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Abstract

This paper presents a method to analyze the technical and economic
potential of combining different types of resources to provide grid services,
with a particular focus on battery systems. The paper proposes a mod-
elling paradigm where resources are described with few key operational
parameters and describes a control architecture to co-operate the combi-
nation of resources to offer fast grid services, taking as an example the
provision of secondary frequency control in the Swiss market. A sensitiv-
ity analysis is reported that highlights the ability of the combination of
energy resources to provide grid services as a function of their technical
characteristics.

1 Introduction

Power grids are undergoing massive changes to reach ambitious targets
in terms of reduced carbon dioxide emissions, higher energy efficiency,
economic competitiveness and increased security of supply. The increas-
ing share of intermittent renewable energy sources connected to the grid
challenges the current power grid stabilization paradigms. Renewable
energy production is less predictable and controllable than traditional
generation from fuel-based power plants and hydropower units and in-
troduces fluctuations and uncertainty on the generation side which con-
tribute to destabilize the network. In addition, intermittent renewable
energy are connected through power inverters which do not provide in-
ertia to the grid in the same way the rotating mass of synchronous gen-
erators of traditional power plants do. The increasing need for reserve
power, which is now mostly provided by hydro-units and fast-ramping
generation resources, has brought attention to the provision of regula-
tion services by demand-side resources [Callaway and Hiskens, 2011] and
electric storage resources. The potential of demand side resources has
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recently been identified by authorities in the USA and Europe. For exam-
ple, the Pennsylvania-Maryland interconnection (PJM), has incentivized
the participation of new resources in ancillary services by adapting their
participation rules [Zhao et al., 2013]. Regulation services to the grid
require accurate and fast control, therefore, they usually take the form
of direct control under the form of power production/consumption track-
ing [Callaway and Hiskens, 2011], [Rebours et al., 2007].

Numerous types of loads or pools of loads have been identified as suit-
able for providing regulation services, including thermally controllable
loads [Hao et al., 2015], interruptible industrial and domestic loads [Dou-
glass et al., 2013], and plug-in hybrid electric vehicles [Andersson et al.,
2010]. [Oldewurtel et al., 2013] proposes a framework to study which
resources are most suitable for each type of service.

In particular, following the maturation of battery products and steady
declines in battery pack prices [IRENA, 2017], electric storage have been
evidenced as a credible technical alternative to power plants in numer-
ous situations, in particular grid regulation services provision and renew-
able integration [Divya and Østergaard, 2009, Oudalov et al., 2007]. The
next step consists of looking at economic viability. Existing works in
the literature have looked at specific types of resources. In our previous
work [Qureshi et al., 2016], the economic implications of utilizing build-
ings systems for grid support services in the Swiss market were studied
in detail. It concluded that buildings participating in the Swiss AS mar-
ket can reduce on average their operational costs between 8 and 35%,
depending on the availability of thermal storage and the opportunity to
place trades on the intraday market. The analysis by Lazard [2016] of-
fers a total cost and revenue analysis for different storage technologies on
different markets. It identifies possible returns of 13% for investment in
storage participating in PJM’s frequency regulation market. Megel et al.
[2013] propose two new methods to use batteries for frequency control and
computes return on investment for the strategies proposed based on some
investment cost measure.

While most available studies look at the value of storage alone, there
is significant economic value in combining storage systems with other re-
sources and providing flexibility services in coordination. The reason for
this is that the main limiting factor of investment in batteries is the price
of storage capacity. Due to this, services that require energy intensive
actions cannot be provided by batteries alone in an economically benefi-
cial fashion. Combining the battery with other types of resources allows
one to direct power intensive tasks to the battery and transfer energy
intensive tasks out to the other resources. In this work, we consider the
case where the battery is operated in combination with another system
whose characteristics are complementary to the ones of the battery in the
following sense:

• It is capable of supporting energy intensive profiles, that is it has
a large storage capacity. Note that this storage capacity can be
“virtual” since this system may not be a storage system per se, but
could be a power producing plant that can shift its power operating
point up and/or down. This grants the system a practically infinite
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storage capacity, possibly at the expense of loss-of-opportunity cost
of operating away from an otherwise economically optimal operating
point.

• It may not be able to perform power-intensive tasks due to techni-
cal limitations such as delays in response, power output ramp rate
limitations, or noisy output.

We consider the coordination of the system with: i) a physical system
that we will call “virtual storage” characterized by physical constraints,
which can be used as a proxy for demand response elements or different
types of power-generating assets, such as thermal or hydro power plants;
and ii) an energy selling and buying market mechanism that is character-
ized by regulatory rather than physical constraints.

We present here a method to evaluate the economic potential of bat-
teries for grid services which is applied to the case study looking at the
provision of secondary frequency control in the Swiss energy market, based
on real historical data of the service.

Since we aim at evaluating the combination of a storage system with
different types of resources, we have chosen to model the virtual storage
based on a few key physical characteristics. The key metric of comparison
chosen is the total amount of flexible power that can be provided by
the system over its expected lifetime. With this metric, we can directly
compare the impact of the physical characteristics of the resource on the
level of service that can be provided. However, from an economical point
of view, a financial comparison is required. Section 5 proposes methods
to draw conclusions regarding best investment strategies.

In this paper the coordination of the battery and the “virtual storage”
is considered and the following elements are detailed:

• The control architecture and design is presented (MPC).

• A sensitivity analysis of the influence of the key physical character-
istics of the system on its ability to provide the flexibility service is
reported.

2 Method of investigation

We aim to evaluate the economic advantage of combining batteries with
another flexible resource for fast regulation services. While we present a
specific case study that looks at the combination of a virtual storage and
a battery for provision of secondary frequency control, this method can
easily be extended to other cases.

Our goal is to determine for a given virtual storage characterized by
a particular set of physical limitations the best possible investment in
a combination of battery and virtual storage in order to provide grid
services. The strategy used is sketched in Figure 2.

In order to evaluate a particular combination of resources, we simulate
the operation of the full system providing several levels of grids services.
The technical and economic performance of the system across this range
and the best economic performance achievable are identified. By exploring
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Figure 1: Simulation flow

different respective levels of battery to virtual storage relative investment,
the best investment is finally identified.

Figure 2 summarizes the component that are involved in the simulation
and the computation of the financial indicators.

The simulator of the system takes as inputs: the system data, the
simulation parameters, and the controller parameters; and outputs the
simulation data. The simulation data is in turn used to compute the
resulting battery aging and determine yearly extrapolated revenues and
costs related to the operation of the system in the tested configuration.
Finally, an economic analysis routine evaluates the financial indicators for
the project looking at the investment in the battery.

Sections 3 provide the details of the technical aspects of the simula-
tion including the simulator, the models used, the controller chosen and
the ageing models considered while Section 4 details the revenue, cost
computation and the financial investment analysis method.

3 Modeling and simulation

3.1 Systems

We consider the combination of two systems:

• a virtual storage, whose operating capabilities are abstracted out
and summarized by three key indicators:

– Sampling rate: That’s the frequency at which the system can
be controlled

– Maximum power rating: The maximum power that the system
can generate:

– Maximum ramp rate: the maximum rate of change of the out-
put.

• An electric storage system, characterized by:

– Maximum power rating (which is assumed to be symmetric)

– Maximum storage level.
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In addition, the opportunity to trade energy on real-time energy mar-
kets is considered. Following the regulations of the European continuous
energy markets, it is assumed that energy can be traded on pre-determined
periods of time, with a lead time (or gate closure) prior to delivery.

3.2 Modeling

• Battery system described by power rating limitation and state-of-
charge constraints. The power injection to the battery is denoted by
Pb and the state of charge by sb. Ye use a load convention so that
Pb > 0 corresponds to a net charging of the battery. The following
constraints hold:

P b ≤ Pb ≤ P̄b
smin ≤ sb ≤ smax

(1)

The dynamics of the battery are characterized by the following equa-
tions:

s+
b = sb + f(Pb) (2)

where f is a nonlinear function of the charging power that captures
the roundtrip efficiency loss of the battery:

f(Pb) = ηchar max(Pb, 0) + ηdisc min(Pb, 0) (3)

and ηchar the charging efficiency and ηdisc the discharging efficiency
of the battery.

• A “virtual” storage system, whose power injection is denoted Ps
(also using load convention). It is characterized by power output
limits and ramp output constraints:

P s ≤ Ps ≤ P̄s
δs ≤ δPs ≤ δ̄s

(4)

where δPs is the difference of power output between two consecutive
time steps. In addition, the sampling time of the system as the
frequency at which the power input to this resource can be changed
is denoted by Tb and measured in minutes.

• The possibility to trade energy is modeled as a third system with
no dynamics, a slow sampling time and a delay which captures the
limitations of the gate closure time. We denote by Pm the traded
power and ut−δmm the trade placed at time t−δm for delivery at time
t.

P tm = ut−δmm (5)

where we still use a load convention so that Pm > 0 corresponds to
a net purchase of power. δm is denoted the gate closure delay.

The models above are simplifications of real systems and market mech-
anisms that allow one to concentrate the information in few key parame-
ters so that meaningful conclusions can be drawn while disregarding minor
details.
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We discuss below the consistency of the models with respect to reality.
The model of energy trading is inspired from the setup of most energy

trading exchanges. We assume that energy can be traded in periods of
15 minutes with a gate closure before delivery, conforming to the EPEX
SPOT market rules: gate closing time is variable depending on the market
and is one of the parameters that this study is investigating. It is assumed
that trades can be concluded at gate closure which assumes a price taking
position and enough liquidity in the market. Liquidity has been steadily
increasing in European intraday markets, so the question is one of price,
and is discussed in the next section. Note that a longer delay for intraday
trades can be used as a proxy to capture the risk of low liquidity in the
market.

3.3 Service provided

In this case study, we study the provision of secondary frequency control in
Switzerland. Secondary frequency control contributes to the restoration of
the frequency to the nominal 50 Hz operation of the power grid. Following
the rules of secondary frequency control, we assume the service provision
consists of tracking a reference power request.

Upon reception of the tracking request denoted at at time t, the total
power consumption of the system minus the energy traded is to be made
as close to zero as possible. We denote by et the tracking error at time t.

et = P tb + P ts + P tm − at (6)

We assume that at is unknown a priori, although at least one forecast
is available for the future values of a.

In this work we provide a detailed analysis of provision of SFC, but
the same framework can be used to look at any grid service that consists
of tracking an a priori unknown power request. This includes primary,
secondary and tertiary frequency control, renewable firming, etc.

3.4 Control method

The coordination between the operation of the battery, the virtual storage
and the energy market is discussed in this section. We assume that the
primary goal of the controller is to maintain the tracking error as close to
zero as possible at all times considering the operating constraints of the
system.

At any point in time, we ideally would solve the following optimal
control problem:

minimize
Pb,um,Ps

Ea [ρ(e)]

s.t. P b ≤ Pb ≤ P̄b
smin ≤ sb ≤ smax

st+1
b = stb + f(Pb)∀t = 0, . . . ,∞
P s ≤ Ps ≤ P̄s
δs ≤ δPs ≤ δ̄s
P tm = ut−δmm ∀t = 0, . . . ,∞
e = Pb + Ps + Pm − a

(7)
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where ρ is a loss function measuring the cost of tracking errors, s0, P−1
s

(required to enforce the ramp limit) are given and (P 0
m, . . . , P

δm−1
m ) are

given from the solutions of previous iterations of the problem. Note that
we assume here for simplicity of notation that the sampling time of the
battery, the virtual storage and the trading are identical. If this is not
the case, this problem should be solved sampled with the fastest sampling
time and appropriate adaptations made.

In reality the true probability generating a is unknown and only his-
torical data is available. We proceed to the following simplifications to
approximate the above controller:

• An MPC strategy is used. We define a horizon N and solve the
problem in a rolling horizon fashion.

• We introduce a terminal cost in order to capture the tail of the
cost. Since no reliable prediction for a is available beyond two hours,
we use as a terminal cost the deviation of the state of charge of
the battery from a reference state of charge sref. Since the signal
is statistically centered around 0, we choose sref = smax+smin

2
. A

similar approach is employed by Megel et al. [2017] where a well-
tuned cost on state of charge deviation is used in place of a stochastic
optimization framework.

• Instead of solving a stochastic problem, we solve the problem for a
nominal forecast of the AGC â.

• We use a linear approximation of the battery dynamics by neglecting
the nonlinear efficiencies. We refer to Megel et al. [2017] for possi-
ble solution methods to solve the same problem while considering
nonlinear efficiencies.

The controller therefore solves the following problem

minimize
Pb,um,Ps

ρ(e) + ρf (sN )

s.t. P b ≤ Pb ≤ P̄b
smin ≤ sb ≤ smax

st+1
b = stb + Pb ∀t = 0, . . . , N − 1
P s ≤ Ps ≤ P̄s
δs ≤ δPs ≤ δ̄s
Pm = u.−δmm

e = Pb + Ps −Pm − â

(8)

where ρf is the terminal cost penalizing the distance of the state of charge
to the reference state of charge.

Plus multi-objective cost to prioritize usage of the resources. At the
end,some clever tuning of the cost function required.

It is important to notice that the performance of the system in pro-
viding a certain level of flexibility is not only dependent on the system
limitations but also on the performance of the controller, which in turn
depends on the performance of the prediction. For this reason, the same
forecasts are always used for the same requests, independently of the sys-
tem configuration considered. Secondly, the tuning of the controller was
performed with caution in order to obtain homogeneous performance with
a single controller tuning across the system parameters range.
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Figure 2: Terminal cost on state of charge. It is designed to favour SoC close to
the reference with piecewise affine shape penalizing strongly SoCs close to the
maximum and minimum allowed SoCs.

4 Opportunity of combining virtual stor-
age and batteries

In this section, we examine the effect of the virtual storage characteristics
on its potential to offer flexibility in combination with a battery system.

Figure 4 illustrates the joint operation of the virtual storage and bat-
tery by the controller over the span of a particularly extreme tracking
event. In this example, the virtual storage in operated with a sampling
time of 5 minutes and a maximum power of 1MW, while the battery has a
1 MWh storage capacity. We see that during hte extreme event, between
hours 155 and 157, the virtual storage is used to discharge the battery
that came to be practically full.

In the following, we study the effect of each parameter separately using
as a benchmark the performance of the battery system alone. In order
to measure the technical performance of the system, we use as a metric
the maximum flexibility level that can be offered over the lifetime of the
combined system.

4.1 Illustration of level of performance calcula-
tion

In order to decide if the performance of the system is acceptable, a maxi-
mum level of tracking error is fixed as a proportion of the flexibility offered.
This statistics is computed as the average hourly absolute tracking error
normalized by the amount of flexibility offered. For a fixed virtual stor-
age + battery configuration, the ability of the system to maintain service
decreases as the level of service required increases. This translates into
an increase in the tracking error. Figure 3 illustrates the level of error
experienced by the system as a function of the flexibility offered and gate
closure delay.

Considering now this maximum error threshold, it is possible to ex-
trapolate the maximum level of flexibility that can be provided by a given
system configuration. Figure 5 illustrate this relationship.

As maintaining service is very important, we fix this threshold so that

8



1 1.5 2 2.5 3 3.5 4
Pflex [MW]

0

1

2

3

4

5

6

7

8
E

rr
or

 [%
bi

d 
h/

da
y]

Error [gen. 06/03/18]

Gate Time:15
Gate Time:30
Gate Time:45
Gate Time:60

Figure 3: Tracking error as a function of flexibility and gate closure delay

Figure 4: Time plot for illustration
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Figure 5: Minimum battery storage capacity size required as a function of flex-
ibility offered and gate closure delay time.

10



Table 1: Achievable capacity for 1MWh battery and resulting battery life.
Delay [min] Flex. Max. [MW] TCL [MWmonths] Batt. life [months]

30 0.77 98 147
60 0.35 59 180

the performance of the system is deemed acceptable if it incurs tracking
errors less than 1% of the bid for one hour per day on average.

Remark 1. It is worth noticing that errors will be zero on most days
and will concentrate during ’adversary events’ where the tracking request
is particularly demanding, or when the forecast was particularly mistaken

Based on the maximum flexibility offered by the system and on the
basis of yearly control simulation, we evaluate the resulting battery life.
Ageing of the battery uses the model developed by Omar et al. [2014] and
considers the effect of cycling at different power levels on the battery state
of health. As a consequence, we compute the total capacity over lifetime
(TCL), which is computed as the sum of the capacity offered by the system
on a monthly basis over its total lifetime, measured in MW.months. The
computation of the TCL takes into account the decrease in flexibility that
the system can offer as a result of the reduction of the battery capacity
over time.

4.2 Benchmark study of battery alone

Here we detail how much flexibility can a battery offer alone. This depends
only on the gate closure time.

Table 1 reports the maximum achievable flexible capacity, battery life
and TCL that a fixed 1 MWh battery can offer as a function of the gate
closure delay. The gate closure delay is the delay with which it is allowed
to sell energy on the intraday market, measured in minutes; or more
generically the delay with which we assume the battery can be discharged
or recharged to balance its state of charge. Naturally, the shorter this
delay, the more flexible capacity a battery can offer since it has less chance
to get completely charged or discharged.

4.2.1 Sensitivity study of virtual storage characteristics

We consider here a 1 MWh virtual storage, and evaluate how much flexi-
bility can be offered when different levels of battery are operated in combi-
nation with this virtual storage. To this end we simulate the combination
of this virtual storage with batteries of size in the range [0.25, 0.5, 1, 2, 4]
MWh. We report here the maximum flexibility that the combined system
can offer, compared to the battery alone.

Figure 6 reports the maximum capacity achievable as a function of
the battery size for different values of the control time step of the virtual
storage, while Figure 7 reports the corresponding battery life. We see that
while the differences in time steps create small differences in capacity
achievable, in particular virtually no difference when moving from a 1
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Figure 6: Maximum flexibility that can be offered as a function of battery size.
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Figure 7: Life of the battery as a function of battery size at maximum capacity
provided.
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Figure 8: Total capacity over lifetime as a function of battery size.

minute to a 5 minute time step, it reflects strongly on the battery life.
This makes sense as for the same level of capacity provided, a drop from
1 minute control time step to 5 minute will cause the battery to have
to cover all signal changes faster than five minutes, and therefore cause
significantly more cycling, and hence battery aging. This reflects in the
total capacity over lifetime reported in Figure 8.

Similarly, we report the same results for varying ramping rates of the
virtual resource in figures 9, 10 and 11. The same trend can be observed:
while changes in ramping rate have very little influence on the achievable
capacity, Dropping the ramping rate to 15 minutes significanlty reduces
the life of the battery.

5 Financial analysis

In this section, we give details on different approaches that can be used to
analyze the economic viability of different system configurations. We de-
scribe here a method to perform a simplified economic analysis considering
the revenues and costs generated by providing flexibility, and the invest-
ment cost necessary to acquire the resources that guarantee the physical
delivery. It is to be noted that while costs and revenues can be estimated
relatively accurately on the basis of available data regarding flexibility
payments and energy costs, the evaluation of the total investment cost is
intrinsically case dependent, in particular for the virtual storage.
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Figure 9: Maximum flexibility that can be offered as a function of battery size.
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Figure 10: Life of the battery as a function of battery size at maximum capacity
provided.
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Figure 11: Total capacity over lifetime as a function of battery size.

5.1 Revenues and costs

For a particular configuration of the system, we compute annualized rev-
enues and costs generated by the system over a year. In general, these
estimates depend strongly on the application and local market conditions.
We give here a simplified cost and revenue analysis for the provision of
SFC in Switzerland.

Revenues
Providers of secondary frequency control are remunerated proportion-

ately to the flexible capacity they provide, with a capacity payment in
CHF/MW provided.

Costs
Even when the AGC is distributed around 0, the roundtrip efficiency

of the battery requires to recharge the battery periodically in order to
compensate for roundtrip losses. This results in a net energy consumption
which causes energy and distribution costs.

For a particular configuration of the system, we compute annualized
revenues and energy costs. To perform this computation, average energy
index prices are considered, as well as average historical AGC prices, as-
suming a utilization of the system of 50 weeks per year.

Finally, we consider operating costs for the system. Since operating
costs for different resources are difficult to evaluate, we consider operating
costs in proportion to the investment (2%)
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5.2 Investment costs

The cost of acquisition of the battery and the virtual storage are treated
separately. The cost of the battery is broken down in two main compo-
nents:

• AC costs: this costs are proportional to the total maximum power
of the battery system installed and include the inverters and instal-
lation of the battery systems.

• DC costs: this costs are proportional to the total maximum storage
capacity of the battery installed and include the cost of the battery
cells and packaging.

Evaluating the cost of the virtual storage is very case-dependent and
could vary largely depending on the assumptions regarding this resource.
We adopt a simplified analysis that evaluates the cost of acquisition of the
virtual storage in mCHF/MW. Note that the method described below can
be used with various economic assumptions on the virtual storage. (fixed
cost of acquisition/ no cost / increasing marginal cost of acquisition)

5.3 Results

The plots reported in section 4.2.1 contain all the information about the
technical capability of different system configurations. Combined with the
following financial information, it allows us to inform investment decisions
by calculating the financial return of a project.

• Investment cost model in batteries

• Investment cost model in virtual storage

• Budget

Based on past price data for power reserves in the Swiss market and as
reported in Qureshi et al. [2014], we have observed that capacity payments
represent the majority of revenues when providing ancillary services, with
respect to the costs energy costs involved. As a consequence, to max-
imize revenues, the flexible capacity offered should be maximized. This
assumption is followed throughout the financial analysis. For given system
characteristics, we have a total investment cost I(smax, P̄sP̄b). Based on a
price for flexible capacity cflex, revenues from capacities are computed as
detailed in section 5.1. Compiling this and aging characteristics, monthly
revenues from capacities are computed, as well as distribution costs and
operational costs. The resulting net present value and internal rate of
return can then be computed.

In the simplest case, we consider the investment as a linear function of
the virtual storage size and the battery storage capacity acquired so that:

I(pmax, smax) = cbattsmax + crespmax (9)

where cbatt the cost of batteries in CHF/MWh and cres the price of virtual
storage in CHF/MW.

Figure 12 shows the internal rate of return as a function of the relative
cost of acquisistion of virtual storage and batteries, and the battery to
virtual storage ratio.
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Figure 12: IRR as a function of battery size and price of virtual storage

We see that as the virtual storage gets relatively more expensive, it
attracts less investment for an optimal investment decision. This figure
reports results assuming a battery cost of 700 CHF/Mwh and considers
the virtual storage with a 15 minutes ramp limitation.

6 Conclusion

This paper presents a method to evaluate the potential of the combi-
nation of energy resources with heterogeneous technical and economic
characteristics to provide grid services. This method considers simple
characterizations of the resources based on models including key dynamic
characteristics and operational constraints of the resources such as sam-
pling frequency, energy storage, ramp and power limits. We particularly
focus here on the effect of these characteristics on the ability of the sys-
tems to collectively provide power consumption tracking. To study this,
we propose an MPC control architecture to approximate the optimal con-
troller behavior, and on the basis of system control simulation, determine
technically achievable levels of power consumption tracking the system
can support. Finally, it offers a simplified economic analysis framework
to evaluate the economic performance of the system over its lifetime, using
operational and investment costs for the systems. The article particularly
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focuses on the combination of batteries and other technically constrained
resources to offer secondary frequency control in Switzerland, using real
service data. This capacity highlights the benefit of combining the battery
with other resources to boost the amount of tracking services provided,
and evaluates the economic relevance of the combination of resources as a
function of cost of acquiring resources with given technical characteristics.
It also performs for this example a sensitivity analysis of the effect of key
limiting characteristics on the overall system performance. It for examples
reveals that while the effect of ramp rates of the slow resource of up to
15 minutes as a very limited effect on the system technical performance,
it dramatically affects the battery life; and hence the economic relevance
of the corresponding resources combinations.
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