin locally). In this configuration, GLK is only 1%

slower than MUTEX, but much faster than TICKET and MCS. As we have pointed out, fair locks

suffer on multiprogrammed workloads.3

Single lock behavior. We evaluate the behavior of a single lock as the number of concurrent

threads increases. Critical section are 1024 cycles long. Figure 5.6 includes the results of

3 There do exist techniques, such as time-published queue-based locks [68], for alleviating this problem.
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Figure 5.6 – A single lock on varying contention.
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Figure 5.7 – Eight locks on varying contention.

this experiment. As expected, on a low thread count (i.e., up to 3 threads), TICKET is the

fastest lock. On these executions, GLK operates in ticket mode and follows the performance

of TICKET closely. As we increase the contention further, GLK switches to mcs mode, thus

behaving similarly to MCS. Finally, when using more than 48 threads, where there is oversub-

scription of threads to hardware contexts, GLK executes in mutex mode, in order to handle

multiprogramming.

Multiple locks behavior. We experiment with eight locks as the number of concurrent

threads increases, using critical sections of 1024 cycles. On every iteration, each thread

selects one of the locks at random, using a zifpian skewed distribution with alpha set to 0.9.

In other words, some locks are more frequently utilized than the rest. The two most busy

locks serve 34% and 18% of the requests, respectively. Intuitively, in a software system, some

locks might be more contended than others: This is one of the cases that we aim at capturing

with GLK. The developer must not have the difficult duty of identifying contended locks and

customizing their algorithm accordingly.

Figure 5.7 includes the results of this test. For up to three threads, all eight locks face low

contention. Thus, TICKET and GLK (in ticket mode) are the fastest. For more threads, the

contention on one to two locks increases, thus MCS is the most suitable choice. GLK is able

to adapt to mcs mode only these highly-contended locks, while keeping the rest in ticket

mode. This behavior results in GLK being approximately 20% faster than MCS on the non-

multiprogrammed configurations. Under multiprogramming, GLK uses mutex mode for the

two contended threads, while the rest remain in ticket mode.

Varying workload. We evaluate the behavior of a single lock when the contention varies

over time. More precisely, the execution is broken into phases of 0.5-1s.4 In each phase, the

4 Note that GLK is able to adapt with much more fine-grain granularity. Assuming 1M acquires/s, adaptation
happens approximately every 4 ms, hence the phase length can be as low as roughly 10 ms.
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number of threads that execute is selected at random from 1-24. Additionally, 30 background

threads run on the processor. These background threads represent other applications that

could be executing on the same machine.

Figure 5.8 shows the throughput of different lock algorithms as a parameter of time and per-

phase configuration. On average, GLK delivers 15% higher throughput than the second fastest

lock, namely MCS. GLK achieves this by dynamically adapting its configuration during every

phase, depending on the needs of the workload. For instance, in phase 3, where contention is

very low, GLK switches to ticket mode, thus delivering the same performance as TICKET. In

contrast, in phases 0-1, where contention is very high, GLK switches to mcs to better scale with

the number of contending threads. Finally, in multiprogrammed phases, such as 2 and 10,

GLK switches to mutex in order to avoid potential performance degradation caused by busy

waiting.

Conclusions. GLK can successfully adapt to the needs of the underlying workload at runtime,

in order to deliver performance that is close to the best lock algorithm at any point in time.

Of course, due to the adaptation overhead, GLK is usually slightly slower than the best per-

configuration lock algorithm for fixed workloads. Based on these results, we claim that GLK

delivers close-to-optimal performance for any workload and configuration combination.

Additionally, as we show in §5.4, in systems with many locks and complex interactions, GLK

can outperform any lock algorithm precisely because of its adaptiveness.

5.3 GLS: A Generic Locking Service

GLS is a generic locking service that simplifies lock-based programming by handling many of

the complexities that developers must typically cope with when using locks. GLS provides the

classic lock interface (e.g., functions for locking and unlocking). However, unlike traditional

lock libraries, GLS accepts any arbitrary memory address (or even value) as an input parameter

to gls_lock. With GLS, gls_lock(17) is a valid lock invocation. GLS maps the input address
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Function Description

gls_init() Initialize GLS

gls_destroy() Stop GLS and cleanup

gls_lock(void* m)
gls_trylock(void* m)
gls_unlock(void* m)

Lock, trylock, or unlock m using GLK algorithm

gls_A_lock(void* m)
gls_A_trylock(void* m)
gls_A_unlock(void* m)

Lock, trylock, or unlock m using algorithm A. A
can be tas, ttas, ticket, mcs, clh, or mutex

gls_free(void* m) Remove m from GLS

Table 5.2 – GLS interface.

to a lock object behind the scenes. Accordingly, the user of GLS does not need to worry about

declaring and initializing locks.

Additionally, GLS offers two very useful extensions: (i) a debugging extension that can detect

the most common bugs in lock-based programming, and (ii) a profiler that reports the amount

of contention on each lock. We first describe the default design and implementation of GLS

and then we detail the debugging and profiler extensions of GLS.

5.3.1 Programming with GLS

Interface. Table 5.2 presents the interface of GLS. Apart from the initialization functions, GLS

includes various calls for locking and unlocking using different algorithms. These functions

accept any arbitrary value as an input, except for NULL. The default interface of GLS (gls_lock)

utilizes the GLK algorithm. In addition, GLS offers an explicit interface to six other algorithms.

Implementation. GLS is essentially a cache for locating the lock object that corresponds to an

address. We implement GLS on top of a modified version of the lock-based CLHT hash table [41].

CLHT has several properties that are necessary in GLS: (i) it uses cache-line-sized buckets,

hence operations typically complete with at most one cache-line transfer, (ii) searching for a

key is a read-only, wait-free operation, (iii) failing to insert a key is also read-only and wait-free,

and (iv) it is resizable. Consequently, when the lock objects used in a system are stable (i.e.,

there are not many allocations and deallocations of locks), the CLHT hash table in GLS becomes

a read-mostly hash table, thus incurring low overhead. The workflow of gls_lock is as follows:

1 int gls_lock(void* addr) {
2 glk_t* lock = (glk_t *) gls_clht_put(addr);
3 return glk_lock(lock);
4 }

In line 2, GLS is searching in the hash table for the lock object that corresponds to the given

address. We modify clht_put to create and initialize a new lock object for addr if addr is
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not found. If addr already exists in the hash table, then the corresponding lock object is

returned. The gls_unlock function uses gls_clht_get to fetch the lock which maps to

the given address. (As we show in §5.3.2, if gls_clht_get returns NULL, GLS detects that an

uninitialized lock is used in unlock.) The gls_A_lock functions perform the same workflow

as gls_lock, but initialize and use the lock function of the corresponding algorithm A.

Lock-cache optimization. In locking, the most common pattern involves acquiring and

later releasing the same lock, without accessing any other locks in the meantime (the opposite

case is called lock nesting). Additionally, there is temporal locality of accesses: A lock that is

used by a thread will be reused in the near future by the same thread with high probability. To

optimize for these patterns, we introduce a single object cache in GLS. This cache keeps track

of the address and the lock object of the latest lock that has been accessed. If a lock/unlock

operation finds the target address in the cache, there is no need to access the GLS hash table.

On a cache miss during locking, the cache is updated with the target address-lock object pair.

Memory overhead. GLS adds memory overhead over traditional locking, mainly due to the

hash table. CLHT keeps up to three key-value pairs per cache line (64 bytes), hence the

minimum overhead introduced by GLS is one-third of a cache line per lock. In our experience,

the CLHT used in GLS typically achieves 60-70% occupancy, thus we estimate the overhead per

lock to be approximately 32 bytes, or 50% of a cache-line-sized lock object.

Performance overhead. We evaluate the performance overhead of GLS compared to using

locks directly.

Single Thread. Figure 5.9 depicts the latency overhead of GLS on a single thread, depending on

how many locks are accessed. On each iteration, the thread picks a lock at random. With a

single lock, the overhead of GLS is just a few cycles due to the lock cache that is always able to

locate the lock without accessing the GLS hash table. The same applies for the unlock latencies

in this experiment, regardless of the number of locks: Unlock operations always hit on the lock
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Figure 5.10 – Relative throughput of GLS over directly using locks on 10 threads.

cache (no lock nesting). Without the cache, the unlock latency overhead is close to the GLS

overhead in lock functions. With 512 locks, GLS adds approximately 30 cycles overhead, which

corresponds to roughly 100% increase in lock latency. As we increase the number of locks, the

size of the hash table does not fit in the L1 cache, thus the overhead of GLS increases.

Multiple Threads. Figure 5.10 compares the throughput of different lock algorithms when used

in GLS to direcly using the lock algorithm, with 10 threads competing for 1, 512, or 1024 locks

(high, medium and low contention respectively). Each thread randomly chooses among the

locks and spends 1024 cycles in the critical section. When locks are not contested (4096 locks

to choose from), the overhead of GLS is proportional to the duration of the critical section. In

the presence of contention, however, the overhead of GLS can be masked by waiting.

5.3.2 Debugging with GLS

GLS can be configured to detect several lock-related issues. In order to detect potential bugs,

including deadlocks, GLS in debug mode keeps track of the owner of each lock object. In what

follows, we describe the issues that GLS can detect. Note that some of these issues could be

seen as features depending on the semantics of the specific lock algorithm in use.

Uninitialized locks. GLS handles the mapping of addresses to lock objects. Accordingly, GLS

can detect when a thread is trying to access an uninitialized lock. Upon releasing a lock,

uninitialized locks are detected when the target address does not exist in the hash table, which

means that the lock was not acquired before. In order to detect uninitialized locks while trying

to acquire a lock, GLS adds special values in the overloaded MUTEX locks for static initialization

(instead of the default ones used by the pthread mutex). When trying to acquire a lock, if the

call to gls_clht_put does not find an address-lock mapping, there are two possible cases:

either the lock has been statically initialized, or the lock has not been initialized at all. To

discern between the two, GLS checks whether the MUTEX object contains the special values

used for static initialization. If that is the case, the lock was statically initialized, otherwise an

error is detected. Due to the static declaration of these locks, it is certain that if not initialized,

they will contain a zero value [2].
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Double locking. GLS can check whether the current owner of a lock tries to acquire that

same lock again. GLS implements this functionality by comparing the id of the thread that is

performing the operation with the id of the lock owner. Of course, double locking is a subset

of deadlock detection.

Releasing a free lock. Releasing an already free lock can either break some lock algorithms

(e.g., TICKET), or result in race conditions where a thread is trying to acquire the lock while

another is falsely releasing it at the same time. GLS checks whether an unlock function call

operates on a lock that is already free.

Releasing a lock with wrong owner. GLS checks that the owner id of the lock to be released

is the same as the id of the thread performing the unlock operation.

Deadlocks. Deadlocks can be very hard to detect and debug [55]. GLS implements a tech-

nique for detecting and reporting deadlocks at runtime. GLS implements deadlock detection

in the following steps:

1. GLS augments the hash table with a waiting array that indicates which lock each thread

is waiting on (if any).

2. Before calling the lock/trylock function in the gls_clht_put invocation, GLS records

that the corresponding thread is waiting on the target address.

3. When the lock is acquired (or the trylock function completes), GLS updates the waiting

structure to indicate that this thread is not waiting behind that lock anymore.

4. Additionally, the owner of that lock is set to the thread id. For trylock, the owner id is set

iff the lock was successfully acquired.

5. On lock release, the owner id for that lock is cleared.

Based on the aforementioned steps, if the thread is waiting behind a lock for a long time (i.e.,

more than a second), GLS triggers the following deadlock-detection procedure:

// the invoking thread is waiting on wait_lock
wait_on = wait_lock;
do {

/* find the owner of the lock that the
previous thread is waiting on */

owner_id = gls_debug_get_onwer(wait_on);
// if the invoking thread re -appears
if (owner_id == gls_get_id ())

gls_debug_deadlock_print ();
// find the lock that owner_id is wating on
wait_on = gls_debug_get_wait_on(owner_id);

} while (wait_on_lock != NULL);

In short, the invoking thread owner0 tries to find a cycle with owner0 → waiting0 → owner1

→ waiting1 → ... → owner0 relationships. If such a cycle exists (a series of relationships that
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starts and ends with the same id) a deadlock is detected. In that case, GLS prints the details of

the cycle as well as the backtrace of the call that caused the deadlock:

[GLS]WARNING> DEADLOCK 0x1ad0010 - cycle detected
[2 waits for 0x1ad0010] ->
[9 waits for 0x1acfff4] ->
[8 waits for 0x1acfff8] ->
[2 waits for 0x1ad0010]
[BACKTRACE] Execution path:
[BACKTRACE]#0 ./stress_error_gls(glk_lock+0x4b)
gls/src/glk.c:392
[BACKTRACE]#1 ./stress_error_gls(gls_lock+0x54)
gls/src/gls.c:196
[BACKTRACE]#2 ./stress_error_gls(test+0x248)
gls/bmarks/stress_error_gls.c:160

Note that this output is a simplified version of the actual output. GLS can provide more details

for debugging the deadlock easier (e.g., automatically setting GDB breakpoints and printing

the actual pthread ids of threads).

Removing GLS deadlock-detection overhead. The overhead of GLS’s detection technique

is high, because every lock and unlock operation has to update some metadata in the GLS

hash table. In our microbenchmarks, GLS in debugging mode performs up to 4 times slower

than without debugging. However, this metadata (regarding waiting-for relations and lock

ownership) is only checked when the deadlock-detection procedure is triggered. Accordingly,

we can avoid updating this metadata in normal operation and only have the threads update

it when they are stuck behind a lock for a significant amount of time. With this approach,

deadlock detection happens after a couple of invocations to the detection procedure, but we

almost completely remove the overheads while threads operate normally.

5.3.3 Profiling with GLS

GLS can be configured to operate in a low-overhead profiler mode. In this mode, GLS reports

per-lock statistics regarding the average queuing behind the lock, the lock acquisition latency,

and the critical-section duration. For instance, in SQLite the output is similar to the following:5

[GLS] queue: 0.03 | l-lat: 96 | cs-lat: 194
@ (0x7fe6318eb660:sqlite3.c:pthreadMutexEnter)
[GLS] queue: 4.50 | l-lat: 13963 | cs-lat: 2848
@ (0x7fe6318eb4e0:sqlite3.c:pthreadMutexEnter)

5 SQLite wraps mutex calls in a function. We could get the actual location of this invocation by printing the
backtrace of the call.
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We use this profiler mode to easily detect highly-contended locks that are likely to become a

scalability bottleneck as we scale a system. For example, in §5.4, we use the profiler to better

redesign locking in Memcached and to better understand the performance results on various

systems.

Additionally, GLK can be configured to print the mode transitions that it performs, as well as

the reason behind each transition. This output can be used to better understand potential

variations in the workload behavior. It can also be used to decide on a pre-determined lock

algorithm that is the most suitable for a given lock object in a system (in case the designer

selects to use a per-lock custom algorithm).

5.4 GLS / GLK in Lock-based Systems

We modify locking in various concurrent systems in order to evaluate the effectiveness of GLS

and GLK. In most systems, modifying locks is as simple as overloading the pthread mutex

functions with our own lock implementations. We first show how we can easily employ GLS

in debugging and optimizing Memcached. We then plug GLK in various modern software

systems in order to improve their performance.

5.4.1 Re-engineering memcached with GLS

Debugging memcached. We notice that when we overload pthread mutexes with certain

lock algorithms (i.e., TICKET, MCS and GLK), Memcached (v. 1.4.20) hangs. We identify this

behavior as the perfect opportunity to show the debugging capabilities of GLS in action. Indeed,

GLS reports the following output:

[GLS]WARNING> LOCK 0x6344e0 - Uninitialized lock
[BACKTRACE] #0 memcached/thread.c:662
[BACKTRACE] #1 memcached/assoc.c:72
[GLS]WARNING> UNLOCK 0x62a494 - Already free
[BACKTRACE] #0 memcached/slabs.c:836
[BACKTRACE] #1 memcached/assoc.c:249

The first warning is about locking the uninitialized stats_lock in assoc.c. The second

one involves unlocking the slabs_rebalance_lock before it is ever acquired. Based on

the output of GLS, we easily fix these two issues. Notice that these issues do not manifest

with MUTEX, because (i) the stats_lock is always initialized to zero due to its static decla-

ration [2], and (ii) unlocking a free lock with MUTEX leaves the lock in the same state. How-

ever, the first issue (locking the uninitialized stats_lock) is indeed a programming error,

as the behavior of MUTEX in such cases is undefined [3]. The second issue (unlocking the

slabs_rebalance_lock without acquiring it) can either be an error, or not, depending on

the configuration of pthread mutex.
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Figure 5.11 – Normalized (to MUTEX) throughput of our memcached implementations on Ivy.

Optimizing memcached. The main goal of GLS is to make programming with locks easier. To

showcase using GLS in practice, we re-implement synchronization in the memcached key-value

store from scratch, using the GLS API directly. We remove the code for lock declaration and

initialization and replace the calls to pthread locks with calls to GLS. We use the gls_lock
and gls_unlock functions and let GLK choose the most suitable locking technique for our

workloads. We remove 26% of the synchronization code of the application and modify 186

lines of code in total. This implementation is the way we expect that most GLS users will be

using the service, allowing for fast and easy development of lock-based applications.

Figure 5.11 compares the performance of Memcached when using MUTEX, GLK, as well as GLS

using GLK on our Ivy platform. The GLS version is 7% slower than directly using GLK. This is

due to the overheads of GLS. Still, the GLS version is 7% faster than the default Memcached

implementation with MUTEX.

We then set out to better understand the performance of locking in memcached. We first

observe the output of GLK and notice that most locks operate in TICKET mode, which hints

at these locks facing little contention. We then use the GLS profiler mode (see §5.3.3) to

understand the different requirements and behavior of each lock. What we discover is that

all the locks used in memcached exhibit low contention, with the exception of specific global

locks (e.g. the stats_lock).

Accordingly, we devise a second version of memcached, again using GLS. This time we use

the explicit interface of GLS (see Table 5.2), choosing the lock algorithm that best suits each

lock. We use MCS locks for the contended global locks and TICKET locks for the internal hash

table and all other locks. GLS allows us to use any lock algorithm by simply modifying the lock

and unlock function calls. This enables us to avoid the adaptation overheads and tailor our

synchronization code to the optimal strategy. Figure 5.11 shows that the performance gains

from this implementation are significant. Specifically, GLS SPECIALIZED achieves 14% higher

throughput than the default MUTEX version, the same as GLK. Programmers with experience

in lock-based programming can use this interface to achieve higher performance while still

benefiting from the simplicity of GLS.
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HamsterDB [140]

An embedded key-value store. We run three tests with random reads/writes, varying the
read-to-write ratio among 10% (WT), 50% (WT/RD), and 90% (RD).

Version: 2.1.7

# Threads: 2

Kyoto [97]

An embedded NoSQL store. We stress Kyoto with a mix of operations for three database
versions (CACHE, HT DB, B+-TREE).

Version: 1.2.76

# Threads: 4

Memcached [62]

An in-memory cache. We evaluate Memcached using a Twitter-like workload [103].
We vary the get ratio from 10% (SET), 50% (SET/GET), to 90% (GET). We dedicate
one socket on each machine to the Memcached server and the other to the clients.

Version: 1.4.22

# Threads: 8

MySQL [125]

A relational DBMS. We use Facebook’s LinkBench and tune the MySQL server
following Facebook’s guidelines [56] for in-memory (MEM) and SSD-drive (SSD)
configurations.

Version: 5.6.27

SQLite [154]

A relational DB engine. We use TPC-C with 100 warehouses varying the number of
concurrent connections (i.e., 8, 16, 32, and 64).

Version: 3.8.5

Table 5.3 – Software systems and configurations.

5.4.2 Optimizing systems with GLK

We modify locking in five software systems. We select the set of systems so that they employ

locking in diverse ways, including concepts such as global locking, fine-grained locking, reader-

writer locks, and conditional variables. Table 5.3 includes a short description of the systems

that we use, as well as the workloads that we use to evaluate them. All of our experiments use

a dataset size of 10 GB, except for the MySQL SSD configuration. For this experiment, we use a

dataset of 100 GB. We tune each system to achieve maximum throughput and configure the

number of threads used based on the maximum-throughput configuration with their default

MUTEX locks. Figures 5.12 and 5.13 show the throughput of the target systems when employing

different lock algorithms on our Ivy and Haswell platforms respectively.
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our Ivy machine.
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Figure 5.13 – Normalized (to MUTEX) throughput of various systems with different locks on
our Haswell machine.

Overall. For both platforms, we see that in 14 out of 15 configurations for Ivy (and 12 out of 15

for Haswell), GLK improves the performance over the default MUTEX lock on the target systems.

The performance gains range from 1% to 80% on our Ivy machine, and from 3% to 53% on our

Haswell machine. On average, GLK delivers 25% higher throughput than MUTEX on Ivy and 21%

higher on Haswell by selecting the most appropriate locking technique per lock, per phase,

and per configuration. Naturally, there do exist configurations where spinlocks are sufficient.

In these cases, the performance of both TICKET and MCS is similar. Additionally, there are

few configurations where MUTEX delivers the highest throughput. In these configurations,

where GLK does not deliver the highest throughput, GLK is slower only up to 8% than the best

performing lock. In contrast, in the configurations where GLK delivers the best performance,

we see the power of adaptiveness, as no static algorithm can capture the characteristics of

the workload. The overall trends in the results are intuitive. In low-contention configurations,

TICKET (i.e., simple spinlocks) delivers the best performance due to its simplicity. On higher

contention levels, MCS is the fastest. Finally, in multiprogrammed configurations, blocking

locks, such as MUTEX, are necessary.

HamsterDB. The HamsterDB embedded key-value store [140] relies on a global lock. Of

course, the contention on that lock is very high. We measure with the GLS profiler that with N

worker threads, the average queuing behind the lock is always close to N −1. Consequently,

we use just two threads as the application cannot scale further. TICKET delivers the best

performance. GLK operates in ticket mode, delivering throughput very close to TICKET. MUTEX

lags behind in performance because it employs, unnecessary for this workload, block and

unblock invocations.

Kyoto Cabinet. The Kyoto Cabinet NoSQL store [97] comes in two flavors: a hash table,

and a B+-tree-based implementation. The hash-table version has two extensions, a store

(HT DB) and a cache (CACHE). All three versions protect the main data structure with a

highly-contended global reader-writer lock.6

6 For TICKET, MCS, and GLK, we overload the pthread reader-writer locks with our custom TTAS-based imple-
mentation.
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Additionally, the hash-table versions use 16 mutexes, each protecting a group of buckets.

These locks typically face very low contention: We use GLS in profiler mode to measure the

contention and discover that the average queuing behind locks is less than 0.1 and 0.05 for

CACHE and HT DB, respectively. However, the throughput of CACHE is approximately 10-

times higher than that of HT DB, which means that there is significantly higher traffic on the

locks of the former. Additionally, CACHE utilizes up to 10 levels of lock nesting. Nesting with

MCS locks is expensive because, for each lock, threads must find and use a separate queue

node. These behaviors are reflected in the results of CACHE, where TICKET is significantly

faster than MCS. For CACHE, GLK operates in ticket mode and thus delivers throughput very

close to TICKET. On HT DB, locks are accessed less frequently, hence the performance gains

obtained by changing the locks used are smaller than those on CACHE.

The tree-version uses reader-writer locks for the nodes of the tree and mutexes for a custom

cache of the tree nodes. These mutexes are highly contended: Both MCS and GLK significantly

outperform TICKET and MUTEX.

Memcached. As we describe earlier in this chapter (Section 5.4.1), the locks in our Mem-

cached experiments typically face low contention. Thus, TICKET delivers the highest perfor-

mance for memcached. Consequently, with GLK, most locks operate in ticket mode, achieving

performance that is very close to that of TICKET for both platforms.

MySQL. MySQL is a complex system that handles most low-level synchronization with

custom locks (semaphores). Clearly, neither simple, nor queue-based spinlocks are sufficient

for MySQL: In both workloads, MySQL oversubscribes threads to hardware contexts. The

result is a livelock for both MCS and TICKET that deliver less than 100 operations per second.

Notice that the fairness of these two locks exacerbates the problem. In comparison, a TTAS

lock – not shown in the graph – gives 90% and 50% lower throughput than MUTEX on the MEM

and SSD workloads, respectively.

On MySQL, we see an inherent limitation, but also the true power of adaptiveness. On the

in-memory workload, GLK is 4% slower than MUTEX on Ivy and 1% slower on Haswell. This

difference in throughput is due to the adaptiveness overhead. Directly using the mutex

implementation of GLK results in the exact same throughput as MUTEX. However, on the

SSD workload we see the power of adaptiveness: Many locks in MySQL are lightly contended,

thus using ticket mode instead of mutex results in 9% higher throughput on Ivy and 3%

higher throughput on Haswell. In complex systems, such as MySQL, it is nearly impossible to

manually customize every single lock with the “correct” algorithm.

SQLite. SQLite is based on a B-tree data structure. SQLite implements concurrency with

both coarse and fine-grained locks. SQLite uses a MUTEX for each database (e.g., each new

connection), another for memory allocation, and a last one for protecting the database cache.

However, the nodes of the B-tree are protected by custom reader-writer locks. The mutexes of

SQLite become contended as we increase the number of connections.
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With 8 and 16 connections, MCS gives the best performance, with GLK following closely. How-

ever, on 32 connections, the workload has some phases with multiprogramming, thus the

performance of MCS and TICKET drops. As expected, on 64 connections, using fair spinlocks

results in livelocks. In comparison, TTAS – not shown in the graph – delivers 30% lower through-

put than MUTEX. On both 32 and 64 connections, GLK achieves slightly better throughput than

MUTEX on Ivy and follows closely MUTEX on Haswell, with lightly contended locks remaining

in ticket mode.

Conclusions. GLK is able to adapt and capture the needs of all the 15 workloads on the five

systems that we evaluate. Doing so, GLK improves the performance of these systems by 25%

and 21% on average on our two platforms, with practically zero effort on the developer’s

side. Even on the configurations that GLK does not deliver the best performance, due to

the overheads of adaptation, GLK is only up to 8% slower than the best performing lock.

Consequently, our experimental results validate our claim that GLK can deliver close-to-

optimal performance regardless of the configuration.

5.5 Conclusions

In this chapter we introduced GLS, a generic locking service and the accompanying GLK lock

algorithm. GLS is a middleware that makes lock-based system development significantly easier

(i) by removing the need for manually handling lock declaration and initialization, (ii) by

detecting several common lock-related correctness issues, and (iii) by profiling and reporting

per-lock statistics, such as the contention behind a lock and its acquisition latency. GLK

simplifies things further, by monitoring the contention levels of a lock in order to dynamically

adapt the locking algorithm to the needs of the underlying workload, delivering the best

performance among spinlocks, queue-based locks, and blocking locks.

We showed that GLS can simplify concurrent programming, adding low overheads compared to

directly using a locking algorithm. We also showed that GLK is always able to capture the needs

of the workload, adapting to the best-performing algorithm for each workload phase. We used

GLS to re-implement synchronization in Memcached, resulting in 26% less lock-related code

and achieving 14% higher throughput. We also used the debugging facilities of GLS to detect

two locking issues in the initial Memcached implementation. Finally, we used GLK in five

software systems: HamsterDB, Kyoto Cabinet, Memcached, MySQL, and SQLite, comparing

against their default locking algorithm, as well as the different modes that GLK can operate

in. We improved the performance of these five systems by 23% on average, on two different

platforms, using GLK, with essentially zero effort.
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6 Tuning Distributed Transactions in
the Datacenter

6.1 Introduction

Modern hardware, with large amounts of main memory and high-speed networks with Remote

Direct Memory Access (RDMA) capabilities, has already made its way into datacenters, en-

abling a new generation of distributed algorithms and systems. Several transactional systems

have been devised to take advantage of this modern hardware [8, 32, 52, 53, 88, 106, 174].

These systems achieve high throughput, low latency and good scalability in On-Line Trans-

action Processing (OLTP) workloads. They can commit tens of millions of transactions per

second, with latencies in the micro-second range.

However, achieving such performance is not straightforward. Implementing even a single

SELECT statement of an OLTP workload involves at least two physical design decisions that

arise from the use of RDMA networks: (1) tuning the parameters of data indexes and storage,

and (2) data partitioning and remote data access optimization. Previous work has required

manual tuning of such parameters to achieve performance. However, this process is both

cumbersome and error-prone when performed for every parameter of a system. Additionally,

even small changes in the workload, or the underlying hardware, require fully repeating

the process. The impact of tuning can be significant. Figure 6.1 depicts 2.2x difference in

performance between finely tuned and default physical designs when running TATP [120].

In this chapter, we present SPADE (Scale-out PhysicAl Design tunEr), a tuner for OLTP work-

loads on modern RDMA clusters, which automates these physical design configuration choices.

First, SPADE tunes the configuration of the indexes and storage parameters of a workload (1).

Maximizing index performance on modern RDMA clusters requires specific configuration

based on the size of rows and the operation mix. For example, inlining data in the primary

index is beneficial for small row lookups, as it reduces the number of remote accesses. In

contrast, for large rows, it is better to store the data outside of the index, as this reduces the

amount of data transferred [52]. The exact size threshold depends on the workload and the

underlying hardware. Additional operations on the table (e.g., insertions or updates) and

indexes (e.g. secondary) further complicate these decisions. The impact on performance
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Figure 6.1 – Effect of physical design tuning on TATP.

when using an incorrect configuration is non-negligible: we noticed up to 15% impact on

throughput and 22% on latency, when configuring indexes.

Additionally, SPADE optimizes partitioning and remote data accesses (2). While traditional

systems rely heavily on partitioning, modern distributed transactional systems can take

advantage of one-sided RDMA reads to avoid expensive network packet processing, improving

throughput and lowering latency. Using RDMA reads is beneficial for a range of operations.

However, message-passing (or Remote Procedure Calls – RPCs) can outperform direct accesses

when data is collocated on the same machine, as well as for large write-intensive operations,

as we show in this chapter. SPADE identifies whether to use RDMA or message-passing

based on the schema and workload characteristics. Correctly optimizing remote accesses

not only improves the throughput, but also the median and tail latency of a workload. In our

experiments, tail latency is reduced by up to 80% when correctly tuning remote accesses.

SPADE tunes OLTP workloads offline. Initially, SPADE takes query plans of the stored proce-

dures of an OLTP workload as input. By examining these plans and combining them with

information on the schema and workload characteristics, SPADE identifies partitioning op-

portunities, collocating rows of different tables that are often accessed together. Additionally,

SPADE creates a model for each procedure of the workload, consisting of low-level operations,

such as single row lookups and updates. Feeding these models with the performance char-

acteristics of the cluster, gathered through microbenchmarks, enables SPADE to decide on a

configuration for each table (i.e., data and index design), as well as for each stored procedure

(i.e., using message-passing or one-sided remote memory accesses).

SPADE is designed and implemented as an additional level of tuning on top of FaRM [52, 53].

FaRM is a main memory distributed computing platform that uses one-sided RDMA memory

accesses, battery-backed main memory and transaction, replication, and recovery protocols

to achieve high availability, scalability and performance on modern datacenter hardware. We
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evaluate the performance of OLTP workloads tuned with SPADE on top of FaRM using two

popular OLTP benchmarks: TATP and TPC-C. We study the extent to which tuning decisions

affect performance, showing that individually, they improve throughput by up to 50% and

reduce latency by as much as 25%. Combined, these decisions improve throughput by as much

as 117%, while lowering latency by up to 75%. We highlight some counter-intuitive choices

that SPADE makes, which would be difficult for a developer or administrator to identify. These

choices improve throughput and reduce both median and 99th percentile latency.

In summary, the contributions of this chapter are the following:

• We identify RDMA-specific tuning opportunities that are crucial to the performance of

OLTP workloads on modern RDMA clusters.

• We introduce SPADE, a physical design tuner for OLTP workloads on RDMA clusters.

SPADE automates index tuning, data partitioning, and remote data access optimization,

based on the schema, and the workload and hardware characteristics.

• We evaluate the effect of physical design tuning on the throughput and latency of OLTP

workloads on modern RDMA clusters. This evaluation is useful in its own right, since it

showcases the effects of tuning outside the context of SPADE.

It is important to note that SPADE is not meant to replace existing query optimizers. In this

chapter we identify and quantify the effect of RDMA-specific choices on the performance of

OLTP workloads in FaRM, as an additional level of necessary optimizations. Similarly, SPADE

might not be applicable to all distributed transaction systems, since not all of them offer the

possible choices in SPADE. However, as such systems become popular, there are lessons to be

learned for related future efforts.

The rest of the chapter is organized as follows. In Section 6.2 we present the architecture of

SPADE and in Section 6.3 we describe how tuning is performed. We evaluate workloads tuned

with SPADE in Section 6.4 and present some concluding remarks in Section 6.5.

6.2 SPADE

In this section, we first describe SPADE’s architecture and how it fits in the execution model

of an OLTP workload. We then present how the compilation of query plans into low-level

transactions works, how SPADE tunes the physical design, as well as the models it uses and

how these are fed with data.

6.2.1 Architecture overview

Figure 6.2 presents SPADE’s architecture. An application consists of application code and

stored procedures. Stored procedures are written in a SQL dialect and compiled by a SQL com-

piler offline. In our implementation, we used the PostgreSQL compiler to produce physical
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Figure 6.2 – The architecture of SPADE.

execution plans of the workloads (see Section 6.4.1). SPADE then analyzes the physical plans,

tunes the indexes used based on the workload queries, and makes per-procedure choices

regarding remote accesses. We leave support for online tuning as future work. The stored

procedures are then compiled into low-level code that utilizes the distributed transactional

platform’s API to access data and indexes, similarly to the in-memory component of SQL

Server [43]. The stored procedures are uploaded to an RDMA cluster together with the appli-

cation. During execution, the application uses the SPADE runtime API to bind arguments and

execute the stored procedures of the workload, as well as to retrieve the results of the queries.

Queries are compiled in two steps. Physical query plans, which describe the operators that

need to be executed, the type of joins to use, and similar, are produced first using a SQL

compiler. We use existing techniques for query compilation and do not impose any specific

requirements on the physical plan. SPADE takes as input the query execution plan produced

by an optimizer. With these plans as input, SPADE produces low-level code that implements

the stored procedures, tuning their physical design, using the API offered by the distributed

transactional platform.

To tune the physical design of queries, SPADE models each operation (e.g., lookups, updates,

etc.) as a set of low-level distributed operations (e.g., remote reads and writes). To quantify

the performance of these operations, SPADE executes a set of microbenchmarks on the target

cluster. These include single operations (lookups, updates, insertions and deletions) executed

both through a primary and a secondary index, for different cluster and row sizes. These

microbenchmarks need to be run only once. SPADE executes three different scenarios for

each operation: a) the operation accessing local data, b) the operation accessing remote data

through RDMA, and c) the operation executing locally at a remote machine through an RPC.

The results of these benchmarks are used by SPADE. We detail how SPADE uses this metadata

for each tuning decision it automates in the following.
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void get_subscriber_data(int s_id) {
auto transaction_object =

new SQLTransaction("GET_SUBSCRIBER_DATA");

transaction_object ->AddArgument (0, s_id);
auto results = transaction_object ->Execute ();

if (results ->status == TxStatus :: Committed)
{

// Application code to use the results
}

}

Listing 6.1 – TATP’s GET_SUBSCRIBER_DATA invoked in an application.

We present an example of how the GET_SUBSCRIBER_DATA query presented in Listing 2.1

can be invoked as part of an application in Listing 6.1. The code creates an object based on

the name of the stored procedure (a name given by the developer) and invokes the Execute

method. The application can check whether the transaction committed, and use the results of

the query (in this case the subscriber data). If the SQL transaction has aborted, the application

can retry the same transaction, based on whether the abort was due to contention or lack of

data (not shown here).

6.3 Tuning

In this section, we discuss the tuning decisions we consider in SPADE. For each one we first

present the possible choices and some intuition on how these affect performance. We then

show examples of how these different options impact performance based on our microbench-

marks, and how we use this information in SPADE to tune a workload. We distinguish two

categories of design choices, which we describe in the following subsections. We assume a

row-store format, which is the prevalent format for OLTP workloads.

6.3.1 Index tuning

Indexes are an important part of databases and can significantly speed up access to data.

SPADE supports two types of indexes: hash indexes and B-Tree indexes. Modern distributed

transaction systems provide at least one of the two. Tuning these indexes can optimize the

size and the number of network accesses. Typically a trade-off exists–increasing the size of

accesses reduces the number of accesses necessary, but at the same time it reduces the request

rate the hardware can perform. In SPADE we identified two opportunities for tuning indexes.

The first choice is between storing records inside the data structures (e.g., as the value of a

hashtable implementing a hash index) or storing only a pointer to the record in the index data

structure. We refer to the first as inlined indexes and to the second as non-inlined indexes. The

second choice is on the neighbourhood sizes for hash indexes and node sizes for B-Trees.
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Figure 6.3 – Performance of random RDMA reads.

We use a hash index as an example of performance impact, but similar observations hold

for B-Trees. Hash indexes in FaRM are implemented using chained associative hopscotch

hashing [52]. Each bucket in the hashtable has an overflow chain, which stores key-value pairs

that do not fit into the bucket. Lookups use one-sided RDMA reads to access a bucket, as

well as to fetch the overflow chain blocks. A small bucket will typically lead to more RDMA

accesses for the overflow chain. In contrast, a large bucket will result in fewer RDMA accesses,

but its performance might suffer because of the large RDMA transfers. In Figure 6.3 we present

the throughput of RDMA requests for different transfer sizes on a cluster of 50 machines (our

setup is described in Section 6.4.2). For transfers of up to 256 bytes, the request rate remains

constant. However, for sizes above 512 bytes the request rate degrades significantly. The

specific numbers change based on the network hardware available.

Storing the records in a hashtable (and similarly in a B-Tree) raises the question of inlining.

When the data is inlined, lookups can be as fast as a single one-sided RDMA. A larger neigh-

bourhood size for an inlined table minimizes the number of RDMA transfers. At the same

time, however, it results in larger RDMA transfers, which as we showed can reduce perfor-

mance. There is a trade-off between keeping the neighbourhood small and reading as many

records per hash index lookup as possible. Figure 6.4 presents the performance of primary

index lookups using one-sided RDMA on two tables, with rows of 16 and 256 bytes. Both

tables are inlined. For the smaller row size, a large neighbourhood of 8 rows per hash bucket

achieves the highest throughput, while for larger records the best performance is achieved

with a neighbourhood size of 2, and the throughput gains over choosing a neighbourhood of

size 8 is 70% on 50 machines. Inlining does not create multiple copies of the data: if the data

resides in the primary index, it is stored only there, and any secondary index merely holds the

key of the data in primary one. This is possible in non-traditional systems, such as the ones

we study, where there is no notion of "tables" and data can be stored anywhere.
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Figure 6.4 – Performance of inlined lookups.

Alternatively, the data could be stored outside of the index, with only a pointer stored. Pointers

are typically smaller than rows: in FaRM they are 8 bytes. Holding the data outside indexes

typically incurs extra memory accesses. However, records are not only accessed through a

primary index (i.e. through the primary key of a relational table), and operations are not

always read-only. For example, records are often accessed through secondary indexes, with

the results of a lookup corresponding to more than one records. Retrieving the results of a

secondary index lookup involves either looking up the records in the primary index (if inlined),

or reading them directly from the memory (if not inlined), which is more efficient.

Figure 6.5 compares the performance of a read-only workload with two different transaction

mixes: (1) 90% accesses through the primary index and 10% through a secondary one, and (2)

90% accesses through a secondary index and 10% through the primary. Rows are 256 bytes.

The best configuration for the first transaction mix is to inline data and use a neighbourhood

size of 2. Using the same configuration parameters for the second transaction mix yields up

to 12.4% lower throughput than the optimal one, which is to not inline the data and use a

neighbourhood size of 16.
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Figure 6.5 – Performance of 256-byte row lookup mix.
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To choose a configuration for a given table and transaction mix, SPADE works as follows. After

translating all the queries of a workload into low-level distributed operations, SPADE groups

operations per relational table (based on the workload schema). For each table T , SPADE

calculates the weighted average of both throughput and latency:

T hr oug hput (T ) =∑
i

ri (T )∗T hri (T )

Latenc y(T ) =∑
i

ri (T )∗Lati (T )

Where ri (T ) is the ratio of the low-level operation i (e.g., lookup through a hash index, update

through a secondary index, etc.) across all the operations on table T :

ri (T ) = Ni (T )∑
j N j (T )

Ni (T ) is the number of occurrences of operation i on table T . If metadata about the query mix

in a workload is available (we use such metadata in our evaluation), Ni (T ) is adjusted by the

ratio of each query to the total mix. SPADE then iterates over the parameter space, using the

microbenchmark performance numbers for each operation – T hri (T ) and Lati (T ). SPADE

then tries to achieve a goal, such as maximizing T hr oug hput (T ) or minimizing Latenc y(T ).

We leave the implementation of more elaborate heuristics in SPADE for future work.

6.3.2 Partitioning and remote access optimization

An important decision in scale-out systems is partitioning: ideally, data should be sharded in

such a way that all transactions access only local data. With modern datacenter networks, parti-

tioning is no longer the main performance factor but rather an optimization: accessing remote

memory is fast, but still an order of magnitude slower than accessing local memory [174].

There is a large body of work on data partitioning [6, 7, 123, 127, 133, 168]. SPADE is not

meant to replace these systems. However, using a shared-memory compiler and optimizer, we

implement a simple partitioning scheme in SPADE. Before the tuning process, SPADE groups

accesses to tables per transaction. SPADE then identifies stored procedure inputs that are

used to access more than one tables, creating groups of tables that are accessed with the same

primary key, or common parts of their primary keys. It also keeps these common keys that

act as links in this grouping. After that, SPADE identifies intermediary outputs of a stored

procedure used to access tables (e.g., foreign keys) and further groups tables. Finally, SPADE

uses the links identified as the partitioning key. In FaRM, the distributed data structures

used as indexes (the hashtable and B-Tree) support partitioning keys, which allows SPADE to

collocate parts of tables that will be accessed together.

86



6.3. Tuning

UPDATE Subscriber
SET bit_1 = <rnd >
WHERE s_id = <rnd subid >;
UPDATE Special_Facility
SET data_a = <rnd >
WHERE s_id = <s_id value subid >
AND sf_type = <rnd >;

Listing 6.2 – TATP’s UPDATE_SUBSCRIBER_DATA written in SQL

For example, from Listing 6.2, SPADE can identify that records of the Subscriber and Spe-

cial_Facility tables are accessed together based on the s_id. Thus, a grouping between the

two is created, with s_id being the link. After all the tables are processed, SPADE partitions

the Subscriber and Special_Facility tables with s_id as the partitioning key of the hash indexes

used for both tables. Thus, accesses local to a specific subscriber, will always result in local

accesses to the special facilities that correspond to that subscriber. We believe that more

elaborate partitioning and collocation heuristics can be included in the SQL compiler and

provide additional inputs to SPADE. We thus focus on tuning remote accesses for transactions.

In the general case, it is unavoidable for some workloads to access remote data. SPADE

distinguishes two cases: a) a transaction refers to remote data, which is all on the same

machine or b) a transaction refers to a combination of local and remote data residing on

multiple machines. SPADE further optimizes for case (a). There are two possible ways to

execute a transaction that only accesses data on a single remote machine. The first is to utilize

RDMA to fetch the necessary data, invoking the remote protocol at the end of the transaction.

The second approach is to do an RPC to the remote machine, have the transaction executed

on that machine, and the results shipped to the invoking machine. The performance of even

simple operations differs between these two choices. Figure 6.6 shows the performance of a

single-row update for two different row sizes, 16 and 256 bytes. In these measurements, we

include the cost of replication (we use a replication factor of 3, similarly to our evaluation

setup). Persistence is also included, since we assume main memory that has power support,
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Figure 6.6 – Performance of RDMA and RPC for a single-row update operation.
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as described in 2.4 and implemented in FaRM. This example assumes that we are not updating

the full row, but a single field in it, which is the case for many workloads. While for small

row-sizes accessing the row through RDMA and invoking the distributed commit protocol

achieves higher throughput, for the 256-byte rows sending an RPC and invoking the commit

protocol at the machine where the data resides is 16% faster. The difference in performance

only becomes bigger as the transactions to be executed become longer and touch more data.

SPADE optimizes remote transaction execution using a similar technique as before. Instead

of grouping operations per relational table, SPADE examines low-level operations (including

distributed data structure accesses) of a single workload transaction, possibly consisting

of multiple queries. For each transaction T x, it calculates the weighted average of both

throughput and latency:

T hr oug hput (T x) =∑
i

ri ∗T hri (T x)

Latenc y(T x) =∑
i

ri ∗Lati (T x)

Where r T
i is the ratio of the low-level operation i (e.g., lookup through a hash index, update

through a secondary index, etc.) over all the operations in transaction T x:

ri = Ni (T x)∑
j N j (T x)

Ni (T x) denotes the number of occurrences of the operation i in transaction T x. SPADE

then iterates over the two available choices (RDMA accesses or an RPC call for a transaction)

and chooses the one that either maximizes T hr oug hput (T x) or minimizes Latenc y(T x). If

SPADE chooses an RPC for a transaction, it generates the code necessary for the RPC calls.

6.4 Evaluation

We used SPADE to implement two popular OLTP workloads: TATP and TPC-C. We first discuss

TATP, establishing a baseline implementation and then showing how the different tuning

decisions included into SPADE affect performance, what wrong choices would mean for both

throughput and latency. Then we connect these results to the observations of Sections 6.3.1

and 6.3.2. We also present the final results for both workloads in terms of throughput, median

and 99th latency when scaling out the workloads to a cluster of 50 machines. We focus on

the performance of TATP because of the different types of queries it contains: TATP has both

read-only and read-write transactions, as well as transactions that touch a varied amount of

data. As such, a single configuration for all tables and indexes will be far from optimal. We use

such examples throughout our evaluation.
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6.4.1 Implementation

We implement SPADE as a standalone application written in F#. Our microbenchmarks are

written in C++ and executed once for a FaRM cluster. We use PostgreSQL to generate plans

for our workloads in XML format, which are then used as input to SPADE. SPADE produces

executable code for the queries of a workload, which is invoked by applications using a C++

API we developed for SPADE. Both applications and compiled transaction code are uploaded

to a FaRM cluster for execution. At runtime, the compiled code of a stored procedure invokes

the FaRM API. Fault-tolerance and partition guarantees are the same as described in [53].

Additionally, due to the power-backed memory in a FaRM cluster, data is durable at all times.

As a result, our system and execution model provides ACID transactions.

6.4.2 Experimental setup

We run our experiments on a cluster of 50 machines. Each machine has 256 GB of DRAM

and two Intel E5-2650 CPUs (16 cores / 32 threads in total). Each machine has two Mellanox

ConnectX-3 56Gbps Infiniband NICs, one shared by the threads of each socket. The machines

are connected to a single Mellanox SX6512 switch with full bisection bandwidth. The cluster

runs Windows Server 2016. FaRM is configured with 3-way replication. All experiments are

run for 60 seconds (excluding warm-up) and 3 iterations. In the graphs presented we report

the average of the 3 iterations (we do not notice significant deviations).

6.4.3 TATP

Overview. The Telecommunications Application Transaction Processing (TATP) [120] is a

relational benchmark, simulating a typical Home Location Register (HLR) database in a mobile

phone network. The benchmark consists of a set of seven pre-defined transactions that query,

update and insert data in 4 tables, following a fixed probability for each transaction (referred

to as transaction mix). TATP is read dominated, with 80% of the transactions being read-only,

and only 20% being read-write transactions. It also involves small transactions, with the

rows read/written being between 8 and 72 bytes. Throughout our experiments, we use 50

million subscribers per machine (250 million subscribers for a cluster of size 5 and 2.5 billion

subscribers for a cluster of size 50), for a total size of 1TB of data on 50 machines.

In all our experiments, we scale TATP to 50 machines. To showcase the effect of tuning

decisions, we write a baseline implementation of TATP and then use SPADE to tune the

different parts of the workload. We repeat the experiments and report the difference in

throughput and latency (median and 99th percentile). Figure 6.7 shows the throughput and

latency results of our experiments.
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Figure 6.7 – Performance of all TATP versions.

Baseline. We begin by implementing a first version of TATP, using the transactions as de-

scribed in the specification. Our application invokes a random number generator, and based

on the workload mix described in the TATP specification, executes the different transactions.

For this baseline, the data is not partitioned, with tables distributed across the cluster in a

round-robin fashion. Remote accesses use one-sided RDMA reads and writes. All indexes

are configured with the same parameters, which favor small row sizes, as most of the TATP

tables have small rows. We refer to this version as TATP Baseline. TATP Baseline achieves a

throughput of 39.9 million committed transactions per second on 50 machines, with a median

latency of 193 microseconds and a 99th percentile latency of 660 microseconds.

Index tuning. We use SPADE to tune the indexes used in TATP, as described in Section 6.3.1.

We refer to this version as TATP Tuned in the remainder of this section. We use hash indexes for

the primary keys of the TATP tables. The 4 tables of TATP have different characteristics, both

in terms of row sizes (ranging from 8 to 72 bytes in our implementation), but also significant
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differences in accesses. For example, the Access_Info table has a row size of 10 bytes, and is

only read by the queries. In contrast, the Call_Forwarding rows are 20 bytes and the rows

are read, inserted, and deleted. Correctly configuring each index improves throughput by

10%-15% and latency by 19%-22% across different cluster sizes.

Partitioning. Next, we partition the TATP workload. SPADE identifies that most accesses are

done based on a specific subscriber (the s_id of the subscriber table). Thus, the tables are

partitioned in a way that the rows of all the tables that refer to a subscriber are stored on the

same machine. Transactions access local data when invoked on the machine that stores the

subscriber affected. For the rest of our experiments, we hardcode 10% of the transactions to

reference subscribers on a different machine, to ensure that there are remote accesses across

the cluster. Initially, all remote accesses are executed using RPCs: a machine first looks up the

machine storing the data, and then does an RPC to that machine to execute the transaction

and return the result. We refer to this implementation as TATP Partitioned Baseline.

In Figure 6.7, we show the improvement over TATP Tuned. The results are intuitive: By avoiding

remote accesses, the majority of transactions is executed locally, avoiding communication

through RPCs. In our implementation, when a transaction accesses remote data, the machine

processing the transaction does an RPC to the machine holding all the data necessary to

execute the transaction, so the accesses to memory are local (except for the shipping of

results). The improvement in throughput is between 45% and 50%, while latency is improved

between 23% and 25% for the median and between 22% and 28% for the 99th percentile

latency. The improvement is significant. However, it is comparable to that between TATP

Baseline and TATP Tuned. In the past crossing partitions and accessing remote data used to be

prohitibitively expensive. As this experiment shows, with modern network interconnects, the

effect of remote accesses becomes smaller, and partitioning can be viewed as an optimization,

rather than a requirement.
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Figure 6.8 – TATP’s GET_ACCESS_DATA transaction latency after partitioning.
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SELECT data1 , data2 , data3 , data4
FROM Access_Info
WHERE s_id = <rnd > AND ai_type = <rnd >;

Listing 6.3 – TATP’s “GET_ACCESS_DATA" in SQL

Different transactions benefit from SPADE’s optimizations to different extents. For instance,

for the GET_ACCESS_DATA transaction (the SQL for this transaction is shown in Listing 6.3) the

median latency is 25% lower, but the 99th percentile latency is increased by 40-53% (Figure 6.8).

This is because the query is read-only, and accesses a single row of the table. Doing an RPC

when accessing remote data adds an extra overhead to the transaction: the data is shipped to

the calling machine and by using an RPC we additionally involve the remote CPU. However

this is the case only because of the size of the returned data (10 bytes) and the length of the

transaction itself (a single lookup). Because of the partitioned workload, in TATP Partitioned

Baseline version, 90% of the invocations of this transaction will access local data, lowering

the median latency, while the 10% of the cases where remote accesses are necessary will be

slower than before (our TATP tuned version uses one-sided RDMA operations for all remote

accesses). This transaction is a perfect example of a physical design choice that is tied to

the characteristics of the data and the underlying hardware, but also one that would require

extensive experimentation to identify. A uniform configuration for all the remote accesses

clearly is not optimal for TATP.

Remote access tuning. Finally, we enable the cost models of SPADE which decide on whether

an RPC should be preferred over a direct access to data (we refer to this implementation as

TATP Partitioned Tuned. Throughput is improved between 9% and 30% and latency between

5% and 22%. This is a direct result of addressing all the cases such as GET_ACCESS_DATA,

which benefit from directly accessing remote data over message passing. Figure 6.9 shows the
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Figure 6.10 – Overview of the impact of different physical design choices to TATP operation
latency.

improvement for this particular query (introduced before). Optimizing parts of the workload

to use RDMA improves median latency between 5% and 23% and tail latency by up to 45%.

Doing so manually is far from trivial. Using a cost model like the one we use in SPADE is not

only easier, but also more accurate, since it can calculate the optimal setup for a set a stored

procedures and a specific transaction mix.

Effect on individual operations. Figure 6.10 presents the median and 99th percentile laten-

cies of all 7 stored procedures in TATP across the four versions presented on 50 machines.

For 4 of the 7 transactions, each set of tuning decisions improves median latency, lowering

it by as much as 70%. For both UPDATE_SUBSCRIBER_DATA and UPDATE_LOCATION, the

differences when optimizing indexes (TATP Tuned) are small: for the Subscriber table, SPADE

chooses to store data outside of the primary hash index. Thus, both the primary index and

the secondary index on sub_nbr store pointers to the objects. As a result, lookups through

the secondary index are significantly faster, but updates become slower, since they require

more operations (as opposed to inlined data). However, the total effect on the workload is

positive. If the transaction mix was different, SPADE might choose to inline the Subscriber

table, in order to achieve an overall better performance.

Similarly, each set of tuning decisions improves the 99th percentile latency of transactions,

with two exceptions. For TATP, partitioning data translates to co-locating rows of the dif-

ferent tables based on the subscriber they refer to (s_id). For GET_SUBSCRIBER_DATA

and GET_ACCESS_DATA, using only RPCs for transactions accessing remote data increases

99th percentile latency by 40.9% and 40.1% respectively. Both transactions are read-only,

touching small amounts of data. Doing an RPC and receiving the results translates to higher

latency than directly reading the necessary data using one-sided RDMA reads. The transfer

latency for the data will be the same, however, using message-passing will additionally involve

the remote CPU, which will have to process the request and send the response. For both

transactions, when switching to RDMA reads for remote accesses, median latency improves

by 23%, and at the same time tail latency is lowered by 45%.
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6.4.4 TPC-C

Overview. The Transaction Processing Performance Council Benchmark C (TPC-C) [159] is

a well-known and long-studied OLTP benchmark. TPC-C emulates the activity of a wholesale

supplier, with tables that contain data on stock, customers, new orders, and more. The

workload consists of five pre-defined transactions of different types and complexity, which

can access up to hundreds of rows. In contrast to TATP, TPC-C is write-intensive, with 35.8%

of transactions modifying data. Throughout our experiments, we use 120 warehouses per

machine, for a total of 6000 warehouses on 50 machines.

We scale TPC-C to 50 machines. Since TPC-C is partitionable by design (the granularity of

partitioning is a warehouse), we do not use SPADE to partition the workload, and focus on

remote transaction processing, using either RPCs or RDMA accesses. We collect statistics

for all the transactions of the workload and report throughput and latency for "new order"

transactions only.

Effect of remote accesses. Figure 6.11 depicts the effect of optimizing remote accesses for

TPC-C. In TPC-C warehouses are the granularity of partitioning: 90% the queries reference

data that corresponds to a local warehouse, as such they result in local data accesses. Thus,

we begin our tuning process from the TPC-C Partitioned Baseline implementation, which

uses the same configuration for all indexes and RDMA accesses for all remote data, and then

invokes the distributed commit protocol. Since we are using FaRM for our implementation,

during commit, read values are validated to have not changed, and modified values are

shipped to the machine storing the data (and then replicated to backups). The second version,

named TPC-C Partitioned Tuned, is the result of using SPADE to tune indexes and remote

accesses. SPADE decides that RPCs are better for all the transactions accessing remote data

in TPC-C. Using RDMA for transactions that reference remote data yields throughput that

is lower by up to 37.7%, while median and tail latency are up to 298% and 395% higher

respectively. All the queries executed in TPC-C involve numerous data accesses. Using

RDMA decreases throughput and increases latency. Additionally, due to longer transactions,
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Figure 6.11 – Performance of TPC-C and remote access tuning.
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throughput is further lowered, due to the closed-loop architecture of the TPC-C benchmark.

Adding concurrent transactions improves throughput slightly, but at the cost of higher latency.

6.5 Conclusions

This chapter introduced SPADE, the first physical design tuner for OLTP workloads on modern

RDMA clusters. SPADE automates choices regarding the tuning of indexes, the partitioning

of data, and remote accesses, shipping data, or the computation through RPCs for different

parts of the workload. SPADE achieves this by analyzing the physical plan of a workload, and

using hardware and network performance characteristics gathered through microbenchmarks.

Our evaluation of workloads tuned using SPADE showed that these choices have a significant

impact on both throughput and latency, improving them by up to 117% and 75% respectively.
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7 Conclusions and Future Directions

Synchronization is an important part of modern software, allowing for concurrent executions

that improve performance, while ensuring correctness. However, with modern hardware

platforms containing tens of processing cores, large main memory capacities, and fast network

interconnects in the datacenter, synchronization can become a significant bottleneck for the

scalability of applications. This dissertation studied the scalability of synchronization on

modern hardware, focusing on the shared-memory setting for applications. In this chapter, we

summarize the main contributions of our work and present some directions for future work.

7.1 Understanding the Scalability of Shared-Memory Applications

In this dissertation, we argued that understanding the scalability of applications during de-

velopment can be tedious. Typically, development takes place on small desktop machines,

and not every developer has dedicated access to large servers. Creating detailed models and

simulations of applications and hardware platforms is not only tedious and time-consuming,

but also error-prone.

In Chapter 4 we presented ESTIMA, a practical tool that extrapolates the scalability of in-

memory applications. ESTIMA uses a combination of hardware performance counters, as well

as software-measured performance metrics. This allows for wider applicability, since ESTIMA

does not require extensive instrumentation or access to the application source code.

The key contribution of our work can be summarized as the use of performance counters, a

tool typically used for bottleneck identification, to extrapolate the scalability of applications.

Moreover, with ESTIMA, we also introduce how one can use software-sourced performance

metrics to understand the effect of synchronization on the scalability of an application.

In our work, we included software stalls from threading libraries such as the pthread library,

as well as from the STM runtime we used. Although HTM implementations were already

present at that moment, they did not offer enough performance counter metrics for us to

include support. As HTM becomes more popular, we believe that more fine-grain performance
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analysis tools and support will be necessary, in order to understand potential bottlenecks in

implementations and guide developers towards fixing them.

Another issue that we faced during this work, was a lack of support for monitoring of multiple

performance counters in parallel. This leads to both performance penalties, as well as inaccu-

racies in the measured values. We believe that as hardware platforms become more and more

complex, understanding how to build efficient software will require better support from the

hardware in understanding the behavior of an application on a specific hardware platform.

7.2 Improving the Scalability of Shared-Memory Applications

In the second part of this dissertation, we focused on improving two common synchronization

primitives: locking and transactions.

Locking is one of the most straightforward approaches to synchronizing access to data.

In Chapter 5 we claimed that using locks effectively requires a significant amount of effort,

and can lead to both correctness and performance issues when implemented incorrectly.

We introduced GLS, a runtime that abstracts all of these design and implementation choices

from the developer, allowing for easier development of multi-threaded applications. Our

contribution can be summarized as the introduction of a different locking paradigm, where

locks are managed by a runtime, while the developer only defines the needs of the application.

Although our work made a significant step towards better locking performance and usability,

the performance of individual lock algorithms and implementations is still an open problem.

More specifically, as concurrent work has shown [66], locking algorithms and their imple-

mentations across different hardware platforms can significantly affect their performance.

Thus, it is important to find ways to ensure portable performance for the widely used locking

algorithms. We expect the need for such work to only increase as hardware becomes more

diverse in the near future.

Finally, we studied the current landscape in datacenter distributed transactions. We iden-

tified that achieving performance for OLTP workloads requires significant manual effort.

In Chapter 6 we quantified the effect of this tuning on the performance of OLTP workloads

and presented SPADE, a tuner for OLTP workloads on modern RDMA clusters. SPADE au-

tomates decisions on storage parameters, index tuning and remote data accesses, on top of

traditional optimizations for workloads performed by query optimizers. To do so, SPADE uses

performance characteristics of the hardware and network, and combines them with workload

and dataset information, to automate this tuning.

Our work did a first step towards offering the power of distributed transactions to widely

used workloads, removing the need for extensive manual effort and detailed knowledge of

the hardware and workload from the developers. However, we have barely scratched the

surface of an interesting area of research. A question arising from our work is how we can use
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similar techniques to improve On-Line Analytical Processing (OLAP) workloads on similar

datacenter environments, taking into account the differences in the characteristics between

OLTP and OLAP workloads. Moreover, an interesting direction is whether we can combine the

two workload characteristics, and how existing work [9] will need to be adapted to better take

advantage of modern hardware.
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