
Finding Mixed Nash Equilibria of

Generative Adversarial Networks

Ya-Ping Hsieh, Chen Liu, Volkan Cevher
{ya-ping.hsieh, chen.liu, volkan.cevher}@epfl.ch

October 2, 2018

Abstract

We reconsider the training objective of Generative Adversarial Networks (GANs)
from the mixed Nash Equilibria (NE) perspective. Inspired by the classical prox meth-
ods, we develop a novel algorithmic framework for GANs via an infinite-dimensional
two-player game and prove rigorous convergence rates to the mixed NE, resolving the
longstanding problem that no provably convergent algorithm exists for general GANs.
We then propose a principled procedure to reduce our novel prox methods to simple
sampling routines, leading to practically efficient algorithms. Finally, we provide ex-
perimental evidence that our approach outperforms methods that seek pure strategy
equilibria, such as SGD, Adam, and RMSProp, both in speed and quality.

1 Introduction

The Generative Adversarial Network (GAN) [22] has become one of the most powerful
paradigms in learning real-world distributions, especially for image-related data. It has
been successfully applied to a host of applications such as image translation [27, 29, 48],
super-resolution imaging [45], pose editing [41], and facial animation [40].

Despite of the many accomplishments, the major hurdle blocking the full impact of GAN
is its notoriously difficult training phase. In the language of game theory, GAN seeks for a
pure strategy equilibrium, which is well-known to be ill-posed in many scenarios [14]. Indeed,
it is known that a pure strategy equilibrium might not exist [2], might be degenerate [43],
or cannot be reliably reached by existing algorithms [35].

Empirically, it has also been observed that common algorithms, such as SGD or Adam
[30], lead to unstable training. While much efforts have been devoted into understanding the
training dynamics of GANs [4, 17, 19, 20, 32], a provably convergent algorithm for general
GANs, even under reasonably strong assumptions, is still lacking.

In this paper, we address the above problems with the following contributions:

1. We propose to study the mixed Nash Equilibrium (NE) of GANs: Instead of searching
for an optimal pure strategy which might not even exist, we optimize over the set
of probability distributions over pure strategies of the networks. The existence of a
solution to such problems was long established amongst the earliest game theory work
[21], leading to well-posed optimization problems.

2. We demonstrate that the prox methods of [37, 6, 36], which are fundamental building
blocks for solving two-player games with finitely many strategies, can be extended to
continuously many strategies, and hence applicable to training GANs. We provide an
elementary proof for their convergence rates to learning the mixed NE.

3. We construct a principled procedure to reduce our novel prox methods to certain sam-
pling tasks that were empirically proven easy by recent work [12, 13, 16]. We further

1

establish heuristic guidelines to greatly scale down the memory and computational
costs, resulting in simple algorithms whose per-iteration complexity is almost as cheap
as SGD.

4. We experimentally show that our algorithms consistently achieve better or comparable
performance than popular baselines such as SGD, Adam, and RMSProp [44].

Related Work: While the literature on training GANs is vast, to our knowledge, there
exist only few papers on the mixed NE perspective. The notion of mixed NE is already
present in [22], but is stated only as an existential result. The authors of [2] advocate the
mixed strategies, but do not provide a provably convergent algorithm. [39] also considers
mixed NE, but only with finitely many parameters. The work [24] proposes a provably con-
vergent algorithm for finding the mixed NE of GANs under the unrealistic assumption that
the discriminator is a single-layered neural network. In contrast, our results are applicable
to arbitrary architectures, including popular ones [1, 25].

Due to its fundamental role in game theory, many prox methods have been applied to
study the training of GANs [15, 19, 34]. However, these works focus on the classical pure
strategy equilibria and are hence distinct from our problem formulation. In particular, they
give rise to drastically different algorithms from ours and do not provide convergence rates
for GANs.

In terms of analysis techniques, our framework is closely related to [3], but with several
important distinctions. First, the analysis of [3] is based on dual averaging [38], while
we consider Mirror Descent and also the more sophisticated Mirror-Prox (see Section 3).
Second, unlike our work, [3] do not provide any convergence rate for learning mixed NE of
two-player games. Finally, [3] is only of theoretical interest with no practical algorithm.

Notation: Throughout the paper, we use z to denote a generic variable and Z ⊆ Rd
its domain. We denote the set of all Borel probability measures on Z by M(Z), and the
set of all functions on Z by F(Z).1 We write dµ = ρdz to mean that the density function
of µ ∈ M(Z) with respect to the Lebesgue measure is ρ. All integrals without specifying
the measure are understood to be with respect to Lebesgue. For any objective of the form
minxmaxy F (x,y) with (xNE,yNE) achieving the saddle-point value, we say that (xT ,yT)
is an O

(
T−1/2

)
-NE if |F (xT ,yT)− F (xNE,yNE)| = O

(
T−1/2

)
. Similarly we can define

O
(
T−1

)
-NE. The symbol ‖·‖L∞ denotes the L∞-norm of functions, and ‖·‖TV denotes the

total variation norm of probability measures.

2 Problem Formulation

We review standard results in game theory in Section 2.1, whose proof can be found in
[8, 9, 10]. Section 2.2 relates training of GANs to the two-player game in Section 2.1,
thereby suggesting to generalize the prox methods to infinite dimension.

2.1 Preliminary: Prox Methods for Finite Games

Consider the classical formulation of a two-player game with finitely many strategies:

min
p∈∆m

max
q∈∆n

〈q,a〉 − 〈q, Ap〉 , (1)

where A is a payoff matrix, a is a vector, and ∆d :=
{
z ∈ Rd |

∑d
i=1 zi = 1

}
is the proba-

bility simplex, representing the mixed strategies (i.e., probability distributions) over d pure
strategies. A pair (pNE, qNE) achieving the min-max value in (1) is called a mixed NE.

1Strictly speaking, our derivation requires mild regularity (see Appendix A.1) assumptions on the prob-
ability measure and function classes, which are met by most practical applications.

2

Assume that the matrix A is too expensive to evaluate whereas the (stochastic) gradients
of (1) are easy to obtain. Under such settings, a celebrated algorithm, the so-called entropic

Mirror Descent (entropic MD), learns an O
(
T−1/2

)
-NE: Let φ(z) :=

∑d
i=1 zi log zi be the

entropy function and φ?(y) := log
∑d
i=1 e

yi = supz∈∆d
{〈z,y〉 − φ(z)} be its Fenchel dual.

For a learning rate η and an arbitrary vector b ∈ Rd, define the MD iterates as

z′ = MDη (z, b) ≡ z′ = ∇φ? (∇φ(z)− ηb) ≡ z′i =
zie
−ηbi∑d

i=1 zie
−ηbi

, ∀1 ≤ i ≤ d. (2)

The equivalence of the last two formulas in (2) can be readily checked.

Denote by p̄T := 1
T

∑T
t=1 pt and q̄T := 1

T

∑T
t=1 qt the ergodic average of two sequences

{pt}Tt=1 and {qt}Tt=1. Then, with a properly chosen step-size η, we have{
pt+1 = MDη

(
pt,−A>qt

)
qt+1 = MDη (qt,−a+Apt)

⇒ (p̄T , q̄T) is an O
(
T−

1/2
)

-NE.

Moreover, a slightly more complicated algorithm, called the entropic Mirror-Prox (en-
tropy MP) [36], achieves faster rate than the entropic MD:{
pt = MDη

(
p̃t,−A>q̃t

)
, p̃t+1 = MDη

(
p̃t,−A>qt

)
qt = MDη (q̃t,−a+Ap̃t) , q̃t+1 = MDη (q̃t,−a+Apt)

⇒ (p̄T , q̄T) is an O
(
T−1

)
-NE.

If, instead of deterministic gradients, one uses unbiased stochastic gradients for entropic
MD and MP, then both algorithms achieve O

(
T−1/2

)
-NE in expectation.

2.2 Mixed Strategy Formulation for Generative Adversarial Net-
works

For illustration, let us focus on the Wasserstein GAN [1]. The training objective of Wasser-
stein GAN is

min
θ∈Θ

max
w∈W

EX∼Preal
[fw(X)]− EX∼Pθ

[fw(X)], (3)

where Θ is the set of parameters for the generator and W the set of parameters for the
discriminator2 f , typically both taken to be neural nets. As mentioned in the introduction,
such an optimization problem can be ill-posed, which is also supported by empirical evidence.

The high-level idea of our approach is, instead of solving (3) directly, we focus on the
mixed strategy formulation of (3). In other words, we consider the set of all probability
distributions over Θ and W, and we search for the optimal distribution that solves the
following program:

min
ν∈M(Θ)

max
µ∈M(W)

Ew∼µEX∼Preal
[fw(X)]− Ew∼µEθ∼νEX∼Pθ

[fw(X)]. (4)

Define the function g :W → R by g(w) := EX∼Preal
[fw(X)] and the operator G :M(Θ)→

F(W) as (Gν)(w) := Eθ∼ν,X∼Pθ
[fw(X)]. Denoting 〈µ, h〉 := Eµh for any probability mea-

sure µ and function h, we may rewrite (4) as

min
ν∈M(Θ)

max
µ∈M(W)

〈µ, g〉 − 〈µ,Gν〉 . (5)

Furthermore, the Fréchet derivative (the analogue of gradient in infinite dimension) of (5)
with respect to µ is simply g − Gν, and the derivative of (5) with respect to ν is −G†µ,
where G† :M(W)→ F(Θ) is the adjoint operator of G defined via the relation

∀µ ∈M(W), ν ∈M(Θ), 〈µ,Gν〉 =
〈
ν,G†µ

〉
. (6)

2Also known as “critic” in Wasserstein GAN literature.

3

One can easily check that (G†µ)(θ) := EX∼Pθ,w∼µ[fw(X)] achieves the equality in (6).
To summarize, the mixed strategy formulation of Wasserstein GAN is (5), whose deriva-

tives can be expressed in terms of g and G. We now make the crucial observation that (5) is
exactly the infinite-dimensional analogue of (1): The distributions over finite strategies are
replaced with probability measures over a continuous parameter set, the vector a is replaced
with a function g, the matrix A is replaced with a linear operator3 G, and the gradients are
replaced with Fréchet derivatives. Based on Section 2.1, it is then natural to ask:

Can the entropic Mirror Descent and Mirror-Prox be extended to infinite dimen-
sion to solve (5)? Can we retain the convergence rates?

We provide an affirmative answer to both questions in the next section.
Remark. The derivation in Section 2.2 can be applied to any GAN objective.

3 Infinite-Dimensional Prox Methods

This section builds a rigorous infinite-dimensional formalism in parallel to the finite-dimensional
prox methods and proves their convergence rates. While simple in retrospect, to our knowl-
edge, these results are new.

3.1 Preparation: The Mirror Descent Iterates

We first recall the notion of (Fréchet) derivative in infinite-dimensional spaces. A (nonlinear)
functional Φ : M(Z) → R is said to possess a derivative at µ ∈ M(Z) if there exists a
function dΦ(µ) ∈ F(Z) such that, for all µ′ ∈M(Z), we have

Φ(µ+ εµ′) = Φ(µ) + ε 〈µ′,dΦ(µ)〉+ o(ε).

Similarly, a (nonlinear) functional Φ? : F(Z)→ R is said to possess a derivative at h ∈ F(Z)
if there exists a measure dΦ?(h) ∈M(Z) such that, for all h′ ∈ F(Z), we have

Φ?(h+ εh′) = Φ?(h) + ε 〈dΦ?(h), h′〉+ o(ε).

The most important functionals in this paper are the (negative) Shannon entropy

µ ∈M(Z), Φ(µ) :=

∫
dµ log

dµ

dz

and its Fenchel dual

h ∈ F(Z), Φ?(h) := log

∫
ehdz.

The first result of our paper is to show that, in direct analogy to (2), the infinite-dimensional
MD iterates can be expressed as:

Theorem 1 (Infinite-Dimensional Mirror Descent, informal). For a learning rate η and an
arbitrary function h, we can equivalently define

µ+ = MDη (µ, h) ≡ µ+ = dΦ? (dΦ(µ)− ηh) ≡ dµ+ =
e−ηhdµ∫
e−ηhdµ

. (7)

Moreover, most the essential ingredients in the analysis of finite-dimensional prox methods
can be generalized to infinite dimension.

See Theorem 4 of Appendix A for precise statements and a long list of “essential
ingredients of prox methods” generalizable to infinite dimension.

3The linearity of G trivially follows from the linearity of expectation.

4

3.2 Infinite-Dimensional Prox Methods and Convergence Rates

Armed with results in Section 3.1, we now introduce two “conceptual” algorithms for solving
the mixed NE of Wasserstein GANs: The infinite-dimensional entropic MD in Algorithm
1 and MP in Algorithm 2. These algorithms iterate over probability measures and cannot
be directly used in practice, but they possess rigorous convergence rates, and hence motivate
the reduction procedure in Section 4 to come.

Algorithm 1: Infinite-Dimensional Entropic MD

Input: Initial distributions µ1, ν1, learning rate η
for t = 1, 2, . . . , T − 1 do

νt+1 = MDη

(
νt,−G†µt

)
, µt+1 = MDη (µt,−g +Gνt);

return ν̄T = 1
T

∑T
t=1 νt and µ̄T = 1

T

∑T
t=1 µt.

Theorem 2 (Convergence Rates). Let Φ(µ) =
∫

dµ log dµ
dz . Let M be a constant such that

max
[
‖−g +Gν‖L∞ ,

∥∥G†µ∥∥L∞] ≤ M , and L be such that ‖G(ν − ν′)‖L∞ ≤ L ‖ν − ν′‖TV

and
∥∥G†(µ− µ′)∥∥L∞ ≤ L ‖µ− µ′‖TV. Let D(·, ·) be the relative entropy, and denote by

D0 := D(µNE, µ1) +D(νNE, ν1) the initial distance to the mixed NE. Then

1. Assume that we have access to the deterministic derivatives
{
−G†µt

}T
t=1

and {g −Gν}Tt=1.

Then Algorithm 1 achieves O
(
T−1/2

)
-NE with η = 2

M

√
D0

T , and Algorithm 2

achieves O
(
T−1

)
-NE with η = 4

L .

2. Assume that we have access to unbiased stochastic derivatives
{
−Ĝ†µt

}T
t=1

and
{
ĝ − Ĝν

}T
t=1

such that max
[
E
∥∥∥−ĝ + Ĝν

∥∥∥
L∞

,E
∥∥∥Ĝ†µ∥∥∥

L∞

]
≤M ′, and the variance is upper bounded

by σ2. Then Algorithm 1 with stochastic derivatives achieves O
(
T−1/2

)
-NE in ex-

pectation with η = 2
M ′

√
D0

T , and Algorithm 2 with stochastic derivatives achieves

O
(
T−1/2

)
-NE in expectation with η = min

[
4√
3L
,
√

2D0

3Tσ2

]
.

The proof can be found in Appendix B and C.
Remark. If, as in previous work [2], we assume the output of the discriminator to be

bounded by U , then we have M,M ′ ≤ 2U and L ≤ U in Theorem 2.

4 From Theory to Practice

Section 4.1 reduces Algorithm 1 and Algorithm 2 to a sampling routine [46] that has
widely been used in machine learning. Section 4.2 proposes to further simplify the algorithms
by summarizing a batch of samples by their mean.

For simplicity, we will only derive the algorithm for entropic MD; the case for entropic
MP is similar but requires more computation. To ease the notation, we assume η = 1
throughout this section as η does not play an important role in the derivation below.

4.1 Implementable Entropic MD: From Probability Measure to
Samples

Consider Algorithm 1. The reduction consists of three steps.
Step 1: Reformulating Entropic Mirror Descent Iterates
The definition of the MD iterate (7) relates the updated probability measure µt+1 to the

current probability measure µt, but it tells us nothing about the density function of µt+1,

5

Algorithm 2: Infinite-Dimensional Entropic MP

Input: Initial distributions µ̃1, ν̃1, learning rate η
for t = 1, 2, . . . , T do

νt = MDη

(
ν̃t,−G†µ̃t

)
, µt = MDη (µ̃t,−g +Gν̃t);

ν̃t+1 = MDη

(
ν̃t,−G†µt

)
, µ̃t+1 = MDη (µ̃t,−g +Gνt);

return ν̄T = 1
T

∑T
t=1 νt and µ̄T = 1

T

∑T
t=1 µt.

from which we want to sample. Our first step is to express (7) in a more tractable form.
By recursively applying (7) and using Theorem 4.10 in Appendix A, we have, for some
constants C1, ..., CT−1,

dΦ(µT) = dΦ(µT−1)− (−g +GνT−1) + CT−1

= dΦ(µT−2)− (−g +GνT−2)− (−g +GνT−1) + CT−1 + Ct−2

= · · · = dΦ(µ1)−

(
−(T − 1)g +G

T−1∑
s=1

νs

)
+

T−1∑
s=1

Cs.

For simplicity, assume that µ1 is uniform so that dΦ(µ1) is a constant function. Then,
by (13) and that dΦ? (dΦ(µT)) = dµT , we see that the density function of µT is simply

dµT =
exp{(T−1)g−G

∑T−1
s=1 νs}dw∫

exp{(T−1)g−G
∑T−1
s=1 νs}dw

. Similarly, we have dνT =
exp{G†∑T−1

s=1 µs}dθ∫
exp{G†∑T−1

s=1 µs}dθ
.

Step 2: Empirical Approximation for Stochastic Derivatives
The derivatives of (5) involve the function g and operator G. Recall that g requires

taking expectation over the real data distribution, which we do not have access to. A
common approach is to replace the true expectation with its empirical average:

g(w) = EX∼Preal
[fw(X)] ' 1

n

n∑
i=1

fw(Xreal
i) , ĝ(w)

where Xi’s are real data and n is the batch size. Clearly, ĝ is an unbiased estimator of g.
On the other hand, Gνt and G†µt involve expectation over νt and µt, respectively, and

also over the fake data distribution Pθ. Therefore, if we are able to draw samples from µt
and νt, then we can again approximate the expectation via the empirical average:

θ(1),θ(2), ...,θ(n′) ∼ νt,
{
X

(j)
i

}n
i=1
∼ Pθ(j) , Ĝνt(w) ' 1

nn′

n∑
i=1

n′∑
j=1

fw

(
X

(j)
i

)

w(1),w(2), ...,w(n′) ∼ µt, {Xi}ni=1 ∼ Pθ, Ĝ†µt(θ) ' 1

nn′

n∑
i=1

n′∑
j=1

fw(j) (Xi) .

Now, assuming that we have obtained unbiased stochastic derivatives −
∑t
s=1 Ĝ

†µs and∑t
s=1

(
−ĝ + Ĝνs

)
, how do we actually draw samples from µt+1 and νt+1? Provided we can

answer this question, then we can start with two easy-to-sample distributions (µ1, ν1), and
then we will be able to draw samples from (µ2, ν2). These samples in turn will allow us
to draw samples from (µ3, ν3), and so on. Therefore, it only remains to answer the above
question. This leads us to:

Step 3: Sampling by Stochastic Gradient Langevin Dynamics
For any probability distribution with density function e−hdz, the Stochastic Gradient

Langevin Dynamics (SGLD) [46] iterates as

zk+1 = zk − γ∇̂h(zk) +
√

2γεξk, (8)

6

where γ is the step-size, ∇̂h is an unbiased estimator of ∇h, ε is the thermal noise, and
ξk ∼ N (0, I) is a standard normal vector, independently drawn across different iterations.

Suppose we start at (µ1, ν1). Plugging h← −Ĝ†µ1 and h← −ĝ+Ĝν1 into (8), we obtain,

for {Xi}ni=1 ∼ Pθk , {w(j)}n′j=1 ∼ µ1 and Xreal
i ∼ Preal, {θ(j)}n′j=1 ∼ ν1, {X(j)

i } ∼ Pθ(j) , the
following update rules:

θk+1 = θk + γ∇θ

 1

nn′

n∑
i=1

n′∑
j=1

fw(j) (Xi)

wk+1 = wk + γ∇w

 1

n

n∑
i=1

fwk(Xreal
i)− 1

nn′

n∑
i=1

n′∑
j=1

fwk

(
X

(j)
i

) .

The theory of [46] states that, for large enough k, the iterates of SGLD above (approxi-
mately) generate samples according to the probability measures (µ2, ν2). We can then apply
this process recursively to obtain samples from (µ3, ν3), (µ4, ν4), ...(µT , νT). Finally, since
the entropic MD and MP output the averaged measure (µ̄T , ν̄T), it suffices to pick a random
index t̂ ∈ {1, 2, ..., T} and then output samples from (µt̂, νt̂).

Putting Step 1-3 together, we obtain Algorithm 4 and 5 in Appendix D.
Remark. In principle, any first-order sampling method is valid above. In the experimental

section, we also use a RMSProp-preconditioned version of the SGLD [31].

4.2 Summarizing Samples by Averaging: A Simple yet Effective
Heuristic

Although Algorithm 4 and 5 are implementable, they are quite complicated and resource-
intensive, as the total computational complexity is O(T 2). This high complexity comes from
the fact that, when computing the stochastic derivatives, we need to store all the historical
samples and evaluate new gradients at these samples.

An intuitive approach to alleviate the above issue is to try to summarize each distribution
by only one parameter. To this end, the mean of the distribution is the most natural
candidate, as it not only stablizes the algorithm, but also is often easier to acquire than
the actual samples. For instance, computing the mean of distributions of the form e−hdz,
where h is a loss function defined by deep neural networks, has been empirically proven
successful in [12, 13, 16] via SGLD. In this paper, we adopt the same approach as in [12]
where we use exponential damping (the β term in Algorithm 3) to increase stability.
Algorithm 3, dubbed the Mirror-GAN, shows how to encompass this idea into entropic
MD; the pseudocode for the similar Mirror-Prox-GAN can be found in Algorithm 6 of
Appendix D.

5 Experimental Evidence

The purpose of our experiments is twofold. First, we use established baselines to demonstrate
that Mirror- and Mirror-Prox-GAN consistently achieve better or comparable performance
than common algorithms. Second, we report that our algorithms are stable and always
improve as the training process goes on. This is in contrast to unstable training algorithms,
such as Adam, which often collapse to noise as the iteration count grows. [11].

We use visual quality of the generated images to evaluate different algorithms. We avoid
reporting numerical metrics, as recent studies [5, 7, 33] suggest that these metrics might be
flawed. Setting of the hyperparameters and more auxiliary results can be found in Appendix
E.

7

Algorithm 3: Mirror-GAN: Approximate Mirror Decent for GANs

Input: w̄1, θ̄1 ← random initialization, {γt}Tt=1, {εt}Tt=1, {Kt}T−1
t=1 , β (see Appendix D

for meaning of the hyperparameters).
for t = 1, 2, . . . , T − 1 do

w̄t,w
(1)
t ← wt;

θ̄t,θ
(1)
t ← θt;

for k = 1, 2, . . . ,Kt do
Generate A = {X1, . . . , Xn} ∼ P

θ
(k)
t

;

θ
(k+1)
t = θ

(k)
t + γt

n∇θ
∑
Xi∈A fwt(Xi) +

√
2γtεtN (0, I);

Generate B = {Xreal
1 , . . . , Xreal

n } ∼ Preal;
Generate B′ = {X ′1, . . . , X ′n} ∼ Pθt ;

w
(k+1)
t = w

(k)
t +

γt
n
∇w

∑
Xreal
i ∈B

f
w

(k)
t

(Xreal
i)− γt

n
∇w

∑
X′i∈B′

f
w

(k)
t

(X ′i) +
√

2γtεtN (0, I);

w̄t ← (1− β)w̄t + βw
(k+1)
t ;

θ̄t ← (1− β)θ̄t + βθ
(k+1)
t ;

wt+1 ← (1− β)wt + βw̄t;
θt+1 ← (1− β)θt + βθ̄t;

return wT ,θT .

5.1 Synthetic Data

We repeat the synthetic setup as in [25]. The tasks include learning the distribution of
8 Gaussian mixtures, 25 Gaussian mixtures, and the Swiss Roll. For both the generator
and discriminator, we use two MLPs with three hidden layers of 512 neurons. We choose
SGD and Adam as baselines, and we compare them to Mirror- and Mirror-Prox-GAN. All
algorithms are run up to 105 iterations4. The results of 25 Gaussian mixtures are shown
in Figure 1; An enlarged figure of 25 Gaussian Mixtures and other cases can be found in
Appendix E.1.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(a) SGD

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(b) Adam

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(c) Mirror-GAN

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(d) Mirror-Prox-GAN

Figure 1: Fitting 25 Gaussian mixtures up to 105 iterations. Blue dots represent the true
distribution and red ones are from the trained generator.

As Figure 1 shows, SGD performs poorly in this task, while the other algorithms yield
reasonable results. However, compared to Adam, Mirror- and Mirror-Prox-GAN fit the true
distribution better in two aspects. First, the modes found by Mirror- and Mirror-Prox-
GAN are more accurate than the ones by Adam, which are perceivably biased. Second,
Mirror- and Mirror-Prox-GAN perform much better in capturing the variance (how spread

4One iteration here means using one mini-batch of data. It does not correspond to the T in our algorithms,
as there might be multiple SGLD iterations within each time step t.

8

(a) RMSProp (b) Adam (c) Mirror-GAN

Figure 2: Dataset LSUN bedroom, 105 iterations.

the blue dots are), while Adam tends to collapse to modes. These observations are consistent
throughout the synthetic experiments; see Appendix E.1.

5.2 Real Data

For real images, we use the LSUN bedroom dataset [47]. We have also conducted a similar
study with MNIST; see Appendix E.2.1 for details.

We use the same architecture (DCGAN) as in [42] with batch normalization. As the net-
works become deeper in this case, the gradient magnitudes differ significantly across different
layers. As a result, non-adaptive methods such as SGD or SGLD do not perform well in this
scenario. To alleviate such issues, we replace SGLD by the RMSProp-preconditioned SGLD
[31] for our sampling routines. For baselines, we consider two adaptive gradient methods:
RMSprop and Adam.

Figure 2 shows the results at the 105th iteration. The RMSProp and Mirror-GAN
produce images with reasonable quality, while Adam outputs noise. The visual quality of
Mirror-GAN is better than RMSProp, as RMSProp sometimes generates blurry images (the
(3, 3)- and (1, 5)-th entry of Figure 8.(b)).

It is worth mentioning that Adam can learn the true distribution at intermediate itera-
tions, but later on suffers from mode collapse and finally degenerates to noise; see Appendix
E.2.2.

6 Conclusions

Our goal of systematically understanding and expanding on the game theoretic perspective
of mixed NE along with stochastic Langevin dynamics for training GANs is a promising
research vein. While simple in retrospect, we provide guidelines in developing approximate
infinite-dimensional prox methods that mimic closely the provable optimization framework
to learn the mixed NE of GANs. Our proposed Mirror- and Mirror-Prox-GAN algorithm
feature cheap per-iteration complexity while rapidly converging to solutions of good quality.

Acknowledgments

This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement n◦

725594 - time-data), and Microsoft Research through its PhD scholarship Programme.

9

References

[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

[2] Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. Generalization
and equilibrium in generative adversarial nets (gans). In International Conference on
Machine Learning, pages 224–232, 2017.

[3] Maximilian Balandat, Walid Krichene, Claire Tomlin, and Alexandre Bayen. Minimiz-
ing regret on reflexive banach spaces and nash equilibria in continuous zero-sum games.
In Advances in Neural Information Processing Systems, pages 154–162, 2016.

[4] David Balduzzi, Sebastien Racaniere, James Martens, Jakob Foerster, Karl Tuyls, and
Thore Graepel. The mechanics of n-player differentiable games. In Jennifer Dy and
Andreas Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 354–363,
StockholmsmÃd’ssan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

[5] Shane Barratt and Rishi Sharma. A note on the inception score. arXiv preprint
arXiv:1801.01973, 2018.

[6] Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient
methods for convex optimization. Operations Research Letters, 31(3):167–175, 2003.

[7] Ali Borji. Pros and cons of gan evaluation measures. arXiv preprint arXiv:1802.03446,
2018.

[8] Sebastien Bubeck. Orf523: Mirror descent, part i/ii, 2013.

[9] Sebastien Bubeck. Orf523: Mirror descent, part ii/ii, 2013.

[10] Sebastien Bubeck. Orf523: Mirror prox, 2013.

[11] Junbum Cha. Implementations of (theoretical) generative adversarial net-
works and comparison without cherry-picking. https://github.com/khanrc/tf.

gans-comparison, 2017.

[12] Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi,
Christian Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd:
Biasing gradient descent into wide valleys. In International Conference on Learning
Representations, 2017.

[13] Pratik Chaudhari, Adam Oberman, Stanley Osher, Stefano Soatto, and Guillaume Car-
lier. Deep relaxation: partial differential equations for optimizing deep neural networks.
Research in the Mathematical Sciences, 5(3):30, Jun 2018.

[14] Partha Dasgupta and Eric Maskin. The existence of equilibrium in discontinuous eco-
nomic games, i: Theory. The Review of economic studies, 53(1):1–26, 1986.

[15] Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training
GANs with optimism. In International Conference on Learning Representations, 2018.

[16] Gintare Karolina Dziugaite and Daniel Roy. Entropy-sgd optimizes the prior of a pac-
bayes bound: Generalization properties of entropy-sgd and data-dependent priors. In
International Conference on Machine Learning, pages 1376–1385, 2018.

[17] Ian Gemp and Sridhar Mahadevan. Global convergence to the equilibrium of gans using
variational inequalities. arXiv preprint arXiv:1808.01531, 2018.

10

https://github.com/khanrc/tf.gans-comparison
https://github.com/khanrc/tf.gans-comparison

[18] J Willard Gibbs. Elementary principles in statistical mechanics. Yale University Press,
1902.

[19] Gauthier Gidel, Hugo Berard, Pascal Vincent, and Simon Lacoste-Julien. A variational
inequality perspective on generative adversarial nets. arXiv preprint arXiv:1802.10551,
2018.

[20] Gauthier Gidel, Reyhane Askari Hemmat, Mohammad Pezeshki, Gabriel Huang, Remi
Lepriol, Simon Lacoste-Julien, and Ioannis Mitliagkas. Negative momentum for im-
proved game dynamics. arXiv preprint arXiv:1807.04740, 2018.

[21] Irving L Glicksberg. A further generalization of the kakutani fixed point theorem,
with application to nash equilibrium points. Proceedings of the American Mathematical
Society, 3(1):170–174, 1952.

[22] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[23] Robert M Gray. Entropy and information theory. Springer Science & Business Media,
2011.

[24] Paulina Grnarova, Kfir Y Levy, Aurelien Lucchi, Thomas Hofmann, and Andreas
Krause. An online learning approach to generative adversarial networks. In Inter-
national Conference on Learning Representations, 2018.

[25] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville. Improved training of wasserstein gans. In Advances in Neural Information
Processing Systems, pages 5767–5777, 2017.

[26] Paul R Halmos. Measure theory, volume 18. Springer, 2013.

[27] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image trans-
lation with conditional adversarial networks. arXiv preprint, 2017.

[28] Anatoli Juditsky and Arkadi Nemirovski. First order methods for nonsmooth convex
large-scale optimization, ii: utilizing problems structure. Optimization for Machine
Learning, pages 149–183, 2011.

[29] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon Kim. Learning to
discover cross-domain relations with generative adversarial networks. In International
Conference on Machine Learning, pages 1857–1865, 2017.

[30] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations, 2015.

[31] Chunyuan Li, Changyou Chen, David E Carlson, and Lawrence Carin. Preconditioned
stochastic gradient langevin dynamics for deep neural networks. In AAAI, 2016.

[32] Tengyuan Liang and James Stokes. Interaction matters: A note on non-asymptotic
local convergence of generative adversarial networks. arXiv preprint arXiv:1802.06132,
2018.

[33] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet. Are
gans created equal? a large-scale study. In Advances in neural information processing
systems, 2018.

[34] Panayotis Mertikopoulos, Houssam Zenati, Bruno Lecouat, Chuan-Sheng Foo, Vijay
Chandrasekhar, and Georgios Piliouras. Mirror descent in saddle-point problems: Going
the extra (gradient) mile. arXiv preprint arXiv:1807.02629, 2018.

11

[35] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. The numerics of gans. In
Advances in Neural Information Processing Systems, pages 1825–1835, 2017.

[36] Arkadi Nemirovski. Prox-method with rate of convergence o (1/t) for variational in-
equalities with lipschitz continuous monotone operators and smooth convex-concave
saddle point problems. SIAM Journal on Optimization, 15(1):229–251, 2004.

[37] AS Nemirovsky and DB Yudin. Problem complexity and method efficiency in optimiza-
tion. 1983.

[38] Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathematical
programming, 120(1):221–259, 2009.

[39] Frans A Oliehoek, Rahul Savani, Jose Gallego, Elise van der Pol, and Roderich Groß.
Beyond local nash equilibria for adversarial networks. arXiv preprint arXiv:1806.07268,
2018.

[40] Albert Pumarola, Antonio Agudo, Aleix M Martinez, Alberto Sanfeliu, and Francesc
Moreno-Noguer. Ganimation: Anatomically-aware facial animation from a single image.
In Proceedings of the European Conference on Computer Vision (ECCV), pages 818–
833, 2018.

[41] Albert Pumarola, Antonio Agudo, Alberto Sanfeliu, and Francesc Moreno-Noguer. Un-
supervised person image synthesis in arbitrary poses. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 8620–8628, 2018.

[42] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[43] Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi, and Ferenc Huszár.
Amortised map inference for image super-resolution. 2017.

[44] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural networks for machine
learning, 4(2):26–31, 2012.

[45] Zhaowen Wang, Ding Liu, Jianchao Yang, Wei Han, and Thomas Huang. Deep networks
for image super-resolution with sparse prior. In Proceedings of the IEEE International
Conference on Computer Vision, pages 370–378, 2015.

[46] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dy-
namics. In Proceedings of the 28th International Conference on Machine Learning
(ICML-11), pages 681–688, 2011.

[47] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong
Xiao. Lsun: Construction of a large-scale image dataset using deep learning with
humans in the loop. arXiv preprint arXiv:1506.03365, 2015.

[48] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-
image translation using cycle-consistent adversarial networks. In IEEE International
Conference on Computer Vision, 2017.

12

A A Framework for Infinite-Dimensional Mirror De-
scent

A.1 A note on the regularity

It is known that the (negative) Shannon entropy is not Fréchet differentiable in general.
However, below we show that the Fréchet derive can be well-defined if we restrict the prob-
ability measures to within the set

M(Z) :={all probability measures on Z that admit densities w.r.t. the Lebesgue measure,

and the density is continuous and positive almost everywhere on Z}.

We will also restrict the set of functions to be bounded and integrable:

F(Z) := {all bounded integrable functions on Z}.

It is important to notice that µ ∈ M(Z) and h ∈ F(Z) implies µ′ = MDη (µ, h) ∈ M(Z);
this readily follows from the formula (7).

A.2 Properties of Entropic Mirror Map

The total variation of a (possibly non-probability) measure µ ∈M(Z) is defined as [26]

‖µ‖TV = sup
‖h‖L∞≤1

∫
hdµ = sup

‖h‖L∞≤1

〈µ, h〉 .

We depart from the fundamental Gibbs Variational Principle, which dates back to the
earliest work of statistical mechanics [18]. For two probability measures µ, µ′, denote their
relative entropy by (the reason for this notation will become clear in (14))

DΦ(µ, µ′) :=

∫
Z

dµ log
dµ

dµ′
.

Theorem 3 (Gibbs Variation Principle). Let h ∈ F(Z) and µ′ ∈ M(Z) be a reference
measure. Then

log

∫
Z
ehdµ′ = sup

µ∈M(Z)

〈µ, h〉 −DΦ(µ, µ′), (9)

and equality is achieved by dµ? = ehdµ′∫
Z e

hdµ′
.

Part of the following theorem is folklore in the mathematics and learning community.
However, to the best of our knowledge, the relation to the entropic MD has not been
systematically studied before, as we now do.

Theorem 4. For a probability measure dµ = ρdz, let Φ(µ) =
∫
ρ log ρdz be the negative

Shannon entropy, and let Φ?(h) = log
∫
Z e

hdz. Then

1. Φ? is the Fenchel conjugate of Φ:

Φ?(h) = sup
µ∈M(Z)

〈µ, h〉 − Φ(µ); (10)

Φ(µ) = sup
h∈F(Z)

〈µ, h〉 − Φ?(h). (11)

2. The derivatives admit the expression

dΦ(µ) = 1 + log ρ = arg max
h∈F(Z)

〈µ, h〉 − Φ?(h); (12)

dΦ?(h) =
ehdz∫
Z e

hdz
= arg max

µ∈M(Z)

〈µ, h〉 − Φ(µ). (13)

13

3. The Bregman divergence of Φ is the relative entropy:

DΦ(µ, µ′) = Φ(µ)− Φ(µ′)− 〈µ− µ′,dΦ(µ′)〉 =

∫
Z

dµ log
dµ

dµ′
. (14)

4. Φ is 4-strongly convex with respect to the total variation norm: For all λ ∈ (0, 1),

Φ(λµ+ (1− λ)µ′) ≤ λΦ(µ) + (1− λ)Φ(µ′)− 1

2
· 4λ(1− λ)‖µ− µ′‖2TV. (15)

5. The following duality relation holds: For any constant C, we have

∀µ, µ′ ∈M(Z), DΦ(µ, µ′) = DΦ? (dΦ(µ′),dΦ(µ)) = DΦ? (dΦ(µ′) + C,dΦ(µ)) .
(16)

6. Φ? is 1
4 -smooth with respect to ‖ · ‖L∞ :

∀h, h′ ∈ F(Z), ‖dΦ?(h)− dΦ?(h′)‖TV ≤
1

4
‖h− h′‖L∞ . (17)

7. Alternative to (17), we have the equivalent characterization of Φ?:

∀h, h′ ∈ F(Z), Φ?(h) ≤ Φ?(h′) + 〈dΦ?(h′), h− h′〉+
1

2
· 1

4
‖h− h′‖2L∞ . (18)

8. Similar to (16), we have

∀h, h′, DΦ?(h, h′) = DΦ(dΦ?(h′),dΦ?(h)). (19)

9. The following three-point identity holds for all µ, µ′, µ′′ ∈M(Z):

〈µ′′ − µ,dΦ(µ′)− dΦ(µ)〉 = DΦ(µ, µ′) +DΦ(µ′′, µ)−DΦ(µ′′, µ′). (20)

10. Let the Mirror Descent iterate be defined as in (7). Then the following statements are
equivalent:

(a) µ+ = MDη (µ, h).

(b) There exists a constant C such that dΦ(µ+) = dΦ(µ)− ηh+ C.

In particular, for any µ′, µ′′ ∈M(Z) we have

Let 〈µ′ − µ′′, ηh〉 = 〈µ′ − µ′′,dΦ(µ)− dΦ(µ+)〉 . (21)

Proof.

1. Equation (10) is simply the Gibbs variational principle (9) with dµ← dz.

By (10), we know that

∀h ∈ F(Z), Φ(µ) ≥ 〈µ, h〉 − log

∫
Z
ehdz. (22)

But for dµ = ρdz, the function h := 1 + log ρ saturates the equality in (22).

14

2. We prove a more general result on the Bregman divergence DΦ in (23) below.

Let dµ = ρdz,dµ′ = ρ′dz, and dµ′′ = ρ′′dz ∈M(Z). Let ε > 0 be small enough such
that (ρ+ ερ′′)dz is absolutely continuous with respect to dµ′; note that this is possible
because µ, µ′, and µ′′ ∈M(Z). We compute

DΦ(ρ+ ερ′′, ρ′) =

∫
Z

(ρ+ ερ′′) log
ρ+ ερ′′

ρ′

=

∫
Z
ρ log

ρ

ρ′
+

∫
Z
ρ log

(
1 + ε

ρ′′

ρ

)
+ ε

∫
Z
ρ′′ log

ρ

ρ′
+ ε

∫
Z
ρ′′ log

(
1 + ε

ρ′′

ρ

)
(i)
=

∫
Z
ρ log

ρ

ρ′
+ ε

∫
Z
ρ′′ + ε

∫
Z
ρ′′ log

ρ

ρ′
+ ε2

∫
Z

ρ′′2

ρ
+ o(ε)

= DΦ(ρ, ρ′) + ε

∫
Z
ρ′′
(

1 + log
ρ

ρ′

)
+ o(ε),

where (i) uses log(1 + t) = t+ o(t) as t→ 0. In short, for all µ′, µ′′ ∈M(Z),

dµDΦ(µ, µ′)(µ′′) =

〈
µ′′, 1 + log

ρ

ρ′

〉
(23)

which means dµDΦ(µ, µ′) = 1 + log ρ
ρ′ . The formula (12) is the special case when

dµ′ ← dz.

We now turn to (13). For every h ∈ F(Z), we need to show that the following holds
for every h′ ∈ F(Z):

Φ?(h+ εh′)− Φ?(h) = log

∫
Z
eh+εh′dz − log

∫
Z
ehdz = ε

∫
Z
h′

eh∫
Z e

h
dz + o(ε). (24)

Define an auxiliary function

T (ε) := log

∫
Z

eh∫
Z e

h
eεh
′
dz.

Notice that T (0) = 0 and T is smooth as a function of ε. Thus, by the Intermediate
Value Theorem,

Φ?(h+ εh′)− Φ?(h) = T (ε)− T (0)

= (ε− 0) · d

dε
T (·)

∣∣∣∣
ε′

for some ε′ ∈ [0, ε]. A direct computation shows

d

dε
T (·)

∣∣∣∣
ε′

=

∫
Z
h′

eh+ε′h′∫
Z e

h+ε′h′
dz.

Hence it suffices to prove eh+ε
′h′∫

Z e
h+ε′h′ = eh∫

Z e
h + o(1) in ε. To this end, let C = sup |h′| <

∞. Then
eh∫
Z e

h
e−2ε′C ≤ eh+ε′h′∫

Z e
h+ε′h′

≤ eh∫
Z e

h
e2ε′C .

It remains to use et = 1 + t+ o(t) and ε′ ≤ ε.

15

3. Let dµ = ρdz and dµ′ = ρ′dz. We compute

DΦ(µ, µ′) = Φ(µ)− Φ(µ′)− 〈µ− µ′,dΦ(µ′)〉

=

∫
Z
ρ log ρdz −

∫
Z
ρ′ log ρ′dz − 〈µ− µ′, 1 + log ρ′〉 by (12)

=

∫
Z
ρ log

ρ

ρ′
dz

=

∫
Z

dµ log
dµ

dµ′
.

4. Define µλ = λµ + (1 − λ)µ′. By (14) and the classical Pinsker’s inequality [23], we
have

Φ(µ) ≥ Φ(µλ) + 〈(1− λ)(µ− µ′),dΦ(µλ)〉+ 2‖(1− λ)(µ− µ′)‖2TV, (25)

Φ(µ′) ≥ Φ(µλ) + 〈λ(µ′ − µ),dΦ(µλ)〉+ 2‖λ(µ− µ′)‖2TV. (26)

Equation (15) follows by multiplying with λ and 1− λ respectively and summing the
two inequalities up.

5. Let µ = ρdz and µ′ = ρ′dz. Then, by the definition of Bregman divergence and (12),
(13),

DΦ?(dΦ(µ′),dΦ(µ)) = Φ?(dΦ(µ′))− Φ?(dΦ(µ))−
〈
e1+log ρdz∫
Z e

1+log ρ
, 1 + log ρ′ − 1− log ρ

〉
= log

∫
Z
e1+log ρ′ − log

∫
Z
e1+log ρ +

∫
Z
ρ log

ρ

ρ′

=

∫
Z
ρ log

ρ

ρ′
= DΦ(µ, µ′)

since
∫
Z ρdz =

∫
Z ρ
′dz = 1. This proves the first equality.

For the second equality, we write

DΦ?(dΦ(µ′) + C,dΦ(µ)) = Φ?(dΦ(µ′) + C)− Φ?(dΦ(µ))−
〈
e1+log ρdz∫
Z e

1+log ρ
, 1 + log ρ′ + C − 1− log ρ

〉
= log

∫
Z
e1+log ρ′+C − log

∫
Z
e1+log ρ +

∫
Z
ρ log

ρ

ρ′
− C

=

∫
Z
ρ log

ρ

ρ′

= DΦ(µ, µ′) = DΦ?(dΦ(µ′),dΦ(µ))

where we have used the first equality in the last step.

6. Let µh = dΦ?(h), µh′ = dΦ?(h′), and µλ = λµh + (1 − λ)µh′ for some λ ∈ (0, 1). By
Pinsker’s inequality and (14), we have

Φ(µλ) ≥ Φ(µh) + 〈µλ − µh,dΦ(µh)〉+ 2‖µλ − µh‖2TV, (27)

Φ(µλ) ≥ Φ(µh′) + 〈µλ − µh′ ,dΦ(µh′)〉+ 2‖µλ − µh′‖2TV. (28)

Now, notice that

〈µλ − µh,dΦ(µh)〉 = 〈µλ − µh,dΦ(dΦ?(h))〉

=

〈
µλ − µh,dΦ

(
ehdz∫
Z e

h

)〉
by (13)

=

〈
µλ − µh, 1 + h− log

∫
Z
eh
〉

by (12)

= 〈µλ − µh, h〉

16

and, similarly, we have 〈µλ − µh′ ,dΦ(µh′)〉 = 〈µλ − µh′ , h′〉. Multiplying (27) by λ
and (28) by 1− λ, summing the two up, and using the above equalities, we get

Φ(µλ)−
(
λΦ(µh) + (1− λ)Φ(µh′)

)
+ λ(1− λ) 〈µh − µh′ , h− h′〉 ≥ 2λ(1− λ) ‖µh − µh′‖2TV .

By (15), we know that

Φ(µλ)−
(
λΦ(µh) + (1− λ)F (µh′)

)
≤ −2λ(1− λ) ‖µh − µh′‖2TV .

Moreover, by definition of the total variation norm, it is clear that

〈µh − µh′ , h− h′〉 ≤ ‖µh − µh′‖TV ‖h− h
′‖L∞ . (29)

Combing the last three inequalities gives (17).

7. Let K be a positive integer and k ∈ {0, 1, 2, . . . ,K}. Set λk = k
K and h′′ = h − h′.

Then

Φ?(h)− Φ?(h′) = Φ?(h′ + λKh
′′)− Φ?(h′ + λ0h

′′)

=

K−1∑
k=0

(
Φ?(h′ + λk+1h

′′)− Φ?(h′ + λkh
′′)
)
. (30)

By convexity of Φ?, we have

Φ?(h′ + λk+1h
′′)− Φ?(h′ + λkh

′′) ≤ 〈dΦ?(h′ + λk+1h
′′), (λk+1 − λk)h′′〉

=
1

K
〈dΦ?(h′ + λk+1h

′′), h′′〉 . (31)

By (29) and (17), we may further upper bound (31) as

Φ?(h′ + λk+1h
′′)− Φ?(h′ + λkh

′′) ≤ 1

K

(
〈dΦ?(h′), h′′〉+ 〈dΦ?(h′ + λk+1h

′′)− dΦ?(h′), h′′〉
)

≤ 1

K

(
〈dΦ?(h′), h′′〉+ ‖dΦ?(h′ + λk+1h

′′)− dΦ?(h′)‖TV ‖h
′′‖L∞

)
≤ 1

K

(
〈dΦ?(h′), h′′〉+

λk+1

4
‖h′′‖2L∞

)
. (32)

Summing up (32) over k, we get, in view of (30),

Φ?(h)− Φ?(h′) ≤ 〈dΦ?(h′), h′′〉+
1

4
‖h′′‖2L∞

K−1∑
k=0

λk+1

= 〈dΦ?(h′), h′′〉+
1

4
· K + 1

2K
‖h′′‖2L∞ . (33)

Since K is arbitrary, we may take K →∞ in (33), which is (18).

8. Straightforward calculation shows

DΦ?(h, h′) = log

∫
Z
eh − log

∫
Z
eh
′
−
∫
Z

eh
′∫
eh′

(h− h′) .

17

On the other hand, by definition of the Bregman divergence and (12), (13), we have

DΦ(dΦ?(h′),dΦ?(h)) =

∫
Z

eh
′∫

Z e
h′
h′ − log

∫
Z
eh
′
−
∫
Z

eh∫
Z e

h
h+ log

∫
Z
eh

−
∫
Z

(
1 + h− log

∫
Z
eh
)(

eh
′∫

Z e
h′
− eh∫
Z e

h

)

=

∫
Z

eh
′∫
eh′

(h′ − h)− log

∫
Z
eh
′
+ log

∫
Z
eh

= Φ?(h)− Φ?(h′)− 〈dΦ?(h′), h− h′〉
= DΦ?(h, h′).

9. By definition of the Bregman divergence, we have

DΦ(µ, µ′) = Φ(µ)− Φ(µ′)− 〈µ− µ′,dΦ(µ′)〉 ,
DΦ(µ′′, µ) = Φ(µ′′)− Φ(µ)− 〈µ′′ − µ,dΦ(µ)〉 ,
DΦ(µ′′, µ′) = Φ(µ′′)− Φ(µ′)− 〈µ′′ − µ′,dΦ(µ′)〉 .

Equation (20) then follows by straightforward calculations.

10. First, let µ+ = MDη (µ, h). Then if µ+ = ρ+dz and µ = ρdz, then (7) implies

ρ+ =
ρe−ηh∫
Z ρe

−ηh .

By (12), we therefore have

dΦ(µ+) = 1 + log ρ+

= 1 + log ρ− ηh− log

∫
Z
ρe−ηh

whence (21) holds with C = − log
∫
Z ρe

−ηh.

Conversely, assume that dΦ(µ+) = dΦ(µ) − ηh + C for some constant C, and apply
dΦ? to both sides. The left-hand side becomes

dΦ?
(

dΦ(µ+)
)

= dΦ?(1 + log ρ+)

=
ρ+dz∫
ρ+dz

= ρ+dz = dµ+,

where as the formula (13) implies that

dΦ? (dΦ(µ)− ηh+ C) =
e1+log ρ−ηh+C∫
Z e

1+log ρ−ηh+C
dz

=
ρe−ηhdz∫
Z ρe

−ηh

=
e−ηhdµ∫
Z e
−ηhdµ

.

Combining the two equalities gives dµ+ = e−ηhdµ∫
Z e
−ηhdµ

which exactly means µ+ =

MDη (µ, h).

18

B Proof of Convergence Rates for Infinite-Dimensional
Mirror Descent

B.1 Mirror Descent, Deterministic Derivatives

By the definition of the algorithm, (21), and the three-point identity (20), we have, for any
µ ∈M(W),

〈µt − µ,−g +Gνt〉 =
1

η
〈µt − µ,dΦ(µt)− dΦ(µt+1)〉

=
1

η

(
DΦ(µ, µt)−DΦ(µ, µt+1) +DΦ(µt, µt+1)

)
. (34)

By item 10 of Theorem 4, there exists a constant Ct such that

dΦ(µt+1) = dΦ(µt)− η (−g +Gνt) + Ct. (35)

Using (16), we see that

DΦ(µt, µt+1) = DΦ?(dΦ(µt+1),dΦ(µt))

= DΦ?

(
dΦ(µt+1)− Ct,dΦ(µt)

)
≤ 1

8
‖dΦ(µt+1)− Ct − dΦ(µt)‖2L∞ by (18)

=
η2

8
‖−g +Gνt‖2L∞ by (35)

≤ η2M2

8
.

Consequently, we have

T∑
t=1

〈µt − µ,−g +Gνt〉 =

T∑
t=1

1

η

(
DΦ(µ, µt)−DΦ(µ, µt+1) +DΦ(µt, µt+1)

)
≤ DΦ(µ, µ1)

η
+
ηM2T

8
. (36)

Exactly the same argument applied to νt’s yields, for any ν ∈M(Θ),

T∑
t=1

〈
νt − ν,−G†µt

〉
≤ DΦ(ν, ν1)

η
+
ηM2T

8
. (37)

Summing up (36) and (37), substituting µ← µNE, ν ← νNE and dividing by T , we get

1

T

T∑
t=1

(
〈µt − µNE,−g +Gνt〉+

〈
νt − νNE,−G†µt)

〉)
≤ D0

ηT
+
ηM2

4
. (38)

The left-hand side of (38) can be simplified to

1

T

T∑
t=1

(
〈µt − µNE,−g +Gνt〉+

〈
νt − νNE,−G†µt

〉)
=

1

T

T∑
t=1

(
〈µNE − µt, g〉 − 〈µNE, Gνt〉+ 〈µt, GνNE〉

)
= 〈µNE, g −Gν̄T 〉 − 〈µ̄T , g −GνNE〉 .

(39)

By definition of the Nash Equilibrium, we have

〈µ̄T , g −GνNE〉 ≤ 〈µNE, g −GνNE〉 ≤ 〈µNE, g −Gν̄T 〉 , (40)

〈µ̄T , g −GνNE〉 ≤ 〈µ̄T , g −Gν̄T 〉 ≤ 〈µNE, g −Gν̄T 〉 ,

19

which implies

|〈µ̄T , g −Gν̄T 〉 − 〈µNE, g −GνNE〉| ≤ 〈µNE, g −Gν̄T 〉 − 〈µ̄T , g −GνNE〉 . (41)

Combining (51)-(54), we conclude that

η =
2

M

√
D0

T
⇒ |〈µ̄T , g −Gν̄T 〉 − 〈µNE, g −GνNE〉| ≤M

√
D0

T
.

B.2 Mirror Descent, Stochastic Derivatives

We first write〈
µt − µ, η(−ĝ + Ĝνt)

〉
= 〈µt − µ, η(−g +Gνt)〉+

〈
µt − µ, η

[
− ĝ + Ĝνt + g −Gνt

]〉
.

Taking conditional expectation and using the unbiasedness of stochastic derivatives, we
conclude that

E
〈
µt − µ, η(−ĝ + Ĝνt)

〉
= 〈µt − µ, η(−g +Gνt)〉 .

Therefore, using exactly the same argument leading to (36), we may obtain

E
T∑
t=1

〈
µt − µ,−ĝ + Ĝνt

〉
≤ EDΦ(µ, µ1)

η
+
ηM ′2T

8
.

The rest is the same as with deterministic derivatives.

C Proof of Convergence Rates for Infinite-Dimensional
Mirror-Prox

We first need a technical lemma, which is Lemma 6.2 of [28] tailored to our infinite-
dimensional setting. We give a slightly different proof.

Lemma 5. Given any µ ∈ M(Z) and h, h′ ∈ F(Z), let µ = MDη (µ̃, h) and µ̃+ =
MDη (µ̃, h′). Let Φ be α-strongly convex (recall that α = 4 when Φ is the entropy). Then,
for any µ? ∈M(Z), we have

〈µ− µ?, ηh′〉 ≤ DΦ(µ?, µ̃)−DΦ(µ?, µ̃+) +
η2

2α
‖h− h′‖2L∞ −

α

2
‖µ− µ̃‖2TV . (42)

Proof. Recall from (15) that entropy is α-strongly convex with respect to ‖·‖TV. We first
write

〈µ− µ?, ηh′〉 = 〈µ̃+ − µ?, ηh′〉+ 〈µ− µ̃+, ηh〉+ 〈µ− µ̃+, η(h′ − h)〉 . (43)

For the first term, (20) and (21) implies

〈µ̃+ − µ?, ηh′〉 = 〈µ̃+ − µ?,dΦ(µ̃)− dΦ(µ̃+)〉
= −DΦ(µ̃+, µ̃)−DΦ(µ?, µ̃+) +DΦ(µ?, µ̃). (44)

Similarly, the second term of the right-hand side of (43) can be written as

〈µ− µ̃+, ηh〉 = −DΦ(µ, µ̃)−DΦ(µ̃+, µ) +DΦ(µ̃+, µ̃). (45)

Hölder’s inequality for the third term gives

〈µ− µ̃+, η(h′ − h)〉 ≤ ‖µ− µ̃+‖TV ‖η(h′ − h)‖L∞

≤ α

2
‖µ− µ̃+‖2TV +

1

2α
‖η(h′ − h)‖2L∞ . (46)

Finally, recall that Φ is α-strongly convex, and hence we have

−DΦ(µ̃+, µ) ≤ −α
2
‖µ− µ̃+‖2TV , −DΦ(µ, µ̃) ≤ −α

2
‖µ− µ̃‖2TV . (47)

The lemma follows by combining inequalities (44)-(47) in (43).

20

C.1 Mirror-Prox, Deterministic Derivatives

Let α = 4, µ̄T := 1
T

∑T
t=1 µt, and ν̄T := 1

T

∑T
t=1 νt.

In Lemma 5, substituting µ? ← µNE, µ̃ ← µ̃t, h ← −g + Gν̃t (so that µ = µt) and
h′ ← −g +Gνt (so that µ̃+ = µ̃t+1), we get

〈µt − µNE, η(−g +Gνt)〉 ≤ DΦ(µNE, µ̃t)−DΦ(µNE, µ̃t+1)+
η2

2α
‖G(νt − ν̃t)‖2L∞−

α

2
‖µ̃t − µt‖2TV .

(48)
Similarly, we have〈
νt − νNE,−ηG†µt

〉
≤ DΦ(νNE, ν̃t)−DΦ(νNE, ν̃t+1)+

η2

2α

∥∥G†(µt − µ̃t)∥∥2

L∞−
α

2
‖ν̃t − νt‖2TV .

(49)
Since ‖G(νt − ν̃t)‖L∞ ≤ L · ‖νt − ν̃t‖TV and

∥∥G†(µt − µ̃t)∥∥L∞ ≤ L · ‖µt − µ̃t‖TV, sum-
ming up (48) and (49) yields

〈µt − µNE, η(−g +Gνt)〉+
〈
νt − νNE,−ηG†µt)

〉
≤ DΦ(µNE, µ̃t)−DΦ(µNE, µ̃t+1) +DΦ(νNE, ν̃t)−DΦ(νNE, ν̃t+1)

+

(
η2L2

2α
− α

2

)(
‖µ̃t − µt‖2TV + ‖ν̃t − νt‖2TV

)
≤ DΦ(µNE, µ̃t)−DΦ(µNE, µ̃t+1) +DΦ(νNE, ν̃t)−DΦ(νNE, ν̃t+1)

if η ≤ α
L = 4

L . Summing up the last inequality over t and using DΦ(·, ·) ≥ 0, we obtain

1

T

T∑
t=1

(
〈µt − µNE, η(−g +Gνt)〉+

〈
νt − νNE,−ηG†µt)

〉)
≤ DΦ(µNE, µ̃1) +DΦ(νNE, ν̃1)

T
=
D0

T
.

(50)
The left-hand side of (50) can be simplified to

1

T

T∑
t=1

(
〈µt − µNE, η(−g +Gνt)〉+

〈
νt − νNE,−ηG†µt)

〉
) =

η

T

T∑
t=1

(
〈µNE − µt, g〉 − 〈µNE, Gνt〉+ 〈µt, GνNE〉

)
= η

(
〈µNE, g −Gν̄T 〉 − 〈µ̄T , g −GνNE〉

)
.

(51)

By definition of the (µNE, νNE), we have

〈µ̄T , g −GνNE〉 ≤ 〈µNE, g −GνNE〉 ≤ 〈µNE, g −Gν̄T 〉 , (52)

〈µ̄T , g −GνNE〉 ≤ 〈µ̄T , g −Gν̄T 〉 ≤ 〈µNE, g −Gν̄T 〉 ,

which implies

| 〈µ̄T , g −Gν̄T 〉 − 〈µNE, g −GνNE〉 | ≤ 〈µNE, g −Gν̄T 〉 − 〈µ̄T , g −GνNE〉 . (53)

Combining (50)-(53), we conclude

η ≤ 4

L
⇒ | 〈µ̄T , g −Gν̄T 〉 − 〈µNE, g −GνNE〉 | ≤

D0

Tη
.

C.2 Mirror-Prox, Stochastic Derivatives

Let α = 4, µ̄T := 1
T

∑T
t=1 µt, and ν̄T := 1

T

∑T
t=1 νt. Set the step-size to η = min

[
α√
3L
,
√

αD0

6Tσ2

]
.

In Lemma 5, substituting µ? ← µNE, µ̃ ← µ̃t, h ← −ĝ + Ĝν̃t (so that µ = µt), and
h′ ← −ĝ + Ĝνt (so that µ̃+ = µ̃t+1), we get〈
µt − µNE, η(−ĝ + Ĝνt)

〉
≤ DΦ(µNE, µ̃t)−DΦ(µNE, µ̃t+1)+

η2

2α

∥∥∥Ĝνt − Ĝν̃t∥∥∥2

L∞
−α

2
‖µ̃t − µt‖2TV .

(54)

21

Note that

E
∥∥∥Ĝνt − Ĝν̃t∥∥∥2

L∞
≤ 3

(
E
∥∥∥Ĝνt −Gνt∥∥∥2

L∞
+ E ‖Gνt −Gν̃t‖2L∞ + E

∥∥∥Gν̃t − Ĝν̃t∥∥∥2

L∞

)
≤ 6σ2 + 3L2E ‖νt − ν̃t‖2TV .

Therefore, taking expectation conditioned on the history for both sides of (54), we get

〈µt − µNE, η(−g +Gνt)〉 ≤ EDΦ(µNE, µ̃t)−EDΦ(µNE, µ̃t+1)+
3η2σ2

α
+

3η2L2

2α
E ‖νt − ν̃t‖2TV−

α

2
E ‖µ̃t − µt‖2TV .

Similarly, we have

〈
νt − νNE,−ηG†µt

〉
≤ EDΦ(νNE, ν̃t)−EDΦ(νNE, ν̃t+1)+

3η2σ2

α
+

3η2L2

2α
E ‖µt − µ̃t‖2TV−

α

2
E ‖ν̃t − νt‖2TV .

Summing up the last two inequalities over t with η ≤ α√
3L

then yields

1

T

T∑
t=1

(
〈µt − µNE,−g +Gνt〉+

〈
νt − νNE,−G†µt)

〉)
≤ D0

ηT
+

6ησ2

α
≤ max

[
2

√
6σ2D0

αT
,

2
√

3LD0

αT

]

by definition of η. The rest is the same as with deterministic derivatives.

Algorithm 4: Approx Inf Mirror Decent

Input: W [1],Θ[1]← n′ samples from random initialization,
{γt}T−1

t=1 , {εt}
T−1
t=1 , {K}

T−1
t=1 , n, n

′.
for t = 1, 2, . . . , T − 1 do

C ← ∪ts=1W [s], D ← ∪ts=1Θ[s] ;

w
(1)
t ← UNIF(W [t]), θ

(1)
t ← UNIF(Θ[t]);

for k = 1, 2, . . . ,Kt, . . . ,Kt + n′ do
Generate A = {X1, . . . , Xn} ∼ P

θ
(k)
t

;

θ
(k+1)
t = θ

(k)
t + γt

nn′∇θ
∑
Xi∈A

∑
w∈C fw(Xi) +

√
2γtεtN (0, I);

Generate B = {Xreal
1 , . . . , Xreal

n } ∼ Preal;
B′ ← {} ;
for each θ ∈ D do

Generate B̃ = {X ′1, . . . , X ′n} ∼ Pθ;

B′ ← B′ ∪ B̃;

w
(k+1)
t = w

(k)
t +

γtt

n
∇w

∑
Xreal
i ∈B

f
w

(k)
t

(Xreal
i)− γt

nn′
∇w

∑
X′i∈B′

f
w

(k)
t

(X ′i) +
√

2γtεtN (0, I);

W [t+ 1]←
{
w

(K+1)
t , . . . ,w

(K+n′)
t

}
, Θ[t+ 1]←

{
θ

(K+1)
t , . . . ,θ

(K+n′)
t

}
;

idx← UNIF(1, 2, . . . , T);
return W [idx],Θ[idx].

22

Algorithm 5: Approx Inf Mirror-Prox

Input: W̃ [1], Θ̃[1]← n′ samples from random initialization,
{γt}Tt=1, {εt}Tt=1, {Kt}Tt=1, n, n

′.
for t = 1, 2, . . . , T do

C ← W̃ [t] ∪
(
∪t−1
s=1W [s]

)
, D ← Θ̃[t] ∪

(
∪t−1
s=1Θ[s]

)
;

w
(1)
t ← UNIF(W̃ [t]), θ

(1)
t ← UNIF(Θ̃[t]);

for k = 1, 2, . . . ,Kt, . . . ,Kt + n′ do
Generate A = {X1, . . . , Xn} ∼ P

θ
(k)
t

;

θ
(k+1)
t = θ

(k)
t + γt

nn′∇θ
∑
Xi∈A

∑
w∈C fw(Xi) +

√
2γtεtN (0, I);

Generate B = {Xreal
1 , . . . , Xreal

n } ∼ Preal;
B′ ← {};
for each θ ∈ D do

Generate B̃ = {X ′1, . . . , X ′n} ∼ Pθ;

B′ ← B′ ∪ B̃;

w
(k+1)
t = w

(k)
t +

γtt

n
∇w

∑
Xreal
i ∈B

f
w

(k)
t

(Xreal
i)− γt

nn′
∇w

∑
X′i∈B′

f
w

(k)
t

(X ′i) +
√

2γtεtN (0, I);

W [t]←
{
w

(K+1)
t , . . . ,w

(K+n′)
t

}
, Θ[t]←

{
θ

(K+1)
t , . . . ,θ

(K+n′)
t

}
;

C ′ ← ∪ts=1W [s], D′ ← ∪ts=1Θ[s] ;

w̃
(1)
t+1 ← UNIF(W̃ [t]), θ̃

(1)
t+1 ← UNIF(Θ̃[t]) ;

for k = 1, 2, . . . ,Kt, . . . ,Kt + n′ do
Generate A = {X1, . . . , Xn} ∼ P

θ̃
(k)
t

;

θ̃
(k+1)
t+1 = θ̃

(k)
t+1 + γt

nn′∇θ
∑
Xi∈A

∑
w∈C′ fw(Xi) +

√
2γtεtN (0, I);

Generate B = {Xreal
1 , . . . , Xreal

n } ∼ Preal;
B′ ← {};
for each θ ∈ D′ do

Generate B̃ = {X ′1, . . . , X ′n} ∼ Pθ;

B′ ← B′ ∪ B̃;

w̃
(k+1)
t+1 = w̃

(k)
t+1 +

γtt

n
∇w

∑
Xreal
i ∈B

f
w̃

(k)
t+1

(Xreal
i)− γt

nn′
∇w

∑
X′i∈B′

f
w̃

(k)
t+1

(X ′i) +
√

2γtεtN (0, I);

W̃ [t+ 1]←
{
w̃

(K+1)
t+1 , . . . , w̃

(K+n′)
t+1

}
, Θ̃[t+ 1]←

{
θ̃

(K+1)
t+1 , . . . , θ̃

(K+n′)
t+1

}
;

idx← UNIF(1, 2, . . . , T);
return W [idx],Θ[idx].

23

Algorithm 6: Mirror-Prox-GAN: Approximate Mirror-Prox for GANs

Input: w̃1, θ̃1 ← random initialization,
w0 ← w̃1,θ0 ← θ̃1, {γt}Tt=1, {εt}Tt=1, {Kt}Tt=1, β.

for t = 1, 2, . . . , T do

w̄t, w̄t+1, w̃
(1)
t , w̃

(1)
t+1 ← w̃t, θ̄t, θ̄t+1, θ̃

(1)
t , θ̃

(1)
t+1 ← θ̃t;

for k = 1, 2, . . . ,Kt do
Generate A = {X1, . . . , Xn} ∼ P

θ
(k)
t

;

θ
(k+1)
t = θ

(k)
t + γt

n∇θ
∑
Xi∈A fw̃t(Xi) +

√
2γtεtN (0, I);

Generate B = {Xreal
1 , . . . , Xreal

n } ∼ Preal;
Generate B′ = {X ′1, . . . , X ′n} ∼ Pθ̃t ;

w
(k+1)
t = w

(k)
t +

γt
n
∇w

∑
Xreal
i ∈B

f
w

(k)
t

(Xreal
i)− γt

n
∇w

∑
X′i∈B′

f
w

(k)
t

(X ′i) +
√

2γtεtN (0, I);

w̄t ← (1− β)w̄t + βw
(k+1)
t ;

θ̄t ← (1− β)θ̄t + βθ
(k+1)
t ;

wt ← (1− β)wt−1 + βw̄t;
θt ← (1− β)θt−1 + βθ̄t;

for k = 1, 2, . . . ,Kt do
Generate A = {X1, . . . , Xn} ∼ P

θ̃
(k)
t+1

;

θ̃
(k+1)
t+1 = θ̃

(k)
t+1 + γt

n∇θ
∑
Xi∈A fwt(Xi) +

√
2γtεtN (0, I);

Generate B = {Xreal
1 , . . . , Xreal

n } ∼ Preal;
Generate B′ = {X ′1, . . . , X ′n} ∼ Pθt ;

w
(k+1)
t+1 = w

(k)
t+1 +

γt
n
∇w

∑
Xreal
i ∈B

f
w

(k)
t+1

(Xreal
i)− γt

n
∇w

∑
X′i∈B′

f
w

(k)
t+1

(X ′i) +
√

2γtεtN (0, I);

w̄t+1 ← (1− β)w̄t+1 + βw
(k+1)
t+1 ;

θ̄t+1 ← (1− β)θ̄t+1 + βθ
(k+1)
t+1 ;

w̃t+1 ← (1− β)w̃t + βw̄t+1;

θ̃t+1 ← (1− β)θ̃t + βθ̄t+1;

return wT ,θT .

D Omitted Pseudocodes in the Main Text

We use the following notation for the hyperparameters of our algorithms:

n : number of samples in the data batch.

n′ : number of samples for each probability measure.

γt : SGLD step-size at iteration t.

εt : thermal noise of SGLD at iteration t.

Kt : warmup steps for SGLD at iteration t.

β : exponential damping factor in the weighted average.

24

The approximate infinite-dimensional entropic MD and MP in Section 4.1 are depicted in
Algorithm 4 and 5, respectively. Algorithm 6 gives the heuristic version of the entropic
Mirror-Prox.

E Details and More Results of Experiments

This section contains all the details regarding our experiments, as well as more results on
synthetic and real datasets.

Algorithm SGD RMSProp Adam Etropic MD/MP

Dataset S M L S M L S M L

Step-size γ 10−2 10−4 10−4 10−2 10−4

Gradient penalty λ 0.1 10 0.1 10 0.1 10

Noise ε 10−2 10−3 10−6

Batch Size n 1024 50 64 1024 50 64 1024 50 64

Table 1: Hyperparameter setting. “S”, “M”, “L” stands for synthetic data, MNIST and LSUN

bedroom, respectively. MD for LSUN bedroom uses a RMSProp preconditioner, so the step-
size is the same as one in RMSProp.

Network Architectures: For all experiments, we consider the gradient-penalized dis-
criminator [25] as a soft constraint alternative to the original Wasserstein GANs, as it is
known to achieve much better performance. The gradient penalty parameter is denoted by
λ below.

For synthetic data, we use fully connected networks for both the generator and discrim-
inator. They consist of three layers, each of them containing 512 neurons, with ReLU as
nonlinearity.

For MNIST, we use convolutional neural networks identical to [25] as the generator and
discriminator.5 The generator uses a sigmoid function to map the output to range [0, 1].

For LSUN bedroom, we use DCGAN [42], except that the number of the channels in each
layer is half of the original model, and the last sigmoid function of the discriminator is
removed. The output of the generator is mapped to [0, 1] by hyperbolic tangent and a linear
transformation. The architecture contains batch normalization layer to ensure the stability
of the training. For our Mirror- and Mirror-Prox-GAN, the Gaussian noise from SGLD is
not added to parameters in batch normalization layers, as the batch normalization creates
strong dependence among entries of the weight matrix and was not covered by our theory.

Hyperparameter setting: The hyperparameter setting is summarized in Table 1. For
baselines (SGD, RMSProp, Adam), we use the settings identical to [25]. For our proposed
Mirror- and Mirror-Prox-GAN, we set the damping factor β to be 0.9. For Kt, γt and εt,
we use the simple exponential scheduling:

Kt = b(1 + 10−5)tc.
γt = γ × (1− 10−5)t, γ in Table 1.

εt = ε× (1− 5× 10−5)t, ε in Table 1.

The idea is that the initial iterations are very noisy, and hence it makes sense to take less
SGLD steps. As the iteration counts grow, the algorithms learn more meaningful parameters,
and we should increase the number of SGLD steps as well as decreasing the step-size γt and
thermal noise εt to make the sampling more accurate. This is akin to the warmup steps in
the sampling literature.

5Their code is available on https://github.com/igul222/improved_wgan_training.

25

https://github.com/igul222/improved_wgan_training

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(a) SGD

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(b) Adam

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(c) Mirror-GAN

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(d) Mirror-Prox-GAN

Figure 3: Fitting 8 Gaussian mixtures up to 105 iterations.

E.1 Synthetic Data

Figure 3, 4, and 5 show results on learning 8 Gaussian mixtures, 25 Gaussian mixtures, and
the Swiss Roll. As in the case for 25 Gaussian mixtures, we find that Mirror- and Mirror-
Prox-GAN can better capture the variance of the true distribution, as well as finding the
unbiased modes.

In Figure 6, we plot the data generated after 104, 2 × 104, 5 × 104, 8 × 104, and 105

iterations by different algorithms fro 25 Gaussian mixtures. It is clear that Mirror- and
Mirror-Prox-GAN find the modes of the distribution faster. In practice, it was observed
that the noise introduced by SGLD quickly drives the iterates to non-trivial parameter
regions, whereas SGD tends to get stuck at very bad local minima. Adam, as an adaptive
algorithm, is capable of escaping bad local minima, however at a rate slower than Mirror-
and Mirror-Prox-GAN. The quality of Adam’s final solution is also not as good as Mirror-
and Mirror-Prox-GAN; see the discussions in Section 5.1.

E.2 Real Data

E.2.1 MNSIT

Results on MNIST dataset are shown in Figure 7. The models are trained by each algo-
rithm for 105 iterations. We can see that all algorithms achieve comparable performance.
Therefore, the dataset seems too weak to be a discriminator for different algorithms.

26

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(a) SGD

1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(b) Adam

1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(c) Mirror-GAN

1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(d) Mirror-Prox-GAN

Figure 4: Fitting the ‘Swiss Roll’ up to 105 iterations.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(a) SGD

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(b) Adam

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(c) Mirror-GAN

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(d) Mirror-Prox-GAN

Figure 5: Fitting 25 Gaussian mixtures up to 105 iterations.

27

104 iterations 2× 104 iterations 5× 104 iterations 8× 104 iterations 105 iterations

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(a) SGD

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

4 3 2 1 0 1
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(b) Adam

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(c) Mirror-GAN

1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(d) Mirror-Prox-GAN

Figure 6: Learning 25 Gaussian mixtures accross different iterations.

28

(a) True Data

(b) SGD (c) Adam

(d) Mirror-GAN (e) Mirror-Prox-GAN

Figure 7: True MNIST images and samples generated by different algorithms.

29

E.2.2 LSUN Bedroom

More results on the LSUN bedroom dataset are shown in Figure 8. We show images generated
after 4×104, 8×104, and 105 iterations by each algorithm. We can see that the Mirror-GAN
(with RMSProp-preconditioned SGLD) outperforms vanilla RMSProp. Adam was able to
obtain meaningful images in early stages of training. However, further iterations do not
improve the image quality of Adam. In contrast, they lead to severe mode collapse at the
8× 104th iteration, and converge to noise later on.

4× 104 iterations 8× 104 iterations 105 iterations

(a) RMSProp

(b) Adam

(c) Mirror-GAN, Algorithm 3

Figure 8: Image generated by RMSProp, Adam and Mirror-GAN on the LSUN bedroom

dataset.

30

	Introduction
	Problem Formulation
	Preliminary: Prox Methods for Finite Games
	Mixed Strategy Formulation for Generative Adversarial Networks

	Infinite-Dimensional Prox Methods
	Preparation: The Mirror Descent Iterates
	Infinite-Dimensional Prox Methods and Convergence Rates

	From Theory to Practice
	Implementable Entropic MD: From Probability Measure to Samples
	Summarizing Samples by Averaging: A Simple yet Effective Heuristic

	Experimental Evidence
	Synthetic Data
	Real Data

	Conclusions
	A Framework for Infinite-Dimensional Mirror Descent
	A note on the regularity
	Properties of Entropic Mirror Map

	Proof of Convergence Rates for Infinite-Dimensional Mirror Descent
	Mirror Descent, Deterministic Derivatives
	Mirror Descent, Stochastic Derivatives

	Proof of Convergence Rates for Infinite-Dimensional Mirror-Prox
	Mirror-Prox, Deterministic Derivatives
	Mirror-Prox, Stochastic Derivatives

	Omitted Pseudocodes in the Main Text
	Details and More Results of Experiments
	Synthetic Data
	Real Data
	MNSIT
	LSUN Bedroom

