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Abstract

In this paper, we propose a re-dispatch scheme for radial distribution grids host-

ing stochastic Distributed Energy Resources (DERs) and controllable batteries.

At each re-dispatch round, the proposed scheme computes a new dispatch plan

that modifies and extends the existing one. To do so, it uses the CoDistFlow

algorithm and applies a receding horizon control principle, while accounting for

hard time computation constraints that impact on the instantaneous update of a

dispatch plan. CoDistFlow handles stochastic DERs and prosumers uncertainties

via scenario-based optimization and the non-convexity of the AC Optimal Power

Flow by iteratively solving suitably defined convex problems until convergence.

We perform numerical evaluations based on real-data, obtained from a real Swiss

grid. We show that, with our proposed re-dispatch scheme, the daily dispatch

tracking error can decrease more than 80%, even for small battery capacities, and

if re-dispatch is frequent enough, it can be eliminated. Finally, we show that re-

dispatch should be performed as often as the market allows and the performance

continues to improve.
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distributed energy resources;

1. Introduction & Contributions

Stochastic Distributed Energy Resources (DERs) are increasingly deployed in

modern power distribution grids. However, due to their uncertain and variable

power injections, they can lead to the need of installing and activating large

amounts of costly reserves [1]. Jointly dispatching collections of stochastic DERs,

loads and controllable batteries may compress the amount of required reserves as

it aims at avoiding the scheduling and activation of balancing reserves during real-

time operation [2, 3, 4] and it is advocated, for instance, in Swissgrid’s grid code

to improve operations reliability [5]. When dispatching, the operator computes a

discrete sequence of power values at the Point of Common Coupling (PCC) with

the main grid, called the dispatch plan, which is committed with, for instance,

the day-ahead electricity market. The dispatch plan can be obtained by solving

an Optimal Power Flow (OPF) in which the battery power injections as well as

the electrical state of the grid constitute optimization variables. According to [6],

in order to compute an efficient dispatch plan, the OPF should account for the

uncertainties of DERs and loads, as well as for accurate models of the grid/battery

losses and the associated constraints. In real time, while the realization of the

uncertain prosumption is being revealed, the batteries are being controlled so as

to track the committed dispatch plan ([7, 8]).

However, when tracking a day-ahead dispatch plan during operation, depleted

flexibility of the batteries can occur due to the accumulated forecasting error. In

this context, it is key to perform intra-day re-dispatching by accounting for new

information, i.e., recomputing the dispatch plan for the upcoming time horizons

considering updated forecasts of stochastic generation and demand. This solution

is promising for further compressing the scheduling and activation of costly pri-

mary/secondary frequency control power reserves, thus enabling the integration

of more renewable generation.
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In this paper, we propose a re-dispatch scheme for radial distribution grids

with stochastic DERs and controllable batteries. Re-dispatch is performed us-

ing a receding horizon control (RHC) principle and at regular time intervals, it

computes a new dispatch plan that modifies and extends the existing one. At

each re-dispatch round, we collect updated information, which consists of (i) the

currently observed state-of-energy of the batteries and (ii) updated prosumption

forecast scenarios. We use CoDistFlow ([6]) to solve iteratively a scenario-based

non-convex OPF problem and compute a new dispatch plan for a number of con-

secutive time intervals that follow. In order to re-dispatch in a computationally

efficient way (i) we had to adapt the receding horizon control principle, and (ii)

it was necessary to perform a special design of the optimization problem solved

by the CoDistFlow.

The uncertainty of loads and DERs is handled by applying scenario-based

optimization. Compared to its alternatives, robust optimization and chance-

constrained optimization, scenario-based optimization has the following advan-

tages: (i) it models properly the uncertainty of stochastic resources [9] (e.g., in

a non-parametric way), (ii) it allows for general convex constraints, and (iii) it

expresses any existing time correlations. In this work, the scenarios consist of

forecasted time-series constructed based on historical and present knowledge.

CoDistFlow is chosen as the most suitable method for repeatedly computing

dispatch plans with scenario-based optimization. To the best of our knowledge,

CoDistFlow is the only algorithm in the literature for solving a scenario-based

OPF so that the solution satisfies the exact power flow equations and the ex-

act grid-security constraints for all the scenarios. As it is shown in [6], existing

second-order cone programming OPF relaxation methods that yield exact solu-

tions without scenarios, e.g., [10, 11], might not provide exact solutions in case

of scenario-based optimization. In addition, common OPF solution approaches

that use sequential linearization of the power flow equations with sensitivity co-

efficients might have a slow convergence and might lead to solutions with non-

satisfactory performance [6]. CoDistFlow converges in few iterations, and the
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numerical evaluations show that it provides a solution with very good perfor-

mance [6]. This is due to the linearization of the power flow equations that

CoDistFlow uses, which is a modified form of Simplified DistFlow so that it is

exact around a freely chosen operating point as well as a good approximation

under all operating conditions.

We apply a realistic model of battery losses in the context of energy manage-

ment applications. It represents the internal losses of the grid-connected battery

systems using equivalent lossy lines integrated in the power flow model [6]. As

opposed to efficiency-based methods, it does not require the use of relaxations

or binary variables. By treating charge/discharge losses as grid losses, our model

can be integrated directly into the load flow problem and allows us to adopt an

accurate representation of batteries’ apparent power constraints.

We investigate the importance of re-dispatching by quantifying it through

the design of appropriate metrics based on existing reserve markets and by per-

forming evaluations on real data-sets. Specifically, the numerical evaluations

are performed on a real-life distribution system, in Switzerland, composed of 34

buses, and the scenarios are constructed with real prosumption data. By solv-

ing large-scale optimization problems, we show that by re-dispatching with the

proposed scheme, the dispatch-plan tracking error, as well as the corresponding

cost, can almost cancel out even for small battery sizes. Moreover, we show

how our scheme can be used as a tool to determine the appropriate frequency of

re-dispatching given the battery size and conversely.

The rest of the paper is organized as follows. Section 2 summarizes the related

literature. Section 3 provides the system model. In Section 4 we describe the

proposed re-dispatch approach and in Section 5, we solve the re-dispatch problem.

Section 6 presents the evaluation results and finally, Section 7 concludes the

paper.

2. Related Works on Power Distribution Networks Re-dispatch

Since forecasting errors cannot be avoided, while in some practical cases good

forecasts may be unavailable, re-dispatching is an emerging need to increase the
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safe operational margins of the power grid in the presence of intermittent DERs.

In the literature, there exist several works that perform re-dispatching for intra-

day markets and real-time operation of power grids, a synopsis of which is given

next.

In [12], the authors propose an intra-day multi-period energy and reserve

pre-dispatch model and a real-time single time-step horizon re-dispatch model.

Contrary to our approach, prosumption uncertainty is not considered and since

the re-dispatch is instantaneous, it does not account for updates in the future fore-

casts. In the same spirit, [13] performs a single time-step horizon re-dispatching

but without considering energy storage systems. The prosumption uncertainties

are handled via chance constraints integrated within a second-order cone pro-

gramming OPF. Comparative evaluations show the benefits for system reliability

of accounting for the uncertainty. However, the chance constraints are approxi-

mated based on a known parametric probability distribution of the uncertainties,

contrary to our proposed approach, which by employing scenario-based optimiza-

tion, makes no assumptions on their distribution.

RHC is extensively used in the literature for developing dispatching and re-

dispatching schemes. One of the earliest approaches, [14], proposes an RHC-

based economic dispatch scheme for a power grid without energy storage, while

ignoring grid losses and replacing the uncertain quantities with point forecasts.

[15] develops a distributed RHC scheme for storage control in a power grid,

without also considering the grid losses or uncertainties. [7] obtains a day-ahead

dispatch plan with scenario-based optimization and an RHC-based scheme for

real-time control. It neither models the grid nor accounts for the grid constraints.

In [16], a real-time RHC-based power control scheme is proposed for a grid with

DERs and energy storage using scenario-based optimization for the uncertainty

but without modeling the grid. [17] develops a chance-constrained RHC scheme

for storage control in the presence of DERs by applying linearizations of the

power flow equations with sensitivity coefficients.

Several papers employ RHC-based approaches for controlling microgrids. For
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instance, the schemes proposed in [18] and [19] are based on RHC for operating

a microgrid with the aim of minimizing its operating costs. [18] applies scenario-

based optimization, whereas [19] replaces the uncertain quantities with point

forecasts. In [20], RHC and scenario-based optimization are jointly applied for

the operational control of islanded microgrids using the DC approximation of the

power flow equations and assuming no energy storage losses. [21] develops a two-

layer RHC-based control scheme for a microgrid in two different time-scales. The

power grid and the associated constraints are not modeled, whereas uncertainties

are considered only in the fast time-scale control via chance constraints. Finally,

[22] brings upfront the computational complexity issues of the RHC approaches

for economic dispatch and unit commitment and tries to handle them by decou-

pling the two problems. However, for efficiency purposes, it linearizes the cost

functions and it does not model the power grid.

RHC is a powerful tool for controlling power grids while continuously adapt-

ing to their evolving, a-priori unknown, state. However, it is computationally

demanding, especially in presence of uncertainties, non-convexities and long time-

horizons. Thus, existing approaches that use it make simplifications on the grid

modeling and the uncertainty modeling, as well as limit the horizon lengths. In

this work, we leverage CoDistFlow and we develop a complete RHC-like scheme

for intra-day re-dispatching that considers accurate grid modeling, accounts prop-

erly for the uncertainty using scenario-based optimization and handles efficiently

applicability issues due to computational complexity.

3. System Model, Battery Model & Notation

We consider a balanced and transposed radial distribution grid. The PCC is at

index 0 and is assumed to be the slack bus. In view of these working hypotheses,

distribution lines and, in general, branches are represented by their single-phase

direct-sequence equivalent π models (Figure 1(a)). Note that the same model can

be used to represent other devices connected between nodes (e.g., series voltage
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regulating transformers)1. The node at the top of line ` closer to the PCC, is

denoted as up(`), and the node at the bottom as ` (Figure 1(a)). We assume,

without loss of generality, that there is only a single bus – the bus with index 1

– connected to the PCC. The N × N matrix G is the adjacency matrix of the

oriented graph of the network excluding the PCC, i.e., Gk,` = 1 for two buses

k, ` 6= 0, if k = up(`), otherwise Gk,` = 0.

On each line ` (Figure 1(a)), let (i) Sd` (t) = P d
` (t) + Qd

` (t) be the direct

sequence complex power fed from the bus up(`) at time t and for scenario d,

(ii) z` = r` + x` and b` be the direct sequence longitudinal impedance and

shunt susceptance of the branch `, (iii) fd` (t) be the square magnitude of the

direct sequence current flowing through z` at time t and for scenario d. I` is

the ampacity limit of branch `. On each bus/node i (Figure 1(a)), (i) vdi (t) is

the square magnitude of the direct sequence voltage at time t and for scenario

d, (ii) v, v are lower and upper bounds on vdi (t), i.e., v2 ≤ vdi (t) ≤ v2, (ii)

sdi (t) = pdi (t) + qdi (t) is the complex power injection without the battery power

injections (pdi (t) > 0, qdi (t) > 0 indicate consumption) at time t and for scenario

d.

SDP (t) = PDP (t)+QDP (t) stands for the dispatched complex power at PCC,

at time t. At PCC the voltage is assumed fixed, vd0(t) = 1 pu, ∀t, d.

Battery Model. In order to account for the internal losses of a battery, we

employ the resistance-based model in [6]. The model captures injection and

extraction losses through equivalent circuit models 2. This model is more realistic

than, for instance, the commonly adopted constant efficiency-based one, that fails

in capturing the nonlinear power-dependent losses of all the components of the

1We remind that taking into account shunt elements is particularly suitable for underground

cables used in urban contexts.
2For the power converter (with which the battery is interfaced to the grid), the circuit

model is a Norton or Thevenin one depending on the converter’s operation as grid-following

or grid-forming, respectively. For the battery a series resistance is added to model its losses as

described in the following.
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power chain (i.e., battery, power converter, and step-up transformer) due to their

internal impedance. The adopted equivalent circuit model inherently accounts

for this and is particularly appealing since it can be seamlessly integrated into

the load flow problem with a virtual node and a virtual line. The battery model

is illustrated in Figure 1(b). Specifically, for a battery interfaced to bus i via

power conversion devices: (i) a new virtual bus, `, is added and connects to bus

i via a virtual purely resistive line, ` (z` = r`, x` = 0), where i = up(`), (ii) we

connect a lossless battery with same capacity and rated power to the virtual bus

`, and (iii) we connect a reactive-power resource to bus up(`). Therefore, we

represent a battery (in this case supposed to be interfaced with a grid following

converter that has negligible losses) by two controllable resources, namely, the

lossless battery at virtual bus ` and the reactive-power resource at bus up(`).

Moreover, the internal losses of the battery are equal to the power losses on

the purely resistive line and the state-of-energy (SoE) of the battery is equal to

the one of the lossless battery. In the Appendix, we explain how the resistance

of the newly added virtual line can be assessed experimentally and we provide

an experimental validation of the resistance-based battery model. Note that we

impose neither ampacity constraints to the virtual line, nor voltage constraints at

the virtual node, because both are only part of the battery model. For a battery

at virtual bus `, we define

• SoEd
` (t) the state-of-energy at time t and for scenario d,

• SoEB,` the energy capacity, i.e., 0 ≤ SoEd
B,`(t) ≤ SoEB,`,

• pdB,`(t) the charging (pdB,`(t) ≥ 0) or discharging (pdB,`(t) ≤ 0) power at time t

and scenario d, without including the battery losses,

• qdB,up(`)(t) the reactive power of the reactive power source,

• sRB,up(`) the battery’s converter rated power.

If there exist NB batteries in the grid, the total number of buses increases

to N + NB and the admittance matrix is updated accordingly. Finally, after

representing all batteries with their models, the battery capacity is non-zero only

at the virtual nodes i.e., those within the set {N + 1, ..., N +NB}.
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Collective Notation. We define P d(t) = [P d
1 (t), P d

2 (t), ..., P d
N(t)]T the active

power flow values for all lines. Similarly, we define the vectors: Qd(t) for the reac-

tive power flows, vd(t) for buses’ voltage square magnitude and pd(t), qd(t), pdB(t),

qdB(t), for the bus active and reactive prosumption injections and battery active

and reactive power values, respectively. In Section 5.1, for the needs of CoDist-

Flow, we use the correction terms p̂d` (t), q̂
d
` (t), v̂

d
` (t) and the approximation terms

ṽd` (t) (for line `, scenario d and time t). Furthermore, P̂ d(t) = [p̂d1(t), ..., p̂dN(t)]T ,

Q̂d(t) = [q̂d1(t), ..., q̂dN(t)]T , V̂ d(t) = [v̂d1(t), ..., v̂dN(t)]T , and Ṽ (t, d) = [ṽd1(t), ..., ṽdN(t)]T .

We introduce more compact notations for the electrical state of the grid E(t, d),

the corrections C(t, d), the load injections s(t, d) and the battery power val-

ues sB(t, d), as E(t, d) = [P d(t); Qd(t); vd(t)], C(t, d) = [P̂ d(t); Q̂d(t); V̂ d(t)],

s(t, d) = [pd(t); qd(t)], sB(t, d) = [pdB(t); qdB(t)]. To conclude: S denotes complex

power flows for all lines, scenarios and times, v denotes voltage square magnitude

for all buses, scenarios and times, SDP stands for the dispatched complex power

for all times, and f for the current square magnitude through the longitudinal

impedances for all lines, scenarios and times.

4. The Re-dispatch Approach

A dispatch plan is a sequence of T ∈ N complex power values at the PCC,

corresponding to T consecutive time intervals of duration ∆t each, i.e, a dispatch

plan computed at time τ is {SDP (τ), SDP (τ+1), · · · , SDP (τ+T−1)}. T is called

horizon of the dispatch plan. The dispatch plan is computed ahead of time, i.e.,

before the realization is revealed, by solving a non-convex OPF; the details of

this computation are given in Section 5.

Our proposed re-dispatch approach is as follows. Every R time intervals, we

compute a new dispatch plan, which modifies and extends the existing dispatch

plan. It is based on the most recent SoE of the batteries and the most recent

prosumption forecasts. This computation cannot be done instantly and new

values of the dispatch plan require a delay before being committed. Therefore,

we use a time margin Tfixed, which upper bounds the time required to compute the

new dispatch plan; then, for the next Tfixed time intervals, we impose that the new
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dispatch plan uses the values inherited from the previous dispatch plan. Thus,

although the computation of the new dispatch plan has not been yet completed,

the values for the next Tfixed time intervals are already known and can be fed to the

real-time algorithm that controls the grid operation. Specifically, given an earlier

dispatch plan, {SDP (τ), SDP (τ+1), · · · , SDP (τ+T−1)}, a re-dispatch performed

at time τ +R is the computation of a new dispatch plan {S ′DP (τ +R), S
′DP (τ +

R + 1), · · · , S ′DP (τ + R + T − 1)}, subject to the constraints S
′DP (τ + R) =

SDP (τ +R), S
′DP (τ +R+ 1) = SDP (τ +R+ 1),· · · , S ′DP (τ +R+ Tfixed − 1) =

SDP (τ +R + Tfixed − 1). We assume that Tfixed +R ≤ T and Tfixed ≤ R.

Figures 2 and 3 illustrate the non-trivial interplay of successive re-dispatches.

Observe that, since re-dispatch is performed after R intervals, the last T − R −

Tfixed dispatch plan values are tentative. Even though such values will not be

implemented, it is beneficial to compute them, i.e., to have T > R + Tfixed. This

is because the presence of storage in the grid introduces dependencies across time

intervals, which require a sufficient lookahead when computing a dispatch plan.

Our approach differs from the common application of the receding horizon

control principle, which implicitly assumes that computation time is negligible

and that newly computed setpoints are immediately available. Such an approach

is not directly applicable here due to the complexity of solving the AC OPF.

An alternative approach would be to compute the new dispatch plan ahead of

time in order to allow sufficient time for computation. Specifically, a re-dispatch

performed at time τ + R would be the computation of a new dispatch plan,

{S ′DP (τ +R+Tfixed), S
′DP (τ +R+Tfixed + 1), · · · , S ′DP (τ +R+Tfixed +T − 1)},

which will be deployed at time τ +R+ Tfixed. This would be much less accurate

because the SoE of the battery at time τ +R + Tfixed is not yet observable.

5. Solving the Re-dispatch with CoDistFlow

In this section, we focus on the efficient computation of the dispatch plan

at each re-dispatch round. To do so, we formulate and solve a scenario-based

non-convex AC OPF for a radial distribution network with stochastic renew-

able energy sources and battery storage. As mentioned in the introduction, (i)
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scenario-based optimization handles the prosumption uncertainty, and (ii) we

solve the non-convex AC OPF using the CoDistFlow algorithm [6] that provides

a solution satisfying the nonlinear power flow equations and the security con-

straints. The scenarios are constructed based on probabilistic forecasts [9] (see

Section 6.2 for details), which are obtained using historical data and present

knowledge at the time the OPF is solved. First, we formulate the AC OPF that

is solved at τ . We consider the following constraints. Note that t is the time

index and t ∈ {τ, τ + 1 · · · , τ + T − 1}.
Power Flow Equations ∀d, ∀`, ∀t.

P d
` (t) =

∑

k:G`k=1

P d
k (t) + pd` (t) + pdB,`(t) + r`f

d
` (t), (1)

Qd
` (t) =

∑

k:G`k=1

Qd
k(t) + qd` (t) + qdB,`(t)− (vdup(`)(t) + vd` (t))b`/2 + x`f

d
` (t), (2)

fd` (t) =

∥∥∥∥∥S
d
` (t) + j

vdup(`)(t)b`

2

∥∥∥∥∥

2

/vdup(`)(t). (3)

Voltage Constraints, ∀d, ∀`, ∀t.

vd` (t) = vdup(`)(t)− 2<
{
z∗`

(
Sd
` (t) + jvdup(`)(t)

b`
2

)}
+ ‖z`‖2fd` (t), (4)

vdup(1)(t) = 1, v2 ≤ vd` (t) ≤ v2. (5)

Ampacity Constraints, ∀d, ∀`, ∀t.
(
P d
` (t)

)2
+
(
Qd

` (t)
)2

vdup(`)(t)
≤ I2

` , (6)

(
P d
` (t)− r`fd` (t)

)2
+

(
Qd

` (t)− x`fd` (t) +
(vd

up(`)(t)+vd
` (t))b`

2

)2

vd` (t)
≤ I2

` . (7)

Battery Constraints, ∀d, ∀`, ∀t.

SoEd
B,`(t+ 1) = (1− αD)SoEd

B,`(t) + pdB,`(t)∆t, (8)

aBSoEB,` ≤ SoEd
B,`(t) ≤ (1− aB)SoEB,`, (9)

(
P d
` (t)

)2

+ (qdB,up(`)(t))
2 ≤ (sRB,up(`))

2, (10)

SoEd
B,`(0) = SoEI

B,`, (11)

where (i) 0 ≤ aB ≤ 1 is a constant parameter used to define a margin on the SoE

lower and upper bounds, (ii) SoEI
B is a vector with dimension N + NB and its
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element, SoEI
B,`, is the observed SoE of the battery at bus ` at time τ , and (iii)

αD is the coefficient of self-discharge during an interval with duration ∆t. αD is

computed so that the battery self-discharges by 1% during a day, i.e., αD = 0.01∆t
24

[23]. Eq. (10) expresses the battery apparent power constraint. It considers the

battery active power including the battery losses, since P d
` (t) = pdB,`(t)+fd` (t) ·r`.

Eq. (10) is more accurate than the corresponding constraint in [6] that does not

consider the battery losses. Note that we do not consider terminal constraints

on the SoE. This is not required for our re-dispatch scheme, where the dispatch

plan horizon T is fixed and higher than the duration of the re-dispatch round R.

Obviously, the terminal SoE at one re-dispatch round becomes an intermediate

one for the next re-dispatch round.

Fixed Dispatch Plan Constraints:. We denote with SDPfixed a vector of length Tfixed

with elements the dispatch plan values inherited from the dispatch plan of the

previous re-dispatch round (Section 4). Then, we introduce the following con-

straints

SDP (τ) = SDP
fixed(1), SDP (τ + 1) = SDP

fixed(2), . . . SDP (τ + Tfixed − 1) = SDP
fixed(Tfixed), (12)

which will be included in the OPF in order to assign the inherited dispatch plan

values to the Tfixed first entries of the new dispatch plan.

The set of constraints (1) - (12) is non-convex due to the Eqs. (3) and (6)-(7).

In addition, we define the following objective function:

w1

∑

d,t,`

λd max
(

EB,` − SoEd
B,`(t), 0,SoEd

B,`(t)− EB,`

)
+ w2

∑

d,t

λd|Qd
1(t)|+ w3

∑

d,t

λd|P d
1 (t)|

+ w4

∑

d,t

λdP
d
1 (t) + w5

∑

d,t

λd
(
|P d

1 (t)− PDP (t)|+ |Qd
1(t)−QDP (t)|

)
, (13)

which is quite generic including diverse sub-objectives weighted by the non-
negative constants wi, i = 1, ..., 5. The first sub-objective encourages the battery

SoE to lie withing the preferred range [EB,`,EB,`], where aBSoEB,` ≤ EB,` ≤

EB,` ≤ (1 − aB)SoEB,`. Due to the constraint (9), a feasible battery SoE will

lie in [aBSoEB,`, (1 − aB)SoEB,`], but possibly outside [EB,`,EB,`]. If the SoE is

outside [EB,`,EB,`] the objective function increases by the corresponding penalty

given by the first term. The second sub-objective minimizes the reactive power

at the PCC (|Qd
1(t)|) that serves the purpose of maximizing the power factor at
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the PCC. The combination of the third and the fourth sub-objectives minimizes

the cost of the power exchanged with the main grid. Indeed, w4 − w3 can be

interpreted as the price received when exporting power to the upstream power

grid and w3 +w4 as the price paid when importing power to the local distribution

grid from the upstream grid. The fifth sub-objective minimizes the deviation

of the realized slack-bus power for each scenario from the dispatch plan value.

A high enough positive value should be assigned to w5 in order to derive an

optimal dispatch plan that, with high probability, will be followed in the real

time operation with a small regulation error (e.g., if participating at the market

with our feeder as the dispatchable resource).

Note that the Distribution System Operator (DSO) will adjust the weights

of the sub-objectives based on each one’s importance in the specific application

of interest. For instance, in our evaluations, where the purpose is to compute

dispatch plans, we set w5 to be much higher value than the remaining weights.

Weights can be also zero, in which case the corresponding sub-objectives cancel

out. Finally, the objective function is a weighted average over all scenarios, where

the weight λd is the probability of occurrence of scenario d, with
∑

d λd = 1.

The non-convex AC OPF is formulated as follows:

min
S,pB ,qB ,v,SDP ,f

(13), s.t. (1)− (12) ∀t, d, `. (14)

At each re-dispatch round, we compute an updated SDP by solving the non-

convex problem (14) in an efficient way, using CoDistFlow. When solving (14)

we should account for the most recently observed batteries’ SoE and the most re-

cently computed prosumption scenarios so that the derived dispatch plan adapts

to the current information better than the previously computed one. Next, for

completeness purposes, we briefly describe CoDistFlow.

5.1. CoDistFlow

CoDistFlow [6] consists of two modules, namely: Improved DistFlow (iDF)

and Load Flow (LF). These two modules are applied sequentially and iteratively

until convergence.
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Improved DistFlow (iDF) and Load Flow (LF) Modules. The iDF module is given

as [SDP , S ′, v′, pB, qB] = iDF(s, C, Ṽ , SoEI
B, S

DP
fixed). We use S ′, v′ to differentiate

the output of iDF from the output of LF. iDF solves a problem similar to (14),

but, with the following difference. It introduces the constant correction terms

p̂d` (t), q̂
d
` (t), v̂

d
` (t) that replace the variables r`f

d
` (t), x`f

d
` (t) and ‖z`‖2fd` (t), re-

spectively, in Eqs. (1)-(2), (4) and (7). In addition, iDF introduces the constant

approximation terms, ṽd` (t), which replace the voltage square magnitude vari-

ables, vd` (t), in Eqs. (6)-(7). With given constant values of the correction and

approximation terms, C, Ṽ , and with the above replacements, the problem (14)

becomes convex and can be efficiently solved.

The values of the correction and approximation terms are computed/updated

by the LF module, by solving a full AC load flow (Eqs. (1)-(4)) for a specific

time and scenario. The LF module is given as [S(t, d), v(t, d), C(t, d), Ṽ (t, d)] =

LF(pB(t, d), qB(t, d), s(t, d)). The batteries are also considered as PQ buses with

injections computed by iDF at the previous iteration.

CoDistFlow Algorithm. CoDistFlow is given in Algorithm 1. The superscript

(k) denotes the iteration k of CoDistFlow and the index j in lines 7 − 10 the

jth element of the corresponding vectors. It takes as inputs: (i) the prosumption

forecast scenarios that are updated at the time of re-dispatch, τ , (ii) the batteries

SoE as observed at time τ , (iii) the inherited dispatch plan values. It outputs

the optimal dispatch plan and the battery trajectories. According to [6], at

convergence the obtained solution satisfies the exact (AC) power flow equations

and the exact operational constraints (i.e., Eqs. (1)-(11)) within the tolerance

bounds imposed by the convergence criterion.

6. Evaluation Results

We perform numerical evaluations and comparisons of the proposed re-dispatch

scheme. We set ∆t = 0.25 h, following the paradigm of the time-scales used in

the energy markets, e.g., [24]. In addition, we set T = 96, and R variable in

the range 8 − 24 to assess the impact of the duration of a re-dispatch round on

the performance. We compare the proposed re-dispatch scheme, with a scheme
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Algorithm 1: CoDistFlow (SDP , pB, qB) =

CoDistF low(s, SoEI
B, S

DP
fixed)

1 k = 0; convergence = false;

2 C(0) = 0; Ṽ (0) = 1;

3 while convergence = false do

4 [SDP,(k), S
′(k), v

′(k), p
(k)
B , q

(k)
B ] = iDF(s, C(k), Ṽ (k),SoEI

B , S
DP
fixed);

5 for each time t and scenario d do

6 [S(k)(t, d), v(k)(t, d), C(k+1)(t, d), Ṽ (k+1)(t, d)] =

LF(p
(k)
B (t, d), q

(k)
B (t, d), s(t, d));

7 if k ≥ 1 and

8 supj,d,t

∣∣∣C(k+1)
j (t, d)− C(k)

j (t, d)
∣∣∣ ≤ εc and

9 supj,d,t

∣∣∣Ṽ (k+1)
j (t, d)− Ṽ (k)

j (t, d)
∣∣∣ ≤ εv and

10 supj,d,t

∣∣∣p(k)
B,j(t, d)− p(k−1)

B,j (t, d)
∣∣∣ ≤ εB and

11 supj,d,t

∣∣∣q(k)
B,j(t, d)− q(k−1)

B,j (t, d)
∣∣∣ ≤ εB

12 then

13 convergence = true;

14 k ← k + 1;

15 return SDP ← SDP,(k−1), pB ← p
(k−1)
B , qB ← q

(k−1)
B ;
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where the dispatch plan is computed just before the day it is applied (i.e., it is

not further updated intra-day). We call this scheme “No Re-dispatch”.

The simulations are performed for a real Swiss distribution grid, the topology

of which is shown in Figure 4. It consists of 34 buses, including the PCC. There

is one battery system connected to bus 1, with maximum apparent power 6 MVA

and capacity 3 MWh (three-phase), and another battery system connected to bus

23 with the same characteristics. The buses 34 and 35 are virtual buses for the

battery models. The base power is 25 MVA and the base voltage is 21 kV. We

set v = 0.9 pu, v = 1.1 pu, and the initial SoE of all batteries equal to 1 MWh,

for all scenarios.

We apply D = 80 scenarios (except when differently mentioned), which have

been constructed based on historical data, as described in Section 6.2. Each

scenario consists of power prosumption values at all buses, every ∆t, for a 10-

day period. By choosing this D, we accounted for as much detailed information

of the uncertainty as possible while maintaining a manageable computational

complexity. Note that we tackle large-scale problems (with N = 36, T = 96,

D = 80 and several decision variables per node, time and scenario), with much

larger dimensions than in the literature e.g., [20], [16], [18]. We use Matlab with

the Yalmip toolbox and the Gurobi solver.

In addition, we assign w1 = w2 = w3 = w4 = w6 = 1, w5 = 10 and aB = 0.1.

w5 is chosen much larger than the other weight values since our main objective

is dispatchability. Also, EB,` = 0.15 · SoEB,` and EB,` = 0.85 · SoEB,`, ` ∈

{34, 35}. We set Tfixed = 1 (except when differently mentioned) since for the

grid considered in our evaluations, CoDistFlow takes a few minutes to run at

each re-dispatch round. A real-time control algorithm takes battery charge and

discharge power decisions every ∆t, aiming to minimize the error in following the

dispatch plan. Also, it does not discharge/charge a battery more than 10%/90%

of its capacity.

6.1. Evaluation Metrics

Our primal goal is to provide dispatchability. In the following, we introduce
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our evaluation metrics that quantify how well we achieve this goal. The fifth

term in the objective function (13) serves as a proxy of these metrics in the

optimization problem solved by CoDistFlow.

Let P1(t) be the realized power at the PCC at time interval t, when the true

prosumption is revealed and the battery power decisions are applied (after being

computed by the real-time control algorithm). The dispatch plan power error at

t, denoted as DPE, is defined as

DPE(t) = P1(t)− PDP (t). (15)

When DPE(t) = 0, we say that the dispatch plan can be followed at t.

Several energy markets such as the Fingrid’s one [24] measure power imbal-

ances every ∆t = 0.25 h, and impose (i) balancing costs on the hourly energy

mismatch, and (ii) frequency containment reserve costs for the power imbalance

every ∆t. Below, we compute the cost of not following the dispatch plan based

on this paradigm. First, we define the per hour energy mismatch at the PCC

with respect to the dispatch plan. Let us denote as th ∈ {0, 1, 2, ...} the index of

hours, and assuming that 1/∆t is an integer, we define

DEE(th) =

th/∆t+1/∆t∑

t=th/∆t

DPE(t)∆t. (16)

When DEE(th) > 0, the required energy at hour th exceeds the planned

one and we need to pay up-regulation costs [24], at price χ+. Similarly, when

DEE(th) < 0, we pay down-regulation costs, at price χ−. Second, in both cases,

we additionally consider the price-to-pay for the frequency containment reserves,

denoted as χC . Thus, the cost at th is:

DPCost(th) =
∣∣max{χ+ ·DEE(th), χ− ·DEE(th)}

∣∣+ ∆t · χC

th/∆t+1/∆t∑

t=th/∆t

|DPE(t)| . (17)
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We use Fingrid’s market data [24] and, specifically, we apply the average

values of the last three months of 2018 equal to χ+ = 56.22 e /MWh, χ− = 45.97

e /MWh, χC = 18.10 e /MWh (this choice is dictated by the impossibility to

collect Swiss market data).

Assume T hours of grid control in total. Our evaluations are performed for

a 10-day period, thus, T = 240. We define the average per day energy mismatch

at the PCC, CDEE, and the corresponding cost per day, CDPCost, as

CDEE =
24

T

T−1∑

th=0

|DEE(th)| , CDPCost =
24

T

T−1∑

th=0

DPCost(th). (18)

6.2. Day-ahead and Intra-day Forecasts

This section describes the computation of forecasts and forecast scenarios.

Although not a contribution in this paper, their availability is essential for evalu-

ating the performance of the re-dispatch approach. The forecasting engine relies

on ARMA models. Their order is chosen by evaluating the partial autocorre-

lation for the auto-regressive term and autocorrelation for the moving average,

following conventional practices for their identification. They are 36 (with non-

zero coefficients at lags 1, 24, 25 and 36) and 4. The order of ARMA models at

the various buses is the same, but their parameters are estimated for each bus in-

dividually. ARMA models are used to generate point predictions for the horizon

T . Forecasts are updated every 2 hours. The variance of the point predictions

is used to build parametric probabilistic forecasts in the form of probability den-

sity functions (PDFs); the value of the variance (normalized with respect to the

nominal power of each bus) over all buses and all intervals of the horizon lies in

the range 0.03%-3.2% per unit.

Forecast scenarios are generated with the method described in [9], briefly

summarized hereafter for clarity. It relies on the intuition that, if predicted

PDFs are reliable, calculating the values of the PDF for the realizations lead to

uniformly distributed series that can be transformed in Gaussian multivariate

random variables (i.e., by applying the profit function) and can be tracked by

identifying the associated covariance matrix. The covariance matrix is then used
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to generate multivariate Gaussian distributed scenarios with off-the-shelf libraries

(e.g., mvnrnd in Matlab). The random sequences are transformed in the final

forecast scenarios by, first, applying the inverse probit function and, finally, the

inverse predicted PDFs. Temperature is not considered as a regressor as, in this

case, there are no electric-thermal loads.

6.3. Evaluation of the Proposed Re-dispatch Scheme on Real Data Sets

In this section, we evaluated our re-dispatch scheme for different values of the

parameter R. The results are shown in Figure 5 and in Table 1.

Table 1 compares the CDEE and CDPCost values, as well as the characteris-

tics of the DEE values among all cases. Re-dispatching via our proposed scheme

reduces significantly the error in following the dispatch plan in real-time. Specif-

ically, if R = 24, CDEE reduces more than 4.5 times. When R = 16, CDEE

reduces more than 32 times and with R = 8, it reduces drastically and almost can-

cels out. Moreover, the 98% percentile of DEE is drastically reduced; if R = 16

or lower, it becomes very close to zero. CDPCost shows the same trends with

CDEE. Notice that lack of re-dispatching can lead to significant costs along time

and across multiple feeders (here, we account for a single feeder). For instance,

in this case, for a single feeder, the expected yearly cost is 24, 696 e compared

to 799.2 e that it would have been if we were re-dispatching every 4 hours. If

considering that a small city, such as Lausanne with 150, 000 inhabitants, has

50 − 60 feeders, this cost can reach 1, 234, 800 − 1, 481, 760 e , which is much

more than a cost of 39, 960− 47, 952 e if we were re-dispatching with R = 16.

Table 1: Comparisons of CDEE , DEE [kWh], CDPCost [e ].

Scheme CDEE 98% perc. DEE CDPCost

No Re-dispatch 978.8 400.91 68.6

R = 24 209.53 249.51 15.57

R = 16 29.95 0.0325 2.22

R = 8 0.15 0.0242 0.0095

Figure 5(a) shows the DPE values for all real-time intervals, for schemes with-

out and with re-dispatch. Re-dispatch reduces the number of real-time intervals
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when dispatch-plan tracking fails. In Figure 5(b), we compare the cdf of DPE for

all schemes. The maximum value of DPE decreases significantly with re-dispatch:

for No Re-dispatch it is equal to 736.39 kW and for Re-dispatch it is 453.64 kW

with R = 24, 405.24 kW with R = 16 and 0.365 kW with R = 8. Thus, when

re-dispatching the required power capacity reserves are smaller.

Finding 1 : If we do not re-dispatch, the daily dispatch plan tracking error

(CDPE) and associated cost (CDPCost) may become considerably large, espe-

cially at a city level that consists of numerous dispatchable feeders. On the

contrary, re-dispatch can accurately track the dispatch plan; if re-dispatching ev-

ery 6 hours, the daily dispatch plan tracking error and associated cost decrease

by around 80%, if re-dispatching every 4 hours they can reduce more than 30×

and if re-dispatching every 2 hours they vanish.

Finding 2 : We should re-dispatch as often as the market allows and the

CDPCost continues to reduce. For example, in the examined grid, it is not worth

re-dispatching more frequently than every two hours, since at this frequency

CDPCost is already almost zero.

In Figs. 5(c)-5(f), for better illustration purposes, we focus on times between

tr = 800 and tr = 960. Figs. 5(c), 5(d) compare the dispatch plan and the

realized power, P1, at the PCC without and with re-dispatch. By comparing

Figure 5(a) with Figs. 5(c), 5(d), we observe that the error is just one order of

magnitude smaller than the PCC power. Therefore it is important to reduce it.

Finally, failures in following the dispatch plan are due to depleting the flexibility

of the batteries. Figs. 5(e), 5(f) present the SoE of the batteries at the virtual

nodes 34 and 35. When the batteries are both full and the generation is greater

than the consumption, or when they are both empty and the consumption is

greater than the generation, there is a failure in following the dispatch plan.

Let us focus on the spike before the time interval 950 in Figure 5(d). This

spike is due to three reasons, (i) an increased demand, (ii) for both batteries, the

SoE is at the lowest possible level just before the spike (Figure 5(e), 5(f)), and

(iii) the battery at the virtual bus 34 starts charging (Figure 5(e)). Therefore,
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since the batteries cannot discharge, the demand should be satisfied by importing

power from the main grid. In addition, the imported power further increases in

order to charge the battery so as to better accommodate the future grid operation.

Finding 3 : Re-dispatch allows for accurately tracking the dispatch plan in

real-time, even if it has spikes, i.e., just before the time interval 950 in Figure

5(d). On the contrary, in Figure 5(c) where we do not re-dispatch, the dispatch

plan tracking fails for the corresponding time interval although there is no spike.

Next, we vary the number of scenarios, D, and study its impact on the time

complexity and performance of the proposed re-dispatch scheme. Time complex-

ity refers to the time that CoDistFlow requires to compute an updated SDP at

a re-dispatch round and does not depend on R. We observe that the time com-

plexity increases with the number of scenarios. In the cases examined, it is less

than 10 min; hence we choose Tfixed = 1 that corresponds to 15 min. As a re-

sult, re-dispatching every 2 hours for canceling out errors and costs (Table 1) is

totally possible as far as time complexity is considered for the examined grid. In

general, the error values, CDEE, are smaller for larger D. However, introducing

re-dispatch leads to a much larger improvement in CDEE than increasing the

number of scenarios of the No Re-dispatch scheme.

Table 2: Comparisons w.r.t. the number of scenarios.

D CDEE [kWh] R = 24 CDEE [kWh] No Re-dispatch Time complexity (min)

5 300.44 1032 0.35

15 236.4 996.92 1.3

30 234.37 992.01 4

50 223.78 987.41 6

80 209.53 978.8 9

Finally, we vary the value of Tfixed. A higher value of Tfixed allows for solv-

ing an optimization problem with higher computational complexity at each re-

dispatch round. The computational complexity increases by a significant increase

in the number of scenarios. In Figure 6, we observe the following:

• If we re-dispatch every 2 hours (i.e., R = 8), CDPE is almost stable when

varying Tfixed from 1 to 6. In other words, if e.g., the computational complexity
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of updating the dispatch plan is 1.5 hours, re-dispatching every two hours with

the proposed re-dispatch scheme shows almost the same performance as if there

is a very small computational complexity.

• If we re-dispatch every 4 or 6 hours, CDPE increases almost linearly with Tfixed.

If the dispatch plan is fixed for the first 2.5 hours (i.e., Tfixed = 10), then the

CDPE attains a value double than for Tfixed = 1.

• In general, the impact of Tfixed on the performance can be characterized as

small. Observe that the CDPE for Tfixed = 6 and R = 8 is still much lower than

the CDPE for Tfixed = 1 and R = 16 or 24. Similarly, the CDPE for Tfixed = 10

and R = 16 is much lower than the one for Tfixed = 1 and R = 24.

• Re-dispatching more often, if the market allows, is beneficial for all com-

putational complexity values (as long as they are appropriately bounded, i.e.,

Tfixed < R according to the assumptions in Section 4).

Finding 4 : If re-dispatch is frequent (i.e., R = 8), the performance of our

re-dispatch scheme is not affected by the computational complexity of updating

the dispatch plan. If re-dispatch is not very frequent (i.e., R = 12 or 24), the per-

formance of our re-dispatch scheme deteriorates linearly with the computational

complexity of updating the dispatch plan.

6.4. Study of the Proposed Re-dispatch Scheme with Varying Battery Size

In this part, we evaluate the effect of battery size on our scheme. The battery

positions remain the same. Figure 7 shows the results. The horizontal axis

represents the sum of the two battery sizes. The CDPCost values decrease as

the battery size increases, since a larger battery provides more flexibility to both

the re-dispatch and the real-time control algorithms. The improvement that Re-

dispatch brings compared to No Re-dispatch is even more larger for larger battery

capacities. For example, for small battery capacities, re-dispatch with R = 24

reduces the CDPCost (compared to No re-dispatch) by 30%− 64%, whereas, for

larger battery sizes, the reduction reaches up to 80% or more. In addition, we

can make the following important observations.

First, with re-dispatch, CDPCost (and CDEE correspondingly) cancels out
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for practical battery sizes, e.g., 3 MWh if R = 8, 6 MWh if R = 12 and 12 MWh

if R = 24. On the contrary, when there is no re-dispatch, CDPCost decreases with

an extremely small rate with respect to the battery size and thus, its elimination

requires unrealistically large battery sizes. Note that the value of CDPCost with-

out re-dispatch for a battery size 30 MWh is the same as the value of CDPCost

with re-dispatch for a battery size 3 MWh.

Therefore, re-dispatch, if allowed by the market, should be preferred compared

to increasing the battery size. For example, for a battery size of 3 MWh, if we

introduce re-dispatch every 6 hours, CDPCost decreases by around 60%. Without

re-dispatch a decrease of 60% in CDPCost can be achieved only by increasing the

battery size to 9 MWh, i.e., by 3 times. If considering the battery investment

cost, which according to [25], is 280 e /kWh, the cost for the additional 6 MWh

is 1, 680, 000 e .

Second, we define as total cost the sum of the CDPCost plus the per day

battery investment cost. If considering that the typical battery lifetime is 20

years, the per day battery investment cost is equal to 0.038 e /kWh based on [25].

Figure 8 shows the concave form of the total cost versus the battery size. For small

battery sizes the CDPCost prevails the total cost value, whereas for large battery

capacities, battery investment is the prevailing source of cost. Generally, for all

schemes, the minimum total cost is achieved for small battery sizes. However,

re-dispatch achieves a significant reduction in the minimum total cost compared

to No re-dispatch that can exceed 3×.

Finding 5 : Canceling dispatch plan errors is not possible without re-dispatch.

Specifically, realistic battery sizes cannot remove the dispatch plan error except

if we re-dispatch. With re-dispatch, CDPCost is eliminated for battery sizes that

can be applied in practice. Re-dispatching is less costly and much more efficient

than increasing the battery size.

Finding 6 : Re-dispatch can achieve a 3× smaller minimum total cost (i.e.,

the sum of the CDPCost plus the per day battery investment cost) compared to

No re-dispatch.
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Finding 7 : Our re-dispatch scheme can serve as a tool for the DSO to

determine the optimal frequency of re-dispatch for given battery sizes or the

opposite.

7. Conclusions

We have proposed and evaluated a re-dispatch scheme for distribution grids

with DERs and batteries. It applies a receding horizon, while accounting for

computational complexity issues. The update of the dispatch plan is achieved via

CoDistFlow, which efficiently accounts for the grid and battery losses and the grid

constraints. The evaluations are performed on a real Swiss power distribution

grid by using real data. Our re-dispatch scheme can reduce more than 3× the

total cost of operations consisting of the daily dispatch-plan tracking cost and

the battery investment cost and it can eliminate the dispatch plan tracking error

for practical battery sizes. Moreover, we show that increasing the frequency of

re-dispatching should be preferred over increasing the battery size in order to

reduce the dispatch plan tracking errors, as it is less costly. To add to this, if we

re-dispatch frequently, the performance of our proposed scheme is not affected

by the computational complexity of CoDistFlow. Thus, we should re-dispatch

as frequently as the market allows in view of the improvement in performance,

i.e., re-dispatching every 2 hours is ideal, as at this frequency, the dispatch plan

tracking costs cancel out.

Appendix: Validation of the Resistance-based Battery Model

In this appendix, we explain how we derive the resistance value of the virtual

line of the resistance-based battery model by first estimating experimentally the

round-trip energy losses of the battery. In addition, we perform an experimantal

validation of the model.

Round-trip energy losses of the battery. They are determined within a specific

experimental session where the battery is controlled to undergo a series of dis-

charge/charge cycles at different power levels between two predefined state-of-

charge (SoC) values. Note that here we use the SoC instead of the SoE as we use
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measurements and the SoC can be directly measured by the battery management

system. An example of the experiments is shown in Figure 9: starting from a rest-

ing situation (where voltage and charge dynamics are extinguished), the battery

is first discharged at 50 kW until 25%, and then charged at 50 kW until the ini-

tial SoC level. The discrete sum over time of the battery (charging/discharging)

power multiplied by ∆t, which should be zero in a lossless battery, gives the

round-trip energy losses. After a resting phase, this process is repeated for dif-

ferent charging/discharging power values and SoC levels.

The experimental round-trip energy losses for the 560 kWh/720 kVA Lithium-

ion battery of EPFL [7] are shown in Figure 10 for different values of the SoC

and charge/discharge power. The values are scaled over the energy exchanged

during the round-trip cycle, which was 5% of the energy capacity. Energy losses

take their highest values at low charge/discharge powers and show similar trend

for the different SoC levels.

Data-driven computation of the resistance. We model the battery as an ideal

power source with a series resistance to capture energy losses, as shown in Fig.

1(b). The advantage of this model is that it can be integrated in an optimal power

flow problem and capture losses without requiring the use of binary variables to

detect charging or discharging conditions. In the following, we omit the scenario

index, d, for the ease of presentation. The real power output of the battery is

P`(t). The power losses on the resistance r` are:

f`(t)r` =

(
P`(t)

vup(`)(t)

)2

r`. (19)

As the voltage at the grid node is regulated near 1 pu, we assume vup(`)(t) = 1,∀t
in Eq. (19). The objective is to design the value of the resistance r` such that

the accumulated power losses over time amount to the energy losses identified

in the experimental session described above. By denoting the measured energy

losses as ∆E, this reads as:

T∑

t=0

(P`(t))
2
r`∆t = ∆E. (20)

We use the expression above to estimate a constant value of r`:

r` = ∆E/(

T∑

t=0

P`(t)
2∆t). (21)

25



Since there are multiple values of ∆E resulting from the experiments at various

SoC and power values as reported in Figure 9, we choose the median value of r`

as it was the best performing. Modeling the dependence of R to the SoC and

power levels will be considered in future works.

Experimental validation. Validation results are performed considering measure-

ments from a validation data set, not included in the training data set. The

validation effort refers to showing that including the losses estimation in a sim-

ple SoC estimation process is beneficial. When considering losses, the SoC is

computed as the integral over time of the charging/discharging power minus

the losses on the resistance, all divided by the energy capacity of the battery.

When neglecting losses, r` equals 0, and the SoC is the integral over time of the

charging/discharging demand divided by the energy capacity of the battery. The

comparison between loss-aware and lossless SoC estimations is given in Figure 11

versus the SoC measurements from the battery management system. Loss-aware

estimations accurately track the measured SoC, whereas lossless estimations are

slowly drifting away from the measured value over time.
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Figure 1: Line (a) and Battery (b) models.
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(b) Re-dispatch at time τ = 4. We set Tfixed = 1; the new dispatch

plan inherits the value for the time interval 4 from the dispatch plan

computed at τ = 0.
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Figure 2: Illustration of our re-dispatch approach for parameter values T = 10 and R = 4. During the

grid operation, the real time control algorithm takes battery charge and discharge power decisions in a finer

time-scale with the aim of following the dispatch plan (green dotted curly line).
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Figure 4: Illustration of the real Swiss grid used for our numerical evaluations. The squares

indicate the virtual nodes added for the battery models. The lossy batteries lie at nodes 1 and

23.
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(c) Dispatch plan vs realized power at PCC,
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(d) Dispatch plan vs realized power at PCC,

Re-dispatch (Zoom).
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Figure 5: SoE and dispatch plan error comparisons. (a), (b) We observe that if re-dispatching

more frequently the errors decrease. However, at the threshold value R = 8, the errors are

negligible; hence, it is not worth to re-dispatch more frequently. (c)-(f) A failure in tracking

the dispatch plan emerges when both batteries have a very low or a very high SoE.
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Figure 6: CDPE vs Tfixed for different values of R. Tfixed corresponds to the time computa-

tional complexity of updating the dispatch plan at a re-dispatch round.
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Figure 7: CDPCost vs battery size. When re-dispatching the cost cancels out for practical

battery sizes.

0 2 4 6 8 10

Battery Size [MWh]

50

100

150

200

250

300

350

400

450

T
o
ta

l
C
o
st

[e
u
ro

s]

No Re-dispatch
Re-dispatch R = 24
Re-dispatch R = 16
Re-dispatch R = 8

Figure 8: Total cost equal to the sum of the CDPCost and the per day battery investment cost.
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Figure 9: Measured active power at the output of the battery’s power converter and battery’s

SoC during the experiments to determine the round-trip energy losses.

Figure 10: Experimental round-trip energy losses for the 560 kWh/720 kVA Lithium-ion battery

of EPFL.

Figure 11: Measured vs modeled battery’s SoC.
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