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Abstract
The main topics of this thesis are distributed estimation and cooperative path-following in the presence

of communication constraints, with applications to autonomous marine vehicles. To this end, we study

algorithms that take explicitly into account the constraints imposed by the communication channel, either

by reducing the total number of messages per unit of time or quantizing the information with a reduced

number of bits and transmitting it at a fixed rate.

We develop a cooperative path following (CPF) algorithm with event-triggered communications and

show both through simulations and sea trials with Medusa-class marine vehicles that the self-triggered

cooperative path-following algorithm proposed yields adequate performance for formation control of

autonomous marine vehicles, while reducing substantially the communications among the vehicles. By

exploiting tools from quantized consensus theory, we also provide a method for cooperative path-following

with quantized communications, and an algorithm for distributed estimation and control with quantized

communications. The performance of the resulting systems is illustrated in simulations.

A new methodology for the design of distributed estimators for linear systems is proposed that yields

guaranteed stability in the case of collectively observable systems. The resulting algorithm only requires

the broadcasting of each node’s state estimate at each discrete time instant. We show via simulations that

for some particular conditions the algorithm has a lower estimation error norm than other methods that

use the same bandwidth and yields stable estimation errors for unstable systems.

This thesis also proposes a distributed estimation and control algorithm with progressive quantization.

We show that with an appropriate parameter choice and given that the system is collective detectable, the

algorithm proposed yields a bounded estimation error and state for every agent, with bounds proportional

to the process and measurement noise of the system. Finally, it is shown in tests with model cars that

distributed estimation with quantized consensus is a feasible strategy for formation control using only

range measurements between the vehicles.

Key words: Distributed state estimation; Cooperative path-following; Quantized consensus; Event-

triggered communications; Input-to-state stability
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Resumo
Os principais tópicos desta tese são estimação distribuída de estados e seguimento de caminho cooperativo

na presença de restrições de comunicação, com aplicações em veículos marítimos autónomos. Para este

fim, estudamos algoritmos que tomam em consideração explicitamente as restrições impostas pelo meio

de comunicação, seja reduzindo o número total de mensagens transmitidas por unidade de tempo ou

codificando a informação com um número reduzido de bits e transmitindo-a a uma velocidade fixa.

Desenvolvemos um algoritmo de seguimento de caminho cooperativo (CPF) com comunicações desen-

cadeadas por eventos e mostramos através de simulações e ensaios no mar com veículos marítimos

da classe Medusa que o algoritmo de seguimento de caminho com comunicações auto-desencadeadas

proposto produz um desempenho adequado para o controlo de formações de veículos marítimos autó-

nomos, enquanto reduz substancialmente as comunicações entre os veículos. Ao utilizar ferramentas da

teoria de consenso quantizado, fornecemos também um método para seguimento de caminho cooperativo

com comunicações quantizadas e um algoritmo para estimação de estados e controlo distribuídos com

comunicações quantizadas. O desempenho dos sistemas resultantes é ilustrado através de simulações.

É proposta uma nova metodologia para o projeto de estimadores distribuídos para sistemas lineares com

garantia de estabilidade no caso de sistemas colectivamente observáveis. O algoritmo proposto requer

apenas a transmissão da estimativa do estado do sistema de cada nó, em cada instante de tempo discreto.

Mostramos através de simulações que, para algumas condições particulares, o algoritmo produz uma

norma do erro de estimação mais baixa do que outros métodos que usam a mesma largura de banda e

produz erros de estimação estáveis em sistemas instáveis.

Esta tese também propõe um algoritmo de estimação e controlo distribuído com quantização progressiva.

Mostramos que com uma escolha de parâmetros apropriada e dado que o sistema é coletivamente

detectável, o algoritmo proposto produz um erro de estimação limitado em cada agente, com limites

proporcionais às magnitudes da perturbação e ruído de medição do sistema, e estabiliza o sistema.

Finalmente, é ilustrado com recurso a testes com automóveis de radiomodelismo que o algoritmo de

estimação distribuída com recurso a consenso quantizado é uma estratégia viável para o controlo de

formações utilizando apenas medidas da distância entre os veículos.

Palavras-chave: Estimação de estados distribuída; Seguimento de caminho cooperativo; Consenso quanti-

zado; Comunicações desencadeadas por eventos; Estabilidade entrada-estado.
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Résumé
Les principaux topiques de cette thèse sont l’estimation distribuée d’états et suivi de chemin coopératif

avec la présence de contraintes de communication, avec des applications sur véhicules marins autonomes.

Avec cet objective nous étudions des algorithmes que prennent en considération d’une façon explicite les

contraintes imposées par le moyen de communication, soit en réduisant le total de messages transmises

par unité de temps soit en codifiant l’information avec un nombre réduit de "bits" et la transmettre avec

une vitesse constante.

Nous avons développé un algorithme de suivi de chemin coopératif (CPF) avec des communications

déclenchées par évènements et nous avons montré avec des simulations et expériences avec des véhicules

marins de classe Medusa que l’algorithme alternatif proposé de suivi de chemin avec des communications

auto-déclenchées produit une adéquate performance pour le contrôle de formations de véhicules marins

autonomes en même temps réduisant fortement les communications entre les véhicules. En utilisant

des outils de la théorie de consensus "quantizé" nous présentons aussi une méthode pour le suivi de

chemin coopératif avec communications "quantizées" et un algorithme d’estimation d’états et contrôle

distribués avec communications "quantizées". La performance des systèmes développés est illustrée avec

des simulations.

Une nouvelle méthodologie est proposée pour le projet d’estimateurs distribués pour systèmes linéaires

qui produit une garantie de stabilité dans le cas de systèmes collectivement observables. L’algorithme

proposé exige seulement la transmission de l’estimation de l’état du système en chaque nœud, en chaque

instant de temps discret. Nous montrons avec des simulations que, pour certes conditions particulières,

l’algorithme produit une norme de l’erreur d’estimation moins élevée que d’autres méthodes qu’utilisent

le même largueur de bande et produit des erreurs d’estimation stables avec des systèmes instables.

Cette thèse propose aussi un algorithme d’estimation de contrôle distribué avec une "quantization" pro-

gressive. Nous montrons que, avec un adéquat choix de paramètre et quand le système est collectivement

détectable, l’algorithme proposé produit un erreur d’estimation limité en chaque agent, avec des limites

proportionnels aux magnitudes de perturbation et bruit de mesure du système, et stabilise le système.

Finalement, avec des expériences avec des automobiles de radio modélisme, nous montrons que l’algo-

rithme d’estimation distribuée basé sur le consensus "quantizé" est une stratégie viable pour le contrôle de

formations en utilisant seulement la mesure des distances entre véhicules.

Mots clefs : Estimation distribuée d’états ; suivi de chemin coopératif ; Consensus "quantizé" ; communi-

cations déclenchées par évènements ; stabilité entrée-état.
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1 Motivation

Motivated by advances in small embedded processors, sensors, and miniaturized actuators, the development of

fleets of autonomous marine vehicles has been gaining momentum worldwide, bringing into sharp focus their

potential to drastically improve the means available for ocean exploration and exploitation. It is envisioned that

the use of multiple autonomous robotic vehicles acting in cooperation will drastically increase the performance,

reliability, and effectiveness of automated systems at sea. Possible scientific and commercial missions include

marine habitat mapping, geophysical surveying, and adaptive ocean sampling, to name but a few.

In this thesis we address a number of problems that arise in the cooperative operation of multiple marine

vehicles due to the presence of bandwidth limitations, when only a limited amount of data are exchanged among

multiple distributed systems or agents per unit of time. In particular, we focus on the topics of networked

cooperative control and estimation for multiple vehicle operations. This issue is of paramount importance in

practical applications, since lower bandwidth translates into lower energy consumption and, consequently, into

increased operational autonomy. Bandwidth limitations are particularly stringent in underwater applications

since communication between vehicles takes place over low bandwidth, short range communication channels

that have intermittent failures, multi-path effects and delays.

In the field of cooperative marine vehicle motion control, a wide range of applications require the solution of the

problem of cooperative path following (CPF). The latter consists of, given n autonomous vehicles and different

spatial paths assigned to them, deriving control laws to drive and maintain the vehicles on their paths with

desired speed profiles, holding a specified formation pattern. In the literature, Ihle et al. [2006], Ghabcheloo et al.

[2009] offer a theoretical overview of the subject and introduce techniques to solve the CPF problem. Different

solutions to the CPF and similar problems can be seen in Giulietti et al. [2000], Stilwell and Bishop [2000],

Ogren et al. [2002], Jadbabaie et al. [2003], Moreau [2005], Ma and Zhang [2010], Dong [2011]. One of our

objectives in this thesis is to solve the CPF problem while keeping the communication bandwidth low.

Another type of problem that we address is motivated by one of the most challenging mission scenarios at

sea: underwater habitat mapping in complex 3D environments, where the flexible structure of a fleet of small

autonomous underwater vehicles (AUVs) is preferable to a single well-equipped AUV. In this scenario, it

is critical that a number of vehicles carrying different sensor suites and navigation equipment maneuver in

formation at close range, cooperating towards the acquisition of environmental data. Meeting this objective

requires that the vehicles be equipped with advanced systems for networked navigation and control. As an

example, we cite a mission in shallow water where one or more surface vehicles (the anchor vehicles) are

equipped with advanced sensor suites for absolute geo-referencing, such as GPS, so as to follow desired paths

or maneuver along arbitrary trajectories in response to episodic events. It is up to the follower vehicles in the
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Chapter 1. Motivation

fleet to reach and maintain a desired formation with the anchors, effectively moving along at the same speed

while acquiring relevant environmental data with complementary sensor suites. In practice, executing this type

of mission without expensive inertial sensor suites requires the follower vehicles to maneuver into formation

by relying on measurements of their distances to the leading vehicles and exchanging complementary data.

This entails considerable difficulties underwater, as conventional communication and localization systems are

unavailable and usually replaced by acoustic devices: acoustic modems that allow the exchange of data, and

ranging devices that estimate distances by measuring time-of-flight of acoustic signals. These devices exhibit

a number of constraints that are inherent to the medium, such as temporary communication losses, outliers in

the range measurements, and low bandwidth of the acoustic communication systems. In practice, an important

consequence of these limitations is the inability to measure or communicate frequently, with inter-sample times

often in the range of seconds, making the problem of underwater range-based multiple vehicle formation keeping

very challenging.

The example mission of underwater mapping mentioned above leads to one of the problems that we address in

this thesis, where each vehicle is required to know its absolute position and those of the neighboring vehicles,

while measuring ranges to neighbouring vehicles. This problem is referred to as cooperative navigation, and

when applied to the problem of formation control it is named range-based formation control. The problem

of cooperative navigation is contained within the larger scope of distributed state estimation, which will also

be addressed in this thesis. Spawned by recent advances in wireless sensor networks (WSNs) and distributed

sensing, there has been a flurry of activity on the topics of distributed state estimation and its interaction with

control, see for example Olfati-Saber [2005], Khan and Moura [2007, 2008], Calafiore and Abrate [2009], Garin

and Schenato [2010], Battistelli and Chisci [2014], Li et al. [2015b], Battistelli et al. [2015], Battistelli and Chisci

[2016] and the references therein. These issues are at the core of a wide range of applications, from network

localization to environmental monitoring, surveillance, object tracking, collaborative information processing,

and traffic monitoring (see Akyildiz et al. [2002], Xu [2002], Bethke et al. [2007], Smith and Hadaegh [2007],

Zavlanos [2008], Ghabcheloo et al. [2009], Bahr et al. [2009], Mesbahi and Egerstedt [2010], Aberer et al.

[2010], Prathap et al. [2012], Soares et al. [2013], Rawat et al. [2014], Soares et al. [2015a,b] for an introduction

to these issues).

Motivated by the examples and problems above, the main topic of this thesis consists of tackling bandwidth

limitations in cooperative path-following or distributed estimation algorithms, either by reducing the total number

of communications or by transmitting at a fixed rate a limited number of bits. To this end, we consider two

methods which have as a common feature the fact that they rely on synchronized estimators between agents, that

is, the transmitters estimate the data at the emitter end, and the emitter computes the same estimate using the

exchanged information. For continuous-time signals, we consider event-triggered communications mechanisms

aimed at reducing the total number of messages per unit time by transmitting only when the difference between

a relevant estimated quantity and the real quantity reaches a given threshold. For discrete-time systems, we

propose quantized communications with progressive quantization as a means to address explicitly bandwidth

constraints. This is done by considering explicitly that a limited number of bits are transmitted at a fixed rate.

An important desired feature in estimation and control applications is that the observers and controllers derived

yield input-to-state stable (ISS) systems, in the sense that given bounded process and measurement noise, the

estimation error and the state of those systems are bounded, with bounds proportional to those of the process and

measurement noise. The main analysis effort undertaken in this thesis consists of deriving ISS guarantees for all

the control and estimation algorithms proposed.
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2 Outline

The main theme of this thesis is distributed estimation and cooperative path-following under bandwidth limita-

tions, and applications to autonomous underwater vehicles. For a better comprehension of the content in this

work, the thesis is organized in seven parts.

The main research topics occupy three central parts, starting with distributed estimation, continuing with event-

based communications applied to cooperative path-following, and finally considering quantized communications

in the design of algorithms to solve the problems of cooperative path-following and distributed estimation. The

thesis is organized as follows:

Part I: Introduction We briefly motivate the core research topics of this thesis, describe the outline, and set

forth the contributions of this work.

Part II: Mathematical Background We describe the basic mathematical tools that will be used throughout

this thesis, and also provide some results in the theory of standard and quantized consensus.

Part III: Distributed Estimation We provide an introduction and a literature survey on the topic of distributed

state estimation of linear dynamical systems, and propose a new distributed state estimation method.

Part IV: Event-based Communications We address the problem of cooperative path-following with self-

triggered communications.

Part V: Quantized Communications We solve the problems of cooperative path-following and distributed

estimation and control with quantized communication by applying the theory of quantized consensus

developed in Part II.

Part VI: Tests with Real Vehicles We apply the methods developed in theory in the previous parts to the

control of formations of real vehicles.

Part VII: Discussion We summarize the thesis and provide final comments and avenues for future work.
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3 Contributions

The work done in the scope of this thesis led to several contributions and related publications, listed below for

each part.

Part II: Mathematical Background We extend some results in standard consensus. In particular, Lemma 1

goes further than Theorem 1 in Xiao and Boyd [2004], and Lemma 2 which is equivalent to Theorem 3 in

Hartfiel and Spellmann [1972] is proven with a different method in this thesis. We also give conditions

for stability of a quantized consensus algorithm with progressive quantization that extend the conditions

found in Li et al. [2011], in that they consider directed networks and allow faster convergence rates. We

also extend these stability conditions for the case where the values stored in each agent are affected by

some bounded noise. These conditions will be applied in Part V.

• F. F. C. Rego, Y. Pu, A. Alessandretti, A. P. Aguiar, and C. Jones. A consensus algorithm for

networks with process noise and quantization error. In Proceedigs of the 53rd Annual Allerton
Conference on Communication, Control, and Computing, 2015. (Rego et al. [2015])

Part III: Distributed Estimation We provide a literature survey on the state of the art in distributed state

estimation for linear systems and propose a new distributed design method for a distributed state estimation

algorithm that has the potential to perform better than most estimation algorithms in the literature, and

requires only the transmission of its estimate to the out-neighbours and the computation of a small

multiplications and additions on-line.

• F. F. C. Rego, A. P. Aguiar, A. M. Pascoal, and C. Jones. A design method for distributed Luenberger

observers. IEEE, 2017. Accepted for the 56th IEEE Conference on Decision and Control, 2017.
CDC 2017. (Rego et al. [2017])

Part IV: Event-based Communications We propose an algorithm for cooperative path-following with self-

triggered communications with guaranteed input to state stability for delays and packet losses. The work

in this part is a continuation of the work in Vanni [2007] in that we provide full proofs of stability of the

cooperative path-following algorithms and we define formally the filter structure for an arbitrary network.

• F. F. C. Rego, A. P. Aguiar, and A. M. Pascoal. A packet loss compliant logic-based communication

algorithm for cooperative path-following control. In Proceedings of the 9th IFAC Conference on
Control Applications in Marine Systems 2013, 2013. (Rego et al. [2013])

Part V: Quantized Communications We provide a method for cooperative path-following with quantized

communications (Rego et al. [2015]), and an algorithm for distributed estimation and control with
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quantized communications, which goes further than in Rego et al. [2016b] since we consider that the state

estimate of each agent is used for feedback control of the plant.

• F. F. C. Rego, Y. Pu, A. Alessandretti, A. P. Aguiar, A. M. Pascoal, and C. Jones. Design of a

distributed quantized Luenberger filter for bounded noise. In Proceedings of the 2016 American
Control Conference (ACC), pages 6393–6398, July 2016, doi: 10.1109/ACC.2016.7526675. (Rego

et al. [2016b])

• The theorems and lemmas in Rego et al. [2016b] are proven in the technical report Rego et al.

[2016a].

Part VI: Tests with Real Vehicles For an introduction to the problem of cooperative navigation and to the

hardware setup used in the following tests we provide a report of the tests of a range-based formation

control algorithm for underwater vehicles.

We apply the event-triggered cooperative path-following algorithm to the control of a formation of three

real autonomous marine vehicles and we employ the distributed estimation algorithm to the cooperative

navigation of model cars measuring ranges among them.

• F. F. C. Rego, J. M. Soares, A. Pascoal, A. P. Aguiar, and C. Jones. Flexible triangular formation

keeping of marine robotic vehicles using range measurements. In Proceedings of the 19th IFAC
World Congress, 2014.(Rego et al. [2014])

To the extent that this manuscript reuses material from our previous publications, referenced above, we recognize

the copyrights transferred to their respective publishers.
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4 Notation

In this section we summarize the notation used throughout the thesis. Given two square matrices of the same

dimension X and Y the matrix inequality X � Y means Y − X is positive semidefinite and X ≺ Y means Y − X

is positive definite. Similarly X � Y means X − Y is positive semidefinite and X � Y means X − Y is positive

definite. The symbol ⊗ stands for the Kronecker product. The symbols ‖ · ‖ and ‖ · ‖∞ represent the 2− and

∞−norm, respectively of a vector of real numbers. Given a positive definite matrix P we define the ellipsoidal or

P-norm of x as ‖x‖P := xT P x, where x is a vector of appropriate dimensions. We also define the matrix induced

P-norm of a matrix A as ‖A‖P := sup‖x‖P =1 ‖Ax‖P , where A is a matrix of appropriate dimensions. We define

the symmetric square root of a symmetric positive definite matrix P as P
1
2 := QΛ

1
2 QT , where P = QΛQT is the

singular value decomposition of P , and its inverse as P− 1
2 . The notation | · | represents the cardinality of a set.

The symbol 	·
 represents the floor operator, or the rounding down to the closest lower integer, �·� represents the

ceiling operator, or the rounding up to the closest higher integer, the function sgn(·) is the sign function, and ρ(·)
is the spectral radius of a square matrix. Given a square matrix P , λmax(P ) denotes the maximum norm of any

eigenvalue of P , λmin(P ) the minimum norm of any eigenvalue of P , and σmax(P ) its maximum singular value,

which is equal to the norm of P , ‖P‖, induced by the vector 2 −norm. Further, σmin(P ) denotes the minimum

singular value of P which, if P is nonsingular, is equal to ‖P−1‖−1. IM represents an M × M identity matrix,

and 1 represents a N × 1 vector with ones in every entry. The vector ei is a column vector with all entries equal

to 0 except at entry i which is 1. For a matrix A we define A† as the Monroe-Penrose pseudo-inverse that is

computed as follows. For a non-negative diagonal matrix Σ we compute its Monroe-Penrose pseudo-inverse

Σ† by taking the reciprocal of each non-zero element on the diagonal, leaving the zeros in place. For a generic

matrix A, given its singular value decomposition A = UΣV � where Σ is a non-negative diagonal matrix, and

V and U are unitary matrices, and V � is the conjugate transpose of V , the Monroe-Penrose pseudo-inverse is

defined as A† := V Σ†U�.

When clear from the context, the superscript of a variable, e.g. X i , refers to the node index of that variable,

where i ∈ N := {1, . . . , N }. In this context where i ∈ {1, . . . , N }, the operator row(·) is defined as

row
(

X i
)

:= [X 1, . . . , X N ] ,

the operator col(·) as

col
(

X i
)

:= row
(

X i T
)T

,

and the operator diag
(
X i
)

yields a block diagonal matrix whose diagonal elements are X 1, . . . , X N . Given |N |2

9
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matrices Ai j , i , j ∈ N , we define the notation

[
Ai j
]

i , j∈N
:=

⎡
⎢⎢⎢⎢⎣

A11 A12 . . . A1N

A21 A22 . . . A2N

...
...

. . .
...

AN 1 AN 2 . . . AN N

⎤
⎥⎥⎥⎥⎦ .

For a stochastic variable the operator E [·] represents its expected value. If x ∈Rn is a stochastic variable, then

the notation x ∼ N (x0,P ) indicates that x has a Gaussian probability distribution, with

E [x] = x0,

E
[
xxT ]= P,

for a positive definite matrix P .

If I ⊂ [0,∞) is an interval, then ‖u‖I denotes the essential supremum norm of a signal u : [0,∞) → Rn , that

is ‖u‖I := esssupt∈I |u(t )|. For a signal v : R→Rm , with m ≥ 1 we will use the notation v(t+) := lims→t+ v(s).

When time is omitted, we use the notation v+ := v(t+). A continuous function α : [0,∞) → [0,∞) is said to

belong to class K , or α ∈ K if it is strictly increasing and α(0) = 0, if limr →∞α(r ) = ∞ then α is said to be of

class K∞. A continuous function β : [0,∞) × [0,∞) → [0,∞) is said to belong to class K L , or β ∈ K L , if, for

each fixed t , the mapping β(r ; t ) belong to class K with respect to r and, for each fixed r , the mapping β(r ; t )

is decreasing with respect to t and β(r ; t ) → 0 as t → ∞.
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5 Properties of Nonlinear Continuous-Time
Systems

Consider the autonomous continuous-time system

ẋ = f (t , x), (5.1)

where t ∈R is the time, x ∈Rn is the state of the system and f is assumed to be continuous in t and Lipschitz

continuous in x. To express stability of an autonomous continuous-time system, the following definition is

required.

Definition 1. System (5.1) is said to be ultimately bounded (UB) if there exists a function β ∈ K L and a

positive scalar ε such that

‖x(t )‖ ≤β (‖x(0)‖, t ) +ε. (5.2)

Moreover, if ε= 0 the system is said to be asymptotically stable (AS).

The following theorem states how to determine if a function is ultimately bounded or asymptotically stable by

constructing an auxiliary function, referred to as Lyapunov function.

Theorem 1 (Theorem 4.18 of Khalil [1996]). Let V : [0;∞) ×R→R be a continuously differentiable function

such that there exist functions α1,α2 ∈ K∞, a continuous function W such that W (x) > 0,∀‖x‖ > 0, and

α1(‖x‖) ≤ V (t , x) ≤α2(‖x‖),∀(t , x) ∈ [0,∞) ×Rn , (5.3)

∂V

∂t
+ ∂V

∂x
f (t , x) ≤ W (x),∀‖x‖ > ε, t ∈ [0,∞). (5.4)

Then the system (5.1) is uniformly bounded.

Consider now the non-autonomous continuous-time system

ẋ = f (t , x,u), (5.5)

where t ∈R is the time, x ∈Rn is the state of the system, u ∈Rm is the input of the system which is assumed to

be piecewise continuous and f is assumed to be continuous in t and u and Lipschitz continuous in x. When

analyzing continuous time systems of the form (5.5) one important concept that will be used in this Thesis is

that of input to state practically stability Khalil [1996].
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Definition 2. System (5.5)-(5.9) is said to be input to state practically stable (ISpS) if there exist functions

β ∈ K L and σ ∈ K and a positive scalar ε such that

‖x(t )‖ ≤β (‖x(0)‖, t ) +σ
(‖u‖[0,t ]

)+ε. (5.6)

Moreover, if ε= 0 the system is said to be input to state stable (ISS).

The following theorem gives the Lyapunov function based method of determining input to state practical stability

of a system.

Theorem 2 (Theorem 4.19 of Khalil [1996]). Let V : [0;∞) ×R→R be a continuously differentiable function

such that there exist functions α1,α2 ∈ K∞, ρ ∈ K a continuous function W such that W (x) > 0,∀‖x‖ > 0, and

α1(‖x‖) ≤ V (t , x) ≤α2(‖x‖),∀(t , x) ∈ [0,∞) ×Rn ×Rm , (5.7)

∂V

∂t
+ ∂V

∂x
f (t , x,u) ≤ W (x),∀‖x‖ > ρ(‖u‖) +ε, t ∈ [0,∞). (5.8)

Then the system (5.5) is ISpS. Moreover, if ε= 0 then the system is ISS.

Consider now the measurement equation

y = h(t , x), (5.9)

where y ∈Rl is the output of the system. The following property is useful in order to assess how the input given

to a system affects its output.

Definition 3. System (5.5)-(5.9) is said to be input-output practically stable (IOpS) or L∞ stable if there exist

functions βO ∈ K L and a positive scalar εO such that

‖y(t )‖ ≤βO (‖x(0)‖, t ) +σO
(‖u‖[0,t ]

)+εO . (5.10)

Moreover, if εO = 0 the system is said to be input-output stable (IOS).

The following theorem states sufficient conditions for IOpS.

Theorem 3 (Theorem 5.4 of Khalil [1996]). If the system (5.5) is ISpS and there exists a function σh ∈ K and

a positive scalar εh such that

‖y(t )‖ ≤σh (‖x(t )‖) +εh , (5.11)

then we can say that the system (5.5)-(5.9) is input-output practically stable (IOpS). Moreover, if the system is

ISS and εh = 0 then we can say that the system is IOS.

5.1 Interconnection of Input to State Practically Stable Systems: The Small-
Gain Theorem

The concept of input to state stability is particularly useful in the study of interconnected systems, since it

expresses the effects of the system in the size of the norm of a signal passing through it. One example is the case

of a cascade connection of Figure 5.1. Consider two ISpS systems Σ1 and Σ2.
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5.1. Interconnection of Input to State Practically Stable Systems: The Small-Gain
Theorem

Σ1 :

ẋ1 = f1(t , x1,u1),

and

Σ2 :

ẋ2 = f2(t , x2, x1,u2),

which satisfy the ISpS properties

‖x1(t )‖ ≤β1 (‖x1(0)‖, t ) +σ1 (‖u1‖[0,t ]
)+ε1, (5.12)

‖x2(t )‖ ≤β2 (‖x2(0)‖, t ) +σ
x1
2

(‖x1‖[0,t ]
)+σ2 (‖u2‖[0,t ]

)+ε2, (5.13)

where β1,β2 ∈ K L and σ1,σ2,σx1
2 ∈ K , ε1,ε2 are positive scalars. If we analyze the cascade connection where

Σ1 Σ2

ẋ2 = f2(t, x2, x1, u2)

u2

u1
ẋ1 = f1(t, x1, u1)

x1

Figure 5.1 – Cascade connection of two systems.

x1 is an input of Σ2, as illustrated on Figure 5.1 we can guarantee that the overall system is stable, i.e. the system

whose state is x12 := [xT
1 xT

2

]T
and the input is u12 := [uT

1 uT
2

]T
is ISpS

Theorem 4 (Lemma 4.7 of Khalil [1996]). Given systems Σ1 and Σ2 satisfying the ISpS properties (5.12)-

(5.13), and suppose the two systems are connected in cascade with x1 as an input of Σ2, then the state of

the interconnected system is ultimately bounded, that is, there exists functions β12 ∈ K L , σ12 ∈ K , and a

non-negative scalar ε12 such that

‖x12(t )‖ ≤β12 (‖x12(0)‖, t ) +σ12 (‖u12‖[0,t ]
)+ε12.

Moreover if Σ1 and Σ2 are ISS, that is ε1 = 0 and ε2 = 0, then the overall system is ISS, that is, ε12 = 0.

The property of input to state practical stability is particularly useful in the study of the feedback connection of

Figure 5.2. Consider two ISpS systems Σ2 defined as before satisfying property (5.13) and Σ1 redefined as

Σ1 :

ẋ1 = f1(t , x1, x2,u1),

which satisfy the ISpS properties

‖x1(t )‖ ≤β1 (‖x1(0)‖, t ) +σ
x2
1

(‖x2‖[0,t ]
)+σ1 (‖u1‖[0,t ]

)+ε1, (5.14)

where σ
x2
1 ∈ K . If we analyze the setup where x2 is an input of Σ1, and x1 is an input of Σ2, as illustrated on

Figure 5.2 we can guarantee that the overall system is stable, i.e. the system whose state is x12 := [xT
1 xT

2

]T
and the output is u12 := [uT

1 uT
2

]T
is ISpS, if the conditions of the small-gain theorem in Jiang et al. [1994] and

Khalil [1996], reproduced here in a slightly different form, are observed.
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Σ1

ẋ1 = f1(t, x1, x2, u1)

Σ2

ẋ2 = f2(t, x2, x1, u2)

x1x2

u2

u1

Figure 5.2 – Feedback interconnection of two systems.

Theorem 5 (Small-gain Theorem Jiang et al. [1994]). Given systems Σ1 and Σ2 satisfying the ISpS properties

(5.13) and (5.14), and suppose the two systems are interconnected with x2 as an input of Σ1, and x1 as an input

of Σ2, if

σ
x1
2

(
σ

x2
1 (r )

)< r ∀r > 0,

then the state of the interconnected system is ultimately bounded, that is, there exists functions β12 ∈ K L ,

σ12 ∈ K , and a non-negative scalar ε12 such that

‖x12(t )‖ ≤β12 (‖x12(0)‖, t ) +σ12 (‖u12‖[0,t ]
)+ε12.

Moreover if Σ1 and Σ2 are ISS, that is ε1 = 0 and ε2 = 0, then the overall system is ISS, that is, ε12 = 0.
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6 Ellipsoidal Norm

6.1 Motivation

As defined in Chapter 4, given a positive definite matrix P the ellipsoidal or P-norm of x is defined as ‖x‖P :=
xT P x, where x is a vector of appropriate dimensions. This chapter describes the properties of the ellipsoidal

norm, which can be a useful tool for analysis of linear systems with bounded norm. The ellipsoidal norm is

extremely well suited to describe the Lyapunov stability property of linear systems, as well as the effect of noise

and disturbances with bounded norm. The usefulness of the ellipsoidal norm comes from expressing Lyapunov

functions as norms, which enables us to use the usual properties of a norm such as the triangular inequality.

The ellipsoidal norm is not a new concept and was studied for example in Blondel et al. [2005] for the computation

of the joint spectral radius of a set of matrices. It is also used in Du et al. [2016, 2017] for the computation of a

Maholanobis distance. However, to the best of the authors’ knowledge, its usefulness for the analysis of stable,

discrete-time linear systems has not been reported before.

In Section 6.2 we present some properties of the matrix induced ellipsoidal norm which are useful for the

analysis of linear systems, and in Section 6.3 we give some illustrative examples that illustrate the usefulness of

the ellipsoidal norm in the analysis of linear systems.

6.2 Properties of the ellipsoidal norm

This section gives some useful properties of the matrix induced ellipsoidal norm. The proofs of these properties

are given in the next section. As with any induced norm, the matrix induced ellipsoidal norm is sub-multiplicative.

Property P1 (Sub-multiplicative). The matrix induced ellipsoidal norm is sub-multiplicative, i.e. given two

matrices A and B of appropriate dimensions, and a positive definite matrix P , we have

‖AB‖P ≤ ‖A‖P ‖B‖P .

Since for stability and convergence analysis we wish to quantify the rate of decrease of an appropriate norm of

the state of a stable system, the next property will be useful.

Property P2 (Norm decreasing property of stable systems). Given a matrix A with ρ(A) < 1, there exists a

symmetric positive definite matrix P such that ‖A‖P < 1. Furthermore, if for a positive definite matrix Q we
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have AT PA − P = −Q, then ‖A‖P =
√

1 −σmin

(
Q

1
2 P− 1

2

)2 < 1.

Note that in general one cannot infer that ‖A‖ < 1 if ρ(A) < 1, therefore the use of the ellipsoidal norm given in

Property P2 might be preferable to the L2 norm in the analysis of stable LTI systems.

Finally, it will be useful to make the equivalence between the ellipsoidal norm and the infinity norm of a vector

explicit, as well as between two ellipsoidal norms of a vector.

Property P3 (Equivalence between the ellipsoidal norm and the infinity norm of a vector). The ellipsoidal norm

and the infinity norm of a vector are equivalent, i.e. given a symmetric positive definite matrix P of size n × n,

for a vector x of appropriate dimensions we have

m(P )‖x‖∞ ≤ ‖x‖P ≤ M(P )‖x‖∞,

with

m(P ) := min
1≤i≤n

1∥∥∥P− 1
2 F T

i

∥∥∥ ,

M(P ) := max
1≤i≤2n

‖vi ‖P ,

where Fi is the i th row of the matrix F := [In ,−In]T , and vi is the i th vertex of the hypercube H := {y |‖y‖∞ ≤
1} = {y |F y ≤ 1}. Moreover, given two symmetric positive definite matrices P1 and P2, we have

m (P1 ⊗ P2) = m (P1)m (P2) ,

M (P1 ⊗ P2) = M (P1) M (P2) ,

Notice how, from the definitions of m(·) and M(·), and for the case of the 2 − norm, we retrieve the known

results m(IN ) = 1 and M(IN ) = �
N . One can also observe that the number of evaluations of the P-norm for the

computation of M(P ) is exponential on the dimension of P . Therefore, if the dimensions of P are large, it is

preferable to use, instead of M(P ), its upper bound

M(P ) ≤ max
‖y‖≤�

n

∥∥∥P
1
2 y
∥∥∥= �

n
∥∥∥P

1
2

∥∥∥ ,

where the inequality comes from the definition of M(·) and the fact that ‖vi ‖ = �
n for all i ∈ {1 ≤ i ≤ 2n}.

Property P4 (Equivalence between two ellipsoidal norms). Given two symmetric positive definite matrices P1

and P2 it follows that the P1-norm and the P2-norm are equivalent, i.e. for a vector x of appropriate dimensions

we have

m (P1,P2)‖x‖P2 ≤ ‖x‖P1 ≤ M (P1,P2)‖x‖P2 ,

where

m(P1,P2) :=σmin

(
P

1
2

1 P
− 1

2
2

)
>
√

σmin (P1)

σmax(P2)
,

M(P1,P2) :=σmax

(
P

1
2

1 P
− 1

2
2

)
<
√

σmax(P1)

σmin(P2)
.

Moreover, given four symmetric positive definite matrices P1, P2, P3 and P4 of appropriate dimensions we can
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observe, directly from the properties of the Kronecker product, that

m(P1 ⊗ P2,P3 ⊗ P4) = m(P1,P3)m(P2,P4) >
√

σmin(P1)σmin(P2)

σmax(P3)σmax(P4)
,

M(P1 ⊗ P2,P3 ⊗ P4) = M(P1,P3)M(P2,P4) <
√

σmax(P1)σmax(P2)

σmin(P3)σmin(P4)
,

Property P5 (Kronecker product). Given two symmetric positive definite matrices P1 and P2 and two matrices

A and B of appropriate dimensions, then

‖A ⊗ B‖P1⊗P2 = ‖A‖P1‖B‖P2

6.3 Application Examples

In this section we describe examples of applications of the elliptical norm, such as the cases of a stable LTI

system driven by bounded noise, a system stabilized with an LQR controller and a Luenberger observer. The

examples found in this section can be found in Ogata [1995], Franklin and Workman [1998], Hespanha [2009]

and Anderson and Moore [1979], however in this section we provide explicit upper bounds on ellipsoidal norms

of the states or estimation errors, depending on upper bounds of appropriate norms of the disturbances acting on

the system. We will also address the case of LQR stabilized systems when only a quantized measurement of the

state is available to the controller.

6.3.1 Stable system with noise

Consider a discrete-time LTI system of the form

xt+1 = Axt + wt , (6.1)

where xt ∈Rn is the state, A ∈Rn×n , and wt ∈Rn is the process noise, which satisfies, for a symmetric positive

definite matrix Pw , ‖wt ‖Pw < 1. Assume also that the system is stable, that is ρ(A) < 1. Therefore we have, from

Property P2 that ‖A‖P < 1, for some appropriately chosen positive definite matrix P , which may be computed by

solving the discrete-time Lyapunov equation AT PA − P = −Q, for some positive definite matrix Q. See Ogata

[1995] and Hespanha [2009] for an introduction to Lyapunov stability for discrete-time linear time invariant

systems. With this property we can derive the next theorem which is the main result of this section and supports

the use of the use of ellipsoidal norm as an analysis tool for discrete-time stable LTI systems.

Theorem 6. Consider the stable LTI system (6.1) with uniformly bounded process noise, i.e. ‖wt ‖Pw < 1, ∀t ≥ 0

for some positive definite matrix Pw . Defining a := ‖A‖P < 1 where P is an appropriately chosen positive definite

matrix, whose existence is guaranteed by Property P2, the norm of the system state is bounded by

‖xt ‖P ≤ at ‖x0‖P + M(P,Pw )

1 − a
,

with M(P,Pw ) given in Property P4.

Proof. From (6.1), the triangular inequality of a norm, and Property P3 we have

‖xt+1‖P ≤ a‖xt ‖P +‖wt ‖P

≤ a‖xt ‖P + M(P,Pw ).
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Applying recursively the previous inequality and using the geometric series property we can conclude that

‖xt ‖P ≤ at ‖x0‖P + M(P,Pw )

(
t−1∑
i=0

ai

)
= at ‖x0‖P + M(P,Pw )

1 − at

1 − a
≤ at ‖x0‖P + M(P,Pw )

1 − a
.

6.3.2 LQR controlled linear system

We now consider the case of a controlled linear system described by

xt+1 = Axt + But + wt , (6.2)

where xt ∈Rn is the state, A ∈Rn×n is the state matrix, ut ∈Rm is the control input, B ∈Rn×m is the input matrix,

and wt ∈ Rn is process noise, which satisfies, for a symmetric positive definite matrix Pw , ‖wt ‖Pw < 1. We

assume that the pair (A,B) is stabilizable. In contrast to the previous case we do not assume that ρ(A) < 1. We

assume linear feedback, i.e. ut = K xt . In this case the state dynamics become

xt+1 = (A + BK ) xt + wt .

As in Franklin and Workman [1998], we now show how to design the gain K and, in the same process, how to

obtain the ellipsoidal norm of the state xt with a guaranteed decrease property as in the previous case. Given

positive n × n matrices, Q and R, let P be the unique positive definite solution of the algebraic Riccati equation

(ARE)

P = Q + AT PA − AT PB
(
R + B T PB

)−1
B T PA,

and compute the controller gain as

K = (R + B T PB
)−1

B T PA.

It is well known from LQR theory that this selection of control gain minimizes the cost

∞∑
t=0

(
xT

t Qxt + uT
t Rut

)
,

for a system without disturbances when the state is measured directly. Notice from the definition of K that

AT PB
(
R + B T PB

)−1
B T PA = AT PBK = K T (B T PB + R

)
K .

Therefore, the ARE becomes

(A − BK )T P (A − BK ) − P +Q + K T RK = 0,

which, combined with the proof of Property P2 results in a := ‖A − BK ‖P =
√

1 −σmin

(
Q

1
2
c P− 1

2

)2

, where

Qc := Q + K T RK . Following the analysis in the previous subsection we can bound the state as

‖xt ‖P ≤ at ‖x0‖P + M(P,Pw )

1 − a
.
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6.3.3 Luenberger observer

This subsection addresses the stability of a Luenberger observer for an LTI system of the form (6.1) and

measurement equation

yt = C xt + vt ,

where yt ∈Rl is the measurement at time t , C ∈Rl×n and vt ∈Rn is the measurement noise, which satisfies, for

a symmetric positive definite matrix Pv , ‖vt ‖Pv < 1. We assume that the pair (A,C ) is detectable. The theory

behind the discrete-time Luenberger observer is given in Franklin and Workman [1998] and with more detail in

Anderson and Moore [1979]. In the Luenberger observer, the state estimate has the dynamics

x̂t+1 = Ax̂t + L
(
yt −C x̂t

)
,

where x̂t ∈Rn is the state estimate and L ∈Rn×l is an appropriately chosen observer gain matrix. Defining the

estimation error as et = (xt − x̂t ), the estimation error dynamics becomes

et+1 = (A − LC )et + wt − Lvt .

To compute the observer gain matrix L we define positive definite matrices V and W of appropriate dimensions

and compute the solution Σ to the algebraic Riccati equation

Σ= W + AΣAT − AΣC T (V +CΣC T )−1
CΣAT ,

from which it follows that the observer gain L is given by

L = AΣC T (V +CΣC T )−1
.

This choice of observer gain is known from Kalman filtering theory to asymptotically minimize the mean of the

square estimation error for the centralized case, when the measurement noise covariance is V −1 and the process

noise covariance is W −1.

Following the same computations as for the controller, the above ARE can be re-written as

(A − LC )Σ(A − LC )T −Σ+W + LV LT = 0, (6.3)

However, to compute ‖A − LC‖P one would prefer a Lyapunov equation in the form

(A − LC )T P (A − LC ) − P = −Q.

Following the derivations in Olfati-Saber [2009] it follows that

A − LC = A − AΣC T (CΣC T +V
)−1

C .

Moreover, defining Σ̃ := (Σ−1 +CV −1C T
)−1

, from (6.3) using the Schur complement inverse property 1 we have

Σ= AΣ̃AT +W .

Defining P :=Σ−1Σ̃Σ−1 and W̃ := W +ΣCV −1C T Σ we obtain

P−1 =ΣΣ̃−1Σ

1Given four matrices A, B , C , and D of appropriate dimensions, where A and D are positive definite, the Schur complement inverse

property consists of the fact that
(

A − BD−1C
)−1 = A−1 + A−1B

(
D −C A−1B

)−1
C A−1.
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=Σ
(
Σ−1 +CV −1C T )Σ

=Σ+ΣCV −1C T Σ

= AΣ̃AT +W +ΣCV −1C T Σ

= AΣ̃AT +W̃ .

Finally, using P to define the quadratic Lyapunov function yields

(A − LC )T P (A − LC ) − P =
=Σ−1Σ̃

(
AT PA − Σ̃−1) Σ̃Σ−1

= −Σ−1 (Σ̃− Σ̃AT (AΣ̃AT +W̃
)

AΣ̃
)
Σ−1

= −Σ−1(Σ̃−1 + AT W̃ −1 A)Σ−1,

where in the last equality we used the Schur complement property.

We now define Q := Σ−1
(
Σ̃−1 + AT W̃ −1 A

)
Σ−1, which is positive definite since Σ and Σ̃ are positive definite.

Then, the last equation combined with Property P2 results in a := ‖A − LC‖P =
√

1 −σmin

(
Q

1
2 P− 1

2

)2
. Following

the analysis of subsection 6.3.1 we can bound the estimation error as follows

‖et ‖P ≤ at ‖e0‖P + M(P,Pw ) +‖L‖P M(P,Pv )

1 − a
.

6.3.4 LQR controlled linear system with uniform quantization

We now apply the ellipsoidal norm concept to the case where we wish to stabilize an LTI system, and the

controller only has available a quantized version of the state. This case occurs in practice when the state is

measured with a finite number of bits. Formally, the quantizer with a step-size Δ is defined by the operator2

Q(x) := sgn(x)Δ

⌊‖x‖
Δ

+ 1

2

⌋
.

When x is a vector in Rn , Q(x) applies the quantization element-wise. It can be seen that with this definition of

Q(·), the quantization error is bounded as ‖xt −Q(xt )‖∞ ≤ Δ
2 . Applying an LQR controller to the system (6.2),

as in subsection 6.3.2 yields the following dynamics

xt+1 = Axt + BKQ(xt ) + wt = (A + BK )xt + BK (Q(xt ) − xt ) + wt .

Taking the ellipsoidal norm of the state we obtain

‖xt+1‖P ≤ a‖xt ‖P +‖Q(xt ) − xt ‖K T B T PBK + M(P,Pw )

≤ a‖xt ‖P + Δ

2
M
(
K T B T PBK

)+ M(P,Pw ),

and from the proof of Theorem 6 we have

‖xt ‖P ≤ at ‖x0‖P + M
(
K T B T PBK

)
Δ/2 + M(P,Pw )

1 − a
.

2 In this chapter we consider quantization with an infinite quantization interval, that is, we considered that the quantization operates

in the same manner everywhere in the domain Rn . A formal definition of the quantizer with a limited quantization interval is given in

Section 7.1. In the case of a limited quantization interval, we would need to show that the value to be quantized is within the quantization

interval, that is ‖x −Q(x)‖∞, in order to guarantee that the quantization error is bounded. The quantizer is thus defined as
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6.3.5 LQR controlled linear system with progressive quantization

In the last subsection we used a constant quantization step-size and we obtained an ultimate bound on the system

state which depends on the quantization step-size as
M(K T B T PBK )Δ/2+M(P,Pw )

1−a . In order to obtain an ultimate

bound which depends only on a and M(P,Pw ) we can define a decreasing quantization step-size Δt = Δ0α
t ,

where Δ0 > 0 and 0 <α< 1. This method is named progressive quantization and is studied in detail, applied to

an optimization algorithm, in Pu et al. [2017], and to quantized consensus in Li et al. [2011] and Thanou et al.

[2013].

Taking the ellipsoidal norm of the state we obtain

‖xt+1‖P ≤ a‖xt ‖P +‖Q(xt ) − xt ‖K T B T PBK + M(P,Pw )

≤ a‖xt ‖P + Δt

2
M
(
K T B T PBK

)+ M(P,Pw ).

Applying the previous inequality recursively yields

‖xt ‖P ≤ at ‖x0‖P +
t−1∑
i=0

(
ai
(

M(P,Pw ) +αt−1−i Δ0

2
M
(
K T B T PBK

)))

≤ at ‖x0‖P +αt−1 Δ0

2
M
(
K T B T PBK

)(t−1∑
i=0

( a

α

)i)
+ M(P,Pw )

1 − a

≤ at ‖x0‖P +αt M
(
K T B T PBK

)
Δ0

2(α− a)
+ M(P,Pw )

1 − a
,

where we can see that the ultimate bound is M(P,Pw )
1−a .

Besides progressive quantization, other quantization methods have been studied for the stabilization of LTI

systems such as logarithmic quantization in Elia and Mitter [2001], Ishii and Bas̨ar [2005].
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7 Quantized Consensus

7.1 Uniform Quantizer

We now define the meaning of quantization formally. The concept is motivated by the requirement to transmit a

message with a limited number of bits and a known precision, given that both the transmitter and the receiver

have the same quantizer parameters: mid-value, quantization interval, and number of transmitted bits.

Consider the quantization interval
[
x̄ − Λ

2 , x̄ + Λ
2

]
of size Λ centered at the mid-value x̄. A uniform quantizer

with a quantization step-size Δ is given by

Q(x) :=

⎧⎪⎪⎨
⎪⎪⎩

x̄ − Λ
2 if x ∈ (−∞, x̄ − Λ

2

)
x̄ + sgn(x − x̄)Δ

⌊ ‖x−x̄‖
Δ + 1

2

⌋
if x ∈ [x̄ − Λ

2 , x̄ + Λ
2

]
x̄ + Λ

2 if x ∈ (x̄ + Λ
2 ,∞)

. (7.1)

The quantizer is illustrated in Figure 7.1.

mid-value 

quantization interval 

Δ

Λ

x̄

x0 x̄

y = x
y

y = Q(x)

Figure 7.1 – Example of quantizer with nb = 3.

The parameter Δ is determined by the number nb of bits of the quantizer as Δ := Λ
2nb −2 . From (7.1), the
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quantization error is upper-bounded by

‖x −Q(x)‖ ≤ Δ

2
= Λ

2nb+1 − 4
. (7.2)

For the case where the input of the quantizer and the mid-value are vectors with the same dimension, the

quantizer Q is taken element-wise.

7.2 Communication Network

This chapter formulates the concept of a communication network that is at the core of this thesis.

We consider a very general setup consisting of: I) a set of nodes N , with cardinality N := |N |. II) a commu-

nication network between nodes (N ,A ), where A ⊆ N ×N is the set of node pairs describing the directed

connections between these nodes (each standing for a data link), i.e. node i can communicate with node j , in this

direction, if and only if (i , j ) ∈ A . The following assumption describes the communication limitations among

sensors.

Assumption A1. The nodes are able to communicate according to the network structure defined by A , i.e. a

node i is able to send messages to node j if and only if (i , j ) ∈ A .

The concept of communication network is illustrated in Figure 7.2. Let N i be the index set of the vehicles that

communicate with vehicle i , i.e. N i := { j : ( j , i ) ∈ A } (the so called neighbouring set of vehicle i or the set of

in-neighbors of i , we will use the terms neighbour and in-neighbour interchangeably throughout this thesis).

From Figure 7.2 we can observe that N 8 = {4,7}. We define a directed path as an ordered sequence of nodes

such that any pair of consecutive nodes in the sequence is an edge of the graph, i.e. a directed path of length

n from node i to node j is a sequence of nodes i1, i2, . . . , in , where i1 = i , in = j , and for any l ∈ {1, . . . ,n − 1}

(il , il+1) ∈ A .

81

2

3

4

5

6

7

Figure 7.2 – Example of communication network where N = {1, . . . ,8}, N = 8 and A =
{(1,4), (4,1), (4,8), (8,3), (3,7), (7,8), (8,5), (5,4), (7,6), (6,5), (5,2), (2,5)}.

A cycle in a network is a directed path that starts and ends at the same node and that contains no repeated

node except for the initial and the final node. In the Network of Figure 7.2 one can find three cycles: {4,8,5,4};

{8,3,7,8} and {8,3,7,6,5,4,8}. A network is aperiodic if the greatest common divisor of the lengths of its cycles

is one. Note that if self-loops are allowed, i.e. if for any i ∈ N , (i , i ) ∈ A , then the network is automatically

aperiodic.

A node of a network is globally reachable if it can be reached from any other node by traversing a directed path.

A network is strongly connected if every node is globally reachable. Analysing Figure 7.2 one can conclude

that the graph is strongly connected. A graph (N ,A ) is weakly connected or just connected if the minimal
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undirected graph that contains it1 is strongly connected. For undirected graphs, i.e. if i ∈ N j implies j ∈ N i ,

connected and strongly connected are equivalent concepts.

The adjacency matrix of a graph, denoted A, is a square matrix with rows and columns indexed by the nodes such

that the i , j -entry of A is 1 if j ∈ N i and zero otherwise. The degree matrix D of a graph (N ,A ) is a diagonal

matrix where the i -entry equals ‖N i ‖, the cardinality of the set of in-neighbours of i , N i . The Laplacian of a

graph is defined as L := D − A. Thus, every row sum of L equals zero, that is, L1 = 0. For the graph of Figure 7.2

the Laplacian is

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1 0 0 0 0

0 1 0 0 −1 0 0 0

0 0 1 0 0 0 0 −1

−1 0 0 2 −1 0 0 0

0 −1 0 0 3 −1 0 −1

0 0 0 0 0 1 −1 0

0 0 −1 0 0 0 1 0

0 0 0 −1 0 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is well known that if (N ,A ) is strongly connected, L has a simple eigenvalue at zero with an associated

eigenvector 1 and the remaining eigenvalues are all positive, see e.g. Godsil and Royle [2013]. We also define

for a non-negative square matrix B of size N , where bi , j is the element of B in the i th row and j th column, the

graph G(B) := (N ,B) where B := {(i , j )|bi , j > 0}. A non-negative square matrix B is irreducible if for every

pair of indices i and j , there exists a natural number k such that bi , j
k > 0, where bi , j

k is the element of B k in

the i th row and j th column. It can be shown, see e.g. Meyer [2000], that B is irreducible if and only if its

associated graph G(B) is strongly connected. The period of i is defined as the greatest common divisor of all

natural numbers k such that bi ,i
k > 0. When B is irreducible, it is easily seen that the period of every index is the

same and is called the period of B . It is easily shown that the period of B is 1 if and only if its associated graph

G(B) is aperiodic, and in that case we say that B is aperiodic. A primitive matrix is a nonnegative square matrix

B for which there exists a positive integer k such that all elements of B k are strictly positive. It can be proved,

see e.g. Meyer [2000], that primitive matrices are the same as irreducible aperiodic non-negative matrices.

7.3 Standard Consensus Algorithm

7.3.1 Problem Definition

The problem of consensus can be described coarsely as that of determining what computations should be

performed and what messages should be exchanged among multiple agents so that they asymptotically agree

on the value(s) of some relevant variable(s). A particular case of the consensus problem is that of distributed

averaging, where all the agents should obtain in the end the average of the values stored initially at each

agent. Due to their applicability in a wide range of practical problems involving the coordination of multiple

systems, from distributed state estimation to flocking or rendez-vous of fleets of autonomous vehicles, consensus

algorithms (in particular distributed averaging) are probably the most ubiquitous ones in a distributed setting. In

this section we give an introduction to the standard algorithm of distributed averaging. In the process, we also

summarize some basic results related to consensus and doubly stochastic matrices. Some of these results can be

found in Xiao and Boyd [2004], while others when explicitly mentioned are original.

1(N ,Ā ) is the minimal undirected graph that contains (N ,A ) if Ā is the set with the minimum number of elements such that

A ⊆ Ā and if (i , j ) ∈ Ā , then ( j , i ) ∈ Ā .
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Consider the network defined in Section 7.2, where each node i in N is initalized with a variable zi
0 and we

wish to compute at each node the average of all nodes 1
N

∑
i∈N zi

0. In the standard consensus algorithm, at each

iteration l a variable zi
l is stored at node i which is then transmitted to its out-neighbours as is shown in Figure

7.3.

Node N Node 1 

Network 

Node 2 

(N ,A)

N
z1l

zjl , j ∈ N 1

z2l

zjl , j ∈ N 2 zjl , j ∈ NN

zNl

Figure 7.3 – Standard consensus problem consisting of a network (N ,A ) and a set of nodes N .

7.3.2 Literature Survey on Consensus

Some of the fundamental results on distributed averaging are given in Xiao and Boyd [2004], where the

authors derive general conditions under which distributed linear iterations characterized by appropriately defined

weighting matrices will yield distributed averaging consensus over a network. The paper also shows how

to compute the optimal weight matrix consistent with a given network so as to obtain the fastest possible

convergence factor. In the case of undirected networks, this is shown to be equivalent to a semidefinite

optimization program.

In line with the framework adopted in Xiao and Boyd [2004], the work in Mosquera et al. [2010] addresses the

case where additive noise perturbs the exchange of information among the agents in a network and proposes a

greedy approach to step-size sequence design that minimizes the mean squared error at each iteration. As shown

later, the concepts introduced in Mosquera et al. [2010] can be exploited to solve the problem of quantized

consensus if one considers the quantization error as communication noise.

Recently, a number of results on the conditions that the topology of a time-varying graph should satisfy in

order to obtain distributed consensus have come to the fore. Among such results, the work in Charron-Bost

[2013] establishes orientation and connectivity based criteria for an agreement algorithm to achieve asymptotic

consensus in the context of time-varying topologies and communication delays. The results are very general and

provide a general framework under which the results of other related papers are obtained as special cases of the

theorems derived in Charron-Bost [2013]. Also in the context of time-varying topologies, Blondel and Olshevsky

[2014] provides a necessary and sufficient condition to achieve consensus using a finite set of consensus matrices,

the so-called avoiding sets condition, which is proven to be NP-hard to verify.

7.3.3 Algorithm

Consider that the generic node i at iteration l contains a vector denoted zi
l ∈Rn . A standard consensus algorithm

consists of updating the internal vector zi
l with a weighted sum of the vectors stored in the neighbors, z j

l , j ∈ N i ,
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according to the rule

zi
l+1 = ∑

j∈N

πi , j z j
l , (7.3)

where we denote by πi , j ∈R the weight that the node i uses to incorporate the information available from node

j , with πi , j = 0 if (i , j ) ∉ A . We remark that we represent the iteration number of the consensus algorithm as l

and not t , which denotes time, since in the context of distributed estimation we consider that there are multiple

iterations of the consensus algorithm at each time instant.

The matrix Π whose component (i , j ) is equal to πi , j is termed a consensus matrix. This matrix is assumed to

satisfy the following standard assumptions in consensus design:

Assumption A2. The consensus matrix Π is doubly stochastic 2 and primitive.

Assumption A3. The consensus matrix Π has a positive diagonal, i.e. πi ,i > 0 for all i ∈ N .

Given Assumption A2, we can define σ2 as the second largest singular value of Π. The following lemmas, which

build on results available in Hartfiel [1971], Hartfiel and Spellmann [1972], Xiao and Boyd [2004], Tifenbach

[2011], show the importance of Assumption A2 and clarify under what conditions the assumption is valid.

Lemma 1. Consider the standard consensus algorithm (7.3). Then,

lim
l→∞

zi
l = ∑

j∈N

1

N
z j

0 , ∀i ∈ N ,

if and only if Assumption A2 is satisfied and, in this case, if Assumption A3 is satisfied, then
∥∥Π− 1

N 11T
∥∥=

σ2 < 1, where σ2 is the second largest singular value of Π.

Lemma 2. There exists a matrix Π such that Assumptions A2 and A3 are satisfied if and only if the network

(N ,A ) is strongly connected, and self loops are allowed, as defined in Section 7.2.

The proofs are given in Appendix B.1.

A result similar to that in Lemma 1 is given in Xiao and Boyd [2004]. However, Lemma 1 goes further than

Theorem 1 in the reference above, since it guarantees that ‖Π− 1
N 11T ‖ < 1 if Assumption A3 is satisfied.

We remark that if the graph is bidirectional, i.e. if (i , j ) ∈ A implies ( j , i ) ∈ A , and if self-loops are allowed,

Assumption A2 can be satisfied by designing Π with Metropolis-Hastings local-degree weights, see Xiao and

Boyd [2004]. That is, Π satisfies Assumption A2 if

πi , j =

⎧⎪⎨
⎪⎩

0 if j ∉ N i

1
max{|N i |,|N j |} if j ∈ N i and i �= j∑

j∈N i , j �=i π
i , j if i = j

.

This is not possible if the communication network is directed. However, if self-loops are allowed, which is

very often the case in practice, Lemma 2 guarantees that it is possible to build a consensus matrix satisfying

Assumption A2 if (N ,A ) is strongly connected. The proof of this result, which gives an explicit method to

build such a matrix, is given in Section B.1. For the rare cases where self-loops are not always present, it can be

seen that, if the communication network is strongly connected, the existence of self-loops in every node is only

a sufficient but not necessary condition for the existence of a consensus matrix satisfying Assumption A2. In

2A doubly stochastic matrix is a square matrix of nonnegative real numbers, whose rows and columns sum to 1.
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fact, one can find networks without any self-loops such that there exist a matrix satisfying Assumption A2. One

example is a network with two or more cycles with mutually prime lengths that do not intersect at any node and

span the whole network, and a single cycle that also spans the whole network.

7.3.4 Guarantees with a Finite Number of Iterations

We have seen that under Assumptions A2-A3, using the standard consensus algorithm the value stored at each

node zi
l ∈Rn converges to

∑
j∈N

1
N z j

0 , but we did not quantify the deviation from the average at a given iteration.

In what follows we quantify bounds on the deviation zi
l −∑ j∈N

1
N z j

0 at any given iteration of the standard

consensus algorithm.

In order to compute formally the deviation from the average, we first define the variables zl := col
(
zi

l , i ∈ N
)
,

zavg

l := (1/N )
(
11T

)⊗ In zl , and ql := zl − zavg

l . The consensus step can be written in compact form as

zl+1 =Π⊗ In zl . (7.4)

Note that using the property 1
N 11T Π = 1

N 11T , from Assumptions A2-A3 and the update (7.4), the vector of

averages follows the dynamics zavg

l+1 = zavg

l . Combining (7.4) with the fact that zavg

l+1 = zavg

l yields

ql+1 =
(
Π− 1

N
11T

)
⊗ In ql , (7.5)

and the convergence of the standard consensus algorithm can be established. Since in the rest of the thesis we

will work with a quadratic P-norm for some symmetric positive definite matrix P of size n × n, we describe the

convergence of the difference between the values in each node and their average in terms of ‖ql ‖IN ⊗P , as stated

in the following theorem.

Theorem 7 (Convergence of standard consensus). Consider the recursion (7.4). If Assumptions A2-A3 hold,

then, for any l ≥ 0, the values of ql satisfy

‖ql ‖IN ⊗P ≤σl
2‖q0‖IN ⊗P .

7.4 Literature survey on quantized consensus

In what follows we give a brief summary of the state of the art in quantized consensus, as organized by the type

of method adopted.

7.4.1 Gossip Quantized Consensus Algorithms

One of the first methods considered for quantized consensus involved the use of gossip algorithms, where at

each step one edge or communication link in a network graph is selected at random and the values stored in

the nodes at both ends of the edge change according to some rule. In this context, the work in Kashyap et al.

[2007] addresses a class of gossip algorithms to achieve consensus on integer numbers and proves probabilistic

convergence to consensus of these algorithms. Since the paper deals with consensus of integers, it also deals

with the case where the integer numbers represent quantized real numbers. However, a quantization error still

exists after convergence, and, since this is a probabilistic method, it is not possible to determine for each agent in

the network how close to the average its own state is. More recently, in Basary et al. [2014] it is proven that the

use of the Metropolis-Hastings method for edge selection in the gossip algorithm yields faster convergence to

consensus than an unbiased edge selection.
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In many situations, such as those considered in the present thesis, where a number of nodes can communicate at

the same time, the use of gossip algorithms may be slow when compared to algorithms where multiple nodes

communicate at the same time, since they use the full capacity of the network. For this reason, we now focus on

quantized consensus algorithms where all the network links are active at the same time.

7.4.2 Dithered quantization

One particular method to do quantized distributed averaging consists of performing the standard linear iterations

of unquantized distributed averaging as in Xiao and Boyd [2004], while quantizing the communicated values with

a probabilistic quantizer, i.e. performing dithered quantization. This approach guarantees that the quantization

error is a zero mean additive noise. The work that we summarize next deals with consensus with probabilistic

quantization and yields algorithms with guaranteed probabilistic convergence.

The principle of consensus with dithered quantization was first proposed in Aysal et al. [2008] where the authors

present a proof of probabilistic convergence of the consensus algorithm. It is also shown in Aysal et al. [2008]

that the values of all the agents will converge to the same quantization level and that the expected value of that

quantization level is the average of the initial values.

In Yildiz and Scaglione [2008], the authors propose a quantized consensus scheme with the same probabilistic

guarantees as in Aysal et al. [2008]; however, in this case the authors consider a communication rate that decays

to zero. This is achieved through the design of an optimal predictive coding which uses information of the

previously received messages. The authors of Yildiz and Scaglione [2008] also address the design of an optimal

Wyner-Zyv decoder, which uses each agent’s own state sequence in the decoder.

The work in Kar and Moura [2010] deals with the quantized consensus algorithm with dithered quantization and

shows that when the quantizer range is unbounded, consensus is achieved asymptotically to some value, the

expected value of which is the average of the initial values. Moreover, it is shown that the quantization step-size

can be made arbitrarily small for a smaller variance. The paper also deals with the case of a bounded quantization

interval and provides a lower bound on the probability that the difference between the final consensus value

and the initial average is smaller than a threshold as a function of the number of quantization levels and the

quantization interval size.

A stronger result for consensus with dithered quantization is derived in Fang and Li [2009], where the authors

prove that using the dithered quantization scheme proposed in Aysal et al. [2008], and performing a temporal

average of the values at each agent, the sequence of averaged values converges to the average of the initial values.

This is stronger than proving that the expectation of the limit value is equal to the average of the initial values.

It is important to stress that dithered quantization is probabilistic in nature. For this reason, the results on

distributed averaging in this setup are necessarily probabilistic and not deterministic, that is, the values in all

nodes converge almost surely to the same value. However, it is impossible to determine with absolute certainty

at any moment how distant the computed value of a certain node is with respect to the values on all other nodes.

In what follows we present results that deal with deterministic quantization methods.

7.4.3 Deterministic Quantized Consensus with Fixed Quantization Interval

In this context, the first method considered consists of performing linear iterations of a distributed averaging

algorithm while the exchanged messages are quantized with a uniform quantizer with a fixed quantization

interval. This concept is studied in Frasca et al. [2009], which provides a quantized consensus algorithm where

the average of all the agents’ states is preserved. The worst case and probabilistic performance of the proposed
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quantized consensus algorithm is also addressed. The quantization interval is considered to be constant.

In the related work reported in Nedić et al. [2009], the problem of distributed averaging over time-varying

topologies with quantized communications is studied, where the quantization method considered is the rounding

down of the absolute value, and there is no preservation of the average as in Frasca et al. [2009]. With this

method, the values can only converge to within some bound of the initial average which depends on the number

of quantization levels.

So far, it has been assumed that the quantization interval is fixed. For this reason, the quantization error does not

converge to zero and there will be at each node, after convergence, an ultimate error to the average value of all

nodes. To overcome this problem the quantization interval must necessarily decrease. The remaining literature

survey on quantized consensus describes the results of work in which the quantization interval decreases or the

quantizer is non-uniform, thus guaranteeing that the difference from the average at each node converges to zero.

7.4.4 Adaptive Quantization Interval

When the quantization interval changes at each iteration, based on past data, we say that the quantization interval

is adaptive. Adaptive quantization in the context of consensus is studied in Fang and Li [2009], where the authors

propose a modification of the classic consensus algorithm in Xiao and Boyd [2004], in order to achieve consensus

if the variance of the quantization error converges to zero. They further propose an adaptive quantization scheme

that drive the quantization interval to zero, thus satisfying the requirements for convergence.

Similarly, regarding adaptive quantization intervals, Carli et al. [2010] presents two schemes of quantized average

consensus. The first is the zoom-in zoom-out method, where the quantization interval shrinks or increases

depending on whether a saturation constraint is active or not. The second is a logarithmic quantizer, i.e. the

value that is quantized is the logarithm of the state of the agent, which guarantees that the quantization error is

proportional to the magnitude of the quantized value. Conditions on the parameters of the logarithmic quantizer

that guarantee convergence of the algorithm are also given.

When off-line information of the network topology and of the models of the system and sensors is available, one

can be more efficient and just decrease exponentially the quantization interval at a pre-specified rate. This is the

principle behind progressive quantization that will be examined next.

7.4.5 Progressive Quantizers

A particular case of quantization with varying quantization intervals is progressive quantization, where the

quantization interval decreases exponentially to zero. Progressive quantization is studied in Thanou et al. [2012,

2013], where the authors propose a progressive quantizer that exploits the increasing correlation between

the values exchanged by the sensors throughout the iterations of the consensus algorithm by progressively

reducing the quantization intervals, and derive conditions on the quantizer parameters to guarantee deterministic

convergence to consensus. In particular, Thanou et al. [2013] provides an asymptotic convergence rate of the

difference between the value at each node and the average of the values. However, no performance bounds are

given.

Performance bounds for consensus with progressive quantization are available in Li et al. [2011], where the

authors describe a method of computing the parameters of a progressive quantizer depending on the network

topology and the communication rate, such that convergence is guaranteed if the values at each agent always fall

inside the quantization interval. This paper also provides conditions that guarantee that in expectation the values

at each agent always fall inside the same quantization interval.
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In this chapter, we chose a progressive quantization algorithm as in Li et al. [2011], Thanou et al. [2012,

2013], which has the advantage of guaranteed convergence to the average of the initial values. However, in the

deterministic case considered in this chapter, as in Li et al. [2011], it is necessary to know a priori an upper

bound on the initial deviation of the value in each node from average and which communication topology and

consensus matrix will be used.

As a contribution to the field of quantized consensus, in Section 7.5 we give conditions on the quantizer

parameters under which the quantized consensus algorithm algorithm converges. The convergence conditions

are different from those in Li et al. [2011] in that we consider directed networks, whereas there it is assumed that

network is undirected, the decrease rate can be arbitrarily close to the second singular value of the consensus

matrix Π, σ2, and unlike Li et al. [2011] which limits the choice of the consensus matrix to Π= IN − hL where

L is the network Laplacian and h is a sufficiently small positive scalar, which limits the minimum achievable

σ2, we only require Π to be doubly stochastic. Morevoer, unlike Li et al. [2011] the stability conditions do not

depend on the network degree, maxi∈N

∣∣N i
∣∣, and on the smallest eigenvalue in norm of the Laplacian of the

communication network.

7.5 Quantized Consensus Theory

The main result of this section draws from the convergence properties of a consensus based distributed Luenberger

observer and from the convergence in norm of a consensus algorithm that takes into account the fact that the data

exchanged during the consensus step are quantized, as described in detail next. Therefore, this section, which

contains results from Rego et al. [2015], addresses the convergence analysis of a consensus algorithm where the

communications among nodes are subject to quantization error.

The quantized consensus algorithm here derived builds upon the progressive quantization scheme considered in

Li et al. [2011], Thanou et al. [2012, 2013]. In what follows we provide performance bounds, i.e. bounds on the

norm of the estimation error at each iteration, that tend to zero. Performance bounds of the same kind were also

derived in Li et al. [2011]. However, in this section we provide a different bound which is more suitable to the

problems of the following chapters of this thesis.

Here, we consider the case where the messages exchanged are quantized, i.e. the messages sent are generated

by the quantizer Qi
l

(
zi

l

)
of the form (7.1), where the quantizer mid-value depends on the node i and iteration

number l , and the quantization interval size depends on the iteration number l . To this end, we define the

quantization error ηi
l := Qi

t

(
zi

l

)− zi
l and the variable ηl := col

(
ηi

l , i ∈ N
)
.

Because we consider quantized messages, the desired consensus dynamics take the form

zi
l+1 := ∑

j∈N i

πi , j Q j
l

(
z j

l

)
−
(
Qi

l

(
zi

l

)
− zi

l

)
. (7.6)

The consensus step can then be written in compact form as

zl+1 =Π⊗ InQl (zl ) − (Ql (zl ) − zl )

=Π⊗ In zl + (Π− IN ) ⊗ Inηl . (7.7)

Following the same arguments of Subsection 7.3.4, it follows that

ql+1 =
(
Π− 1

N
11T

)
⊗ In ql + (Π− IN ) ⊗ Inηl . (7.8)

If the time dependent quantization interval is selected as Λl := rαl , where r and α are appropriately chosen

33



Chapter 7. Quantized Consensus

positive constants, with 0 <σ2 <α< 1, and the mid-value of the quantizer is recursively chosen to be

z̄l = Ql−1(zl−1), (7.9)

the quantization error decreases linearly as ‖zl −Q (zl )‖∞ ≤ rαl

2nb +1−4
, and we can conclude the main result of this

section.

Theorem 8 (Convergence of quantized consensus). Consider the quantizer Ql given by (7.1) with nb bits and

where Λl = rαl , with 0 <σ2 <α< 1. For the recursion (7.7)-(7.9), if Assumptions A2-A3 hold and if the number

of bits nb , the initial quantization interval r , and the initial mid-value z̄0 satisfy

s1 + s2
r

2nb+1 − 4
≤ r

2
, (7.10)

where

s2 := 2
�

N M(P )(α+ 1) + (α−σ2)m(P )

m(P )α(α−σ2)
, (7.11)

and s1 satisfies

s1 ≥ m(P )−1
(
α+ 1

α
‖q0‖IN ⊗P +‖z̄0 − zavg

0 ‖IN ⊗P

)
, (7.12)

then, for any l ≥ 0, the values of ql satisfy

‖ql ‖IN ⊗P ≤αl

[
‖q0‖IN ⊗P +

�
N M(P )r

(α−α2)(2nb − 2)

]
. (7.13)

The proof is given in Appendix B.2. It is worth noticing that the assumption in (7.10) can be satisfied by proper

design of the quantizer. More specifically, by choosing nb such that

nb > log2(s2 + 2),

and r such that

s1 ≤
(
1 − s2

2nb − 2

) r

2
.

Notice that s1 and s2 depend on the network through σ2 and the decrease rate α. The parameter s2 is also

proportional to the initial parameters ‖q0‖IN ⊗P and ‖z̄0 − zavg
0 ‖IN ⊗P .

7.6 Quantized Consensus with Noise

We now consider a hypothetical case where we cannot assign an exact value to zi
l , and instead of (7.6) the

quantized consensus iterations are

zi
l+1 := ∑

j∈N i

πi , j Q j
l

(
z j

l

)
−
(
Qi

l

(
zi

l

)
− zi

l

)
+ vi

l , (7.14)

where vi
l ∈Rn is a process disturbance. We consider that the process disturbance is bounded with an a-priori

known bound. Therefore, the following assumption is needed in the rest of this section:

Assumption A4. The disturbances satisfy

‖vi
l ‖∞ ≤ δv +εvα

l
v , i ∈ N , l ∈N0,
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for some constants εv ,δv ≥ 0, and 1 >αv ≥ 0, where αl
v is αv to the power of l .

This assumption covers the cases of a vanishing process noise when δv = 0 and εv > 0, of a uniformly bounded

noise when when δv > 0 and εv = 0, or a combination of the two. These assumptions are suitable for scenarios

where we cannot have absolute control over the local variable of interest, on which we desire to perform

consensus, but we can assign the value of that local variable of interest with an error or disturbance which is

ultimately bounded. One example where these assumptions apply can be seen in Chapter 11.

Defining vl := col(vi
l ), the consensus step can be written in a compact form as

zl+1 =Π⊗ In zl + (Π− IN ) ⊗ Inηl + vl . (7.15)

Note that using the property 1
N 11T Π = 1

N 11T , from Assumptions A2-A3 and the update (7.7), the vector

of averages follows the dynamics zavg

l+1 = zavg

l + 1
N

(
11T

)⊗ In vl . Combining (7.7) with the fact that zavg

l+1 =
zavg

l + 1
N

(
11T

)⊗ In vl , we can write

ql+1 =
(
Π− 1

N
11T

)
⊗ In ql + (Π− IN ) ⊗ Inηt +

(
IN − 1

N
11T

)
⊗ In vl . (7.16)

If the time dependent quantization interval is selected as Λl := r1α
l +r2, with 0 <σ2 <α< 1 and αv <α, and the

mid-value of the quantizer is recursively chosen to be z̄l = Ql (zl−1), the convergence of the quantized consensus

can be established, as stated in the following theorem.

Theorem 9 (Convergence of quantized consensus). Consider a quantizer Ql from (7.1) with nb bits and where

Λl = r1α
l + r2, with 0 <σ2 <α< 1 and αv <α. For the recursion (7.7), if assumptions A2 and A3 hold and if

the number of bits nb , the initial quantizer parameters r1, and r2 and the initial mid-value z̄0 satisfy

a1 + a2
r1

2nb+1 − 4
≤ r1

2
, b1 + b2

r2

2nb+1 − 4
≤ r2

2
, (7.17)

where a1, a2, b1 and b2 are defined as

a1 := m(P )−1
(

(α+ 1)‖q0‖IN ⊗P

α
+‖z̄0 − zavg

0 ‖IN ⊗P

)
+
(�

N M(P )(α+ 1)

m(P )α(α−σ2)
+ 1

α

)
εv , (7.18a)

a2 := 2
�

N M(P )(α+ 1)

m(P )α(α−σ2)
+ 1

α
, (7.18b)

b1 :=
(

2
�

N M(P )

m(P )(1 −σ2)
+ 1

)
δv , (7.18c)

b2 := 4
�

N M(P )

m(P )(1 −σ2)
+ 1. (7.18d)

then for any l ≥ 0 the values of ql satisfy

‖ql ‖IN ⊗P ≤αl

[
‖q0‖IN ⊗P +

�
N M(P )

α−σ2

( r1

2nb − 2
+εv

)]
+
( r2

2nb − 2
+δv

)�
N M(P )

1 −σ2
. (7.19)

The proof is given in Appendix B.3.

It is worth noticing that the assumption in (7.17) can be satisfied by properly designing the quantizer. More

specifically, choosing nb such that

nb > log2(max(a2,b2) + 2),

35



Chapter 7. Quantized Consensus

and r1 and r2 such that

a1 ≤
(
1 − a2

2nb − 2

) r1

2
, b1 ≤

(
1 − b2

2nb − 2

)
r2

2
.

It is worth noticing that a1, a2, b1 and b2 depend on the network through σ2 and on the decrease rate α. The

parameter a2 is also proportional to the initial parameters εv , ‖q0‖IN ⊗P and ‖z̄0 − zavg
0 ‖IN ⊗P . Finally b2 is also

proportional to the ultimate bound of the noise δv .
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8 Distributed Estimation Survey

This chapter is a brief literature survey of distributed estimation for discrete-time linear systems. The objective

is to review the state of the art in this field and summarize previous work, in order to obtain the proper historical

context. We also reproduce here some of the main results given in the literature.

8.1 Motivation

Given a certain system, a number of sensors with computing capabilities, and a communication network between

the sensors, i.e. each sensor is a node of the network, the problem of distributed state estimation consists of

estimating the state of the system at every node. This problem arises mostly in situations where the sensors

are physically displaced, it is not possible to recover the state of the system with just one of the sensors and

communications are scarce, which prevents the use of centralized approaches. Distributed state estimation

has been considered in a wide range of applications where these conditions hold, from network localization

to environmental monitoring, surveillance, object tracking, collaborative information processing, and traffic

monitoring (see Akyildiz et al. [2002], Xu [2002], Bethke et al. [2007], Smith and Hadaegh [2007], Zavlanos

[2008], Ghabcheloo et al. [2009], Bahr et al. [2009], Mesbahi and Egerstedt [2010], Aberer et al. [2010], Prathap

et al. [2012], Soares et al. [2013], Rawat et al. [2014], Soares et al. [2015b,a], Dong et al. [2017], Wang and Ren

[2017], Zhang et al. [2017] for an introduction to these topics). In what follows we give a survey of the state

of the art in distributed estimation, where some of the main theoretical points will be discussed in detail, with

emphasis on consensus based estimation and particularly on linear time-invariant systems.

In the literature, one can find many references that give an overview of the field of distributed state estimation

which influenced the organization of this chapter. The reader is referred to the book Hall and Llinas [2001]

for an early overview of the problem of distributed sensor fusion. The paper Wah and Rong [2003] contains

a comparison and a technical summary of some of the most relevant methods of distributed estimation. An

overview of many aspects related to data fusion applied to target tracking is given in Zhao et al. [2002], Smith

and Singh [2006]. Two surveys of several techniques and problems associated information fusion for sensor

networks are given in Makarenko and Durrant-Whyte [2004], Nakamura et al. [2007]. More recently, Mahmoud

and Khalid [2013] and Li et al. [2015b] give extensive literature surveys of the state of the art in distributed

state estimation and Garin and Schenato [2010] gives an overview of the technical details associated with

consensus-based distributed estimation.
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8.2 Problem Definition

This section formulates the problem that is at the core of the chapter.

8.2.1 Networked System

In this paper we consider a very general setup composed by: I) a discrete-time dynamical system; II) a set of

nodes N endowed with local sensing and actuation capabilities, with cardinality N := |N |. At each node i ∈ N ,

a sensor measures an output yi
t of the system; III) a communication network between nodes. This setup is shown

in Figure 8.1. The discrete-time dynamical system is given by

System 

Node N Node 1 

Network 

Node 2 

(N ,A)

N

yNty2t
y1t

Figure 8.1 – Problem setup.

xt+1 = Axt + wt , (8.1)

where xt ∈Rn and wt ∈Rn denote the state vector, and the state noise vector, respectively, at time t , and A ∈Rn×n

is the dynamics matrix.

The measurement equation associated with the generic node i ∈ N is defined as

yi
t = C i xt + vi

t , (8.2)

where yi
t ∈ Rmi and vi

t ∈ Rmi denote the observation vector and the observation noise vector, respectively,

considered at time t , and C i is a matrix of appropriate dimensions.

The following assumptions are made on the detectability of the system and the intensity of the disturbances.

Assumption A5. The system (8.1)-(8.2) is collectively detectable, i.e. the pair (A,C ) is detectable, where

C := col(C i ).

Note that we only assume global detectability but not local detectability of the system, i.e. we do not require that

the pair (A,C i ) be detectable for any i ∈ N .

Assumption A6. The matrix A in (8.1) is invertible.

40



8.2. Problem Definition

Remark. As shown in the appendix B of Park and Martins [2016], and in Appendix C.1, Assumption A6 is mild.
Even if the matrix A is not invertible we can observe the state of the system by partitioning the system into two
subsystems. One of the subsystems satisfies Assumption A6 and the other can be ignored.

Since in this chapter we aim to guarantee ultimate boundedness of the estimation error at every node, we require

the following assumption on the magnitude of the disturbances.

Assumption A7. The L∞ norm of the disturbance signals satisfy

‖wt ‖∞ ≤ εw , ‖vi
t ‖∞ ≤ εvi , i ∈ N ,

for some constants εw > 0 and εvi > 0.

In Assumption A7 we chose the L∞ norm since it is the norm which we find most suitable in many applications.

Equivalently, different norm bounds can also be considered, such as quadratic norms.

Another case is when the disturbances are stochastic instead of deterministic. In the latter case, instead of

Assumption A7 we make the following assumption about the measurement and process noise.

Assumption A8. The measurement and process noise satisfy

wt ∼ N (0,Q), vi
t ∼ N

(
0,Ri

)
, i ∈ N ,

for some positive definite matrices Q ∈Rn×n and Ri ∈Rmi ×mi . Moreover, the process and measurement noise of

different sensors are uncorrelated among themselves, that is,

E

[(
vi

t

)T
v j

t

]
= 0, i , j ∈ N , i �= j E

[
wt

(
vi

t

)T ]= 0, i ∈ N .

For simplicity, we consider that the covariance matrices are fixed in time. However, without adding much more

complexity to the stability proofs, we could also assume that the covariance matrices are time varying and

uniformly bounded over time. We note that Assumption A8 can be considered as a strong assumption since one

normally assumes only that Q is positive semi-definite in order to model dimensions of the system state without

any process noise, such as in the case of single integrator. The reason behind this assumption is that it avoids

singularities in the Kalman filter algorithm that will be discussed later in this chapter. When Assumption A8 does

not hold and the covariance of the process or measurement noise is positive semi-definite, one can take matrices

Q or Ri as upper bounds on the covariance of the process or measurement noise, that is, E
[(

vi
t

)T
vi

t

]
� Ri and

E
[
wT

t wt
]� Q, incurring in a small cost on the performance of the estimation methods depending on how tight

the bounding is.

We assume that the nodes are synchronized.

Assumption A9. The nodes are synchronized, i.e. the nodes have knowledge of the global time t , and take

measurements and communicate at the same rate.

Finally, the nodes are allowed to communicate according to the following assumption.

Assumption A10. At each measurement time the nodes are able to communicate a finite number of times l f

according to the network structure defined by A , i.e. a node i is able to send l f messages to node j if and only

if (i , j ) ∈ A .
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8.2.2 Distributed State Estimation Problem

Under Assumptions A5, A6, A7 for the deterministic case or A8 for the stochastic case, A9 and A10 this chapter

discusses solutions for the problem of distributed state estimation using distributed observers. In this setup,

each node reconstructs locally the state of the global system (8.1), denoted x̂i
t . In the deterministic case, it is

required that the estimation error, xt − x̂i
t , converges to an ultimate bound proportional to the magnitude of the

disturbances εw > 0 and εvi , i ∈ N . In the stochastic case, it is required that the covariance of the estimation

error becomes upper bounded after a finite time by a positive definite matrix, proportional to Q and Ri , i ∈ N .

8.3 Notation

In this chapter we will use the following notation. An estimate of the state will be denoted as x̂t , and the predicted

state at time t given x̂t−1 is denoted as x̄t . The estimation error is defined as et := x̂t −xt and the prediction error

is defined as ēt := x̄t − xt . Given a local estimate of the state at node i , denoted as x̂i
t , the predicted state at time

t given x̂i
t−1 is denoted as x̄i

t . Their estimation errors are defined respectively as ei
t := x̂i

t − xt and ē i
t := x̄i

t − xt .

In the context with different estimates at each node, et is defined as et := col
(
ei

t

)
and ēt := col

(
ē i

t

)
.

The estimation error covariance is defined as Pt := E
[
et eT

t

]
and the prediction error covariance as P̄t := E

[
ēt ēT

t

]
.

The information matrix is defined as Ωt := P−1
t and the inverse of the prediction error covariance is Ω̄t := P̄−1

t .

In the context of multiple nodes we define P i
t := E

[
ei
(
ei
)T ]

and its inverse Ωi
t := (P i

t

)−1
, P̄ i

t := E
[

ē i
(
ē i
)T ]

and its inverse Ω̄i
t := (P̄ i

t

)−1
. We also define the matrices W := Q−1, V = R−1, V i := (Ri

)−1
, S := C T V C , and

Si := (C i
)T

V i C i , and the vectors st := C T V yt and si
t := (C i

)T
V i yt .

8.4 Covered Topics

In this chapter we will cover key topics related to distributed state estimation, with a particular focus on linear

time invariant systems. We will give next a general overview of the topics that we address.

8.4.1 Known Correlations

One approach that potentially requires only one communication after each measurement is to solve the problem

of distributed state estimation through a recursive solution, after taking a measurement and communicating

with the neighbors, of a minimum variance estimation problem, given the prediction from the previous step, the

current measurement, and the estimates from the neighboring sensors.

This approach was first considered in Bar-Shalom [1981] and is therefore often referred to as the Bar-Shalom

fusion method. Similar methods were studied subsequently in the papers Kim [1994], Li and Wang [2000], Li

and Zhang [2001b,a], Li et al. [2002, 2003], Zhang et al. [2003], Li [2003], and Alriksson and Rantzer [2006]

among others. This approach requires that each node maintain the covariance matrix of the estimation error of

all nodes and the cross-covariance matrix between all the nodes of the network.

If the system is linear and time-invariant, then these matrices can be computed off-line. However, if the matrices

do not converge to fixed values, one can only compute the matrices for a finite number of steps. If we require the

estimator to run for a long period, one must consider other methods of distributed state estimation. Moreover, if

the sensor model is time varying and only available locally at the sensor node, then this method is not feasible

and other methods are required such as the ones we will discuss next.
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8.4.2 Exchange of Measurements

Another method of performing distributed state estimation is by only exchanging the measurements, or some

transformation of the measurements, among the nodes. This principle has been widely studied in the literature,

e.g. in Rao and Durrant-Whyte [1991], Manyika [1993], Mutambara [1998], Durrant-Whyte [2000], Alriksson

and Rantzer [2006].

The advantage of this method is that since the measurements are usually uncorrelated, to perform sensor fusion

each node only needs to know the covariance of its current estimate and the covariance of the measurement

noise of the neighbouring sensors, and there is no need of pre-computing off-line the covariance matrices or

exchanging covariance matrices.

On the downside, this method only guarantees that the estimation error is bounded if for each node the system is

observable with its own measurement and the measurement of the neighbours, which is a stronger assumption

than being observable given the measurements of all nodes in the network. We will discuss this issue in detail

later in this chapter.

8.4.3 Distributed Solvers for Linear Systems

Noting that, for linear systems, the solution of the centralized state estimation problem, consisting of estimating

the state of the system given the measurements of all the sensors, amounts to solving a linear system of equations,

one method of performing distributed state estimation consists of using specialized algorithms to solve the same

linear system in a distributed fashion.

This method has been discussed recently in the papers Khan and Moura [2008], Pasqualetti et al. [2010]. In this

chapter we will briefly explain formally the techniques of distributed state estimation through distributed solvers

for linear systems and discuss some of the state of the art. As a drawback, distributed solvers for linear systems

usually require many communications (exchange of messages) after each measurement.

8.4.4 Unknown Correlations

If one has restrictions of bandwidth, an alternative method to maintaining uncorrelated filters is to use approaches

to the problem of fusing two estimates that do not rely on the knowledge of cross-correlation of the estimation

error among different nodes.

One such method is covariance intersection, where each node fuses its own estimate with the estimates of

the neighbours and computes an overestimation of the state estimation covariance with no knowledge of the

cross-covariance. This fusion method consists of computing the fused information vector, the inverse covariance

matrix times the estimate, as a convex combination of the information vectors of the neighbour set and the

fused inverse covariance as a convex combination of the inverse covariances of the neighbours. The method

guarantees that the computed covariance is always greater than the actual covariance of the estimate. Thus, one

can guarantee that if this upper bound of the estimation error covariance is ultimately bounded, then the actual

covariance is also ultimately bounded.

This method came to the fore early during the development of the field of distributed state estimation in the works

reported in Uhlmann [1996], Julier and Uhlmann [1997, 2001]. In the context of consensus based estimation,

covariance intersection was extended in Battistelli et al. [2015], Battistelli and Chisci [2016] to consider multiple

sensors and guarantee deterministic convergence of the estimates. Despite not being considered originally as

extensions of covariance intersection and only as applications of consensus to distributed estimation, similar

methods had been studied previously in Casbeer and Beard [2009], Cattivelli and Sayed [2010]. An application
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of this technique to cooperative localization can be seen in Carrillo-Arce et al. [2013].

Besides covariance intersection, one can find in the literature other methods of data fusion such as the largest

ellipsoid method Benaskeur [2002], the covariance union method for estimation with spurious measurements

Uhlmann [2003], and the ellipsoidal intersection Sijs and van den Bosch [2015]. We will review these methods

in a subsequent section of this chapter.

8.4.5 Consensus-Based Methods

Another method of distributed estimation involves distributing to every sensor information from all the sensors

through a distributed averaging, or consensus algorithm. This method assumes that multiple messages are

exchanged between the sensors between two instants of time t and t + 1.

One of the earliest works in consensus-based distributed estimation is Olfati-Saber [2005], where the author

proposes the use of continuous time consensus filters to recover the centralized Kalman filter at each sensor.

This paper has been at the origin of a flurry of activity on consensus-based distributed estimators, as in Mosquera

and Jayaweera [2008], Kamgarpour and Tomlin [2008], Olfati-Saber [2009], Olfati-Saber and Jalalkamali [2012].

More recently, the work in Battistelli and Chisci [2014], Battistelli et al. [2015], Battistelli and Chisci [2016]

also considers the case of many iterations of a consensus algorithm, by taking instead of the consensus matrix Π

its power Πl f .

If, instead of basing the design of the distributed observers on the centralized Kalman filter, we base the design

on a centralized Luenberger observer, we obtain the distributed Luenberger observer that is used in Chapter 12,

which also has the property of a fixed gain matrix and therefore of known convergence rate. If designed through

LQR it approaches its optimality properties as l f → ∞.

8.4.6 Distributed Linear Time-Invariant (LTI) Observers

In addition to the above mentioned methods, there has been a flurry of activity in the development of other

methods that rely on the exchange of estimates with deterministic, instead of stochastic, convergence guarantees.

Among the many references on distributed estimation, in the discrete-time setting, many are based on Kalman

filtering such as Khan and Moura [2007, 2008], Long et al. [2012]. These methods require that the estimation

error covariances computed locally be exchanged among nodes, which increases the amount of data needed to

communicate. The issue of bandwidth efficiency is of paramount importance in practical applications, since lower

bandwidth translates into lower energy consumption and therefore increased operational autonomy. Moreover,

since in these methods the estimates have time-varying dynamics, it is difficult to obtain convergence rates

beforehand for the estimation errors.

The above two issues, the need to exchange covariances and the difficulty in computing guaranteed error

convergence rates, do not occur for distributed Luenberger observers, also named distributed linear time-invariant

(LTI) observers, or distributed fixed gain observers, where the dynamics of the estimation errors are linear

and time-invariant, unlike in Kalman filtering where the observer gains are typically time-varying. Distributed

Luenberger observers have been the object of many recent studies, see Hashemipour et al. [1988], Khan et al.

[2010], Matei and Baras [2012], Orihuela et al. [2013], Khan and Jadbabaie [2011], Ugrinovskii [2011], Viegas

et al. [2012], Ugrinovskii [2013], Das and Moura [2013a,c,b], Doostmohammadian and Khan [2013], Li and

Sanfelice [2014], Das and Moura [2015], Park and Martins [2016], Mitra and Sundaram [2016]. In a later section

we will describe in detail some of these methods and reproduce the proofs of the convergence guarantees of

some of the methods in the literature.
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8.4.7 Nonlinear Methods

If the system that one is observing is inherently non-linear, then one should use methods suitable for distributed

state estimation of nonlinear systems, such as moving horizon estimation Farina et al. [2012], extended Kalman

filtering Lee and West [2010, 2013] or particle filtering, as in Manuel and Bishop [2014].

In moving horizon estimation, one computes on line the estimate which fits best a finite number of past

measurements. Extended Kalman Filtering computes at each step the linearization of the nonlinear system at

the current estimates and computes a linear Kalman filter update based on the measurement. Particle filtering

computes the trajectory of several samples and attributes a probability to each sample given the measurements

at each sensor, then the estimated state is a weighted average of the samples. We will later give a survey of

methods of distributed estimation for nonlinear systems.

8.4.8 Related problems

Finally, we note that there are many problems related to distributed state estimation that have been the focus of

much activity. This chapter would not be complete if such topics were not covered. Among those problems we

cite network localization Barooah [2007], Barooah et al. [2010], Todescato et al. [2015], distributed detection

Tenney and Sandell [1981], Chair and Varshney [1986], Tsitsiklis [1993], Viswanathan and Varshney [1997],

Blum et al. [1997], Willett et al. [2000], Chamberland and Veeravalli [2003], static estimation Borkar and Varaiya

[1982], Xiao and Boyd [2004], Speranzon et al. [2008], Kibangou [2010] and field estimation Delouille et al.

[2004], Cortes [2009]. The problem of network localization consists of estimating at each sensor their own

position based only on relative measurements to neighbours. Distributed detection is the problem of deciding at

each node if a certain hypothesis is true, given that at each node a sensor takes a measurement and communicates

with neighbour nodes. Static estimation is the problem of estimating a certain vector fixed in time given that

there are different sensors taking different measurements of that vector. Finally, field estimation is the problem of

determining the value of a field at each node which takes a measurement of the field at a particular location which

is correlated with the measurements of the neighbour nodes depending on the distance among the locations of

the two nodes. In the last section of this chapter we will give an overview of these problems related to distributed

estimation.

8.4.9 Structure

In summary, the following topics related to distributed state estimation will be covered in each subsection.

• Section 8.5: Kalman Filtering - Description of the classical theory of centralized Kalman filtering and

proof of deterministic convergence.

• Section 8.7: Known Correlations - Considering the distributed state estimation problem as a sequence of

different minimum variance estimators and maintaining at every node the covariance and cross-covariance

matrices of all nodes.

• Section 8.8: Exchange of Measurements - Methods that rely on the assumption that only the measurements,

or some transformation of the measurements are exchanged among nodes.

• Section 8.9: Distributed Solvers for Linear Systems or Matrix Inversion - Transforming the global state

estimation problem into that of solving a linear system or a matrix inversion problem and using specialized

algorithms to solve it in a distributed fashion.

• Section 8.10: Unknown Correlations - Methods with guaranteed boundedness of the estimation errors or
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its covariance but do not require the computation of cross-covariances among different state estimates.

The emphasis is on the covariance intersection method.

• Section 8.11: Consensus-Based Methods - Methods of distributed estimation that are based on consensus.

• Section 8.12: Distributed Linear Time-Invariant (LTI) Observers - Techniques of distributed state estima-

tion with convergence guarantees of the estimation error which are time-invariant.

• Section 8.14: Nonlinear Methods - Methods suitable for distributed state estimation of nonlinear systems,

such as moving horizon estimation, extended Kalman filtering or particle filtering.

• Section 8.15: Related Problems - Other problems related to distributed state estimation: Network localiza-

tion, distributed detection, static estimation and field estimation.

• Section 8.16: Overview - A summary of the conclusions comparing the different methods discussed in this

chapter. 8.16

8.5 Kalman Filtering

Before proceeding to the theory of distributed estimation one must first start with the basics of Kalman filtering,

and yet before with its basic building block, the Best Linear Unbiased Estimation (BLUE). We borrow from

Verhaegen and Verdult [2007] to describe the concepts of BLUE and Kalman Filtering.

8.5.1 Best Linear Unbiased Estimation

The problem of BLUE consists of reconstructing, with minimum variance, a deterministic variable with noisy

measurements. That is, we want to estimate a deterministic variable x ∈Rn , denoted x̂, given the measurements

expressed as

y = F x +ε

where ε∼ N (0,P ) is a random signal with P > 0, and F ∈Rn×m , with m ≥ n, is full rank. The following lemma

establishes the solution to the BLUE problem.

Lemma 3 (Theorem 4.2 in Verhaegen and Verdult [2007]; Lemma 2.2.4 and Theorem 3.4.1 in Kailath et al.

[2000]; Sections 4k and 5a in Rao [1973]). The estimate

x̂ = (F T P−1F )−1F T P−1 y

is the only estimate of x of the form x̂ = M y such that E [x̄] = x, and where for any other estimate x̄ of the same

form the estimation error covariance satisfies E
[
(x̂ − x)(x̂ − x)T

]= (F T P−1F )−1 � E
[
(x̄ − x)(x̄ − x)T

]
.

The estimate x̂ = (F T P−1F )−1F T P−1 y is termed the Best Linear Unbiased Estimator (BLUE).

8.5.2 Kalman Filtering

One of the standard methods in state estimation for linear systems is Kalman filtering, where the covariance of

the state estimation error is computed at each time and the observer gain is computed based on this covariance.

The Kalman filter can be derived by applying the concept of BLUE to the problem of centralized state estimation

in the case of stochastic noise, i.e. the problem of estimating the state of a discrete-time linear system of the
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form (8.1) with measurements of the form

yt = C xt + vt ,

with C ∈Rm×n and vt ∼ N (0,R), with R positive definite.

As a first step we wish to predict the state at time t + 1 given a prior estimate of xt , x̂t , with estimation error

et := x̂t − xt satisfying et ∼ N (0,Pt ). The only possible linear unbiased estimator of xt+1 is

x̄t+1 = Ax̂t , (8.3)

and the prediction error ēt+1 := x̄t+1 − xt+1 satisfies, ēt+1 ∼ N (0, P̄t+1), where the covariance of the predicted

state is derived as

P̄t+1 := APt AT +Q. (8.4)

Then, given a predicted state x̄t ∼ N (xt , P̄t ) and the measurement at time t , yt , one wants to compute a BLUE

of xt . This can be achieved directly from Lemma 3 noting that stacking yt and x̄t we obtain

[
yt

x̄t

]
=
[

C

In

]
xt +

[
vt

ēt

]
,

with [
vt

ēt

]
∼ N

(
0,

[
R 0

0 P̄t

])
.

Therefore, we can apply Lemma 3 with

y :=
[

yt

x̄t

]
, F :=

[
C

In

]
, P :=

[
R 0

0 P̄t

]
.

The BLUE is thus

x̂t = (C T R−1C + P̄−1
t

)−1 (
C T R−1 yt + P̄−1

t x̄t
)

= (S + P̄−1
t

)−1 (
st + P̄−1

t x̄t
)

= x̄t + (S + P̄−1
t

)−1
C T R−1(yt −C x̄t ), (8.5)

and the estimation error et := x̂t − xt satisfies et ∼ N (0,Pt ) with

Pt+1 :=
(
S + (APt AT +Q

)−1
)−1

. (8.6)

This minimum variance estimator of the state is termed the Kalman filter, and is arguably the most successful

kind of state estimator to date. It can be shown that if the pair (A,C ) is observable, then the estimation error

converges and remains close to a neighbourhood of the origin.

We will now demonstrate, borrowing the results of Battistelli and Chisci [2014], the convergence properties

of the estimation error of the Kalman filter, considering Assumption A6, i.e. that A is invertible. Although

convergence of the Kalman filter follows from its optimal properties and the stability of the Luenberger observer,

Theorems 10 and 11 containing explicit bounds on the estimation error covariances or deterministic bounds on

the estimation error, are new to the best of this author’s knowledge. The proofs of the theorems are given in

Appendix C.2.
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For the stochastic case, i.e. when wt ∼ N (0,Q) and vt ∼ N (0,R) one can show that the Kalman filter estimate

covariance is bounded above after a fixed time, i.e. for t ≥ t0 ≥ 1, Pt � P̊ for some positive definite matrix P̊ .

This result is given in the following theorem.

Theorem 10. Given the Kalman filter (8.5)-(8.6), if the pair (A,C ) is observable, A is invertible, and the

disturbances wt , vt and initial estimation error e0 satisfy for positive definite matrices Q, R and P0 of appropriate

dimensions

wt ∼ N (0,Q), vt ∼ N (0,R), e0 ∼ N (0,P0),

we obtain upper and

P̆ � E [eT
t et ] := Pt � P̊ , ∀t ≥ 0,

where P̊ and P̆ are positive definite matrices. Moreover, we obtain for t ≥ 1,

P−1
t � Ω̆ := W + S, (8.7)

and for t ≥ n,

P−1
t � Ω̊ :=

n−1∑
i=0

β̆
(

A−i
)T

S A−i , (8.8)

where β̆ is a positive scalar variable such that
(

AΩ−1 AT +Q
)−1 � β̆A−T ΩA−1 for any Ω� Ω̆, whose existence is

guaranteed by Lemma 20.

For the deterministic case, i.e. when ‖wt ‖∞ ≤ εw and ‖vt ‖∞ ≤ εv for some positive constants εw ,εv > 0, we will

show that the estimation error is ultimately bounded. To establish the deterministic convergence of the Kalman

filter we first note that the estimation error dynamics are given by

ēt+1 = Aet − wt , (8.9)

and

et = ēt − (S + Ω̄t
)−1

C T V (C ēt − vt )

=
(
In − (S + Ω̄t

)−1
S
)

ēt + PtC T V vt

= (S + Ω̄t
)−1

Ω̄t ēt + PtC T R−1vt

= Pt Ω̄t ēt + PtC T V vt . (8.10)

Combining (8.9) and (8.10) yields

et+1 = Pt+1Ω̄t+1 Aet + Pt+1
(
C T V vt+1 − Ω̄t wt

)= Pt+1Ω̄t+1 Aet + Pt+1εt , (8.11)

with εt := C T R−1vt+1 − Ω̄t wt . We can now derive the result on deterministic ultimate boundedness of the

estimation error.

Theorem 11. Given the Kalman filter (8.5)-(8.6), if the pair (A,C ) is observable, A is invertible, and the

disturbances wt , vt satisfy, for positive constants εw and εv ,

‖wt ‖∞ ≤ εw , ‖vt ‖∞ ≤ εv ,
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we obtain

limsup
t→∞

‖et ‖ ≤ δ,

where given a positive scalar 1 > θ > 0

δ : =
√√√√σmax

(
Ω̆
)

σ3
min

(
Ω̊
)max

⎛
⎜⎝ 2‖A‖
θσmin

(
AT Ω̆−1 A +Q

)
σmin

(
Ω̊
) ,

1√
1 − β̊−θ

⎞
⎟⎠εM ,

εM : = ‖C T R−1‖�
mεv + 1

σmi n
(

AT Ω̆−1 A +Q
)�nεw ,

β̊ := 1

1 + σmax(AT Q−1 A)
σmin

(
Ω̊
) .

To avoid cumbersome notation, for the remainder of this chapter we will prove convergence of the estimation

error, for some of the observer algorithms, only in the noiseless case, that is, when wt = 0 and vi
t for all i ∈ N ,

t ≥ 0. However, using the analysis in the proofs of Theorems 10 and 11 one could also conclude that the

estimation errors are ultimately bounded if Assumption A7 holds or that the covariance matrix of the estimation

error is bounded after a finite time if Assumption A8 holds.

8.6 Generic Formulation for Distributed Estimation Algorithms

Many of the methods described in this chapter share the same formulation. The difference among them lie on the

computation procedure for some design parameters. The method with known cross-correlations from Section 8.7

and the covariance intersection method of Subsection 8.10.1 can be written in the form

x̄i
t+1 =

( ∑
j∈N i

Di j
t x̄ j

t

)
+ F i

t yi
t , (8.12)

where Di j
t ∈Rn×n and F i

t ∈Rn×mi are selected such that
(∑

j∈N i Di j
t

)
+ F i

t C i = A. The difference between the

two methods is how to select the parameters Di j
t and F i

t .

As mentioned previously, there are some disadvantages of having time varying parameters, Di j
t and F i

t , namely

the computation of the matrices is an extra burden in real-time and the convergence rate of the estimation error is

unknown beforehand. These issues are not present in the distributed linear time invariant methods of Section

8.12. The method in Subsection 8.12.2 has form 8.12 for all the nodes except one, where the dimension of the

observer state is increased but the dynamics remain linear.

8.7 Known Correlations

When each node can only communicate once with one neighbour after each measurement, one can apply the

theory of BLUE to the problem of distributed estimation. This method consists of computing recursively

the BLUE given the prediction from the previous step, the current measurement, and the estimates from the

neighboring sensors. We will see that this method assumes that each node knows all the covariances of the

estimates in all nodes, and the cross-correlations among estimates of all nodes. Therefore, with this method, the

computations may be heavy if the number of nodes is high.

In detail, the method works as follows. Assume that we begin with an estimate x̄i
t with a Gaussian distribution
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and the following characteristics:

E
[

x̄i
t − xt

]
= 0, (8.13)

E

[(
x̄i

t − xt

)(
x̄ j

t − xt

)T ]
:= P̄ i j

t . (8.14)

We define the global covariance matrix as P̄t :=
[

P̄ i j
t

]
i j∈N

and the vector x̄t := col
(
x̄i

t

)
. The following theorem

states how to compute the BLUE of the state at the next time x̄i
t+1 given the local measurement yi

t and the

estimates of the neighbours x̄ j
t , j ∈ N i , as well as the global covariance matrix Pt+1 := E

[
ēt+1ēT

t+1

]
, where

ēt := col(ē i
t ) with ē i

t := x̄i
t − xt .

Theorem 12. Consider the matrices ηi ∈R|N i |n×N n , defined by ηi := row
(
e j , j ∈ N i

)⊗ In , where vector ei is

a column vector with all entries equal to 0 except at entry i which is 1, 1i ∈R|N i |×n defined by 1i := 1 ⊗ In , and

Γi j ∈R|N i |n×n defined by Γi j := ηi
(
e j ⊗ In

)
.

Define Ω̃i
t := 1T

i

(
ηi P̄tη

T
i

)†
1i and Ωi

t := Ω̃i
t + Si , where

(
ηi P̄tη

T
i

)†
is the Monroe-Penrose pseudo-inverse of

ηi P̄tη
T
i

1 defined in Chapter 4.

Given the estimates x̄i
t , i ∈ N , satisfying (8.13) and the global covariance matrix P̄t :=

[
P̄ i j

t

]
i j∈N

, defining the

correction terms si
t := (C i

)T
V i yi

t and Si := (C i
)T

V i C i , the BLUE of the state at time t + 1 at node i given the

local measurement yi
t and the estimates of the neighbours x̄ j

t , j ∈ N i is given by

x̄i
t+1 = A

(
Ωi

t

)−1
( ∑

j∈N i

1T
i

(
ηi P̄tη

T
i

)†
Γi j x̄ j

t + si
t

)
, (8.15)

and the global covariance matrix is given by

P̄t+1 = Tt P̄t T T
t + diag

(
AP i

t Si P i
t AT

)
+ (1N 1T

N

)⊗Q, (8.16)

where Tt is defined as Tt :=
[

T i j
t

]

T i j
t :=

{
AP i

t 1T
i

(
ηi P̄tη

T
i

)†
Γi j , j ∈ N i

0, j ∉ N i

One may observe that since the size of P̄t is nN ×nN , the computations can be very costly to compute on-line if

the number of nodes is high. However, if the system is linear and time-invariant, then the sequence of global

covariance matrices Pt can be computed off-line. Thus, the main problem with this method is that if the matrices

do not converge to fixed values, one can only compute the matrices for a finite number of steps. In this case,

this method cannot be used if one requires that the estimator run for an unbounded period of time. Moreover,

if the sensor model, i.e. C i is only available locally at the sensor node i , then this method is not feasible,

and other methods are required such as the ones we will discuss next. It should be noted that this is the only

method discussed in this chapter that assumes that only one message is received from the neighbours between

two discrete-time instants t and t + 1 and that is optimal in the stochastic sense, in that the covariance of each

estimation error is minimized.

To the best of the author’s knowledge this method, exactly in this form, is not described in the literature.

However, the general idea is present in many publications. In one of the first works in distributed state estimation,

Bar-Shalom [1981], this method is developed for fully connected networks. For this reason, this method is

1which is equivalent to
(
ηi P̄tη

T
i

)−1
if ηi P̄tη

T
i is full rank
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sometimes referred to as the Bar-Shalom method, which is revisited in Kim [1994].

In the series of papers Li and Wang [2000], Li and Zhang [2001b,a], Li et al. [2002, 2003], Zhang et al. [2003]

and Li [2003], the problem of BLUE distributed parameter estimation is addressed. This is a particular case of

distributed state estimation when the system is static and there is no process noise. The last paper of this series,

Li [2003], deals with the problem of distributed state estimation with BLUE estimates of linear dynamic systems

for the case of two sensors.

Another similar work is Alriksson and Rantzer [2006], where the estimate fusion among neighbours is done

with averaging, with optimal weights minimizing an upper bound of the estimation error covariance after a finite

time. In this work optimal estimator covariances, i.e. the covariances of the BLUE estimator, are computed

off-line, with a recursive process. The estimator is time invariant using only the converged covariances. However,

conditions for convergence of the covariance matrices are not provided.

8.8 Exchange of Measurements

An alternative method which does not require pre-computing off-line the global covariance matrix is obtained

by only exchanging the measurements, among the nodes, that is, every node performs the Kalman Filter

computations by taking its own measurements, and the measurements of the neighbours, y j
t , j ∈ N i . The

prediction equations are the same as in the standard Kalman filter. The predicted state is x̄i
t+1 = Ax̂i

t and the

covariance of the prediction is P̄ i
t = AP i

t AT +Q.

The update equations can be seen as a particular case of the update equation of the standard Kalman filter,

where one has multiple measurements with uncorrelated measurement noise. The update equations amount to

computing a BLUE of xt , given the predicted state x̄i
t ∼ N (xt , P̄ i

t ) and the measurements of the neighbours at

time t , y j
t , j ∈ N i . Expressing the neighbour set as N i := {i1, . . . , i|N i |} we obtain by stacking y j

t , j ∈ N i , and

x̄i
t the following equation:

⎡
⎢⎢⎢⎢⎢⎣

yi1
t
...

y
i|N i |
t

x̄i
t

⎤
⎥⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎣

C i1

...

C
i|N i |
In

⎤
⎥⎥⎥⎥⎥⎦xt +

⎡
⎢⎢⎢⎢⎢⎣

vi1
t
...

v
i|N i |
t

ēt

⎤
⎥⎥⎥⎥⎥⎦ ,

with ⎡
⎢⎢⎢⎢⎢⎣

vi1
t
...

v
i|N i |
t

ēt

⎤
⎥⎥⎥⎥⎥⎦∼ N

⎛
⎜⎜⎜⎜⎜⎝0,

⎡
⎢⎢⎢⎢⎢⎣

Ri1

0. . .

0 R
i|N i |

P̄ i
t

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠ .

From the above equations, the BLUE can be obtained by applying Lemma 3 with

y :=

⎡
⎢⎢⎢⎢⎢⎣

yi1
t
...

y
i|N i |
t

x̄i
t

⎤
⎥⎥⎥⎥⎥⎦ , F :=

⎡
⎢⎢⎢⎢⎢⎣

C i1

...

C
i|N i |
In

⎤
⎥⎥⎥⎥⎥⎦ , P :=

⎡
⎢⎢⎢⎢⎢⎣

Ri1

0. . .

0 R
i|N i |

P̄ i
t

⎤
⎥⎥⎥⎥⎥⎦ ,
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which yields

x̂i
t =
( ∑

j∈N i

S j + Ω̄i
t

)−1 ( ∑
j∈N i

s j
t + Ω̄i

t x̄i
t

)

= x̄i
t +
( ∑

j∈N i

S j + Ω̄i
t

)−1 (
C i
)T

V i
∑

j∈N i

(
y j

t −C j x̄i
t

)
. (8.17)

The estimation error ei
t := x̂i

t − xt satisfies ei
t ∼ N

(
0,P i

t

)
, with

P i
t+1 :=

( ∑
j∈N i

S j +
(

AP i
t AT +Q

)−1
)−1

. (8.18)

The method described in this subsection is optimal in the stochastic case, given the information received by

the sensors. However, with this method each agent does not receive information from sensors other than the

neighbours and it can be seen from the analysis of the standard Kalman filter, that this method only guarantees

that the estimation error is bounded if for each node the system is observable with its own measurement and the

measurement of the neighbours, i.e. if the pair (A,col
(
C j , j ∈ N i

)
) is observable for every node i ∈ N , which is

a stronger assumption than being observable given the measurements of all nodes in the network.

This method has been widely studied in the literature during the past three decades, e.g. in Rao and Durrant-

Whyte [1991], Manyika [1993], Mutambara [1998], Durrant-Whyte [2000], Kamgarpour and Tomlin [2008]

where the method is named the decentralized information filter, or the decentralized Kalman filter. More recently,

in Olfati-Saber [2009], this method is termed Kalman-consensus information filter. To overcome the limitation

of the requirement of local observability, some papers combine both exchange of measurements and exchange of

estimates such as Alriksson and Rantzer [2006], Battistelli et al. [2015].

8.9 Distributed Solvers for Linear Systems or Matrix Inversion

One possible method of distributed state estimation is the use of distributed solvers for linear systems. These

algorithms consider a set-up where there are multiple computing nodes and a general communication network

among the nodes. The objective is to compute at each node a vector c that is the solution of the linear system

b = Ac, where A is a matrix of appropriate dimensions known to all nodes and b = col(bi ), where vector bi

is only known to node i . This should be achieved while taking into consideration that each node is only able

to communicate with its neighbours in the communication graph. The transformation of the distributed state

estimation problem, described in Section 8.2, as the problem of solving a linear system in a distributed manner

is described in Pasqualetti et al. [2010]. Here, we describe a slightly different transformation than what is given

in Pasqualetti et al. [2010]. Starting with an estimate of the state at time t − 1, x̂t−1, with an error covariance of

Pt−1 we can obtain the predicted state at time t as x̄t and its error covariance P̄t := APt AT +Q. Defining the

following matrices

Ut :=

⎡
⎢⎢⎢⎢⎣

ēt

v1
t
...

v N
t

⎤
⎥⎥⎥⎥⎦ , Yt :=

⎡
⎢⎢⎢⎢⎣

x̄t

y1
t
...

y N
t

⎤
⎥⎥⎥⎥⎦ , Ot :=

⎡
⎢⎢⎢⎢⎣

In

C 1

...

C N

⎤
⎥⎥⎥⎥⎦ ,

we obtain

Yt = Ot x0 +Ut ,
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where ēt := x̄t −xt and the covariance of Ut is known. Notice that the BLUE estimate of xt , x̂t , can be computed

with the knowledge of Yt , Ot by solving a linear system, as seen in Lemma 3. However, in the problem of

distributed estimation each node does not have knowledge of the full matrix Yt and only has available yi
t and x̄t ,

where i is the node index. Therefore, a distributed solver for linear systems is required to compute the BLUE

estimate of xt given Yt . The characteristics of this method depends on which distributed solver one uses, and

whether the solver is terminated before convergence or not. If the solver computes accurately the solution of the

linear system of equations this method is equivalent to a centralized Kalman filter. However, it should be noted

that potentially a large number of iterations are required between two discrete-time instants, or some particular

type of communication network is needed.

For this purpose, in Pasqualetti et al. [2010] a distributed solver for a linear system for half duplex mediums

(only one node can broadcast a message at each iteration), full networks (every node can communicate with

every other node) and which requires N + 1 iterations is proposed. The application of the Jacobi algorithm on

distributed solvers for linear systems to the problem of network localization, that is to estimate the location

of sensors measuring only the position difference to other nodes, a particular case of distributed estimation, is

widely discussed in Barooah [2007], Barooah et al. [2010].

A different perspective on distributed estimation, which makes use of distributed matrix inversion algorithms, is

given in Khan and Moura [2008]. Here, the objective is to obtain a distributed algorithm that approximates the

classical centralized Kalman filter. To guarantee that the computations are scalable with the number of nodes, in

the paper each node only estimates the parts of the state that contribute to that node’s measurement, and not the

full state. The paper also assumes that initially every node only has knowledge of its local observation matrix

C i and does not know the observation matrix of any other node. Therefore, to compute the covariance matrix

at each step, one requires distributed matrix inversion algorithms. For this purpose, the authors of the paper

propose the distributed iterate collapse inversion (DICI) algorithm, for covariance inversion, which assumes that

the inverted covariance matrix can be approximated as a L-banded matrix. This approximation is shown to be

mild, given the sparseness of the dynamics and observation matrices.

8.10 Unknown Correlations

In this section we consider a setup where each node runs one filter and transmits to the neighbours the estimate

and the computed covariance. The objective is to perform data fusion of the received estimates without knowing

the cross-covariance between the estimates and computing an upper bound of the covariance of the estimate. A

solution to this problem is proposed in Uhlmann [1996] with the covariance intersection method, which will be

described here.

Other methods of data fusion with unknown correlation which are less present in the literature include the largest

ellipsoid Benaskeur [2002] method and the covariance union method Uhlmann [2003].

8.10.1 Covariance Intersection

Covariance intersection Uhlmann [1996], Julier and Uhlmann [1997, 2001] was one of the earliest distributed

state estimation methods. Given its simplicity and theoretical support, it has become a popular method of fusing

correlated estimates.

The paper by Battistelli et al. [2015] contains strong theoretical guarantees on the stability of the distributed

consensus based Kalman filter, which is the application of covariance intersection to the problem of distributed

state estimation, requiring only global and not local observability and only one communication at each step.

In that paper, the authors summarize the different consensus-based approximations of a Kalman filter in a
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distributed setting, which apply the concept of covariance intersection: consensus on information, consensus on

measurements, and a hybrid version.

The method works as follows. Suppose that at time t we have at each node i ∈ N the predicted state x̄i
t ,

and the computed estimation error covariance P i
t , satisfy E

[
x̄i

t − xt
]= 0 and E

[(
x̄i

t − xt
)(

x̄i
t − xt

)T ]� P̄ i
t . The

pair x̄i
t , P̄ i

t satisfying these properties is referred to as a consistent estimate. We assume that the filters are

possibly correlated, that is, it might happen that E

[(
x̄i

t − xt
)(

x̄ j
t − xt

)T ] �= 0 for j �= i . Define the information

matrix Ω̄i
t := (P̄ i

t

)−1
, and the correction terms si

t := (C i
)T

V i yi
t and Si := (C i

)T
V i C i , where V i is some positive

definite matrix which, if under Assumption A8 holds, it is defined as V i := (Ri
)−1

. Also, consider the consensus

coefficients πi , j ≥ 0 where i , j ∈ N and πi , j = 0 if j ∉ N i , πi , j > 0 if j ∈ N i and
∑

j∈N πi , j = 1. The fusion

method is described by the equations

x̂i
t = P i

t

( ∑
j∈N

πi , j Ω̄
j
t x̄ j

t + si
t

)
, (8.19)

Ωi
t = ∑

j∈N

πi , j Ω̄
j
t + Si . (8.20)

The fused estimated covariance is recovered as P i
t = (Ωi

t

)−1
. It is straightforward to show that E

[
x̂i

t − xt
]= 0,

and therefore to guarantee consistency one must show that P i
t � E

[(
x̂i

t − xt
)(

x̂i
t − xt

)T ∣∣∣ x̄ j
t , yi

t , j ∈ N i
]
.

The consistency of this method is shown in Julier and Uhlmann [2001]. For a geometric interpretation based on

sigma contours the reader is referred to Uhlmann [1996]. Sigma contours are level sets of the quadratic function

defined by the estimate and its covariance, which represent areas with a defined probability of containing the

true state. The covariance intersection method is shown to yield an estimate whose sigma contours contain the

intersection of the sigma contours of the estimates to be fused, hence its name.

The prediction equations are the same as in the standard Kalman filter, that is,

x̂i
t+1 = Ax̄i

t , (8.21)

and

Ω̄i
t+1 = W −W A

(
Ωi

t + AT W A
)−1

AT W, (8.22)

where W is some positive definite matrix which, if under Assumption A8 holds, it is defined as W := Q−1. In the

stochastic setting, the paper by Battistelli and Chisci [2016] shows that the information matrices for every node

are lower bounded given global observability, showing that the estimation error covariances remain bounded and

proving the usefulness of this method.

In the deterministic setting, the work in Battistelli et al. [2015] gives a stability proof of the distributed Kalman

filter given only global observability which we will summarize here. Some of the technical details of the

Theorems in Battistelli and Chisci [2016] are given in Battistelli and Chisci [2014]. The main result is the

following.

Theorem 13 (Lemma 2 of Battistelli et al. [2015]). Let assumptions A6-A7 hold, and assume that the system

(8.1)-(8.2) is collectively observable, i.e. the pair (A,C ) is observable, where C := col(C i ). Then, given the

distributed consensus-based Kalman filter defined by equations (8.19)-(8.22), the estimation error ei
t := x̂i

t − xt

at each node is ultimately bounded, i.e. there exists a positive scalar ε> 0 such that for all i ∈ N

lim sup
t→∞

‖ei
t ‖ ≤ ε.
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The abbreviated proof is given in Appendix C.2, which makes use of Lemmas 20 and 21, also contained in

Appendix C.2.

Remark. In Theorem we used the assumption that the system is collectivelly observable instead of detectable as
in Assumption A5. However, if the system is not collectivelly observable and Assumption A5 holds, it can be
shown that the estimation error is ultimatelly bounded in the same fashion of Appendix C.1, by performing an
observability decomposition of the system and showing that the estimation errors associated to the unobservable
subspace are naturally stable, and that Theorem 13 shows that the estimation errors associated with the
observable subspace are stable.

As stated in Theorem 13, given collective observability, this method guarantees ultimate boundedness of the

estimation error. Moreover, in the stochastic case we obtain an upper bound on estimation error covariance,

which is bounded by above. As disadvantages, this method is not optimal in the stochastic case, and requires the

transmission of covariances or the computation of a large number of covariance matrices.

This method was studied in a number of research papers. In Battistelli and Chisci [2016] an extension of this

method to the case of nonlinear systems is given through an adaptation of the extended Kalman filter. A similar

method, named the diffusion Kalman filter, was studied in Cattivelli and Sayed [2010] which offered a proof of

stochastic convergence of the method that requires local observability. A survey of different fusion rules which

yield stable observers is given in Sijs and van den Bosch [2015], which derives a stability condition guaranteeing

that the estimates are consistent. Another fusion method, the ellipsoidal intersection, which satisfies the stability

condition is proposed and analyzed. The application of covariance intersection to the problem of distributed state

estimation is also analyzed in Casbeer and Beard [2009] in the perspective of information filtering. The concept

of covariance intersection was applied to the problem of cooperative localization in Carrillo-Arce et al. [2013].

8.10.2 Other Fusion Methods with Unknown Correlations

The covariance intersection method gives a conservative over-approximation of the fused estimate covariance.

The largest ellipsoid method Benaskeur [2002] computes the largest ellipsoid that is included in the level sets of

the quadratic functions determined by the covariances of the estimates to be fused. This is less a conservative

method than covariance intersection, but does not guarantee consistency.

To fuse with spurious estimates, i.e. when one or more estimates are not accurate in terms of expected value

and covariance, in Uhlmann [2003] the Covariance Union (CU) method is developed. This method consists of

computing a conservative estimate that is consistent with both estimates, instead of being consistent with the

fusion of the estimates. In Uhlmann [2003] inconsistency between estimates is detected through the Maholanobis

Distance between expected values.

8.11 Consensus-Based Methods

We now review other estimation methods that are based on consensus. We first describe the method of Olfati-

Saber [2005], the application of a consensus algorithm to the distributed Kalman filtering problem. We then

describe a distributed consensus-based Luenberger observer, which will be used in Chapter 12 to address the

problem of distributed estimation and control with quantized communications. Both of these methods have the

disadvantage, in comparison with other methods in this chapter, that multiple iterations of a consensus algorithm

are required between every two discrete-time instants t and t + 1.
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8.11.1 Consensus-based Distributed Kalman Filter

A seminal work in distributed Kalman filtering is Olfati-Saber [2005]. The key technique used involves writing

the Kalman filter equations in information form, i.e. in terms of the inverse of the covariance matrix, termed

the information matrix. The latter is then computed by averaging local information matrices and the global

measurement is computed as the averaging of linear transformations of the local measurements.

The main idea of Olfati-Saber [2005] is the following. If one can compute averages, e.g. through distributed

averaging, the centralized Kalman filter can be recovered as follows. The prediction equations remain identical

to the standard Kalman filter.

x̄t+1 = Ax̂t ,

P̄t+1 = APt AT +Q.

The update equations can be recovered by using distributed averaging to compute the following values:

Savg = 1

N

∑
i∈N

Si ,

savg
t = 1

N

∑
i∈N

si
t .

Using the update equations we obtain

x̂t = (N Savg + P̄−1
t

)−1 (
savg

t + P̄−1
t x̄t

)
,

Pt+1 =
(
N Savg + (APt AT +Q

)−1
)−1

.

In Olfati-Saber [2005], it is assumed that the nodes communicate continuously and therefore continuous time

consensus filters are proposed to compute the averages. In a similar work, Kamgarpour and Tomlin [2008],

discrete-time communications are assumed and the averages are computed through dynamic discrete-time

consensus filters. For an historical perspective, this method was already considered, for the case of fully

connected networks in the paper by Hashemipour et al. [1988].

We now examine the case where the consensus algorithm used to compute ỹt is the standard consensus algorithm

in Section 7.3 of Chapter 7 with a limited number of iterations l f , that is we assign zi
t ,0 = si

t , and perform l f

iterations of the form

zi
t ,l+1 = ∑

j∈N i

πi , j z j
t ,l ,

and we approximate ỹt at node i by ỹ i
t := zi

t ,l f
. In this case we estimate st at node i as

ŝi
t = st + N qi

t ,

where qi
t := zi

t ,l f
− 1

N

∑
j∈N z j

t ,0. Defining qt ,0 := col
(
zi

t ,0

)
− 1 1

N

∑
j∈N z j

t ,0 yields

qt ,0 =
(

IN − 1

N
11T

)
⊗ In col

(
Si
)

xt .

From Theorem 7 we have that

qt =
(
Π− 1

N
11T

)l f

⊗ IN qt ,0 =
(
Π− 1

N
11T

)l f

⊗ In col
(
Si
)

xt .
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Repeating the analysis of the Kalman filter in Section 8.5, we obtain

ei
t+1 = Pt+1Ω̄t+1 Aei

t + Pt+1εt + Pt+1qi
t ,

and the global estimation error et := col
(
ei

t

)
is

et = IN ⊗ (Pt+1Ω̄t+1 A
)

et + IN ⊗ Pt+1εt + N

(
Π− 1

N
11T

)l f

⊗ Pt+1 col
(
Si
)

xt .

Since the estimation error dynamics depends on xt , as can be seen in the last equation, if the system is unstable

then the estimation error is also unstable, and therefore, rigorously, we cannot consider that the distributed

estimation problem is solved with this algorithm. However, if the number of consensus iterations l f is large

then the interconnection between xt and et becomes week, and we can only observe the instability effect if the

algorithm runs for a long time, and the algorithm has a similar performance to the centralized Kalman filter.

A further development in the distributed Kalman filter appears in Olfati-Saber [2009], where it is shown how

to compute the optimal gain matrix of a linear observer given that at each time an agent communicates with

a limited set of neighbours. However, it is also shown that the computation of this optimal gain requires data

from the neighbours of the neighbours, which requires two communication cycles. In addition, the work in

Olfati-Saber [2009] gives a simplified, more tractable, version of the distributed Kalman filter with stability

guarantees, but which requires local observability, i.e. the state of the system can be observed by each sensor

individually. The work in Olfati-Saber and Jalalkamali [2012] builds on the results in Olfati-Saber [2009] to

tackle the problem of simultaneous state estimation and tracking.

More recently, the work in Battistelli and Chisci [2014], Battistelli et al. [2015], Battistelli and Chisci [2016] also

considers the case of many iterations of a consensus algorithm, by taking instead of the consensus matrix Π its

power Πl f . As was seen in Subsection 8.10.1 this consensus-based distributed estimation algorithm has stability

guarantees for the estimation error, unlike Olfati-Saber [2005] when using the standard consensus algorithm.

8.11.2 Consensus-based Luenberger Observer

A central concept in this chapter is that of state estimation using a Luenberger observer. We first consider the

hypothetical centralized case where all the nodes have access to all of the outputs, or equivalently, to the vector

yt := col(yi
t ), and the objective is to estimate the state of the system xt with a bounded error. Let L be a gain

matrix of appropriate dimensions such that ρ(A − LC ) < 1, which can always be found since (A,C ) is detectable.

Further let x̂t ∈Rn denote a state estimate of xt . The centralized Luenberger observer algorithm is described by

x̂t+1 = Ax̂t + L
(
yt −C x̂t

)
.

It follows easily from the above that the estimation error et := x̂t − xt satisfies the dynamics

et+1 = (A − LC )et + wt + L col(vi
t ).

Since ρ(A − LC ) < 1, in the deterministic case where Assumption A7 holds, one can observe from its dynamics

that the estimation error et is ultimately bounded. Similarly in the stochastic case when Assumption A8 holds,

since ρ(A − LC ) < 1 the covariance of the estimation error Pt := E [et eT
t ] is ultimately bounded.

The above centralized version of the Luenberger observer can be re-written in distributed form as follows.

Consider Li ∈Rn×mi such that L := 1
N row(Li ). Then, the estimates x̂t+1 provided by the Luenberger observer
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can be reformulated as the average x̂t+1 := 1
N

∑
i∈N zi

t+1 of the local variables zi
t+1 defined by

zi
t+1 := Ax̂t + Li

(
yi

t −C i x̂t

)
. (8.23)

Due to the limited communication resources, it is in general not possible to compute the average perfectly, and

one must compute an approximation of the average. One possible method of computing an approximation of the

average is the consensus algorithm in Section 7.3 of Chapter 7.

We now consider the application of the consensus algorithm (7.3) to the problem of distributed state estimation.

One would like to compute the the real average value 1
N

∑
j∈N z j

t , with zi
t defined in 8.23. However, in general,

due to bandwidth limitations, it is only possible to perform a finite number of iterations, denoted here as l f , of

the consensus algorithm (7.3).

Since in the proposed approach consensus is unattainable, each agent keeps an internal value x̂i
t , which may

be different from node to node. Therefore, one wants an approximation of the average of the following local

variables

zi
t ,0 := Ax̂i

t−1 + Li
(

yi
t−1 −C i x̂i

t−1

)
, (8.24)

i.e. one wishes to compute an approximation of 1
N

∑
j∈N z j

t ,0. This approximation is computed with l f iterations

of the consensus algorithm (7.3), which in the present case takes the following form:

zi
t ,l+1 = ∑

j∈N

πi , j z j
t ,l ,

Finally, the state estimate is computed as x̂i
t := zi

t ,l f
.

Defining the estimation error of node i as ei
t := x̂i

t − xt , the consensus error as qi
t := x̂i

t − 1
N

∑
j∈N z j

t ,0, and the

average error as eav g
t := 1

N

∑
j∈N x̂ j

t − xt , one can observe that the estimation error satisfies the dynamics

ei
t+1 = (A − LC )eav g

t − qi
t+1 + 1

N

∑
j∈N

(
A − Li C i

)
q j

t + wt + L col(vi
t ). (8.25)

Notice that if the consensus algorithm approaches perfect averaging, i.e. if x̂i
t ≈ 1

N

∑
j∈N z j

t ,0, either because

of a large number of performed iterations l f or because the network is highly connected, the estimation error

dynamics coincides with the hypothetical centralized Luenberger case, since for all i ∈ N we obtain ei
t ≈ eav g

t

and qi
t ≈ 0. Therefore, the performance of the consensus algorithm must be taken into account in the analysis of

the estimation error dynamics. The following theorem provides a lower limit on the number of iterations of the

consensus algorithm, such that stability of the estimation errors is guaranteed.

Theorem 14. Let assumptions A5-A7 hold. Then, given the distributed Luenberger observer defined by

equations (8.19)-(8.22), assuming that the number of consensus iterations satisfies

σ
l f

2 > 1 −‖A − LC‖P1

max
(∥∥A − Li C i

∥∥
P1

)
max

(
1,

‖A−Li C i ‖P1
‖A−LC‖P1

) ,

where P1 is a positive definite matrix such that ‖A − LC‖P1 < 1, the estimation error ei
t := x̂i

t − xt at each node is

ultimately bounded, i.e. there exists a positive scalar ε> 0 such that for all i ∈ N

lim sup
t→∞

‖ei
t ‖ ≤ ε.
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We have seen in Theorem 14 that stability is guaranteed with a known convergence rate for l f sufficiently large.

Moreover, in the stochastic case, for a very large number of consensus iterations, i.e. as l f goes to infinity, the

covariance of the estimation errors as t goes to infinity are the same as the covariance of the estimation error of

the centralized Kalman filter.

8.12 Distributed Linear Time-Invariant (LTI) Observers

We now review time-invariant estimation methods that involve exchange of state estimates among nodes. We

must mention that most methods mentioned above involve, in one form or another, transmitting the covariance

of the estimation error at each node, or the off-line computation and storage of a potentially large number

of matrices. Moreover, since the assumed covariances are, in general, time-varying, it is difficult to obtain

convergence rates of the estimation error beforehand, which is important to know if the observer is used in

connection with another system. In order to avoid communicating covariances among nodes, to save bandwidth,

and to obtain convergence rates of the estimation error, one is naturally led to the use of distributed LTI observers,

or distributed Luenberger observers, which will be studied in depth in this section.

8.12.1 Connectivity-Based Norm Decrease

The concept of distributed Luenberger observer is developed in Khan et al. [2010], which studies the network

tracking capacity of this type of observers, i.e. distributed estimators with fixed innovation gain, which

communicate only once between agents between measurements. Given a set of sensors connected via a

communication network, the network tracking capacity is the maximum vector induced 2-norm of the dynamics

matrix of an observed system such that it is possible to compute a fixed gain matrix for a distributed observer

with guaranteed ultimate boundedness of the estimation error. The authors study observers which depend only

on one parameter to obtain an analytical lower bound on the network tracking capacity, and show that this lower

bound is always greater than one for strongly connected communication graphs.

The main idea of the paper Khan et al. [2010] will be summarized next. The scalar gain estimator proposed in

Khan et al. [2010] has the following form

x̂i
t+1 = Ax̂i

t −αA

(( ∑
j∈N i

(
x̂i

t − x̂ j
t

))
−
(
C i
)T

(yi
t −C i x̂i

t )

)
.

Defining the matrices Ae , G and DC :

Ae := (IN ⊗ A)(InN −αG),

G := L ⊗ IN + DC ,

DC : =

⎡
⎢⎢⎣
(
C 1
)T

C 1 0
. . .

0
(
C N
)T

C N

⎤
⎥⎥⎦ ,

and the time-varying vectors et , ut and gt

et :=
[

ei
t

]
i∈N

,

ut := gt − 1N ⊗ wt ,
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gt := (IN ⊗ A)B

⎡
⎢⎢⎣
(
C 1
)T

v1
t

...(
C N
)T

v N
t

⎤
⎥⎥⎦ ,

the estimation error dynamics are described by

et+1 = Ae et + ut .

Given the above defined matrices, the design process consists of choosing α as

α= argminμ ‖InN −μG‖ = 2

λmax(G) +λmin(G)
,

from which it can be shown that stability is guaranteed if ‖P‖ < 1, that is, if

‖A‖ < 1

‖InN −αG‖ = λmax(G) +λmin(G)

λmax(G) −λmin(G)
.

Following the framework of Khan et al. [2010], the authors in Das and Moura [2013a,c,b, 2015] describe

variations of the distributed Kalman filter algorithms, with consensus on pseudo-innovations, and analyze

their stability. One of the main assumptions in these papers is that the 2-norm of the matrix A in (8.1), ‖A‖,

is smaller than or equal to some value. As seen in the previous analysis in Khan et al. [2010] this bound is

‖A‖ < λmax(G)+λmin(G)
λmax(G)−λmin(G) , which is closely related to the connectivity of the communication network. As a positive

aspect of this design, we note that the design of the observer is very simple requiring only an eigenvalue

decomposition and the transmission to every agent of a scalar value.

8.12.2 Stabilizing the Estimation Errors from a Single Node

The work in Park and Martins [2016] gives a method to design stable distributed LTI observers with very mild

assumptions, which are weaker than strong connectivity of the network. Specifically, it is only required that

all source components, strongly connected subsets of the network with no incoming edges from the rest of the

network, be collectively observable. Since in that paper it is proposed that the gains of all the observers except

one are chosen randomly, it is apparent that this method may not be competitive in terms of performance, as

measured by the convergence rate and ultimate estimation error bound.

The method proposed in Park and Martins [2016] can be summarized as follows. Suppose, without loss of

generality, that we stabilize the observers through node 1, then the observers take the following form for nodes

i ∈ N \1

x̂i
t+1 = A

∑
j∈N i

πi , j x̂ j
t + Li (yi

t −C i x̂i
t ),

where Li ∈Rn×mi , i ∈ N is referred to as the local observer gain. For node i = 1 they are described by

x̂1
t+1 = A

∑
j∈N 1

π1, j x̂ j
t + L1(y1

t −C 1x̂1
t ) + ut .

The estimation error dynamics can then be expressed as

et+1 = AF et + B̄ 1ut +μt ,

where AF =Π⊗ A +∑N
i=1 B̄ i Li C̄ i , B̄ i = ei ⊗ In , C̄ i = eT

i ⊗C i , and μt := 1⊗ In wt +∑N
i=1 B̄ i Li vi

t . From node 1 we

can measure the estimation error e1
t through the innovation ȳt = y1

t −C 1x̂1
t = −C̄ 1et + v1

t . In Park and Martins
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[2016], it is proposed that the observer gains Li be chosen at random from realizations of uniform distributions. It

is shown that for almost all choices of Li the triple (AF , B̄ 1,−C̄ 1) is observable and controllable under collective

observability. Therefore we can choose, through LQR, eigenvalue assignment or any other method, ut = K êt ,

with K ∈Rn×N n , such that AF + B̄ 1K has all eigenvalues inside the unit circle.

To compute êt on node 1 we design an observer of et of the following form:

êt+1 = AF êt + Le (y1
t −C 1x̂1

t +C̄ 1êt ),

with Le such that AF + LeC̄ 1 has all eigenvalues inside the unit circle. Combining the observer of et and

the dynamics of et it follows from the separation principle of linear systems that since ρ
(

AF + B̄ 1K
)< 1 and

ρ
(

AF + LeC̄ 1
)< 1 the observer is stable. As stated previously, this method has a potentially slow convergence

rate. However, we note that the design procedure is simple, and can be done in just one node, all the others are

completely independent and do not require any knowledge of the system model.

8.12.3 Observability Decomposition

Another paper that deals with the general case of collectively observable systems is Mitra and Sundaram [2016],

which gives a method to design stable distributed LTI observers. The method consists of decomposing the

state for each sensor into observable and unobservable subspaces. This decomposition is done sequentially,

i.e. sensor 2 only decomposes the unobservable sub-state of sensor 1 and so forth. Then each sensor estimates

only its observable sub-state and diffuses, with a consensus law, its estimated sub-state. This design method

ensures that convergence occurs sequentially, in that since the observable sub-state of node i , if it exists, depends

on the observable sub-states of nodes up to i − 1, the convergence of the estimation error at i depends on the

convergence of the estimation errors up to that node.

The method proposed in Mitra and Sundaram [2016] consists of performing a state transformation

ξt := T T xt ,

where the unitary matrix T ∈Rn×n is referred to as the transformation map. With this transformation, considering

without loss of generality that the set of sensors with associated observable sub-states is N o = {1, . . . , N o} ⊆ N ,

the state dynamics and measurement equations become

ξt+1 = Āξt +T T wt ,

yi
t = C̄ iξt + vi

t ,

where C̄ i := C i T takes the form for i ∈ N o

C̄ i =
[
C i 1O C i 2O . . . C i (i−1)O C iO 0

]
,

where C i jO and C iO for i , j ∈ N o are local measurement matrices of appropriate size, and with

Ā := T T AT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A1O 0
A21 A2O

...
...

. . .

AN o 1 AN o 2 . . . AN oO

A1 A2 . . . AN o AUO

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where Ai j , AiO , Ai and AUO are local matrices of appropriate size, (AiO ,C iO ) is observable and ρ(AUO ) < 1. The
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analysis in Mitra and Sundaram [2016] guarantees that the transformation T exists for collectively observable

systems. As mentioned before, this transformation T can be obtained sequentially using standard methods of

computing the observability staircase form of a system. Obtaining the observability staircase form of system

(8.1) for sensor 1 we decompose the state of the system in observable and unobservable modes. Then for sensor

2 we only decompose the unobservable modes of sensor 1 and so forth.

This transformation is designed such that the state can be partitioned in multiple sub-states as

ξt =

⎡
⎢⎢⎢⎢⎣

ξ(1)

...

ξ(N o )

ξUO

⎤
⎥⎥⎥⎥⎦ ,

where the measurement equations become

yi
t = C iOξ(i )

t +
i−1∑
j=1

C i jOξ
( j )
t + vi

t .

Moreover, the dynamics of the sub-states ξ(i )
t , i ∈ N take the form

ξ(i )
t+1 = AiOξ

(i )
t +

i−1∑
j=1

Ai jξ
( j )
t +

(
T (i )

)T
wt ,

where T (i ) is the column of T associated with ξ(i )
t . The dynamics of the unobservable sub-state ξUO

t are

ξUO
t+1 = AUOξ

UO
t +

N∑
j=1

A jξ
( j )
t +

(
T UO

)T
wt ,

where T UO is the column of T associated with ξUO
t . It is shown in Mitra and Sundaram [2016] that collective

observability ensures that the transformation map T exists.

The distributed observer can be designed as follows. For the nodes i ∈ N such that i ∉ N o the measurements

are discarded and the observers are simply

x̂i
t+1 = A

∑
j∈N i

πi , j x̂ j
t .

We choose observer gains Li such that ρ(AiO −Li C iO ) < 1, which exist since the pairs (AiO ,C iO ) are observable.

Then, at each node i ∈ N we estimate the sub-states ξ
( j )
t for j ∈ N as ξ̂

( j )i
t and the unobservable sub-state ξUO

t

as ξ̂UO i
t with the following observers. For i , the observer is

ξ̂(i )i
t+1 = AiO ξ̂

(i )i
t +

i−1∑
j=1

Ai jξ
( j )i
t + Li

(
yi

t −
(

C iO ξ̂(i )i
t +

i−1∑
j=1

C i jOξ
( j )i
t

))
.

For j �= i , the observer takes the form

ξ̂
( j )i
t+1 = A jO

∑
l∈N i

πi ,l ξ̂
( j )l
t +

j−1∑
l=1

A j l ξ̂
(l )i
t .

62



8.13. Other Methods

Finally, for the unobservable sub-state the observer is

ξ̂UO i
t+1 = AUO ξ̂

UO i
t +

N∑
j=1

A j ξ̂
( j )i
t .

It is also shown in Mitra and Sundaram [2016] that this design yields stable observers. However, it must be noted

that the design must be done in a centralized fashion and some measurements taken by some sensors (the sensors

not in N o) might be ignored, which can diminish the performance of the algorithm or slow the convergence rate.

Also, since the convergence of the estimation errors occurs sequentially, the performance and convergence rate

depends on the topology of the network and how the sensors are ordered.

8.13 Other Methods

In most of the methods discussed above, the observers take the form

x̂i
t+1 = A

∑
j∈N

πi , j x̂ j
t − Li (yi

t −C i x̂i
t ). (8.26)

There has also been a vast number of works that propose design methods of the observer gains Li through the

solution of some optimization problem such as H2 or H∞ filtering, e.g. Ugrinovskii [2011], Orihuela et al.

[2013], Ugrinovskii [2013]. A similar methodology was used in Viegas et al. [2012] for the H2 filtering design

of a continuous-time distributed observer for the problem of cooperative localization of AUVs.

Observers of the form (8.26) were studied by several authors. The paper Mosquera and Jayaweera [2008] studies

the convergence properties of a distributed Kalman filter of the form (8.26) with time-varying gains Li and

fixed consensus weights. In Matei and Baras [2012], a distributed Luenberger observer of the form (8.26) with

time-varying observer gains and consensus weights which guarantee a certain level of performance with respect

to a quadratic cost is presented. Finally, the paper Doostmohammadian and Khan [2013] analyzes the design of

observers of the form (8.26) based on the results of structured systems, taking into account the structure of the

matrix A in (8.1), the measurement matrices, and the communication graph.

When multiple iterations of the consensus algorithm are allowed between measurements, in Khan and Jadbabaie

[2011] the authors show that it is possible to design distributed estimators with fixed innovation gain, which are

stable if enough iterations of the consensus algorithm are performed. Namely, if the number of iterations are

greater or equal to the primitivity index of the consensus matrix.

Finally, for the case of continuous-time linear systems, in Li and Sanfelice [2014] an optimization based design

method for a continuous-time Luenberger observer is proposed.

8.14 Nonlinear Methods

Until this point we have assumed that the observed system is linear. There are many cases, however, where

this assumption is too restrictive, when the system exhibits nonlinear behaviours. In these cases one should use

methods suitable for distributed state estimation of nonlinear systems.

One of the most popular methods of state estimation is the Extended Kalman Filter (EKF). This method consists

of doing the prediction by solving an ODE with the nonlinear dynamics of the system, and computing the

updated estimate and the covariances based on the linearization of the system about the predicted state. The

extension of this method to the distributed case is studied in Lee and West [2010], Long et al. [2012], where the

authors propose distributed extended Kalman filters based on generalizations of the distributed Kalman filter

63



Chapter 8. Distributed Estimation Survey

found in Olfati-Saber [2005].

Another method of nonlinear state estimation is Moving Horizon Estimation (MHE). In MHE, one computes

on-line the estimates of the past and present states which best fit a finite number H of past measurements, named

the horizon length. In this method we assign a certain cost to the deviation of each state from its prediction taking

into account the previous estimated state, another cost to the deviation from the estimated state at a particular

time and the measurement at that time, and another cost function to the deviation from the estimated state at

t − H , and its estimate in the previous time step. The extension of this method to a distributed setting is given in

Farina et al. [2012], is based on the results from linear systems in Farina et al. [2010]. In the method proposed,

the nodes exchange and perform averaging of estimates of time t −H , where H is the horizon length. The weight

matrix defining the deviation cost of the estimate at t − H , or terminal cost, is also exchanged among nodes and

computed in a distributed fashion.

Finally, there is also the method of particle filtering, which consists of computing the trajectory of several

samples of a probability density function, and attributing a probability to each sample given the measurement

taken. The assumed probability density function is then computed as a weighted sum of kernel functions centered

at the samples. Distributed particle filtering methods can be found in Lee and West [2013] and Manuel and

Bishop [2014]. The methods work by having the nodes exchange samples and fusing the probability density

functions defined by the samples, until consensus is reached.

8.15 Related Problems

There are many problems which fall within the scope of distributed state estimation and can be seen as a

particular case. For each of these problems, different methods have been developed for their solution. We will

discuss in this section a subset of those problems: network localization, distributed detection, distributed static

estimation, and distributed field estimation.

8.15.1 Network Localization

The problem of network localization consists of having each node localizing itself, i.e. estimating its own

position, based on the difference between its position and that of the neighbours. Computing the global BLUE

estimate based on the available measurements, the network localization problem can be cast as the problem of

solving a linear system. In Barooah [2007] and Barooah et al. [2010] it is shown that, for the linear system of

equations that needs to be solved, the Jacobi method for solving linear systems of equations can be implemented

in a distributed fashion. This fact and its implications are extensively studied in Barooah et al. [2010]. Another

method for network localization is given in Todescato et al. [2015] where the communications among agents are

assumed asynchronous and the method is inspired in gradient-based optimization.

8.15.2 Distributed Detection

Distributed detection consists of testing one or more hypothesis given that each node makes a measurement

which depends on each of the hypothesis being valid or not. This problem is similar to distributed state estimation

where the state is discrete and can assume only two values, true or false. Distributed detection was one of

the first problems related to distributed estimation to be studied. Since then, it has been the subject of many

research articles, e.g. Tenney and Sandell [1981], Chair and Varshney [1986], Tsitsiklis [1993], Viswanathan

and Varshney [1997], Blum et al. [1997], Willett et al. [2000], Chamberland and Veeravalli [2003].
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8.15.3 Distributed Static Estimation

If one wants to estimate in a distributed fashion static parameters, then the problem of distributed static estimation

arises. This is a particular case of distributed state estimation when the matrix A in (8.1) is equivalent to the

identity and the process noise is zero. The problem has been the subject of much research for many decades now.

In Borkar and Varaiya [1982] the problem of static estimation with multiple sensors is studied in a stochastic

framework. More recently, in Xiao and Boyd [2004], distributed static estimation is formulated as a consensus

problem and a solution based on distributed averaging is presented. The paper Speranzon et al. [2008] studies

the problem of distributed state estimation of a time varying signal instead of a static parameter, i.e. when there

is process noise. Finally, in Kibangou [2010] a method of distributed static estimation is proposed that considers

network delays and unknown communication channel properties.

8.15.4 Distributed Field Estimation

Distributed field estimation is the problem of estimating a field based on measurements of sensors placed at

different locations, while communicating according to a communication network. This problem was studied in

Delouille et al. [2004] for multiple static sensors and in Cortes [2009] multiple mobile sensors, using the Kriging

method.

8.16 Overview

In Table 8.1 we summarize the main characteristics of the methods discussed in this chapter. We compare

the known correlations method of Section 8.7, the method with exchange of measurements of Section 8.8,

the method of covariance intersection method of Subsection 8.10.1, the consensus-based distributed Kalman

filter of Subsection 8.11.1, the consensus-based distributed Luenberger observer of Subsection 8.11.2, the

connectivity-based norm decrease method of Subsection 8.12.1, the method of stabilizing the estimation errors

from a single node of Subsection 8.12.2 and the observability decomposition method of Subsection 8.12.3

in terms of the assumptions required for stability, or ultimate boundedness, in the deterministic setting, the

optimality of the scheme in the stochastic case, that is, if the estimation errors have the minimum possible

covariance, the type of data exchanged, the communication rate, that is, the amount of times data is exchanged

with the neighbours between two discrete-time instants t and t + 1, the on-line computations that must be done

between two discrete-time instants and the off-line computations required.

In terms of the assumptions required for stability, collective detectability is the most general assumption, and

is the only assumption in many methods. In the consensus-based Kalman filter with the standard consensus

algorithm of Section 7.3 of Chapter 7 there are no stability guarantees if ρ(A) > 1, however if l f is large, the

instability effects might only be noticed when the magnitude of the system state becomes very large.

In the stochastic case, the only optimal scheme given the state estimates of the neighbours is the known

correlations method. The consensus-based methods only recover optimality when the number of consensus

iterations tend to infinity. The distributed linear, time-invariant methods that are discussed in this chapter are not

optimal.

With the exception of the method of exchange of measurements, the type of data exchanged is usually a state

estimate, or a variable of equal size. The covariance intersection scheme also requires the transmission of

information matrices. With the method that only relies on measurements exchange we can only guarantee

stability if we have local detectability, i.e. if the pairs
(

A,col
(
C j , j ∈ N i

))
are detectable for all i ∈ N , since

each sensor does not receive information from other sensors other than the neighbours.
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Method Assump.
for stability

Optimality Type of
data com.

Com. rate On-line
comp.

Off-line
comp.

Known Cor-
relations

Collective

detectability

Yes x̂i
t ∈Rn Once

between two

DT instants

Each node

inverts of N
matrices of

size greater

than n

Init. with PD

matrices

Exchange
of Meas.

Local

detectability

Yes, given

only the

meas. from

neighbours

yi
t ∈Rmi Once

between two

DT instants

Standard KF

comp.

Init. with PD

matrices

Covariance
Intersection

Collective

detectability

No x̂i
t ∈Rn

Ω̄i
t ∈Rn×n

Once

between two

DT instants

Equivalent

to Standard

KF comp.

Init. with PD

matrices

Consensus-
Based Dist.
Kalman
Filter

ρ(A) < 1 Yes, when

l f → ∞
zi

l ,t ∈Rn l f iterations

between two

DT instants

Standard KF

comp.

Init. with PD

matrices,

and Init. of

consensus

algorithm

Consensus-
Based
Luenberger
Observer

Collective

detectability

and

sufficiently

large l f

Yes, when

t → ∞ and

l f → ∞

zi
l ,t ∈Rn l f iterations

between two

DT instants

Mult. and

additions of

the order of

n2

Solving an

ARE of size

n, and Init.

of consensus

algorithm

Connec.-
Based
Norm
Decrease

Sufficiently

small ‖A‖
No x̂i

t ∈Rn Once

between two

DT instants

Mult. and

additions of

the order of

n2

Eigenvalue

decomp. of a

matrix of

size N n
Stab. the
Est. Errors
from a
Single Node

Collective

detectability

No, and

might

converge

slowly

x̂i ∈Rn Once

between two

DT instants

Mult. and

additions of

the order of

n2

Solving an

ARE of size

N n

Observ.
Decomp.

Collective

detectability

No x̂i ∈Rn Once

between two

DT instants

Mult. and

additions of

the order of

n2

Solving N
AREs of dim.

smaller than

n

Table 8.1 – Comparison between different distributed estimation methods. The cells colored in green correspond

to the best methods for a particular characteristic, in red the most disadvantageous methods and in yellow

methods with intermediate characteristics.

Regarding the communication rates there are multiple communications between two discrete-time instants t

and t + 1 on the consensus based methods, and just one communication between two instants for all the other

methods.

In terms of on-line computations, the linear time-invariant methods, including the consensus-based Luenberger

observer, are the most efficient, requiring a number of multiplications in the order of n2 and a number of sums in

the order of n. The worst method in terms of on-line computations is the method with known correlations, since

between each two time instants we need to compute all the covariances and cross-covariances of the estimation

errors, which involve inverting N matrices of size n
∣∣N i

∣∣×n
∣∣N i

∣∣. All the other methods perform computations

equivalent to the standard Kalman filter computations, involving the inversion of an n × n matrix.
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Finally, regarding off-line computations, most methods, except the linear time-invariant methods, just require

the initialization with positive definite matrices. In the case of consensus-based methods, we require also the

initialization. With the linear time-invariant methods we simplify the on-line computations by increasing the

complexity of the off-line computations, which usually involve the computation of the solution of algebraic

Riccatti equations, except in the connectivity-based norm decrease method, which requires the computation of

the eigenvalues of an N n × N n matrix.

From the analysis above it is apparent that some methods are more adequate for certain situations. When on-line

computations are very fast compared to the sampling rate of the system and communications expensive, the

known correlations method of Section 8.7 is a better choice. When the nodes have little computational power,

communications are expensive, and there is an off-line design phase where a central computer has information

about all the nodes, the distributed Luenberger observers such as the ones in Section 8.12.2 or 8.12.3 fare better.

When computations are expensive and communications are relatively inexpensive when compared to the required

performance, the consensus-based Luenberger observer of Section 8.11.2 is better. When off-line computations

are infeasible and on-line computations and communications are relatively expensive, the covariance intersection

method of Section 8.10.1 is more adequate.
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9 A New Design Method for a Distributed
Luenberger Observer

9.1 Introduction

This section addresses the problem of designing distributed observers for discrete linear time-invariant (LTI)

systems with distributed sensor nodes subjected to bounded measurement noise. A solution is proposed

in terms of a distributed LTI Luenberger observer that departs from common linear time-varying solutions

rooted in consensus-based distributed estimation techniques. The solution does not require the exchange of

covariance matrices. It is shown, under the conditions of collective observability, strong connectivity of the

sensor communication network, and invertibility of the matrix A in (8.1) that the resulting observer yields

ultimate boundedness of the estimation error. A design example is given where the asymptotic performance of

the proposed observer is shown to be similar to that obtained using a time-varying distributed Kalman filtering

approach.

As with any distributed Luenberger observers seen in Chapter 8 the proposed method is more advantageous than

the other described methods in terms of required communications or required on-line computations. Comparing

with other distributed Luenberger observer methods seen in Chapter 8, the method in this chapter can be more

advantageous in that the off-line design process can be performed in a distributed fashion with a finite number of

iterations, and its performance is potentially better in some cases as illustrated in simulations of a particular case.

9.2 Algorithm

In what follows, to simplify the notation, we will omit the time index t . For this purpose, for a time-varying

vector xt , when omitting the time index t we will use the notation x+ to refer to xt+1.

Consider the consensus coefficients πi , j ≥ 0, where i , j ∈ N and πi , j = 0 if j ∉ N i , πi , j > 0 if j ∈ N i and∑
j∈N πi , j = 1, and the consensus matrix Π whose i j th element is πi , j and which is primitive, i.e. there exists an

integer k > 0 such that Πk is strictly positive. As was mentioned in Section 7.2, if the network (N ,A ) is strongly

connected and aperiodic this condition is satisfied. Note that since we only require Π to be stochastic and not

doubly stochastic, for an arbitrary network each node of the network i ∈ N can compute its local consensus

coefficients knowing the number of in-neighbours N i for example as

πi , j =
{

1
|N i | , if j ∈ N i

0, otherwise
.
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The algorithm proposed in this section has the following form:

x̂i+ = A
(
Ωi
)−1
( ∑

j∈N

πi , j Ω̄ j x̂ j +
(
C i
)T (

Ri
)−1

yi

)
, (9.1)

where Ωi , and Ω̄i are appropriately chosen positive definite matrices of size n × n, n is the size of the state x,

and Ri is a positive definite matrix of size mi × mi , where mi is the size of the measurement vector yi .

This observer algorithm is similar to the distributed Kalman filter with consensus on information given in

Battistelli et al. [2015]. However, in the present we consider that the matrices Ωi and Ω̄i are fixed in time.

The main problem that we address in this chapter is how to compute the matrices Ωi and Ω̄i . The design method

is described in the next subsection.

9.3 Design

The design proceeds is as follows. We first choose the parameter 0 < β̃< 1 and define the matrix

Ω̃i :=
k̄−1∑
τ=0

β̃τ
(

A−τ
)T ( ∑

j∈N

π
i , j
τ S j

)
A−τ, (9.2)

where Si := (C i
)T (

Ri
)−1

C i , π
i , j
τ is the element i , j of matrix Πτ, k̄ := k + n where k is the primitivity index of

Π, i.e. the lowest integer such that Πk is strictly positive, and n is the dimension of the state. It can be seen, from

the collective observability property and the fact that Πk is strictly positive, that Ω̃i is positive definite

Given the above we may compute the matrix Ω̄i as

Ω̄i := β̃
(

A−1)T Ω̃i A−1. (9.3)

Finally Ωi is computed as

Ωi := Si + ∑
j∈N

πi , j Ω̄ j . (9.4)

The motivation for this choice of matrices Ωi and Ω̄i is given in the proof of stability presented in the next

subsection.

From equations (9.2), (9.3) and (9.4) one can observe that the design can be done in a distributed fashion in k̄

steps. Since the observer is linear, each node is only required to store its own state estimate, and perform a finite

number of multiplications and sums at each time of the order of nmi , where n is the dimension of the state and

mi is the size of the measurement at sensor i .

In contrast with the design method of this chapter, the methods in Mitra and Sundaram [2016], Park and Martins

[2016] and Khan et al. [2010] require the observers to be designed beforehand in a centralized fashion. Similarly

to the method proposed in this paper, since those methods yield linear observers, they just require a finite number

of operations at every step of the order of nmi . In Park and Martins [2016], one of the observers is also required

to store and perform computations with an augmented state of the order of N , the number of sensors. It should

also be noted that the method in Battistelli et al. [2015] does not require an a priori design of the observers.

However, it requires a matrix inversion at every time.

70



9.4. Main Theorem

9.4 Main Theorem

Before proceeding to the main result of this chapter the following result is in order.

Lemma 4. Consider the matrices Ω̃i , and Ωi computed as in (9.4) and (9.2) respectively. Given assumptions

A6-A7, and assuming that the system (8.1)-(8.2) is collectively observable, we obtain

Ωi � Ω̃i .

Proof. Using the fact that the system is collectively observable and π
i , j

k̄
> 0 for all i , j ∈ N , we have that

β̃k̄
(

A−k̄
)T (∑

j∈N π
i , j

k̄
S j
)

A−k̄ is positive definite. It then follows that

Ωi = Si + ∑
j∈N

πi , j Ω̄ j

= Si +
k̄∑

τ=1
β̃τ
(

A−τ
)T ( ∑

j∈N

π
i , j
τ S j

)
A−τ

= Ω̃i + β̃k̄
(

A−k̄
)T ( ∑

j∈N

π
i , j

k̄
S j

)
A−k̄

� Ω̃i ,

We now present the main result of this chapter.

Theorem 15. Consider the distributed LTI observer (9.1), with matrices Ωi , and Ω̄i computed as in (9.3)-(9.4).

Given assumptions A6-A7, and assuming that the system (8.1)-(8.2) is collectively observable, the estimation

errors x̂i − x, i ∈ N are ultimately bounded with ultimate bounds on ‖x̂i − x‖, i ∈ N proportional to the bounds

on the magnitude of the noise εw > 0 and εvi , i ∈ N .

Proof. We first consider the noiseless case

x+ = Ax,

yi = C i x.

Defining the estimation error as ηi := x̂i − x it follows from (9.1) that

ηi+ = A
(
Ωi
)−1
( ∑

j∈N

πi , j Ω̄ j x̂ j + Si x −Ωi x

)

= A
(
Ωi
)−1
( ∑

j∈N

πi , j Ω̄ jη j

)
,

where the last equality is obtained using (9.4), and the fact that Π is stochastic.

Define the local cost function L i := (ηi
)T

Ω̄iηi . Using (9.3)-(9.4), Lemma 2 of Battistelli and Chisci [2014], the

fact that Ωi � Ω̃i (from Lemma 4) and that A is invertible, it follows that

L i+ =
( ∑

j∈N

πi , j Ω̄ jη j

)T (
Ωi
)−1

AT Ω̄i A
(
Ωi
)−1
( ∑

j∈N

πi , j Ω̄ jη j

)
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= β̃

( ∑
j∈N

πi , j Ω̄ jη j

)T (
Ωi
)−1

Ω̃i
(
Ωi
)−1
( ∑

j∈N

πi , j Ω̄ jη j

)

≤ β̃

( ∑
j∈N

πi , j Ω̄ jη j

)T (
Ωi
)−1

Ωi
(
Ωi
)−1
( ∑

j∈N

πi , j Ω̄ jη j

)

≤ β̃

( ∑
j∈N

πi , j Ω̄ jη j

)T ( ∑
j∈N

πi , j Ω̄ j

)−1 ( ∑
j∈N

πi , j Ω̄ jη j

)

≤ β̃
∑

j∈N

πi , jη j T Ω̄ jη j = β̃
∑

j∈N

πi , j L j .

In vector form, defining L := col
(
L i
)

yields

L + ≤ β̃ΠL ,

where the inequality is interpreted element-wise.

Since Π is stochastic, 1 is an eigenvalue and we can find its left eigenvalue p which satisfies pT Π= pT . Finally,

defining the Lyapunov function V := pT L we can compute

V + = pT L + ≤ β̃pT ΠL = β̃pT L = β̃V .

Since the Lyapunov function decreases at each step, we have that the estimation errors for the noiseless case

converge to zero. Therefore, from Assumption A7 and classical results on LTI systems (e.g. Theorem 9.6 of

Hespanha [2009]), since the error dynamics are linear time-invariant, one can compute an ultimate bound on the

estimation error - using the solution to a generic non-homogeneous discrete-time linear time invariant system

(given in Section 6.5 of Hespanha [2009] or in Theorem 6) - that is proportional to εw and εvi , and the Theorem

follows.

Remark. In Theorem 15 we used the assumption that the system is collectively observable instead of detectable
as in Assumption A5. However, as was mentioned in the remark of Section 8.10.1, if the system is not collectively
observable and Assumption A5 holds, it can be shown that the estimation error is ultimately bounded using the
same method of Appendix C.1, that is, by performing an observability decomposition of the system and showing
that the estimation errors associated to the unobservable subspace are naturally stable, and that Theorem 15
shows that the estimation errors associated with the observable subspace are stable.
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9.5 Computation

To make clear the distributed nature of the design process and the low on-line computational requirements, we

now summarize the computational details of the proposed distributed Luenberger observer and its design. The

design algorithm is described as follows.

Data: β̄, Si , A and πi , j , j ∈ N i

Result: Ω̄i and Ωi

Ω̃i = Si

l = 0

while l < k̄ do
Receive Ω̃ j , j ∈ N i from in-neighbours

Ω̃i = β̃
(

A−1
)T (∑

j∈N i πi , j Ω̃ j
)

A−1

Send Ω̃i to out-neighbours

l = l + 1
end
Ω̄i := β̃

(
A−1

)T
Ω̃i A−1

Ωi := Si +∑ j∈N πi , j Ω̄ j

Algorithm 1: Design algorithm.

The on-line computations are simply described by the following algorithm.

Data: πi , j A
(
Ωi
)−1

Ω̄ j , A
(
Ωi
)−1 (

C i
)T (

Ri
)−1

, yi , x̂i and x̂ j , j ∈ N i

Result: x̂i+

x̂i+ =∑ j∈N πi , j A
(
Ωi
)−1

Ω̄ j x̂ j + A
(
Ωi
)−1 (

C i
)T (

Ri
)−1

yi

Algorithm 2: On-line computations.

Notice that the matrices πi , j A
(
Ωi
)−1

Ω̄ j and A
(
Ωi
)−1 (

C i
)T (

Ri
)−1

for i ∈ N and j ∈ N i can be precomputed

off-line, and therefore the on-line computations consist of
∣∣N i

∣∣n2+nmi multiplications and n
(∣∣N i

∣∣n + mi − 1
)

sums.

9.6 Illustrative Example

In this section we illustrate the performance of the algorithm proposed in this chapter through a design exercise.

We also compare its performance against that obtained with other methods available in the literature. Namely,

the scalar gain observer method of Khan et al. [2010] (an algorithm that requires a bound on the L2 norm of A),

the distributed Kalman filter algorithm with consensus on information (and not on measurements) in Battistelli

et al. [2015], and the method in Park and Martins [2016].

In order to assess the performance of the distributed algorithms, we will consider a distributed system of the

form (8.1)-(8.2) with collective but not local observability where the eigenvalues of A can be assigned. We will

consider a network of 11 nodes. The dynamical system considered has matrix A defined as A := λdiag
(

Ai
)
,

where Ai is a random unitary matrix and λ will be defined later. This matrix represents a setting where we have

a set of heterogeneous systems with decoupled dynamics, all having the same eigenvalues.

Let ei be a row vector with 1 at position i and zero at every other position. With this notation, the observation

matrices are defined as

C i :=
[

(ei − ei+1)T

(ei−1 − ei )T

]
⊗ I2,
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except at i = 1, where we replace i −1 by N , and at i = N , where we define C N := eT
N ⊗ I2. This set of observation

matrices translates to a setting where the heterogeneous systems with decoupled dynamics mentioned above

have coupling in the measurements. It can be observed that with this choice of A and C matrices we have

collective observability but not local observability at each node, thus requiring the use of distributed observers to

reconstruct the state.

The process and measurement noises are generated randomly with a Gaussian distribution. With this method

of stochastic noise generation one cannot determine beforehand the noise bounds; however, at each realization

the noise is bounded and we have that the estimation errors are ultimately bounded for stable observers. The

covariances chosen for the noises were Q = I2N for process noise and Ri = 10−2Imi for measurement noise. The

initial state is also randomly generated with a Gaussian distribution with covariance P0 = 102I2N . The matrix Ri

in (9.1) was set equal to the covariance of the measurement vi . The communication network considered was an

undirected circular network, i.e. the neighbor set at each node is defined as N i := {i − 1, i + 1} except at node

i = 1 where it is N i := {N ,2}, and at node i = N where it is N i := {N − 1,1}.

In what follows we will compare the different algorithms in terms of the norm of the global estimation, i.e.

‖col
(
x̂i − x

)‖. To remove the randomness effect of a single simulation run, we perform 50 runs and plot the

average values.

In the algorithm proposed in this chapter, stability is guaranteed for any choice of the parameter β̃ satisfying

1 > β̃ > 0. To assess the effect of the choice of β̃ we plot in Figure 9.1 the norm of the estimation error for

different values of β̃, when λ= 1.05.
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Figure 9.1 – Norm of estimation error for different choices of β̃.

We can observe from Figure 9.1 that, for this case, the best asymptotic performance is achieved for a value of

β̃= 0.3 and this is the parameter choice that will be used in the following simulations. In the following plots

we will present the results of the scalar gain observer in Khan et al. [2010] in red, the distributed Kalman filter

in Battistelli et al. [2015] in green, the method in Park and Martins [2016] in blue, the method in Mitra and
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Sundaram [2016] in cyan, and the algorithm of this chapter in magenta. For reference we also plot the norm of

the stacked state vector ‖1 ⊗ I2N x‖ = �
N‖x‖ in black. The results for λ= 0.9 are shown in Figure 9.2 and the

results for λ= 1.05 are shown in Figure 9.4.
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Figure 9.2 – Norms of global estimation errors for λ= 0.9. The results for the scalar gain observer in Khan et al.

[2010] are in red, for the distributed Kalman filter in Battistelli et al. [2015] in green, for the method in Park and

Martins [2016] is in blue, for the method in Mitra and Sundaram [2016] in cyan, for the algorithm of this chapter

is in magenta, and for the norm of the stacked state vector is in black.

From Figure 9.2 one can observe that all estimators are stable. However, the observer in Park and Martins

[2016] has worse convergence rates and worse asymptotic errors than that of the stacked state norm. This is not

surprising since the observer gains in all of the nodes except one are assigned randomly. We can also notice that

the asymptotic bound of the estimation error of the observer proposed in this chapter is slightly lower than the

ultimate bound observed for the method in Battistelli et al. [2015], and is lower than the other methods that are

being compared.

Figure 9.4 shows that, since the norm of the state transition matrix is greater than the bound required for stability

in Khan et al. [2010], the method in the latter paper yields an unstable observer, although with an increase

rate lower than that of the stacked state. Also, as expected, the observer designed with the method in Park and

Martins [2016] is stable, but has a very high asymptotic estimation error when compared to the other stable

methods. The method in this chapter converges faster and achieves a smaller ultimate error than the method in

Mitra and Sundaram [2016]. Finally, it must be stressed that the asymptotic performance and the convergence

rate of the method proposed in this chapter is comparable to those achieved by the method in Battistelli et al.

[2015]. Recall, also, that in Battistelli et al. [2015] there is exchange of the covariance matrices.

9.7 Conclusion

In this chapter we provided the design method of an LTI observer with guaranteed stability, which departs from

common linear time-varying solutions rooted in consensus-based distributed estimation techniques, and does

not require exchange of covariance matrices. It was shown, under the conditions of collective observability,
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Figure 9.3 – Close-up of Figure 9.2.
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Figure 9.4 – Norms of global estimation errors for λ= 1.05.
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strong connectivity of the sensor communication network, and invertibility of A that the resulting observer yields

ultimate boundedness of the estimation error. From the simulation results of an illustrative example we show that

the asymptotic performance of the proposed observer is shown to be similar to that of Battistelli et al. [2015].

Continuing the table of Section 8.16, the method proposed in this chapter has the following characteristics. We

Method Assump.
for stability

Optimality Type of
data com.

Com. rate On-line
comp.

Off-line
comp.

New Dist.
Luen. Obs.

Collective

detectability

No x̂i ∈Rn Once

between two

DT instants

Mult. and

additions of

the order of

n2

Distributed

algorithm

with k̄
iterations

can observe that the proposed method of this chapter is equivalent to the other distributed Luenberger observers

seen in Chapter 8 in terms of required communications or required on-line computations and therefore fares

better than the other described method in those aspects. The advantage with regard to the other distributed

Luenberger observer methods of the method in this chapter is that the off-line design process can be performed

in a distributed fashion with a finite number of iterations, whereas the other methods require a centralized

design process with knowledge of information from all the nodes. Also, although the method is not optimal in

the stochastic case, compared to the other distributed Luenberger observers, the performance in terms of the

asymptotic norm of the estimation errors is potentially better as illustrated in the simulations of a particular case.

A number of topics warrant future research. Namely, optimizing the selection of parameter β̃, designing plug

and play procedures for adding and removing sensors and, because we have a-priori known convergence rates,

one can explore the use of progressive quantizers to exchange messages as in the case of Chapter 12.
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10 Cooperative Path-Following with Logic-
based Communications

10.1 Introduction

As was mentioned in the introduction of this thesis, in the field of cooperative motion control, a wide range

of applications require the solution of the problem of cooperative path following (CPF). The problem of CPF

consists of, given N autonomous vehicles and different spatial paths assigned to them, deriving control laws to

drive and maintain the vehicles on their paths with desired speed profiles, holding a specified formation pattern.

A common strategy to solve the CPF problem consists of decoupling the CPF problem in i) a path-following (PF)

problem, where the goal is to derive closed loop control laws to drive each vehicle to and follow its assigned

path while tracking a path-dependent speed profile and ii) a multiple vehicle coordination problem, where the

objective is to adjust the speed of each vehicle so as to achieve the desired formation pattern. The PF problem

has been extensively addressed in the literature, see for example Dagci et al. [2003], Soetanto et al. [2003],

Skjetne et al. [2004] and Plaskonka [2012].

The coordination problem, however, requires further study to address the limitations of the communication

network between vehicles. These limitations are particularly stringent in underwater applications due to the

communications medium. However, in the literature some of these issues have been addressed using graph theory

to model the communication network and Lyapunov-based techniques to cope with intermittent communication

failures and switching topologies; see for example Moreau [2005], Ihle et al. [2006], Ghabcheloo et al. [2006]

and Ghabcheloo et al. [2009].

This chapter extends the CPF framework discussed in Ghabcheloo et al. [2006, 2009] to take into account that

communication between vehicles occur at discrete instants, instead of continuously. In this respect the results of

this chapter go further than in Ghabcheloo et al. [2006, 2009], where communication failures and switching

topologies were considered, but communications take place continuously. The goal of this chapter is also to

minimize the frequency of information exchange between vehicles. For this purpose, we borrow ideas from

Yook et al. [2002] and Xu and Hespanha [2006] which consider distributed control systems, where the controller

for each system uses the states of its own system and estimates of the states of the systems it communicates

with. The communication strategy considered there assumes that each system has an internal estimator of its

own state, synchronized with its neighbors. This setup allows each system to determine the estimation error of

its neighbours by taking the difference between the actual and the estimated state. The communication logic

consists of only transmitting information when the estimation error exceeds a certain threshold. With this method

communication occurs asynchronously at discrete instants of time.
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The general idea of event-triggered control, where a task such as broadcasting a variable or applying a control

input only when a certain condition is satisfied has been the subject of many works such as Tabuada [2007],

Aström [2008], Lunze and Lehmann [2010], Jetto and Orsini [2011] and Donkers and Heemels [2012] for single

systems and Mazo and Tabuada [2011], De Persis and Wirth [2011], Wang and Lemmon [2011] and Wang et al.

[2012] for multiple agents. In the context of control of multiple agents it is important that each agent is able

to compute its own triggering condition, which leads to the field of self-triggered control, see e.g. Yook et al.

[2002], Velasco et al. [2003], Xu and Hespanha [2006], Wang and Lemmon [2009], Mazo et al. [2010], Anta

and Tabuada [2010], Shanbin and Bugong [2011] and Battistelli et al. [2012].

The works of Dimarogonas and Johansson [2009], Dimarogonas et al. [2012], Seyboth et al. [2013] and Fan

et al. [2013] use the principle of self-triggered communications on consensus of single or double integrators. In

Dimarogonas and Johansson [2009], Dimarogonas et al. [2012] a control law for continuous-time consensus

with event-based communications is given, where it is considered that the estimates of the neighbouring states

are piecewise constant and only change at communication times. The paper Dimarogonas et al. [2012] proposes

multiple communication triggering conditions (CTC) with different characteristics. One of the proposed CTCs

can only be computed centrally, another can be computed distributively with information from the neighbours,

and the last one is completely distributed and only requires local information. The work in Seyboth et al. [2013]

proposes a time-varying CTC that can be computed distributively, and also addresses consensus of double

integrators. The work in Fan et al. [2013] provides a consensus algorithm where the agents read the states of the

neighbours at communication times rather than sending their own states, and provides a communication protocol

to compute the communication times guaranteeing stability of the scheme.

The application of event-triggered communications to the problem of consensus of linear or nonlinear multi-agent

systems is analyzed in Guo et al. [2014], Garcia et al. [2014], Viel et al. [2016] and Almeida et al. [2017]. In

Guo et al. [2014], a consensus control law of continuous-time systems with self-triggered communications is

proposed where the triggering conditions is evaluated periodically. The work in Garcia et al. [2014] provides

an algorithm with guaranteed convergence to consensus, where the state estimates do not take into account

the control input, and therefore each agent only needs to estimate the states of the neighbours. Alternatively,

Viel et al. [2016] proposes an estimator taking into account estimates of the states of all the agents. Here,

convergence to consensus is guaranteed by using unsynchronized estimates of the neighbours for control, and

less accurate estimates synchronized among neighbours, to provide an upper bound of the estimation error of the

more accurate estimate. Finally, Almeida et al. [2017] extends the work in Seyboth et al. [2013] for LTI systems

and directed networks.

Regarding more complex system models, the work in Viel et al. [2017] extends the work in Viel et al. [2016] for

Euler-Lagrange systems, and Jain et al. [2017] applies some principles in Seyboth et al. [2013] to the problem of

cooperative path following with self-triggered control. However, the evaluation of triggering condition requires

continuous communications with the neighbours. In the work of this chapter, we use the same principles in

Seyboth et al. [2013] and Jain et al. [2017] on the problem of coordinated path-following yielding a control

algorithm with self-triggered communications.

This work is a continuation of the work in Vanni [2007] and Vanni et al. [2008] in that we provide full proofs of

stability of the cooperative path-following algorithms that consider the interconnection between the coordination

controller and the path-following controller when it exists, and we design an algorithm where that interconnection

does not exist. Moreover, in the stability proofs we consider explicitly the delays and provide an upper bound

on the delay such that the closed-loop system is stable. Also, unlike Vanni [2007] we define formally the filter

structure for an arbitrary network.
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10.2 Coordinated path-following control system architecture

This chapter proposes a CPF control architecture for a group of N decoupled agents, Σi , i ∈ N modeled by

general systems of the form

Σi : ẋi = Fi (xi ,ui , wi ) , (10.1a)

yi = H i (xi ,ui , vi ) , (10.1b)

zi = Ji (xi ) , (10.1c)

where xi ∈Rni denotes the state of agent i , ui ∈Rmi its control input, yi ∈Rpi its measured noisy output, wi an

input disturbance, and vi measurement noise. The output zi ∈Rqi is a signal that we require to reach and follow

a desired feasible path zdi : R→Rqi parametrized by γi ∈R. The following notation is required:

zdi (γi ) :=

⎡
⎢⎢⎢⎢⎢⎢⎣

zdi (γi )
∂zdi
∂γi

(γi )
...

∂k zdi

∂γk
i

(γi )

⎤
⎥⎥⎥⎥⎥⎥⎦

, vr (γi ) :=

⎡
⎢⎢⎢⎢⎢⎣

vr (γi )
∂vr
∂γi

(γi )
...

∂l vr

∂γl
i

(γi )

⎤
⎥⎥⎥⎥⎥⎦ , γi :=

⎡
⎢⎢⎢⎢⎣

γi

γ̇i
...

γ(n)
i

⎤
⎥⎥⎥⎥⎦ .

The generalized path zdi is a vector that contains the desired path zdi and its partial derivatives with respect to

γi up to some order k, the generalized speed profile vr is a vector that contains the reference speed vr and its

partial derivatives with respect to γi up to some order l and the generalized path variable γi is a vector that

contains the path-following variable γi and its time derivatives up to some order n.

In this chapter we introduce a new architecture for the coordinated path-following control system (CPFCS). The

CPFCS consists of a control system for each agent which communicates with a set of neighbours. The innovation

in this chapter consists of introducing a communication system which considers asynchronous communications

between agents.

The objective of CPFCS is to drive the output of each agent zi to converge to and remain inside a tube centered

around the desired path zdi (γi ), while ensuring that its rate of progression γ̇i also converges to and remains

inside a tube centered around the desired speed profile vr (γi ). Additionally, CPFCS must also guarantee that

the path variables γi , i ∈ N , are synchronized, that is, all the coordination errors γi −γ j , i , j ∈ N converge to

and remain inside a ball around the origin. The path variables γi may also be called parameterizing variables,

path-following variables or, given their role in the coordination of agents, coordination states.
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Figure 10.1 – Coordinated path-following control system (CPFCS) architecture with logic-based communication

system.

The architecture for a general CPFCS proposed in this chapter is shown in Figure 10.1. The CPFCS architecture

consists of three interconnected subsystems for each agent:

Path-following controller (PFC, see Figure 10.1) - This is a dynamical system whose inputs are a spatial path

zdi , a desired speed profile vr that is common to all agents, and the agent’s output yi . Its output is

the agent’s input, computed so as to make it follow the path at the assigned speed, asymptotically. In

preparation for its connection with the coordination controller, this system produces also a generalized path

zdi , a generalized speed profile vr and a generalized path variable γi . Furthermore, it accepts corrective

speed action from the coordination controller via the signal ṽri . This corrective action is aimed at making

the vehicles synchronize along the paths. Notice that the dynamics of the parameterizing variable γi are

defined internally at this stage and play the role of an extra design knob to tune the performance of the

path-following control law.

Coordination controller - This is a dynamical system whose inputs are the measured noisy output yi , the

desired generalized path zdi and speed profile vr
(
γi
)
, the generalized path variable γi , and estimates of

the generalized coordination states γ j ; j ∈ N i , where N i is defined as the set of neighbours of agent i th.

Its output is the correction speed signal ṽri , which is used to synchronize agent i with its neighbours.

Logic-based communication system - This is a logic-based dynamical system that makes the interface with

the network system through which the agents output yi , the generalized desired path zdi , the generalized

speed profile vr , and the generalized path variable γi can be communicated to the neighbour agents. Its

output is an estimate γ̂ j of the generalized coordination states of the neighbouring agents γ j , j ∈ N i . This

communication system has knowledge of the spatial paths zdl , l ∈ N , and the desired speed profile vr

In order to assess what are the necessary conditions for the CPFCS to achieve its goals, the objectives must be
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precisely defined in the form of the CPF problem. In Ghabcheloo et al. [2009], the CPF problem was defined

and conditions were derived so that the path-following and coordination controllers solve the CPF problem.

In Section 10.3 we will derive the conditions for the CPFCS to solve robustly the CPF problem, considering

bounded estimation errors of the path variables. In the same Section we introduce the communication problem,

that amounts to guaranteeing that the estimation error is bounded with asynchronous communication between

agents. In Section 10.4 we will give an example of a CPFCS design which solve the CPF problem for a class of

autonomous marine vehicles.

10.3 Problem statement

The purpose of the path-following and coordination controllers is to solve robustly the CPF problem, assuming

that each agent estimates the coordination state of its neighbours with bounded estimation error.

In this section we will review the concepts of a path-following controller and a coordination controller present

in Ghabcheloo et al. [2009], while also considering estimation errors of the neighbours’ path-variables. As

in Ghabcheloo et al. [2009] we will apply the small gain theorem to derive conditions under which the

interconnection between the path-following controller and the coordination controller is stable.

10.3.1 Path-following controller

As stated in Skjetne et al. [2004], a path following controller can be considered to have two assignments, the

geometric task and the dynamic task. The geometric task consists of driving the agent output zi to a desired

path zdi parametrized by a continuous scalar variable, the path-following variable γi . The dynamic task consists

of forcing the path-following variables γi to a certain dynamic behaviour. More specifically, the dynamic task

considered in this section is a speed assignment where we require the parameterizing variables to have a desired

speed vr (γi ), assumed to be globally Lipschitz in γi .

For the sake of clarity and rigor, in what follows we give a formal definition of the output path-following problem.

This is instrumental in understanding the conditions that a path-following controller must satisfy in order to

perform successfully the geometric and dynamic tasks.

Since a path-following controller acts as a feedback controller for the agent Σi , its output is the agent control input

ui and admits as input the agent’s output yi . Also, it requires a reference of the desired path and speed profile,

therefore it admits as input the generalized desired path zdi and speed reference vr . Finally, the path-following

controller also admits a correction speed signal from the coordination controller ṽri . Before proceeding with

the definition of the path-following problem, we have to define the class of admissible speed profiles Vr which

is the set of continuously differentiable functions in R and for a function vr ∈ Vr , the class of admissible paths

Zdi (vr ) which is the set of continuously differentiable functions zdi : R→Rn , such that there exists a function

u∗
i : Rni ×R→Rmi such that for any γ ∈R and x∗

i ∈Rni satisfying zdi (γ) = Ji
(
x∗

i

)
we have

∂zdi

∂γ
(γ)vr (γ) = ∂Ji

∂xi

(
x∗

i

)
Fi
(
x∗

i ,u∗
i (x∗

i ,γ),0
)

.

Definition 4 (Path-following problem). Consider a set of n agents Σi , i ∈ N with dynamics (10.1) and let Zdi

and Vr be the classes of admissible paths and speed profiles, respectively. We say that a given set of controllers

given by Σ
p f
i , i ∈ N

Σ
p f
i : ẋp f

i = F
p f
i

(
xp f

i , yi , zdi , vr (γi ), ṽri

)
, (10.2a)
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ui = H
p f
i

(
xp f

i , yi , zdi , vr (γi ), ṽri

)
, (10.2b)

solves robustly the output path-following problem if for every prescribed speed profile vr ∈ Vr and path

zdi ∈ Zdi (vr ), there exist functions σe
w ,σe

v ,σe
ṽr

,σe ∈ K∞,βe ∈ K L , a non-negative scalar μ and a signal error

e such that for each initial condition x0 := col
(
xi (0), xp f

i (0)
)

and bounded signals w := col(wi ), v := col(vi )

and ṽr = col
(
ṽri

)
, all the states of the closed-loop system (10.1)-(10.2), i ∈ N with the exception of γi (t ) are

bounded, the path-following errors

ei (t ) := zi (t ) − zdi (γi (t )),∀i ∈ N ,

and speed errors

eγ̇i (t ) := γ̇i (t ) − vr (γi ),∀i ∈ N ,

satisfy the detectability condition

‖ei (t )‖+‖eγ̇i (t )‖ ≤σe (‖e‖[0,t ]
)

,∀i ∈ N , (10.3)

and e is input-to-output practically stable (IOpS) with respect to w , v , and ṽr , that is,

‖e(t )‖ ≤βe (∥∥x0∥∥ , t
)+σe

w

(‖w‖[0,t ]
)+σe

v

(‖v‖[0,t ]
)+σe

ṽr

(‖ṽr ‖[0,t ]
)+μ. (10.4)

Remark. Note that one can define the error signal e as

e := col

([
ei

eγ̇i

])
.

However, the definition of the CPF problem allows for other definitions of the error signal such as the one in
Lemma 5.

In simple terms, the geometric task amounts to impose a (small) bound on the path-following errors ei and the

dynamic task consists in forcing a bound on the speed errors eγ̇i . From the detectability condition (10.3), both

tasks are satisfied if we can bound the signal error e. The IOpS condition (10.4) implies that if the process

noise w , the measurement noise v and the input from the coordination controller ṽr are bounded, then we can

compute a bound on e assymptotically, independently from the initial conditions of the agents xi (0) and the

path-following controllers xp f
i (0), here represented by x0.

10.3.2 Coordination controller

Besides meeting the requirements of path-following, that is, making each agent follow a desired path zdi at

some required speed vr , we also require coordination of the entire group of agents so as to achieve a desired

formation pattern compatible with the paths adopted. We say that two agents are coordinated, are synchronized

or have reached agreement if and only if γi −γ j = 0,∀i , j ∈ N . Since nullifying the coordination errors γi −γ j

is a very strict requirement, we require instead that the coordination errors became bounded by a small number

after some settling time. To be more precise regarding the necessary characteristics of coordination controller

for coordinating the agents, we now define the coordination control problem.

Since the coordination controller acts on the path-following controller Σ
p f
i , its output is the correction speed

signal ṽri and admits as input the path-following variable γi , included in xp f
i , and the sensors output yi from Σi .

Also, the coordination controller requires a reference of the desired path and speed profile, therefore it admits as
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input the generalized desired path zdi and speed reference vr . Finally, the communication system has the role

of providing the the coordination controller with the value of the path-following variables of the neighbours

γ j , j ∈ N i . Since we aim to save the number of communications the output of the communication system is

instead estimates of the generalized path-following variables γ̂ j , j ∈ N i , and we define the estimation error as

γ̃i
j := γ̂i

j −γ j .

Definition 5 (Coordination control problem). Consider a set of N agents Σi , i ∈ N with dynamics (10.1),

equipped with path-following controllers Σ
p f
i , i ∈ N with dynamics given by (10.2), and the speed profile

vr ∈ Vr and paths zdi ∈ Zdi (vr ), i ∈ N . Assume that γi and γ̂ j , ∀ j ∈ Ni are available to agent i and define the

estimation error as γ̃i
j := γ̂i

j −γ j .

Σcc
i : ẋcc

i = F cc
i

(
xcc

i , yi , zdi , vr (γi ),γi ,col
(
γ̂i

j , j ∈ N i
))

, (10.5a)

ṽri = H cc
i

(
xcc

i , yi , zdi , vr (γi ),γi ,col
(
γ̂i

j , j ∈ N i
))

, (10.5b)

solves robustly the coordination control problem if there exist functions βξ ∈ K L , σξ,σξ
v ,σξ

w ,σξ
γ,σξ

e ∈ K∞
and a coordination error signal ξ that satisfies the detectability property

max
i∈N ; j∈N i

‖γi (t ) −γ j (t )‖ ≤σξ
(‖ξ‖[0,t ]

)
, (10.6)

and the evolution of the coordination error signal ξ :=
[
ξT , col

(
xcc

i

)T , ṽr

]T
satisfies, for each initial condition

x0
ξ

:= col

([
xi (0)T , xp f

i (0)T , xcc
i (0)T

]T
)
,

‖ξ(t )‖ ≤βξ
(∥∥∥x0

ξ

∥∥∥ , t
)
+σ

ξ
v
(‖v‖[0,t ]

)+σ
ξ
w
(‖w‖[0,t ]

)+σ
ξ
γ

(‖γ̃‖[0,t ]
)+σ

ξ
e
(‖e‖[0,t ]

)
, (10.7)

where v := col(vi ), w := col(wi ), γ̃ := col
(
γ̃

j
i , i ∈ N , j ∈ N i

)
.

In plain terms, our approach to coordination amounts to imposing an upper bound on the coordination errors

‖γi (t ) −γ j (t )‖,∀i ∈ N ; j ∈ N i . From the detectability property (10.6), we can bound the coordination errors if

we can bound the coordination error signal ξ. The IOpS condition (10.7) implies that if the measurement noise

v , the process noise w , and the estimation errors γ̃ are bounded, then, after some settling time, we can compute

a bound on ξ, independently from the initial condition of the agents xi (0), the path-following controllers xp f
i (0)

and the coordination controllers xcc
i (0) here represented by x0

ξ
. The bound on ξ depends on the the bounds on

the measurement noises, process disturbances, and the estimation error. The impact of those bounds on the

controller performance, given by σ
ξ
v
(‖v‖[0,t ]

)
, σ

ξ
w
(‖w‖[0,t ]

)
and σ

ξ
γ

(‖γ̃‖[0,t ]
)
, are expected to be small when

compared to the precision required for coordination control. This was found to be the case in the experiments of

Chapter 14.

10.3.3 Coordinated path-following

It is important to note, however, that the coordination control problem and the path-following problem are not

independent because, if both problems are solved, the dynamics of ξ and e are interconnected. Noting that

the vector ξ contains ṽr this interconnection can be seen in Equations 10.4 and 10.7 of Definitions 5 and 4,

and is illustrated in Figure 10.2. Therefore, to make sure the interconnection between the path-following and

coordination controllers solves the geometric and dynamic tasks and approaches coordination at the same time it

is not sufficient that the path-following and coordination problems be solved independently. The CPF problem

defined next, if solved, guarantees that all mentioned objectives (dynamic and geometric tasks and coordination)
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e

ξ

ṽr

˜

Σi,Σ
pf
i , i ∈ N

Σi,Σ
pf
i ,Σcc

i i ∈ N

w, v

w, v

·

Figure 10.2 – Feedback interconnection of the path-following control system and the coordination control

system.

are achieved by the interconnection, for bounded process and measurement noise.

Definition 6 (Coordinated path-following problem). Consider the closed-loop system Σcl composed by n agents

of the form (10.1) and the path-following controller and coordination controller defined by (10.2) and (10.5)

respectively. We say that Σcl solves robustly the CPF problem if for every agent i ∈ N , every prescribed speed

profile vr ∈ Vr and path zdi ∈ Zdi (vr ), there exist functions σē ,σē
w ,σē

v ∈ K∞, βē ∈ K L , a positive scalar μē ,

and a error signal ē such that for each initial condition x0
e := col

([
xi (0)T , xp f

i (0)T , xcc
i (0)T

]T
)

and bounded

disturbance signals w := col(wi ) and v := col(vi ), the path-following errors, speed errors, and coordination

errors satisfy the detectability condition

max
i∈N

(
‖ei ‖+‖eγ̇i ‖+ max

j∈N i
‖γi −γ j ‖

)
≤σē (‖ē‖[0,t ]

)
, (10.8)

and ē is IOpS with respect to w and v , that is,

‖ē(t )‖ ≤βē (∥∥x0
e

∥∥ , t
)+σē

w

(‖w‖[0,t ]
)+σē

v

(‖v‖[0,t ]
)+μē . (10.9)

Remark. Note that one can define the error signal ē as

ē := col

⎛
⎜⎝
⎡
⎢⎣

ei

eγ̇i

col
(
γi −γ j , j ∈ N i

)
⎤
⎥⎦
⎞
⎟⎠ .

However, the definition of the CPF problem allows for other definitions of the error signal such as the one in
Lemma 7.

The geometric and dynamic tasks are satisfied and coordination is achieved if ei , eγ̇i and γi −γ j , j ∈ N i are

bounded. The detectability condition (10.8) guarantees that if the error signal ē is bounded then ei , eγ̇i and

γi −γ j , j ∈ Ni are bounded. Finally, the IOpS condition (10.9) guarantees that if v and w are bounded, then

ē becomes bounded after some settling time. Therefore, if the CPF problem is solved robustly, for bounded

measurement and process noise (v and w respectively), the closed loop system Σcl satisfies the geometric and

dynamic tasks and achieves coordination.

The following theorem gives conditions under which a closed loop system Σcl solves the CPF problem, assuming

it consists of the interconnection of the path-following and coordination controllers which solve the path-

following and coordination problems, respectively.

Theorem 16. Suppose that in the closed-loop system Σcl each path-following controller Σ
p f
i and coordinated
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controller Σcc
i solve robustly the output path-following and coordination problem, respectively, that is, inequalities

(10.3)-(10.4), (10.6)-(10.7) hold. Suppose further that γ̃ is bounded and there exists r0 ≥ 0 such that

σe
ṽr

◦σξ
e (r ) < r, ∀r > r0. (10.10)

Then, the closed-loop system Σcl solves robustly the CPF problem.

Proof. From (10.4) and (10.7) we conclude that the path-following and coordinated controllers can be viewed as

two interconnected IOpS systems with outputs e and ṽr := col
(
ṽri

)
, respectively. A straightforward application

of the small-gain theorem, Theorem 5, and Theorem 3, implies that if (10.10) holds then the connection is IOpS.

We can then conclude (10.9) since γ̃ is bounded. Inequality (10.8) follows using the detectability conditions

(10.3) and (10.6).

This theorem states that the closed-loop system Σcl solves robustly the CPF problem if the estimation errors

are bounded, all the path-following controllers and coordination controllers solve robustly the path-following

and coordination problems, and inequality (10.10) holds, i.e. the interconnection between the path-following

controller and the coordination controller is stable.

10.3.4 Logic-based communication system

In order to consider bandwidth limitations, to save the number of communications, instead of sending continu-

ously the generalized path-following variables γi , i ∈ N , to the out-neighbours, they are exchanged through

communication systems that send messages at discrete instants of time asynchronously using some logic, the

communication triggering condition (CTC). Since the coordination controller assumes as input the generalized

path-following variables of the neighbours in continuous time, the communication system estimates the gener-

alized path-following variables, as γ̂i , based on the data received. To guarantee that the coordination control

error is smaller than some upper bound, we still need to guarantee that the communication system produces

estimations of the neighbours path variables with a bounded estimation error γ̃i := γ̂i −γi . Therefore, the main

innovation introduced in this chapter is a logic based communication system which has as its main goal keeping

the estimation errors γ̃i bounded.

Inspired by the communication logic proposed in Xu and Hespanha [2006], each communication subsystem is

composed by a bank of estimators of the neighbours’ generalized path-following variables γ̂i
j , j ∈ N i and a

communication logic. The estimators run open-loop most of the time but are sometimes reset (not necessarily

periodically) to correct their state when measurements are received through the network. The communication

logic is responsible for determining for each agent i ∈ N how well the out-neighbour agents can predict, as

γ̂
j
i , j ∈ N i , the value of its local generalized coordination state γi and decide when it should communicate

the actual measured value to its out-neighbours so as to guarantee that
∥∥∥γ̃i

j (t )
∥∥∥≤ ε, ∀ j ∈ N i ,∀t ≥ 0, for some

positive scalar ε> 0.

In this section, we formulate the general problem of coordinated path-following with self-triggered commu-

nications using the same principles in Seyboth et al. [2013] and Jain et al. [2017]. It is important to note that

unlike Jain et al. [2017] where the control input is self-triggered but requires continuous communications, the

communications in the work of this chapter are assumed to be self-triggered. To be more precise regarding

the necessary characteristics of a communication system for keeping the estimation errors bounded we need a

formal definition of the communication problem.

Definition 7 (Communication problem). Consider the closed-loop system Σcl , composed of n agents of the form
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(10.1) and the path-following controller and coordination controller defined by (10.2) and (10.5) respectively,

the formation speed assignments vr ∈ Vr , and corresponding paths zdi ∈ Zdi (vr ). Assume that zdi , vr (γi ), γi ,

γi , yi , xp f
i , xcc

i are continuously available to agent i and zd j , vr (γ j ), γ j , y j , xp f
j , xcc

j ; ∀ j ∈ N i are available

asynchronously through the network system. Let t [i ]
k ,k ≥ 0 indicate the instants of data transmission, which

occur when a communication triggering condition (CTC) is satisfied. We say that a given set of logic based

impulse dynamical systems Σl bc
i ; i ∈ N defined as

For t �= t [ j ]
k ,∀ j ∈ N i ∪ {i },k ≥ 0

Σlbc
i : ẋl bc

i = F lbc
i

(
xlbc

i

)
, (10.11a)

γ̂i
j = H lbc

i j

(
xlbc

i

)
, j ∈ N i , (10.11b)

If ∃ j ∈ N i ∪ {i } such that t = t [ j ]
k ,k ≥ 0

xlbc
i

(
t+)= J lbc

j i

(
xlbc

i , y j , xp f
j , xcc

j , xlbc
j , zd j , vr (γ j ),γ j

)
, (10.12)

where x(t+) := lims→t+ x(s), and the CTC triggering communications at times t [i ]
k when the condition

C lbc
i

(
xl bc

i , yi , xp f
i , xcc

i , xl bc
i , zdi , vr (γi ),γi

)
= 0 (10.13)

is satisfied, solve robustly the communication problem if for every i ∈ N∥∥∥γ̃i
j (t )
∥∥∥≤ ε, ∀ j ∈ N i ,∀t ≥ 0 (10.14)

for some scalar ε> 0 where γ̃i
j := γ̂i

j −γ j .

In the definition above, information is sent from agent i at instants t [i ]
k and xlbc

i is updated instantaneously.

Accordingly, at instants t [ j ]
k , j ∈ N i information is received by agent i from its neighbour j . At this point, for

the sake of generality, we purposely avoid discussing the mechanism for generation of communication times t [i ]
k .

This will be done later in this chapter. Here we consider that the information sent can contain elements of xp f
i ,

xcc
i , xl bc

i , yi and γi . While no data is sent or received the communication system only uses internal information

to compute the path variables estimates. To estimate the coordination states, the communication system relies on

the assigned path zdi , and on the required speed vr for each agent i ∈ N .

The particular strategy to solve the communication problem that we apply in this chapter is, as proposed in

Xu and Hespanha [2006], to consider that the estimators for each of the neighbours are independent among

themselves, and that each agent contains estimators of its own variable synchronized with its out-neighbours

with the purpose of computing the estimation errors in the out-neighbours. That is Σlbc
i is composed by the

systems Σlbc
i j j ∈ N i defined by

Σlbc
i j : ẋlbc

i j = F lbc
i j

(
xlbc

i j

)
,

γ̂i
j = H lbc

i j

(
xlbc

i j

)
,

and by synchronized copies of the estimates Σlbc
j i i ∈ N j contained in the agents j such that i ∈ N j , i.e.

the out-neighbours, which give as output the estimates γ̂
j
i in the out-neighbours. Therefore the state of the
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communication system is of the form

xlbc
i =

⎡
⎣ col

(
xlbc

j i , i ∈ N j
)

col
(
xlbc

i j , j ∈ N i
)
⎤
⎦ .

Given that agent i has access to the estimates γ̂
j
i := H lbc

j i

(
xl bc

j i

)
, i ∈ N l , agent i can compute the estimation

errors γ̃
j
i in its out-neighbours. Therefore a communication is triggered by agent i at the times t [i ]

k when the

condition
∥∥∥γ̃ j

i

(
t [i ]

k

)∥∥∥= ε is satisfied for some j ∈ N such that i ∈ N j . If at some time t = t [i ]
k

∥∥∥γ̃ j
i (t )

∥∥∥= ε then

on agent i and j the state xlbc
j i is updated with some rule of the form

xlbc
j i

(
t+)= J lbc

j i

(
xlbc

j i , y j , xp f
j , xcc

j , xlbc
j , zd j , vr (γ j ),γ j

)
,

satisfying

γ̂i
j (t+) = H lbc

i j

(
J l bc

j i

(
xlbc

j i , y j , xp f
j , xcc

j , xl bc
j , zd j , vr (γ j ),γ j

))
=γ j (t ).

By ensuring that on agent i and j the state xl bc
j i is updated at the same time with the same rule, we can guarantee

that the estimates are kept synchronized. Moreover, since whenever
∥∥∥γ̃ j

i (t )
∥∥∥ = ε we have

∥∥∥γ̃ j
i

(
t+)∥∥∥ = 0 the

condition (10.14) is satisfied and the communication problem is solved.

We now state the main result of this section.

Theorem 17. Consider the overall closed loop system Σocl composed by n agents of the form (10.1) and the

CPFCS defined by (10.2), (10.5) and (10.11)-(10.12). Suppose that each PF controller Σ
p f
i and coordinated

controller Σcc
i solve robustly the output path-following and coordination problem, respectively, that is, inequalities

(10.3)-(10.4), (10.6)-(10.7) hold. Suppose further that the logic-based communication satisfies (10.14) ∀i ∈ N

and there exists r0 ≥ 0 such that inequality (10.10) holds. Then, the closed-loop system Σcl solves robustly the

CPF problem.

Proof. Since the logic-based communication system satisfies (10.14) ∀i ∈ N , γ̃ is bounded. Therefore all the

assumptions of Theorem 16 hold.

The comunication problem of Definition 7 is a general formulation for non-delayed communications without

packet losses. However, on Subsection 10.4.4, and on Section 10.6 we propose communication systems that can

cope with packet losses and delays that depart from the formulation of Definition 7. To be robust to packet losses

we will require that the communication systems send a reply whenever they receive a message to the sender of

that same message. Therefore in the remainder of this chapter we assume that the communication network is

undirected, that is if i ∈ N j then j ∈ N i .

It should also be noted that in Definition 7 we allow for the estimates of the generalized path-following variable

of agent i , γi , on its out-neighbours, γ̂
j
i , i ∈ N j , to be different between each other, that is it is admissible that for

some j �= l such that i ∈ N j ∪N l γ̂
j
i �= γ̂

j
i . However, in the communication system of the ideal communications

case of Subsection 10.4.4 all estimates of the path-following variable of an agent are equal, that is for every

two agents j and l such that i ∈ N j ∪N l , we have γ̂
j
i = γ̂l

i . Only on Section 10.6 we propose a scheme with

different estimates for different agents.
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10.4 Controller Design

In this section, to illustrate how we can apply the framework described in the previous section, we consider the

case of CPF of autonomous marine vehicles maneuvering in 2D.

10.4.1 Vehicle model

In this subsection we describe the mathematical model of a class of autonomous marine vehicles used for motion

control design. We can consider this mathematical model as the agent dynamics.

We write the kinematic equations of motion of a vehicle moving in the horizontal plane by using a global inertial

coordinate frame {U } and a body-fixed coordinate frame {B}, with origin at the vehicle’s center of mass, yielding

ẋ = u cos(ψ) − v sin(ψ), (10.16a)

ẏ = u sin(ψ) + v cos(ψ), (10.16b)

ψ̇ = r, (10.16c)

where u and v are body-fixed frame components of the vehicle’s velocity, x and y are the inertial Cartesian

coordinates of its center of mass, and ψ defines its orientation (heading angle). The kinematic equations

(10.16b)-(10.16c) can be written in compact form by defining p := [x, y]T and v := [u, v]T , leading to

ṗ = Rv ,

ψ̇ = r,

where R is the orthonormal transformation matrix from {B} to {U }, i.e.

R =
[

cos(ψ) −sin(ψ)

sin(ψ) cos(ψ)

]
.

In the presence of a constant and irrotational ocean current, v is the sum of the vehicle’s velocity with respect

to the water vw := [uw , vw ]T and the water current velocity vc := [uc , vc ]T , both expressed in the body-fixed

reference frame, i.e.

v :=
[

u

v

]
= vw + vc =

[
uw + uc

vw + vc

]
.

10.4.2 Path-following controller

The path-following controller considered in this section is described in Vanni [2007]. To solve the problem of

driving a vehicle along a desired path, the key idea exploited is to make the vehicle approach a virtual target

that moves along the path. Let pd (γ) be the position of the target, and vr (γ) its desired rate of progression. We

decompose the motion-control problem into an inner-loop dynamic task, which consists of making the vehicle’s

surge velocity u and heading rate r track desired references ud and rd , respectively, and an outer-loop kinematic

task on the speed and heading rate references ud := [ud , rd ]T and the evolution of the path parameter γ, which i)
regulates the evolution of the virtual target pd (γ) and ii) assigns the reference speed ud := [ud , rd ]T so as to

achieve convergence to the path.
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In what follows we assume that the inner-loop controller satisfies the following stability assumption:

Assumption A11. Let ũ := u − ud and r̃ := r − rd be the speed and heading rate tracking errors, vw be the

sway velocity, and let x0
i l the initial condition of the state of the inner-loop system. There exist functions

βr̃ ,βũ ,βv ∈ K L and positive constants εr̃ , εũ , εv such that

‖r̃ (t )‖ ≤βr̃ (‖x0
i l ‖, t

)+εr̃ , ‖ũ(t )‖ ≤βũ (‖x0
i l ‖, t

)+εũ , ‖vw (t )‖ ≤βv (‖x0
i l ‖, t

)+εv .

We also assume that each vehicle contains an observer for the lateral water current velocity vc which satisfies the

following assumption:

Assumption A12. Let ṽc := vc − v̂c be the estimation error and x0
vc

be the initial condition of the state of the

lateral water current velocity estimator. There exists a function βvc ∈ K L and a positive constant εvc such that

‖ṽc (t )‖ ≤βvc
(‖x0

vc
‖, t
)+εvc .

Given the above mentioned assumptions the kinematics of the vehicle can be described as

ṗ = R

[
ud + ũ

v̂c + ṽc + vw

]
,

ψ̇ = rd + r̃ .

The path-following problem for the outer loop can be formulated in this context as follows:

Definition 8 (Path-following problem). Consider the vehicle whose motion is described by (10.16), and let

pd (γ) ∈ R2 be a desired path parametrized by a continuous variable γ ∈ R and vr (γ) ∈ R a desired speed

assignment. Suppose that pd (γ) is sufficiently smooth and its derivatives with respect to γ are bounded. Solving

robustly the path-following problem of Definition 4 amounts to deriving control laws, subject to Assumptions

A11 and A12, for ud and γ̇, such that the position error ‖p(t ) − pd (γ(t ))‖ and the speed error ‖γ̇(t ) − vr (γ(t ))‖
converge to a small neighbourhood of the origin as t → ∞.

Notice that the speed vr is not an actual vehicle speed: it expresses the desired rate at which parameter γ changes.

Define the position error e as the difference between the positions of the vehicle and the virtual target expressed

in the body frame {B},

e := RT (p − pd
)

.

Its dynamics are described by

ė = −S(r )e +
[

ud + ũ

vc + vw

]
− RT ∂pd

∂γ
γ̇, S(r ) =

[
0 −r

r 0

]
, (10.17)

where we used the fact that Ṙ = RS(r ).

To make the desired speed ud := [ud , rd ]T appear in the position error dynamics we introduce a constant design

vector δ := [δ, 0]T , δ< 0. From (10.17), simple computations show that the position error dynamics are then

93



Chapter 10. Cooperative Path-Following with Logic-based Communications

given by

ė = −S(r )(e −δ) +Δud − RT ∂pd

∂γ
γ̇−
[

0

δr̃

]
+
[

ũ

vw + vc

]
, (10.18)

where Δ :=
[

1 0

0 −δ

]
. Defining the virtual target speed error

ω := γ̇− (vr + ṽr ), (10.19)

where ṽr is piecewise continuous, and computing its time derivative where it is defined yields ω̇= γ̈−v̇r (γ)− ˙̃vr =
γ̈− ∂vr

∂γ (γ)γ̇− ˙̃vr . By explicitly controlling γ̈ when ˙̃vr is defined we introduce an additional control variable.

Moreover at the instants tk where ˙̃vr is not defined, if we assign γ̇
(
t+

k

) = γ̇(tk ) − ṽr (tk ) + ṽr
(
t+

k

)
, we have

ω(tk ) =ω
(
t+

k

)
, and therefore ω is continuous.

Lemma 5 (Path-following controller). Consider the vehicle model described by (10.16), in closed-loop with the

output feedback control law composed by an inner loop that satisfies Assumption A11, a lateral current estimator

which satisfies Assumption A12, and, when ˙̃vr is defined, the outer loop given by

γ̈= −kωω+ v̇r + ˙̃vr + 1

cω
(e −δ)T RT ∂pd

∂γ
(γ), (10.20)

ud =Δ−1

(
−Kk (e −δ) −

[
0

v̂c

]
+ RT ∂pd

∂γ
(γ)(vr + ṽr )

)
, (10.21)

where Kk := diag
(
kx ,ky

)
, and the design parameters kx , ky , kω and cω satisfy kx ,ky ,kω,cω > 0.

At the instants tk where ˙̃vr is not defined we assign

γ̇
(
t+

k

)= γ̇(tk ) − ṽr (tk ) + ṽr
(
t+

k

)
. (10.22)

Then, the error vector

ηe :=
[

e −δ�
cωω

]
,

is ultimately bounded (UB), that is, there exist functions βe ,βe
i l ,βe

obs ∈ K L and a positive constant εe such that

‖ηe‖ ≤βe (‖ηe (0)‖, t
)+βe

i l

(‖x0
i l ‖, t

)+βe
obs

(‖x0
vc

‖, t
)+εe . (10.23)

Therefore, the control laws (10.20-10.21) solve robustly the path-following problem.

Proof. See Appendix.

With this strategy the evolution of the position of the virtual target pd depends on the position error e −δ in that

if the vehicle is ahead/behind the desired position the virtual target moves faster/slower.

Remark. The concept of stabilizing the error e −δ instead of directly stabilizing the path-following error e

stems from the fact that taking the control Lyapunov function candidate V = 1
2 eT e, considering the disturbance
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free case where ũ = vc = vw = 0, the time derivative of V , from (10.17), yields

V̇ = ud be − γ̇
∂pd

∂γ

T

Re,

where b := [1,0], and when be = 0, ud has no influence on V̇ and therefore it is impossible to define a function
ud (e,γ, γ̇) such that V̇ < 0 for all e, γ, γ̇ such that V > 0. Therefore V cannot be a Lyapunov function. In contrast,
defining the Lyapunov function candidate V = 1

2 (e −δ)T (e −δ) and, in the disturbance free case, taking its time
derivative yields, from (10.18),

V̇ = (e −δ)T Δud − γ̇
∂pd

∂γ

T

R (e −δ) ,

and we can observe that simply by taking, for some positive scalar k

ud =Δ−1
(
−k (e −δ) + RT ∂pd

∂γ
γ̇

)
,

we obtain, whenever V > 0, that is when ‖e −δ‖ > 0, V̇ = −k ‖e −δ‖2 < 0, and therefore V is a Lyapunov
function.

This strategy for trajectory tracking or path-following of nonholonomic vehicles can be traced back to the work
of Aguiar and Hespanha [2007], which borrows concepts from Skjetne et al. [2004]. This method was applied
to the problem of cooperative path-following in Ghabcheloo et al. [2006] and in Vanni et al. [2008]. More
recently this method was considered as an auxiliary control law for a model predictive control algorithm for
path-following of an underactuated vehicle in Alessandretti et al. [2013] and its application to the control of
multiple vehicles is given in Aguiar et al. [2017]

In the literature we can find other strategies for the control of underactuated vehicles such as controlling the
vehicle’s heading to stabilize the cross-track error, as in Samson and Ait-Abderrahim [1991], Micaelli and
Samson [1993], Encarnação and Pascoal [2000], Lapierre et al. [2003] and Astolfi et al. [2004], and the line of
sight method in Healey and Lienard [1993], Fossen and Pettersen [2014] and Flåten and Brekke [2017].

10.4.3 Coordination controller

In this subsection we develop the coordination controller, which follows closely the methods developed in

Ghabcheloo et al. [2009]. To this effect we first recall some key concepts from algebraic graph theory.

Consider now the coordination control problem with a communication topology defined by a graph (N ,A ). We

assume that the graph is undirected, that is, the communication links are bidirectional, if i ∈ N j then j ∈ N i .

Remark. The assumption of an undirected graph will be important in this chapter for the case where packet
losses exist and we require that the vehicles send an acknowledgment message to their in-neighbours acknowl-
edging that a data message was received. If we assume that there are no packet losses, this assumption could be
relaxed without much effort.

Using a Lyapunov-based design and the backstepping technique, we propose a decentralized feedback law for

ṽri as a function of the information obtained from the neighbouring agents. Following Ghabcheloo et al. [2009],

we introduce the coordination or synchronization error vector

ξ := Γγ, Γ := IN − 1

N
11T ,
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where γ := col
(
γi
)
. From (10.19), the dynamics of the coordination subsystem can be written in vector form as

γ̇= v̄r + ṽr + ω̄,

where v̄r := col
(
vr (γi )

)
, ω̄ := col(ωi ), and ṽr := col

(
ṽri

)
. Consider the control Lyapunov function V := 1

2
ξT ξ.

Computing its time-derivative yields

V̇ = ξT Γ(v̄r + ṽr + ω̄).

To make ξ ISS with respect to input ω̄, a natural choice would be ṽr = −kLξ= −kLΓγ= −kLγ, where L is the

Laplacian of the graph (N ,A ) and k is a positive scalar, or equivalently, ṽri = −k
∑

j∈N i (γi −γ j ) (the so-called

neighbouring rule). To reduce the communication rate using a logic based dynamical system, we will lift the

assumption that each agent receives information from its neighbourhoods continuously. We assume instead that

it relies on the estimates γ̂i
j , j ∈ N i . Therefore, defining the estimation error γ̃i

j := γ̂i
j −γ j , the coordination

control law becomes

ṽri = −k
∑

j∈N i

(
γi − γ̂i

j

)
= −k

∑
j∈N i

(γi −γ j ) + k
∑

j∈N i

γ̃i
j , (10.24)

or, in vector form, ṽr = −kLξ+ kγ̄, where γ̄ := col
(∑

j∈N i γ̃i
j

)
. Defining γ̃ := col

(
γ̃i

j , i ∈ N , j ∈ N i
)

and

d∗ := maxi∈N

(|N i |) we have ‖γ̄‖ ≤ d∗‖γ̃‖. Note that unlike Almeida et al. [2017], in this work we do not

require that the average of the coordination variables 1
N

∑
i∈N remains constant, and therefore it is not necessary

the use of an average preserving coordination law as ṽri = −k
∑

j∈N i

(
γ̂

j
i − γ̂i

j

)
proposed in Almeida et al. [2017],

and we can adopt the control law ṽri = −k
∑

j∈N i

(
γi − γ̂i

j

)
, which does not introduce the estimation error

associated with γ̂
j
i . The time derivative of V becomes

V̇ = −kξT Lξ+ξT Γ
(
vr + ω̄+ kγ̄

)
.

In this case, the term −kξT Lξ is negative definite provided that the graph that models the constraints imposed by

the communication topology among the agents is connected, see e.g. Godsil and Royle [2013]. We can then

conclude the following result.

Lemma 6 (Coordination). If (N ,A ) is connected then ξ is ISS with respect to the inputs ω̄ and γ̃, for k

satisfying k > l/σ2, where σ2 is the second lowest singular value of L and l is the Lipschitz constant of vr , that

is, there exist functions σ
ξ
γ̃

,σξ
ω ∈ K∞ and βξ ∈ K L such that

‖ξ‖ ≤βξ (‖ξ(0)‖, t ) +σ
ξ
ω

(‖ω̄‖[0,t ]
)+σ

ξ
γ̃

(‖γ̃‖[0,t ]
)

.

Proof. See Appendix.

We are now ready to state the main result of this section.

Lemma 7 (CPF). Consider the closed-loop system ΣC L composed by n agents of the form (10.16) with inner

loops satisfying Assumption A11 and the path-following controller and coordination controller defined by

(10.20)-(10.21) and (10.24) respectively. If (N ,A ) is connected then, for k > l
σ2

, the error vector

ηeξω :=

⎡
⎢⎣

eδ

ω̄

ξ

⎤
⎥⎦ ,
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is ISpS with respect to the input γ̃ := col
(
γ̃i

j , i ∈ N , j ∈ N i
)
, that is, there exist functions σ

eξω
γ̃

∈ K∞ and

βeξω,βeξω
i l ,βeξω

obs ∈ K L and a positive constant εeξω such that

‖ηeξω‖ ≤βeξω (‖ηeξω(0)‖, t
)+β

eξω
i l

(‖x0
i l ‖, t

)+β
eξω
obs

(‖x0
vc

‖, t
)+σ

eξω
γ̃

(‖γ̃‖[0,t ]
)+εeξω.

Therefore, ΣC L solves robustly the CPF problem.

Proof. See Appendix.

10.4.4 Logic-based communication system

In this subsection we present the logic-based communication system, which builds on the methods developed in

Xu and Hespanha [2006] and Yook et al. [2002]. We will start with the case where the communication links

are ideal, that is, there are no delays or packet losses. We then move on to the case where there are bounded

communication delays. Finally, we will describe a communication system that is robust to limited packet losses.

Ideal communication links

The logic-based communication system structure for a node i , with neighbours j1 to j|N i | belonging to N i , is

illustrated in Figure 10.3. The communication system is composed by observers of the path-following variables

of the neighbours j1 to j|N i |, γ̂ j1 to γ̂ j|N i | , which are reset when a data message is received by the respective

neighbour, and, to compute the communication triggering condition, an observer of the own path-following

variable, γ̂i , which only uses data that are sent to the neighbours. The emitter compares the observed path-

following variable γ̂i to the real γi and if the norm of the difference reaches the value ε a data message is sent to

the neighbours containing the present γi .

γ̂i

γ̂ j1

...

γ̂ j|N i |

γi Network of Vehicles

Logic-Based Communication System

Emitter

Receiver

...

Receiver

γi
(
t i

k

)

γ j1

(
t j1

k

)

γ j|N i |
(

t
j|N i |
k

)

Coordination Controller

Figure 10.3 – Logic-Based Communications System for ideal communication links

Let t i
k , k > 0 denote the instants of time at which agent i transmits information to the neighbours. Following the

procedure described in Section 10.3 and taking account the dynamic equations of the coordination subsystem,

we propose for each agent i the following logic-based communication system:
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-For t i
k < t < t i

k+1,

˙̂γi (t ) = vr
(
γ̂i
)

.

-For t = t i
k

γ̂i

(
t i+

k

)
= γi

(
t i

k

)
.

Since the communication links are ideal we consider in this case that there are copies of γ̂i in all the neighbours

of i , N i and in i .

We note that if we define Tr (γ) :=∫γ0 1
vr (σ) dσ and its inverse as Γr (t ), i.e. Tr (Γr (t )) := t , we have for t i

k < t < t i
k+1,

γ̂i (t ) = Γr
(
t − t i

k + Tr
(
γi
(
t i

k

)))
. The estimator can thus be described as

γ̂i (t ) = Γr

(
t − t i

r (t ) + Tr

(
γi

(
t i

r (t )
)))

, (10.25)

where t i
r (t ) := maxk∈N,t i

k <t t i
k . When vr is constant the above expression simplifies to

γ̂i (t ) = γi

(
t i

r (t )
)
+
(
t − t i

r (t )
)

vr .

The choice of the estimator (10.25) is motivated by the fact that if, for some tω > 0, ω̄(t ) = 0 and ξ(t ) = 0

for t > tω, if γ̂i (tω) −γi (tω) = 0 we would have γ̂i (t ) −γi (t ) = 0 for t > tω. The estimators (10.25) were also

considered due to their simplicity. However, it would be also possible to chose more complex reproductions of

the corresponding dynamic models, see Vanni et al. [2008].

To solve robustly the communication problem (see Definition 7) we introduce the communication triggering
condition (CTC) ‖γ̃i ‖ ≥ ε where ε> 0, where γ̃i := γ̂i −γi . Agent i transmits to j a data message with γi at time

t i
k when the CTC is satisfied.

Note that the post reset value of γ̃i is γ̃i
(
t i

k

)= 0. Consequently, γ̃i ∈ {γ̃ j
i ∈R : γ̃i ≤ ε} and, hence, (10.14) holds,

and from Lemma 7 we have that in the ideal communications case the overall closed-loop system together with

the logic-based communication system is input to state practically stable, i.e. the path-following, speed and

coordination errors converge to a neighbourhood of zero, and the size of this neighbourhood depends on the size

of perturbations, which in this thesis are considered to be ultimately bounded by εr̃ , εũ and εv .

Delayed information

We now consider the case where the communication channels have bounded, time-varying and non-homogeneous

delays. Consider the following situation: agent i sends data at time t i
k , and agent j receives it at time t i

k +τ
i j
k .

We assume that

τ
i j
k ≤ τ̄, ∀i , j ,k

where the constant τ̄> 0 is known a priori. The main idea is to keep estimators always synchronized, therefore

both the emitter and the receiver only update the estimators at some time, with the same information, at t i
k + τ̄.

Suppose that at time t i
k agent i transmits a data message, which contains the following data: {t i

k ,γl }. Then,

the estimators γ̂i in agent i and its neighbours N i cannot be immediately updated. This is because we must

guarantee that the value of the state estimate γ̂i can be computed in all agents in N i . To this end, both estimates
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can only be updated at time t = t i
k + τ̄. Upon receiving t i

k , the coordination state estimate γ̂
i j
l running in agent j

should be updated at time t = t i
k + τ̄ to

γ̂i

((
t i

k + τ̄
)+)= Γr

(
τ̄− t i

k + Tr

(
γi

(
t i

k

)))
,

In the case where vr is constant, this simplifies to γ̂i

((
t i

k + τ̄
)+)= γi

(
t i

k

)+ τ̄vr . With the above procedure, we

guarantee that the estimators are always synchronized. The estimator can thus be described as in (10.25) where

t i
r (t ) is redefined as t i

r (t ) := maxk∈N,t i
k +τ̄<t t i

k . Therefore, one can consider the ideal case mentioned previously

as a particular instance of the delayed communications case with τ̄= 0.

Notice that in general γ̃i
(
t i

k + τ̄
)

will not be zero because ω̄i and ξ may not be zero in the interval
[
t i

k , t i
k + τ̄

)
.

We can therefore only guarantee that this technique is valid if τ̄ is sufficiently small so as to guarantee that γ̃i

satisfies γ̃i

((
t i

k + τ̄
)+)< ε. The stability guarantees for the delayed case will be stated in Theorem 18.

Communication losses

We now address the case when the data messages are not always received, i.e. there are packet losses. To

make the communication system robust to limited communication losses we require each agent to send an

acknowledgment message upon receiving a data message. The agent which sent the data message only updates

his estimators 2τ̄ time units after the data message has been sent in case the acknowledgment message was

received, otherwise another data message is sent. This guarantees that the receiving agent receives a data message

at some point after the CTC is satisfied.

The communication system structure, for this case with communication losses, for a node i , with neighbours j1

to j|N i | belonging to N i , is illustrated in Figure 10.4. The structure is similar to the one in Figure 10.3, with

the difference being that, since we wish to allow different data messages to be sent to different agents, we have

different estimates of the path-following variable γi synchronized with the neighbours j1 to j|N i |, γ̆ j1

i to γ̆
j|N i |
i ,

respectively.
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γ̆
j1

i

...

γ̆
j|N i |
i

γ̂i
j1

...

γ̂i
j|N i |

γi Network of Vehicles

Logic-Based Communication System

Emitter

Emitter

Receiver

...

Receiver

γi

(
t i j1

k

)

γi

(
t

i j|N i |
k

)

γ j1

(
t j1i

k

)

γ j|N i |
(

t
j|N i |i

k

)

Coordination Controller

Figure 10.4 – Logic-Based Communications System for the case with packet losses

Consider the case when at time t i j
k agent i transmits to agent j a data message, which contains the following

data: {t i j
k ,γi }. Upon receiving the data message and sending an acknowledgment message, the coordination state

estimate γ̂
j
i running in agent j should be updated at time t = t i j

k + 2τ̄ to

γ̂
j
i

((
t i

k + 2τ̄
)+)= Γr

(
2τ̄− t i

k + Tr

(
γi

(
t i

k

)))
.

If the acknowledgment message was received by agent i , then the coordination state estimate γ̆
j
i running in

agent i should be also update at the same time as γ̂
j
i (t i j

k + 2τ̄) = γ̂
j
i (t i j

k + 2τ̄), otherwise another data message is

sent at t i j
k+1 = t i j

k + 2τ̄. Note that if agent i did not receive the acknowledgment message, then there is a brief

period when the estimators are desynchronized, that is γ̆
i j
l �= γ̂

j i
l , however the synchronization is recovered after

the acknowledgment message of a later data message is received.

The estimator can be represented formally as

γ̂
j
i (t ) = Γr

(
t − t i j

r (t ) + Tr

(
γi

(
t i j

r (t )
)))

, (10.26)

where t i j
r (t ) := max

k∈N,t i j
k +2τ̄<t ,βi j

k =1
t i j

k , where β
i j
k is 1 if the data message sent by agent i to agent j at time t i j

k
is received by agent j .

Equivalently, we can represent the estimator running on agent i synchronized with agent j , γ̆
j
i as in

γ̆
j
i (t ) = Γr

(
t − t i j

r b(t ) + Tr

(
γi

(
t i j

r b(t )
)))

, (10.27)

where t i j
r b(t ) := max

k∈N,t i j
k +2τ̄<t ,αi j

k =1
t i j

k , where α
i j
k is 1 if the data message sent by agent i to agent j at time t i j

k
is received by agent j and agent i receives its acknowledgment message.

If we can guarantee that for at least a finite number Nmax of consecutive data messages sent one acknowledgment

message is received, then if τ̄ is sufficiently small so as to guarantee that γ̃
j
i satisfies γ̃

j
i

((
t i j

k + 2τ̄
)+)< ε, we can
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guarantee that the estimation error is bounded, hence, (10.14) holds.

The emitter communication protocol for the case of delayed information and communication losses are described

in the following.

Data: Γr (·), Tr (·), τ̄ and ε

while true do
if
∥∥∥γ̃ j

i

∥∥∥= ε then
while no acknowledgment message was received do

Send a data message containing the current time t i j
k and γi

(
t i j

k

)
;

Wait until t i j
k + 2τ̄;

end
Update γ̆

j
i

(
t i j

k + 2τ̄
)

:= Γr

(
2τ̄− t i j

k + Tr

(
γi

(
t i j

k

)))
end

end
Algorithm 3: Algorithm for the emitter at agent i to agent j

The receiver communication protocol is the following.

Data: Γr (·), Tr (·), τ̄ and ε

while true do
if a data message is received containing t i j

k and γi (t i j
k ) then

Send an acknowledgment message, acknowledging that a data message was received ;

Wait until t i j
k + 2τ̄ ;

Update γ̂
j
i

(
t i j

k + 2τ̄
)

:= Γr

(
2τ̄− t i j

k + Tr

(
γi

(
t i j

k

)))
end

end
Algorithm 4: Algorithm for the receiver at agent j from agent i

We can now state the main result of this chapter.

Theorem 18. Consider the overall closed-loop system ΣOC L consisting of N agents of the form (10.16), equipped

with inner loop controllers satisfying Assumption A11, the proposed CPF controller under the assumptions

of Lemma 7, with k > l/σ2, and the proposed logic-based communication system in the presence of delayed

information and communication losses. If it is guaranteed that for a finite number Nmax consecutive data

messages sent by an agent one acknowledgment message is received, then for sufficiently small time delays

τ̄ and sufficiently small values of ‖ξ(0)‖, maxi∈N ‖ηei (0)‖, maxi∈N

∥∥∥x0
i li

∥∥∥, maxi∈N

∥∥x0
vci

∥∥ and εe , the overall

closed-loop system solves the CPF problem.

In particular, we can compute functions β
γ̃
eω,βγ̃

ξ
,βγ̃

i l ,βγ̃

obs ∈ K L , αeξω,αε̃ ∈ K and continuous functions

α̃ε(Nmaxτ̄) : [0,c) → [1,∞) and α̃ξ, α̃ω : [0,c) → [0,∞), for some positive constant c with α̃ε(0) = 1 and αξ(0) =
αω(0) = 0, such that

max
i∈N , j∈N i

∥∥∥γ̃ j
i (t )
∥∥∥≤ α̃ξ(Nmaxτ̄)βξ(‖ξ(0)‖, t ) + α̃ω(Nmaxτ̄)

(
β
γ̃
eω

(
max
i∈N

‖ηei (0)‖, t

)
+β

γ̃

i l

(
max
i∈N

‖x0
i li

‖, t

))

+ α̃ω(Nmaxτ̄)

(
β
γ̃

obs

(
max
i∈N

‖x0
vci

‖, t

)
+ 1�

cω
εe

)
+ α̃ε(Nmaxτ̄)ε,

(10.28)

where βξ ∈ K L is defined on the proof of Lemma 6.

101



Chapter 10. Cooperative Path-Following with Logic-based Communications

Before proving Theorem 18 the following lemmas are required.

Lemma 8. Consider the overall closed-loop system ΣOC L of Theorem 18, and the proposed logic-based

communication system in the presence of delayed information and packet losses. For any time t i j
k when the

messages sent from agent i to j are received by j , if the post-reset value satisfy
∥∥∥γ̃ j

i

((
t i j

k + 2τ̄
)+)∥∥∥< ε, then, for

sufficiently small τ̄,∥∥∥γ̃ j
i (t )
∥∥∥≤αε(Nmaxτ̄)ε+αξ(Nmaxτ̄)‖ξ‖[t−2Nmaxτ̄,t ]+αω(Nmaxτ̄)‖ωi ‖[t−2Nmaxτ̄,t ],∀t ≥ 0, i ∈ N , j ∈ N i (10.29)

for continuous functions αε(Nmaxτ̄) : [0,b) → [1,∞) and αξ,αω : [0,b) → [0,∞), for some positive constant b

with αε(0) = 1 and αξ(0) =αω(0) = 0.

Proof. See Appendix.

Lemma 9. Consider the overall closed-loop system ΣOC L of Theorem 18, and the proposed logic-based

communication system in the presence of delayed information and packet losses. If for any time t i j
k when

the messages sent from agent i to j are received by j , the post-reset value satisfy
∥∥∥γ̃ j

i

((
t i j

k + 2τ̄
)+)∥∥∥ < ε, for

sufficiently small τ̄ and Nmax we have that (10.28) is satisfied.

Proof. See Appendix.

Lemma 10. Consider the overall closed-loop system ΣOC L of Theorem 18, and the proposed logic-based

communication system in the presence of delayed information and packet losses. For sufficiently small τ̄

and Nmax, or sufficiently small values of ‖ηeξω(0)‖, ‖x0
i l ‖, ‖x0

vc
‖ and ‖εeξω‖, if γ̃

j
i (t ) satisfies (10.29), then∥∥∥γ̃ j

i

((
t i j

k + 2τ̄
)+)∥∥∥< ε follows for any time t i j

k when the data messages sent from agent i are received by j .

Proof. See Appendix.

Proof of Theorem 18. Suppose that for some time t i j
k when a data message sent from agent i to j is received by

j , all the previous data messages sent from any agent o ∈ N that are received by some agent p ∈ N o , sent at a

time t op

k̃
≤ t i j

k , the post-reset values satisfy
∥∥∥γ̃p

o

((
t op

k̃
+ 2τ̄

)+)∥∥∥< ε. This holds true if t i j
k is the time when the

first data message in the fleet that is received by another agent, is sent.

If τ̄ and Nmax are sufficiently small such that they satisfy the conditions of Lemmas 8, 9 and 10, we are under

the conditions of Lemma 10, and therefore we have∥∥∥γ̃ j
i

((
t i j

k + 2τ̄
)+)∥∥∥≤ ε̃,

where ε̃ depends on ‖ξ(0)‖, maxi∈N ‖ηei (0)‖, maxi∈N ‖x0
i li

‖, maxi∈N ‖x0
vci

‖, εe and ε but not on time, and we

can apply Lemma 10 for the next received data message.

Noting that, from Lemma 8, one can observe that, when ˙̃γ j
i (t ) is defined, maxi∈N , j∈N i

∥∥∥ ˙̃γ j
i (t ) j

i (t )
∥∥∥≤ v ˙̃γ, where

v ˙̃γ depends on ‖ξ(0)‖, maxi∈N ‖ηei (0)‖, maxi∈N ‖x0
i li

‖, maxi∈N ‖x0
vci

‖, εe and ε but not on time.

Therefore, the triggering condition
∥∥∥γ̃ j

i (t )
∥∥∥= ε can only occur N times within ε−ε̃

v ˙̃γ
time units. Repeating the

same reasoning every time a data message is received by any agent, the theorem holds by recursion.
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Theorem 18 provides stability guarantees in the case with delays and packet losses. The following corollaries

of Theorem 18 provide stability guarantees for the cases with only communication delays and with ideal

communication links.

Corollary 1 (Delayed Information). Consider the overall closed-loop system ΣOC L of Theorem 18, and the

proposed logic-based communication system in the presence of delayed information. For sufficiently small time

delays τ̄ and sufficiently small values of ‖ξ(0)‖, maxi∈N ‖ηei (0)‖, maxi∈N

∥∥∥x0
i li

∥∥∥, maxi∈N

∥∥x0
vci

∥∥ and εe , the

overall closed-loop system solves the CPF problem.

Proof. Since the delayed communication case can be viewed as a particular instance of the communication

losses case with Nmax = 1 and τ̄ halved, Theorem 18 provides a proof of stability of the overall system for all the

case with only communication delays.

Corollary 2 (Ideal Communications). The overall closed-loop system ΣOC L of Theorem 18, and the proposed

logic-based communication system with ideal communication links, i.e. there are no delays or communication

losses, solves the CPF problem.

Proof. Since the ideal communications case can be viewed as a particular case of the delayed communications

one where τ̄ = 0, Corollary 1 provides a proof of stability of the overall system for the case with ideal com-

munication links. Moreover, one can observe from Theorem 18 that the boundedness assumptions on ‖ξ(0)‖,

maxi∈N ‖ηei (0)‖, maxi∈N

∥∥∥x0
i li

∥∥∥, maxi∈N

∥∥x0
vci

∥∥ and εe are not required anymore since αξ(0) =αω(0) = 0.

10.5 Alternative Design

In the case where the vehicles are equipped with heading controllers, rather than yaw rate controllers and

we require that the reference surge speed ud be continuous, as is often the case in practice, we require some

adjustments of the path-following controller. With the proposed path-following controller introduced in this

section there exists an interconnection between the coordination and the path-following errors and therefore we

require a different stability proof methodology. This interconnection between the path-following controller and

the coordination controller was also studied in Ghabcheloo et al. [2007] for the path-following control algorithm

in Soetanto et al. [2003], which provides conditions such that the overall interconnected system is stable.

This interconnection was not present in the control laws of Section 10.4. This is because, since we require the

reference surge speed ud to be continuous, we must not have discontinuities in γ̇ as in (10.22), and we remove

the term ˙̃vr from the control law of input γ̈, since it is not defined when a message is recieved. As will be seen in

Subsection 10.5.2, unlike the previous version with these changes one cannot guarantee that the coordination

controller speed error ω̄ is independent of ξ and therefore we have the interconnection illustrated in Figure 10.5,

where eδ := col
(
e i −δ

)
and e i is the path following error of agent i .
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˜̄γ
ξ

ω̄eδ

Figure 10.5 – Diagram of the interconnection between the coordination controller and the path-following

controller in the alternative design.

10.5.1 Path-following controller

In this section we consider that the vehicles are equipped with inner-loop controllers designed to track heading

angle and surge speed commands. We therefore assume that the following holds

Assumption A13. Let ũ := u − ud and ψ̃ :=ψ−ψd be the surge speed and heading errors, respectively and let

x0
i l be the initial condition of the state of the inner-loop system. There exist functions βũ ,βv ∈ K L and positive

constants εũ , εψ̃, εv such that

‖ψ̃(t )‖ ≤ εψ̃ ‖ũ(t )‖ ≤βũ
(‖x0

i l ‖, t
)+εũ ‖vw (t )‖ ≤βv (‖x0

i l ‖, t
)+εv ,

where π
2 > εψ̃.

The assumption that the heading error is bounded from the beginning, and does not have a transient phase as

the speed, stems from the fact that since it is assumed that the heading is measured directly, one can assign the

initial desired heading ψd (0) to be equal to the initial measured heading ψ(0) and therefore we have initially

ψ̃(0) = 0, thus eliminating the transient phase.

Define the position error e as the difference between the positions of the vehicle and of the virtual target

expressed in the reference heading coordinates {Bd }, where Rd is the orthonormal transformation matrix from

{Bd } to {U }, that is,

e := RT
d (p − pd ).

The dynamics of e are described by

ė = −S
(
ψ̇d
)

e + R̃

[
ud + ũ

vc + vw

]
− RT

d

∂pd

∂γ
γ̇, S

(
ψ̇d
)=
[

0 −ψ̇d

ψ̇d 0

]
, (10.30)

where R̃ is the orthonormal transformation matrix from {B} to {Bd }, i.e.

R̃ =
[

cos
(
ψ̃
) −sin

(
ψ̃
)

sin
(
ψ̃
)

cos
(
ψ̃
)
]

,

and we used the fact that Ṙd = S
(
ψ̇d
)

and RT
d = R̃RT .
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10.5. Alternative Design

To make the desired speed ud := [ud , ψ̇d ]T appear in the position error dynamics we introduce a constant design

vector δ := [δ, 0]T , δ< 0. Following from (10.30), simple computations show that the position error dynamics

are then given by

ė = −S
(
ψ̇d
)

(e −δ) +Δud + R̃

[
ũ

vw + vc

]
− RT

d

∂pd

∂γ
γ̇, (10.31)

where Δ :=
[

cos
(
ψ̃
)

0

sin
(
ψ̃
) −δ

]
, which is invertible, since from Assumption A13 ‖ψ̃‖ < π

2 .

Defining the virtual target speed error

eγ̇ := γ̇− (vr + ṽr ), (10.32)

and computing its time derivative yields ėγ̇ = γ̈− v̇r (γ) = γ̈− ∂vr
∂γ (γ)γ̇.

Lemma 11. Consider the vehicle model described by the kinematics (10.16), with finite values of

sup
γ∈R

∥∥∥∥∂pd

∂γ
(γ)

∥∥∥∥ and sup
γ∈R

∥∥∥∥∂pd

∂γ
(γ)vr (γ)

∥∥∥∥ ,

in closed-loop with the output feedback control law composed by an inner loop that satisfies Assumption A13, a

lateral current estimator which satisfies Assumption A12, and the outer loop given by

γ̈= −kω(γ̇− vr − ṽr ) + v̇r + 1

cω
(e −δ)T RT

d

∂pd (γ)

∂γ
, (10.33)

ud =Δ−1

(
−Kk (e −δ) − R̃

[
0

v̂c

]
+ RT

d

∂pd

∂γ
(vr + ṽr )

)
, (10.34)

where Kk := diag(kx ,ky ), and the design parameters kx , ky , kω and cω > 0 satisfy kx ,ky ,kω,cω > 0.

Then, defining the error vector

ηe :=
[

e −δ�
cωω

]
,

is IOpS with respect to ṽr , that is, there exist functions σe
ṽr

∈ K∞ and βe ∈ K L and a positive constant εe then

‖ηe‖ ≤βe (‖ηe (0)‖, t
)+βe

i l

(‖x0
i l ‖, t

)+βe
obs

(‖x0
vc

‖, t
)+σe

ṽr

(‖ṽr ‖[0,t ]
)+εe . (10.35)

Moreover, σe
ṽr

and εe can be defined as

σe
ṽr

(s) :=
max

(�
cωkω, supγ∈R

∥∥∥∂pd (γ)
∂γ

∥∥∥)
min(kx ,ky ,kω)θe

s, (10.36)

and

εe :=
√

ε2
ũ + (εv +εvc )2

min(kx ,ky ,kω)θe
, (10.37)

with 0 < θe < 1. Thus, the control laws (10.33-10.34) solve robustly the path-following problem.

Proof. See Appendix.
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10.5.2 Coordination controller

Following Ghabcheloo et al. [2009], we introduce the error vector

ξ := Γγ, Γ := IN − 1

N
11T ,

where γ := col
(
γi
)
. We also define the coordination controller speed error

ωi := eγ̇i − ṽrdi
, (10.38)

where ṽrdi
is the desired correction speed signal assuming that measurements of the coordination states γ j ;∀ j ∈

N i are available continuously. With ωi defined as above, the dynamics of the coordination subsystem can be

written in vector form as

γ̇= v̄r + ṽrd + ω̄, (10.39)

where v̄r := col
(
vr (γi )

)
, ω̄ := col(ωi ), and ṽrd := col

(
ṽrdi

, i ∈ N
)
. Consider the control Lyapunov function

V := 1

2
ξT ξ. Computing its time-derivative yields

V̇ = ξT Γ(v̄r + ṽr + ω̄).

To make ξ ISS with respect to input ω̄, a natural choice would be ṽrd = −kLξ= −kLΓγ= −kLγ, where k is a

positive scalar, or equivalently, ṽrdi
= −k

∑
j∈N i (γi −γ j ) (the so-called neighbouring rule). The time derivative

of V becomes

V̇ = −kξT Lξ+ξT Γ(v̄r + ω̄).

In this case, the term −kξT Lξ is negative definite provided that the Graph that models the constraints imposed

by the communication topology among the agents is connected. We can then conclude the following result.

Lemma 12. If (N ,A ) is connected then ξ is ISS with respect to the input ω̄ for k satisfying k > l/σ2, where

σ2 is the second lowest singular value of L and l is the Lipschitz constant of vr , that is, there exist functions

σ
ξ
ω ∈ K∞ and βξ ∈ K L such that

‖ξ‖ ≤βξ(‖ξ(0)‖, t ) +σ
ξ
ω(‖ω̄‖[0,t ]).

Moreover, σ
ξ
ω can be defined as

σ
ξ
ω(s) := 1

(kσ2 − l )θξ
s,

with 1 > θξ > 0.

Proof. See Appendix.

To reduce the communication rate using a logic based dynamical system, we will lift the assumption that each

agent receives information from its neighbourhoods continuously. We assume instead that it relies on estimates.

Therefore, the coordination control law becomes

ṽri = −k
∑

j∈N i

(γi − γ̂i
j ) = ṽrdi

+ k
∑

j∈N i

γ̃i
j , (10.40)
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or in vector form,

ṽr = ṽrd + kγ̄,

where γ̄ := col
(∑

j∈N i γ̃i
j

)
.

In order to prove that the coordination control problem is solved with the proposed controllers we need to obtain

a result similar to lemma (11) using the Lyapunov function V = 1
2

(‖eδ‖2 + cω‖ω̄‖2
)
, where eδ := col

(
e i −δ

)
and

e i is the path-following error of agent i , with ω̄ instead of eγ̇.

Lemma 13. Consider the vehicle model described by (10.16), with finite values of supγ∈R,i∈N

∥∥∥∂pdi (γ)
∂γ

∥∥∥ and

supγ∈R,i∈N

∥∥∥∂pdi (γ)
∂γ vr (γ)

∥∥∥, in closed-loop with the output feedback control law composed by an inner loop that

satisfies Assumption A13, a lateral current estimator which satisfies Assumption A12, and the outer loop given

by (10.33-10.34). Then, if k is chosen satisfying k < min(kx ,ky ,kω)
σN

, where σN is the largest singular value of L,

the error vector

ηω := [eδ,
�

cωω̄
]T ,

is ISpS with respect to ξ and γ̃, that is, there exist functions σω
ξ

,σω
γ̃ ∈ K∞ and βω ∈ K L and a positive constant

εω such that

‖ηω‖ ≤βω(‖ηω(0)‖, t )+βω
i l

(∥∥∥col
(

x0
i li

)∥∥∥ , t
)
+βω

obs

(∥∥∥col
(

x0
vci

)∥∥∥ , t
)
+σω

ξ (‖ξ‖[0,t ])+σω
γ̃ (‖γ̃‖[0,t ])+εω. (10.41)

Moreover, σω
ξ

can be defined as

σω
ξ (s) :=

�
cωkσN (l + kσN )

{min(kx ,ky ,kω) − kσN }θω
s, (10.42)

with 0 < θω < 1.

Proof. See Appendix.

We are now ready to state the main result of this section.

Theorem 19. Consider the closed-loop system ΣC L composed by N agents of the form (10.16) with inner

loops satisfying Assumption A13 and the path-following controller and coordination controller defined by

(10.33)-(10.34) and (10.40) respectively. If the network (N ,A ) is connected then, choosing k satisfying

l

2
< k < kk

σN
, (10.43)

where kk := min(kx ,ky ,kω), and cω satisfying

cω <
(

(kσ2 −�
NσN )(kk − kσN )

kσN (l + kσN )

)2

, (10.44)

then there exists a vector ηeξω such that eδ, eγ̇, ξ and ω̄ are detectable through ηeξω, and ηeξω is ISpS with

respect to the input γ̃ := col
(
γ̃i

j , i ∈ N , j ∈ N i
)
, that is, there exist functions σeξω,σeξω

γ̃
∈ K∞ and βeξω ∈ K L

and a positive constant εeξω such that

‖eδ‖+‖eγ̇‖+‖ξ‖+‖ω̄‖ ≤σeξω(‖ηeξω‖[0,t ]), (10.45)
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and

‖ηeξω‖ ≤βeξω(‖ηeξω(0)‖, t ) +σ
eξω
γ̃

(‖γ̃‖[0,t ]) +εeξω.

Therefore, ΣC L solves robustly the CPF problem.

Proof. The proof of the above result is based on lemmas 13 and 12, together with the small-gain theorem in

Jiang et al. [1994].

Inequality (10.43) follows directly from the hypothesis of Lemmas 13 and 12.

From the small gain theorem we have that ΣC L is ISpS if and only if σ
ξ
ω◦σω

ξ
(s) < s, that is, if for some 1 > θω > 0

and 1 > θξ > 0 we have

1

(kσ2 −�
NσN )θξ

�
cωkσN (l + kσN )

(kk − kσN )θω
< 1, (10.46)

which holds if (10.44) is satisfied

10.6 Alternative Logic-based communication system

This subsection describes an alternative logic-based communication system that takes into account, in the

dynamics of its filters, the action of the coordination controller, potentially increasing the period between com-

munications. This filter dynamics requires a more complex communication system structure and communication

protocols, since the filter requires local estimates of the path-following variables of multiple agents. We will

discuss the cases where 1) the communications are ideal with no packet losses or delays 2) the communications

are delayed and 3) the communications are delayed and are subject to packet losses.

1) Ideal communication links: Let t [i j ]
k , k > 0 denote the instants of time at which agent i transmits data to j

or j transmits data to i , and let β
i j
k ∈ {i , j } denote the agent which sent data at t [i j ]

k . Following the procedure

described in Subsection 10.3 and taking account the dynamic equations of the coordination subsystem, we

propose for each agent i the following logic-based communication system:

-For t [i j ]
k ≤ t < t [i j ]

k+1

˙̂γi j
l = vr

(
γ̂

i j
l

)
+ ˆ̃vi j

rl
, (10.47a)

ˆ̃vi j
rl

:= −kl

∑
m∈N l ∩Li j

(
γ̂

i j
l − γ̂

i j
m

)
, l ∈ Li j (10.47b)

-For t = t [i j ]
k

γ̂
i j
l

(
t [i j ]+

k

)
= γ̂

β
i j
k

l , (10.48)

where γ̂i
j is defined as

γ̂i
j :=

{
γi if j = i

γ̂
iαi j

j otherwise
, (10.49)

with αi j ∈ N i , αi j = j if j ∈ Ni and Li j ⊇ {i , j }, where αi j represents a neighbour of i that is closest

to j and Li j represents the set of path-following variables that estimated in the link i j . We will consider
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Li j = N . However, other choices such as Li j = {i , j } could also be considered, in which case we would

have ˆ̃vi j
ri

= −k
(
γ̂

i j
i − γ̂

i j
j

)
and ˆ̃vi j

r j
= −k

(
γ̂

i j
j − γ̂

i j
i

)
. To simplify the estimators, we have chosen (10.47) instead

of choosing a more complex reproduction of the corresponding dynamic models, which would imply the

communication of more variables among the agents, increasing the required bandwidth, without much foreseeable

improvement in performance. From the logic-based communication system we obtain the estimates of the

neighbours’ path-following variables as γ̂i
j := γ̂

i j
j , j ∈ N i .

To solve robustly the communication problem (see Definition 7) we introduce the communication threshold ε> 0

and γ̃
j
i := γ̂

j
i −γi and use the following logic: agent i transmits to j a message composed by

[
γ̂i

l

]
l∈Li j

at time

t [i j ]
k when lim

t→t [i j ]
k

∥∥∥γ̃ j
i (t )
∥∥∥≥ ε. Since the message was sent by agent i we define the index β

i j
k = i , otherwise

β
i j
k = j .

Note that the post reset value of γ̃
j
i is γ̃

j
i

(
t [i j ]

k

)
= 0 Consequently, γ̃

j
i ∈
{
γ̃

j
i ∈R :

∥∥∥γ̃ j
i

∥∥∥≤ ε
}

and, hence, (10.14)

holds.

However, we did not consider the cases when lim
t→t [i j ]

k

∥∥∥γ̃ j
i (t )
∥∥∥≥ ε and lim

t→t [i j ]
k

∥∥∥γ̃i
j (t )
∥∥∥≥ ε, that is, when both

agents send messages at the same time. To handle such cases we consider that each communication link has a

primary and a secondary agent. Considering without loss of generality that i is a primary agent on link i j , then

γ̂
i j
l and γ̂

j i
l , l ∈ Li j are updated as

γ̂
i j
l

(
t [i j ]+

k

)
= γ̂

j i
l

(
t [i j ]+

k

)
=
{

γ̂
j
l if α j l �= i

γ̂i
l if α j l = i

, (10.50)

With this method, the post reset values of γ̃
j
i and γ̃i

j are equal to zero and therefore (10.14) holds also in this

case.

2) Delayed information: We now consider the case where the communication channels have bounded, time-

varying and non-homogeneous delays. Consider the following situation: agent i sends data to j at time t [i j ]
k , and

agent j receives it at time t [i j ]
k +τ

i j
k . We assume that

τ
i j
k ≤ τ̄, ∀i ∈ N ,∀ j ∈ N i ,∀k : βi j

k = i , (10.51)

where τ̄> 0 is known a priori. Suppose that at time t [i j ]
k agent i transmits to agent j a message, which contains

the following data:
{

t [i j ]
k ,col

(
γ̂i

l

(
t [i j ]

k

)
, l ∈ Li j

)}
. Then, the internal estimator

[
γ̂

i j
l

]
l∈Li j

cannot be immediately

updated. This is because we must guarantee that the value of the state estimate γ̂
i j
l will always remain equal to

the corresponding state estimate running in agent j , γ̂
j i
l . To this end, both estimates can only be updated at time

t = t [i j ]
k + τ̄. Upon receiving t [i j ]

k , the coordination state estimate γ̂
[i j ]
l running in agent j should be updated at

time t = t [i j ]
k + τ̄ to

γ̂
i j
l

(
t [i j ]

k + τ̄
)

= γ̂i
l

(
t [i j ]

k

)
+ τ̄vr

(
γ̂i

l

(
t [i j ]

k

))
. (10.52)

With the above procedure, we guarantee that the estimators are always synchronized. Notice that in general

γ̃
i j
i

(
t [i j ]

k + τ̄
)

will not be zero because vr may not be constant and ω̄i and ṽrdi
may not be zero in the interval[

t [i j ]
k , t [i j ]

k + τ̄
)
. The estimation error γ̃

j
i viewed by agent j will be

lim
t→t [i j ]

k +τ̄

γ̃
j
i (t ) = ε+

∫t [i j ]
k +τ̄

t [i j ]
k

˙̃γ j
i (σ)dσ, (10.53)
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which is bounded assuming that the time delay is bounded, hence, (10.14) holds. Equation (10.53) only holds if

τ̄ is sufficiently small and ε is selected to be sufficiently small so as to guarantee that the post-reset value of γ̃
j
i

satisfies
∥∥∥γ̃ j

i

∥∥∥< ε.

We also have to consider the case where, on link i j an agent tries to send a message while the other agent has

already sent one message during the τ̄ previous time units. For each link we consider a primary and a secondary

agent, as was done before. Considering without loss of generality that i is a primary agent on link i j , then the

message sent by agent j is ignored and if lim
t→t [i j ]

k +τ̄

∥∥∥γ̃i
j (t )
∥∥∥≥ ε holds, then another message is sent by agent j

at time t [i j ]
k+1 = t [i j ]

k + τ̄.

The estimation error γ̃i
j

(
t [i j ]

k+1 + τ̄
)

is bounded assuming that the time delay is bounded, therefore, (10.14) holds.

We can guarantee that this technique is valid if τ̄ is sufficiently small and ε is selected to be sufficiently small so

as to guarantee that γ̃i
j satisfies

∥∥∥γ̃i
j

(
t [i j ]

k + τ̄
)∥∥∥< ε.

3) Communication losses:

To make the communication system robust to limited communication losses we require each agent to send a

reply upon receiving a message. The agent which sent the message only updates his estimators 2τ̄ time units

after the message was sent if the reply was received, otherwise another message is sent.

Consider the case that at time t [i j ]
k agent i transmits to agent j a message, which contains the following data:{

t [i j ]
k ,col

(
γ̂i

l

(
t [i j ]

k

)
, l ∈ Li j

)}
. Upon receiving the message and sending a reply, the coordination state estimates

γ̂
[ j i ]
l running in agent j should be updated at time t = t [i j ]

k + 2τ̄ to

γ̂
j i
l

(
t [i j ]

k + 2τ̄
)

= γ̂i
l

(
t [i j ]

k

)
+ 2τ̄vr

(
γ̂i

l

(
t [i j ]

k

))
. (10.54)

If the reply was received by agent i then the coordination state estimates γ̂
[i j ]
l running in agent i should be also

updated at the same time as γ̂
i j
l

(
t [i j ]

k + 2τ̄
)

= γ̂
j i
l

(
t [i j ]

k + 2τ̄
)

otherwise a reply is sent at t [i j ]
k+1 = t [i j ]

k + 2τ̄. Note

that if agent i did not receive the reply, then there is a brief period when the estimators are desynchronized, that

is γ̂
i j
l �= γ̂

j i
l , however the equality is replaced after the reply of the next message is received.

We now have to consider the case of conflicting messages. If on link i j an agent tries to send a message while

the other agent has already sent one message during the 2τ̄ previous time units, we consider, for each link, a

primary and a secondary agent. Considering, without loss of generality, that i is a primary agent on link i j , then

the message sent by agent j is ignored and, if lim
t→t [i j ]

k +2τ̄

∥∥∥γ̃i
j (t )
∥∥∥≥ ε holds, then another message is sent by

agent j at time t [i j ]
k+1 = t [i j ]

k + 2τ̄.

If we can guarantee that for two consecutive messages sent one reply is received then, if τ̄ is sufficiently small and

ε is selected to be sufficiently small so as to guarantee that γ̃
j
i satisfies

∥∥∥γ̃ j
i

(
t [i j ]

k + 2τ̄
)∥∥∥< ε, then the estimation

error is bounded, hence, (10.14) holds.
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The communication logic for the case with delayed information and communication losses is illustrated in Figure

10.6.

Wait for event 

Wait for reply 

Secondary and message received 

message 
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reply received 

Update Filters 
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Primary and  

 
 
 
 
 

Send .... and .... 
 

Store ... and .... 
Send reply 

t = tupt = tup

t = tup

‖γ̂ij
i − γi‖ ≥ ε

‖γ̂ij
i − γi‖ ≥ ε

tup tup

tup

tupγup
l

γup
l

γ̂ij
l = γup

l

γup
l = γ̂j

l + 2τ̄ vr

(
γ̂j
l

)
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Figure 10.6 – Communication logic diagram.

10.7 Simulation

To assess the performance of the designed CPFCS in simulation, with the alternative design of Section 10.5 and

the alternative communication system of Section 10.6 we used a Simulink model of the MEDUSA autonomous

marine vehicle with the inner loop controller for heading and speed described in Ribeiro [2011].

We consider a lateral water current observer with the law ˙̂vc = kvc

{
[0 1]RT ṗ − v̂c

}
.

10.7.1 Test Case

Test set-up

The formation considered consists of three agents, that is N = {1,2,3}, where agent 1 communicates with 2,

agent 2 communicates with agents 1 and 3, and therefore agent 3 only communicates with agent 2. Agent 2 is a

primary agent on both links, 12 and 23. In this case there is no freedom on the selection of αi j . We have in agent

1 γ̂1
2 := γ̂12

2 , γ̂1
3 := γ̂12

3 , in agent 2 γ̂2
1 := γ̂21

1 , γ̂2
3 := γ̂23

3 , and in agent 3 γ̂3
1 := γ̂32

1 , γ̂3
2 := γ̂32

2 . The three vehicles are

required to maintain a side-by-side formation with 10m between the vehicles. The formation will follow straight

trajectories at a speed of 0.5m/s with a U-turn upon reaching x = 160m. In order to assess the full potential of

this control architecture an engine failure of agent 1 is simulated at t = 500s with a recovery at t = 600s. In this

simulation, a current of vc = [−0.05,−0.05 ]T was considered. The network was simulated with delays of 0.1

seconds and 20% of packet losses.

Parameters

Table (10.1) contains the parameter values used in the simulations. Parameters δ, kx , ky and kω are needed by

the path following controller (10.20)-(10.21), k is used by the coordination controller (10.24). The parameter ε

refers to the CTC.
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Parameters Value

δ -1.5 (m)

kk 0.3 (s−1)

kω 5 (s−1)

k 0.1 (s−1)

cω 0.1 (s2)

ε 0.5

Table 10.1 – Simulation parameters.

10.7.2 Results

The simulated trajectories of the three vehicles can be seen in Figure 10.7 where it is visible that the trajectory is

accurately tracked in the conditions of the test.
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Figure 10.7 – Trajectories of the vehicles.

The communication instants during engine failure can be seen in Figure 10.8. In Figure 10.8 the blue + markers

represent sent messages and the red + markers represent replies to received messages. It can be observed

that agent 1 communicates heavily with agent 2, agent 2 communicates moderately with agents 1 and 3, and

agent 3 receives messages from agent 2 and sends few messages. The reason behind those "frequencies" of

communication between vehicles will be explained next.

The estimated coordination states computed by each communication logic block during engine failure are shown

in Figures 10.9 to 10.12.

Since the path-following variable kinematics are designed to reduce the path-following errors, that is, to keep the

desired position close to the real agent position, γ1 goes to a stop a few seconds after engine failure. Since the

expected path-following variable kinematics of the filters in the communication logic block do not account for

the path-following error, the estimation errors of γ1 become greater than in normal conditions, explaining the

heavy need of communication. The path-following variable kinematics of agent 2 imposes a strong deceleration

due to the effect of agent 1, therefore there is a slight oscillatory behaviour which degrades the filter performance,
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Figure 10.8 – Communication instants.
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Figure 10.9 – Communication system output on agent 1 synchronized with agent 2.

and therefore there is a small need of communication. Agent 3 is only affected by agent 2 and therefore the

decelerations imposed by the path-following variable kinematics are relatively weak, then the path-following has

no difficulty in follow pd (γ) and therefore there is little need for updating the filters for γ3. From Figures 10.7,

and 10.9 to 10.12 it can be observed that coordination is achieved while each agent follows its assigned path.
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Figure 10.10 – Communication system output on agent 2 synchronized with agent 1.
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Figure 10.11 – Communication system output on agent 2 synchronized with agent 3.
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Figure 10.12 – Communication system output on agent 3 synchronized with agent 2.
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11 Cooperative Path-Following with Quantized
Communications

11.1 Motivation and problem description

In this chapter we aim to solve the CPF problem introduced in Chapter 10 while considering bandwidth

limitations. The problem of CPF is defined as the problem of given multiple autonomous vehicles and different

spatial paths assigned to them, deriving control laws to drive and maintain the vehicles on their paths with desired

speed profiles, while holding a specified formation pattern. We have seen in Chapter 10 that a form of solution

is a coordination controller which amounts roughly to performing a continuous-time consensus algorithm on

the path-following variables, with the dynamics of the vehicles in the loop. To solve the CPF problem while

considering bandwidth limitations, in this chapter we apply the quantized consensus algorithm of Section 7.6,

and its theoretical guarantees. That is, we consider that each vehicle is a node in a communication network and

that each vehicle communicates messages with a finite number of bits with a set of neighbours. Details on the

consensus algorithm are given in Subsection 11.2.1. Specifically, in this chapter we consider the problem of

cooperative path-following of a network of single integrators driven by process noise, i.e. where the dynamics of

each agent are of the form

ṗ = u +ω, (11.1)

where p ∈Rm is the agent’s state u ∈Rm is the agent’s input and ω ∈Rm is the process noise which is bounded

by ‖ω‖ ≤ εω.

We now assign to each agent a desired path, a continuously differentiable function pd : R → Rm and a path-

following variable γ that parameterizes the path. The objective is to derive control laws for u and γ̈ to steer

the state of each agent p to its assigned path pd (γ) and the time derivative of the path-following variable γ̇ to

its assigned value νr . Since we are considering multiple agents we can make explicit the agent’s index on the

path-following variable as γi , i ∈ N , and we will omit the agent’s index when it is clear from the context that

we are referring to a generic agent.

We also want the formation to be coordinated, i.e. we desire that the bound ‖γi −γ j ‖ for i �= j converge to

zero (or at least to a small value). Defining, Γ := col
(
γi , i ∈ N

)
the above is the same as the convergence of∥∥(IN − 1

N 11T
)
Γ
∥∥ to zero (or a small value). In order to enforce consensus we introduce a desired velocity

νd (t ) which is a perturbation of νr where ‖νd (t ) −νr ‖ is bounded for a bounded deviation from average of

the path-following variables
∥∥(IN − 1

N 11T
)
Γ
∥∥. Therefore we want to drive γ̇ to νd (t ) and we design νd (t ) to

achieve consensus.
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In summary, defining the path-following error as ξ := p −pd (γ) and the velocity error as η := γ̇−νd , the objective

of the path-following controller is then to make the agent’s error vector defined as z := [ξT η]T converge to a

small neighbourhood of zero. The objective of the consensus algorithm is to ultimately bound the consensus

error
∥∥(IN − 1

N 11T
)
Γ
∥∥. Moreover we also want the deviation from the reference velocity ‖νd (t ) −νr ‖ to be

ultimately bounded.

11.2 Algorithm description

The coordinated path following algorithm considered in this chapter is depicted in Figure 11.1. It is composed of

the following three components:

• A consensus law which provides the desired path-following variable at the next communication time,

• A desired velocity generator which provides the reference velocity to the path-following controller,

• A path-following control law which provides the control input u and the second derivative of the path-

following variable γ̈.

We will now describe each main component in detail.

11.2.1 Consensus

In this application we consider that the agents communicate at discrete instants of time tk := kΔt where k ∈N

and Δt is the time between communications. To achieve coordination we set a desired path-following variable at

each communication instant according to the quantized consensus algorithm

γd ,i
k+1 = ∑

j∈N i

πi , j Q j
k

(
γ j (tk )

)
−
(
Qi

k

(
γi (tk )

)
−γi (tk )

)
+νrΔt , (11.2)

where the mid-value of the quantizer Qi
k+1(·) is set as γ̄d ,i

k+1 = Qi
k

(
γi (tk )

)+νrΔt and its interval length is set as

Λk = r1α
k + r2, for an appropriate decrease rate α and parameters r1 and r2 selected under the conditions of

Theorem 8. Therefore we want that the values of path-following variables evolve according to γi
k+1 = γd ,i

k+1 + w i
k

where the disturbance wi
k satisfies assumption A4. It can be observed that the introduction of the reference

velocity on the algorithm does not change the properties of the algorithm and Theorem 8 still applies.

11.2.2 Desired velocity

Given the desired path following variable at time tk+1 we can define the desired velocity for the time segment

tk < t ≤ tk+1 as

νd (t ) =
{

νr + 2νc
k

t−tk
Δt , tk ≤ t ≤ tk + Δt

2

νr + 2νc
k

tk+1−t
Δt , tk + Δt

2 ≤ t ≤ tk+1
, (11.3)

where the impulse perturbation velocity νc
k is defined as

νc
k := 2

(
γd

k+1 −γ(tk )

Δt
−νr

)
. (11.4)
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Qi
k(γ

i(tk))

Qi
k(·)

γd
k

νck = 2

(
γd
k+1 − γ(tk)

Δt
− νr

)

νd(t) =

{
νr + 2νck

t−tk
Δt , tk ≤ t ≤ tk + Δt

2

νr + 2νck
tk+1−t

Δt , tk + Δt

2 ≤ t ≤ tk+1

νck

νd(t) ν̇d(t)

γ̈

γ̇ γ

ṗ = u+ ω
ω

p

u = −Kξ(p− pd(γ)) +
∂pd
∂γ

(γ)νd(t)

u

γ̈ = −kη(γ̇ − νd(t)) + ν̇d(t) + (p− pd(γ))
T ∂pd
∂γ

(γ)

γd,i
k+1 =

∑
j∈N i

πi,jQj
k

(
γj(tk)

)− (
Qi

k

(
γi(tk)

)− γi(tk)
)
+ νrΔt

Qj
k(γ

j(tk))

Figure 11.1 – Diagram of the coordinated path-following algorithm. Blocks in gray correspond to continuous-

time systems and blocks in orange correspond to discrete-time systems.

Given this desired velocity, recalling that η := γ̇−νd , we can observe that the values of the path-following

variable at the communication instants evolve as follows

γ(tk+1) = γ(tk ) +
∫tk+1

tk

γ̇d t = γ(tk ) +
∫tk+1

tk

νd (t )d t +
∫tk+1

tk

η(t )d t

= γd
k+1 +

∫tk+1

tk

η(t )d t .

Therefore the values of the path-following variable at the communication instants evolve according to γ(tk+1) =
γd

k+1 + wk where wk is wk :=∫tk+1
tk

η(t )d t .

11.2.3 Path-following controller

We now consider a path-following scheme as described in Vanni et al. [2008] for the case of single integrators.

The path-following control law is the following

γ̈= −kηη+ ν̇d +ξT ∂pd

∂γ
, (11.5)
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u = −Kξξ+ ∂pd

∂γ
νd , (11.6)

where Kξ := Imkξ with kξ > 0 and kη > 0. Since this is a path-following control law, there exist a feedback from

the path following error p − pd (γ) to the the dynamics of the path-following variable γ. Compared to trajectory

tracking where the path is parameterized by time, as in pd (t ), this method provides a faster convergence of the

vehicles to their assigned paths, since the path-following variable dynamics drives pd (γ) closer to the agent’s

position p. It should be noted that the derivative of the desired velocity ν̇d is not defined at all points. To

overcome this problem we must replace ν̇d on the control law for γ̈ with some signal which is defined everywhere

and is equal to ν̇d where it is defined.

11.3 Design and theoretical guarantees

The path-following control law drives the agent’s error vector z to an ultimate bound proportional to εω as stated

by the following theorem.

Theorem 20. Given the system (11.1), where the process noise is bounded by ‖ω‖ ≤ εω, and the path-following

control law (11.5), the norm of the agent’s error vector ‖z(t )‖ satisfies, for all θ such that 0 < θ < 1,

‖z(t )‖ ≤ ‖z(0)‖e−(1−θ)km t + εω

θkm
, (11.7)

where km := min
(
kξ,kη

)
.

From Theorem 20, we can bound ‖wk‖ as follows

‖wk‖ ≤
∫tk+1

tk

‖η(t )‖d t ≤
∫tk+1

tk

‖z(0)‖e−(1−θ)km t + εω

θkm
d t

= ‖z(0)‖
(1 −θ)km

(
1 − e−(1−θ)kmΔt

)
e−(1−θ)kmΔtk + εωΔt

θkm
.

The proof is given in Appendix E.1. With this bound we can observe that Assumption A4 is satisfied with

δv := εωΔt
θkm

, εv := maxi∈N
‖zi (0)‖

(1−θ)km

(
1 − e−(1−θ)kmΔt

)
and kv := e−(1−θ)kmΔt . Therefore we can apply Theorem 8

to derive lower bound conditions for the number of bits nb and the quantizer parameters α, r1 and r2. Since

we can apply Theorem 8 we can also establish ultimate bounds on the consensus error
∥∥(IN − 1

N 11T
)
Γ
∥∥ using

continuity arguments. Moreover, since the consensus error is ultimately bounded we can also establish ultimate

bounds on the impulse perturbation velocity νc
k and therefore ultimately bound the deviation to the reference

velocity ‖νd (t ) −νr ‖.

11.4 Simulation Results

As an example we consider a fleet of six two dimensional vehicles with single integrator dynamics performing

a lawnmower mission. The desired shape of the fleet is composed by equilateral triangles and the agents

communicate each second with their immediate neighbours only. We consider a coordinated path-following

controller with gains kξ = 0.08 and kη = 2, and the process noise is bounded with εω = 0.2. This selection of

gains yields a fast convergence of the path-following errors and a slow convergence of the coordination errors.

The slow convergence of CC allows for a lower number of transmitted bits.

The parameters εv , kv and δv , from Assumption A4 were adjusted manually to provide a tight bound on the

process noise ‖vi
k‖. It was found that the conditions of Theorem 9 are satisfied if six bits are transmitted each

second, and in this example, to obtain a reasonably small initial quantization interval, we used eight bits per
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second.

The trajectories of the agents are represented in the Figure 11.2, where it can be observed that the positions

of the agents converge to the desired paths. We can also observe that, as expected, the formation acquires the

desired shape, since the path-following variables approach consensus.
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Figure 11.2 – Trajectories of the vehicles. The black markers represent the agents position every 75 seconds and

the black dashed lines represent communication links.

The quantization level transmitted by each agent, Qi
k

(
γi (tk )

)
(2nb − 2)/Λk , is shown in Figure 11.3. It can be

observed that, for this case, the theoretical guarantees are quite conservative and we could use a much lower

number of transmitted bits, since only 16 of the 255 quantization levels were used.
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Figure 11.3 – Quantization levels.

The evolution of the difference of the path-following variables to their average, i.e. of γi − (1/N )
∑

j∈N γ j , can

be observed in Figure 11.4, the derivative of the path-following variables γ̇i , is shown in Figure 11.5, and we

can observe the norms of the path-following error ‖pi − pi
d (γi )‖ in Figure 11.6.
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Figure 11.4 – Evolution of the difference of the path-following variables to their average γi − (1/N )
∑

j∈N γ j .
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Figure 11.5 – Time derivative of path-following variables γ̇i .
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Figure 11.6 – Evolution of the norm of the path-following error
∥∥pi − pi

d

(
γi
)∥∥.

From Figures 11.4, 11.5 and 11.6 we can observe that all the quantities that we wanted to regulate, i.e. the

deviation of the path-following variables from the average, the deviation of the time derivative of path-following

variables to the reference velocity (one in this case), and the norm of the path-following error, decrease from

their initial values until they reach an ultimate bound and remain within that bound, as was expected from the

theoretical analysis.
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The lower bound on the number of bits required for stability is a conservative over-approximation as indicated by

Figure 11.3. In fact, it was observed in simulations that nb = 2 also yields a stable system albeit with degraded

performance. Figure 11.7 shows the evolution of the norm of the difference to average of the path-following

variables, i.e. of
∥∥col

(
γi − (1/N )

∑
j∈N γ j

)∥∥, averaged among 5 different simulation runs, for different number

of transmitted bits between 2 and 9, with the same parameters of the previous simulations. We can observe from
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Figure 11.7 – Effect of number of bits on coordination error.

Figure 11.7 that with 5 transmitted bits we obtain approximately the same asymptotic performance as with 8 bits

with a smaller convergence rate. It was observed that above 8 bits there is no significant difference in terms of

asymptotic performance or convergence rate.
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12.1 Introduction

The topic of distributed estimation has been the subject of intensive research, as the literature survey in Li

et al. [2015b] shows. Representative examples include the work on distributed estimation in Olfati-Saber

[2005], Battistelli and Chisci [2014] and Park and Martins [2016], where the authors proposed distributed state

estimators, and proved their stability.

Guaranteeing that a decentralized estimator (observer) satisfies an ISS property in the presence of bandwidth

limitations, that is, when only a limited amount of data are exchanged among multiple distributed systems or

agents per unit of time, is still an open topic of research. This issue is of paramount importance in practical

applications, since lower bandwidth translates into lower energy consumption and, consequently, into increased

operational autonomy. Stringent bandwidth limitations occur naturally in the case of underwater applications,

due to the nature of the communications medium. These constraints must therefore be taken explicitly into

account in the design of distributed estimators and controllers for networked marine vehicles Bahr et al. [2009],

Soares et al. [2013], Rego et al. [2014]. In general, to address explicitly bandwidth limitations, it may be

expedient to consider that the messages exchanged among agents in a network are quantized, i.e. are encoded

with a finite number of bits.

One of the most common distributed algorithms is consensus, where all the network nodes agree on a single

value, usually the average of values initially contained in the nodes. Consensus is often used as a mean to apply

certain algorithms, designed originally for a single computer, in a distributed setting, as for example the case of

Kalman filtering Battistelli et al. [2015]. The problem of distributed averaging with quantized exchanged data

has been addressed in many works, see for example Aysal et al. [2008], Frasca et al. [2009], Nedić et al. [2009],

Carli et al. [2010] and the references therein. Recently, results have come to the fore that guarantee convergence

to the initial average, and not convergence of the expected value, using progressive quantization Li et al. [2011],

Thanou et al. [2012, 2013], Pu et al. [2015]. These results motivate the application of consensus with progressive

quantization to the problem of distributed estimation in order to guarantee convergence of the estimation error in

the absence of disturbances.

One of the main motivations for state estimation is to stabilize or enhance the performance of systems through

state feedback when the state is not available directly but can be estimated using a dynamic observer. However,

in Chapters 8 and 9 the problem of distributed state estimation of systems was addressed without considering

state feedback. In the context of distributed estimation, when the state estimates are used for state feedback, it is
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not possible to compute precisely the effects of the control input in the dynamics. This is due to the fact that the

nodes may have different state estimates and therefore the control action applied by each node is not available to

the other nodes. Thus, the separation principle, that states that the design of the controller has no impact on the

estimation error dynamics, does not apply in this context, making the design of distributed state estimators more

challenging.

Motivated by the above considerations, in this chapter we address the problem of distributed state estimation

for linear systems with linear state feedback subjected to process and measurement noise, under the constraints

of quantized and rate-limited network data transmission. We propose a linear distributed consensus-based

Luenberger observer, where the consensus algorithm is implemented with progressive quantization as in Thanou

et al. [2013], and derive a set of conditions on the design parameters of the quantizer that guarantee ultimate

boundedness of the estimation error. The latter is shown to depend on the L∞ norm of the noise signals and the

number of bits transmitted. We further show that the maximum possible estimation convergence rate depends on

the number of iterations of the consensus algorithm and can be made arbitrarily close to that obtained with a

centralized estimator by increasing the number of iterations. Moreover, the proposed method requires global, and

not local observability, i.e. the system state can be reconstructed if information from all the sensors is available

but may not be reconstructed with just any individual sensor. A numerical example illustrates the performance

of the proposed algorithm.

The design of the estimation algorithm that we propose is straightforward in that the parameters of the algorithm

must only satisfy a certain number of inequality conditions. However, the initial design of the algorithm must be

done centrally, using global information. This is because some of the design parameters are necessarily the same

for all nodes in a network (e.g. the quantization interval parameters and the number of transmitted bits) and

the design of parameters satisfying the stability conditions require information about the global communication

graph as well as the models of the observed system and of every sensor. The key contributions of the chapter are

threefold:

• We propose a distributed linear state estimation algorithm for linear state feedback systems that takes into

account limited data-rate communications among agents.

• We provide conditions on the design parameters of the algorithm to guarantee ultimate boundedness of the

estimation error.

• Given that the above mentioned conditions are satisfied, we derive explicit bounds on the estimation error

norm and on the norm of the state of the system.

12.2 Literature Survey

In what follows we review briefly the contributions of some papers that are relevant to our work.

In J.-J. Xiao et al. [2006], Sun et al. [2007], Li and Fang [2007] and Msechu et al. [2008] the distributed

estimation setup considered is one where multiple sensors take quantized measurements of a system, and send

their measurements, to a fusion center, i.e. a computer running a centralized estimation algorithm. The papers by

J.-J. Xiao et al. [2006] and Li and Fang [2007] address the problem of parameter estimation, i.e. the problem of

estimating a time-invariant parameter given multiple noisy measurements. The work in J.-J. Xiao et al. [2006]

addresses the problem of minimizing the transmission power consumption while ensuring a given performance

for the state estimation algorithms. In Li and Fang [2007], a decentralized estimation method is proposed that

makes use of adaptive quantization, and where only one bit of information is exchanged at each epoch. In

contrast with the two previously mentioned works, Sun et al. [2007] and Msechu et al. [2008] deal with the
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general problem of distributed state estimation, i.e. the problem of estimating the state of a discrete-time dynamic

system given measurements from multiple sensors. The paper by Sun et al. [2007] proposes a decentralized

Kalman filter that takes into consideration the trade-off between number of quantization levels of the sent data

and the state estimation performance. Finally, Msechu et al. [2008] proposes a method of scheduling optimally

which measurement is sent to the fusion center at each time. It should be noted that the methods proposed in J.-J.

Xiao et al. [2006], Sun et al. [2007], Li and Fang [2007] and Msechu et al. [2008] are different from the setup

we consider in this thesis in that they require that all agents can communicate with a fusion center, and therefore

it is only applicable for very specific topologies of the communication network.

The work in Li et al. [2015a] proposes a distributed Kalman filter with quantized communications between

agents, which is gossip based, i.e. uses a gossip algorithm instead of a consensus algorithm for information

fusion. In the gossip algorithm, for each node a neighbour is selected at random and the state of the observer,

estimated state and covariance, is swapped with that neighbour. The above paper also proves weak convergence

(in distribution) of the proposed observers. Since the method considered is gossip-based, it is considerably

slower than consensus based algorithms in certain cases, e.g. when the number of neighbours of each agents is

considerably larger than one, and therefore it may not be suitable for the set-up considered in this chapter.

To the best of our knowledge, there are no publications that propose consensus-based algorithms to solve the

general problem of distributed state estimation considered in this chapter, while taking into account bandwidth

limitations. Also, it is important to stress that the papers mentioned above address stochastic convergence of the

estimation error, and not deterministic convergence as we aim to guarantee in this chapter. Moreover, since the

guarantees are not deterministic, they do not provide methods to compute ultimate bounds of the estimation

error, or upper bounds on the convergence rates. To the best of our knowledge, there are also no publications

on the design of distributed observers that guarantee input to state stability with respect to measurement and

process noise, with quantized communications among agents, i.e. taking into account bandwidth limitations,

which is the aim of this chapter. As a contribution to overcome these limitations, we borrow the theory of

quantized consensus, which we will review in the next section, to provide input to state stability guarantees for a

consensus-based distributed state estimation algorithm.

12.3 Problem Statement

This section formulates the problem that is at the core of the chapter. We first introduce the setup that originates

the problem we aim to solve, and the necessary assumptions, in Section 12.3.1. In Section 12.3.2 we describe

formally the main problem of this chapter.

12.3.1 Networked System

We consider a very general setup consisting of: I) a discrete-time dynamical system; II) a set of nodes N

endowed with local sensing and actuation capabilities, with cardinality N = |N |. At each node i ∈ N and instant

t , a sensor measures an output yi
t of the system and an actuator acts upon the system through a local control

input ui
t ; III) a communication network between nodes (N ,A ), where A ⊆ N ×N is the set of node pairs

describing the directed connections between these nodes, i.e. node i can communicate with node j if and only if

(i , j ) ∈ A . This setup is shown in Figure 12.1.

We assume that the discrete-time dynamical system is given by

xt+1 = Axt + ∑
i∈N

B i ui
t + wt (12.1)
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System 

Node N Node 1 

Network 

Node 2 

(N ,A)

N

uN
tyNt

u2
t

y2t

u1
t

y1t

Figure 12.1 – Problem setup consisting of a discrete-time linear dynamical system, sensor and control nodes

that take measurements from the system and act upon it, and a communication network that allows the nodes to

communicate among themselves.

where xt ∈Rn , ui
t ∈Rli and wt ∈Rn denote the complete state vector, the local control inputs, and the state noise

vector, respectively, at time t , A ∈Rn×n is the dynamics matrix and B i are local input matrices of appropriate

dimensions.

The measurement equation associated with the generic node i ∈ N is defined as

yi
t = C i xt + vi

t , (12.2)

where yi
t ∈ Rmi and vi

t ∈ Rmi denote the observation vector and the observation noise vector, respectively,

considered at time t , and C i is a matrix of appropriate dimensions.

The following assumptions are made on the detectability and stabilizability of the system and the intensity of the

disturbances.

Assumption A14. The system (12.1)-(12.2) is collectively detectable, i.e. the pair (A,C ) is detectable where

C := col(C i ).

Assumption A15. The system (12.1) is collectively stabilizable, i.e. the pair (A,B) is stabilizable where

B := row(B i ).

Assumption A16. The L∞ norm of the disturbance signals satisfy

‖wt ‖∞ ≤ εw , ‖vi
t ‖∞ ≤ εvi , i ∈ N ,

for some constants εw > 0 and εvi > 0.

Note that we only assume global detectability but not necessarily local detectability of the system, i.e. we do not

require that the pair (A,C i ) be detectable for any i ∈ N . Concerning Assumption A16, different norm bounds

can also be considered, such as quadratic norms, as will be seen later in the chapter.
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12.3.2 Problem Statement

Given the system and the network described in Subsection 12.3.1, the main problem solved in this chapter is

described next.

Assume, in (12.1)-(12.2), that the disturbances wt and vi
t are uniformly bounded over time and consider that at

each time t the nodes are allowed to communicate quantized messages with a fixed number of bits nb , according

to the network structure defined by (N ,A ), for a finite number of times l f between every two discrete instants

of time t and t + 1. The problem of distributed state estimation and control with quantized communications
consists of reconstructing at each node the state of the global system (12.1) and simultaneously driving the state

of the system to the origin, with the estimation error and the state converging to an ultimate bound proportional

to the magnitude of the disturbances.

Stated mathematically, the objective is to compute at each node i ∈ N and at each discrete time t a state

estimate x̂i
t and a control input ui

t such that, for every initial condition, there exists a time T such that for t ≥ T ,

‖x̂i
t − xt ‖ ≤ b1 and ‖xt ‖ ≤ b2, with b1 and b2 proportional to εv j , j ∈ N and εw defined in Assumption A16.

12.4 Proposed Estimation and Control System

This section describes the main concepts required for the solution of the problem formulated in 12.3 and outlines

the control system proposed in this chapter. We refer to the general set-up introduced before, see Fig. 12.1.

12.4.1 Linear State Feedback

One of the objectives of this chapter is to provide a stabilizing control algorithm for system (12.1), i.e. we wish

to stear the state xt of the system to a small neighbourhood of the origin. For this purpose, we now define the

linear control law adopted. Suppose that each node can measure the complete state xt perfectly (this assumption

will be lifted later). Then, local gain matrices K i ∈Rli ×n can be defined such that with the global gain matrix

K := row(K i ) we have ρ(A +BK ) < 1. This is possible because the system is collectively stabilizable and we can

set the i th local control input as ui
t := K i xt . In this case, the dynamics of the closed loop system are described by

xt+1 = (A + BK ) xt + wt .

Since ρ(A + BK ) < 1 and since the process disturbance wt is bounded, it follows that the state xt is ultimately

bounded.

Because in the set-up adopted in this chapter the nodes do not have access to the full state, an observer is required,

as described next.

12.4.2 Luenberger Observer

A central concept in this chapter is that of state estimation using a Luenberger observer. We start by considering

the case of an hypothetical centralized observer that has access to all of the outputs, that is, to the vector

yt := col(yi
t ), and the objective is to estimate the state of the system xt with a bounded error. Let L be a

gain matrix of appropriate dimensions such that ρ(A − LC ) < 1, which can always be found since (A,C ) is

detectable. Further let x̂t ∈Rn denote a state estimate of xt . Under the assumption of a linear state feedback law

ui
t := K i x̂t , i ∈ N , the centralized Luenberger observer algorithm is described by

x̂t+1 = (A + BK )x̂t + L
(
yt −C x̂t

)
,
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with K := col(K i ).

It follows easily from the above that the estimation error et := x̂t − xt satisfies the dynamics

et+1 = (A − LC )et + wt + L col(vi
t ).

Since ρ(A −LC ) < 1, and since the measurement and process disturbances vi
t and wt are bounded, it follows that

the estimation error et is ultimately bounded.

The convergence of the estimation error et will be expressed quantitatively in the remainder of this chapter

through a P1-norm, ‖et ‖P1 , such that β̃ := ‖A − LC‖P1 < 1, which is in general different than the L2 norm, i.e.

P1 �= In
1. This norm can be found applying directly Property P2 of the P-norm defined before.

The above centralized version of the Luenberger observer can be formally re-written in distributed form as

follows. Consider Li ∈Rn×mi such that L := 1
N row(Li ). Assuming that all nodes have identical state estimates

at time t − 1, given by x̂t−1, the estimates x̂t provided by the Luenberger observer can be reformulated as the

average x̂t := 1
N

∑
i∈N zi

t of the local variables zi
t defined by

zi
t := (A + BK )x̂t−1 + Li

(
yi

t−1 −C i x̂t−1

)
. (12.3)

Due to the limited bandwidth and the topology of the communication network, it is in general not possible to

compute the average 1
N

∑
i∈N zi

t perfectly at every node, and one must compute an approximation of that average,

which may be different at each node. One possible method of computing an approximation of the average is the

consensus algorithm given in the following subsection. This method also guarantees that the estimates remain

approximately equal in all agents, which is an assumption of (12.3).

We will discuss the technical details of the distributed Luenberger observer in Subsection 12.4.3.

12.4.3 Distributed Luenberger Observer

In order that all nodes collect in a useful manner information from the measurements of all the nodes at every

discrete-time instant, we follow the reasoning in the last part of subsection 12.4.2, where each node computes the

average value 1
N

∑
j∈N z j

t , with zi
t defined in 12.3. With the purpose of computing the average, and to ensure that

the state estimates contained in all the nodes remain close to each other as required in 12.3 where it is assumed

that the estimates are the same in all nodes, we consider the application of the consensus algorithm (7.3) to the

problem of distributed state estimation. However, in general, due to bandwidth limitations, it is only possible

to perform a finite number of iterations, denoted here as l f , of the consensus algorithm (7.3), between two

consecutive discrete-time iterations. Since it is only possible to perform between two consecutive discrete-time

instants a finite number of consensus iterations, each agent keeps an internal value x̂i
t , which may be different

from node to node. Therefore, one wants an approximation of the average of the following local variables

zi
t ,0 := (A + BK )x̂i

t−1 + Li
(

yi
t−1 −C i x̂i

t−1

)
, (12.4)

i.e. one wants to compute an approximation of 1
N

∑
j∈N z j

t ,0. This approximation is computed with l f iterations

of the consensus algorithm (7.3), which in the present case takes the following form:

zi
t ,l+1 = ∑

j∈N

πi , j z j
t ,l , (12.5)

1However, if (A,C ) is observable then it is possible to compute an observer gain matrix L such that β̃ < 1 with P1 = In , i.e.

‖A − LC‖ = β̃< 1, through eigenvalue assignment. This is achieved by assigning n different real eigenvalues to A − LC with β̃< 1 as its

greatest eigenvalue in absolute value.
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Finally, the state estimate is computed as x̂i
t := zi

t ,l f
.

Since at each node we have an independent estimate of the state x̂i
t , i ∈ N we apply at each node a control input

ui
t = K i x̂i

t , which is not available at the other nodes j �= i .

Defining the estimation error of node i as ei
t := x̂i

t − xt , the consensus error as qi
t := x̂i

t − 1
N

∑
j∈N z j

t ,0, and the

average error as eav g
t := 1

N

∑
j∈N x̂ j

t − xt , one can observe that the estimation error satisfies the dynamics

ei
t+1 = (A − LC )eav g

t + qi
t + wt + L col(vi

t ) + ∑
j∈N

B j K j (ei
t − e j

t ).

One can observe that if the consensus algorithm approaches perfect averaging, i.e. if x̂i
t ≈ 1

N

∑
j∈N z j

t ,0, either

because of a large number of performed iterations l f or because the network is highly connected, the estimation

error dynamics coincides with the hypothetical centralized Luenberger case, since for all i ∈ N we obtain

ei
t ≈ eav g

t and qi
t ≈ 0. Therefore, the performance of the consensus algorithm must be taken into account in the

analysis of the estimation error dynamics.

One can also observe that the control feedback gain K i appears in the estimation error dynamics, which is not

the case in a standard Luenberger observer. Therefore, it is important to also take into account the control law

when designing the distributed observer, as is done in this chapter.

12.4.4 Estimation and Control System Architecture with Quantized Communications

To solve the problem formulated in section 12.3, this chapter proposes a general architecture consisting of a

quantized consensus and a Luenberger observer update, together with a control input computation block at each

agent, as depicted in the diagram of Figure 12.2.

The purpose of each of the blocks is the following:

• Luenberger observer update - Provides the local Luenberger observer contribution zi
t ,0 to be averaged,

given the local measurement yi
t and the current state estimate x̂i

t .

• Quantized consensus - Provides an approximation of the average 1
N

∑
i∈N zi

t ,0 of the local Luenberger

observer contributions, which serves as the local state estimate x̂i
t , while performing over the time interval

between t and t + 1 a finite number of iterations of a consensus algorithm through the transmission of

messages with a limited, fixed, number of bits.

• Control input - Computes the local control input ui
t given the local state estimate x̂i

t .
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ui
t = Kix̂i

t

xt+1 = Axt +
∑

i∈N Biui
t + wt

yit = Cixt + vit

zit+1,0 = Ax̂i
t + Li

(
yit − Cix̂i

t

)

zit,l+1 =
∑

j∈N i πi,jQj
t,l

(
zjt,l

)
−

(
Qi

t,l

(
zit,l

)
− zit,l

)

ui
t

xt

yit

zit,0x̂i
t := zit,lf

Qi
t,l

(
zit,l

)
Qj

t,l

(
zjt,l

)
lf

Figure 12.2 – Control architecture diagram.

12.5 Main Result

In this section we describe the proposed distributed Luenberger observer with quantized communications and

we present the main result of this chapter, which establishes the ultimate boundedness of the state estimation

error and the system state under the proposed distributed observer and controller.

12.5.1 Distributed Luenberger Observer with Quantized Communications

We now consider the distributed Luenberger observer given in Subsection 12.4.3. Because we assume that

starting at each time step, between two measurements, a limited number of data packages containing a limited

number of bits are exchanged among agents, we consider that the averaging is performed with the quantized

consensus algorithm given in Chapter 7 with a limited number of iterations.

The quantized consensus algorithm consists of initializing each agent with z j
t ,0 := z j

t and then performing l f

times the following update rule in between discrete time instants t and t + 1.

zi
t ,l+1 = ∑

j∈N i

πi , j Q j
t ,l

(
z j

t ,l

)
−
(
Qi

t ,l

(
zi

t ,l

)
− zi

t ,l

)
. (12.6)

During the consensus step the quantities z j
t ,l are quantized through Q j

t ,l (·) with mid-value z̄ j
t ,l+1 := Q j

t ,l

(
z j

t ,l

)
for l > 0 and z̄ j

t ,0 = AQ j
t−1,l f −1

(
z j

t−1,l f −1

)
, and quantization interval Λt ,l := (aβt + b

)
αl , where we initialize the

parameters a and b and the decreasing rates α and β so as to satisfy the conditions of Theorem 21 given below.

We initialize the mid-values z̄ j
0,0, and the estimated states before consensus with the same value in all the nodes,

i.e. z̄i
0,0 = zi

0 = z j
0 , ∀i , j ∈ N . Finally, we consider that the local estimate of the state is defined as x̂i

t := zi
t ,l f

, the

end result of the consensus step. The local control input ui
t given the local state estimate x̂i

t is computed as

ui
t = K i x̂i

t . The distributed Luenberger observer with quantized communications can be summarized in the form

of the following algorithm, which consists of two steps, the consensus and the update steps.
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Algorithm:
Quantized Distributed Luenberger Observer
Initialization:
• Choose L such that ρ(A − LC ) < 1.

• Choose the decrease rates α and β

satisfying conditions (12.7) and (12.8) respectively.

• Choose the quantizer parameters a and b

satisfying condition (12.9).

Consensus:
for l = 0,1, . . . , l f − 1 do

Λt ,l = (aβt + b
)
αl

zi
t ,l+1 =∑ j∈N i πi , j Q j

t ,l

(
z j

t ,l

)
−
(
Qi

t ,l

(
zi

t ,l

)
− zi

t ,l

)
z̄ j

t ,l+1 = Q j
t ,l

(
z j

t ,l

)
,∀ j ∈ N i

end for
z̄ j

t+1,0 = (A + BK )Q j
t ,l f −1

(
z j

t ,l f −1

)
,∀ j ∈ N i

x̂i
t := zi

t ,l f

ui
t = K i x̂i

t

Update:
sample the measurement yi

t

zi
t+1,0 = (A + BK )x̂i

t + Li
(
yi

t −C i x̂i
t

)
Before proceeding to the main result of this chapter and its proof, the following definitions are required. We

define the matrices Φi := A − Li C i , Γ := diag
(
Φi + BK

)− 1 ⊗ row
(
B i K i

)
, and the error dynamics matrix as

Φ := 1
N col

(
Φi
)

1T ⊗ In . Based on these matrices we define the parameters

Φ̄ := ‖Φ‖IN ⊗P1 = M(col
(
Φi
)T

IN ⊗ P1 col
(
Φi
)

,P1)�
N

,

Φ̂ :=
∥∥∥∥ 1

N
1 ⊗ In row

(
Φi + BK

)∥∥∥∥
IN ⊗P1

=
∥∥∥∥P

1
2

1 row
(
Φi + BK

)
IN ⊗ P

− 1
2

1

∥∥∥∥ ,

Φ̃ := ‖Γ‖IN ⊗P1 .

See Appendix F.2 for the derivation of the above equalities. Because Γ is of size N n×N n, the direct computation

of ‖Γ‖IN ⊗P1 is very costly if the number of agents N is large. For this reason, it is preferable to use, instead of Φ̃,

its upper bound

Φ̃≤ max

(∥∥∥Φi + BK
∥∥∥

P1

)
+ N

∥∥∥∥P
1
2

1 row
(
B i K i

)
IN ⊗ P

− 1
2

1

∥∥∥∥ ,

which is derived in Appendix F.2.

We also define the local and global estimation errors ei
t ,l := xt − zi

t ,l and et ,l := col(ei
t ,l ), respectively, the global

noise bound ε :=
√∑

i∈N

(
M(Li T P1Li )εvi + M(P1)εw

)2
, and the design parameters given in Appendix F.1. We

now state the main result of this chapter.

Theorem 21. Let Assumptions A2-A3 and A14-A16 hold and adopt the quantized distributed Luenberger

observer algorithm with L such that β̃ := ‖A − LC‖P1 < 1. Further let the number of bits transmitted nb

satisfy nb > log2 (max(c2,d2) + 2), the number of iterations of the consensus step satisfy l f ≥ 1 or, if σ2 > 0,

l f > logσ2

(
1−β̃

Φ̄
min

(
1, β̃

Φ̄

))
, α and β satisfy

σ2 <α< ᾱ, (12.7)
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β̄<β< 1. (12.8)

where β̄ := β̃+αl f Φ̃max
(
1, Φ̄

β̃

)
, and ᾱ := min

(
l f

√
1−β̃

Φ̃
min

(
1, β̃

Φ̄

)
,1

)
.

Consider also the parameters c1 − c2, d1 − d2, k1 − k4, defined in (F.1). If the parameters a and b satisfy

c1 ≤
(
1 − c2

2nb − 2

) a

2
, d1 ≤

(
1 − d2

2nb − 2

)
b

2
, (12.9)

then for any t ≥ 0 the norm of the estimation error et ,l f satisfies

‖et ,l f ‖IN ⊗P1 ≤βt [k1‖e0,0‖IN ⊗P1 + k2
]+ k3ε+ k4. (12.10)

The proof of this theorem will be given in the next section.

We can observe that the lower bound on l f depends heavily on the choice of L since the parameters β̃ and Φ̄

depend directly on L by definition.

In general, for an arbitrary network we have a lower bound on the number of iterations of the consensus step l f ,

since in general σ2 > 0 and we have to satisfy the condition l f > logσ2

(
1−β̃

Φ̃
min

(
1, β̃

Φ̄

))
. However, in the case of

a full network where each node can broadcast its message to all other nodes, we may have σ2 = 0 and in this

case we can set l f = 1.

It can be observed from inequality (12.10) that the norm of the estimation error ‖et ,l f ‖IN ⊗P1 becomes bounded

above by k3ε+ k4 when t goes to infinity, and the error is thus ultimately bounded. This bound depends directly

on the disturbance bounds through ε and on the choice of the constant component of the quantization interval

length b.

It is worth noticing that for the noise-free case, when the number of the exchanged bits nb and the number of

consensus iterations l f tend to infinity, we recover perfect convergence of the estimation error to the origin.

Moreover, the convergence rate of the algorithm β is lower bounded by β̄ which tends to, but never reaches

exactly (since β̄ > β̃ always), the convergence rate of the centralized case β̃ := ‖A − LC‖P1 as the number of

iterations of the consensus algorithm l f tends to infinity.

Note also that if in Assumption A16 ‖wt ‖Pw ≤ εw for some symmetric positive definite matrix Pw , then we

must replace M(P1) by M(P1,Pw ) in the definition of ε. Similarly, if in Assumption A16 ‖vi
t ‖Pvi ≤ εvi for some

symmetric positive definite matrix Pvi , we must replace M
(
Li T P1Li

)
by M

(
Li T P1Li ,Pvi

)
on the definitions of

ε and d1.

Finally, one of the key elements of the proposed algorithm is to set the quantization interval at the beginning

of the consensus step to aβt + b. With this setting we can observe that as t goes to infinity, the first term aβt

goes to zero and only the second term b is functioning. Moreover, we can note that from condition (12.9) only b

relates to the noise bound ε and only a depends on the initial estimation error.

12.5.2 Ultimate Boundedness of the System State

The proposed distributed observer and the linear feedback control law with ρ(A + BK ) < 1 can be described by

the dynamical system

xt+1 = (A + BK ) xt + wt − B diag
(
K i
)

et ,l f . (12.11)
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Because the gain matrix K is computed so that ρ(A + BK ) < 1 and the process disturbance wt and estimation

errors et ,l f are ultimately bounded, it follows that the state xt is ultimately bounded. More specifically, choosing

a symmetric positive definite matrix Q2 of size n ×n and computing a matrix P2 such that the Lyapunov equation

P2 − (A + BK )T P2(A + BK ) = Q2 holds, defining γ̃ := ‖A + BK ‖P2 < 1, and choosing a positive scalar γ such that

1 > γ> max(γ̃,β), we have the following result

Theorem 22. Let Assumptions A2-A3 and A14-A16 hold and let a quantized distributed Luenberger observer

algorithm be adopted such that the assumptions of Theorem 21 are satisfied. Then, the system state norm ‖xt ‖P2

is bounded as follows:

‖xt ‖P2 ≤ γt
[
‖x0‖P2 + M∗β

β− γ̃
(k1‖e0,0‖IN ⊗P1 + k2)

]
+ M(P2)εw + M∗(k3ε+ k4)

1 − γ̃
,

where M∗ := M
(
diag

(
K i T

)
B T P2B diag

(
K i
)

, In ⊗ P1
)
.

The proof is given in Appendix F.5. Again, if in Assumption A16 ‖wt ‖Pw ≤ εw for some symmetric positive

definite matrix Pw then we must replace M(P2) by M(P2,Pw ) in Theorem 22.

12.6 Proof of Ultimate Boundedness of Estimation Error

Before proceeding with the proof of Theorem 21, the following definitions are required. We define the vector of

averages zavg

t ,l := 1
N

(
11T

)
zt ,l , its difference to zt ,l as qt ,l := zt ,l − zavg

t ,l , the vector of mid-values z̄t ,l := col
(
z̄i

t ,l

)
,

the average of the estimation errors eavg

t ,l := 1
N

(
11T

)⊗ Inet ,l , the local and global noise contributions to the

error dynamics as ωi
t := wt − Li vi

t , ωt := col
(
ωi

t

)
, the local and global consensus error contribution to the error

dynamics as ξi
t := Φi qi

t ,l f
−∑ j∈N B j K j

(
q j

t ,l f
− qi

t ,l f

)
, and ξt := col

(
ξi

t

)
. We can observe that ξt = Γqt ,l f . We

also require the parameters c1 − c8, d1 − d8, k1 − k6 which are defined in (F.1) in Appendix F.1.

12.6.1 Conditions for Convergence of Consensus Step

As a first step we can apply directly the results of Section 7 in the consensus step of the distributed Luenberger

observer to get conditions on how to bound the difference between the estimates zt ,l and the vector of averages

zavg

t ,l , i.e. how to bound qt ,l . Applying Theorem 8 we have the following result

Lemma 14. Let Assumptions A2-A3 hold and the quantized distributed Luenberger observer algorithm be

adopted with l f ≥ 1. If σ2 <α< 1 and the number of bits nb and the parameters a and b satisfy

c3 + k5
a

2nb+1 − 4
≤ a

2
, d3 + k5

b

2nb+1 − 4
≤ b

2
, (12.12)

where k5 is defined in (F.1) in Appendix F.1 and c3 and d3 satisfy

c3β
t + d3 ≥ m(P1)−1

(
α+ 1

α
‖qt ,0‖IN ⊗P1 +‖z̄t ,0 − zavg

t ,0 ‖IN ⊗P1

)
, (12.13)

then for any l ≥ 0 the values of qt ,l := zt ,l − zavg

t ,l satisfy

‖qt ,l ‖IN ⊗P1 ≤αl
[
‖qt ,0‖IN ⊗P1 + k6

aβt + b

2nb − 2

]
. (12.14)

Proof. Noting that if condition (12.12) holds then we have

c3β
t + d3 + k5

aβt + b

2nb+1 − 4
≤ aβt + b

2
,
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and the lemma follows from Theorem 8 with zt ,l as zl , aβt + b as r .

12.6.2 Error Dynamics

Combining the fact that the consensus algorithm preserves averages, i.e. that zavg

t ,l = zavg

t ,l+1, the system dynamics

(12.1), the measurement equations (12.2), and the distributed observer algorithm (12.4), we obtain the following

result which describes the dynamics of the estimation errors ei
t+1,0, et+1,0 and the dynamics of the average of the

estimation errors eavg
t ,0 .

Lemma 15. Let the quantized distributed Luenberger observer algorithm be adopted with l f ≥ 1; then, the

estimation errors obey the recursion

ei
t+1,0 = ∑

j∈N

1

N
Φi e j

t ,0 −ξi
t +ωi

t , (12.15)

for any i ∈ N , and globally,

et+1,0 =Φet ,0 −ξt +ωt . (12.16)

Moreover,

et+1,0 = diag
(
Φi
)

eavg
t ,0 −ξt +ωt , (12.17)

and

eavg
t+1,0 = IN ⊗ (A − LC )eavg

t ,0 + 1

N

(
11T )⊗ In (ωt −ξt ) . (12.18)

We now derive results on the norms of et ,0 and eavg
t ,0 by taking the norms of both sides of equations (12.17)

and (12.18), respectively. For this purpose we compute upper bounds of the norms of the terms ξt and ωt in

Appendix F, where we show that if Assumption A16 holds we have ‖ωt ‖IN ⊗P1 ≤ ε, and if at time t the conditions

of Lemma 14 are observed, then

‖ξt ‖IN ⊗P1 ≤ Φ̃αl f

[
‖et ,0‖IN ⊗P1 + k6

aβp + b

2nb − 2

]
.

Therefore, we can bound ‖eavg
t+1,0‖IN ⊗P1 and ‖et+1,0‖IN ⊗P1 by taking the norm of (12.18) and (12.17), as follows:

‖eavg
t+1,0‖IN ⊗P1 ≤ β̃‖eavg

t ,0 ‖IN ⊗P1 + Φ̃αl f

[
‖et ,0‖IN ⊗P1 + k6

aβt + b

2nb − 2

]
+ε, (12.19)

‖et+1,0‖IN ⊗P1 ≤ Φ̄‖eavg
t ,0 ‖IN ⊗P1 + Φ̃αl f

[
‖et ,0‖IN ⊗P1 + k6

aβt + b

2nb − 2

]
+ε. (12.20)

Since, for reasons that will become clear later in the proof of Lemma 16, we need an upper bound of ‖et+1,0‖IN ⊗P1

which is equal to the upper bound of ‖eavg
t+1,0‖IN ⊗P1 times a constant, we upper bound ‖et+1,0‖IN ⊗P1 as follows:

‖et+1,0‖IN ⊗P1 ≤ max

(
1,

Φ̄

β̃

)(
β̃‖eavg

t ,0 ‖IN ⊗P1 + Φ̃αl f

[
‖et ,0‖IN ⊗P1 + k6

aβt + b

2nb − 2

]
+ε

)
. (12.21)

We now choose β such that β̃<β< 1 and derive the conditions in a, b, and nb to ensure ultimate boundedness.
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12.6.3 Proof of Theorem 21

Theorem 21 is proven by induction. We show that if we satisfy, for all time instants p such that 0 ≤ p ≤ t ,

the conditions of Lemma 14 and if inequality (12.7) holds, then inequality (12.10) follows. For this purpose

we apply equations (12.19) and (12.21) recursively to obtain bounds on ‖eavg
t ,0 ‖IN ⊗P1 and ‖et ,0‖IN ⊗P1 depending

explicitly in time. Moreover, since we want that the conditions of Lemma 14, and more specifically inequality

(12.13), hold we also need to provide bounds in z̄t+1,0 − zavg
t+1,0. These results are presented in the following

Lemma, the proof of which is given in Appendix F.4.

Lemma 16. Let Assumptions A2-A3 and A14-A16 hold and let the quantized distributed Luenberger observer

algorithm be adopted with L such that β̃ := ‖A − LC‖P1 < 1. If α and l f ≥ 1 are adopted such that

αl f ≤ 1 − β̃

Φ̃
min

(
1,

β̃

Φ̄

)
,

σ2 <α< 1, β satisfy β̄<β< 1, and the conditions of Lemma 14 are satisfied for all 0 ≤ p ≤ t , then ‖eavg
p,0 ‖IN ⊗P1 ,

‖ep,0‖IN ⊗P1 , ‖qp,l ‖IN ⊗P1 , ‖z̄p+1,0 − zavg
p+1,0‖IN ⊗P1 and ‖ep,l f ‖IN ⊗P1 satisfy

‖eavg
p,0 ‖IN ⊗P1 ≤βp

[‖e0,0‖IN ⊗P1 + c8
a

2nb −2

]+ ε
1−β̃

+ d8
b

2nb −2 ,∀t + 1 ≥ p ≥ 0;

‖ep,0‖IN ⊗P1 ≤ max
(
1, Φ̄

β̃

)(
βp
[‖e0,0‖IN ⊗P1 + c8

a
2nb −2

]+ ε
1−β̃

+ d8
b

2nb −2

)
,∀t + 1 ≥ p ≥ 0;

‖qp,l ‖IN ⊗P1 ≤αl

[
βp
[

max
(
1, Φ̄

β̃

)
‖e0,0‖IN ⊗P1 + c7

a
2nb −2

]
+ max

(
1, Φ̄

β̃

)
ε

1−β̃
+ d7

b
2nb −2

]
,∀t ≥ p ≥ 0, l f ≥ l ≥ 0;

‖z̄p+1,0 − zavg
p+1,0‖IN ⊗P1 ≤βp

[
c5‖e0,0‖IN ⊗P1 + c6

a
2nb −2

]+ d5 + d6
b

2nb −2 ,∀t ≥ p ≥ 0;

‖ep,l f ‖IN ⊗P1 ≤βp
[
k1‖e0,0‖IN ⊗P1 + k2

]+ k3ε+ k4,∀t ≥ p ≥ 0.

Proof of Theorem 21. We prove by induction that z j
t ,l falls inside the quantization interval of Qt ,l , i.e. ‖z j

t ,l −
z̄ j

t ,l ‖∞ ≤ Λt ,l

2 for t ≥ 0, which, combined with Lemma 16 concludes the proof of Theorem 21. In light of Lemma

14, we need to prove that the conditions

c1 + c2
a

2nb+1 − 4
≤ a

2
, d1 + d2

b

2nb+1 − 4
≤ b

2
,

are equivalent to

c3 + k5
a

2nb+1 − 4
≤ a

2
, d3 + k5

b

2nb+1 − 4
≤ b

2
,

Since c2 and d2 are defined as in (F.1), i.e. as c2 := c4 + k5 and d2 := d4 + k5, this equivalence is achieved by

defining c3 and d3 as

c3 := c1 + c4
a

2nb+1 − 4
, d3 := d1 + d4

b

2nb+1 − 4
.

Now, to satisfy all the conditions of Lemma 14, it remains to show that, for t ≥ 0,

c3β
t + d3 ≥

α+1
α ‖qt ,0‖IN ⊗P1 +‖z̄t ,0 − zavg

t ,0 ‖IN ⊗P1

m(P1)
.

We will prove the above by induction. The base case is given by assumption, since q0,0 = z̄0,0 − zavg
0,0 = 0. For the

induction step we first note that if, for some t ≥ 0,

c3β
p + d3 ≥

α+1
α ‖qp,0‖IN ⊗P1 +‖z̄p,0 − zavg

p,0 ‖IN ⊗P1

m(P1)
,
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and applying Lemma 16 and inequality (F.2) we obtain

α+1
α

‖qt+1,0‖IN ⊗P1 +‖z̄t+1,0−zavg
t+1,0‖IN ⊗P1

m(P1) ≤
≤ (α+1)

m(P1)α

[
βt+1 max

(
1, Φ̄

β̃

)[‖e0,0‖IN ⊗P1 + c8
a

2nb −2

]+ ε
1−β̃

+ d8
b

2nb −2

]
+ βt+1

[
c5
β

‖e0,0‖IN ⊗P1 + c6
β

a
2nb −2

]
+d5+d6

b
2nb −2

m(P1)

=
[

c1 + c4
a

2nb +1−4

]
βt+1 + d1 + d4

b
2nb +1−4

= c3β
t+1 + d3.

We have proven that, under the assumptions of the theorem, the base case holds, i.e. z j
0,l falls inside the

quantization interval
[

z̄ j
0,l − (a+b)αl

2 , z̄ j
0,l + (a+b)αl

2

]
for 0 ≤ l ≤ l f . The recursion step guarantees that if z j

t ,l is

inside its quantization interval for 0 ≤ l ≤ l f , then z j
t+1,l is too.

Then, by induction we have shown, for all 0 ≤ t and 0 ≤ l ≤ l f , that:

z j
t ,l ∈

[
z̄ j

t ,l − (aβt + b)αl

2
, z̄ j

t ,l + (aβt + b)αl

2

]
,

and the theorem is proven.

12.7 Numerical Results

As a design example we consider a system composed by a network system of 20 agents, a communication

network (N ,A ) that is bidirectional and randomly generated, and a consensus matrix computed as Π =
hΠIN + (1 − hΠ)ΠMetro, where ΠMetro is computed with Metropolis weights, and hΠ is selected to minimize σ2.

In this example we consider a network where the second singular value of Π is σ2 = 0.6913. We also consider

an objective network
(
N ,Aobj

)
which is also randomly generated, and for each agent we define the objective

neighbour set as N i
obj

:= { j ∈ N : ( j , i ) ∈ Aobj

}
. The communication and objective networks are represented

graphically in Figures 12.3 and 12.4, respectively.

Communication Network

Figure 12.3 – Graphical representation of the communication network.

Remark. For the communication network of this example the value of hΠ that minimizes σ2 is hΠ = −0.73,
which yields a consensus matrix that has some negative elements, and is therefore does not satisfy the assumption
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Objective Network

Figure 12.4 – Graphical representation of the objective network.

that Π is a non-negative matrix. However, since the resulting matrix is doubly stochastic and primitive, the
results of Theorems 21 and 22 still hold.

Each agent has 3 states, locally referred to as x1, x2 and x3. The first two states of each agent correspond to a

double integrator with the following dynamics with disturbances:

x1
t+1 = x1

t + ut + w1
t ,

x2
t+1 = x2

t + x1
t + w2

t ,

where ut is the agent’s input and w1
t and w2

t are bounded disturbances. We consider also a local colored noise

signal with dynamics

x3
t+1 = 0.95x3

t + w 3
t ,

where w3
t is a bounded disturbance. All local states x1, x2, and x3 are observed with some measurement noise

by each agent. The objective of each agent is to have x2 track x3 (that is, drive x2 as close as possible to x3) and

also to coordinate the states x2 of the agents among themselves (that is, drive the state x2,i of an agent as close

as possible to 1∣∣∣N i
obj

∣∣∣
∑

j∈N i
obj

x2, j , where in x2,i , i ∈ N is the index of the agent). This setting aims to represent

the case where several agents try to track separate signals while coordinating among themselves. This example

translates to a system described by (12.1) with

A = I20 ⊗

⎡
⎢⎣

1 0 0

1 1 0

0 0 0.95

⎤
⎥⎦ .

The output matrix C i for each agent is

C i =
[

(ei − ei+1)T

(ei−1 − ei )T

]
⊗ I3,

where ei is a vector of size 20 × 1 with 0 on every element except on the i th, which is 1. The local input matrix
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B i for each agent is

B i = ei ⊗

⎡
⎢⎣

1

0

0

⎤
⎥⎦ .

It is straightforward to show that in this example we have global observability but not local observability.

The measurement and process noise are selected at random with a Gaussian distribution centered at zero, with a

covariance of⎡
⎢⎣

10−6 0 0

0 10−8 0

0 0 10−4

⎤
⎥⎦ ,

for the local measurement noise, and

I20 ⊗

⎡
⎢⎣

10−8 0 0

0 10−4 0

0 0 0.25

⎤
⎥⎦ ,

for the process noise. The measurement and process noises are saturated so as to satisfy Assumption A16 with

εi
v = 1.5×10−3 and εw = 0.5. To compute the controller gain matrix K , notice that the objective stated previously,

of having x2 tracking x3 and coordinating the states x2 of the agents among themselves, can be converted into

that of minimizing the cost function

∞∑
t=0

(
xT

t Qxt + uT
t Rut

)
, (12.22)

where Q and R are defined as R := 20I20 and

Q := I20 ⊗ (C T
locCloc

)+ Lobj ⊗
(
C T

distCdist

)
with

Li j
obj

:=

⎧⎪⎪⎨
⎪⎪⎩

1 if i = j ,

− 1∣∣∣N i
obj

∣∣∣ if j ∈ N i
obj

,

0 otherwise.

,

Cloc := [0, 1, −1] ,

Cdist := [0, 1, 0] ,

Given the above matrices, let P be the unique positive definite solution of the algebraic Riccati equation (ARE)

P = Q + AT PA − AT PB
(
R + B T PB

)−1
B T PA,

and compute the controller gain as

K = (R + B T PB
)−1

B T PA.

It is well known from LQR theory that this selection of control gain minimizes the cost (12.22) for a system

without disturbances when the state is measured directly. Notice from the definition of K that

AT PB
(
R + B T PB

)−1
B T PA = AT PBK = K T (B T PB + R)K .
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Therefore, the ARE becomes

(A − BK )T P (A − BK ) − P +Q + K T RK = 0,

which, combined with the proof of Property P2 results in ‖A − BK ‖P2 =
√

1 −σmin

(
Q

1
2
2 P

− 1
2

2

)2

, where P2 := P

and Q2 := Q + K T RK .

To compute the observer gain matrix L we define the matrices V := I60 and W := I60 and compute the solution Σ

to the algebraic Riccati equation

Σ= W + AΣAT − AΣC T (V +CΣC T )−1
CΣAT ,

from which follows the observer gain L given by

L = AΣC T (V +CΣC T )−1
.

This choice of observer gain is known from Kalman filtering theory to asymptotically minimize the mean

of the square estimation error for the centralized case, when the measurement noise covariance is V −1 and

the process noise covariance is W −1. Following the derivations in Subsection 6.3.3 of Chapter 6, we define

Σ̃ := (Σ−1 +CV −1C T
)−1

, P1 :=Σ−1Σ̃Σ−1, and Q1 :=Σ−1
(
Σ̃−1 + AT W̃ −1 A

)
Σ−1, which is positive definite since Σ

and Σ̃ are positive definite, yielding ‖A − LC‖P1 =
√

1 −σmin

(
Q

1
2
1 P

− 1
2

1

)2

.

The computed minimum number of consensus iterations for guaranteed stability was 24. Setting l f = 29, the

minimum number of bits sent such that stability can be guaranteed was 17, and the number of bits used was 18.

The obtained estimated states for two sensors in the network are represented in Figure 12.5, where the initial

condition for each state is either 5 or −5 and the initial estimate for all the states is 0.

time
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Figure 12.5 – Estimated states zi
t ,l f

in two sensors (states 14 (in blue) and 15 (in red) above, states 44 (in blue)

and 45 (in red) below). The solid lines represent the real states, and the black dashed lines near the origin

represent the average of the states x2, j , j ∈ N i
obj

, that is 1∣∣∣N i
obj

∣∣∣
∑

j∈N i
obj

x2, j .
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We can observe that, for the settings of this problem, at each time step consensus is almost achieved and therefore

we are not able to distinguish the estimates for different states since the estimates zi
t (T ) are almost equal for

all the states. We also note that the estimated states (dashed lines) remain close to the actual states (solid lines)

thus indicating that the observer fulfills its purpose. Finally, we observe that the objectives mentioned earlier, of

having x2 track x3 and coordinate the states x2 of the agents among themselves, were achieved. That is, we note

that for both represented agents, 5 and 15, the local x2 states (blue lines) remain at a close distance from both

the x3 states and the average of the other x2 states, 1∣∣∣N i
obj

∣∣∣
∑

j∈N i
obj

x2, j (black dashed lines). This was achieved

while guaranteeing input to state stability with a limited number of consensus iterations, 29, at each time step

and using exchanged messages with a determined number of bits, 18 in this case.

This number of transmitted bits and consensus iterations guaranteeing stability of the observer, which stems

from the analysis in this chapter, is a conservative upper bound. In order to assess how conservative these upper

bounds are, we computed the estimation error and objective cost of the system coupled with the estimation

and control algorithm for different values of the number of transmitted bits nb , and consensus iterations l f ,

maintaining the values of a, b, α and β. In Figure 12.6, we plot the base 10 logarithm of the average control

objective cost of the system defined by

AEE := 1

t f

t f∑
t=0

‖et ‖,

where t f > 0 is the final time of the simulation, and in Figure 12.7, we plot the base 10 logarithm of the average

estimation error of the observers defined by

ACC := 1

t f

t f∑
t=0

xT
t Qxt .

In both Figure 12.6 and 12.7 we plot the isocontours of the base 10 logarithm of the data rate defined by

DR := nnbl f ,

the values for each point of nb and l f represent the average of 5 realizations of the system for t f = 100. We

only plot the values for points where the average estimation errors are smaller than 102. Also for both figures

we represent a dashed dotted line, obtained by linear regression, defined by l f = 41.4 − 2.47nb , where above it

the average estimation error is smaller than 20. We also represent a line l f = 41.4 − 2.47nb where above it the

average estimation error is in general smaller than 11.5.

We can observe from Figures 12.6 and 12.7 that in practice above the line l f = 41.4 − 2.47nb , represented by

a dashed line, we obtain a performance similar to the centralized Luenberger observer, and below that line

the performance of the algorithm degrades quickly when reducing the number of consensus iterations or the

number of transmitted bits. In Figures 12.8 and 12.9 we plot the average estimation error and the average control

objective cost along the line l f = �41.4 − 2.47nb�.

From Figures 12.8 and 12.9 one can observe that the performance of the algorithm does not change significantly

along the line l f = �41.4 − 2.47nb�. Along that line the required data rate (DR) is shown in Figure 12.10. We

can conclude from Figure 12.10 that the two best settings that yield a performance similar to that of a centralized

observer are transmitting 3 bits and a performing a 35 consensus iterations, yielding a data rate of 8100 bits/s,

or exchanging 17 bits and performing 10 consensus iterations, yielding a data rate of 10200 bits/s. In this case

the better strategy would be to to transmit 17 bits and performing 10 consensus iterations. However, since the

difference is not large, we can envision that in some cases transmitting a low number of bits and performing a

large number of iterations would be more advantageous.
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Figure 12.6 – Base 10 logarithm of the average estimation error (log10 (AEE)) for different numbers of bits

transmitted nb and consensus iterations l f . The base 10 logarithm of the required data rate (log10 (B w)) contour

lines are plotted in labeled solid black lines. The dotted black lines represent the theoretical bounds for stability

of Theorem 21.
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12.7. Numerical Results
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13 Range-Based Formation Control

In order to prepare the Medusa-class autonomous underwater vehicles (AUVs) for more complex tests, in the

scope of the MORPH project Abreu et al. [2015], and to introduce a scenario which can profit from the use

of distributed estimation methods, as will be seen in Chapter 15, in this chapter we propose controllers for

formation control of AUVs in a scenario where we have two surface vehicles (the anchor vehicles) which are

equipped with GPS, so as to follow desired paths and one or more follower vehicles which are required to reach

and maintain a desired formation with the anchors, relying on measurements of the distances to the leading

vehicles and exchanging complementary data. This chapter proposes a control strategy for the follower vehicle

that uses simple feedback laws for speed and heading commands to drive along track and cross track errors to

zero. Simulation results using a realistic model of an existing marine vehicle are described and discussed. The

performance of the algorithm that we propose is demonstrated in sea trials with the same vehicles, equipped

with acoustic modems and ranging devices affected by noise, outliers, and communication losses.

13.1 Problem formulation

The range based formation control problem addressed in this chapter can be understood by referring to Fig. 13.1.

The objective is to execute a triangular formation keeping maneuver, that is, to drive and maintain a vehicle,

henceforth known as the follower, at a desired position with respect to two leader vehicles that run a cooperative

path following controller Ghabcheloo et al. [2009]. The follower obtains, via an acoustic ranging and communi-

cation device, range measurements to each leader, as well as their headings. These measurements have a period

of multiple seconds.

The kinematic model for the AUV is written in terms of its speed and heading. In the figure, the follower is at

position p with controlled speed v and heading angle ψ measured with respect to an inertial reference frame.

The leaders move in cooperation, with equal reference speed and heading denoted vl and ψl , respectively. For

simplicity, we assume that the course and heading angles are equal, i.e. there is no current and side-slip is

negligible. The two leaders, denoted x1 and x2, move at a fixed distance d from each other.

To describe the geometry of the formation we define an x − y frame with origin at the midpoint between the

leaders. The y axis points from x1 to x2 and the x axis points 90◦ clockwise from the y axis. The desired

position of the follower, denoted pd , is at a distance d1 from x1 and d2 from x2. To disambiguate the two

possible locations of pd we introduce a flag xd so that if xd = 1 then pd is on the negative side of the x axis, and

if xd = −1 then pd is on the positive side of the x axis.
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Figure 13.1 – Formation diagram.

For controller design purposes we define the along track - cross track, ε−δ reference frame with origin at pd .

The along track axis ε points in a direction opposite to that specified by the heading of the leaders, that is,

ψl +180◦. The δ axis points 90◦ anti-clockwise from the ε axis. Written in the ε−δ frame, the kinematics of the

follower vehicle are as follows:

ṗε = vl − v cos(ψ−ψl ) (13.1)

ṗδ = −v sin(ψ−ψl ). (13.2)

where pε and pδ are the ε and δ coordinates of p, respectively. The goal is to derive outer-loop feedback laws in

pε and pδ to drive the follower vehicle to the desired position pd , specified by the desired distances d1 and d2

and by the flag xd (see Fig. 13.1). If the errors pε and pδ go to zero, then p converges to pd .

13.2 Related Work

Representative work in the area of relative formation control includes that of Desai et al. [1998, 2001] on the

so-called leader-follower formation control problem for a formation graph with an arbitrary number of vehicles.

In the work cited, two approaches were proposed using either range-bearing or range-range control, depending on

the available sensors. In both approaches, knowledge of the leader motion was assumed. A different strategy is

employed in Cao and Morse [2007, 2008], where a solution is proposed for a 4-vehicle station keeping problem,

requiring exclusively range measurements and a decentralized control policy using switched adaptive control.

The vehicle dynamics correspond to single integrators in 2D.

In the more recent work of Cao et al. [2011], the authors advance algorithms to coordinate a formation of mobile

agents when the agents can only measure the distances to their respective neighbors. This solution requires that

subsets of non-neighbor agents cyclically localize the relative positions of their respective neighbor agents while

these are held stationary and only then move to reduce the value of a cost function; the latter is nonnegative and

assumes the zero value precisely when the inter-vehicle distances in the formation are the pre-specified desired

distances. Again, it is assumed that the mobile agents can be described by kinematic points.

Additional related work includes that of Anderson and Yu [2011], which provides conditions on the range

measurements required for each vehicle to infer the relative positions of its neighbors in its own coordinate

frame. In the work of Kim et al. [2007], a method is presented for formation keeping of an unmanned aerial

vehicle using relative range information. The proposed controller is designed using classical input-out feedback
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linearization methods. It is important to observe that the performance of any of these methods depends on the

accuracy of the range measurements, which are often subject to sensor noise and only available at discrete times.

To cope with this limitation, an extended Kalman filter, such as the one proposed in Alcocer et al. [2007], can be

useful as part of a range based formation keeping algorithm. A similar approach has been proposed for merging

inertial and range information for localization purposes (e.g. Allotta et al. [2011]).

Motivated by the above considerations, Soares et al. [2012, 2013] addressed the simplified problem of maintaining

an autonomous vehicle in a moving triangular formation with respect to two leader vehicles that move at the

same speed and with constant separation. The follower vehicle has no a priori knowledge of the path described

by the leaders and its goal is to follow them by regulating its relative position to a desired point in the formation,

using range measurements and the heading of the leaders.

The present chapter borrows the framework and control structure proposed in Soares et al. [2012]. However, it

departs from it in that it deals with a flexible geometry, where the formation is not restricted to the case where the

distance to the two leader vehicles is identical and the two-leaders travel side by side. Rather, the leaders follow

the same path with one trailing the other. To cope with this new situation, instead of regulating the common- and

differential- mode errors defined in the previous work, suitably defined along track and cross track errors are

regulated to zero. This set-up is strongly influenced by the mission scenarios adopted in the scope of the EU FP7

project MORPH (Kalwa et al. [2013]), where a formation is spearheaded by a single vehicle equipped with a

multibeam echosounder and trailed by a communication coordination vehicle.

13.3 Controller design

The control system, depicted in Fig. 13.2, consists of multiple discrete modules. The follower vehicles receive

periodically, with an acoustic modem, messages from the leader vehicles. These messages contain the heading

of the leader ψaco
l , and through a Dynamic Long Baseline (DLBL) method one can compute the message travel

time between the leader and the follower in the acoustic medium t aco . These signals are then processed to

exclude outliers and filtered through Kalman filters yielding estimates of the distance between the follower and

x1 (ẑ1), the distance between the follower and x2 (ẑ2), and the circular mean of the leaders’ angle (ψ̂l ). The

distance estimates ẑ1 and ẑ2 are used to compute (pε, pδ), the estimated position of the follower in the ε−δ

frame. Using the ε coordinate, a velocity controller computes a command of desired speed ud which is then

linearly transformed to a common mode command. Finally, with the leaders’ heading estimate ψ̂l and the δ

coordinate, a heading controller yields a reference for the follower’s heading angle ψd . The details of each

module are presented in the subsections below.

13.3.1 Outer-loop feedback

One distinctive characteristic of this work is the use of simple control laws that separately regulate the desired

linear velocity ud and heading ψd . These are then fed to inner loop controllers specific to the vehicle.

The control law for the desired velocity is given by

ud = sat

(
kup pε + kui

∫t

0
pεdτ+ vlnom

)
, (13.3)

where kup is the proportional gain, kui is the integral gain and vlnom is a scenario-configurable nominal velocity.

While not strictly required, the use of a vlnom close to the leader speed accelerates the convergence to the desired

speed and position. The final value is run through a saturation function that limits the output to [vmin, vmax]. An

integration clamping anti-windup scheme is adopted, i.e. the integration is interrupted when the control variable
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Outlier rejection and Kalman Filters

Coordinate Computation

Heading

Controller

Velocity

Controller

t aco ψaco
l

ψdCom. Mode

pε pδ

ẑ2ẑ1

ψ̂l

Figure 13.2 – Control system diagram.

saturates and the control error and control variable have the same sign.

The control law for ψd is given by

ψd = ψ̂l + sat

(
kψp pδ + kψi

∫t

0
pδdτ

)
. (13.4)

The heading controller tracks the reference heading estimated from the information sent by the leaders, and adds

a PI controller on the error pδ. The output of the PI controllers is saturated to [−0.5r ad ,0.5r ad ] so that, even

for large errors, the vehicle does not move in a direction opposite the leaders’. As in the case of the velocity

control law, an integration clamping anti-windup scheme is implemented.

With these control laws, defining η := vl − kui
∫t

0 pεdτ− vlnom and ξ := −kψi
∫t

0 pδdτ and neglecting the inner

loop dynamics, i.e. considering v = ud and ψ=ψd we may linearize the kinematics of the follower about the

desired position pd and about heading ψ=ψl and speed v = vl yielding, from (13.1) and (13.2),

[
ṗε

η̇

]
=
[

−kup 1

−kui 0

][
pε

η

]
, (13.5)

and [
ṗδ

ξ̇

]
=
[

−vl kψp vl

−kψi 0

][
pδ

ξ

]
. (13.6)

The characteristic polynomial for the pε dynamics is s2 + skup +kui and the characteristic polynomial for the pδ

dynamics is s2 + svl kψp + vl kψi . Therefore, we may select the gains for pδ as kup := 2ζuωnu and kui :=ω2
nu

and the gains for pε as kψp := ζψωnψ/vl and kψi :=ω2
nψ/vl .

13.3.2 Outlier rejection

Due to the nature of acoustic ranging, erroneous readings are frequent, especially in shallow waters with irregular

seabed topography. Therefore, the range samples received must be filtered for outliers. A measurement m is
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accepted if it is inside the interval

[a − smax · (t − tl ), a + smax · (t − tl )] . (13.7)

For z := vsound · t aco to be accepted, we consider smax = vmax , the maximum speed of the vehicle, and for ψaco
l

to be accepted we consider smax =ωmax , the preset maximum angular speed.

When a measurement is accepted, a and tl are updated according to tl = t and a(k+1) = (1−kacc )·a(k)+kacc ·m,

where kacc = 0.5. When a measurement is not accepted but is inside the interval

[a − 4smax · (t − tl ), a + 4smax · (t − tl )] , (13.8)

then a is updated as ak+1 = (1 − kr e j ) · ak + kr e j · m, where kr e j = 0.25. A measurement outside these ranges is

discarded.

13.3.3 Kalman filter

The long period between samples and relatively fast error dynamics require the use of an estimator to improve

the behavior of the controllers. The problem is further exacerbated in the presence of packet loss, frequent for

some scenarios and particular modem alignment conditions. The estimated states are ẑ1, ẑ2 and ψ̂l with one

Kalman filter for each state, and their respective discrete-time increase or decrease rate. In precise terms, we

chose to use a Kalman filter, with a design model as follows:

xk+1 = Axk + w, (13.9)

where A is defined as

A =
[

1 1

0 1

]
, (13.10)

and w is process noise with covariance matrix Q. The output equation is

yk = H xk + vk , (13.11)

where H is defined as

H = [1 0], (13.12)

and vk is process noise with covariance matrix R. The sampling period considered is 0.2 seconds. Notice that

we only perform the update step when a measurement is received, i.e. during most samples only the prediction

step is performed.

The Kalman filters are updated each time a new measurement is accepted. The estimated ranges ẑi are updated

with y = vsound t aco
i and the estimated leaders’ average heading ψ̂l is updated with the circular mean of the last

accepted headings from each leader.

13.4 Simulation results

Simulations were carried out in order to evaluate the performance of the algorithm in preparation for the sea

trials. For this purpose, we used a Simulink model of the MEDUSA AMV shown in Fig. 13.3, with the inner

loop controller for heading described in Ribeiro et al. [2012].
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Figure 13.3 – The Medusa vehicles.

The two leaders follow the same path at 0.5m/s with the follower at starboard of the leaders. Each vehicle is

15m away from the others, that is, ψl = −π/2, xp = 1 and d1 = d2 = d = 15m. The acoustic modems of each of

the leader vehicles transmit information with a period of 4s. The simulation time step is of 0.2s. Sensing and

ranging imperfection are taken into account, with a packet loss rate of 40% and added Gaussian ranging noise

with a standard deviation of σ= 0.45m. The parameters of the ROF controller are the following:

• ωnu - 0.041,

• ζu - 0.82,

• ωnψ - 0.0022,

• ζψ - 8.9.

The simulated paths of the vehicles can be seen in Fig. 13.4 and the along track and cross track errors are shown

in Fig. 13.5.

From Figures 13.4 and 13.5 we can conclude that the control algorithm achieves the objective of keeping the

vehicles in formation, and is able to cope with packet losses and sensor noise with a standard deviation of 0.45m.

After an initial transient phase, the along track and cross track errors are bounded between −5m and 5m. There

is, nevertheless, room for improvement on the range measurement filters, especially to mitigate the effect of

packet losses. A possible enhancement would be using an extended Kalman filter (EKF) that takes into account

the input commands.

13.5 Sea trials

To verify the performance of the ROF controller, trials were performed at Parque das Nações, Lisbon, Portugal,

in a closed harbor with shallow waters and no boat traffic. The MEDUSA AMVS, developed at the LARSyS/

ISR/IST, Lisbon, Portugal, were used in the sea trials.

The vehicles implement a Dynamic Long Baseline method conceived by the NATO Center for Maritime Research

and Experimentation (CMRE) atop functionalities present in the EvoLogics modems (Kebkal et al. [2012]). Each

node has the ability to accurately time-stamp, in a local clock, the incoming and outgoing packets. Every packet
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Figure 13.4 – Simulated vehicle paths. The solid red line is the actual path followed by the vehicle, the gray solid

line represents the computed path with range measurements, and the dashed lines represent range measurements.

The segments between a circle and a cross represent periods during which no range measurement was received

from one of the vehicles in the preceding 12 seconds.

sent is then used as a query and yields N-1 replies in a distributed LBL scheme, considering the time differences

between queries receptions and reply transmission. Since the nodes are at close distance, rigid time-division

multiple access (TDMA) is used without incurring a large penalty in channel capacity. Heading exchanges are

piggybacked on these localization packets. At the end of each round, and in the absence of losses, all vehicles

will know the distance to and heading of every other vehicle in communication range. This is an improvement

over the simple ping-reply model used in Soares et al. [2013].

During this trial, we again considered the mission described in Section 13.4. The paths described by the vehicles

during the trial are shown in Fig. 13.6 and the along track and cross track errors are shown in Fig. 13.7. Aside

from minimal disturbances, the follower is able to better track the leaders than observed in the simulation. This

suggests that either our vehicle model is not a sufficiently accurate representation of the real vehicles and/or

that our simulation overestimates sensor noise and packet losses. The latter is found to be true, with packet loss

during trials recorded as 8.12%, compared to the 40% rate used in simulation.

13.6 Conclusions

This chapter proposed a solution to a three-vehicle formation keeping problem where a follower moves in a

triangular formation with two leader vehicles. The follower has no knowledge of the path taken by the leaders,

and uses only inter-vehicle range measurements, the predefined relative position between the two leaders and

their headings.

Preliminary simulation results were described for a lawnmower motion using a dynamic model of the Medusa
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Figure 13.5 – Along track (pε) and cross track (pδ) errors during simulation. The black line represents the

estimated errors from the ranges measured by the virtual acoustic modems. The blue line indicates the exact

along track and cross track errors, as if they were computed using continuous exact measurements.

vehicles developed at ISR/IST. The results show good performance with error bounded to a 5m window.

We have also addressed the implementation and testing of the algorithm in marine scenarios using real marine

vehicles. The algorithm is able to deal with range measurements that are only available at discrete points in time,

with a period of several seconds. Furthermore, these measurements are affected by sensor noise and outliers, as

well as communication delays and temporary losses.

Future steps will include the analysis of the performance and robustness of the algorithm proposed. A simple but

significant improvement would be to use estimators with accurate vehicle dynamics, taking into account the

commands given to the vehicle, as well as other data, namely from inertial sensors.
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Figure 13.6 – Vehicle paths during trials. The follower vehicle is plotted in red and the leaders are plotted in

black and yellow.
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Figure 13.7 – Along track (pε) and cross track (pδ) errors during trials. The black line represents the estimated

errors from the ranges measured by the acoustic modems. The blue line indicates the along track and cross track

errors computed using RTK GPS measurements.
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14 Cooperative Path-Following with Event-
Based Communications Field Tests

This chapter contains the results of field trials with autonomous marine vehicles that illustrate the efficacy of

the event-triggered coordinated path following algorithm derived in Chapter 10. In addition, on each test, a

saturation of the RPM control signal in one of the vehicles (the so-called Medusa-black vehicle) is temporarily

enforced in order to test the resilience of the proposed algorithms to transient events that may have a negative

impact on coordination.

14.1 Test Set-up

The field tests were performed with 3 Medusa-class AUVs, the properties developed by DSOR/ISR. We name

the vehicles with the Black, Red and Yellow MEDUSAs, corresponding to their colors. The vehicles and its

operation during the test are illustrated by Figure 14.1. Each Medusa vehicle is equipped with a navigation

system using GPS that allows it to access its own position. The communications among the vehicles take place

using a wi-fi connection. For further details on the technology used in the Medusa vehicles, we refer to Abreu

et al. [2016].

a - Medusa vehicles b - Red, Yellow and Black Medusas operating at sea

Figure 14.1 – Medusa surface vehicles and an aerial snapshot during the tests.

The communication topology between the vehicles used during the field tests is shown in Figure 14.2.
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Figure 14.2 – Communication topology and filters running at each vehicle. Vehicle 1 is the Red vehicle, vehicle

2 is the Black vehicle, and vehicle 3 is the Yellow vehicle.

The performed mission in all the reported trials was the following:

• Nominal path for the RED vehicle: Lawnmower trajectory with 30m length for straight line segments and

12m radius for circle segments,

• Formation: Alongside alignment, 5m of separation with the red vehicle at the center following the nominal

path,

• Nominal speed along the nominal path: vr = 0.5m/s.

In the following plots, when displaying the dimensionless path-following variable, the latter corresponds to the

arc-length in meters along the nominal path, i.e. the path taken by the red vehicle.

In the field tests the following algorithms were tested:

• Coordinated path-following with event-triggered communications with ε= 0.2m, ε= 0.6m, and ε= 1.4m,

• Coordinated path-following with event-triggered communications with ε = 0.6m, subjected to packet

losses (with a probability of communication loss of 20%) considering delays up to 2 seconds1.

14.2 Periodic Communications

To evaluate the performance of the controllers developed in the best case scenario, we tested the coordinated

path-following algorithm with periodic communications with a period of 0.2 seconds, which is equal to the

sampling period of the controller. The enforced saturation of motor propeller speed of the black vehicle occurs

at the beginning of the third circular segment, 400 seconds after the start of the mission, until 550 seconds

after the start of the mission. The trajectories of the vehicles are shown in Figure 14.3 and the evolution of the

path-following variables is displayed in 14.4.

We can observe from both Figure 14.3 and 14.4 that coordination is achieved from the beginning of the mission

and is maintained throughout the mission, even during the saturation of motor propeller speed of the black

1Since we are using a wi-fi network, message transmissions are virtually instantaneous. However, we assume that delays of up to 2

seconds could be possible and therefore in the case of a packet loss a message will only be resent after 2 seconds.
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Figure 14.3 Vehicle paths for CPF with periodic communications.
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Figure 14.4 Path-following variables for CPF with periodic com-

munications.

vehicle. It is apparent also from Figure 14.4 that, since the black vehicle is not able to follow its assigned speed,

all the vehicles follow their assigned paths with a speed lower than the pre-defined.

14.3 Trajectory Tracking

Since all the vehicles have synchronized clocks, when the vehicles perform trajectory tracking they evolve in a

coordinated formation without requiring communications. The trajectory of the vehicles is shown in Figure 14.3.

The saturation of the black vehicle propeller rotation occurs in the beginning of the second straight line. This

was done to avoid that the black vehicle will depart from its path and collide with other vehicles, since it is not

able to follow its assigned position. This possibility highlights the advantage of cooperative path-following with

respect to trajectory tracking, for its resilience to events that force one or more vehicles away from its defined

position.

Figure 14.5 – Vehicle paths performing trajectory tracking.

It is clear that, because the vehicles are not aligned and not moving at the beginning of the mission, they do not

align during the whole first straight line, and they only coordinate during the first circular segment. In contrast

with the behaviour of the cooperative path-following, uncoordination is very apparent during the saturation.

However, after the saturation is removed the vehicles become aligned again.
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14.4 Event-triggered Communications

This section contains the main results of this chapter, where it is shown the results of the field tests of the

cooperative path-following algorithm with event-triggered algorithms for values of ε of 0.2, 0.6 and 1.4. For

all the performed tests in this section a saturation of the propeller rotation was introduced in the black vehicle,

between 400 and 550 seconds from the beginning of the mission, which corresponds to the period from the

beginning of the third circular segment to the middle of the fourth straight line segment.

14.4.1 Test with ε= 0.2

Figures 14.6 and 14.7 contain the trajectories of the vehicles and the evolution of the path-following variables

for ε= 0.2.

Figure 14.6 Vehicle paths for event-triggered communications

with ε= 0.2.
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Figure 14.7 Path-following variables for event-triggered commu-

nications with ε= 0.2.

One can observe from Figures 14.6 and 14.7 that coordination is maintained throughout the test with the vehicles

running at a lower speed during the enforced saturation. The communication events between the vehicles and

the estimation errors are plotted in Figures 14.8, 14.9 and 14.10.
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Figure 14.8 – Communication events and estimation error on the red vehicle for ε= 0.2.

164



14.4. Event-triggered Communications

0 100 200 300 400 500 600

Red to Black

Black to Red

Communications between Black and Red

t[seconds]
0 100 200 300 400 500 600

e

-0.6
-0.4
-0.2

0
0.2
0.4
0.6

Estimation error of Black

Figure 14.9 Communication events and estimation error on the

black vehicle for ε= 0.2.
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Figure 14.10 Communication events and estimation error on the

yellow vehicle for ε= 0.2.

From Figures 14.8, 14.9 and 14.10, one can observe large periods without communications after the initial period

when the vehicles are still converging to the paths from their initial positions and before the enforced saturation.

However, the number of communications is still elevated. During the enforced saturation, since the vehicles

move at a speed which is lower than the reference, the estimates of the path, the vehicles communicate almost

periodically. As expected, since we do not have packet losses in this test, the estimation error of all the vehicles

never surpasses 0.2.

14.4.2 Test with ε= 0.6

For ε= 0.6 the trajectories and path following-variable evolution of the three vehicles were the ones plotted in

Figures 14.11 and 14.12.

Figure 14.11 Vehicle paths for event-triggered communications

with ε= 0.6.
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Figure 14.12 Path-following variables for event-triggered commu-

nications with ε= 0.6.

From both Figure 14.11 and 14.12 it is visible a slightly worse performance during the saturation than for the

case with ε= 0.2. Figures 14.13, 14.14 and 14.15 contain the communication instants and estimation errors of

the path-following variables of all the vehicles.
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Figure 14.13 – Communication events and estimation error on the red vehicle for ε= 0.6.
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Figure 14.14 Communication events and estimation error on the

black vehicle for ε= 0.6.
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Figure 14.15 Communication events and estimation error on the

yellow vehicle for ε= 0.6.

From Figures 14.13, 14.14 and 14.15 one can observe that after the initial convergence and before the enforced

saturation the communications are sporadic and occur only at the instants when the vehicles enter or leave the

circular segments. This is the case since the outer and inner vehicles on the circular segment are required to

respectively accelerate and decelerate instantaneously to follow their pre-defined paths.

14.4.3 Test with ε= 1.4

For ε= 1.4 the trajectories followed by the vehicles and the path-following variables of the vehicles were the

ones shown in Figures 14.16 and 14.17 respectively.
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Figure 14.16 Vehicle paths for event-triggered communications

with ε= 1.4.

t[seconds]
0 100 200 300 400 500 600

P
F 

va
ria

bl
e 

(
)

0

50

100

150

200

250
Evolution of Path-Following Variables

MedBlack
MedRed
MedYellow

Figure 14.17 Path-following variables for event-triggered commu-

nications with ε= 1.4.

During most of the mission the vehicles are coordinated. However, it is apparent that during the enforced

saturation we have a much worse performance than in the previous cases with the black vehicle further behind

the other two vehicles. Also, during the enforced saturation, one can observe oscillations in the heading of the

yellow vehicle. This is likely due to sudden variations of reference speed whenever a message is received. The

communications events between the vehicles were the ones shown in Figures 14.18, 14.19 and 14.20.
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Figure 14.18 – Communication events and estimation error on the red vehicle for ε= 1.4.
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Figure 14.19 Communication events and estimation error on the

black vehicle for ε= 1.4.
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Figure 14.20 Communication events and estimation error on the

yellow vehicle for ε= 1.4.

In this case we obtain a very low number of exchanged messages after the vehicles reach coordination and before

the saturation. In total after coordination and before saturation we can count only two communications from the

black vehicle and one from the yellow.

14.5 Event-triggered Communications with Packet Losses

To check the predicted performance with acoustic communications we perform tests with packet losses and

delays for ε= 0.6. The saturation only takes 40 seconds and occurs at the start of the third straight line.

Figure 14.21 Vehicle paths for event-triggered communications

with ε= 0.6 and packet losses.
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Figure 14.22 Path-following variables for event-triggered commu-

nications with ε= 0.6 and packet losses.

We can observe from Figures 14.21 and 14.22 that the performance is similar to the case without packet losses

and ε= 0.6. The communications among vehicles are shown in Figures 14.23, 14.24 and 14.25.
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Figure 14.23 – Communication events and estimation error on the red vehicle for ε= 0.6 and packet losses.
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Figure 14.24 Communication events and estimation error on the

black vehicle for ε= 0.6 and packet losses.

0 100 200 300 400 500

Red to Yellow

Yellow to Red

Communications between Yellow and Red

t[seconds]
0 100 200 300 400 500

e

-1

-0.5

0

0.5

1
Estimation error of Yellow

Figure 14.25 Communication events and estimation error on the

yellow vehicle for ε= 0.6 and packet losses.

One can observe that the communications events are still sparse in this situation. However, the numbers of

exchanged messages is much larger than in the case without packet losses.
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15 Cooperative Navigation with Quantized
Communications Tests

15.1 Test setup

To test the performance of the algorithms described in Chapter 12 a set-up was mounted composed by three

model cars (AMZ Atomic) controlled with an R/C radio connected to a computer with a PcTX cable, a cable

that transmits pulse width modulated (PWM) commands to the R/C radio that will be relayed to the steering

servo and the electronic speed controllers in the model cars. The tests were conducted in a room equipped with

an OptiTrack vision tracking system which measured the position of the vehicles. The algorithms controlling the

cars were implemented in MATLAB.

15.2 Distributed Luenberger Observer

The trials consist of three vehicles which can only measure ranges to neighbours and communicate with neighbour

vehicles. The vehicles are also able to measure the range to a virtual beacon vehicle with a known position.

Those measurements are used on a distributed Luenberger observer, which is used to estimate the vehicle’s

positions by exchanging estimates. The position estimate is then used to control the cars using a trajectory

tracking algorithm. This set-up emulates the situation where we have a fleet of AUVs equipped with acoustic

modems capable of measuring ranges to a limited set of neighbours.

In the setting of these trials all the non-beacon vehicles communicate with each other and measure ranges to

each other and to a set of beacon vehicles Bi . Only one communication with a finite number of bits, which will

vary on each test, is allowed after each vehicle makes the range measurements. We consider a fully connected

network and therefore one communication is sufficient to guarantee the conditions of Chapter 12. The number

of bits might not satisfy the requirements of Chapter 12, since we do not have an accurate model of the effect of

the control input. However, we show here that with a low number of transmitted bits we obtain a stable closed

loop system.

We consider that the pre-defined paths of the vehicles, p i
d (t ), define a formation with fixed distances between

the cars, that is,
∥∥∥p i

d (t ) − p j
d (t )

∥∥∥ is constant for t ∈R+ and i , j ∈ N , where N is the set of non-beacon vehicles.

To design the distributed Luenberger observer, we take into consideration the deviation from the desired position

in the formation frame

ē i := Rd (p i − p i
d ),
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where Rd is the rotation matrix between the inertial frame and the tangent to the path at the center of the

formation, and p i is the position of the i th vehicle. The Luenberger observer is designed on the assumption that

the deviation from the desired position has the following discrete time dynamics.

ē i
k+1 = ē i

k +ξi
k+1 + w1i

k ,

ξi
k+1 = ξi

k+1 + w 2i
k ,

where w1i
k ∈R2 and w2i

k ∈R2 are bounded process disturbances. Note that it is possible to recover p i knowing

ē i through p i = RT
d ēi + p i

d . The state of the system that will be observed by the Luenberger observer is then

xk = col

([
ē i

k
ξi

k

]
, i ∈ N

)

which is assumed to follow the discrete time dynamics

xk := I3 ⊗ A + wk

where wk ∈R12 is a bounded process noise and A is defined as

A :=
[

I2 I2

0 I2

]
.

The measurement equation for each vehicle is

hi (x) :=
[

col
(∥∥p i − pb j

∥∥ , j ∈ Bi
)

col
(∥∥p i − p j

∥∥ , j ∈ N
)
]

,

where Bi is the set of beacon vehicles from where i measures ranges and pb j is the position of beacon j . The

set of measurements that is assumed to be available to each vehicle is

yi
k = hi (xk ) + vi

k ,

where vi
k is a bounded measurement noise. The observation matrix matrix for each vehicle is computed as the

linearization of the measurement equation when the vehicles are at their defined positions, that is, it is defined as

C i := ∂hi

∂x
(0).

The observer gain L of the Distributed Luenberger observer was computed by solving an ARE as proposed in

Subsection 6.3.3 of Chapter 6 which provides a positive definite matrix P and a matrix L such that ‖I3⊗A−LC‖P <
1, where C := col(C i ). The matrix L is then partitioned in local sub-matrices such that L = row(Li ) and a decrease

rate β is selected such that ‖I3 ⊗ A − LC‖P <β< 1. The distributed Luenberger observer is the following

x̂i
k = 1

3

( ∑
j∈N

Q j
k

(
x̄ j

k

))
+ x̄i

k −Qi
k

(
x̄i

k

)
,

where

x̄i
k+1 = I3 ⊗ Ax̂i

k + 3Li
(

yi
k − hi (0) −C i x̂i

k

)
,

Regarding the quantizer parameters, a decrease rate of β of the quantization interval was implemented. However,

since it is difficult to obtain a-priori bounds on the process noise, the quantization interval is determined according
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to a zoom-in, zoom-out approach, that is, it is defined as

Λi
k+1 =

{
βΛi

k if
∥∥x̄i

k −Qi
k

(
x̄i

k

)∥∥
2Λi

k otherwise
.

The number of bits for each dimension of the state, nb , was set to a different value on each test.

15.3 Trajectory Tracking Controller

A trajectory tracking controller was implemented that drives the vehicles to their assigned paths pd by controlling

the desired surge speed ud and yaw rate rd of the vehicles.

Dropping the vehicle index, and defining ê := R(p̂ − pd ) where R is the rotation matrix from the inertial frame to

the body frame of the vehicle, and p̂ is the estimated position of the vehicle, the trajectory tracking control law

is the following

[
ud

rd

]
=Δ−1 (−K (ê −δ) + RT ṗd

)
, (15.1)

where K is a positive diagonal matrix, and for a positive constant δ> 0,

Δ :=
[

1 0

0 −δ

]
,

and δ := [δ, 0]T . The speed of the vehicle is controlled by a PI controller which assigns commands to the motor

of the vehicle to drive the surge speed to ud . Finally, the yaw rate of the car is driven to rd by commanding the

steering angle of the vehicle, which is determined by inverting a mapping between the steering angle and yaw

rate.

15.4 Mission

The formation of the three non-beacon vehicles and the two beacon vehicles along with the measured ranges is

shown in Figure 15.1.

It can be seen from Figure 15.1 that each non-beacon vehicle is not able to determine its own position only by its

own range measurements to the beacons, thus it is necessary that the vehicles communicate among themselves to

estimate their positions. The trajectory followed by the vehicles during the trials is a cyclical trajectory composed

by two straight lines and two half-circles. The nominal assigned speed is 0.8m/s. During the trials, the frequency

of the algorithm is 10Hz, which corresponds to the frequency at which each vehicle measures ranges and the

frequency at which each vehicle exchanges its estimate with the others.

15.5 Test with nb := 16

The first test performed the number of transmitted bits for each dimension of the state nb was set to 16. For

that test the trajectories followed by the cars and the estimated positions are shown in Figure 15.2. The position

errors are shown in Figure 15.3.

We can observe from Figures 15.2 and 15.3 that the vehicles follow their assigned paths with a deviation of up to

0.2 meters. The estimation errors during the test are displayed in Figure 15.4 and the quantization interval size is
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Figure 15.1 – Formation of the cars during the trials. The orange vehicles correspond to virtual beacon vehicles

that are assumed to follow perfectly their assigned paths. The dashed red lines correspond to the measured

ranges.
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Figure 15.2 Trajectory of the vehicles during the first cycle of the

trial for nb := 16. The solid lines are the pre-defined trajectories,

the dashed lines are the cars trajectories and the dots are the

estimated positions.
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Figure 15.3 Deviation from the assigned position for nb := 16.

shown in Figure 15.5. One can see from Figure 15.4 that the estimation errors are of the same size as deviation

to the assigned position. We are assuming a linearized system and therefore the estimation error is expected

to be proportional to the distance to the desired position. From Figure 15.5 it is visible that the quantization

interval size remains bellow 0.1 throughout most of the test, while surpassing 0.3 for brief periods.

15.6 Test with nb := 4

For the test with nb := 4 the trajectories followed by the cars and the estimated positions are shown in Figure

15.6. The position errors are shown in Figure 15.7.

From Figures 15.6 and 15.7 one can observe that the performance is similar to the case of nb = 16, and that

the algorithm is robust to a challenging initial condition. The estimation errors during the test are displayed in

Figure 15.8 and the quantization interval size is shown in Figure 15.9.
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Figure 15.4 Estimation errors for nb := 16.
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Figure 15.5 Quantization interval evolution for nb := 16.
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Figure 15.6 Trajectory of the vehicles during the first cycle of the

trial for nb := 4.
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Figure 15.7 Deviation from the assigned position for nb := 4.

From Figures 15.8 and 15.9 one can see that the estimation error size is similar to the trial with nb = 16 indicating

that the quantization errors contribute little to the estimation error in this case. The quantization intervals are

greater than for nb = 16 indicating that the quantization errors are also larger.

15.7 Test with nb := 3

Finally, the trajectories followed by the cars and the estimated positions for the test with nb := 3 are shown in

Figure 15.10 and the position errors are shown in Figure 15.11.

It can be seen that the behaviour of the estimation errors is very different from the previous cases, since the

quantization error has a greater impact on the estimation performance. During the first cycle the vehicles

followed their assigned paths. However, it is visible from Figure 15.11 that the cars diverge slowly from their

assigned paths. The estimation errors are shown in Figure 15.12 and the quantization interval size are plotted in

Figure 15.13, where it is visible that the path-following control system is unstable in this case.
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Figure 15.8 Estimation errors for nb := 4.

time (s)
0 5 10 15 20 25 30 35 40

t (m
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Quantization interval size

Figure 15.9 Quantization interval evolution for nb := 4.
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Figure 15.10 Trajectory of the vehicles during the first cycle of

the trial for nb := 3.
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Figure 15.11 Deviation from the assigned position for nb := 3.
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Figure 15.12 Estimation errors for nb := 3.
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Figure 15.13 Quantization interval evolution for nb := 3.
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16 Conclusions

In this thesis we proposed a number of algorithms for distributed state estimation and cooperative path-following

that take into account explicitly the bandwidth limitations of the communications medium.

It was shown that the proposed quantized consensus algorithm achieves consensus asymptotically and that there

are explicit convergence conditions yielding convergence rates that can be as close as one wishes to the case

of unquantized communications, depending on the number of transmitted bits, and compute explicitly upper

bounds on the deviation from average of each node. We have also shown that when the value stored at each node

is disturbed by a bounded noise the ultimate bound on the difference to the average of a node is proportional to

the magnitude of the noise.

We also proposed a new design method for a distributed state estimation algorithm for linear systems with

guaranteed stability for collectively observable systems, that only requires the broadcasting of the node’s state

estimate at each discrete time instant. We demonstrated with simulations that, for some particular conditions, the

algorithm has a lower estimation error norm than the other methods that use the same bandwidth and yield stable

estimation errors for unstable systems.

We proposed a cooperative path-following algorithm with self-triggered communications that is robust to delays

and packet losses and we proved that the closed-loop system is input to state stable with respect to disturbances.

We have shown through simulations and with tests in real vehicles that the self-triggered cooperative path-

following algorithm has adequate performance for formation control of autonomous marine vehicles. Moreover,

the algorithm only requires communications when the vehicles are converging to their paths and into formation,

and after that phase the vehicles practically do not need to communicate. From the tests with real vehicles it was

found that cooperative path-following is a safer approach to formation control than trajectory tracking, since

formation is maintained even when for some reason one vehicle lags behind temporarily, avoiding possible

collisions.

We have also shown that with an appropriate parameter choice and given that the system is collective detectable,

the distributed estimation and control algorithm with progressive quantization proposed in this thesis yields a

bounded estimation error and state in every agent, with bounds proportional to the process and measurement

noise.

We demonstrated in simulations that in a particular example the two best possible strategies in terms of bandwidth,

that yield estimation errors with the same magnitude of the centralized case, are either transmitting 3 bits and

performing a large number of consensus iterations between two discrete time instants, or performing the least

179



Chapter 16. Conclusions

possible number of consensus iterations guaranteeing adequate performance while communicating a large

number of bits.

Finally, it was shown in tests with model cars that distributed estimation with quantized consensus is a feasible

strategy for formation control using only range measurements between the vehicles, and, in that case, stability

was achieved when each vehicle broadcast 10 times per second a vector of dimension 12 with each element

coded with 4 bits. That is, we required a data rate of 10 × 12 × 4 = 480 bits per second.
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17 Future Work

We have determined conditions under which quantized distributed estimation and self-triggered cooperative

path-following are input to state stable with respect to disturbance and measurement noise. However, in order to

assess the performance in practice of the devised algorithms, a rigorous analysis of the trade-off between the

available bandwidth and the performance of the algorithms would be useful.

A strong assumption in quantized consensus and, consequently, in quantized distributed estimation is the

assumption that there are no packet losses, and therefore that each node knows exactly what data was received

by the out-neighbours. A possible method to cope with packet losses is the adaptation of protocols such as the

method in Saab et al. [2017] to ensure that all the agents know which information each observer used to update

its own state.

To complete the analysis of the application of quantized distributed estimation to cooperative navigation of

Chapter 15, a potential future work to assess the suitableness of the algorithm in real conditions is to perform sea

trials with Medusa vehicles using acoustic modems. Also, another limitation of the tests of Chapter 15 is that,

since the noise bound is not known beforehand, the quantization interval was selected according to a zoom-in

zoom-out method, instead of the progressive quantization method proposed in Chapter 12. Both methods are

similar, in that the quantization interval decreases with a pre-determined decrease rate. However, in the method

of Chapter 15 the quantization interval length does not reach asymptotically a fixed value but instead it increases

whenever the quantized value is outside the quantization interval. A theoretical analysis of the method in Chapter

15 in terms of stability would be useful.

Since in underwater environments there are few available positioning systems and we usually have to rely on

range measurements to other vehicles or beacons, and in Chapter 10 we assumed that the agents have knowledge

of their positions, we should investigate the stability of the coupling between cooperative navigation with range

measurements, as is done in Chapter 15, and cooperative path-following with quantized or event-triggered

communications, instead of trajectory tracking as in Chapter 15.

Another potential improvement to the theory in this thesis is the use of the results in Almeida et al. [2012], which

state that cooperative path-following with periodic communications is stable, to relax some of the assumptions

in Theorem 18, such as that the initial conditions must be within a neighbourhood of the origin.

A potential breakthrough in the theory of distributed estimation would be to determine under which conditions

in the distributed estimation method of Section 8.7 in Chapter 8 the global covariance matrix converges to

a fixed value. In that case it is expected that we would obtain the advantages of the method with known
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cross-correlations of Section 8.7, which is optimal in the stochastic sense, with the light on-line computational

burden of a distributed Luenberger observer.

Another potential research topic in the field of distributed state estimation for linear systems is to investigate

under which conditions it is possible to stabilize a system using distributed observers to estimate the state and

using these state estimates to perform feedback control. This problem is not trivial since each node does not

have knowledge of the control action the other nodes apply. In particular, the application of model-predictive

control for constraint satisfaction is particularly challenging in this context since each agent must guarantee that

the constraints are not violated without knowledge of the state estimate present in the other agents.

Finally, a possible extension to the quantized distributed estimation methods is to extend the developed methods

to non-linear systems using methods similar to the extended Kalman filter.
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A Appendices of Chapter 6

A.1 Proofs of Ellipsoidal norm Properties

Proof of property P1.

‖AB‖P := sup
y=B x,‖x‖P =1

‖Ay‖P ≤ sup
‖y‖P =‖B‖P =1

‖Ay‖P = ‖A‖P ‖B‖P .

Proof of property P2. Because ρ(A) < 1, given any positive definite matrix Q there is a positive definite P such

that AT PA − P = −Q. Multiplying on the right by P− 1
2 and on the left by P− 1

2 T one obtains

P− 1
2 T QP− 1

2 = In − P− 1
2 T AT PAP− 1

2 .

Moreover, since Q and P are positive definite, and thus P− 1
2 T QP− 1

2 , and because P− 1
2 T AT PAP− 1

2 is positive

semidefinite, it follows that

0 <σmin(Q
1
2 P− 1

2 ) < 1.

As a consequence,

‖A‖P := sup
‖x‖P =1

√
xT AT PAx = sup

‖x‖P =1

√
‖x‖2

P − xT Qx =
√

1 − min
‖x‖P =1

‖x‖2
Q

=
√

1 − min
‖x‖=1

‖Q
1
2 P− 1

2 x‖2 =
√

1 −σmin(Q
1
2 P− 1

2 )2 < 1.

Proof of property P3.
Given the ellipsoid Yα := {y |‖y‖P ≤α}, define its support function as

hYα
(γ) :=max

x∈Yα

γT x.
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Performing the change of variables y := P
1
2 x we have

hYα
(γ) := max

‖y‖≤α
γT P− 1

2 y,

which can be solved by inspection to yield

hYα
(γ) :=γT P− 1

2
P− 1

2 γ∥∥∥P− 1
2 γ
∥∥∥α= ‖P− 1

2 γ‖α.

Therefore,

min
‖y‖∞=1

‖y‖P = max
Yα⊆H

α= max
hYα (Fi )≤ fi

α= max∥∥∥P− 1
2 Fi

∥∥∥α≤ fi

α

= min
1≤i≤n

fi∥∥∥P− 1
2 F T

i

∥∥∥ := m(P ).

Furthermore,

max
‖y‖∞=1

‖y‖P = max
y∈H

‖y‖P = max
1≤i≤2n

‖vi ‖P := M(P ).

Given two positive definite matrices P1 and P2 of size n1 × n1 and n2 × n2, respectively and defining F 1
i as the

i th row of the matrix F 1 := [In1 ,−In1 ]T , and F 1
i as the i th row of the matrix F 2 := [In2 ,−In2 ]T it follows, using

property P5 and the usual properties of the Kronecker product, that

m(P1 ⊗ P2) = min
1≤i≤n1,1≤ j≤n2

1∥∥∥∥P
− 1

2
1 ⊗ P

− 1
2

2 F 1T
i ⊗ F 2T

j

∥∥∥∥
= min

1≤i≤n1,1≤ j≤n2

1∥∥∥∥P
− 1

2
1 F 1T

i

∥∥∥∥
∥∥∥∥P

− 1
2

2 F 2T
j

∥∥∥∥
= m(P1)m(P2).

Furthermore, defining v1
i as the i th vertex of the hypercube H 1 := {y |F 1 y ≤ 1} and v2

i as the i th vertex of the

hypercube H 2 := {y |F 2 y ≤ 1} we have

M(P1 ⊗ P2) = max
1≤i≤2n1 ,1≤ j≤2n2

∥∥∥v1
i ⊗ v2

j

∥∥∥
P1⊗P2

= max
1≤i≤2n1 ,1≤ j≤2n2

∥∥v1
i

∥∥
P1

∥∥∥v2
j

∥∥∥
P2

= M(P1)M(P2).

Proof of property P4.

min
‖y‖P2 =1

‖y‖P1 = min
‖v‖=1

∥∥∥∥P
− 1

2
2 v

∥∥∥∥
P1

=σmin(P
1
2

1 P
− 1

2
2 ) := m(P1,P2).

Similarly,

max
‖y‖P2 =1

‖y‖P1 =σmax(P
1
2

1 P
− 1

2
2 ) := M(P1,P2).
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A.1. Proofs of Ellipsoidal norm Properties

Proof of property P5. Using the mixed product property of the Kronecker product gives

‖A ⊗ B‖P1⊗P2 = max
‖x‖P1⊗P2 =1

‖A ⊗ B x‖P1⊗P2 .

Doing the transformation x := y ⊗ z one obtains

‖A ⊗ B‖P1⊗P2 = max‖yT ⊗zT ‖P1⊗P2
=1

∥∥yT ⊗ zT
∥∥

AT ⊗B T P1⊗P2 A⊗B = max
yT P1 y zT P2z=1

√
yT AT P1 Ay zT B T P2B z

= max
yT P1 y=1

√
yT AT P1 Ay max

zT P2z=1

√
zT B T P2B z = ‖A‖P1‖B‖P2 .
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B Appendices of Chapter 7

B.1 Proofs of Standard Consensus Lemmas

Before proving Lemma 1 the following result, based on the theorems in Tifenbach [2011], is required.

Lemma 17. If Assumptions A2-A3 are satisfied then σmax(Π) = 1 and σ2 < 1.

Proof. If Assumption A3 is satisfied, then ΠT Π has the same or a larger number of non-zero elements than Π,

and if Π is doubly stochastic then ΠT Π is doubly stochastic. Therefore, from Assumption A2 it follows that

ΠT Π is non-negative, doubly stochastic, and primitive.

Since ΠT Π is doubly stochastic, 1�
N

1 is both the left- and right-eigenvector associated with the eigenvalue 1.

Therefore, it follows from the Perron-Frobenius Theorem that the eigenvalue 1 is a simple eigenvalue of ΠT Π

and the norm of the other eigenvalues is smaller than 1.

Finally, since the singular values of Π are the eigenvalues of ΠT Π, we obtain σmax(Π) = 1 and σ2 < 1.

We can now prove Lemma 1.

Proof of Lemma 1. We start by proving the first implication, i.e. if liml→∞ zi
l = ∑ j∈N

1
N z j

0 , ∀i ∈ N then

Assumption A2 is satisfied. Defining zl := col (zi
l ) we can write (7.3) as

zl+1 =Πzl .

We can also write the property

lim
l→∞

zi
l = ∑

j∈N

1

N
z j

0 , ∀i ∈ N ,

as

lim
l→∞

zl = 1

N
11T z0,

187



Appendix B. Appendices of Chapter 7

which is equivalent to

lim
l→∞

Πl = 1

N
11T .

This implies that Π 1
N 11T = 1

N 11T Π= 1
N 11T , which is only possible if Π is doubly stochastic. Moreover, since

liml→∞Πl is positive, there is an integer k > 0 such that Πk is positive, i.e. Π is primitive.

If Assumption A2 is satisfied, then the conditions of Lemma 17 apply and therefore σmax(Π) = 1 and σ2 < 1. We

can also observe that since Π is doubly stochastic, 1�
N

1 is both a left- and a right-singular vector associated with

σmax(Π) = 1 and the left- and a right-eigenvector associated with λ1 = 1. Therefore, from the Perron-Frobenius

theorem (see e.g. Bullo et al. [2009]), we have that limt→∞Πt is the Perron projection 1
N 11T .

Finally, given that Assumption A2 is satisfied we can perform an SVD decomposition of Π as

Π= U

⎡
⎢⎢⎣

1 0
σ2

0
.. .

⎤
⎥⎥⎦V T ,

from which it follows that

1

N
11T = U

⎡
⎢⎣

1 0
0

0 0

⎤
⎥⎦V T ,

and ‖Π− 1
N 11T ‖ =σmax(Π− 1

N 11T ) =σ2 < 1.

A proof of Lemma 2 is given in Theorem 3 of Hartfiel and Spellmann [1972]. In what follows we give an

alternative proof that departs considerably from that in Hartfiel and Spellmann [1972] and has the benefit of

being constructive. The proof presented here relies on graph theoretical considerations and on the Birkhoff-von

Neumann Theorem given next.

Theorem 23 (Birkhoff-von Neumann theorem, In Horn and Johnson [2012], Theorem 8.7.1). A square matrix

is doubly stochastic if and only if it is a convex combination of permutation matrices.

Proof of Lemma 2. The implication that if Assumption A2 is satisfied then the network (N ,A ) is strongly

connected, stems from the fact that if Π is primitive then it is irreducible, i.e. we cannot partition N into two

disjoint sets N1 and N2, N1 ∪N2 = N , N1 ∩N2 = �, such that πi , j > 0 for i ∈ N1 and j ∈ N2, and from the

well known result that if Π is irreducible then G(Π) is strongly connected.

The converse implication, i.e. that if self loops are allowed and the network (N ,A ) is strongly connected then

there exists a matrix Π such that Assumption A2 is satisfied, is proven as follows. If the network (N ,A ) is

strongly connected then each edge (i , j ) ∈ A is included in a cycle of edges contained in A . This is due to

the fact that since the network is strongly connected, for every edge (i , j ) ∈ A there is a path without repeated

nodes starting in j and ending in i . Therefore, there is a finite set of n > 0 cycles Ck , k = {1 . . . ,n} such that⋃n
k=1 Ck = A . Since self loops are allowed, for every cycle we can define a permutation matrix Pk , whose G(Pk )

is a subgraph of (N ,A ), by defining its i j th component pi , j
k as

pi , j
k :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if

⎧⎪⎨
⎪⎩

(i , j ) ∈ Ck

or

if i = j , and ∀k ∈ N , (i ,k) ∉ Ck

0, otherwise

.
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We can now define Π :=∑n
k+1αk Pk , with αk > 0 for k = {1, . . . ,n} and

∑n
k+1αk = 1. We can see that G(Π) =

(N ,A ). Since the network is strongly connected and aperiodic (because it contains self-loops), we have

that G(Π) is strongly connected and aperiodic, and therefore Π is primitive. Moreover, since Π is a convex

combination of permutation matrices, from Theorem 23 Π is doubly stochastic. This concludes the proof.

B.2 Proof of Theorem 8

To prove the main result of this section we need the following.

Lemma 18. Consider the quantizer Ql defined in (7.1) in Section 7.1 with nb bits and where Λl = rαl , with

0 <σ2 <α< 1. Let Assumption A2 hold. Given the linear consensus system with quantized communications

(7.7), if, given l , for all 0 ≤ p < l the values of zp fall inside the quantization interval, i.e. ‖zp − z̄p‖∞ ≤ Λp

2 , then

‖ql ‖IN ⊗P satisfies

‖ql ‖IN ⊗P ≤αl

[
‖q0‖IN ⊗P +

�
N M(P )

α−σ2

( r

2nb − 2

)]
. (B.1)

Proof. If Assumption A2 holds, then from (7.8) it follows that

qp+1 =
(
Π− 1

N
11T

)p+1

⊗ In q0 +
p∑

i=0

[(
Π− 1

N
11T

)i

(Π− IN )

]
⊗ Inηp−i .

The same assumption implies that ‖Π− 1
N 11T ‖ =σ2 < 1, ‖Π− IN ‖ ≤ ‖Π‖+‖IN ‖ ≤ 2, and that ‖IN − 1

N 11T ‖ = 1,

and therefore

‖qp+1‖IN ⊗P ≤
∥∥∥∥Π− 1

N
11T

∥∥∥∥p+1

‖q0‖IN ⊗P +
p∑

i=0

∥∥∥∥Π− 1

N
11T

∥∥∥∥i

‖Π− IN ‖‖ηp−i ‖IN ⊗P

=σ
p+1
2 ‖q0‖IN ⊗P +

p∑
i=0

σi
2

(
2‖ηp−i ‖IN ⊗P

)
,

where we used Properties P1 and P5. From the assumption that ‖ηp‖∞ ≤ Λp

2nb +1−4
, and Property P3, we have

‖ηp‖IN ⊗P ≤
�

N M(P )‖ηp‖∞ ≤ Λp
�

N M(P )

2nb+1 − 4
≤ r

�
N M(P )

2nb+1 − 4
αp .

Therefore,

‖qp+1‖IN ⊗P ≤σ
p+1
2 ‖q0‖IN ⊗P + r

2nb − 2

�
N M(P )

p∑
i=0

σi
2α

p−i

≤αp+1‖q0‖IN ⊗P + r

2nb − 2

�
N M(P )

p∑
i=0

σi
2α

p−i

≤αp+1

[
‖q0‖IN ⊗P + r

2nb − 2

�
N M(P )

p∑
i=0

σi
2

αi+1

]
.

Since σ2 <α< 1, by using the convergence property of the geometric series, we get that the expression above is

equivalent to

‖qp+1‖IN ⊗P ≤αp+1

⎡
⎣‖q0‖IN ⊗P + r

2nb − 2

�
N M(P )

(
1 − (σ2

α

)p+1
)

α
(
1 − σ2

α

)
⎤
⎦
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≤αp+1

[
‖q0‖IN ⊗P + r

2nb − 2

�
N M(P )

α−σ2

]
.

Proof of Theorem 8. We prove by induction that zl falls inside the quantization interval of Ql , i.e. ‖zl −z̄l ‖∞ ≤ Λl
2

for l ≥ 0. This, combined with Lemma 19 concludes the proof of Theorem 8.

The base case that ‖z0 − z̄0‖∞ ≤ Λ0
2 is given by assumption, since from equation (7.10), using the norm Property

P3, and the definitions of ql and zavg

l we can state that

‖z0 − z̄0‖∞ = ‖q0 + zavg
0 − z̄0‖∞ ≤ ‖q0‖IN ⊗P +‖zavg

0 − z̄0‖IN ⊗P

m(P )
≤ s1 ≤ r

2
≤ rα0

2
= Λ0

2
.

We must now prove the induction step, that is, if ‖zl − z̄l ‖∞ ≤ Λl
2 then ‖zl+1 − z̄l+1‖∞ ≤ Λl+1

2 . From (7.8), and the

fact that the algorithm preserves averages, i.e. zavg

l+1 = zavg

l , we have

‖zl+1 − z̄l+1‖∞ = ‖zl+1 −Ql (zl )‖∞
= ‖ql+1 − ql −ηl ‖∞ ≤ ‖ql+1‖∞ +‖ql ‖∞ +‖ηl ‖∞

≤ ‖ql+1‖IN ⊗P

m(P )
+ ‖ql ‖IN ⊗P

m(P )
+‖ηl ‖∞. (B.2)

Combining (B.2) with Lemma 18, and the assumption of the induction, i.e. the assumption that ‖zl − z̄l ‖∞ ≤ Λl
2 ,

it follows that

‖zl+1 − z̄l+1‖∞ ≤ αl+1

m(P )

[
‖q0‖IN ⊗P +

�
N M(P )r

2nb (α−σ2)

]
+ αl

m(P )

[
‖q0‖IN ⊗P +

�
N M(P )r

2nb (α−σ2)

]
+ r

2nb+1 α
l .

Rearranging the right hand side of the last inequality one obtains

‖zl+1 − z̄l+1‖∞ ≤αl+1

[
(α+ 1)‖q0‖IN ⊗P

m(P )α
+ 2

�
N M(P )(α+ 1) + m(P )(α−σ2)

m(P )α(α−σ2)

r

2nb+1

]

≤αl+1
[

s1 + s2
r

2nb+1

]
,

where the last inequality stems from the definitions of s1, s2 and the fact that ‖z̄0 − zavg
0 ‖IN ⊗P ≥ 0. From the

assumptions of Theorem 8 we obtain

‖zl+1 − z̄l+1‖∞ ≤αl+1
[

s1 + s2
r

2nb+1

]
≤ rαl+1

2
= Λl+1

2
.

B.3 Proof of Theorem 9

Before proving the main result of this section we first need the following preparatory result:

Lemma 19. Consider a quantizer Ql from (7.1) with nb bits and where Λl = r1α
l + r2, with 0 < σ2 < α < 1

and αv < α. Let Assumptions A2, A3 and A4 hold. Given the linear consensus system with quantized

communications (7.7), if, given l , for all 0 ≤ p < l the values of zp fall inside the quantization interval, i.e.
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‖ηp‖∞ ≤ Λp

2 then ‖ql ‖ satisfies

‖ql ‖IN ⊗P ≤αl

[
‖q0‖IN ⊗P +

�
N M(P )

α−σ2

( r1

2nb − 2
+εv

)]
+

�
N M(P )

1 −σ2

( r2

2nb − 2
+δv

)
. (B.3)

Proof. Given that Assumptions A2, A3 hold, from (7.8) we have

qp+1 =
(
Π− 1

N
11T

)p+1

⊗ In q0

+
p∑

i=0

[(
Π− 1

N
11T

)i

(Π− IN )

]
⊗ Inηp−i

+
p∑

i=0

[(
Π− 1

N
11T

)i (
IN − 1

N
11T

)]
⊗ In vp−i .

Noting that, from Assumptions A2 and A3, ‖Π− 1
N 11T ‖ = σ2 < 1, ‖Π− IN ‖ ≤ ‖Π‖ + ‖IN ‖ ≤ 2, and that

‖IN − 1
N 11T ‖ = 1, from Property P5, and the fact that ‖In‖P = 1, we have

‖qp+1‖IN ⊗P ≤
∥∥∥∥Π− 1

N
11T

∥∥∥∥t+1

‖q0‖IN ⊗P

+
p∑

i=0

∥∥∥∥Π− 1

N
11T

∥∥∥∥i

‖Π− IN ‖‖ηp−i ‖IN ⊗P

+
p∑

i=0

∥∥∥∥Π− 1

N
11T

∥∥∥∥i

‖IN − 1

N
11T ‖‖vp−i ‖IN ⊗P

=σ
p+1
2 ‖e0‖IN ⊗P +

p∑
i=0

σi
2

(
2‖ηp−i ‖IN ⊗P +‖vp−i ‖IN ⊗P

)
.

From the assumption that ‖ηp‖∞ ≤ Λp

2nb +1−4
we obtain

‖ηp‖IN ⊗P ≤
�

N M(P )‖ηp‖∞ ≤ Λp
�

N M(P )

2nb+1 − 4
≤ r1

�
N M(P )

2nb+1 − 4
αp + r2

�
N M(P )

2nb+1 − 4
.

Also, assumption A4 yields

‖vp‖IN ⊗P ≤
�

N M(P )‖vp‖∞ ≤
�

N M(P )εvα
p
v +

�
N M(P )δv

≤
�

N M(P )εvα
p +

�
N M(P )δv ,

where we used the fact that αv ≤α, and therefore

‖qp+1‖IN ⊗P ≤σ
p+1
2 ‖q0‖IN ⊗P +

( r1

2nb − 2
+εv

)�
N M(P )

p∑
i=0

σi
2kp−i

( r2

2nb − 2
+δv

)�
N M(P )

p∑
i=0

σi
2

≤αp+1‖q0‖IN ⊗P +
( r1

2nb − 2
+εv

)�
N M(P )

p∑
i=0

σi
2α

p−i +
( r2

2nb − 2
+δv

)�
N M(P )

p∑
i=0

σi
2

≤αp+1

[
‖q0‖IN ⊗P +

( r1

2nb − 2
+εv

)�
N M(P )

p∑
i=0

σi
2

αi+1

]
+
( r2

2nb − 2
+δv

)�
N M(P )

p∑
i=0

σi
2.

Since 0 <α< 1, by using the property of the geometric series, we get that the expression above is equal to

191



Appendix B. Appendices of Chapter 7

‖qp+1‖IN ⊗P ≤αp+1

⎡
⎣‖q0‖IN ⊗P +

( r1

2nb − 2
+εv

)�
N M(P )

(
1 − (σ2

α

)p+1
)

α
(
1 − σ2

α

)
⎤
⎦

+
( r2

2nb − 2
+δv

)�
N M(P )

(
1 −σ

p+1
2

)
1 −σ2

≤αp+1

[
‖q0‖IN ⊗P +

( r1

2nb − 2
+εv

)�
N M(P )

α−σ2

]
+
( r2

2nb − 2
+δv

)�
N M(P )

1 −σ2
.

Proof of Theorem 9. We prove by induction that zl falls inside the quantization interval of Ql , i.e. ‖zl −z̄l ‖∞ ≤ Λl
2

for l ≥ 0 which, combined with Lemma 19, concludes the proof of Theorem 9.

The base case is given by assumption, since from equation (7.17), the definitions of ql and zavg

l , Property P3,

and the fact that m(IN ) = 1 we can state that

‖z0 − z̄0‖∞ = ‖q0 + zavg
0 − z̄0‖∞ ≤ m(P )−1 (‖q0‖IN ⊗P +‖zavg

0 − z̄0‖IN ⊗P
)

≤ a1 ≤ r1

2
≤ r1α

0 + r2

2
= Λ0

2
.

We now have to prove the induction step, that is, given that ‖zl − z̄l ‖∞ ≤ Λl
2 we have ‖zl+1 − z̄l+1‖∞ ≤ Λl+1

2 . From

(7.8), and the fact that the vector of averages follows the dynamics zavg

l+1 = zavg

l + 1
N

(
11T

)⊗ In vl , we have

‖zl+1 − z̄l+1‖∞ = ‖zl+1 − ẑl ‖∞ = ‖ql+1 − ql + 1
N

(
11T

)⊗ In vl −ηl ‖∞
≤ ‖ql+1‖∞ +‖ql ‖∞ +‖ 1

N

(
11T

)⊗ In vl ‖∞ +‖ηl ‖∞
≤ m(P )−1

(‖ql+1‖IN ⊗P +‖ql ‖IN ⊗P
)+‖vl ‖∞ +‖ηl ‖∞.

(B.4)

Combining (B.4) with Lemma 19, assumption A4 and the assumption of the induction, i.e. the assumption that

‖zl − z̄l ‖∞ ≤ Λl
2 , it follows that

‖zl+1 − z̄l+1‖∞ ≤ αl+1

m(P )

[
‖q0‖IN ⊗P +

�
N M(P )εv

α−σ2
+

�
N M(P )r1

(2nb − 2)(α−σ2)

]

+ αl

m(P )

[
‖q0‖IN ⊗P +

�
N M(P )εv

α−σ2
+

�
N M(P )r1

(2nb − 2)(α−σ2)

]

+ 2
�

N M(P )

m(P )(1 −σ2)
δv + 2

�
N M(P )r2

m(P )(1 −σ2)(2nb − 2)
+εvα

l +δv + r1

2nb+1 − 4
αl + r2

2nb+1 − 4
.

Rearranging the right hand side of the last inequality one obtains

‖zl+1 − z̄l+1‖∞ ≤αl+1

[
(α+ 1)‖q0‖IN ⊗P

m(P )α
+
(�

N M(P )(α+ 1)

α(α−σ2)
+ 1

α

)
εv

+
(

2
�

N M(P )(α+ 1)

m(P )α(α−σ2)
+ 1

α

)
r1

2nb+1 − 4

]

+
(

2
�

N M(P )

m(P )(1 −σ2)
+ 1

)
δv +

(
4
�

N M(P )

m(P )(1 −σ2)
+ 1

)
r2

2nb+1 − 4

≤αl+1
[

a1 + a2
r1

2nb+1 − 4

]
+ b1 + b2

r2

2nb+1 − 4
,

where the last inequality stems from the definitions of a1, a2, b1, b2 and the fact that ‖z̄0 − zavg
0 ‖IN ⊗P ≥ 0. From
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the assumptions of Theorem 9 we have that

‖zl+1 − z̄l+1‖∞ ≤αl+1
[

a1 + a2
r1

2nb+1 − 4

]
+ b1 + b2

r2

2nb+1 − 4

≤ r1α
l+1 + r2

2
= Λl+1

2
.
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C Appendices of Chapter 8

C.1 General Solution for a Non-invertible Matrix A

Given a dynamic system described by (8.1) and (8.2), where wt = 0 and vi
t = 0, one can express it in a basis that

transforms the A matrix in its Jordan form, i.e. we can find a matrix M such that J = M−1 AM is a block diagonal

matrix in the Jordan form diag(Ji ), where for each i in {1, . . . , p}, the sub-matrix Ji is the i th real Jordan block.

If the matrix A is non-invertible, we can partition the state between modes associated with the zero eigenvalues,

and modes associated with the non-zero eigenvalues. That is, without loss of generality we consider that there

exists a an integer p0 such that Jp0+1, . . . , Jp are all the Jordan blocks associated with the zero eigenvalue. This

implies that there exists a positive integer k0 for which J k
i = 0 for all k ≥ k0 and i ∈ {p0 + 1, . . . , p}.

By applying a similarity transform to the system with M , we obtain the following state-space equation:

[
xa

t+1

xb
t+1

]
=
[

Aa 0

0 Ab

][
xa

t

xb
t

]
,

yt =
[

Ca Cb

][ xa
t

xb
t

]
,

where

[
xa

t

xb
t

]
= M−1xt , Aa = diag(Ji , i ∈ {1, . . . , p0}), Ab = diag(Ji , i ∈ {p0 + 1, . . . , p}), and

[
Ca Cb

]
= C M .

With this partition xa
t contains the modes associated with the non-zero eigenvalues, therefore the Aa matrix is

invertible. The state xb
t contains the modes associated with the zero eigenvalue, therefore Ab is nilpotent, i.e.

there exists a positive integer t0 such that At
b = 0 for t ≥ t0, and therefore it holds that xb

t = 0 for all t ≥ t0.

Since all the modes associated with the zero eigenvalues will converge to zero asymptotically we can derive the

following state-space equation:

xa
t+1 = Aa xa

t+1,

yt = Ca xa
t ,

for t ≥ t0. Therefore we can design a stable estimator for xt using Assumption A6 by only estimating the state

xa
t , from which the state xt can be obtained using the relation xt = M

[
xa

t

0

]
.
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C.2 Proofs

Before proceeding to the convergence results, the following result is required.

Lemma 20 (Lemma 1 of Battistelli and Chisci [2014]). Define ψ(Ω) := (AΩ−1 AT +Q
)−1

, with Q > 0. Then, if

A is invertible, for any positive definite matrices Ω̊ and Ω̆ there exist positive scalars β̊< 1 and β̆≤ 1 such that:

I) For any Ω� Ω̊� 0 we obtain ψ(Ω) � β̊A−T ΩA−1.

II) For any Ω̆�Ω> 0 we obtain ψ(Ω) � β̆A−T ΩA−1.

Proof of Lemma 20. Since Q > 0, there exists a positive constant γ̃> 0 such that

A−1Q A−T � γ̃Ω̊−1,

and therefore since Ω� Ω̊> 0 we obtain

A−1Q A−T � γ̊Ω−1,

and part I of the lemma follows with β̊ := 1
1+γ̊

.

For part II, we note that since Ω̆> 0, for each positive constant α> 0 there exists a positive constant γ̄(α) > 0

such that

A−1Q A−T � γ̄(α)
(
Ω̆+αIn

)−1 � γ̄(α) (Ω+αIn)−1 .

One can observe that γ̄(α) decreases with α. The conclusion follows by taking the limit

γ̆ := lim
α→0

γ̄(α),

and defining β̆ := 1
1+γ̆ .

Proof of Theorem 10. To prove boundedness of the covariance matrix we first note that, from (8.6), Pt �
(W + S)−1 for t ≥ 1. Applying part II of Lemma 20 with Ω̆ := W + S yields

P−1
t+1 � S + β̆A−T Ωt A−1. (C.1)

Therefore, applying recursively (C.1) yields, for t ≥ n,

P−1
t �

n−1∑
i=0

β̆
(

A−i
)T

S A−i := Ω̊> 0,

and, for t ≥ n, we obtain Pt � P̆ with P̊ := Ω̊−1.

For 1 ≤ t < n, if one considers that initially P0 > 0 then, from (8.6), one has that Pt > 0 within that interval and

since the set 1 ≤ t < n is finite, there exists a maximum max1≤t<n Pt and therefore the covariance Pt is bounded

from above for all time t .

Proof of Theorem 11. Noting that, for t ≥ n,

Ω̊ :=
n−1∑
i=0

β̆
(

A−i
)T

S A−i �Ωt � Ω̆ := W + S,
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from the covariance prediction equation (8.4) one can bound the disturbance vector εt := C T V vt+1 − Ω̄t wt as

‖εt ‖ ≤ ‖C T V ‖‖vt+1‖+‖Ω̄t ‖‖wt ‖
≤ ‖C T V ‖�

mεv + 1

σm
(

AT Ω̆−1 A +Q
)�nεw := εM .

We now define a candidate Lyapunov function as

Vt (et ) := eT
t Ωt et .

From Theorem 10 can conclude that Vt (·) is positive definite, and that, for t ≥ n, σm
(
Ω̊
)

x2 ≤ Vt (x) ≤σM
(
Ω̆
)

x2.

Now we prove the convergence to zero of the estimation error for the noiseless case, i.e. when wt = 0 and

vt = 0. We first note, from (8.4) that Pt � P̄t and from part I of Lemma 20 with Ω̊ :=∑n−1
i=0 β̆

(
A−i
)T

C T R−1C A−i ,

that P−1
t � β̊A−1P̄−1

t A−T . Then the Lyapunov function candidate has the following decrease property for the

noiseless case

Vt+1(et+1) = eT
t+1Ωt+1et+1 = ēT

t+1Ω̄t+1Pt+1Ω̄t+1ēt+1

≤ ēT
t+1Ω̄t+1ēt+1 = eT

t AT Ω̄t+1 Aet

≤ β̊eT
t Ωt et = β̊Vt (et ).

Therefore, for the noiseless case, the estimation error converges to zero.

In the noisy case, choosing a positive constant θ such that 0 < θ < 1 − β̊, from (8.11) we obtain

Vt+1(et+1) ≤ β̊Vt (et ) + 2eT
t AT Ω̄t+1Pt+1εt +εT

t Pt+1εt

≤ (β̊+θ)Vt (et ) + 2

(
‖et ‖ ‖A‖

σm(AT Ω̆−1 A +Q)σm(Ω̊)
εM − θ

2
σm(Ω̊)‖et ‖2

)
+ 1

σm(Ω̊)
ε2

M .

To guarantee that Vt (et ) decreases, one must first ensure that

θ

2
σm(Ω̊)‖et ‖2 ≥ ‖A‖

σm(AT Ω̆−1 A +Q)σm(Ω̊)
εM .

Therefore if et satisfies

‖et ‖ ≥ 2‖A‖
θσm(AT Ω̆−1 A +Q)σ2

m(Ω̊)
εM ,

we obtain

Vt+1(et+1) ≤
(
β̊+θ

)
Vt (et ) + 1

σm(Ω̊)
ε2

M .

In this case, we can guarantee that Vt+1(et+1) ≤ Vt (et ) when

(
β̊+θ

)
Vt (et ) + 1

σm(Ω̊)
ε2

M ≤ Vt (et ),

which is equivalent to, using the fact that Vt (et ) ≤σM
(
Ω̆
)‖et ‖2,

εM

σm
(
Ω̊
)√

1 − β̊−θ

≤ ‖et ‖.
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Therefore, if

ξ := 1

σm
(
Ω̊
)max

⎛
⎜⎝ 2‖A‖
θσm(AT Ω̆−1 A +Q)σm(Ω̊)

,
1√

1 − β̊−θ

⎞
⎟⎠εm ≤ ‖et ‖2,

we can guarantee that Vt (et ) decreases. Since Vt (et ) ≤ σM
(
Ω̆
)‖et ‖2, if σM

(
Ω̆
)
ξ2 ≤ Vt (et ) then ξ ≤ ‖et ‖ and

therefore Vt (et ) decreases according to

max
(
Vt+1(et+1) −σM

(
Ω̆
)
ξ2,0

)≤ (β̊+θ
)

max
(
Vt (et ) −σM

(
Ω̆
)
ξ2,0

)
,

hence

lim
t→∞max

(
Vt (et ) −σM

(
Ω̆
)
ξ2,0

)= 0,

and from the fact that σm
(
Ω̊
)‖et ‖2 ≤ Vt (et ) the theorem follows.

Proof of Theorem 12. After the agents communicate among themselves, we wish to compute x̃i
t , the BLU

estimate given the estimates of the neighbours, i.e. given x̄ j
t , j ∈ N i , where N i is the set of neighbours of i .

The estimate x̃i
t , can be computed as follows. Then, the estimate x̃i

t is the BLUE of xt such that ηi x̄t = 1i xt +εt

with εt ∼ N
(
0,ηi P̄tη

T
i

)
. Therefore from Lemma 3, if P̄ i i

t is full rank, we obtain

x̃i
t =
(
Ω̄i

t

)−1
1T

i

(
ηi P̄tη

T
i

)†
ηi x̄t ,

and x̃i
t has the following characteristics:

E
[

x̃i
t − xt

]
= 0,

E

[(
x̃i

t − xt

)(
x̃i

t − xt

)T ]=
(
Ω̃i

t

)−1
,

where Ω̃i
t := 1T

i

(
ηi P̄tη

T
i

)†
1i . We can also express x̃i

t as

x̃i
t =
(
Ω̄i

t

)−1
1T

i

(
ηi P̄tη

T
i

)† ∑
j∈N i

Γi j x̄ j
t .

After taking a measurement, one wishes to compute x̂i
t , the BLUE of xt given x̃i

t and yi
t . This can be obtained

directly as

x̂i
t =
(
Ωi

t

)−1
(
Ω̄i

t x̃i
t +
(
C i
)T (

Ri
)−1

yi
t

)
.

Finally, we do the prediction, i.e. we compute the estimate of xt+1 given x̂i
t , which is simply

x̄i
t+1 = Ax̂i

t .

We are still left to compute the next global covariance matrix P̄t+1. For this purpose we must analyze the error

dynamics, i.e. the dynamics of ē i
t := x̄i

t − xt . The dynamics of the estimate x̄i
t can be written as follows:

x̄i
t+1 = A

(
Ωi

t

)−1
( ∑

j∈N i

1T
i

(
ηi P̄tη

T
i

)†
Γi j x̄ j

t +
(
C i
)T (

Ri
)−1

yi
t

)
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= A
(
Ωi

t

)−1
( ∑

j∈N i

1T
i

(
ηi P̄tη

T
i

)†
Γi j x̄ j

t + Si xt

)
+ A

(
Ωi

t

)−1 (
C i
)T (

Ri
)−1

vi
t .

Given that Ω̄i
t =∑ j∈N i 1T

i

(
ηi P̄tη

T
i

)†
Γi j (from the fact that

∑
j∈N i Γi j = 1i ) the state dynamics can be expressed

as

xt+1 = Axt + wt = A
(
Ωi

t

)−1 (
Ω̄i

t xt + Si xt

)
+ wt

= A
(
Ωi

t

)−1
( ∑

j∈N i

1T
i

(
ηi P̄tη

T
i

)†
Γi j xt + Si xt

)
+ wt .

The error dynamics can then be written according to

ei
t+1 = A

(
Ωi

t

)−1
( ∑

j∈N i

1T
i

(
ηi P̄tη

T
i

)†
Γi j e j

t

)
+ A

(
Ωi
)−1 (

C i
)T (

Ri
)−1

vi
t − wt . (C.2)

Defining vt = col(vi
t ) yields

et+1 = Tt et + K vt + 1N ⊗ In wt .

with K := diag
(

A
(
Ωi

t

)−1 (
C i
)T (

Ri
)−1
)
. Finally, we can compute the update law for P̄t , (8.16).

Lemma 21 (Lemma 2 of Battistelli and Chisci [2014]). Given an integer N ≥ 2, N positive definite matrices

M1, . . . , MN , and N vectors v1, . . . , vN , the following inequality holds

(
N∑

i=1
Mi vi

)T ( N∑
i=1

Mi

)−1 ( N∑
i=1

Mi vi

)
≤

N∑
i=1

vT
i Mi vi . (C.3)

Proof of Theorem 13. Defining the matrix

φ
i j
t :=πi j AP i

t Ω̄
j
t ,

we obtain, from the distributed consensus-based Kalman filter equations (8.19)-(8.22) the following error

dynamics

ē i
t+1 = ∑

j∈N

φ
i j
t ē j

t + AP i
t

(
C i
)T

V i vi
t + wt .

We now consider the noiseless case where vi
t = 0, i ∈ N , and wt = 0, and define the matrix Π := [πi , j

]
i , j∈N . It

follows from the properties of Π that we can find a vector p := col(pi ) such that pT Π= pT . Then, the Lyapunov

function used to prove convergence is the following:

Vt (ēt ) = ∑
i∈N

pi
(
ē i

t

)
Ω̄i

t ē i
t . (C.4)

From Lemma 20 and boundedness of information matrix (Lemma 1 of Battistelli et al. [2015]) it follows that

(
ē i

t+1

)T
Ω̄i

t+1ē i
t+1 =

( ∑
j∈N

φ
i j
t ē j

t

)T

Ω̄i
t+1

∑
j∈N

φ
i j
t ē j

t

≤ β̊

( ∑
j∈N

πi j Ω̄
j
t ē j

t

)T

P i
t

∑
j∈N

πi j Ω̄
j
t |t−1ē j

t
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≤ β̊
∑

j∈N

πi j
(
ē j

t

)T
Ω̄

j
t ē j

t .

We can now establish the decreasing property of the Lyapunov function as follows:

Vt+1(ēt+1) = ∑
i∈N

pi
(
ē i

t+1

)
Ω̄i

t+1ē i
t+1

≤ β̊
∑

i , j∈N

piπ
i j
L

(
ē j

t

)T
Ω̄

j
t ē j

t

= β̊
∑

i , j∈N

pi
(
ē i

t

)T
Ω̄i

t ē i
t = β̊Vt (ēt ),

thus proving that for the noiseless case the estimation errors converge to zero. Since we assume additive bounded

noise and the dynamics are linear, ultimate boundedness of the estimation error follows.

Proof of Theorem 14. Before proceeding with the proof, we define qt := col
(
qi

t

)
, ei

t ,0 := zi
t ,0 − xt , et ,0 :=

col
(
ei

t ,0

)
, and the local and global noise contributions to the error dynamics ωi

t := wt − Li vi
t , ωt := col

(
ωi

t

)
.

Combining the fact that the consensus algorithm preserves averages, i.e. that 1
N

∑
j∈N z j

t ,l = 1
N

∑
j∈N z j

t ,l+1,

and the error dynamics (8.25), we obtain the following result which describes the dynamics of the estimation

errors et+1,0 and the dynamics of the average of the estimation errors before consensus eavg
t . Let the distributed

Luenberger observer algorithm be adopted with l f ≥ 1; then, the estimation errors obey the recursion

et+1,0 = col
(

A − Li C i
)

eavg
t ,0 + diag

(
A − Li C i

)
qt +ωt , (C.5)

and

eavg
t+1 = (A − LC )eavg

t + 1

N
1T ⊗ In

(
ωt + diag

(
A − Li C i

)
qt

)
. (C.6)

We consider now the noiseless case where ωt = 0 for all t ≥ 0 and derive results on the norms of et ,0 and eavg
t by

taking the norms of both sides of equations (C.5) and (C.6), respectively. From Theorem 7 we obtain

‖qt ‖IN ⊗P1 ≤σ
l f

2 ‖et ,0‖IN ⊗P1 .

Therefore, we can bound
∥∥eavg

t+1

∥∥
P1

and ‖et+1,0‖IN ⊗P by taking the norm of (12.18) and (12.17), as follows:

∥∥eavg
t+1

∥∥
P1

≤ ‖A − LC‖P1

∥∥eavg
t

∥∥
P1

+ max

(∥∥∥A − Li C i
∥∥∥

P1

)
σ

l f

2

1�
N

‖et ,0‖IN ⊗P1 , (C.7)

‖et+1,0‖IN ⊗P1 ≤ max
(∥∥∥A − Li C i

∥∥∥
P

)�
N
∥∥eavg

t

∥∥
P1

+ max

(∥∥∥A − Li C i
∥∥∥

P1

)
σ

l f

2 ‖et ,0‖IN ⊗P1 .

We need an upper bound of ‖et+1,0‖IN ⊗P1 which is equal to the upper bound of ‖eavg
t+1‖P times a constant, we

upper bound ‖et+1,0‖IN ⊗P1 as follows:

‖et+1,0‖IN ⊗P1

≤
�

N max

(
1,

∥∥A − Li C i
∥∥

P1

‖A − LC‖P1

)(
‖A − LC‖P1

∥∥eavg
t

∥∥
P1

+ max

(∥∥∥A − Li C i
∥∥∥

P1

)
σ

l f

2

1�
N

‖et ,0‖IN ⊗P1

)
. (C.8)

It is given by assumption that for t ≤ p ≤ 0 we are under the conditions of Lemma 14, then equations (12.19) and

(12.21) hold. Note that since we initialized the algorithm with zi
0,0 = z j

0,0 for any i , j ∈ N , we obtain e0,0 = 1eavg
0 ,

and therefore ‖e0,0‖IN ⊗P1 = �
N
∥∥eavg

0

∥∥
P1

≤ �
N max

(
1,

‖A−Li C i ‖P1
‖A−LC‖P1

)∥∥eavg
0

∥∥
IN ⊗P1

. Applying equations (C.7) and
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(C.8) at p = 1 we obtain

∥∥eavg
1

∥∥
P1

≤ ‖A − LC‖P1

∥∥eavg
0

∥∥
IN ⊗P1

+ max

(∥∥∥A − Li C i
∥∥∥

P1

)
σ

l f

2

1�
N

‖e0,0‖IN ⊗P1 ≤ β̄‖e0,0‖IN ⊗P1 ,

‖e1,0‖IN ⊗P1 ≤
�

N max

(
1,

∥∥A − Li C i
∥∥

P1

‖A − LC‖P1

)
β̄
∥∥eavg

0

∥∥
P1

,

where β̄ is defined as

β̄ := ‖A − LC‖P1 +σ
l f

2 max

(∥∥∥A − Li C i
∥∥∥

P1

)
max

(
1,

∥∥A − Li C i
∥∥

P1

‖A − LC‖P1

)
,

and is strictly positive and smaller than 1 by assumption. At p = 2 we obtain

∥∥eavg
2

∥∥
P1

= β̄2
∥∥eavg

0

∥∥
P1

‖e2,0‖IN ⊗P1 ≤
�

N max

(
1,

∥∥A − Li C i
∥∥

P1

‖A − LC‖P1

)
β̄2
∥∥eavg

0

∥∥
P1

.

Repeating this step p times yields∥∥∥eavg
p+1,0

∥∥∥
IN ⊗P1

≤ β̄p+1‖e0,0‖IN ⊗P1 .

Similarly to the previous point, applying equations (C.7) and (C.8) recursively, and following the same steps we

have for ‖ep,0‖ and for any p such that t + 1 ≥ p ≥ 0.

‖ep+1,0‖IN ⊗P1 ≤
�

N max

(
1,

∥∥A − Li C i
∥∥

P1

‖A − LC‖P1

)
β̄p+1

∥∥eavg
0

∥∥
P1

.

We have thus proved that in the noiseless case the estimation errors converge to zero. Since we assume additive

bounded noise and the dynamics are linear, ultimate boundedness of the estimation error follows.
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D Appendices of Chapter 10

D.1 Proofs

Proof of Lemma 5. The proof exploits the use of the Lyapunov function V = 1
2 ‖ηe‖2 = 1

2

(‖e −δ‖2 + cωω2
)
.

From (10.19) and (10.20) we have, when ˙̃vr is defined,

ω̇= γ̈− v̇r − ˙̃vr = −kωω+ 1

cω
(e −δ)T RT ∂pd

∂γ
, (D.1)

and since ω is continuous and −kωω+ 1
cω

(e −δ)T RT ∂pd

∂γ
is also continuous we have that ω̇ is continuous and

(D.1) holds at all times.

From (10.18) and (10.21) we have

ė = −S(r )(e −δ) − Kk (e −δ) − RT ∂pd

∂γ
ω−

[
0

δr̃

]
+
[

ũ

vw + ṽc

]
.

Noting that xT S(r )x = 0, ∀x ∈R2, computing the time derivative of V yields

V̇ = (e −δ)T

(
−Kk (e −δ) −

[
0

δr̃

]
+
[

ũ

vw + ṽc

])
− kωcωω

2

= −(e −δ)T Kk (e −δ) − cωkωω
2 + (e −δ)T

(
−
[

0

δr̃

]
+
[

ũ

vw + ṽc

])
.

Defining Ke := diag{kx ,ky ,kω} we obtain the following result

V̇ ≤ −ηT
e Keηe +∥∥ηe

∥∥(√ε2
ũ + (εv +εvc

)2 +δεr̃

+
√(

βũ
(‖x0

i l ‖, t
))2 + (βv

(‖x0
i l ‖, t

))2 +δβr̃ (‖x0
i l ‖, t

)+βvc
(‖x0

vc
‖, t
))

. (D.2)

The rest of the proof involves dominating all positive terms of (D.2) by −ηT
e Keηe ≤ −min(kx ,ky ,kω)‖ηe‖2. To

do this, notice from (D.2) that
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V̇ ≤ −(1 −θ)min(kx ,ky ,kω)‖ηe‖2 +∥∥ηe
∥∥(√ε2

ũ + (εv +εvc

)2 +δεr̃

+
√(

βũ
(‖x0

i l ‖, t
))2 + (βv

(‖x0
i l ‖, t

))2 +δβr̃ (‖x0
i l ‖, t

)+βvc
(‖x0

vc
‖, t
)−θmin(kx ,ky ,kω)‖ηe‖

)
,

and therefore, defining

βi l (x, t ) :=
√(

βũ(x, t )
)2 + (βv (x, t )

)2 +δβr̃ (x, t )

θmin(kx ,ky ,kω)
,

βobs(x, t ) := βvc (x, t )

θmin(kx ,ky ,kω)
,

εe :=
√

ε2
ũ + (εv +εvc

)2 +δεr̃

θmin(kx ,ky ,kω)
,

where 0 < θ < 1 we have

V̇ ≤ −(1 −θ)min(kx ,ky ,kω)‖ηe‖2,∀‖ηe‖ ≥βi l
(‖x0

i l ‖, t
)+βobs

(‖x0
vc

‖, t
)+εe ,

from which (10.23) follows with βe (x, t ) := xe−(1−θ)min(kx ,ky ,kω)t , where βe
i l (x, t ) and βe

obs(x, t ) are defined

such that βe
i l (x,0) :=βi l (x,0), βe

obs(x,0) :=βobs(x,0) and, assuming without loss of generality that βi l (x, t ) and

βobs(x, t ) are differentiable in t (one can always upper bound a K L function by a differentiable K L function)

∂

∂t
βe

i l (x, t ) =
{ −(1 −θ)min(kx ,ky ,kω)βe

i l (x, t ) ifβe
i l (x, t ) >βi l (x, t )

max
(
−(1 −θ)min(kx ,ky ,kω)βe

i l (x, t ), ∂
∂t βi l (x, t )

)
ifβe

i l (x, t ) =βi l (x, t )
,

∂

∂t
βe

obs(x, t ) =
{ −(1 −θ)min(kx ,ky ,kω)βe

obs(x, t ) ifβe
obs(x, t ) >βobs(x, t )

max
(
−(1 −θ)min(kx ,ky ,kω)βe

obs(x, t ), ∂
∂t βobs(x, t )

)
ifβe

obs(x, t ) =βobs(x, t )
.

Proof of Lemma 6. Defining

γ̄ := 1

N
1T γ,

we can decompose γ as

γ= 1γ̄+ξ.

Using this fact and recalling that vr (γ) is assumed to be globally Lipschitz we can conclude that

ξT Γv̄r = ξT Γ
(
1vr (γ̄) − (1vr (γ̄) − v̄r )

)= ξT Γ
(
v̄r − 1vr (γ̄)

)≤ l‖ξ‖2.

We can now bound the time derivative of V with

V̇ ≤ −kξT Lξ+ l‖ξ‖2 +ξT Γω̄+ kξT Γγ̄≤ −kσ2‖ξ‖2 + l‖ξ‖2 +‖ξ‖‖ω̄‖+ kd∗‖ξ‖‖γ̃‖.

We can then conclude that V̇ < −(1 − θ) (kσ2 − l )‖ξ‖2 for ‖ξ‖ ≥ σ
ξ
ω(‖ω̄‖[0,t ]) +σ

ξ
γ̃

(‖γ̃‖[0,t ]), for 1 > θ > 0,

where σ
ξ
ω(s) := 1

(kσ2 − l )θ
s, σ

ξ
γ̃

(s) := kd∗

(kσ2 − l )θ
s. The conclusion of the lemma follows with βξ(x, t ) :=

xe−(1−θ)(kσ2−l )t .

Proof of Lemma 7. The proof is based on Lemmas 5 and 6 together with Theorem 16.

204



D.1. Proofs

Lemma 5 implies that Σ
p f
i , i ∈ N solve the path-following problem with σe

ṽr
(s) :=αs, for α> 0 with α arbitrarily

small. Lemma 6 states that Σcc
i , i ∈ N solve the coordination control problem. Since α can be arbitrarily small,

Theorem 16 implies that Σcl solves robustly the CPF problem.

From the proofs of Lemmas 5 and 6 one can also bound ‖ξ‖ as

‖ξ‖ ≤βξ (‖ξ(0)‖, t ) +β
ξ
eω

(
max
i∈N

‖ηei (0)‖, t

)
+β

ξ
i l

(
max
i∈N

‖x0
i li

‖, t

)
+β

ξ
obs

(
max
i∈N

‖x0
vci

‖, t

)

+σ
ξ
γ̃

(
max

i∈N , j∈N i
‖γ̃ j

i ‖[0,t ]

)
+εeξ,

with

β
ξ
eω(x, t ) :=

�
N /cω

θ (kσ2 − l )
xe−(1−θ)min(kx ,ky ,kω,kσ2−l),

εeξ :=
�

N /cω
θ (kσ2 − l )

εe ,

β
ξ
i l (x, t ) :=

�
N /cω

θ (kσ2 − l )
β̃i l (x, t ),

β
ξ
obs(x, t ) :=

�
N /cω

θ (kσ2 − l )
β̃obs(x, t ),

and with β̃i l (x, t ) and β̃obs(x, t ) defined such that β̃i l (x,0) :=βi l (x,0), β̃obs(x,0) :=βobs(x,0), and

∂

∂t
β̃i l (x, t ) =

{
−(1 −θ)min

(
kx ,ky ,kω, kσ2 − l

)
β̃i l (x, t ) if β̃i l (x, t ) >βi l (x, t )

0 otherwise
,

∂

∂t
β̃obs(x, t ) =

{
−(1 −θ)min

(
kx ,ky ,kω,kσ2 − l

)
β̃obs(x, t ) if β̃obs(x, t ) >βobs(x, t )

0 otherwise
.

Proof of Lemma 8. If
∥∥∥γ̃ j

i

((
t i j

k + 2τ̄
)+)∥∥∥< ε is satisfied, for any time t i j

k when the data messages sent from agent

i to j are received by j , defining tC T C

(
t i j

k

)
≤ t i j

k the time when the last data message was sent triggered by a

communication triggering condition (CTC) we have that
∥∥∥γ̃ j

i

(
tC T C

(
t i j

k

))∥∥∥= ε and t i j
k −tC T C

(
t i j

k

)
≤ 2(Nmax−1)τ̄.

From the definition of γ̃
j
i , the facts that γ̇i = vr

(
γi
)+ ṽri +ωi and ˙̂γ j

i = vr

(
γ̂

j
i

)
, when the derivative is defined,

we have for t ∈
[

tC T C

(
t i j

k

)
, t i j

k + 2τ̄
)

˙̃γ j
i = vr

(
γ̂

j
i

)
− vr

(
γi
)− ṽri −ωi ≤ l

∥∥∥γ̃ j
i

∥∥∥+ kd� max
o∈N ,p∈N o

∥∥∥γ̃o
p

∥∥∥+ k‖ξ‖+‖ωi ‖.

From the comparison lemma in Khalil [1996] (Lemma 3.4) we have for t ∈
[

tC T C

(
t i j

k

)
, t i j

k + 2τ̄
]
,
∥∥∥γ̃ j

i

∥∥∥< Γ(t )

where Γ :
[

tC T C

(
t i j

k

)
,∞
)

→ [ε,∞) is defined with Γ
(
tC T C

(
t i j

k

))
= ε and

Γ̇= lΓ+ kd� max
o∈N ,p∈N o

‖γ̃o
p‖+ k‖ξ‖[

tC T C

(
t i j

k

)
,t i j

k +2τ̄
]+‖ωi ‖[tC T C

(
t i j

k

)
,t i j

k +2τ̄
].

It follows that
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∥∥∥γ̃ j
i

(
t i j

k + 2τ̄
)∥∥∥≤ Γ

(
t i j

k + 2τ̄
)

= εe
l
(
t i j

k +2τ̄−tC T C

(
t i j

k

))
+ z
(
l , t i j

k + 2τ̄− tC T C

(
t i j

k

))
kd� max

o∈N ,p∈N o
‖γ̃o

p‖

+ z
(
l , t i j

k + 2τ̄− tC T C

(
t i j

k

))(
k‖ξ‖[

tC T C (t i j
k ),t i j

k +2τ̄
]+‖ωi ‖[tC T C (t i j

k ),t i j
k +2τ̄

])

≤ εe2l Nmaxτ̄ + z (l ,2Nmaxτ̄)kd� max
o∈N ,p∈N o

‖γ̃o
p‖

+ z (l ,2Nmaxτ̄)

(
k‖ξ‖[

t i j
k −2(Nmax−1)τ̄,t i j

k +2τ̄
]+‖ωi ‖[t i j

k −2(Nmax−1)τ̄,t i j
k +2τ̄

]) ,

where

z(l , t ) :=
{

el t −1
l , if l > 0

t , if l = 0
.

Therefore noting that maxi∈N , j∈N i ,t∈R+ ‖γ̃ j
i (t )‖ ≤ maxi∈N , j∈N i ,k∈N+ ‖γ̃ j

i (t i j
k + 2τ̄)‖, if Nmax and τ̄ are small

enough such that kd�z(l ,2Nmaxτ̄) ≤ 1, we have

max
i∈N , j∈N i ,t∈R+

‖γ̃ j
i (t )‖ ≤ εe2l Nmaxτ̄ + z(l ,2Nmaxτ̄)kd� max

i∈N , j∈N i ,t∈R+
‖γ̃ j

i (t )‖

+ z(l ,2Nmaxτ̄)

(
k‖ξ‖[t−2Nmaxτ̄,t ] + max

i∈N
‖ωi ‖[t−2Nmaxτ̄,t ]

)
.

Finally we have

max
i∈N , j∈N i ,t∈R+

‖γ̃ j
i (t )‖ ≤ ε

e2l Nmaxτ̄

1 − kd�z(l ,2Nmaxτ̄)

+ z(l ,2Nmaxτ̄)

1 − kd�z(l ,2Nmaxτ̄)

(
k‖ξ‖[t−2Nmaxτ̄,t ] + max

i∈N
‖ωi ‖[t−2Nmaxτ̄,t ]

)
,

and (10.29) holds with αε(x) := e2l x

1−kd�z(l ,2x) , αξ(x) := kz(l ,2x)
1−kd∗z(l ,2x) and αω(x) := z(l ,2x)

1−kd∗z(l ,2x) .

Proof of Lemma 9. We wish to determine the bound maxi∈N , j∈N i

∥∥∥γ̃ j
i (t )
∥∥∥≤ γ̆(t ) := α̃ξ(Nmaxτ̄)βξ(‖ξ(0)‖, t ) +

α̃ω(Nmaxτ̄)ω̆(t ) + α̃ε(Nmaxτ̄)ε, where

ω̆(t ) :=β
γ̃
eω

(
max
i∈N

∥∥ηei (0)
∥∥ , t

)
+β

γ̃

i l

(
max
i∈N

∥∥∥x0
i li

∥∥∥ , t

)
+β

γ̃

obs

(
max
i∈N

∥∥x0
vci

∥∥ , t

)
+εe .

We first note that, from Lemma 5 and the definitions of β̃i l and β̃obs in the proof of Lemma 7, defining

β̃(x, t ) := xe−(1−θ)min(kx ,ky ,kω,kσ2−l) ωi (t ) can be bounded as

max
i∈N

‖ωi (t )‖ ≤ ω̃(t ) := 1�
cω

(
β̃

(
max
i∈N

∥∥ηei (0)
∥∥ , t

)
+ β̃i l

(
max
i∈N

∥∥∥x0
i li

∥∥∥ , t

)
+ β̃obs

(
max
i∈N

∥∥x0
vci

∥∥ , t

)
+εe

)
.

Also, we note that, if the bound maxi∈N , j∈N i

∥∥∥γ̃ j
i (t )
∥∥∥ ≤ γ̆(t ) is defined for t ≤ t̄ ∈ R+, and ∂

∂t γ̆(t ) ≥ −(1 −
θ) (kσ2 − l ) γ̆(t ), since from the definitions of β̃, β̃i l and β̃obs , ∂

∂t ω̃(t ) ≥ −(1 −θ) (kσ2 − l )ω̃(t ), from the proof

of Lemma 6, we can bound ‖ξ(t )‖ by

‖ξ(t )‖ ≤βξ (‖ξ(0)‖, t ) +
�

N

θ(kσ2 − l )
ω̃(t ) + kd�

θ(kσ2 − l )
γ̆(t ). (D.3)

We first define γ̆(t ) in the interval t ∈ [0, 2Nmaxτ̄] such that it is guaranteed that maxi∈N , j∈N i

∥∥∥γ̃ j
i (t )
∥∥∥≤ γ̆(t ),
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∀t ∈ [0,2Nmaxτ̄]. From equations (10.29) and (D.3) one can observe that

max
i∈N , j∈N i

∥∥∥γ̃ j
i

∥∥∥
[0, 2Nmaxτ̄]

≤αε(Nmaxτ̄)ε+αξ(Nmaxτ̄)

(
βξ (‖ξ(0)‖,0) +

�
N

θ(kσ2 − l )
ω̃(0)

)

+αξ(Nmaxτ̄)
kd�

θ(kσ2 − l )
max

i∈N , j∈N i

∥∥∥γ̃ j
i

∥∥∥
[0, 2Nmaxτ̄]

+αω(Nmaxτ̄)ω̃(0),

We define γ̆(t ) to be constant on the period t ∈ [0,2Nmaxτ̄]. Therefore one has for t ∈ [0, 2Nmaxτ̄] that γ̆(t ) ≥
maxi∈N , j∈N i ‖γ̃ j

i (t )‖ if one defines γ̆(t ) in the period t ∈ [0, 2Nmaxτ̄] satisfying

γ̆(t ) =αε(Nmaxτ̄)ε+αξ(Nmaxτ̄)

(
βξ (‖ξ(0)‖,0) +

�
N

θ(kσ2 − l )
ω̃(0) + kd�

θ(kσ2 − l )
γ̆(t )

)
+αω(Nmaxτ̄)ω̃(0),

which is possible if τ̄ is sufficiently small such that αξ(Nmaxτ̄) kd�

θ(kσ2−l ) < 11. This is equivalent to

γ̆(t ) = 1

1 − kd�αξ(Nmaxτ̄)
θ(kσ2−l )

(
αε(Nmaxτ̄)ε+αξ(Nmaxτ̄)βξ (‖ξ(0)‖,0)

)

+ 1

1 − kd�αξ(Nmaxτ̄)
θ(kσ2−l )

(
αξ(Nmaxτ̄)

�
N

θ(kσ2 − l )
+αω(Nmaxτ̄)

)
ω̃(0),

which holds by defining

α̃ε(x) := 1

1 − kd�αξ(x)
θ(kσ2−l )

αε(x), α̃ξ(x) := 1

1 − kd�αξ(x)
θ(kσ2−l )

αξ(x),

α̃ω(x) := 1

1 − kd�αξ(x)
θ(kσ2−l )

(
αξ(x)

�
N

θ(kσ2 − l )
+αω(x)

)
,

and if ω̆(t ) = ω̃(0) for t < 2Nmaxτ̄, which is the case if, for t < 2Nmaxτ̄, β
γ̃
eω (x, t ) = 1�

cω
βe (x,0), βγ̃

i l (x, t ) =
1�
cω
β̃i l (x,0), and β

γ̃

obs (x, t ) = 1�
cω
β̃obs(x,0). One can also observe that γ̆(0) is an absolute upper bound on

maxi∈N , j∈N i ‖γ̃ j
i (t )‖ for t ∈R+.

If on the interval t ∈ [t̄ − 2k̄Nmaxτ̄, t̄
]

we have γ̆(t ) ≥ maxi∈N , j∈N i

∥∥∥γ̃ j
i (t )
∥∥∥ and ∂

∂t γ̆(t ) ≥ −(1 −θ) (kσ2 − l ) γ̆(t ),

and on the interval t ∈ [t̄ − 2k̄Nmaxτ̄, t̄ − 2k̄Nmaxτ̄+ τ̃
]

we have γ̆(t ) ≥ maxi∈N , j∈N i

∥∥∥γ̃ j
i

∥∥∥
[t , t+2Nmaxτ̄]

, from

equations (10.29) and (D.3) we obtain on the interval t ∈ [t̄ , t̄ + τ̃
]

max
i∈N , j∈N i

∥∥∥γ̃ j
i (t )
∥∥∥≤αε(Nmaxτ̄)ε+αω(Nmaxτ̄)ω̃(t − 2Nmaxτ̄) +αξ(Nmaxτ̄)

(
kd�

θ(kσ2 − l )
γ̆(t − 2Nmaxτ̄)

)

+αξ(Nmaxτ̄)

(
βξ (‖ξ(0)‖, t − 2Nmaxτ̄) +

�
N

θ(kσ2 − l )
ω̃(t − 2Nmaxτ̄)

)
,

and therefore we have that γ̆(t ) ≥ maxi∈N , j∈N i

∥∥∥γ̃ j
i (t )
∥∥∥, ∀t ∈ [2(k̄ + 1)Nmaxτ̄, 2(k̄ + 2)Nmaxτ̄

]
, if

γ̆(t ) ≥αε(Nmaxτ̄)ε+αω(Nmaxτ̄)ω̃(t − 2Nmaxτ̄) +αξ(Nmaxτ̄)

(
kd�

θ(kσ2 − l )
γ̆(t − 2Nmaxτ̄)

)

+αξ(Nmaxτ̄)

(
βξ (‖ξ(0)‖, t − 2Nmaxτ̄) +

�
N

θ(kσ2 − l )
ω̃(t − 2Nmaxτ̄)

)
,
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which holds if α̃ε, α̃ξ and α̃ω are defined as before, and β
γ̃
eω (x, t ), β

γ̃

i l (x, t ) and β
γ̃

obs (x, t ) are defined as

β
γ̃
eω (x, t ) :=

{ 1�
cω
βe (x,0), if t ≤ 2Nmaxτ̄

kd�αξ(x)
θ(kσ2−l ) β

γ̃
eω (x, t − 2Nmaxτ̄) +

(
1 − kd�αξ(x)

θ(kσ2−l )

)
1�
cω
βe (x, t − 2Nmaxτ̄), otherwise

,

β
γ̃

i l (x, t ) :=
{ 1�

cω
β̃i l (x,0), if t ≤ 2Nmaxτ̄

kd�αξ(x)
θ(kσ2−l ) β

γ̃

i l (x, t − 2Nmaxτ̄) +
(
1 − kd�αξ(x)

θ(kσ2−l )

)
1�
cω
β̃i l (x, t − 2Nmaxτ̄), otherwise

,

β
γ̃

obs (x, t ) :=
{ 1�

cω
β̃obs(x,0), if t ≤ 2Nmaxτ̄

kd�αξ(x)
θ(kσ2−l ) β

γ̃

obs (x, t − 2Nmaxτ̄) +
(
1 − kd�αξ(x)

θ(kσ2−l )

)
1�
cω
β̃obs(x, t − 2Nmaxτ̄), otherwise

.

With the above definitions one can observe that γ̆(t ) is continuous and ∂
∂t γ̆(t ) ≥ −(1 −θ) (kσ2 − l ) γ̆(t ) when the

derivative is defined.

Because we can establish that maxi∈N , j∈N i

∥∥∥γ̃ j
i (t )
∥∥∥

[0, t̄+τ̃]
≤ γ̆(0), from the proof of Lemma 8 one can observe

that, when ˙̃γ j
i (t ) is defined, maxi∈N , j∈N i

∥∥∥ ˙̃γ j
i (t ) j

i (t )
∥∥∥ ≤ v ˙̃γ, where v ˙̃γ depends on ‖ξ(0)‖, maxi∈N ‖ηei (0)‖,

maxi∈N ‖x0
i li

‖, maxi∈N ‖x0
vci

‖, εe and ε but not on time.

Since γ̆(t ) is decreasing we have that γ̆(t ) ≥ maxi∈N , j∈N i

∥∥∥γ̃ j
i (t )
∥∥∥

[t , t+2Nmaxτ̄]
is valid for t in the interval[

t̄ − 2k̄Nmaxτ̄+ τ̃, t̄ − 2k̄Nmaxτ̄+ τ̃+ min
(
Nmaxτ̄, γ̆(t̄−k̄Nmaxτ̄+τ̃)−γ̆(t̄+τ̃)

2v ˙̃γ

)]
.

Finally, by induction we verify that maxi∈N , j∈N i

∥∥∥γ̃ j
i (t )
∥∥∥≤ γ̆(t ) holds for t ∈R.

Proof of Lemma 10. The post reset estimation error can be expressed as

γ̃
j
i

((
t i

k + 2τ̄
)+)= γ̂

j
i

((
t i

k + 2τ̄
)+)−γi

(
t i

k + 2τ̄
)

= Γr

(
2τ̄− t i

k + Tr

(
γi

(
t i

k

)))
−γi

(
t i

k + 2τ̄
)

.

Defining, on the interval t ∈ [t i
k t i

k + 2τ̄
]

the function η(t ) := Γr
(
t − t i

k + Tr
(
γi
(
t i

k

)))−γi (t ) we have η
(
t i

k

)= 0

and η
(
t i

k + 2τ̄
)= γ̃

j
i

((
t i

k + 2τ̄
)+)

.

From the derivative of the inverse function we have

η̇= vr

(
Γr

(
t − t i

k + Tr

(
γi

(
t i

k

))))
− γ̇i = vr (γi +η) − vr (γi ) − ṽri −ωi ,

and taking the norm yields

‖η̇‖ ≤ l‖η‖+ kd�γ̆(0) + ω̃(0) + k

(
βξ (‖ξ(0)‖,0) +

�
N

θ(kσ2 − l )
ω̃(0) + kd�

θ(kσ2 − l )
γ̆(0)

)

≤ l‖η‖+ kβξ (‖ξ(0)‖,0) + kd�

(
1 + k

θ(kσ2 − l )

)
γ̆(0) +

(
1 + k

�
N

θ(kσ2 − l )

)
ω̃(0).

Following the derivations of Lemma 8 of this proof, it follows that
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∥∥∥γ̃ j
i

((
t i

k + 2τ̄
)+)∥∥∥=

∥∥∥η(t i
k + 2τ̄

)∥∥∥
≤ z(l ,2τ̄)

(
kβξ (‖ξ(0)‖,0) + kd�

(
1 + k

θ(kσ2 − l )

)
γ̆(0) +

(
1 + k

�
N

θ(kσ2 − l )

)
ω̃(0)

)

≤ z(l ,2τ̄)

(
kd�

(
1 + k

θ(kσ2 − l )

)
α̃ε(Nmaxτ̄)ε

+
(
k + kd�

(
1 + k

θ(kσ2 − l )

)
α̃ξ(Nmaxτ̄)

)
βξ (‖ξ(0)‖,0)

+
(

kd�

�
cω

(
1 + k

θ(kσ2 − l )

)
+
(

1 + k
�

N

θ(kσ2 − l )

))
ω̃(0)

)
.

Finally we have that ‖γ̃ j
i ((t i

k + 2τ̄)+)‖ < ε if the time delays τ̄ and maximum number of failed communications

Nmax are sufficiently small such that

kd�z(l ,2τ̄)α̃ε(Nmaxτ̄)

(
1 + k

θ(kσ2 − l )

)
< 1,

and for sufficiently small values of ‖ξ(0)‖, maxi∈N ‖ηei (0)‖, maxi∈N ‖x0
i li

‖, maxi∈N ‖x0
vci

‖ and εe such that

ε> z(l ,2τ̄)

1 − kd�z(l ,2τ̄)α̃ε(Nmaxτ̄)
(
1 + k

θ(kσ2−l )

) ((k + kd�

(
1 + k

θ(kσ2 − l )

)
α̃ξ(Nmaxτ̄)

)
βξ (‖ξ(0)‖,0)

+
(

kd�

�
cω

(
1 + k

θ(kσ2 − l )

)
+
(

1 + k
�

N

θ(kσ2 − l )

))
ω̃(0)

)
.

Proof of Lemma 11. The proof exploits the use of the Lyapunov function V = 1
2 ‖ηe‖2 = 1

2

(
‖e −δ‖2 + cωe2

γ̇

)
.

From (10.32) and (10.33) we have

ėγ̇ = γ̈− v̇r = −kωeγ̇ + kωṽr + 1

cω
(e −δ)T RT

d

∂pd

∂γ
. (D.4)

From (10.31) and (10.34) we have

ė = −S
(
ψ̇d
)

(e −δ) − Kk (e −δ) + R̃

[
ũ

vw + ṽc

]
− RT

d

∂pd

∂γ
(ṽr − eγ̇). (D.5)

Computing the time derivative of V yields

V̇ = (e −δ)T

(
−Kk (e −δ) + R̃

[
ũ

vw + ṽc

]
+ RT

d

∂pd

∂γ
ṽr

)
+ cωeγ̇

(−kω(eγ̇ − ṽr )
)

= (e −δ)T Kk (e −δ) − cωkωe2
γ̇ + cωkωeγ̇ṽr + (e −δ)T

(
RT

d

∂pd

∂γ
ṽr + R̃

[
ũ

vw + ṽc

])
.

Defining Ke := diag(kx ,ky ,kω) we have the following result

V̇ ≤ −ηT
e Keηe (D.6)

+∥∥ηe
∥∥(max

(
�

cωkω, sup
γ∈R

∥∥∥∥∂pd

∂γ

∥∥∥∥
)

‖ṽr ‖+
√

ε2
ũ + (εv +εvc

)2)
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+∥∥ηe
∥∥(√(βũ

(‖x0
i l ‖, t

))2 + (βv
(‖x0

i l ‖, t
))2 +βvc

(‖x0
vc

‖, t
))

. (D.7)

The rest of the proof amounts to dominating all positive terms of (D.6) by −ηT
e Keηe ≤ −min(kx ,ky ,kω)‖ηe‖2.

That is, we note that from (D.6) we have

V̇ ≤ −(1 −θe )min(kx ,ky ,kω)‖ηe‖2

+∥∥ηe
∥∥(max

(
�

cωkω, sup
γ∈R

∥∥∥∥∂pd

∂γ

∥∥∥∥
)

‖ṽr ‖+
√

ε2
ũ + (εv +εvc

)2)

+∥∥ηe
∥∥(√(βũ

(‖x0
i l ‖, t

))2 + (βv
(‖x0

i l ‖, t
))2 +βvc

(‖x0
vc

‖, t
)−θe min(kx ,ky ,kω)‖ηe‖

)
,

and therefore, defining βe
i l

(‖x0
i l ‖, t

)
:=

√(
βũ
(‖x0

i l ‖,t
))2+(βv

(‖x0
i l ‖,t

))2
θe min(kx ,ky ,kω) and βe

obs

(‖x0
vc

‖, t
)

:= βvc
(‖x0

vc ‖,t
)

θe min(kx ,ky ,kω) we have

V̇ ≤ −(1 −θe )min(kx ,ky ,kω)‖ηe‖2,∀‖ηe‖ ≥βe
i l

(‖x0
i l ‖, t

)+βe
obs

(‖x0
vc

‖, t
)+σe

ṽr

(‖ṽr ‖[0,t ]
)+εe ,

and therefore (10.35) follows with βe
(‖ηe (0)‖, t

)
:= ‖ηe (0)‖e−(1−θe )min(kx ,ky ,kω)t .

Proof of Lemma 12. Defining

γ̄ := 1

N
1T γ,

we can decompose γ as

γ= 1γ̄+ξ.

Using this fact and recalling that vr (γ) is assumed to be globally Lipschitz we can conclude that

ξT Γv̄r = ξT Γ
(
1vr (γ̄) − (1vr (γ̄) − v̄r )

)= ξT Γ(v̄r − 1vr (γ̄)) ≤ l‖ξ‖2.

We can now bound the time derivative of V with

V̇ ≤ −kξT Lξ+ l‖ξ‖2 +ξT Γω̄≤ −kσ2‖ξ‖2 + l‖ξ‖2 +‖ξ‖‖ω̄‖.

Then we can conclude that V̇ < 0 for ‖ξ‖ ≥ [(kσ2 − l )θξ
]−1 ‖ω̄‖, for 1 > θξ > 0.

Proof of Lemma 13. The proof is based on the Lyapunov function V = 1
2 ‖ηω‖2 = 1

2

(‖eδ‖2 + cω‖ω̄‖2
)
.

From (D.5) we have in vector form

ėδ = −diag
(
S
(
ψ̇di

))
eδ − Kk (e −δ) + col

([
ũi

vwi + ṽci

]
+ RT

di

∂pdi

∂γi

(
−ωi + k

∑
j∈N i

γ̃i
j

))
.

From (D.4)

ω̇i = ėγ̇i − ˙̃vrdi
= −kωωi + kωk

∑
j∈N i

γ̃i
j + 1

cω
(ei −δ)T RT

di

∂pdi

∂γi
+ k

∑
j∈N i

(
γ̇i − γ̇ j

)

= −kωωi + kωk
∑

j∈N i

γ̃i
j + 1

cω
(ei −δ)T RT

di

∂pdi

∂γi
+ k

∑
j∈N i

(
vri − vr j +ωi −ω j + k

∑
k∈N j

(
γi −γ j

))
.
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and in vector form we have

˙̄ω= −kωω̄+ kωγ̄+ kLv̄r + k2L2ξ+ kLω̄+ eT
δ col

(
RT

di

∂pdi

∂γi

)
.

Computing the time derivative of V yields

V̇ = eT
δ

(
−Kk eδ + col

(
R̃i

[
ũi

vwi + ṽci

]
+ RT

di

∂pdi

∂γi

∑
j∈N i

γ̃i
j

))

+ cωω̄
T (−kωω̄+ kωγ̄+ kL(v̄r + kL)ξ+ kLω̄

)
,

where Kk := diag(Kk , . . . ,Kk ). Noting the fact that ‖γ̄‖ ≤ d∗∥∥γ̃∥∥, where d∗ := maxi∈N ‖N i ‖, we have the

following result

V̇ ≤ −min(kx ,ky ,kω)‖ηω‖2 + max

(
�

cωkω, sup
γ∈R,i∈N

∥∥∥∥∂pdi (γ)

∂γ

∥∥∥∥
)

d∗∥∥ηω

∥∥∥∥γ̃∥∥
+

�
N

(√
ε2

ũ + (εv +εvc

)2 +
√(

βũ
(∥∥∥col

(
x0

i li

)∥∥∥ , t
))2 +

(
βv
(∥∥∥col

(
x0

i li

)∥∥∥ , t
))2)∥∥ηω

∥∥
+

�
Nβvc

(∥∥∥col
(

x0
vci

)∥∥∥ , t
)∥∥ηω

∥∥+�
cωkσN (l + kσN )‖ξ‖‖ηω‖+ kσN ‖ηω‖2. (D.8)

The rest of the proof involves dominating all positive terms of (D.8) by −min(kx ,ky ,kω)‖ηω‖2. That is, we note

that from (D.8) we have

V̇ ≤ −(1 −θω)(min(kx ,ky ,kω) − kσN )‖ηω‖2

+∥∥ηω

∥∥(max

(
�

cωkω, sup
γ∈R

∥∥∥∥∂pd

∂γ

∥∥∥∥
)

d∗∥∥γ̃∥∥+�
cωkσN (l + kσN )‖ξ‖+

�
N
√

ε2
ũ + (εv +εvc

)2

+
�

N

√(
βũ
(∥∥∥col

(
x0

i li

)∥∥∥ , t
))2 +

(
βv
(∥∥∥col

(
x0

i li

)∥∥∥ , t
))2 +

�
Nβvc

(∥∥∥col
(

x0
vci

)∥∥∥ , t
)

−θω(min(kx ,ky ,kω) − kσN )‖ηω‖) ,

and therefore, defining

βe
i l (x, t ) :=

�
N
√

(βũ(x, t ))2 + (βv (x, t ))2

θω(min(kx ,ky ,kω) − kσN )
,

βe
obs(‖x‖, t ) :=

�
Nβvc (x, t )

θω(min(kx ,ky ,kω) − kσN )
,

σω
γ̃ (s) :=

max
(�

cωkω, supγ∈R
∥∥∥∂pd

∂γ

∥∥∥)d∗

θω(min(kx ,ky ,kω) − kσN )
s,

εω :=
�

N
√

ε2
ũ + (εv +εvc

)2
θω(min(kx ,ky ,kω) − kσN )

,

we obtain

V̇ ≤ −(1 −θω)(min(kx ,ky ,kω) − kσN )‖ηω‖2,

∀‖ηω‖ ≥βω
i l

(∥∥∥col
(

x0
i li

)∥∥∥ , t
)
+βω

obs

(∥∥∥col
(

x0
vci

)∥∥∥ , t
)
+σω

ξ

(‖ξ‖[0,t ]
)+σω

γ̃

(∥∥γ̃∥∥[0,t ]

)
+εω,

from which (10.41) follows with βω(x, t ) := xe−(1−θω)(min(kx ,ky ,kω)−kσN )t .
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E Appendices of Chapter 11

E.1 Proof of Theorem 20

Proof. First, we introduce the Lyapunov function V (z) = 1
2 z ′z = 1

2 ‖z‖2. We can bound the derivative of the

Lyapunov function as

V̇ (z) = −kξξ
′ξ− kηη

2 +ω′ξ

= −(1 −θ)(kξξ
′ξ+ kηη

2)

+ (ω′ξ−θkξξ
′ξ−θkηη

2)

≤ −(1 −θ)km‖z‖2 + (‖ω‖‖z‖−θkm‖z‖2)

= −(1 −θ)km2V (z) + (‖ω‖
√

2V (z) −θkm2V (z)).

Noting that ‖ω‖�
2V (z) −θkm2V (z) is always negative for V (z) ≥ 1

2

(
εω
θkm

)2
we have that

V̇ (z) ≤ −(1 −θ)km2V (z) ∀z : V (z) ≥ 1

2

(
εω

θkm

)2

.

Applying the comparison lemma (see e.g. Khalil [1996]) we have

V (z) ≤ max

(
V (z(0))e−(1−θ)km 2t ,

1

2

(
εω

θkm

)2)
.

And finally we can bound ‖z(t )‖ as

‖z(t )‖ ≤ ‖z(0)‖e−(1−θ)km t + εω

θkm
. (E.1)
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F Appendices of Chapter 12

F.1 Glossary of Formulas

c1 :=
α+1
α max

(
1, Φ̄

β̃

)
+ 1

βc5

m(P1)
‖e0‖IN ⊗P1 , (F.1a)

c2 := c4 + k5, (F.1b)

c4 := 2

m(P1)

(
α+ 1

α
max

(
1,

Φ̄

β̃

)
c8 + c6

β

)
, (F.1c)

c5 :=
(
‖A + BK ‖P1α

l f −1 + Φ̂αl f +‖LC‖P1

)
max

(
1,

Φ̄

β̃

)
, (F.1d)

c6 := ‖A + BK ‖P1α
l f −1

[�
N M(P1)

2
+ c7

]
+ Φ̂αl f c7 +‖LC‖P1 max

(
1,

Φ̄

β̃

)
c8, (F.1e)

c7 := max

(
1,

Φ̄

β̃

)
c8 + k6, (F.1f)

c8 :=αl f k6
Φ̃

β− β̄
, (F.1g)

d1 := α+ 1

m(P1)α

max
(
1, Φ̄

β̃

)
ε

1 − β̄
+ d5

m(P1)
, (F.1h)

d2 := d4 + k5, (F.1i)

d4 := 2

m(P1)

(
α+ 1

α
max

(
1,

Φ̄

β̃

)
d8 + d6

)
, (F.1j)

d5 :=
(
‖A + BK ‖P1α

l f −1 + Φ̂αl f +‖LC‖P1

)max
(
1, Φ̄

β̃

)
ε

1 − β̄
+
∑

j∈N M(L j T P1L j )ε j
v�

N
, (F.1k)

d6 := ‖A + BK ‖P1α
l f −1

[�
N M(P1)

2
+ d7

]
+ Φ̂αl f d7 +‖LC‖P1 max

(
1,

Φ̄

β̃

)
d8, (F.1l)

d7 := max

(
1,

Φ̄

β̃

)
d8 + k6, (F.1m)

d8 :=αl f k6
Φ̃

1 − β̄
, (F.1n)
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k1 :=
(
1 +αl f max

(
1,

Φ̄

β̃

))
, (F.1o)

k2 :=
(
c8 +αl f c7

) a

2nb − 2
, (F.1p)

k3 :=
(
1 +αl f max

(
1,

Φ̄

β̃

))
1

1 − β̃
, (F.1q)

k4 :=
(
d8 +αl f d7

) b

2nb − 2
, (F.1r)

k5 := 2
�

N M(P1)(α+ 1) + m(P1)(α−σ2)

m(P1)α(α−σ2)
, (F.1s)

k6 :=
�

N M(P1)

α−σ2
. (F.1t)

F.2 Derivation of Φ̄, Φ̂, and the Upper Bound on Φ̃

To compute Φ̄, notice that

Φ̄ := ‖Φ‖IN ⊗P1 = 1

N
max

‖x‖IN ⊗P1 =1
‖col

(
Φi
)

1T ⊗ In x‖IN ⊗P1

= 1�
N

max
‖y‖P1 =1

‖col
(
Φi
)

y‖IN ⊗P1 = M(col
(
Φi
)T

IN ⊗ P1 col
(
Φi
)

,P1)�
N

,

where we used the transformation y := 1�
N

1T ⊗ In x and the fact that max‖x‖IN ⊗P1 =1 ‖1T ⊗ In x‖IN ⊗P1 = �
N with

x = 1 ⊗ In y and ‖y‖P1 = 1, which can be easily verified.

The parameter Φ̂ can be derived as follows:

Φ̂ :=
∥∥∥∥ 1

N
1 ⊗ In row

(
Φi + BK

)∥∥∥∥
IN ⊗P1

= 1

N
max

‖x‖IN ⊗P1 =1

∥∥∥1 ⊗ In row
(
Φi + BK

)
x
∥∥∥

IN ⊗P1

= 1

N
max

‖x‖IN ⊗P1 =1
‖x‖row(Φi +BK )T (1T 1)⊗P1 row(Φi +BK ) = max

‖x‖IN ⊗P1 =1
‖x‖row(Φi +BK )T P1 row(Φi +BK )

=
∥∥∥∥P

1
2

1 row
(
Φi + BK

)
IN ⊗ P

− 1
2

1

∥∥∥∥ .

To upper-bound Φ̃ we use the definition of Γ as follows:

Φ̃ := ‖Γ‖IN ⊗P1 = ‖diag
(
Φi + BK

)
+ 1 ⊗ row

(
B i K i

)
‖IN ⊗P1

≤ ‖diag
(
Φi + BK

)
‖IN ⊗P1 +‖1 ⊗ row

(
B i K i

)
‖IN ⊗P1

= max(‖Φi + BK ‖P1 ) + N

∥∥∥∥P
1
2

1 row
(
B i K i

)
IN ⊗ P

− 1
2

1

∥∥∥∥ .

F.3 Derivation of Upper Bounds on the Norms of ωt and ξt

If Assumption A16 holds, then, from property P3, we have

‖ωt ‖IN ⊗P1 =
√∑

i∈N

(‖ωi
t ‖P1

)2 =
√∑

i∈N

(‖wt − Li vi
t ‖P1

)2
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≤
√∑

i∈N

(‖wt ‖P1 +‖Li vi
t ‖P1

)2 ≤
√∑

i∈N

(
M(P1)‖wt ‖∞ + M(Li T P1Li )‖vi

t ‖∞
)2

≤
√∑

i∈N

(
M(Li T P1Li )εvi + M(P1)εw

)2 := ε.

To bound ‖ξt ‖IN ⊗P1 first note that, since zt ,0 = 1 ⊗ xt − et ,0 and
(
IN − 1

N 11T
)

1 = 0 one has

qt ,0 = −
(

IN − 1

N
11T

)
⊗ Inet ,0.

Since ‖IN − 1
N 11T ‖ = 1 we have

‖qt ,0‖IN ⊗P1 ≤ ‖et ,0‖IN ⊗P1 . (F.2)

Then, if at time t the conditions of Lemma 14 apply, it follows from inequality (F.2), the definitions of ξt and Φ̃

and the fact that ξt = Γqt ,l f , that

‖ξt ‖IN ⊗P1 ≤ Φ̃αl f

[
‖et ,0‖IN ⊗P1 + k6

aβp + b

2nb − 2

]
.

F.4 Proofs of Lemmas

Proof of Lemma 15. We first define qi
t ,l := zi

t ,l −∑ j∈N
1
N z j

t ,l , which is the component of qt ,l corresponding to

the node i . Then, we can express the state estimates zi
t ,l f

as the average of the state estimates plus an error qi
t ,l f

as

zi
t ,l f

= ∑
j∈N

1

N
z j

t ,l f
+ qi

t ,l f
.

Because the consensus algorithm preserves averages,
∑

j∈N
1
N z j

t ,l f
=∑ j∈N

1
N z j

t ,0, we obtain

zi
t ,l f

= ∑
j∈N

1

N
z j

t ,0 + qi
t ,l f

.

Then, from the state dynamics and filter update equations (12.1) and (12.4), the definitions of Φi in section

12.5.1, and ωi
t and ξi

t in Section 12.6, we obtain equation (12.15) as follows:

ei
t+1,0 = A(xt − zi

t ,l f
) − Li (C i xt + vi

t −C i zi
t ,l f

) + ∑
j∈N

B j K j (z j
t ,l f

− zi
t ,l f

) + wt

= A

(
xt − ∑

j∈N

1

N
z j

t ,0 − qi
t ,l f

)
− Li

(
C i xt + vi

t −C i
∑

j∈N

1

N
z j

t ,0 −C i qi
t ,l f

)
+ ∑

j∈N

B j K j (q j
t ,l f

− qi
t ,l f

) + wt

=Φi

(
xt − ∑

j∈N

1

N
z j

t ,0

)
−ξi

t +ωi
t = ∑

j∈N

1

N
Φi e j

t ,0 −ξi
t +ωi

t .

From the definitions of Φ, ξt and ωt we obtain directly equation (12.16), given by

et+1,0 =Φet ,0 −ξt +ωt = 1

N
col
(
Φi
)

1T ⊗ Inet ,0 −ξt +ωt .
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Because col
(
Φi
)

is equal to diag
(
Φi
)

1 ⊗ In , the previous equation is equivalent to

et+1,0 = 1

N
diag

(
Φi
)

1 ⊗ In1T ⊗ Inet ,0 −ξt +ωt .

Using this equation, the mixed-product property of the Kronecker product, and the definition of eavg
t ,0 , we obtain

equation (12.17) as:

et+1,0 = diag
(
Φi
) 1

N

(
11T )⊗ Inet ,0 −ξt +ωt = diag

(
Φi
)

eavg
t ,0 −ξt +ωt .

Finally, from the definition of eavg
t+1,0 and equation (12.17) we obtain

eavg
t+1,0 = 1

N

(
11T )⊗ Inet+1,0 = 1

N

(
11T )⊗ In

(
diag

(
Φi
)

eavg
t ,0 −ξt +ωt

)
.

Since 1T ⊗ In diag
(
Φi
)

is equal to row
(
Φi
)
, using the mixed-product property of the Kronecker product yields

eavg
t+1,0 = 1

N
1 ⊗ In row

(
Φi
)

eavg
t ,0 + 1

N

(
11T )⊗ In (ωt −ξt ) .

Noting that 1
N

(
11T

)⊗ Ineavg
t ,0 is equal to eavg

t ,0 we have

eavg
t+1,0 = 1

N
1 ⊗ In row

(
Φi
) 1

N

(
11T )⊗ Ineavg

t ,0 + 1

N

(
11T )⊗ In (ωt −ξt ) .

Using the mixed-product property and the fact that row
(
Φi
) 1

N 1⊗In = 1
N

∑
j∈N Φ j = A−LC the previous equation

is equivalent to

eavg
t+1,0 = 1

N
1 ⊗ In (A − LC )1T ⊗ Ineavg

t ,0 + 1

N

(
11T )⊗ In (ωt −ξt ) .

Again, using the mixed-product property we have that

1 ⊗ In (A − LC ) = IN ⊗ (A − LC )1 ⊗ In ,

from which it follows that

eavg
t+1,0 = IN ⊗ (A − LC )

1

N
1 ⊗ In1T ⊗ Ineavg

t ,0 + 1

N

(
11T )⊗ In (ωt −ξt ) .

Finally, from the last equation, the definition of eavg
t ,0 , and the mixed-product property, we obtain equation

(12.18).

Proof of Lemma 16. The proof of each inequality is given in each of the following points.

1. The first inequality follows from the assumption that for t ≤ p ≤ 0 we are under the conditions of Lemma

14, thus equations (12.19) and (12.21) hold. Note that since we initialized the algorithm with zi
0,0 = z j

0,0

for any i , j ∈ N , we obtain eavg
0,0 = e0,0, and therefore ‖e0,0‖IN ⊗P1 ≤

∥∥∥eavg
0,0

∥∥∥
IN ⊗P1

≤ max
(
1, Φ̄

β̃

)∥∥∥eavg
0,0

∥∥∥
IN ⊗P1

.

Since Assumption A16 holds, applying equations (12.19) and (12.21) at p = 1 we obtain

∥∥∥eavg
1,0

∥∥∥
IN ⊗P1

≤ β̃
∥∥∥eavg

0,0

∥∥∥
IN ⊗P1

+ Φ̃αl f ‖e0,0‖IN ⊗P1 + Φ̃αl f k6
aβp + b

2nb − 2
+ε

≤ β̄‖e0,0‖IN ⊗P1 + Φ̃αl f k6
aβp + b

2nb − 2
+ε,
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‖e1,0‖IN ⊗P1 ≤ max

(
1,

Φ̄

β̃

)(
β̄‖e0,0‖IN ⊗P1 + Φ̃αl f k6

aβp + b

2nb − 2
+ε

)
,

where β̄ is defined in the statement of Theorem 21 as β̄ := β̃+αl f Φ̃max
(
1, Φ̄

β̃

)
and is strictly positive and

smaller than 1 by assumption. At p = 2 we obtain

∥∥∥eavg
2,0

∥∥∥
IN ⊗P1

≤ β̄

(
β̄‖e0,0‖IN ⊗P1 + Φ̃αl f k6

aβp−1 + b

2nb − 2
+ε

)
+ Φ̃αl f k6

aβp + b

2nb − 2
+ε

= β̄2‖e0,0‖IN ⊗P1 +
1∑

τ=0
β̄τ

(
Φ̃αl f k6

aβp−τ + b

2nb − 2
+ε

)
,

‖e2,0‖IN ⊗P1 ≤ max

(
1,

Φ̄

β̃

)(
β̄2‖e0,0‖IN ⊗P1 +

1∑
τ=0

β̄τ

(
Φ̃αl f k6

aβp−τ + b

2nb − 2
+ε

))
,

Repeating this step p times yields

∥∥∥eavg
p+1,0

∥∥∥
IN ⊗P1

≤ β̄p+1‖e0,0‖IN ⊗P1 +
p∑

τ=0
β̄τ

(
Φ̃αl f k6

aβp−τ + b

2nb − 2
+ε

)

≤ β̄p+1
[
‖e0,0‖IN ⊗P1 +αl f Φ̃k6

a

2nb − 2

p∑
τ=0

β̄τ−p−1βp−τ

]
+ε

p∑
τ=0

β̄τ + Φ̃αl f k6
b

2nb − 2

p∑
τ=0

β̄τ

≤βp+1
[
‖e0,0‖IN ⊗P1 +αl f Φ̃k6

a

2nb − 2

p∑
τ=0

β̄τ

βτ+1

]
+ε

p∑
τ=0

β̄τ + Φ̃αl f k6
b

2nb − 2

p∑
τ=0

β̄τ.

Since 0 < β < 1, using the property of the geometric series, we obtain that the expression above is

equivalent to

∥∥∥eavg
p+1,0

∥∥∥
IN ⊗P1

≤βp+1

⎡
⎢⎢⎣‖e0,0‖IN ⊗P1 +

Φ̃αl f k6

(
1 −
(
β̄
β

)p+1
)

β
(
1 − β̄

β

) a

2nb − 2

⎤
⎥⎥⎦+ ε

1 − β̄
+ Φ̃αl f k6

1 − β̄

b

2nb − 2

≤βp+1

[
‖e0,0‖IN ⊗P1 + Φ̃αl f k6

β− β̄

a

2nb − 2

]
+ ε

1 − β̄
+ Φ̃αl f k6

1 − β̄

b

2nb − 2
.

2. Similarly to the previous point, applying equations (12.19) and (12.21) recursively, and following the

same steps we have for ‖ep,0‖ and for any p such that t + 1 ≥ p ≥ 0.

‖ep,0‖IN ⊗P1 ≤ max

(
1,

Φ̄

β̃

)(
βp

[
‖e0,0‖IN ⊗P1 + Φ̃αl f k6

β− β̄

a

2nb − 2

]
+ ε

1 − β̄
+ Φ̃αl f k6

1 − β̄

b

2nb − 2

)
.

3. From (F.2),

‖qp,0‖IN ⊗P1 ≤ ‖et ,0‖IN ⊗P1

≤ max

(
1,

Φ̄

β̃

)(
βp
[
‖e0,0‖IN ⊗P1 + c8

a

2nb − 2

]
+ ε

1 − β̄
+ d8

b

2nb − 2

)
,∀ t + 1 ≥ p ≥ 0.

Moreover, from Lemma 14, we have

‖qp,l ‖IN ⊗P1 ≤αl
[
‖qp,0‖IN ⊗P1 + k6

aβp + b

2nb − 2

]

≤αl

⎡
⎢⎣βp

[
max

(
1,

Φ̄

β̃

)
‖e0,0‖IN ⊗P1 + c7

a

2nb − 2

]
+

max
(
1, Φ̄

β̃

)
ε

1 − β̃
+ d7

b

2nb − 2

⎤
⎥⎦ ,∀ t ≥ p ≥ 0, l f ≥ l ≥ 0.
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4. Noting that since zp,l f = qp,l f + zavg

p,l f
= qp,l f + zavg

p,0 , from the fact that the consensus algorithm preserves

averages, and xp = 1
N

∑
i∈N ei

p,0 + zi
p,0, from the definitions of ei

p,0 and zi
p,0, one obtains

zi
p+1,0 = (A + BK )zi

p,l f
+ Li

(
yi

p −C i zi
p,l f

)
= (Φi + BK )zi

p,l f
+ Li yi

p

= (Φi + BK )zi
p,l f

+ Li
(
C i xp + vi

p

)
= (Φi + BK )zi

p,l f
+ Li C i xp + Li vi

p

= (Φi + BK )

(
qi

p,l f
+ 1

N

∑
j∈N

z j
p,0

)
+ Li C i

(
1

N

∑
j∈N

e j
p,0 + z j

p,0

)
+ Li vi

p

= (Φi + BK )qi
p,l f

+ (A + BK )
1

N

∑
j∈N

z j
p,0 + Li C i 1

N

∑
j∈N

e j
p,0 + Li vi

p .

Therefore,

zp+1,0 = diag
(
Φi + BK

)
qp,l f + IN ⊗ Azavg

p,0 + diag
(
Li C i

) 1

N

(
11T )⊗ Inep,0 + col

(
Li vi

p

)
,

and, noting that
∑

i∈N

(
Li C i

)= N LC , we obtain

zavg
p+1,0 = 1

N

(
11T )⊗ In diag

(
Φi + BK

)
qp,l f + IN ⊗ (A + BK )zavg

p,0

+ IN ⊗ (LC )
1

N

(
11T )⊗ Inep,0 + 1

N

(
11T )⊗ In col

(
Li vi

p

)
.

For z̄p+1,0 we have

z̄p+1,0 = IN ⊗ (A + BK )Qp,l f −1

(
zp,l f −1

)
= IN ⊗ (A + BK )

[
Qp,l f −1

(
zp,l f −1

)
− zp,l f −1

]
+ IN ⊗ (A + BK )zp,l f −1

= IN ⊗ (A + BK )
[
Qp,l f −1

(
zp,l f −1

)
− zp,l f −1

]
+ IN ⊗ (A + BK )qp,l f −1 + IN ⊗ (A + BK )zavg

p,0 ,

and finally,

‖z̄p+1,0 − zavg
p+1,0‖IN ⊗P1 ≤

≤ ‖A + BK ‖P1

(
aβp + b

)
αl f −1

�
N M(P1)

2nb+1 − 4
+‖A + BK ‖P1‖qp,l f −1‖IN ⊗P1

+ Φ̂‖qp,l f ‖IN ⊗P1 +‖LC‖P1 ‖ep,0‖IN ⊗P1 +
∑

j∈N M(L j T P1L j )ε j
v�

N

≤ c5β
p‖e0,0‖IN ⊗P1 + c6β

t a

2nb − 2
+ d5 + d6

b

2nb − 2
.

5. Since zp,l f = qp,l f + zavg
p,0 we may subtract both sides by 1 ⊗ xp , yielding ep,l f = qp,l f + eavg

p,0 . Then we

obtain

‖ep,l f ‖IN ⊗P1 ≤ ‖qp,l f ‖IN ⊗P1 +‖eavg
p,0 ‖IN ⊗P1

≤βp
[(

1 +αl f max

(
1,

Φ̄

β̃

))
‖e0,0‖IN ⊗P1 +

(
c8 +αl f c7

) a

2nb − 2

]

+
(
1 +αl f max

(
1,

Φ̄

β̃

))
ε

1 − β̃
+
(
d8 +αl f d7

) b

2nb − 2
,∀t + 1 ≥ p ≥ 1,
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F.5 Proof of Theorem 22

Proof. Given the system dynamics (12.11) we can express xt+1 as

xt+1 = (A + BK )t+1 x0 +
t∑

j=0
(A + BK ) j

(
wt− j − B diag

(
K i
)

et− j ,l f

)
. (F.3)

From Theorem 21 and using Property P4 we have∥∥∥B diag
(
K i
)

et− j ,l f

∥∥∥
P2

≤ M∗‖et− j ,l f ‖IN ⊗P1 ≤ M∗
(
βt− j [k1‖e0,0‖IN ⊗P1 + k2

]+ k3ε+ k4

)
.

Taking the norm of (F.3) and using Property P3, together with the convergence properties of the geometric series,

yields

‖xt+1‖P2 ≤ γ̃t+1‖x0‖P2 +
t∑

j=0
γ̃ j
(
M(P2)εw + M∗

(
βt− j [k1‖e0,0‖IN ⊗P1 + k2

]+ k3ε+ k4

))

≤ γt

[
‖x0‖P2 +

t∑
j=0

(
γ̃

β

) j

M∗(k1‖e0,0‖IN ⊗P1 + k2)

]
+

t∑
j=0

γ̃ j M(P2)εw + M∗(k3ε+ k4)

≤ γt
[
‖x0‖P2 + M∗β

β− γ̃
(k1‖e0,0‖IN ⊗P1 + k2)

]
+ M(P2)εw + M∗(k3ε+ k4)

1 − γ̃
.
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R. Skjetne, T. I. Fossen, and P. V. Kokotović. Robust output maneuvering for a class of nonlinear systems.

Automatica, 40(3):373–383, 2004.

D. Smith and S. Singh. Approaches to multisensor data fusion in target tracking: A survey. IEEE transactions
on knowledge and data engineering, 18(12):1696–1710, 2006.

R. S. Smith and F. Y. Hadaegh. Distributed estimation, communication and control for deep space formations.

IET Control Theory & Applications, 1(2):445–451, 2007.

232



Bibliography

C. Soares, J. Xavier, and J. Gomes. Simple and fast convex relaxation method for cooperative localization in

sensor networks using range measurements. IEEE Transactions on Signal Processing, 63(17):4532–4543,

2015a.

J. M. Soares, A. P. Aguiar, A. M. Pascoal, and M. Gallieri. Triangular formation control using range mea-

surements: An application to marine robotic vehicles. In Proceedings of the IFAC Workshop on Navigation,
Guidance and Control of Underwater Vehicles, 2012.

J. M. Soares, A. P. Aguiar, A. M. Pascoal, and A. Martinoli. Joint ASV/AUV range-based formation control:

Theory and experimental results. In 2013 IEEE International Conference on Robotics and Automation (ICRA),
pages 5579–5585, 2013.

J. M. Soares, A. P. Aguiar, A. M. Pascoal, and A. Martinoli. A distributed formation-based odor source

localization algorithm-design, implementation, and wind tunnel evaluation. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), pages 1830–1836. IEEE, 2015b.

D. Soetanto, L. Lapierre, and A. M. Pascoal. Adaptive, non-singular path-following control of dynamic wheeled

robots. In Proceedings of the 42nd IEEE Conference on Decision and Control, volume 2, pages 1765–1770,

2003.

A. Speranzon, C. Fischione, K. Johansson, and A. Sangiovanni-Vincentelli. A distributed minimum variance

estimator for sensor networks. IEEE Journal on Selected Areas in Communications, 26(4):609–621, 2008.

D. J. Stilwell and B. E. Bishop. Platoons of underwater vehicles. Control Systems, IEEE, 20(6):45–52, 2000.

S. Sun, J. Lin, L. Xie, and W. Xiao. Quantized Kalman filtering. In IEEE 22nd International Symposium on
Intelligent Control. ISIC 2007., pages 7–12. IEEE, 2007.

P. Tabuada. Event-triggered real-time scheduling of stabilizing control tasks. IEEE Transactions on Automatic
Control, 52(9):1680–1685, 2007.

R. R. Tenney and Nils R. Sandell. Detection with distributed sensors. IEEE Transactions on Aerospace and
Electronic systems, (4):501–510, 1981.

D. Thanou, E. Kokiopoulou, and P. Frossard. Progressive quantization in distributed average consensus. In 2012
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2677–2680.

IEEE, 2012.

D. Thanou, E. Kokiopoulou, Y. Pu, and P. Frossard. Distributed average consensus with quantization refinement.

IEEE Transactions on Signal Processing, 61(1):194–205, 2013.

R. M. Tifenbach. On an SVD-based algorithm for identifying meta-stable states of Markov chains. Electronic
Transactions on Numerical Analysis, 38:17–33, 2011.

M. Todescato, A. Carron, R. Carli, and L. Schenato. Distributed localization from relative noisy measurements:

A robust gradient based approach. In 2015 European Control Conference (ECC), pages 1914–1919. IEEE,

2015.

J. N. Tsitsiklis. Decentralized detection. Advances in Statistical Signal Processing, 2(2):297–344, 1993.

V. Ugrinovskii. Distributed robust filtering with consensus of estimates. Automatica, 47(1):1–13, 2011.

V. Ugrinovskii. Conditions for detectability in distributed consensus-based observer networks. IEEE Transactions
on Automatic Control, 58(10):2659–2664, 2013.

233



Bibliography

J. K. Uhlmann. General data fusion for estimates with unknown cross covariances. In Aerospace/Defense
Sensing and Controls, pages 536–547. International Society for Optics and Photonics, 1996.

J. K. Uhlmann. Covariance consistency methods for fault-tolerant distributed data fusion. Information Fusion, 4

(3):201–215, 2003.

F. Vanni, A. P. Aguiar, and A. M. Pascoal. Cooperative path-following of underactuated autonomous marine

vehicles with logic-based communication. In Proceedings of NGCUV’08-IFAC Workshop on Navigation,
Guidance and Control of Underwater Vehicles, pages 1–6, 2008.

F. V. Vanni. Coordinated motion control of multiple autonomous underwater vehicles. Master’s thesis, Instituto

Superior Técnico, 2007.

M. Velasco, J. Fuertes, and P. Marti. The self triggered task model for real-time control systems. In Work-in-
Progress Session of the 24th IEEE Real-Time Systems Symposium (RTSS03), volume 384, 2003.

M. Verhaegen and V. Verdult. Filtering and system identification: A least squares approach. Cambridge

university press, 2007.

D. Viegas, P. Batista, P. Oliveira, and C. Silvestre. Decentralized observers for position and velocity estimation

in vehicle formations with fixed topologies. Systems & Control Letters, 61(3):443–453, 2012.

C. Viel, S. Bertrand, H. Piet-Lahanier, and M. Kieffer. New state estimator for decentralized event-triggered

consensus for multi-agent systems. IFAC-PapersOnLine, 49(5):365–370, 2016.

C. Viel, S. Bertrand, M. Kieffer, and H. Piet-Lahanier. Distributed event-triggered control for multi-agent

formation stabilization. In IFAC World Congress, 2017.

R. Viswanathan and P. K. Varshney. Distributed detection with multiple sensors Part I. Fundamentals. Proceedings
of the IEEE, 85(1):54–63, 1997.

N. G. Wah and Y. Rong. Comparison of decentralized tracking algorithms. In Proceedings of the International
Conference on Information Fusion, pages 107–113, 2003.

S. Wang and W. Ren. On the convergence conditions of distributed dynamic state estimation using sensor

networks: A unified framework. IEEE Transactions on Control Systems Technology, (99):1–17, 2017.

X. Wang and M. D. Lemmon. Self-triggered feedback control systems with finite-gain L2 stability. IEEE
Transactions on Automatic Control, 54(3):452–467, 2009.

X. Wang and M. D. Lemmon. Event-triggering in distributed networked control systems. IEEE Transactions on
Automatic Control, 56(3):586–601, 2011.

X. Wang, Y. Sun, and N. Hovakimyan. Asynchronous task execution in networked control systems using

decentralized event-triggering. Systems & Control Letters, 61(9):936–944, 2012.

P. Willett, P. F. Swaszek, and R. S. Blum. The good, bad and ugly: Distributed detection of a known signal in

dependent Gaussian noise. IEEE Transactions on Signal Processing, 48(12):3266–3279, 2000.

L. Xiao and S. Boyd. Fast linear iterations for distributed averaging. Systems & Control Letters, 53(1):65–78,

2004.

N. Xu. A survey of sensor network applications. IEEE Communications Magazine, 40(8):102–114, 2002.

Y. Xu and J. P. Hespanha. Communication logic design and analysis for networked control systems. In L. Menini,

L. Zaccarian, and C. T. Abdallah, editors, Current Trends in Nonlinear Systems and Control, Systems &

Control: Foundations & Applications, pages 495–514. Birkhäuser Boston, 2006.

234



Bibliography

M. E. Yildiz and A. Scaglione. Coding with side information for rate-constrained consensus. IEEE Transactions
on Signal Processing, 56(8):3753–3764, 2008.

J. K. Yook, D. M. Tilbury, and N. R. Soparkar. Trading computation for bandwidth: Reducing communication in

distributed control systems using state estimators. IEEE Transactions on Control Systems Technology, 10(4):

503–518, 2002.

M. M. Zavlanos. Distributed control of robotic networks. PhD thesis, University of Pennsylvania, 2008.

K. Zhang, X. R. Li, P. Zhang, and H. Li. Optimal linear estimation fusion - Part VI: Sensor data compression. In

Proceedings of the International Conference on Information Fusion, volume 23, page 221, 2003.

W. Zhang, Z. Wang, Y. Liu, D. Ding, and F. E. Alsaadi. Event-based state estimation for a class of complex

networks with time-varying delays: A comparison principle approach. Physics Letters A, 381(1):10–18, 2017.

F. Zhao, J. Shin, and J. Reich. Information-driven dynamic sensor collaboration. IEEE Signal processing
magazine, 19(2):61–72, 2002.

235


