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Abstract— In this paper we tackle the problem of finding the
source of a gaseous leak with a robot in a three-dimensional (3-
D) physical space. The proposed method extends the operational
range of the probabilistic Infotaxis algorithm [1] into 3-D
and makes multiple improvements in order to increase its
performance in such settings. The method has been tested
systematically through high-fidelity simulations and in a wind
tunnel emulating realistic conditions. The impact of multiple
algorithmic and environmental parameters has been studied
in the experiments. The algorithm shows good performance
in various environmental conditions, particularly in high wind
speeds and different source release rates.

I. INTRODUCTION

The localization of a gaseous chemical source is a crucial
task in many situations such as finding casualties in natural
disasters. Search And Rescue (SAR) operations is another
application which requires finding gas leaks, explosives or
drugs in residential area, airports and industrial facilities. SAR
dogs are currently used for most of these missions, but are
expensive to train and can become inefficient or distracted
after a few hours of operation. Replacing SAR dogs by robots
would potentially decrease the training time, maintenance
price, and animal casualties.

The main challenge of using robots for Odor Source
Localization (OSL) is that the structure of odor dispersion in
the air is intermittent and time-variant, and does not have a
smooth gradient [2]. As the flow carries patches of odor away
from its source, the average concentration within a patch
decreases and the average time between successive patches
increases [2]. Therefore the probability of encountering an
odor patch at any given point is determined by the relative
location of the sensor to the odor source, the characteristics
of the flow, and the shape of the environment and obstacles.

In robotics, the OSL problem is divided into three sub-
problems (phases) [3], [4]: (i) odor plume finding refers
to searching and sampling the environment randomly or
systematically in order to find an initial cue of the plume (i.e.
the first odor patch); (ii) odor plume tracking is the phase
in which the robot attempts to approach the source while
remaining in the plume; (iii) odor source declaration is the
decision process of localizing an odor source in its close
vicinity. During the first phase, the robot has not detected any
odor patch in the environment and should perform standard
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robotic exploration/coverage strategies (e.g., random walk,
casting, etc.) which are not specific to olfactory search. The
third phase is usually formulated as a separate problem using
other sensing modalities (e.g., vision). The second phase,
plume tracking, is the main focus of this paper and most of
the studies on OSL.

We classify previous works on plume tracking algorithms
into four often overlapping categories [5]: gradient-based,
formation-based, bio-inspired, and probabilistic algorithms.
Gradient-based algorithms try to reach the source by climbing
the concentration gradient using multiples samples taken at
different positions in the environment. For these algorithms,
the robot needs to move slowly to measure the long-term
average of odor concentration at each sampling point due
to the patchiness of odor plumes. Therefore, this type of
algorithms, while being the most intuitive, needs relatively
long time windows and large sample sets to find the source.

Formation-based algorithms are designed for multi-robot
systems which sample the odor concentration in different
positions at the same time. The robots share their observations
and determine their relative position. The topology of the
formation is adapted based on the observations and the
whole group moves eventually towards the source [6]. In
general, these methods have low computational and memory
requirements, while they need at least two robots as well as
inter-robot relative positioning and communication.

Bio-inspired algorithms try to imitate the searching
behavior of various creatures found in nature such as moths,
dogs, bacteria, dung beetles, crabs, etc. [7]. For example, in
[8] and [9] the authors presented a moth-inspired algorithm
called Surge-Cast, tested along with two other algorithms of
the same class, namely Casting and Surge-Spiral, with one
wheeled robot. These algorithms do not rely on any a priori
information about the environment, its atmospheric conditions,
or the historic observations, which makes them efficient for
unknown areas. Nevertheless, due to low performance of
current perception and locomotion technology compared to
their biological counterparts, these algorithms are still far
from being reliable in realistic environments.

Probabilistic algorithms model the source location as a
probability distribution derived from the measurements made
by the robot [5]. Each measurement updates the probability
distribution of the source location using recursive Bayesian
estimation. This process continues until the probability
distribution of the source reduces to a Dirac function. Infotaxis
[1], Hidden Markov Models [10] and Kernel methods [11], are
the main examples of this category. While these algorithms
can be computationally expensive, they can be adapted to



various environmental conditions and the constraints of the
underlying hardware.

While most of the previous works are based on wheeled
robots in 2-D, recently, there has been some additional
attention towards 3-D plume tracking, especially leveraging
bio-inspired algorithms. In most cases, the methods are
evaluated in simplified conditions, (e.g., [12] and [13]). Only
a few have been carried out in realistic [14] or controlled
environments (e.g., [15] and [16]), and all are based on simple
gradient-based or bio-inspired algorithms. Recently a 3-D
formation-based system has also been presented [6].

In this paper, we investigate a specific probabilistic
algorithm: Infotaxis. Although the performance of Infotaxis
has been evaluated until now mainly using simulated
environments (e.g., [1], [17]–[19]) and in 2-D scenarios
(e.g., [5], [20]–[22]), it is extensible to the third dimension.
Eggels et al. [23] tested this algorithm in 3D in a simulated
environment. One open question is therefore to understand
how well such algorithms perform in the physical world,
under different environmental conditions. This paper tackles
the problem in 3-D, evaluating the performance of the
extended Infotaxis algorithm in a wind tunnel under different
environmental conditions. To the best of our knowledge
none of the previous works has ever implemented a 3-D
Infotaxis algorithm on real robots, nor has its performance
been evaluated in various environmental conditions.

II. INFOTAXIS ALGORITHM IN 2-D

Infotaxis is a probabilistic odor source localization
algorithm presented by Vergassola et al. [1] in a 2-D search
framework. In each iteration of the algorithm, the robot takes
a sample (i.e. odor measurement), evaluates multiple moves,
and chooses the best option that yields to the lowest total
entropy in terms of odor source localization. In other words,
the algorithm aims to maximize the accuracy of information
about the position of the odor source. This algorithm has been
already implemented and realistically experimented in 2-D
[5], [20], [21]. In this section, we explain the two repeating
phases of this algorithm: update of the probability map and
evaluation of the next move.

A. Probability map update

To estimate where the source is, the algorithm uses a
grid map of the search area where every cell represents a
possible position of the source. Each cell has a numerical
value representing the probability of that cell being the source.
This probability map is updated with every concentration
measurement made. The map update depends on a gas
distribution model (explained below) which is defined a priori.
Initially, before any measurement is made, the map is filled
with a uniform probabilistic distribution that sums up to 1. At
each iteration, the cell with the highest probability is defined
as the expected source position ps.

1) Gas distribution model: Gas distribution models (AKA
plume models) are numerical equations that estimate the
concentration of gas in every location of interest, based on
the position of the source, its release rate, the environmental

conditions and the airflow characteristics. The model is the
crucial tool that enables Infotaxis to update the probability
map based on the measurements.

2) Measurements and map update: For every observation
Oj , that is a concentration measurement made by the robot
at location (xj , yj , zj), the algorithm evaluates every cell
of the probability map as if it was hosting the source S,
by comparing the concentration that would be measured in
that location according to the plume model with the actual
measurement made. Hence, the probability map represents the
probability of existence of the source at each cell i, given all
the observations O1,...,j . This probability is updated through
recursive Bayesian inference:

P (Si
j |Oj,...,1) = αP (Oj |Si

j)P (Si
j−1|Oj−1,...,1) (1)

where α is a normalization factor that assures the total
probability of the map equals to 1. P (Oj |Sij) is estimated
based on the assumed plume model.
B. Move evaluation

The goal of the Infotaxis algorithm is to gain as much
information as possible on where the source is, through
each move. This is done using entropy as an indication of
uncertainty associated with the probability map.

1) Entropy: Eq. (2) is applied to calculate the overall
entropy of the map at every step, taking all the previous
observations (Oj , Oj−1, ..., O1) into account, with i being
the index of a cell, and n the total amount of cells.

H(Sj |Oj,...,1) = −
n∑

i=1

P (Si
j |Oj,...,1)× log2 P (Si

j |Oj,...,1) (2)

As entropy measures the uncertainty, it is maximum when
the probability map is uniform, and decreases when a
measurement narrows the possible source location to fewer
cells with higher probability. It reaches the minimum value
when one cell has 100% chance of being the source.

2) Action selection: At every step j, the robot can execute
one action out of a discrete set of potential actions Aj,1,
Aj,2, etc. Each action means moving to one cell among
all the neighboring cells. Action Aj,i takes the robot to a
new location (xi, yi, zi) where it will take a concentration
measurement ci, defining observation Oj+1. Each possible
observation Oj+1 occurs with some probability, represented
by P (Cj+1 = c), i.e. the probability that a measured
concentration C at the step j+1 will be equal to concentration
c. It can be estimated using the plume model and the current
belief of the source state, as following:

P (Cj+1 = c) =

n∑
i=1

P (Si
j)× P (Cj+1 = c|Si

j) (3)

For each potential action Aj,i, we have a discrete set of
N potential observations Oj+1 which are associated with
a probability of actually happening, P (Oj+1|Aj,i), if the
robot decides to take the corresponding action. The weighted
entropy after carrying out action Aj,i is given by:

HA(Aj,i) =
∑
N

HO(Oj+1,Aj,i)P (Oj+1,Aj,i |Aj,i) (4)

The term HO(Oj+1,Aj,i) denotes the expected entropy if
Oj+1 is observed after action Aj and is calculated by:



Fig. 1: A simplified example that represents the evaluation process
a robot carries out to choose where to move next. In this simplified
example, the considered plume model is a vertical strip and we
consider only two possible concentration levels for the measurements
(0 and 1). The red circle represents the robot, the star symbol shows a
potential position of the source and the square grid is the probability
map. The robot can move only along the grid main axes, either
up or left, and chooses to move left as it yields a lower weighted
entropy.

HO(Oj+1,Aj,i) = H(Sj+1,Aj,i |Oj+1,Aj,i , Oj,...,1) (5)

Before calculating this entropy, the probability map should
be updated for every potential observation Oj+1. Eq. (3) is
used to calculate P (Oj+1,Aj,i |Aj,i).

The expected entropy is calculated for every possible action
A by considering every possible observation O, and finally the
action with the least weighted entropy is chosen (see Fig. 1
for a detailed example) and the whole evaluation process
starts again from the new position.

III. PROPOSED METHOD: 3-D INFOTAXIS

Adapting the original Infotaxis algorithm to 3-D odor
source search required a few extensions. Firstly, we used a
3-D plume model to calculate the average concentrations and
distribution of these concentrations to calculate P (Cj+1 =
c|Sij) for Eq. (3). We then developed an adaptive moving
strategy to define where the robot should move. The method
to calculate P (Oj |Sij) in Eq. (1) to update the probability
map is taken from [5]. Concentration intervals were used
for c in Eq. (3) and ending conditions were added to the
algorithm.

A. Plume model

In most of the previous works on Infotaxis (including
[1], [5], [17]–[21]) a simple 2-D model is used for odor
propagation. Our first step towards a 3-D search algorithm is
to use a proper 3-D gas distribution model. We propose to
work with Eq. (6) which describes the 3-D pseudo-Gaussian
concentration plume model for a continuous point source in
a uniform flow with homogeneous turbulence, where Q is
the release rate and ū the average wind speed [24].

C̄(x, y, z) =
Q

2πūσyσz
× e

− y2

2σ2y
− z2

2σ2z (6)

(a) Scanned plume

(b) Fitted plume.

Fig. 2: Figure (a) is an example scanned odor distribution obtained
in a simulation setup. The robot has scanned the environment in
a 3-D grid with cell size of 50 cm. The figures show the plane
characterized by z = 0. Each cell observation is the mean of 1000
odor samples. Figure (b) shows the fitted plume resulting the plume
model fitting method.

In this equation, the source is assumed to be positioned at
the origin and the X-axis to be aligned with the direction
of the airflow. σy and σz are the standard deviation of odor
dispersion in the Y- and Z-axis respectively and are assumed
to be linear functions of x.

B. Model calibration

To use the plume model in a real-world search, one needs
to tune its parameters in a way that it suits the searched
environment. The main parameters are σy and σz in Eq. (6),
while Q and ū are constant coefficients which do not affect
the shape of the plume.

Model calibration is an important step that most previous
works have neglected in their simulations. We have scanned
and repeatedly sampled an experimental environment to obtain
an odor map (see Fig. 2a). Multiple slices of the obtained
odor map perpendicular to the X-axis were used to calculated
the standard deviation in Y- and Z-axis. These samples are fit
to obtain two linear models that define σy and σz as functions
of x.

C. Distribution per average concentration

The plume model represents only the average concentration
for each cell. However, in order to find the probability
of measuring some concentration in a given cell (e.g., in
P (Cj+1 = c|Sij) in Eq. (3)) the distribution of concentrations
for each average concentration in the plume model is required.
In many previous studies [25]–[27] the Gamma distribution
is used for odor plume distribution.

This distribution is defined by two variables: the shape
parameter k and the scale parameter θ. The mean of a Gamma
distribution is the product of k and θ.

A Gamma distribution was fitted to the distribution of
the data obtained for each cell of the scanned plume (see
Fig. 2a). The parameter k obtained from these fits was then
plotted against the mean (see Fig. 3) where a second order
polynomial correlation curve was found. This correlation was
subsequently used to calculate the cumulative density function
of the Gamma distribution for each cell of the plume model
based solely on the mean concentration of the cell.



Fig. 3: Second order polynomial fit for parameter k of fitted Gamma
distribution. Each point represents the Gamma distribution of one cell
of the scanned plume (see Fig. 2a) when the 1000 odor measurement
are separated into 50 averages of 20 measurements. A similar plot
can be drawn for θ.

D. Targets and next move

The targets are the possible cells that the robot considers to
move to, during the move evaluation step. For the conventional
2-D Infotaxis algorithm, the targets are the eight neighboring
cells of the robot on the same plane (i.e. at the same height).
Here we extend the targets to the 3-D space.

Two possible target strategies in 3-D are the cross strategy
and the cube strategy. The former allows the robot to move to
an adjacent cell in any XYZ direction, but only one direction
at a time. This gives a maximum of six possible targets. The
cube strategy allows the robot to move to an adjacent cell
in any XYZ direction and also a combination thereof. This
means that the robot can go diagonally and has therefore a
maximum of 26 possible targets. Evaluating more targets at
each iteration involves an increased computational cost, but
allows for more freedom of movement. In this paper, we will
experimentally evaluate the performance of the proposed 3-D
Infotaxis algorithm using the two moving strategies mentioned
above.

E. Adaptive step length

In all the previous Infotaxis works, the grid size (G) is
fixed and the distance that the robot travels at every step is
the same as the grid size. This implies that, even if the robot
estimates that it has to travel a very long straight path, it
still takes short steps in every iteration, making the whole
run very time-consuming. This is usually the case when the
entropy is not very high and the estimated location of the
source is far away in upwind direction.

To increase the performance of the algorithm, when the
selected target is along the wind direction, we have modified
the step length to be an adaptive parameter as following:

Step length =

{
max{A|ps − pr| , G} if Ht < µH0

G otherwise
(7)

Based on this formula, when the entropy Ht at iteration t
is lower than a threshold relative to the initial entropy H0 of
the map, the robot will move with a longer step length which
is proportional to the distance between its position pr and
the expected source’s position ps. This allows for a quick
approach towards the source when it is estimated to be far
and shorter steps when closer to the source. In this paper we
set A = 0.1 and µ = 0.9.

F. Evaluated concentrations

As calculating the probability of obtaining all possible
concentration values is not possible, we divide the continuous
measurement field into a few intervals. This is defined by N in
Eq. (4). Therefore, our algorithm evaluates the probability of
obtaining a concentration interval from the plume distribution
model defined in Section III-C. In this work, the limits
were set to account for various levels of concentrations.
The concentration used to update the probability map is
the average of the interval.

G. Probability map update

The Gamma distribution explained in Section III-C is very
accurate and suitable for the action selection phase. However,
for the map update phase, it is computationally expensive to
calculate P (Oj |Sij) in Eq. (1) for every cell of the map at
each iteration. Therefore, similar to the 2-D approaches (e.g.,
[5]), we estimate this probability factor from the following
equation.

P (c = M) = e−c × cM (8)

In this equation, M denotes the measured concentration of
Oj and c represents the expected concentration. This is a
continuous function which is a specific case of the Gamma
distribution with one maximum when c = M .

H. End of the algorithm

Most of the previous works on probabilistic OSL do
not define an ending strategy for these iterative algorithms.
Rodrigues et al. [22] improved the stop strategy of the
Infotaxis by defining a criterion based on entropy. Built
upon this work, we propose three ending conditions for the
algorithm:

• The entropy is lower than a defined threshold Hth1

relative to the initial entropy H0.
• The highest probability cell remains the same for N1

consecutive iterations while the entropy is lower than
another defined threshold Hth2.

• The highest probability cell remains the same for N2

consecutive iterations.

In this paper we empirically set Hth1 = 0.125×H0, N1 = 5,
N2 = 15, and Hth2 = 0.25×H0.

IV. PERFORMANCE EVALUATION IN SIMULATION: IMPACT
OF ALGORITHMIC PARAMETERS

There are two categories of parameters which influence
the performance of the proposed 3-D Infotaxis algorithm:
algorithmic and environmental. Algorithmic parameters are
the variables which are modifiable in the algorithm, listed
in Table I. To study their impact on the performance of the
proposed method, we have tested all the combinations of the
three sets of these parameters in simulation. Here we explain
the details of these simulations.



Fig. 4: Webots setup with the source upwind, the robot downwind
and the plume represented with blue hexagons.

TABLE I: Algorithmic parameters studied in simulations

Parameter Values
Grid size (m) 0.25, 0.5, 1

Number of targets T6: 6 targets (cross), T26: 26 targets (cube)
Evaluated C2: {[0,5e-4],[5e-4,10]},

concentration C5: {[0,5e-4],[5e-4,1e-3],[1e-3,1],[1,3],[3,10]},
intervals C10: {[0,5e-4],[5e-4,1e-3],[1e-3,0.02],[0.02,0.5],

[0.5,1],[1,2],[2,3],[3,4],[4,5],[5,10]}

A. Simulation setup

For simulations, we used Webots [28], a high-fidelity
submicroscopic robotic simulator. The simulated gas
dispersion model is a plug-in implementation of a filament-
based atmospheric dispersion model [2]. Using these tools, we
have simulated a realistic odor plume in a large environment
of 20 × 4 × 2 m3 (see Fig. 4). A simulated Khepera III robot
equipped with an odor board was used in the simulations.
To enable the robot to move in 3-D, we disabled the gravity
force in the simulations to emulate an airborne robot. While
such emulation is obviously not faithful to the dynamic of
an airborne robotic platform, it allows us to easily explore
the impact of 3D sensing on the algorithm.

For each set of parameters, 100 runs are made, logging
the positions of the robot, the final probability map, the
computational time and the total simulation time. 100 random
source positions in the upwind half of the environment are
predefined and used for every set of variables.

A run is considered successful when, at the end, the highest
probability cell of the probability map is at less than 0.9 m
from the source. The fact that the robot gets close or not to
the source is not a criteria for a successful run, even if the
robot gets within 0.9 m.

B. Results

Fig. 5 plots the success rate of the proposed method
by varying the targets and concentration threshold against
the grid-size. The success rate is defined as the number of
successful runs divided by the number of runs made. It can be
seen that the runs evaluating only two possible concentration
intervals are much less efficient than those considering finer
intervals. However, there is no major difference between
the runs evaluating 5 and 10 possible concentration intervals.
Moreover, smaller grid size and finer moving strategies (cube)
lead to better results, as expected.

Fig. 6 shows the search time (i.e. the actual time to find the
source, assuming constant computational cost for running the
algorithm) and the distance overhead (defined as the ratio of
the travelled distance over the initial distance to the source on
a straight path) for various target numbers and concentration

Fig. 5: Success rate of the algorithm in simulations having
different values for grid size, targets (T) and number of evaluated
concentration intervals (C). 100 simulation runs are done for each
combination of the values given in Table I.

Fig. 6: The search time (left) and the distance overhead (right) of
the successful runs of grid size 0.25 m, targets (T) 6 and 26 and
evaluated concentration intervals (C) 5 and 10.

Fig. 7: The impact of grid size on the algorithm for failed runs.

intervals. Again, no significant difference between evaluating
5 and 10 concentration intervals can be seen. The main
difference comes from the number of evaluated targets: the
median time and distance for evaluating 26 targets is slightly
lower than when evaluating 6.

To understand why some runs failed, we looked into the
125 failed runs for grid size 0.25 and 200 failed runs for
grid size 0.5. The runs with only two concentration intervals
were discarded because the success rate was too low. Fig. 7
shows the distance error in source location estimation in the
failed runs. The vast majority of failed runs estimate the Y
and Z coordinate of the source with acceptable accuracy and
with an error smaller than the grid size. This implies that
the cause of failure is mainly due to the estimate of the X
coordinate. As can be seen in Fig. 7, a grid size 0.25 m is
significantly better than a grid size 0.5 m.

Fig. 8 shows a possible explanation for these large errors.
The hypothesis is that if the actual source position is far
from any cell center of the probability map in the Y and Z
directions, the robot receives lower concentrations and will
have a tendency to overshoot the source position estimation.
In these results, when the distance from the source in Y and
Z direction is larger, the algorithm overshoots the source
more frequently.



Fig. 8: Distance from the source in X direction versus the distance
from the source to the closest probability map cell in the Y and Z
direction for a grid size 0.5 m. The negative value of dx means
that the source is overshot.

TABLE II: Environmental parameters studied in simulations and
real-world experiments

Parameter tested values
Wind speed (m/s) 0.2 (low), 0.9 (high)
Source release rate simulations: 5% (low), 10% (high)

real-world: 8% (low) and 18% (high)
Source height (m) simulations: 0.9 (middle), 1.8 (high)

real-world: 0.18 (middle), 0.38 (high)

TABLE III: Environmental condition setups

# Wind Release Source # Wind Release Source
Speed Rate Height Speed Rate Height

A Low Low High E High Low High
B Low Low Middle F High Low Middle
C Low High High G High High High
D Low High Middle H High High Middle

V. PERFORMANCE EVALUATION IN REALITY AND
SIMULATION: IMPACT OF ENVIRONMENTAL CONDITIONS

In the previous section, we studied the algorithmic
parameters of the 3-D Infotaxis algorithm in simulation.
In this section, the main goal is to understand the impact
of environmental conditions (e.g., wind speed) on the
performance of this algorithm. Table II lists the environmental
parameters and their values in our tests. We evaluated the
influence of these external parameters on the performance of
the 3-D Infotaxis algorithm in simulation as well as in real
experiments. Each parameter is set to two different values,
and the resultant combination of these values is eight setup
conditions labeled in Table III.

In the simulations and real-world experiments of this
section, the algorithmic parameters are set based on the
results of the previous section’s simulations. Therefore, for
the simulation, a grid size of 0.25 m and 26 discrete options
for the next move (cube strategy) were used, since they
yielded a slightly faster discovery of the source. The number
of evaluated concentration intervals was arbitrarily set to 10.
In the real-world experiments, the same values were used,
except that a grid size of 0.165 m was used because of the
smaller movement space in Z axis in our experimental setup
compared to the simulations.

In the experiments of this section, the source is centrally
positioned at the most upwind position of the arena. The
fitted plume model used for these tests is based on a scanned
plume subject to the higher release rate and a wind-speed of
0.9 m/s (i.e. condition H in Table III). The model scales to
the wind speed according to Eq. (6) but not to the release rate

Fig. 9: Experimental setup in the wind tunnel.

as this factor depends on the source, and cannot be known
a priori. Similar to the previous tests, a run is considered
successful when the estimated location of the source (i.e. the
cell containing the highest value of the last probability map)
is at less than 0.9 m distance from the source.

For each set of parameters, 100 runs are carried out in the
simulation and 10 in the wind tunnel, saving the positions of
the robot, the final probability map, the computational time
and the total time for each run.

A. Wind tunnel setup

To evaluate the performance of the algorithm in a repeatable
fashion, our real-world experiments are carried out in a wind
tunnel of volume 18 × 4 × 1.9 m3, which provides a
controllable laminar wind flow.

The odor source is emulated by an electric pump vaporizing
liquid acetone in the air. The release rate is controlled by
setting the power of the pump to a percentage of its maximum.

B. Robotic system

The wind tunnel is equipped with a controllable 3-axis
traversing system. For the tests, the traversing system could
move up to 11.06 m in the X direction, 3.30 m in the
Y direction and 0.33 m in the Z direction. A Khepera IV
robot mounted on this traversing system was equipped with a
MiCS-5521 CO/VOC 1 capable of detecting volatile organic
compounds and hydrocarbons. An external computer reads
the odor measurement made by the Khepera IV robot and
controls the traversing system. Fig. 9 presents this setup.

C. Results

Fig. 10 shows two examples of trajectories of the robot in
simulation and in the wind tunnel. At the beginning of the
run the algorithm makes the robot scan the crosswind section
of the arena until it finds the plume. Then it moves upwind
with a big step size. The step size decreases as the robot gets
closer to the source.

Fig. 11 reports the success rate of the 3-D Infotaxis in
simulation and physical experiments under the conditions
reported in Table III. From these plots, we can see that:

1http://www.sgxsensortech.com



(a) An example of robot’s trajectory in simulation

(b) An example of robot’s trajectory in the wind tunnel

Fig. 10: Examples of robot trajectories made during successful runs
of the environmental tests with condition H (see Table III). The
initial position of the robot is at the left side of the figure and the
yellow star represents the position of the source. Every red point
represents an observation.

• When wind speed is increased, the success rate improves.
• The release rate does not have an impact on the success

rate in the wind tunnel but it did have some influence
in the simulation for low wind speed.

• Higher source positions were more challenging for the
algorithm, especially at low wind speed.

Fig. 12 shows the search time and the distance overhead
for the proposed algorithm in simulation and reality. In these
results, the different environmental conditions are defined by
Table III.

The results in Fig. 12 show that the algorithm finds the
source faster when the wind speed is high. In simulation
at low wind speed, the algorithm is faster at high release
rate but in the wind tunnel it does not appear to produce a
significant difference.

Fig. 13 presents the distance error between the actual
position of the source and its estimated one, for the 8 different
setups listed in Table III. These results show that:
• In low wind speed and low release rate, the algorithm

undershoots the source in X direction at greater distances
in the simulation compared to the reality. A possible
explanation for this fact could be that the simulated
release rate decreases more quickly over distance from
the source than in reality.

• In the wind tunnel, the estimated position of the source
usually shows a negative bias in the Y axis. The
explanation to this is that the real plume in our wind
tunnel is not straight along the tunnel and slightly
deviates in the Y direction towards one side.

• In the wind tunnel, the height of the highest sources
is almost always estimated one grid size too low (see
Fig. 13f). This could be explained by the plume being
angled slightly towards the ground particularly for the
highest sources.

To compare the performance of our algorithm with other
methods, as mentioned in the introduction, there are not many
previous works studying the problem in 3D, and among them,
only our previous work in [16] (a moth-inspired algorithm)

Fig. 11: Success rates for the environmental parameter tests: (left)
simulation, (right) real experiments. The X-axis labels represent
various environmental conditions defined in Table III.

(a) Simulation time (b) Simulation distance

(c) Wind tunnel time (d) Wind tunnel distance

Fig. 12: Distance overhead and time comparison for successful runs
in Webots and in the wind tunnel.

(a) Simulation dx (b) Wind tunnel dx

(c) Simulation dy (d) Wind tunnel dy

(e) Simulation dz (f) Wind tunnel dz

Fig. 13: Source localization error along the three axis (rows) in
simulation (left column) and reality (right column) for all successful
and unsuccessful runs in environmental conditions of Table III.



has comparable environmental conditions and experimental
setup. Compared to [16], our new method has a better over-all
success rate, especially at higher wind speeds (e.g., in setup
E, the 3D infotaxis shows 100% success rate, whereas in
[16] it was 70%). It is relatively slower in finding the source,
due to the concentration sampling time at every step, but this
difference is not very significant.

VI. CONCLUSION

We successfully developed a 3-D odor source localization
algorithm based on the Infotaxis algorithm. The algorithm
was evaluated in simulation and in a wind tunnel with
different algorithmic (i.e. grid size, number of target points,
and number of considered concentrations) and environmental
parametrizations (i.e. wind speed, source release rate, and
source height).

The proposed algorithm showed to be successful in many
tested conditions. For the algorithmic parameters we conclude
that (i) evaluating more levels of concentration increases
the performance of the proposed algorithm, to some degree,
(ii) considering 26 target points is significantly better than
only 6 points, and finally, (iii) smaller grid size yields a
smaller potential distance between the source and center of
a cell, leading to smaller source localization error. For the
environmental parameters, we saw that (i) higher wind speed
increases the performance of the proposed algorithm, (ii)
higher source release rate also improves the performance
especially in low wind speeds, and finally (iii) in high wind
speeds, even when the source position is high with respect
to the probability map, the success rate is at maximum and
the execution time and the distance travelled are satisfactory.

The main drawback of the algorithm is its dependence
on prior information, such as a plume model and an
environment map. However, the algorithm seems robust to
the imperfections of the plume model, since one single
plume model, calibrated in one particular condition, yielded
satisfactory results in a variety of environmental conditions.
In the future, we are planning to study the impact of the
accuracy of the plume model as well as that of obstacles on
the performance of the algorithm. In terms of experimental
setup, we plan to run the algorithm using a UAV in a semi-
controlled environment.
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