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Abstract
With the exponential growth of robotics and the fast development of their advanced cognitive
and motor capabilities, one can start to envision humans and robots jointly working together
in unstructured environments. Yet, for that to be possible, robots need to be programmed for
such types of complex scenarios, which demands signi�cant domain knowledge in robotics
and control. One viable approach to enable robots to acquire skills in a more �exible and
ef�cient way is by giving them the capabilities of autonomously learn from human demon-
strations and expertise through interaction. Such framework helps to make the creation of
skills in robots more social and less demanding on programing and robotics expertise. Yet,
current imitation learning approaches suffer from signi�cant limitations, mainly about the
�exibility and ef�ciency for representing, learning and reasoning about motor tasks. This
thesis addresses this problem by exploring cost-function-based approaches to learning robot
motion control, perception and the interplay between them.

To begin with, the thesis proposes an ef�cient probabilistic algorithm to learn an impedance
controller to accommodate motion contacts. The learning algorithm is able to incorporate
important domain constraints, e.g., about force representation and decomposition, which are
nontrivial to handle by standard techniques. Compliant handwriting motions are developed
on an articulated robot arm and a multi-�ngered hand. This work provides a �exible approach
to learn robot motion conforming to both task and domain constraints.

Furthermore, the thesis also contributes with techniques to learn from and reason about
demonstrations with partial observability. The proposed approach combines inverse optimal
control and ensemble methods, yielding a tractable learning of cost functions with latent
variables. Two task priors are further incorporated. The �rst human kinematics prior results
in a model which synthesizes rich and believable dynamical handwriting. The latter prior
enforces dynamics on the latent variable and facilitates a real-time human intention cognition
and an on-line motion adaptation in collaborative robot tasks.

Finally, the thesis establishes a link between control and perception modalities. This work
offers an analysis that bridges inverse optimal control and deep generative model, as well as
a novel algorithm that learns cost features and embeds the modal coupling prior. This work
contributes an end-to-end system for synthesizing arm joint motion from letter image pixels.
The results highlight its robustness against noisy and out-of-sample sensory inputs. Overall,
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the proposed approach endows robots the potential to reason about diverse unstructured
data, which is nowadays pervasive but hard to process for current imitation learning.

Key words: learning from demonstrations; inverse optimal control; robot motion synthesis
and control; deep generative model.
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RØsumØ
Face à l’avancØe exponentielle de la robotique et au dØveloppement rapide de leur capacitØs
cognitives et moteurs, nous pouvons dors-et-dØjà envisager les robots et les hommes tra-
vaillant ensemble sur une tâche partagØe, dans le chaos d’ environements non structurØs.
Pour l’instant, a�n de rendre cela possible, les robot doivent Œtre programmØs pour de tels
types de sØnarios complexes, ce qui demande chez l’utilisateur des competances avancØes
en robotique et contrôle. Une approche viable pour apporter aux robots la facultØ d’aquØrir
des capacitØs d’une maniŁre à la fois �exible et ef�cace consiste à leur donner la possibilitØ
d’apprendre de façon autonome à partir de dØmonstrations faites par l’homme et à force
d’experimenter les interactions. Un tel cadre favoriserait la crØation de nouvelles capacites
chez des robot plus sociaux et rØduirait le besoin d’expertise en programmation et robotique
chez l’homme. Jusqu’ici, cette approche d’apprentissage par imitation souffre de limitations
signi�catives, principalement en ce qui concerne la �exibilitØ et l’ef�cacitØ du robot à se reprØ-
senter, à apprendre et à raisonner sur sa tâche. Cette thŁse de doctorat contribue à rØsoudre
ce problŁme en proposant une approche basØe sur des fonctions de coßt pour l’apprentissage
de la gestuelle, pour la perception, et pour l’adaptation du geste à la perception.

Pour commencer, cette thŁse propose un algorithme probabiliste ef�cace pour l’apprentis-
sage d’un contrôle basØ sur un modŁle d’impØdance pour l’adaptation d’un mouvement à
des contacts physiques. L’algorithme d’apprentissage est cappable d’incorporer d’important
domaines de contraintes, e.g. la reprØsentation et la dØcomposition d’une force, ce qui n’est
pas trivial à prendre en compte avec les techniques habituelles. La gestuelle liØe à l’Øcriture
manuscrite conforme est implØmentØe pour un bras articulØ de robot et pour une main robo-
tique à plusieur doigts. Ce travail prØsente une approche �exible pour l’apprentissage moteur
des robots, qui s’adapte à la fois aux contraintes de la tâche et du domaine.

En outre, cette thŁse propose une approche pour apprendre et raisonner à partir de dØmons-
trations partiellement observØes. L’approche combine des methodes de contrôle inversØ avec
des mØthodes de modelisation par des ensembles de fonctions, optimisant des fonctions
de coßt au travers de variables latentes. Deux a-priori sur la tâche sont alors incorporØs. Le
premier est un a-priori sur la cinØmatique d’un mouvement humain, qui rØsulte d’un modŁle
synthØtisant une Øcriture manuscrite riche et convaincante. Le second a-priori impose la
dynamique du la variable latente et facilite la comprØhension de l’intention de l’homme et
l’adaptation à cette intention pour une tâche collaborative en temps rØel.
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Finalement, cette thŁse trace le lien entre le contrôle et la perception des modalitØs. Cette
partie prØsente d’une part une analyse qui relie le contrôle optimal inversØ et les modŁles
gØnØratifs profonds, et d’autre part un nouvel algorithme qui apprend des caractØristiques de
coßt en vue d’incorporer un a-priori sur le couplage liØ aux modalitØs. Elle propose en�n un
systŁme complet pour synthØtiser les mouvements des articulations d’un bras mØchanique à
partir d’images de lettres pixellisØes. Les resultats mettent en valeur sa robustesse, Ømergant
d’un percept pourtant chaotique et inintelligible. Globalement, l’approche proposØe dotte les
robots d’une capacitØ à raisonner sur des donnØes diverses et non-structurØes, aujourd’hui
omniprØsentes mais encore bien dif�ciles à traiter dans le cadre actuel de l’apprentissage par
imitation.

Mots clefs : apprentissage par imitation, contrôle optimal inversØ, synthŁse et contrôle de
mouvement robotiques, modŁles gØnØratifs profonds.
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Resumo
O crescimento exponencial da robótica associado ao rÆpido desenvolvimento das capacidades
cognitivas e motoras dos robôs, permite antever que humanos e robôs venham a conseguir
executar trabalho conjunto em ambientes nªo estruturados. No entanto, para tal ser possível,
os robôs necessitam de ser programados para funcionar nesses cenÆrios complexos, o que
requer conhecimentos profundos no domínio da robótica e do controlo. Uma alternativa
viÆvel Ø dotar os robôs de mecanismos de aprendizagem automÆtica que permitam, de uma
forma �exível e e�ciente, aprender a realizar novas tarefas com base em demonstraçıes feitas
durante a interaçªo com humanos. Tal abordagem permite tornar a criaçªo de competŒncias
nos robôs num processo mais social e, principalmente, menos dependente de programadores
especializados. Contudo, as abordagens atuais para aprendizagem por imitaçªo apresen-
tam ainda limitaçıes signi�cativas, principalmente no que diz respeito à �exibilidade e à
e�ciŒncia nos processos de representaçªo, aquisiçªo e raciocínio sobre tarefas motoras. Esta
tese aborda esse problema, explorando abordagens baseadas em funçıes de custo para a
aprendizagem quer do controlo de movimento, quer da percepçªo, quer da interaçªo entre as
duas componentes.

Numa primeira parte, a tese propıe um algoritmo probabilístico e�ciente para a aprendizagem
de um controlador de impedância de forma a acomodar contatos durante o movimento. O
algoritmo incorpora restriçıes essenciais, por exemplo no que diz respeito à representaçªo e
decomposiçªo de forças, restriçıes essas que nªo sªo triviais de incorporar utilizando tØcnicas
standard. O algoritmo proposto Ø exempli�cado num cenÆrio em que um manipulador dotado
de uma mªo robótica com dedos individuais aprende a escrever manualmente. O mØtodo
desenvolvido para aquisiçªo de movimento a partir de demonstraçıes permite lidar tanto
com restriçıes especí�cas da tarefa como do domínio.

De seguida, a dissertaçªo contribui novas tØcnicas de aprendizagem e raciocínio baseadas em
demonstraçıes com observabilidade parcial. A abordagem proposta combina controlo ótimo
inverso e mØtodos ensemble, permitido obter um processo de aprendizagem tratÆvel com base
em funçıes de custo com variÆveis latentes. Este mØtodo permite tambØm a incorporaçªo de
informaçªo prØvia sobre a tarefa, por exemplo, acomodando informaçªo sobre a cinemÆtica
humana, resultando num modelo que sintetiza escrita manual dinâmica, rica e credível. Este
mØtodo acomoda informaçªo prØvia sobre o comportamento dinâmico das variÆveis latentes,
o que facilita a inferŒncia em tempo real sobre a intençªo humana e permite uma adaptaçªo
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online do movimento do robô em tarefas colaborativas.

Finalmente, a tese estabelece uma ligaçªo entre as duas modalidades exploradas: controlo
motor e percepçªo. É oferecida uma anÆlise onde se estabelece a relaçªo entre controlo
ótimo inverso e um modelo de geraçªo profundo. A partir desta anÆlise, Ø proposto um
novo algoritmo que permite a aprendizagem de features da funçªo de custo incorporando
conhecimento prØvio sobre o acoplamento modal. Assim, a tese contribui com um sistema
completo, capaz de sintetizar o movimento das vÆrias juntas de um manipulador a partir de
imagens de letras. Os resultados obtidos realçam a robustez do sistema face a inputs sensoriais
com ruído e fora da amostra. No seu todo, a abordagem proposta dota robôs com o potencial
de raciocinar sobre dados nªo-estruturados de natureza diversa, frequentemente encontrados
em diversas Æreas e aplicaçıes mas que oferecem signi�cativa di�culdade de processamento
para os atuais algoritmos de aprendizagem por imitaçªo.

Palavras-chaves: Aprendizagem por demonstraçªo; controlo ótimo inverso; síntese e controlo
de movimento de robô; modelo de geraçªo com aprendizagem profunda.
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1 Introduction

1.1 Motivation

Embodied agents such as robots promise great economical and social bene�ts for the human-
ity. The uniqueness of robots lies in their capabilities of affecting the environment through
physical motion effects. In the last decades, the deployment of robotic systems, especially
industrial ones, has largely relived human labors from repetitive, tedious or hazard tasks. Re-
cently, as robots that work outside the factory cages, light-weight manipulators are emerging
thanks to the maturity of new actuation techniques (Pratt and Williamson, 1995; Albu-Schäffer
and Bicchi, 2016). This trend of soft robotics opens a possibility for robots to work with humans
in a close proximity, envisioning not only small-patch manufacturing but also human-centered
service and assistance. However, for these applications, the hardware itself is not the only
barrier. Unlike the cases in factories, the tasks and environments in human-centered ap-
plications are highly diverse and unstructured, soliciting substantially improved robot skill
repertoires and adaptability. Current solutions are inadequate here: most robots nowadays
are meticulously hand-programmed, which often requires extensive efforts and task domain
knowledge. It is thus necessary to investigate new strategies of synthesizing robot motion to
bridge this gap.

By contrast, humans exhibit remarkable mastery and versatility in terms of motor skills,
ranging from nimbly manipulating objects in hand to harmoniously twitching whole-body
muscles in sprint. While this superiority highlights the biomechanical properties of the human
body, established sensorimotor research has also attached great importance to the notation of
internal model (Wagner and Smith, 2008). An internal model encodes the prior knowledge
about motor commands and the motion result. The encoded knowledge is exploited in the
so-called active inference (Friston, 2012) for both perception (Körding and Wolpert, 2006) and
motion control (Todorov and Jordan, 2002). For instance, to swing a racket and hit a ball,
humans are instructed and practise to attain knowledge about the body and racket movement
under the motor command. Skillful motion is developed, enabling humans to adapt to rackets
of different weights and to hit the ball with the whole body balanced. Meanwhile, previewing
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the ball position helps humans to anticipate the hitting impulse, and as such, to timely
stiffen the arms for a strike with the expected angle and velocity. To this end, progressively
learning and re�ning an internal model is important in human skill acquisition. Studies in
sensorimotor learning identi�es two main ways of achieving this, including interacting with
the environment and observing others’ behaviors (Wolpert et al., 2011).

As the relevant counterpart in agents, Machine Learning (ML) techniques explore data-driven
approaches to reason about and work out perceptual and decision-making tasks. While ML
has achieved signi�cant successes in tasks like image classi�cation and game playing, the
application in robotics faces some unique challenges. To begin with, robotic tasks are exe-
cuted by an integrated system, which often involves multiple sensory and actuation modules.
Thus, the ML methods need to be tailored to deal with different types of data and subtasks.
Secondly, robot learning rarely has the access to a massive labeled dataset. Speci�cally, data
instances with informative labels, e.g., success in executing the task, are lacking. Gathering
successful instances by exploring in the physical world is expensive and even risky for robots.
Synthesizing data from simulators is relatively cheap but the accuracy of simulating certain
effects, e.g., physical contacts, is still unsatisfying. In that sense, human demonstrations are
worth to be exploited because they contain direct and dense information signaling how to
execute the task. Thirdly, robotics and human motion science possess much well-established
research. The design of ML methods can bene�t from merging these pieces of research. Also,
the incorporation of domain priors are useful for learning from small dataset. Last but not the
least, the computational cost of ML techniques is critical in many robotic applications. With
a rapid algorithm, it is potential for robots to adapt by incrementally learning new data. An
ef�cient inference is also entailed because of the request of reasoning about sensory data in
real-time.

This thesis is concerned with the research question:

how can a robot incorporate human expertise to facilitate its motion control,
perception and the interplay of the two.

The main contents and contributions of the thesis are placed in the domain of Learning from
Demonstrations (LfD). The LfD paradigm enables robotic agents to acquire desired behaviors
based on expert demonstrations. The human expertises include both task demonstrations
and domain priors. More speci�cally, the thesis focuses on (inverse) optimal control and
generative model, which respectively situate in robotics and ML. Both of techniques realize
LfD in a similar way. The general idea is to interpret data with scalar functions or statistical
moments, which, for example, make the demonstrations incur low function values or high
data likelihoods. Learning demonstrated behaviors boils down to estimating the function or
moments. The task synthesis can then be shaped to generate samples that are subject to the
same functions or moments, hence imitating or learning from the demonstrations.

Learning motion control from demonstrations needs to consider domain knowledge such as
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task-dependent constraints. For instance, controlling a reaching movement requires identify-
ing the reaching point and applying appropriate corrections around the point to accommodate
disturbances. When a trajectory is of interest, the robot needs to extract the motion reference
and decompose the control directions along the trajectory. These constraints are useful from
the robotics point of view. However, as identi�ed in Chapter 3, incorporating task-dependent
constraints sometimes makes the learning problem ill-posed to standard techniques. Thus it
is necessary to adopt new methods to address this challenge.

While a local trajectory control provides certain robustness to small disturbances, humans
demonstrate an adaptability beyond that. In fact, humans can exploit the redundancy of
performing the task, e.g., taking different paths to reach an object and grasp it, to adapt to
their preferences or contextual conditions, such as the existence of an obstacle. However,
the preferences or conditions might not be observable due to the limited robot perception
capability. In that sense, the robot needs to learn from incomplete demonstration data
and discern the contextual conditions in execution. Current techniques solve this through
expensive numerical optimizations without explicitly considering the unobservables. Ef�cient
learning and inference techniques are desired to reason about this type of demonstrations.

Finally, learning and linking robot perception and control often resorts to handcrafting data
features for each modules. Usually, this is tedious and not straightforward for sensory modali-
ties like images. Thus, it necessitates an approach to automate the feature engineering process,
as such boost the productivity and �exibility of the LfD approaches. Progresses have been
made in representation learning to enable agents to abstract important features that are rele-
vant to the task. Leveraging these progresses in the LfD framework can facilitate learning from
complex types of data and devising the control loop in an end-to-end manner.

1.2 Approaches

The main techniques explored in the thesis are optimal control (and its inverse problem) as
well as generative modeling. The following sections introduce basic principles, applications
and the speci�c variants that are employed in the thesis.

1.2.1 Optimal Control and the Inverse Form

Imagine you start stretching your arm from a certain posture to touch a spot on the table.
Such basic movement actually coordinates multiple joints and muscles of the human body,
implying a plethora of possible ways to execute this task. Yet, it has been demonstrated
that, though humans barely think over this movement before acting, their behavior patterns
are highly stereotyped. For instance, the motions are stereotyped in terms of consistent
features such as velocity pro�les. This seemingly contradicting fact implies regularities and
structures that drive us to take selective actions. Research has suggested that the possible
principle behind is optimality: we choose to adopt and control a motion trajectory that is
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optimal with respect to certain performance criteria. The identi�ed criterias include the
motor effort (Uno et al., 1989; Alexander, 1997; Kashima and Isurugi, 1998) and the motion
variation under sensorimotor noises (Harris and Wolpert, 1998; Todorov, 2004). Interestingly,
the applicability of optimality principle is beyond neurophysiology. Even before the success
of calculus of variations in solving the brachistochrone curve problem, the early optimal
control ideas helped in describing physics phenomenas such as light re�ection and refraction
(Sussmann and Willems, 1997), and eventually evolved to the Pontryakin maximum principle
and correlated to more general topics including Hamiltonian and quantum mechanics.

Optimization-based control has long been the workhorse method in robot planning and
control. After all, it is much more intuitive to design high-level task metrics than to explicitly
program commands for many robot degree-of-freedoms (DOFs). Modern solvers based on
direct optimization like Sequential-Quadratic-Programming (SQP) can generate an optimal
trajectory within a sub second or even millisecond interval. Thus, real-time model predictive
control is possible in sophisticated robot systems such as quadcopter (Geisert and Mansard,
2016; Andersson et al., 2017) and humanoid robots (Kudruss et al., 2015; Kuindersma et al.,
2015). Instead of such a direct approach, this thesis bases most of the control derivation on
an indirect approach. An indirect approach relies on the Hamilton-Jacobian-Bellman (HJB)
equation and can provide a regulator or a feedback control besides the optimal trajectory. The
downside is that it is often more expensive to apply indirect approaches to general problems,
unless the integral of system dynamics is simple and ef�cient. One seminal example about
this is the work from Kalman (Kalman E., 1960), who proposed an ef�cient algorithm to
obtain an optimal feedback controller for Linear Quadratic Regulator (LQR) systems. In order
to relax the constraints about the system form, differential dynamic programming (David,
1966; Theodorou et al., 2010a) and iterative LQR (Todorov and Li, 2005; van den Berg, 2016)
advocate to approximately solve the problem in a successive manner. The HJB equation in
these indirect approaches correlates to a natural probabilistic interpretation, which will be
exploited throughout the thesis. Meanwhile, the indirect approach is also fundamental to the
adopted cost/cost-to-go function structure in the inverse problem.

The inverse problem of optimal control is simply the opposite of searching the trajectories
that incur the minimum costs: with respect to which cost function are a set of trajectories
(locally) optimal. From a behavioral perspective, the goal is to infer the driving forces or the
motivations given the observation of the agent behavior, assuming the agent is following the
optimality principle. If the estimated cost function is accurate, another agent can simply
develop its own behavior guided by the same goal via a forward optimal control. To this end,
Inverse Optimal Control (IOC) allows to imitate or transfer task skills among agents, so it is of
interest to the central topic of the thesis. The early IOC work is again pioneered by Kalman,
who discussed an �inverse LQR�: under which LQ system a given linear feedback controller
is optimal (Kalman E., 1964). The progress about a more general formulation is, however,
much more recent. Relevant works include apprentice learning (Abbeel and Ng, 2004) and the
duality of nonlinear control-af�ne systems (Todorov, 2008; Kappen et al., 2012), opening much
research ranging from the probabilistic formulation of the inverse reinforcement learning
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to the recent efforts of interpreting the IOC problem as a generative adversarial network
(Finn et al., 2016a). This thesis is generally rooted in the probabilistic formulation of the
IOC problem. This formalization, speci�cally the linearly-solvable system and its variations
(Todorov, 2006; Dvijotham and Todorov, 2010), provides a general and sound foundation to
bridge the HJB-based control synthesis and the human prior embedding. Similar to (Finn
et al., 2016a), the thesis also takes an eye on the connections and impacts of representation
learning around IOC. However, the motivation is rooted in robotics and the connection is
established to a different deep generative model.

1.2.2 Generative Model Learning

In machine learning, a generative model observes presented samples, extracts hidden struc-
tures and synthesizes samples that are similar to the observed ones. Therefore, the inherent
problem of learning a generative model also concerns the notion of imitation. In most cases,
the purpose of having a generative model is to unconditionally create plausible samples. Thus
it differs from a discriminative model, which makes predictions conditioning on an input.
Learning generative models is gaining much momentum these days because the desire of
processing a huge amount of data and the high expense of exhaustively labeling them. Also,
comprehending the process of pattern generation appears to be important for analyzing and
understanding the pattern itself, just as stated by a famous quote:

What I cannot create, I do not understand.
�Richard Feynman

Statistical learning searches a generative model in the hypothesis space to match certain
empirical evidences. Data likelihood is a common choice if the data is assumed to be truly
sampled from the candidate distribution. However, natural data and standard distributions
with nice properties often violate this assumption. In light of this, advanced models choose
to adopt non-trivial structures, e.g., by adding hidden variables, and to surrogate the true
likelihood or similarity to the true model. Probabilistic models like Gaussian Mixture Models
(GMM) and Hidden Markov Models (HMM) have been vastly used in numerous applications
because of a good trade-off between the model capacity and ef�ciency. On one hand they allow
hidden variables for modeling complex data, while on the other hand the ef�ciency is retained
with well-behaved hidden variables and their posterior distributions. In the recent renaissance
of neural models, the intersection between the probabilistic model and representation learning
has become one of the research spotlights. Typical approaches include generative adversarial
network (GAN) (Goodfellow et al., 2014) and variational auto-encoders (VAE) (Kingma and
Welling, 2014). In these approaches, the randomness is separated as a simple prior distribution,
such as an isotropic Gaussian. Models build their high capacity upon a non-trivial posterior
with a complex and differentiable feature mapping. These so-called deep generative models
have been shown effective for synthesizing highly unstructured patterns such as images
(Radford et al., 2016; Reed et al., 2016) and audios (Chung et al., 2015; van den Oord et al.,
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Figure 1.1: Thesis structure concerning different robotics aspects: i) impedance-based robot
control; ii) encapsulating and interpreting motions of different modes; iii) association between
control and perception. Learning from human demonstrations is central throughout all these
aspects while the task is decoded and instantiated on different robots.

2016).

This thesis resorts to generative model techniques for learning and synthesizing robot motion.
The idea of hidden variables is adopted to tackle the computational challenge in inverse
optimal control as well as empirical applications such as learning from incomplete demon-
stration data. Moreover, the thesis also incorporates the progress in the deep generative model
research to deal with raw sensory data.

1.3 Thesis Structure and Contributions

This thesis is organized in alignment with the stated main research questions about motion
control, perception and sensory-motor association (Figure 1.1). The next chapter starts by
discussing the research background, including a section of pinning the interested topics on
the grand picture, a review of related literatures and a brief description about the background
CoWriter project. Before a �nal summary and discussion in Chapter 6, the main contributions
for each sub research question are presented. Large portions of the thesis work have been
published on or submitted to peer-reviewed conferences or journals. A short summary about
the main contributions and relevant publications are given below.

Chapter 3 focuses on composing a motion controller based on learning from human demon-
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strations. The main result is an ef�cient sampling-based IOC algorithm that learns structured
cost-to-go functions with the human-designed constraints embedded. The robotics applica-
tion demonstrates that the approach can be used to derive feedforward reference trajectory
and gain parameters for a compliance controller, of which the compliance parameter is de-
scribed in a moving reference frame. This part of work has appeared in the publications of
(Yin et al., 2014), (Yin et al., 2015) and (Yin et al., 2018a).

Chapter 4 extends the �rst piece of work to model a skill repertoire rather than a single
reference trajectory. Similar to the �rst part, human inspired priors are also incorporated. The
presented ensemble approach is shown as an ef�cient way of modeling multi-mode human
behaviors, with the applications including synthesizing human-like dynamical handwriting
and online human intention inference. This part of work has been presented as a conference
paper (Yin et al., 2016) and a journal paper (Yin et al., 2018b).

A further extension about the LfD/IOC framework is presented in Chapter 5, where the dif�-
culty of engineering the data features is alleviated. The robotics motivation lies in the challenge
of embedding the association among various sensor modalities, most of which are not easy to
be represented with a hand-crafted feature. The key novelty is an idea of factorizing the LfD
model for an ef�cient inference upon high-dimensional data. As a result, the robot features
the capacity of synthesizing a motion trajectory from a raw visual input, thus works as an end-
to-end system. The chapter also contributes with the approaches of data augmentation and
posterior trajectory optimization. These contributions tackle limited and corrupted sensory
data, which are empirical challenges to the implementation on a robot. Techniques about
human-like motion synthesis and inference, which are developed in the prior chapters, are
reused as part of these approaches. The main contents have been included in the publication
(Yin et al., 2017) and part of results are also reported in (Yin et al., 2018a).

Apart from a robotics-oriented view, the thesis organization can also be understood as a strand
of ML algorithms with an increasing complexity (Figure 1.2). Speci�cally, Chapter 3 extends
the basic IOC framework by incorporating priors (the dashed loop) about the interested
task feature. In Chapter 4, latent variables are introduced to relax the assumption of full
observability. Chapter 5 further eliminates the necessity of knowing the relation between the
original sensor representation and task-relevant features. Meanwhile, the learning algorithm
in Chapter 5 supports to learn from data with multiple modalities that are conditionally
independent on the task.

The contents in this thesis are also used or related to co-authored works on other topics. (Li
et al., 2014) focuses on robot hand grasping and proposes to extract the motion compliance
under a set of adhoc constraints. These constraints effectively adapt the principled form pre-
sented in Chapter 3. The adaptation removes the prior of representing task in a moving frame
of reference, because the motivated bulb insertion task only considers 1D rotational stiffness
along a �xed axis. The algorithms of modeling and synthesizing multi-mode handwriting are
used in papers (Chandra et al., 2017) and (Chandra et al., 2018). These pieces of research eye
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Figure 1.2: Thesis structure from the machine learning point of view: the chapters progressively
extend the IOC framework with added structures and complexities.

on activity design in the context of human-robot interaction. Speci�cally, human studies are
performed to assess how children perceive the robot learning capability and if a smarter robot
will engage the children more, and as such improve children’s learning gains in a handwriting
tutoring activity. In these studies, the synthesis algorithm in Chapter 4 is used to ef�ciently
generate legible dynamical handwriting samples. At the same time, the experiment conditions
about the robot capability are intuitively controlled by specifying different levels of model
perturbation.
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2 Background

This chapter focuses on the thesis research background. The �rst section 2.1 comes with an

overview of robot motion control and learning. The main purpose of this part is to provide

a brief introduction about some loosely relevant topics and to situate the thesis work in the

grand landscape. Detailed reviews about the closely related works will be given in Section

2.2, along three main axes: compliant motion learning, learning from demonstrations and

representation-learning-based sensorimotor control. Then technical preliminaries about the

approaches and a glossary of notations are in Section 2.3. The chapter closes with Section

2.4. Setting up the scene of application of the thesis, CoWriter project, which aims to build a

robot agent system to help children acquire handwriting skills, is discussed to provide more

background information about the thesis work.

2.1 Robotic Motion Control and Learning: Setting the Scene

2.1.1 Robot Motion Control: Feedback and Feedforward

Robot motion execution faces some substantial challenges due to conditions in the real physi-

cal world. Speci�cally, the dynamics of most robot manipulators often exhibits nonlinearity

and coupling across multiple joints. Also, uncertainties resulted from the unmodeled effects

such as frictions or environment disturbances add more dif�culties. A simple yet widely

adopted scheme exploits kinematic relations to represent and regulate motion in the joint

space (Craig, 1989). The joint space is often controlled through a linear PD or PID controller,

which simply assumes a local linearity and a weak joint dependency to cope with the model

complexities. In practice, the task speci�cation might not be in the joint space thus it can be

insuf�cient to close the control loop in the joint space. Operational space control (Khatib,

1987) addressees this by directly expressing the task dynamics in the operational space. The

representations are transformed through the Jacobian of kinematics. This scheme features

more task dynamics intuitions to the designers, while it requires invertible Jacobians and can

be complex to implement as a centralized system.

9



Chapter 2. Background

Many kinds of uncertainties source from the physical contacts between a robot and the

external environment. The collision event might drastically change the dynamics mode and

the operating point, leading to erroneous or even unstable behaviors. Hence, an appropriate

force accommodation is critical for contact-rich applications. In industrial assembly, an early

solution is a mechanical device called remote center of compliance (RCC) (DeFazio et al.,

1984). The device is a mechanical part providing a passive compliance to absorb the impact

from the rigid environments. Software solutions resort to a controller and the algorithm

design to address this problem. Direct force control approaches monitor and track contact

force by mounting force/torque sensors on the end-effector. However, the con�ict between

force and position control loop implies that the position and force tracking errors cannot

be concurrently eliminated in the same direction (Mason, 1981). This spurred the research

about decomposing the task directions according to the importance of force or position

tracking. The controllers along these orthogonal directions were then superimposed as a

hybrid force-position controller (Raibert and Craig, 1981). Another approach avoided an

explicit speci�cation about the task dimensions by applying parallel homogeneous controllers.

To resolve the target con�ict, the parallel force-position controller (Chiaverini and Sciavicco,

1993) used an integral loop to prioritize the tracking of force component.

One of the notable alternatives to direct force control is stiffness control (Salisbury, 1980).

This approach was extended in the seminal paper (Hogan, 1985), which pivoted a trilogy

concerning the framework of impedance control. The impedance control, instead of tracking

the force signal in a direct way, argues to take the dynamic relation between force and motion

as the control objective. Speci�cally, the casual relation between the velocity and torque was

emphasized to design an appropriate impedance and admittance pair for a stable interaction.

For instance, when interacting with a stiff environment, the robot oughts to behave as an

impedance, generating the reactive force with a positional input. This is in accordance with

the principle of RCC which also adds compliance units to the robot. Meanwhile, the force-

position relation can be exploited in the other way around. Formalized from such an idea is

admittance control, in which the robot generates motion under a driving force. When the

force measurement is available, admittance control is more feasible to realize an accurate

low impedance behavior. This is because, as argued in (Newman, 1992), the robot dynamical

behavior is dominated by its inertia, as such inherently resembles an admittance. The main

application of admittance control is physical human-robot interaction, such as powered

exoskeletons (Kazerooni, 2008).

Most of these approaches, at least of their basic formalizations, assume a prede�ned trajectory

and focus on the feedbackdesign. Yet for large deviations and systematic uncertainties, it is

inadequate to assume errors are rooted from small disturbances and can be corrected through

a local feedback. In that sense, feedforward control addresses this by synthesizing the control

reference based on a prior model. One of the illustrative examples is that humans can preview

the muscle activation for catching a dropping ball based the experience and knowledge about

the object gravity (Figure 2.1).
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(a) (b)

Figure 2.1: (a): the robot manipulator anticipates the ball trajectory and derives a feedforward
motion based on this prior knowledge. Feedback control regulates the executed motion
under disturbances and noises. (b): a common architecture containing both feedforward and
feedback components in the robot motion control.

Feedforward control has been widely investigated in the literature on advanced robot motion

control. Typical approaches include inverse dynamic and computed-torque control (Slotine

and Li, 1991; Siciliano et al., 2008), where model-based dynamical terms are computed to

cancel nonlinear effects. Adaptive control estimates the unknown model parameters (e.g.,

the inertia of external workloads) and then derives control based on the predicted values. It

has been shown that, for the system inertia uncertainties, one can obtain a linear parame-

terized inertia wrench so as to design a stable estimator (Slotine and Li, 1987). Meanwhile,

research efforts have been made for synthesizing feedforward trajectories in an autonomous

manner. A large portion of motion planning literatures explored searching (Kavraki et al., 1996;

LaValle and James J. Kuffner, 2001) and optimal control (Todorov and Li, 2005; Matthew et al.,

2013; Tedrake, 2016) to compose admissible or low-cost trajectories given task criteria and

constraints. Moreover, when models are unavailable, one can explore a motion trajectory

via trial-and-error, and as such learn the feedforward control. Among robotics control, a

renowned approach based on this principle is iterative learning control (ILC) (Craig, 1984;

Arimoto et al., 1984). Speci�cally, ILC assumes the robot motion can be operated cheaply and

repetitively, and suggests a PID-like rule to update the feedforward input. For a control-af�ne

dynamics and a linear observation model, the iterations are guaranteed to converge to a

minimized trajectory error in stationary tasks (Arimoto, 1986). In (Yang et al., 2011), ILC was

adopted and extended to also adapt the gain scheduling in a human-like way. Consequently,

both reference trajectory and feedforward impedance pro�le were learned in a repeated force

regulation task.

This thesis falls in the domain of feedforward control. In particular, the focus is on the

representation, evaluation and derivation of feedforward motion from prior internal models

or signals from other modalities, such as vision. These priors are acquired by learning from
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humans and embedding the human motion characteristics into the process. In the sense of

learning-based methods, the techniques developed in the thesis are in the similar vein as the

ILC-like approaches. However, the main thesis work concerns a human-guided learning and

correlates to more recent advancements in machine learning. A discussion about motion

synthesis in the modern machine learning will be expanded below. The thesis also extensively

exploits the results in optimal control and open-loop impedance control for applications

involving both humans and robots.

2.1.2 Robot Motion Learning: Discriminative and Generative

In machine learning, depending on the source of data labels, motion synthesis is mainly

addressed through two categories of approaches: reinforcement learning (RL) and learning

from demonstrations (LfD) 1. Although the thesis is built upon the latter paradigm, both will

be reviewed since RL directly correlates to optimal control, its industrial counterpart, and was

fundamental for developing the thesis approaches.

2.1.2.1 Reinforcement Learning: Value-based and Policy-based Approaches

Reinforcement learning is promoted for solving a relatively general AI problem: how can

an agent take a sequence of actions to maximize the received rewards 2. The foundations

of general RL approaches can trace back to dynamic programming and Bellman principle

(Bellman, 1954). Practical learning algorithms emerge as an intersection of the Monte-Carlo

method and boostraping for the estimation of value functions (Sutton, 1988; Sutton and Barto,

1998). Alternative value-based algorithms include renowned Q-learning (Watkins, 1989; Strehl

et al., 2006) and SARSA (Rummery and Niranjan, 1994). For a continuous state space, function

approximators could be utilized (Boyan and Moore, 1995; Sutton, 1996; Riedmiller, 2005;

Mnih et al., 2013). The probabilistic stability was proved for the case of learning a linearly

parameterized Q-function under certain feature conditions (Melo and Ribeiro, 2007). In these

works, actions are implicitly derived from the learned value functions. Q-learning, for example,

needs to select the action which causes an optimal value to instantiate the implied policy.

Astounding achievements have been made in the applications involving enumerable discrete

actions, such as playing Atari (Mnih et al., 2015) and board games (Tesauro, 1994; Silver et al.,

2016).

Much of the research in robotics-oriented RL, however, relies on a direct policy optimization:

estimating the mapping between a control and a sensory input. The main argument of policy

optimization against the value-based approaches lies in its merits for naturally dealing with

continuous action space and control constraints, both of which are pervasive in robotics

(Kober et al., 2013). Successful applications include locomotive robots (Nate and Peter, 2004;

Tedrake et al., 2004; Theodorou et al., 2010b; Deisenroth and Rasmussen, 2011; Hausknecht

1Also known as “programming by demonstrations” or “imitation learning”.
2Or equivalently, minimize the incurred costs.
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and Stone, 2011), object manipulation (Kober and Peters, 2009; Levine et al., 2015, 2016; Kumar

et al., 2016; Gu et al., 2017) and synthetic characters (Lillicrap et al., 2016).

The policy optimization can be categorized as derivative-free and policy gradient approaches.

Derivative-free approaches iteratively �t and sample from a stochastic policy proxy to make

good performed rollouts more likely. Exploring a variety of sampling and weighing mecha-

nisms, relevant techniques include �nite difference method (Ng and Jordan, 2000), expectation-

maximization (Dayan and Hinton, 1997; Peters and Schaal, 2007; Kormushev et al., 2010),

cross-entropy-like methods (Hansen et al., 2003; de Boer et al., 2005; Kobilarov, 2012), approxi-

mate inference control (AICO) (Toussaint, 2009) and path-integral-based methods (Kappen

and Wiegerinck, 2007; Theodorou et al., 2010b; Stulp and Oudeyer, 2012). Latest research

shows that, although a large amount of samples is desired for a low-variance black-box opti-

mization, a smart distributed cross-entropy-like approach is still scalable and competitive for

optimizing a high-dimension policy (Salimans et al., 2017).

Gradient-based approaches are based on scoring the cost sensitivity under the policy pertur-

bation, with a similar idea developed in the early works (Aleksandrov et al., 1968; Rubinstein,

1969) and a fundamental formulation well known as REINFORCE (Williams, 1992). A connec-

tion between the REINFORCE and importance-sampling was revealed in (Tang and Abbeel,

2010). Departing from the vanilla formulation, one of the research concerns is determining

an appropriate learning rate when applying the gradient. This is especially of the interest

in robotics, because the rollouts might be risky and expensive to obtain so the chance of

an overshoot should be minimized. Relevant work includes natural gradient (Peters et al.,

2003) and trust-region policy optimization (TRPO) (Schulman et al., 2015a). The main idea

is evaluating and constraining the policy shift according to certain metrics, for which Fisher

information matrix was used in (Peters et al., 2003) while (Schulman et al., 2015a) exploited

the Kullback-Leibler divergence. Other research focused on reducing the gradient variance of

the vanilla REINFORCE. As proposed in the original work (Williams, 1992), the key is enforcing

an informative baseline to evaluate the advantage of the rollout performance. This connects

to the research on actor-critic algorithms (Grondman et al., 2012), where value functions are

also learned at the same time to bias the policy gradient. Henceforth, the actor-critic paradigm

is somehow a blend of value-based and policy-based approaches. The incorporation of value

(critic) learning has been well acknowledged in plenty of state-of-the-art RL algorithms such

as asynchronous actor-critic agents (A3C) (Mnih et al., 2016) and generalized advantage es-

timation (GAE) (Schulman et al., 2015b). The application of these algorithms ranges from

controlling the robot joint motion to synthesizing abstract agent actions. It is notable that

non-parameteric approaches, such as PILCO (Deisenroth and Rasmussen, 2011), were also

employed for an ef�cient policy gradient approximation.

2.1.2.2 Learning Policy from Examples

Learning an RL-based agent can be challenging because it requires to attribute delayed

observations to a sequence of actions in history, as such solving a credit assignment problem

13



Chapter 2. Background

(Minsky, 1961). In particular, when the rewarding event is rare, the agent might have to

explore exhaustively to gather informative signals. Much like the critic component in the

policy optimization, one way to improve the learning ef�ciency is to bias the exploration

with a guidance from (potentially) good examples. In light of this, a model-based approach

called guided policy search was proposed in (Levine and Abbeel, 2014) and its integration with

path-integral RL was discussed in (Chebotar et al., 2017). The idea was repeatedly searching

the high performed trajectories through optimal control and �tting the optimal state-control

pairs with a neural network policy. This effectively turns the hard policy learning problem

into a comparatively easier supervised learning problem. Such an idea was also explored in a

grasping synthesis problem, where solutions from a static optimization were �t to a Gaussian

Mixture Model (Huang et al., 2013).

2.1.2.3 Learning Policy from Human Demonstrations

Apart from optimization solvers, one can easily imagine another source of the expert guidance:

human demonstrations. As an independent research domain, the idea of programming robots

based on human demonstrations has been explored for decades. The pace of LfD research

is roughly synchronous with the development of mainstream AI techniques. A line of the

research originated in the eighties focused on automating the robot motion planning through

a symbolic representation and graph-like connections (Lozano-Pérez, 1983; Segre and DeJong,

1985; Alami et al., 1990; Lozano-Pérez and Kaelbling, 2014). Similar to the typical expert

systems, if-then rules were used to compose a high-level policy before the concrete geometry

motion planning (Billard et al., 2016).

Other recent approaches describe tasks with more details. Leveraging nonlinear regression

techniques, demonstrations in these approaches were encoded as state trajectories or pa-

rameterized dynamical systems (DS). Early works focused on �tting a time-dependent state

trajectory with nonlinear basis functions, such as splines (Ude, 1993; Ude et al., 2004). A

more formal DS-based treatment was proposed as Dynamic Movement Primitives (DMP) in

(Ijspeert et al., 2002; Schaal, 2003) and gained much popularity for its learning ef�ciency and

the �exibility of encoding both discrete and rhythmic movements. As a canonical system,

DMP does not have an explicit dependency on time. It comprises of a linear system with

established attractors and a nonlinear term that shapes the trajectory pro�le. A shared phase

variable is the factor of the nonlinear term and decays as the system progresses. Hence, after

the nonlinear �uctuation vanishes, the system is dominated by the linear damping component

so the motion stability is guaranteed. It is worth noting, however, that the state variable of

DMP is not completely autonomous. The reason is that the evolution of the phase variable is

exclusively governed by the time so an implicit time dependency still exists 3.

Beyond representing a single trajectory, many works in the last decade focused on probabilistic

3According to (Ijspeert et al., 2002), one can of course introduce a state-dependent feedback, although it is
nontrivial to assure the stability in this case.
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dynamics, which provides a natural way of handling the demonstration variations. (Shon

et al., 2005) employed Gaussian Process (GP) and Correlated Component Analysis (CCA) to

build mappings between human and robot joint DOFs via a latent variable. In (Calinon et al.,

2006), Hidden Markov Model (HMM) and Gaussian Mixture Model (GMM) were respectively

used to encode the temporal and spatial demonstration correlations. A GMM-centric ap-

proach was explored in (Calinon et al., 2007, 2012a). Much like the DMP works, the temporal

information is encoded as a covariate in the state space so the demonstration variabilities are

captured by time-dependent covariance matrices. Variations of GMM approaches proposed

to embed structures to the covariance matrices. Typical examples include (Calinon, 2015),

where the covariance entries were correlated by assuming the data dimensions are resulted

from the views in different frames of reference. Reported as another example in (Tanwani

and Calinon, 2016), the covariances across the GMM components were tied to assume less

model parameters. Both works showed an improved generalization performance. As another

popular statistical model, Probabilistic Movement Primitives (ProMPs) modeled a trajectory

distribution by estimating the parameter statistics (Paraschos et al., 2013). The trajectories are

often parameterized by linear function approximators, which allow for an ef�cient trajectory

adaptation. The common choice about the statistics is the mean and variance of a multivari-

ate Gaussian, although multi-mode distributions like GMM can also be used (Ewerton et al.,

2015). Similar to the sparse GMM works, (Colomé et al., 2014) also researched the dimension

reduction of ProMPs parameters.

More recently, this line of research also concerned �tting an autonomous dynamical system.

This formulation, be it deterministic or stochastic, is useful when the robot is expected to

learn a time-invariant policy. A relevant approach was explored in (Pastor et al., 2011), where

the DMP is incorporated with a state feedback for a sensor-based trajectory adaptation.

(Gribovskaya et al., 2011a) provided a more explicit autonomous DS formulation, based upon

a GMM for modeling the demonstrated position and velocity pairs. This research was followed

by variations that enforce the desired system properties with various constraints. A notable

example is Stable Estimator of Dynamical Systems (SEDS) in (Khansari-Zadeh and Billard,

2011). SEDS exploited the well-established research on Lyapounov stability and added relevant

constraints for training a GMM. A global asymptotic stability was assured for the resulting

policy. In spite of these appealing properties, a constrained GMM like SEDS is known as much

more dif�cult to train in comparison of �tting DMP or a time-dependent system (Kronander,

2015). Besides the work of SEDS, other structures were also explored. (Shukla and Billard, 2012)

adapted the training of Support Vector Machine (SVM) for modeling a policy with multiple

attractors. Local modulation matrices were introduced in (Kronander et al., 2015) to facilitate

a GP-based incremental learning.

2.1.2.4 Learning Discriminative Policy vs. Generative Model

Most of the works reviewed above learn a reactive policy that predicts an action on the given

arguments (be it a state variable or a time index). This can also be understood as a kind
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(a) p(xjy Æ“green”) or p(xjy Æ“purple”) (b) p(x) Æ
R

p(x, y)d y

Figure 2.2: Discriminative and generative models: (a)a discriminative model learns a condi-
tional distribution with an explicit labeling of y. (b)a generative model estimates the structure
and distribution with the labels of y as unknown latent variables.

of behavior cloning (Pomerleau, 1991). From the statistical machine learning perspective,

this type of imitation estimates a conditional distribution 4 or learns a discriminative model,

as such works as supervised learning. This shares some similarities with the policy-based

approaches against the value-based ones in the RL literatures. Hence, a natural question is

if it is possible to perform LfD via a value-based approach. Relevant ideas for robot motion

synthesis have been investigated in the early works (Khatib, 1985; Koditschek, 1989), where

a scalar potential function was used to shape the task dynamics. Formal learning-based

methods are named as Inverse Optimal Control (IOC) or Inverse Reinforcement Learning

(IRL). The main task of IOC is, similar to the value-based RL, estimating a task-relevant value

function (or equivalently a cost-to-go or instantaneous cost/reward), with the given samples

assumed to be high-performed ones. Playing a same role in the actor-critic RL, the value

function evaluates the preference of the states and provides an implicit guidance in developing

the policy or control. As such, this type of implicit LfD works as a generative model and can be

considered as unsupervised learning (Figure 2.2). The advantage of learning a value function

can be argued from the perspectives of policy robustness and data ef�ciency. Concretely,

a generative model is a complete probabilistic model of the data and one can conduct a

robust Bayesian inference via priors. For instance, if a state is evaluated as a low-rewarding

or high-cost one, the agent will tend to escape from it to the ones appear more frequently

in the expert demonstrations. Without such global information, a discriminative policy will

blindly predict an action and not take the optimality of the resulting state into account. When

demonstrations are not suf�cient for a good data coverage, the errors might be accumulated,

possibly leading to a catastrophic behavior (error cascading, see: Bagnell, 2015).

4Though GMM and the model in (Shon et al., 2005) learn full probability distributions, they are mainly used for
regression and conditional inference in aforementioned works.
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The thesis focuses most of its algorithmic contributions on learning cost-to-go functions to

develop the robot control and perception mechanisms. Therefore, the topic in this thesis

belongs to implicit LfD and generative model. Section 2.2.2 will detailedly review closely

related IOC approaches and spell out the difference of the thesis contributions.

2.2 Related Work

This section reviews the literature that is directly related to the research problems and con-

tributions, including learning-based compliance motion synthesis, inverse optimal control

methods and the works about representation-learning-powered robot control.

2.2.1 Learning Compliant Robot Motion

The necessity of robot compliance stems from the need to deal with tasks requiring contact

accommodation or force exertion. Direct force control or impedance control, as reviewed

in the above Section 2.1.1, are viable solutions for these types of tasks. However, devising a

proper force/impedance pro�le is nontrivial, at least not as explicit as the case of position

control which relies on intuitive geometry constraints. This fact motivates a learning-based

approach to automate the design based on human or robot experience.

A large body of research proposes to derive the feedforward force or impedance parameters via

an iterative learning or adaptation. In (Wang and Cheah, 1998), an iterative learning method

was designed to realize a target impedance. As with other works in iterative learning, a zero

impedance error could be theoretically guaranteed and the method was demonstrated to be

robust against system and sensory uncertainties. As another example, a bio-inspired adapta-

tion rule was adopted in (Ganesh et al., 2010). The performance was principally formalized as

a combination of the tracking error and the muscle activation. When the control is assumed

to be linear with the activation, the general adaptive control law (Slotine and Li, 1987) was

obtained in the muscle space. The law was then applied to all relevant robot control terms in-

cluding the feedforward reference trajectory, force and impedance. As the learning progresses,

the accuracy of feedforward motion and force improved gradually. Meanwhile, the impedance,

correlating to the muscle activation, decreased hence a human-like modulation emerged. In

(Yang et al., 2011), the same approach was presented in the context of adapting interaction

force under perturbations, with an additional convergence proof provided. (Gribovskaya et al.,

2011b) drew a closer relation to this thesis because the feedforward control and reference

force/position were learned from demonstrations. Autonomous dynamical systems were

estimated to generate stable trajectories terminating at a target. However, the impedance

parameters were not explicitly learned but prede�ned and subject to the online adaptation,

according to a similar rule in (Ganesh et al., 2010; Yang et al., 2011).

As a more general formulation, optimal control was utilized as a principle to design compliant

behaviors (Mitrovic et al., 2011). The advantage of an optimal-control-based approach is
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twofold. First, beyond the tracking errors in ILC, more �exible task objectives can be speci�ed,

such as maximizing the speed of links with variable stiffness joints (Haddadin et al., 2011).

Secondly, optimal control can exploit the model structure of different systems. Exploiting the

passive dynamics has been demonstrated as crucial to generate highly dynamic, powerful and

agile movements (Braun et al., 2013).

When the model is unknown, reinforcement learning (RL) can be used for searching vari-

able impedance policies. In (Theodorou et al., 2010b; Buchli et al., 2011), path-integral RL

was used to explore an impedance pro�le, which was represented as an additional policy

output alongside the reference position. The trajectories of each independent DOF were

parameterized as DMPs. During the learning iterations, the DMP parameters were randomly

perturbed and estimated based on the episodic performance, such as the locomotion distance

or the success of jumping over obstacles. (Stulp et al., 2012) adopted the same RL approach

in various simulated force-�eld tasks. The study showed that, a robot arm learned to adapt

the feedforward command in face of a predictable external force, while chose to increase the

motion impedance when the disturbance was unstable. As a result, interesting human-like

modulations were developed from the principle of minimizing errors and control efforts.

LfD-based approaches have also been investigated for learning the robot compliance. Early

efforts relied on the mounted sensors to record a direct measurement of the task force. By

analyzing the force data, (Asada and Izumi, 1989) proposed to decompose task dimensions

into force and position control components, hence obtaining a hybrid controller from demon-

strations. In (Asada, 1993), neural networks were used to represent a nontrivial compliance

relation with a nonlinear mapping between the force and position data. Much of the research,

on the other hand, advocated to imitate the compliant behavior in the impedance control

framework. For example, the parameters of stiffness control were estimated from demonstra-

tions in (Sikka and McCarragher, 1997). The implementation dif�culty was that the stiffness

control parameters are redundant so one could not have a unique estimation by solely looking

at the trajectory data. The solution proposed in (Sikka and McCarragher, 1997) enforced

constraints and heuristics to deal with this issue. The similar challenge was also addressed in

(Tsumugiwa et al., 2002). Speci�cally, the authors assumed quasi-static human movements

and a constant impedance within a small time interval. The robot adjusted the damping

parameters in proportional to the estimated human impedance to ensure a stable physical

interaction.

The research on learning impedance parameters from humans was then followed by exploiting

the trajectory statistics. This line of work is illustrated in the research by (Calinon et al.,

2010) and (Kormushev et al., 2011). (Kormushev et al., 2011) learned the force pro�le as a

feedforward control in addition to the estimated impedance parameters. The heuristics used

to determine the impedance is based on the trajectory variance: the robot should adopt a high

stiffness in the directions resembling low variance, and a more compliant movement when the

trajectory distribution is more �at. The implicit goal behind the heuristics can be understood

as tracking a trajectory under the minimum intervention principle, in which the robot places
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less importance and efforts on rejecting disturbances when the deviation is not impacting

the task performance. A similar idea was also exploited in (Kronander and Billard, 2013),

where a haptic interface for human users to exert force variabilities and explicitly convey

the desired impedance. (Ureche et al., 2015) applied the same principle to both force and

position demonstrations and analyzed the variabilities across different reference frames. As a

result, the task dimensions and temporal segments were again possible to be decomposed to

prioritize impedance and position control. Moreover, as a task-parametrized formalization,

the variances represented in the reference frames helped to identify the critical scene marks,

hence improved the generalization under a new task con�guration. The trajectory variabilities

could also be captured as an autonomous GMM-based dynamical system, as was exempli�ed

in (Khansari et al., 2014). The resulting control was a mixture of a set of impedance controllers,

whose weights were state dependent.

As reviewed above, there exists an optimality principle behind the impedance shaping based

on statistical heuristics. A more formal treatment in optimal control was presented in (Medina

et al., 2013). The authors characterized the trajectory consistency with a quadratic cost func-

tion, whose weighting matrix was inversely proportional to the motion variance. Moreover, a

risk-aware formulation was introduced, with the disturbance measured as the deviation from

a recorded force pro�le. Such a formulation provides a uni�ed way to deal with the con�ict

between position tracking and force yielding. Speci�cally, when the robot is risk-sensitive, it

will take a negative attitude to the external force disturbance, hence adopting an increased

stiffness to eliminate tracking errors. On the other hand, a risk-seeking behavior will tend to

increase the importance of force regulation and yield to the external disturbance. (Rozo et al.,

2013) used a task-parameterized GMM (TPGMM) to �t the demonstration trajectories and

estimated the impedance parameters separately. In the task reproduction, the impedance

for each trajectory segment depended on the similarity to each GMM component. TPGMM

was also explored in (Calinon et al., 2014; Rozo et al., 2015, 2016). In these works, a quadratic

cost function was parameterized by the regression mean and covariance then an impedance

controller was resolved from a �nite-horizon LQR. (Lee et al., 2015) applied a Bayesian esti-

mation to the covariance matrix. Only diagonal positive-de�nitive matrix was allowed due

to the constraint from the prior, so the impedance controllers of joint DOFs were indepen-

dent. Similar covariances were also learned, however, in a different manner in (Rückert et al.,

2013). The proposed method featured a quadratic cost function and a sub optimal control

system, which were termed as a planning movement primitive in the paper. The quadratic

cost function and a linear system were �t based on the rollouts scored on an extrinsic signal.

Finally, research has been done to facilitate the cost design through inverse optimal control

approaches. Relevant work on the robot motion synthesis (Kalakrishnan et al., 2013) used a

sampling-based to estimate the linear cost parameters. Impedance parameters were explicitly

transfered in (Howard et al., 2013), where apprentice learning was used to estimate, again, a

linear parameterized cost function.

The �rst thesis contribution mainly focuses on learning an impedance controller, through

inverse optimal control like (Howard et al., 2013) and (Kalakrishnan et al., 2013). The cost/cost-
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to-go parameters are nonlinearly correlated. With respect to the trajectory, the cost-to-go

function is a similar quadratic form resembling a clear statistical intuition as (Medina et al.,

2013) and (Calinon et al., 2014). Like (Lee et al., 2015) and (Rückert et al., 2013), a structure

about the parameters will be enforced in the cost-to-go function. Much different from learning

a diagonal covariance, however, the work in this thesis assumes a representation in the local

frame of reference, in the same spirit of (Nemec et al., 2016). This structure raises certain

challenges for the standard gradient-based inverse optimal control. The thesis work exploits

the problem duality and proposes a sampling-based inference method like (Kalakrishnan

et al., 2013), while with an adapted trajectory parameterization.

2.2.2 Implicit Learning from Demonstrations

In the early work as (Kalman E., 1964), Kalman investigated the problem about what quadratic

cost function makes a given linear control optimal. In particular, a mono input system was

discussed in the paper and a necessary and suf�cient condition for such a cost function was

established in the frequency domain. The same problem, with a less constrained control

penalty matrix, was addressed in (Boyd et al., 1994) through the linear matrix inequality (LMI).

Concretely, the optimality and feasibility were respectively captured by an adapted Riccati

equation and a constraint from the Lyapounov stability. The resulting formulation searched

the cost matrices and the existence of an auxiliary matrix under the LMI constraints, yielding

a convex optimization problem.

Focusing on empirical applications, the machine learning community develops similar pieces

of research under the motivation of understanding and imitating agent behaviors. Inverse

reinforcement learning (IRL) was formally introduced in (Ng and Russell, 2000), proposing

a condition that the expert performance should be no worse than any alternatives. This is,

however, a necessary condition and there might exist rewards, such as a constant function,

that ful�ll the condition while encodes no interesting information. In light of this, the authors

suggested an additional constraint to enlarge the performance gap between the actions

following the expert policy and the non-expert ones.

Apprenticeship learning in (Abbeel and Ng, 2004) proposed to use IRL for an agent to perform

nearly as good as the given expert policies. Apprenticeship learning exploited the linearity of

reward parameters and the integral operation, allowing to match the apprentice policy through

a feature expectation. The learning runs as an adversarial game involving two competing

modules. On one hand, a reward parameter was searched as to maximize the discrepancy

between expert and apprentice policies. On the other hand, the other module tried to shrink

the gap by mixing a new optimal policy derived from RL. The game would terminate until

the feature expectation error is within a prede�ned threshold. Successes were demonstrated

in modeling and learning a car-driving behavior (Abbeel and Ng, 2004) and maneuvering a

robot helicopter (Coates et al., 2009). Following this method, (Syed et al., 2008) proposed an

extended multiplicative weights apprenticeship learning, which advocated to estimate an
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²¡ optimal policy through linear programming (Puterman, 1994). In addition, the authors

also exploited a dual form to obtain a stationary policy based on the counts of state visitation,

while a mixture of policies was returned in the original apprenticeship learning.

In (Ratliff et al., 2006), the policy optimization was �rst replaced by its dual form, which

implied a value function and a Bellman inequality. Slack variables were searched to be as small

as possible. On the other hand, the variables need to ensure a suf�ciently large performance

gap between the expert examples and the optimal policies with respect to an augmented

loss and the Bellman-�ow constraint. For an ef�cient optimization, the problem was then

transformed into a form with a hinge-loss so the subgradient method could be used. Such

a formalization amounts to the maximum margin prediction like Support Vector Machines,

hence named as maximum margin planning. All the methods reviewed above include a

forward policy optimization subroutine. Actually this is one of the general challenges for

IOC/IRL approaches, although sometimes it appears as an equally dif�cult problem, e.g.,

evaluating a partition function in the probabilistic models.

Apprenticeship learning was formalized as a Bayesian approach in (Ramachandran and Amir,

2007). The regularization of parameters in (Ng and Russell, 2000) was then understood as a

Laplacian prior. More importantly, the authors formulated the greedy policy as a probabilistic

distribution parameterized by a state-action value function. The policy and the reward were

updated by sampling and rejecting states based on the distinction to the expert trajectories.

This is also different from the standard apprenticeship learning where a set of mixed policies

are used. (Neu and Szepesvári, 2007) presented a similar approach with a value-parameterized

policy. However, unlike the derivative-free algorithm in (Ramachandran and Amir, 2007),

gradients were derived and evaluated through an empirical estimation of the partition function.

In (Ziebart et al., 2008, 2009; Ziebart, 2010), this type of models was principally identi�ed as a

class of maximum entropy distributions (MaxEnt). (Ziebart et al., 2010) made an extension

and proposed a maximum causal entropy model whose actions were only depending on part

of the prior observations. As a probabilistic approach, MaxEnt IOC/IRL naturally handles

the demonstration noise and intuitively interprets the imitation learning as maximizing the

likelihood of expert trajectories.

Much of the research about probabilistic models focused on the computational challenge of

partition function evaluation. While most pioneering IOC/IRL literatures were developed on

agents with a discrete state-action space, robotic applications often face a high-dimensional

continuous space, making a discretization impractical. One way to address this is approximat-

ing the integral with a tractable probabilistic density. In (Levine and Koltun, 2012), the cost

function was approximated with a quadratic form along the demonstration trajectories, hence

obtaining a Laplacian approximation from the probabilistic point of view. The quadratic

approximation was also implicitly used in (Howard et al., 2013), where iterative LQR (Todorov

and Li, 2005) was used to search the Laplacian mode. Another type of approximation relies on

sampling-based methods. (Boularias et al., 2011) proposed to approximate the original proba-

bilistic model with a proposal one and regulate the difference to the empirical distribution via
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a relative entropy. In (Kalakrishnan et al., 2013), a group of samples centered at the mean in the

trajectory parameter space was taken to approximate the full probability. The partition evalua-

tion was thus solved through path-integral RL with a local optimality. This effectively estimated

the partition integral under a Gaussian distribution, instead of the uniform one in the original

MaxEnt formalization. As a third way, non-parameteric approaches in Reproducing Kernel

Embeddings Hilbert Space (RKHS) could be used to realize a closed-form evaluation (Song

et al., 2013). An example of such work is (Rawlik et al., 2013), which performed a one-shot

path integral with an RKHS embedding. In spite of the appealing theoretical properties, kernel

methods often suffer from a nearly cubic complexity as the number of data increases. Hence,

practical implementations often approximate the kernel operations with linear parameterized

random features (Rahimi and Recht, 2008). Lastly, the structure of the planning problem can

also be exploited to facilitate the evaluation. The work of (Dragan and Srinivasa, 2012), for

example, decomposed the transfer of a multi-target reaching task into goal and trajectory

prediction stages. The predicted goal could help discriminate other unlikely trajectories under

an optimality assumption so as to ef�ciently derive a good mode approximation.

Other research works also explored variations in terms of the function parameterization and

MaxEnt principle. Gaussian Process was used in (Levine et al., 2011) as a non-parametric rep-

resentation. The partition function evaluation, however, still resorted to a local optimization.

(Choi and Kim, 2013) proposed another non-parameteric representation, which contained

compositional kernels for a feature selection in the cost function learning. Furthermore, a

hierarchical IOC was presented in (Krishnan et al., 2016). The hierarchy lied in a decomposi-

tion of the original task into subtask segments, which were revealed through a GMM model.

Then the state was augmented with a variable indicating the GMM membership and the task

progress. Such a formalization helps for a sparse or delayed reward signal, such as a {0,1}

setting for encoding the success and failure of the task execution.

In (Dvijotham and Todorov, 2010), the kernel width was also learned in additional to the linear

parameters. This resulted a non-convex problem, which was proposed to be addressed by

alternating the optimization steps. More importantly, the authors of (Dvijotham and Todorov,

2010) identi�ed the MaxEnt model as a special case of a broader linearly-solvable system

framework. The framework was developed on the basis of the stochastic optimal control

of a control-af�ne dynamical system. Speci�cally, it showed that when the dynamics is a

continuous one and Gaussian-noised, the model knowledge could be exploited to bias the

MaxEnt sampling in the partition function evaluation.

Finally, more recent works reported learning a cost function parameterized by deep neural

networks (Wulfmeier et al., 2015; Finn et al., 2016b). A connection between a Generative

Adversarial Network (GAN) and the MaxEnt IOC (or broadly speaking, a Boltzmann energy

model) was established in (Finn et al., 2016a). The discriminator network effectively trains

the cost parameters in a way like the critic in the actor-critic methods. Correspondingly, the

re�nement of the generator network proceeds like the actor, which involves searching a good

proposal distribution for evaluating the partition function.
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All the thesis chapters develop IOC approaches, which differ from the aforementioned ones

in that the motivation and adaptation are rooted in learning human-robot applications. In

the �rst part, the MaxEnt model and a sampling-based partition function evaluation like

(Kalakrishnan et al., 2013) are used. However, unlike the popular linear parameterization, the

thesis explores a structured cost-to-go for realizing an intuitive and human-like force/motion

control decomposition. The second part of the thesis takes a unique way to deal with the

partition function in that it intentionally to adopt a simple quadratic cost form to make the

linear-solvable framework tractable. The loss of the expressiveness is compensated with an

aggregation of these “weak” models, as such introducing the ensemble principle into the

IOC approaches. This part also incorporates human kinematics features and interpretable

parameters for motion synthesis and adaptation. The �nal contribution is relevant to the

latest deep-learning-powered IOC works. However, the thesis method is developed based

on variational auto-encoders, enjoying a straightforward probabilistic interpretation and

stable training in comparison with the GAN-style methods. Also, this part of work motivates a

factored distribution in light of learning from redundant and unstructured demonstrations,

which was less explored in other LfD literatures.

2.2.3 Representation Learning in Sensorimotor Control

Representation learning differs from general machine learning techniques in that it promises

an easier way to handle unstructured patterns, which often desire a laborious feature engi-

neering and domain knowledge. This appears compelling for the robotic sensorimotor control

since such kind of data presents in many sensor modalities.

The main instantiation of representation learning is often formed as connectionist models

such as neural networks (NN). One of the pioneering works about modeling an NN controller

is (Pomerleau, 1991), in which a real-time video stream was fed in an autonomous vehicle task

to keep the car on the track. However, the early efforts of implementing an NN controller were

often limited to small-scale models with a careful design (Hunt et al., 1992). This is due to

the fact that learning large-scale neural networks often requires a great amount of data and

computational power which had not been available by then.

In recent, witnessing the encouraging success in pattern recognition and generation (Krizhevsky

et al., 2012; Sutskever et al., 2014), roboticists have regained the enthusiasm towards this type

of controller. A successful story was reported in (Lenz and Saxena, 2015), where the authors

considered a robot cutting task and a model predictive control (MPC) approach based on

the latent feature learning. The necessity of inducing the latent features was argued, that the

MPC should account for dynamics variations due to different materials and cutting stages.

Importantly, the success of this framework was ascribed to carefully-tailored feature structures

and recurrent latent units for capturing a long-term time dependency. Of�ine unsupervised

learning was performed for a good initialization of the latent features. An analogous pre-

training and domain regularization design were presented in (Lenz et al., 2015), where the
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graspable regions of an object were identi�ed from an RGB-D image.

In a large body of works, NNs powered by convolutional operations (CNN) (Fukushima, 1980;

LeCun et al., 1990) were used to reason about the raw image inputs and develop visuomo-

tor controllers. As a seminal work in this line of research, (Levine et al., 2015) presented a

practical system in which the robot executed various contact-involved manipulation tasks

with pixel-based visual feedbacks. Stacked convolutional layers were used as detectors to

�lter out a representation corresponding to the 2D coordinate of the interested operating

point. The representation was then concatenated with the robot con�guration as the neural

network input to predict the desired torques. Much like the MPC work (Lenz and Saxena,

2015), pre-training data was collected. Concretely, the object poses were labeled so it avoided

optimizing trajectories in the pixel space. The collected vision-pose pairs were used to extract

the interested representation, which then replaced real poses in predicting the torque trajec-

tory. In general, an of�ine prior training is important to the success of a neural controller or

policy. The extraction of informative representations often requires large amount of data as is

demonstrated in other deep learning works. However, acquiring data through real physical

explorations tends to be expensive and risky. Besides the prior data collection, the learning

stability is another concern. (Levine et al., 2015) utilized guided policy search which turned to

�t a supervised learning model on trajectories from a model-based optimal control, as such al-

leviating the dif�culty of tunning high-dimension policy parameters based on delayed signals.

Also, algorithms which update the policy with certain guarantees, such as trust region and

natural gradients, perform better in benchmarking tasks (Duan et al., 2016) and expect to have

an improved data ef�ciency. (Zhang et al., 2015) attempted to realize a cheap data acquisition

via exploring in a simulation environment. However, negative results were reported by the

authors that the trained controller, even though generalized well in the simulated scenarios,

failed with a zero success rate under the real-world camera input.

A recent trend in robot learning focuses on approaches that address the challenges from

the data starving problem. The �rst solution lies in a distributed architecture with multiple

homogeneous robots to parallelize the data acquisition. (Levine et al., 2016) realized such a

system with about 10 robots to learn picking and grasping objects based on mono-camera

inputs. The images and a kinematic motor command were combined to predict if a successful

grasp could be achieved. The cross-entropy optimization was performed to determine the

action to take when a test image was presented. It took about two months to collect 80,

000 trials before the emergence of a controller with a satisfying success rate. In (Gu et al.,

2017), the A3C RL (Mnih et al., 2016), which allows for an asynchronous policy update for

multi-agents, was utilized in a group of two robot manipulators. The authors showed a

boosted learning ef�ciency by sharing the experience between the robots, which learned to

open a door in around 2.5 hours. The second avenue taken by researchers is associating the

simulation data to the real world. Exploring such an idea, (Hanna and Stone, 2017) proposed

to improve the �delity of a simulator by adjusting its parameters to �t the collected rollouts on

a real humanoid robot. The real-world data could be task irrelevant and the interested task

policy was optimized in the adjusted simulation environment. With a suf�cient training in
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the simulator, a humanoid robot achieved a faster walking velocity in comparison with an

off-shelf strategy. In another work (Rusu et al., 2016), the authors �rst trained a robot skill

with an encoder representation in the simulator. The encoded information was then used

to bias the training of another model on the real robot. Exploring a more principled way,

other research eyes on how the new task learning can be facilitated by reusing the prior task

knowledge. A two-stage approach was proposed in (Ammar et al., 2015). In the �rst step, a

mapping that bridges different task spaces was established with an unsupervised manifold

alignment algorithm. The mapping was then used in the second step to initialize the policy

searching for the target task. In (Gupta et al., 2017), a common feature space between tasks

was learned to facilitate the target task learning. Importantly, the reuse of the task knowledge

was implemented across multiple robots, which potentially differed in their embodiments.

The invariant feature space was learned through a proxy task which should be mastered by

both source and target agents. It is worth noting that, this third avenue belongs to transfer

learning, which is currently an active research topic and mostly focuses on patterns like images

in the general machine learning. As a last type of paradigm, (Tamar et al., 2016) explored a

layer design for a better generalization performance, thus less demanding about the data

volume. Speci�cally, the authors noticed the equivalence between the value iteration in RL

and the convolution operation in CNN, and proposed to stack convolutional layers to embed

an implicit planning computation. Empirical results showed that a policy with the induced

structure generalized well in a collision-free path planning task.

Instead of directly modeling a neural controller, other researchers embrace networks models

as a good complement to the probabilistic modeling. The argument is that one can exploit the

expressiveness and differentiable structure of NNs to represent complex yet tractable statistical

moments (Mnih and Gregor, 2014). This implies the possibility of building a full probability

model and conducting various inference tasks, linking to a broader topic of probabilistic

programming (Lake et al., 2015; Tran et al., 2017). Relevant works in a robotics scenario

includes (Chen et al., 2015) and (Watter et al., 2015). In (Chen et al., 2015), auto-encoders

and DMPs were combined to obtain a compact and structured latent space for whole-body

joint movements. (Watter et al., 2015) proposed to learn a latent representation from high-

dimension unstructured observations (e.g., image pixels). A policy in the extracted low-

dimension space was ef�ciently searched for balancing an inverted pendulum with the pixel

feedback. Much like (Watter et al., 2015), a similar method with a more rigorous derivation

was proposed and validated in the pixel inverted pendulum task (Karl et al., 2017).

As a nonparameteric option, kernel machines were also applied in robotics. As was pointed in

(Rahimi and Recht, 2008), a certain type of kernel representation (e.g., a radial basis kernel)

could be cast as an equivalence to a random projection feature, which somehow justi�ed

the effectiveness of the so-called extreme learning machine (ELM) (Huang et al., 2006). Such

models in effect suggest a linear parameterized neural network, with randomly chosen inter-

mediate layers and only the output layer tuned. This is bene�cial in some situations. One can

easily, for instance, achieve a stable online learning by exploiting the kernel representation in

a ridge regression. Employing such a method, an incremental robot dynamics learning was
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reported in (Gijsberts and Metta, 2011). Moreover, linear parameters are generally favored for

the system analysis and synthesis. As an example, (Lemme et al., 2014) utilized an ELM to

learn a vector �eld to model handwriting motion with a locally ensured Lyapounov stability.

The thesis extends the inverse optimal control framework in the third part, in alignment with

the progress of NN-based frameworks. The proposed adaptation is similar to (Chen et al., 2015)

and (Watter et al., 2015), which emphasize the importance of learning a latent space rather

than the direct policy. Meanwhile, the relevant chapter also shares some similarities with

(Ammar et al., 2015) and (Gupta et al., 2017) in terms of learning an overlapped manifold or

space, although here the motivation is not mapping between tasks but sensor modalities. Also,

unlike (Ammar et al., 2015), the representation is simultaneously extracted alongside the task

learning. The thesis also reports a practical end-to-end system, while most of the preceding

works were showcased in simulators with virtual visual inputs. To achieve this, the data-

starving problem is also alleviated in a different way. The image data in this work is obtained

from the synthesis of the other modality. The quality of synthetic data is ensured by the

other contribution (Yin et al., 2016), which incorporates kinematic features for a human-like

variability. The thesis demonstrates the generalization to new tasks as well. This is achieved

with the sampling-based trajectory optimization proposed in (Yin et al., 2014). The method

in effect solves a variant of the cross-entropy optimization, whose standard form was also

employed in (Levine et al., 2016) to infer the motion from a neural model.

2.3 Technical Preliminaries

This section gives a brief overview about the main technical foundations. The terminology

and notations will also be established as the section expands. Section 2.3.1 reviews the topic of

impedance control with its most basic formulation. The core method about the forward and

inverse optimal control is introduced in 2.3.2, targeting the particular type of linearly-solvable

dynamical system used in the thesis. Gaussian Mixture Models and its task-parameterized

variant are reviewed in 2.3.3. Including these materials will provide background information

about the algorithm connection and experiment implementation in Chapter 4. The adopted

representation learning technique, variational auto-encoders, is introduced in 2.3.4 with an

aim to support Chapter 5.

2.3.1 Impedance Control

Impedance control concerns steering a dynamical system (DS) with respect to a desired

dynamic relation between the physical effort and effect. Taking the example from robotics,

impedance control is usually used to regulate the force effort and motion effect. Let u 2 Rd

denote a d-dimension force input to the robot system and x 2 Rd represent a d -dimension

robot state, such as the coordinate in the Cartesian space or joint space. The goal is to control
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the robot so as to follow a dynamics like

H
d 2x

d t 2 Å D
d x

dt
Å K (x ¡ x r ) Æu (2.1)

where H , D , K 2 Rd£d are desired inertia, damping and stiffness matrices and x r denotes the

reference state. The dynamic relation is fully governed by the matrices and the reference state

x r , which are not necessarily constant. Hence, the central task of an impedance control is to

choose proper H , D , K matrices to indirectly accommodate the exerted force u . In practice,

the inertia term is often ignored due to the dif�culty of obtaining an accurate acceleration

estimation. The remained two terms in effect emulate the behavior of a damped spring, which

generates proportional forces according to the displacement and velocity of the endpoint. The

stability can be assured for certain matrices when the reference is �xed (regulation), although

tracking a slowly-varying reference also works �ne in practice. The thesis implements an

impedance control by learning both the stiffness matrix K and reference x r . The damping

matrix is determined according to K and the critical damping ratio. A control rule can be

derived from the relation in 2.1 with an additional term to compensate the gravity:

u c ÆG(x) ¡ K (x ¡ x r ) ¡ D
d x

d t
(2.2)

with G(x) denoting the state dependent gravity from the manipulator mass. One can apply

the rule to a standard robot dynamics model subject to an external wrench ue:

M (x)
d 2x

d t 2 Å C(x,
d x

d t
)
d x

d t
Å G(x) Æu c Å u e (2.3)

where M and C denote the robot inertial and Coriolis terms. As a result, a second-order

dynamics will be obtained as

M (x)
d 2x

d t 2 Å [C(x,
d x

d t
) Å D ]

d x

d t
Å K (x ¡ x r ) Æu e (2.4)

Therefore, when the system is stable, the free-space robot motion (with u e Æ0) could converge

to the reference x r . When an external wrench exists, the reference x r becomes a virtual

target, which can be modulated together with K to accommodate the contact. Note that in

impedance control, the system input u c is wrapped by the spring-damping law, hence the

high-level algorithm interfaces with the system by specifying the virtual target and the desired

compliance.

2.3.2 Optimal Control and Inference for Linearly-Solvable Dynamical System

Nonlinear Dynamical System (DS) is an important tool for modeling robot dynamics. This

section will brie�y review a special type of nonlinear DS used in the thesis. Among different

forms, the thesis speci�cally considers the discrete-time nonlinear DS with a continuous state
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and system input as

x t Å1 Æf (x t ,u t ) (2.5)

which subscripts the system state and input with the time index t . The thesis considers a

control-af�ne variant of this general form, by separating the transformation into two parts

according to their dependencies on u :

x t Å1 Æf (x t ) Å Bu t (2.6)

The independent nonlinear transformation f : Rd ! Rd is called passive dynamics as it

captures how the dynamics proceeds in absence of the control input. The input u linearly

applies to the system with a gain matrix B 2 Rd£d . It is worth noting that a more general

formalization allows a state dependent gain matrix. The thesis takes the constant B as a

simpli�cation, though the main conclusions still hold for the general form. Also, the B could

be non-square for an under-actuated system. However, u is assumed to be of the same

dimension as the state x hence a fully controlled system is considered. This control-af�ne

formulation is suf�cient to describe many practical systems, such as the robot dynamics

model in Equation (2.3).

The dynamics can be steered by a scalar function assigning scores to the state and input at

each time step. In particular, one can accumulate the instantaneous scores to evaluate a

rollout as:

J &(x0, t0) Æ
TX

t Æt0

C(x t , t ) Å
1

2
u T

t Ru t (2.7)

where the rollout is denoted as a sequence of the state and input &Æ{x t ,u t }t Æ0:T. C(¢) denotes

a state dependent cost for each time step and the additional term on u t penalizes a large input

magnitude through R 2 Rd£d . The J & is termed as the cost-to-go function, as it summarizes

an accumulated value for a rollout starting at x0 and following &5. A control or policy u Æ

{u t }t Æ0:T¡1 or its resulting rollout is regarded as optimal if:

&¤
u Æargmin

u
J &u (2.8)

Therefore seeking an optimal control aims to minimize the cost-to-go along the state trajectory.

It is known that, for a control-af�ne system and a cost-to-go function like Equation (2.6) and

(2.7), the optimal control can be derived as:

u ¤
t Æ ¡R¡1 B

@J&¤ (x t Å1)

@x t Å1
(2.9)

Note the control here is not explicit due to its dependency on the future state. Nonetheless,

5The time horizon can also be inde�nite for the general �rst-exit problem. Most parts of the thesis consider a
�nite horizon case.

28



2.3. Technical Preliminaries

it can be ef�ciently solved through a backward sweeping or equivalently, solving a linear

differential equation in the continuous time setting, hence named as a linearly-solvable

dynamical system (Todorov, 2006). Moreover, the solution could be ef�cient and less implicit

under a linear-quadratic assumption, resulting in an LQR problem as its special case:

f (x t , t ) ÆAt x t

C(x t , t ) Æ
1

2
(x t ¡ r t )

T Q t (x t ¡ r t )

J &(x t ) Æ
1

2
(x t ¡ ¹ t )

T ¤ t (x t ¡ ¹ t )

(2.10)

where At denotes a linear state transformation. C(¢) takes a quadratic form with r t as the

reference state and Q t is a positive-de�nite (PD) weight matrix. Thus the sum-up of these

instantaneous costs will yield another quadratic cost-to-go J &, with the remaining constant

term ignored. ¤ t Å1 is the corresponding PD matrix which can be computed from the Riccati

equation 6. ¹ t denotes the reference state which takes the feed-forward reference trajectory

{r t } into account. In this case, an optimal controller depending on the current state is explicitly

given by:

u ¤
t Æ ¡(R Å BT ¤ t Å1B)¡1 BT ¤ t Å1 At (x t ¡ ¹ t ). (2.11)

It is worth pointing out that, this controller is much like the impedance control in (2.2) if the

velocity of the regulation point is augmented into the system state.

An inverse optimal control problem can be cast as inferring the unknown parameters in J (¢)

or C(¢) given a set of optimal rollouts {&i }i Æ1:N as the demonstrations. Taking the quadratic

case as an example, the candidate cost can be parameterized as the ones in Equation 2.11, with

an unknown parameter µ Æ{r t ,Q t } or µ Æ{¹ t ,¤ t }. In this thesis, the inverse problem is solved

under a stochastic formalization, with the consideration of handling noisy demonstrations.

Also, the thesis focuses on learning the cost-to-go function for incorporating constraints about

a trajectory. In a stochastic form, the control-af�ne dynamics in Equation (2.6) is �rst adapted

by adding a white noise:

x t Å1 Æf (x t ) Å Bu t Å dW t (2.12)

where dW t » N (0,§ 0) and the covariance § 0 is inversely proportional to R as§ 0 ÆBT R¡1 B.

Prior research (Dvijotham and Todorov, 2010) has shown that the stochastic optimal control of

Equation (2.12) can be derived from the follow probabilistic model over the system rollouts:

p(&jx0,µ) Æ
p0(&jx0)exp[¡

TP

t Æ0
C(x t ,µ)]

R
&0jx0

p0(&0jx0)exp[¡
TP

t Æ0
C(x0

t ,µ)]d &0

(2.13)

6Namely, by recursively evaluating ¤ t ÆQ t Å AT
t ¤ t Å1At ¡ AT

t ¤ t Å1B t (BT
t ¤ t Å1B t Å Rt )¡ 1BT

t ¤ t Å1 At for a
�nite-horizon problem, with ¤ T ÆQT .
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or in a factorized form:

p(x t Å1 jx t ,µ) Æ
p0(x t Å1 jx t )exp[¡J &(x t Å1,µ)]

R
x0

t Å1
p0(x0

t Å1 jx t )exp[¡J &(x0
t Å1,µ)]d x0

t Å1

(2.14)

The factorization exploits the Bellman equation and softening the maximization with a log-

exp-sum operator:

J (x t ) ÆC(x t ) Å log
Z

p0(x0
t Å1 jx t )exp[¡J (x0

t Å1)]d x0
t Å1 (2.15)

Here p0 denotes the stochastic passive dynamics with f (¢) as the deterministic part. When

the passive propagation is uniformly distributed, which assumes no control penalty, one can

obtain a Boltzmann distribution over the state trajectories:

p(&jµ) Æ
exp[¡

TP

t Æ0
C(x t ,µ)]

R
&0exp[¡

TP

t Æ0
C(x0

t ,µ)]d &0

(2.16)

As is revealed in (Dvijotham and Todorov, 2010), this form is in accordance with the maximum-

entropy (MaxEnt) IRL (Ziebart et al., 2008). The trajectory cost can be interpreted as the

statistic moments, which generate the optimal trajectories with a high probability. Therefore,

the inverse optimal control can be solved as inferring the distribution parameters through

maximizing the demonstration likelihood, hence transforming the original formulation into

an unsupervised statistical learning problem.

2.3.3 Gaussian Mixture Models and Task Parameterization

A Gaussian Mixture Model (GMM) represents a probability density over the interested data, be

it a single state or an entire trajectory. The GMM combines multiple Gaussians to describe

complex data distributions that a single Gaussian fails to model. This is achieved by intro-

ducing a latent variable z, which is constrained to be categorical as z Æ1,...,K for a tractable

posterior evaluation. A marginal data distribution with z integrated out can be written as:

p(x) Æ
Z

z
p(xjz)p(z) Æ

KX

kÆ1
w zÆkN (xj¹ k ,§ k ) (2.17)

where w zÆk parameterizes a multinomial prior distribution p(z) and indicates the proba-

bility of generating x from the k-th Gaussian component. The mean and covariance of the

component are denoted as ¹ k and § k . Therefore, �tting a GMM estimates the parameters

µ Æ{w zÆk, ¹ k ,§ k }kÆ1,...,K. This is often realized through maximizing a lower bound of the
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log-likelihood:

log p(x) Ælog[
X

k
p(z Æk)p(xjz Æk)]

¸
X

k
p(z Æk) log p(xjz Æk) ÆEp(z)[log

p(x,z)

p(z)
]

(2.18)

which uses Jensen's inequality to swap the logarithm and expectation operations and separate

Gaussian statistic moments. The expectation is not directly evaluable since p(z) is unknown.

One can, however, take the expectation with respect to another distribution q(z), which is

assumed to be in the same family as p(z). The Equation (2.18) is re-written as:

log p(x) ¸ Eq(z)[log
p(x,z)

q(z)
] ÆEq(z)[log

p(x)p(zjx)

q(z)
] Ælog p(x) ¡ KL[q(z)kp(zjx)] (2.19)

Hence, a proper choice of q(z) should minimize the gap between the actual likelihood and

the lower bound, implying a minimized Kullback-Leibler (KL) divergence KL[q(z)kp(zjx)] Æ0.

Applying the Bayes rule to the posterior p(zjx), the optimal q(z) can be explicitly written as:

q(z Æk) Æp(z Ækjx) Æ
p(z Æk)p(xjz Æk)

P

k 0
p(z Æk0)p(x jz Æk0)

Æ
w zÆkN (xj¹ k ,§ k )

P

k 0
w zÆk0N (xj¹ 0

k ,§ 0
k )

(2.20)

Training a GMM model thus takes iterative steps of

• evaluating the expectation of the full probability Eq(z)[log p(x,z)] with the estimation of

µ t in the last step.

• maximizing Eq(z)[log p(x,z)] to obtain a new µ t Å1 given that the Gaussian component

likelihoods are factored and q(z) is independent of µ t Å1.

This can be summarized as the Expectation-Maximization (EM) algorithm (Dempster et al.,

1977).

Equation (2.20) means that, with a trained model, one can infer the latent variable via the

Bayes rule. Similarly, the missing dimensions could also be part of x Æ[xo,xu ]T , and inferred

upon the observable dimensions xo:

p(xu jxo) Æ
X

k
p(z Ækjxo)

P(xo,xu )

p(xo)

Æ
X

k

w zÆkN (xo j¹ o
k ,§ o

k )
P

k 0w zÆk0N (xo j¹ o
k 0,§ o

k 0)
N (xu j¹ u jo

k ,§ u jo
k )

(2.21)
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where ¹ o
k and § o

k denote the Gaussian mean and covariance of the observable dimensions.

¹ u jo
k and § u jo

k are the conditional Gaussian means and covariances:

¹ k Æ

"
¹ o

k
¹ u

k

#

§ k Æ

"
§ o

k ,§ ou
k

§ uo
k ,§ u

k

#

¹ u jo
k Æ¹ u

k Å § uo
k (§ o

k )¡1 (xo ¡ ¹ o
k )

§ u jo
k Æ§ u

k ¡ § uo
k (§ o

k )¡1 § ou
k

(2.22)

As a result, the mean of Equation (2.21) could be determined by taking a weighted combina-

tion of multiple Gaussian linear regressions, hence obtaining the name of Gaussian Mixture

Regression (GMR).

The GMR is often used to predict the control or the desired state from the observation, after

a GMM has been �t over the demonstrated state pairs [ xo,xu ]. An extension called task-

parameterized GMM (TPGMM) allows the prediction to take account of the importance of

each state dimensionality (Calinon, 2015), and improves the generalization performance

under new task con�gurations. Concretely, the GMM is trained on the data with an augmented

state, which involves descriptions relative to the con�guration parameters. For instance, the

robot pose can be measured from the perspective of M landmarks, such as:

x̄ Æ

2

6
4

x1

...

xM

3

7
5 Æ

2

6
4

T 1
w

T
xw ¡ b1

...

T M
w

T
xw ¡ bM

3

7
5 (2.23)

where [T m ,bm ] (orientation and offset) indicate the m-th landmark pose expressed in an

inertial reference frame. Although the resulting x̄ is an augmented high-dimension variable,

its mean and covariance possess structures since the descriptions are redundant. Speci�cally,

the TPGMM assumes the demonstration variations are independent with respect to landmarks

so the Gaussian covariances are block diagonal:

§ k Ædiag(§ 1
k , ...,§ M

k ) (2.24)

This could further factorize the Gaussian components in GMM/GMR when the pose in the

inertial reference frame is of the interest, such as:

N (xw j¹ w
k ,§ w

k ) Æ
MY

mÆ1
N (xw j¹ wm

k ,§ wm
k )

¹ wm
k ÆT m

w ¹ m
k Å bm

§ wm
k ÆT m

w § m
k (T m

w )T

(2.25)
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Therefore the estimation of xw becomes a fusion of estimations from different reference

perspectives, yielding another Gaussian:

§ w
k Æ[

MX

mÆ1
(§ wm

k )¡1 ]¡1 ¹ w
k Æ§ w

k

MX

mÆ1
[(§ wm

k )¡1 ¹ wm
k ] (2.26)

The above equation implies the means associated with smaller covariances will be more

signi�cant in the �nal linear combination. This is in accordance with the intuition of assigning

more importance to predictions with less uncertainties.

The thesis derives an inverse optimal control formalization that draws a connection to the

popular GMM model. TPGMM will be used as a way to handle task con�gurations in a robot

experiment.

2.3.4 Deep Generative Model: Variational Auto-encoders

Generative models like GMM provide powerful tools to represent various data distributions.

However, high-dimension unstructured data such as images or audios are often notoriously

hard to learn with a GMM. In particular, GMM is inherently a local linear model and its

covariance matrices will be extremely large as the data dimension increases. To address this

shortcoming, recent generative models incorporate representation learning to enrich the

model capacity. Typical examples include Variational Auto-encoders (VAE) (Kingma and

Welling, 2014) and Generative Adversarial Networks (GAN) (Goodfellow et al., 2014). This

section focuses on the background knowledge about VAE, which is utilized and adapted in the

thesis for its clear probabilistic interpretation and training stability .

In a similar spirit of GMM, the VAE models capture complex data with a continuous latent

variable z 2 Rdz :

p(x) Æ
Z

pµ (x jz)p0(z)d z (2.27)

where p0 denotes the prior. pµ is analogous to the Gaussian distribution in the GMM while its

parameters are determined with a continuous mapping instead of a categorical one. Facing

the same dif�culty of evaluating the likelihood, a variational lower bound is derived. The VAE

model proposes to use a Á-parametrized proposal distribution qÁ (zjx) to approximate the

real posterior p(zjx). The approximation is again regulated through a KL divergence:

KL[qÁ (zjx)kp(zjx)] ÆEqÁ [log qÁ (zjx) ¡ log p(zjx)]

ÆEqÁ [log qÁ (zjx) ¡ log pµ (x jz) ¡ log p0(z) Å log p(x)]
(2.28)

Applying Bayes rule and noticing that total probability p(x) is independent of z, the above
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equation can be rearranged as:

L (µ,Á, x) ÆKL[qÁ (zjx)kp(zjx)] ¡ log p(x)

ÆKL[qÁ (zjx)kp0(z)] ¡ EqÁ [log pµ (x jz)]
(2.29)

Because of the non-negativity of KL-divergence, the right hand side can be viewed as an

upper bound of the negative logarithm of (2.27). Hence L can be used as a valid surrogate

to optimize the original data likelihood when (2.28) is small. Usually, qÁ and pµ are parame-

terized by nonlinear mappings like deep neural networks, hence named as recognition and

generation networks. Parameterizing nonlinear mappings allows for a rich representation

and an improved modeling power. This, however, trades-off the necessity of evaluating the

expectation term via sampling-based method, which might suffer from the high variance

of gradient evaluation. Speci�cally, unlike the categorical posterior in the GMM, here the

optimal qÁ is not readily available. In that sense, one has to also evaluate the gradient of the

expectation with respect to the recognition network parameter Á. If the gradient is evaluated

in a standard way like REINFORCE:

r Á EqÁ [log pµ (x jz)] ÆEqÁ [log pµ (x jz)r Á log qÁ (zjx)] (2.30)

The estimation might be quite poor when qÁ is far from the real p(zjx) and the quality itself

depends on the parameter Á.

(Kingma and Welling, 2014) adopted a reparameterization trick to alleviate this issue. The trick

is to rewrite the stochastic z as a combination of a deterministic part and a random variable

whose distribution does not depend on Á:

z Æ¹ Á (x) Å ¾Á (x)² ² » N (0, I ) (2.31)

As such, the Á-parameterized recognition network actually outputs the statistic moments of

a Gaussian latent encoding. The prior p0 is often chosen as an isotropic Gaussian to obtain

a closed-form KL evaluation. Similarly, the generation network pµ can be constructed as a

Gaussian whose mean is determined by z in a nonlinear way 7:

pµ (x jz) / exp(¡
kx ¡ gµ (z)k2

2
) (2.32)

The logarithm in the expectation thus leads to a squared reconstruction loss.

Stochastic gradient descent with an adaptive moment estimation (ADAM) (Kingma and Ba,

2015) was proposed to adjust the learning rate in training the network parameters. ADAM

keeps a decayed average of the history gradient m t and its square v t :

m t Æ¯1m t ¡1 Å (1¡ ¯ 1)r t

v t Æ¯2v t ¡1 Å (1¡ ¯ 2)(r t )
2

(2.33)

7Similarly, a Bernoulli density can be used for binary data like image pixels.
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and the gradient is eventually estimated as:

r̂ t Æ
´

p
v̂ t Å ¸

m̂ t m̂ t Æ
m t

1¡ ¯ t
1

v̂ t Æ
v t

1¡ ¯ t
2

(2.34)

The network parameters are thus optimized with a quasi-second-order update. The hyper

parameters are suggested as �xed values by the authors of ADAM: ¯ 1 Æ0.9, ¯ 2 Æ0.999,¸ Æ10¡8

and ´ Æ10¡4 . These default settings are thoroughly used in the thesis and lead to a good

empirical performance.

2.4 About CoWriter

Part of the thesis work situates in the background project of CoWriter, which aims to build a

robotic companion that helps children to acquire the handwriting skill. Unlike an instructor

who provides a direct guidance, the robot is assigned with the role of a learner, exhibiting

writing dif�culties and requesting children's assistance. This so-called “learning by teaching”

paradigm is believed as an effective approach to motivate and engage children learners in

education activities (Rohrbeck et al., 2003).

The central scenario of the CoWriter project is an interaction activity between children and

robots. For example, the robot can demonstrate a character sample which could be poorly

written in the initial, while gradually improved under the help of children. Such an activity

has been prototyped and its social and technical feasibility has been validated in (Figure 2.3,

Hood et al., 2015). Many research works, ranging from the robot control to the high-level

activity design, are worth an effort to improve the system autonomy, the behavior effects, and

as such, the ultimate learning gains of children. Among many research dimensions, the thesis

focuses on the representation, formation and control of the handwriting skills, contributing to

the project as a technical foundation and exploration.

Based upon the project motivation, handwriting is used as a running example to highlight

the technical contributions throughout the thesis, even though most proposed algorithms

are of a general purpose and their applications on other tasks are also included. Besides that,

handwriting is also a motor skill that involves all the concerning aspects in the thesis. First,

unlike a free-space movement, handwriting involves many contacts: the robot needs a careful

balancing of the �nger grips, and at the same time, an appropriate force accommodation

on the writing surface to generate legible characters. Hence, an impedance control, as is

researched in the �rst part, is desired in this motor task. Secondly, human handwriting samples

exhibit so many variabilities and regularities that the robot needs a proper representation for

an ef�cient modeling and a diversi�ed synthesis. The second part of the thesis eyes on this

challenge from the broader view of modeling human behavior modes. Moreover, the proposed

algorithm is extended with the features incorporating human movement characteristics so

the character deformities can be intuitively controlled. This is shown to be helpful in the

CoWriter interactions by generating more autonomous and richer robot handwriting samples
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Chapter 2. Background

Figure 2.3: CoWriter: a robotic companion interacts with children and facilitates the develop-
ment of their handwriting skills. The robot plays the role of a learner, engaging the children to
practising the skill and improving their self-esteem.

(Chandra et al., 2017). Finally, the handwriting pro�ciency is relevant to the development of

both cognitive and motor capabilities (Jenny and Margaret, 2006). Therefore, the importance

should be attached to task modalities beyond the motor movement. The third part of the

thesis takes steps in the direction of jointly considering the character image and the motion

generation, exploring the technical potential of introducing more sensor modalities in human-

robot interactions similar to the CoWriter project.
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3 Learning Structured Cost Functions
and Controllers

3.1 Introduction

This chapter considers incorporating human priors in learning and synthesizing controllers.

As reviewed in Section 2.1, the speci�cation of motion trajectory and impedance is central and

challenging for robots with many degrees of freedoms (DOFs). The learning from demonstra-

tions (LfD) framework can mitigate this dif�culty. On the other hand, the research about robot

task decomposition and human movement has identi�ed valuable properties for a conve-

nient robot implementation and motion representation. For instance, the hybrid and parallel

force/position control (Raibert and Craig, 1981; Chiaverini and Sciavicco, 1993) decompose

a task speci�cation into multiple orthogonal directions. Representing task parameters in a

moving reference frame will be convenient to describe this decomposition. The description

is similar to the natural curve representation, which is also applied in expressing the human

movement regularities (Huh and Sejnowski, 2015). One natural question is thus how to incor-

porate domain structures, such as a representation in the local reference frame, into LfD to

synthesize controllers with the desired properties. This request, as shown below, sometimes

adds complications that are not straightforwardly tractable for a conventional formulation.

Henceforth, the central research question of this chapter, from both robotics and machine

learning perspectives, can be summarized as:

• Robotics : how to synthesize the robot motion and impedance pro�les with the certain

constraints ful�lled.

• Machine learning : how to learn a structured task representation with the incorporated

human priors.

Concretely, this chapter considers the IOC problem of extracting a tracking trajectory as well

as the deviation penalty de�ned in the local frame of reference. This problem leads to a

nonlinear parameterization, different from the popular IOC assumption that the cost function

is linear with the unknown parameters. Also, the commonly used gradient-based methods are
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Chapter 3. Learning Structured Cost Functions and Controllers

Figure 3.1: Learning a compliant robot motion through inverse optimal control. The motion
trajectory and variability, together with the prior of a local reference representation, are
encoded as a structured cost function. The task decoding derives an optimal impedance
controller implemented as a robotic handwriting task on both single and multiple robot
manipulator systems.

ill-suited for solving the non-convex optimization problem in this case, as they tend to end up

with poor local optima. As another dif�culty, the gradient derivation to explore the feature

design for each model is error-prone and not applicable under a model-free setting.

Based on the optimal inference duality, this chapter proposes to use the cross-entropy method,

a stochastic optimization algorithm to tackle the IOC problems. The cross-entropy method

evaluates samples without knowing the explicit model, which resembles a model-free ap-

proach. Importantly, the cross-entropy-method is �exible and ef�cient to incorporate the

correlation of model parameters with a structured sampling. The sampling and learning is

further facilitated by adopting a cost reparameterization. These novelties lead to an ef�cient

approach with the desired compliance behavior encapsulated. Figure 3.1 illustrates the overall

�ow of our approach .The main contributions of this part are:

• A parameterization that naturally describes the impedance in the local moving reference

frame, which connects the task decomposition in orthogonal control directions.

• A cross-entropy-like method for a model-free cost function learning with a nonlinear

parameterization form.

• A nullspace sampling schema that embeds task priors and facilitates the trajectory

optimization in the task decoding phase.

Most of the contents in this chapter have appeared in the publications (Yin et al., 2014, 2015).

Section 3.3 extends the published works with a more detailed analysis about the connection
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between cost-to-go and impedance parameters. The results (Section 3.6) also include some

samples that were omitted due to the page limit.

3.2 Problem Statement

Following the notations in Section 2.3.2, this chapter considers the problem of transferring

skills to a robot with demonstrated trajectories &¤ Æ{x¤
t }, where x¤

t denotes the pose of the

interested frame, e.g., the robot end-effector. The star indicates the motions are optimal

with respect to the underlying task goal. The goal is implicit and can be abstracted as a sum-

up of the cost function C(x,µ) along the trajectory &Æ{x t }. µ is the parameter to infer for

encoding the task. Note that the index t is a phase variable indicating the task progression.

The skill transfer requires the robot to derive its own compliance behavior, mimicking the

demonstrations as an impedance controller like Equation (2.2):

u t ÆG(x t ) ¡ K t (x t ¡ x r
t ) ¡ D

d x t

dt
(3.1)

where G(x t ) is a robot model dependent feedforward control, such as the gravity compensation

term. K t and x r
t are the control parameters subject to the design or learning. In addition,

much like the classical force/position control schemes (Raibert and Craig, 1981; Chiaverini

and Sciavicco, 1993), the stiffness matrix K t is expected to decompose the control directions

and de�nes the local compliance behavior with respect to the motion trajectory. Effectively,

this implies that the impedance behavior is described in the local or Frenet reference frame,

as is shown in Figure 3.2.

The advantage of having a local representation lies in its intuitiveness for synthesizing and

interpreting the controlled behavior. An example of the bene�ts can be demonstrated through

a polishing task depicted in the Figure 3.2. In this case, it is desired to decouple the control

directions in a way that one can orthogonally modulate the exerted forces in the normal and

tangential directions. Adopting a global reference frame like Figure 3.2a ignores the geometry

of polishing surface, describing and interpreting the task in a less explicit manner.

However, unlike the standard hybrid force/position control setup, here the reference trajectory

is unknown and needs to be extracted from the noisy demonstrations. The problem can

thus be divided into two phases. The �rst part which aims to reveal the unknown cost can be

formulated as an inverse optimal control problem. In general, this problem is ill-posed as there

are ambiguous results (e.g., constant cost) that always ful�ll the optimality of demonstrations.

One elegant way to address this, as is reviewed in Section 2.3.2, is the maximum-entropy

framework (MaxEnt) (Ziebart et al., 2008), where trajectories are assumed to be subject to a

Boltzmann distribution. By extending this concept, the estimation of the cost parameters

effectively maximizes the demonstration likelihood under this distribution and a parameter
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(a) Global reference frame (b) Local reference frame

Figure 3.2: Representing the motion compliance in a global or a local reference frames: (a) the
stiffness ellipse is aligned with a �xed global reference frame so the compliance description
fails to consider the geometry of the interaction space. (b) varying the control stiffness in a local
reference frame which moves according to the interaction surface. The local representation is
desired as an intuitive way to decompose the control design for implementing the standard
hybrid force/position scheme.

prior:

µ¤ Æargmax
µ

p(&¤ jµ )p(µ) Æargmax
µ

exp(¡J (&¤ ,µ))
R

&exp(¡J (&,µ))
p(µ) (3.2)

where &¤ Æ{x¤
1:T } and &Æ{x1:T } denote demonstrated and all possible trajectories with a time

horizon of T , respectively. J (&) Æ
P T

t Æ1C(x t ,µ) de�nes the accumulated cost-to-go the along

trajectory &. The incorporated prior, such as the local reference representation, is encoded as

p(µ), whose concrete form is nontrivial and will be discussed in the following sections.

The second stage is to derive a robot optimal trajectory under its own dynamics given the

learned cost. The remarks below about the robot dynamics are given as the additional problem

assumptions:

• The execution upon a real robot dynamics desires a smooth variation of the impedance

parameter, for both the force magnitude and exerting direction. The model parameter µ

thus also needs to take this into account.

• The MaxEnt formulation effectively assumes a stochastic dynamics with a uniform

noise. Hence the learning stage is agnostic to the robot dynamics. Nevertheless, the

control derivation can still exploit the concrete robot dynamics, which could be known

as Equation (2.9), learned from the data or be unknown in a model-free trajectory

optimization.

• The construction of the state feature x t varies according to the robot dynamics. For
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instance, the recorded demonstrations might be featured in joint space but the feature

of the cost function might be the trajectory of the end-effector or a manipulated object.

Here the forward/inverse kinematics is assumed to be available to convert back and

forth between the state feature x t and the robot con�guration.

3.3 Optimal Impedance Controller with Structured Cost Functions

The compliance design is determined by the stiffness matrix K , which is in turn implied by

the estimated cost-to-go function. For an illustrative purpose, let the interested operating

point be a 2D particle with the state variable x̂ Æ[x, �x] representing its combined position and

velocity. The control u is the acceleration or the scaled applied force. The motion dynamics

for a unit mass can be written as:
"

x t Å1

�x t Å1

#

| {z }
x̂ t Å1

Æ

"
I d t I

0 I

#

| {z }
A

"
x t

�x t

#

| {z }
x̂ t

Å

"
1
2dt 2I

d t I

#

| {z }
B

u t (3.3)

where I denotes a 2£ 2 identity matrix. According to the optimal LQR control reviewed in the

background chapter, one can obtain:

u ¤
t Æ ¡(R Å BT ¤̂ t Å1B)¡1 BT ¤̂ t Å1 At (x̂ t ¡ ¹̂ t )

Æ ¡(R Å BT ¤̂ t Å1B)¡1
h

1
2dt 2I d t I

i
"

¤ t Å1 0

0 �¤ t Å1

#"
I d t I

0 I

#"
x t ¡ ¹ t

�x t ¡ �¹ t

#

Æ ¡(R Å BT ¤̂ t Å1B)¡1
h

1
2dt 2I d t I

i
"

¤ t Å1(x t ¡ ¹ t ) Å d t ¤ t Å1( �x t ¡ �¹ t )
�¤ t Å1( �x t ¡ �¹ t )

#

Æ ¡(R Å BT ¤̂ t Å1B)¡1 [
1

2
d t 2¤ t Å1(x t ¡ ¹ t ) Å (

1

2
d t 3¤ t Å1 Å dt �¤ t Å1)( �x t ¡ �¹ t )]

(3.4)

where ¤̂ Ædiag(¤, �¤ ) is the block-diagonal weight matrix for the cost-to-go J (x̂) Æ(x̂ ¡

¹̂ )T ¤̂ (x̂ ¡ ¹̂ ). Note that here �¤ is a bit abused for denoting the weight matrix for the velocity

term �x instead of the time derivative of ¤ . Comparing with the feedback term of Equation (3.1)

and �xing the velocity reference to zero, one can reveal a design for the impedance parameters:

K t Æ
1

2
dt 2(R Å BT ¤̂ t Å1B)¡1 ¤ t Å1

D t Æ
1

2
dt (R Å BT ¤̂ t Å1B)¡1 (d t 2¤ t Å1 Å 2 �¤ t Å1)

(3.5)

On the other hand, when the cost-to-go is formalized as a quadratic one like above, the

Boltzmann distribution in Equation (3.2) boils down to a Gaussian distribution with block-

diagonal covariance matrices. When the cost parameters are estimated as the Gaussian

statistics, both R Å BT ¤̂B and ¤̂ are at least semi-positive-de�nitive. So the impedance

control is stable given the derived stiffness and damping matrices.
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Figure 3.3: Varying impedance ellipse rep-
resented in the local reference frame. This
is utilized for an intuitive force/position hy-
brid task speci�cation, where the length and
orientation of the principle axes correlate to
the force magnitude and control direction.

Figure 3.4: Graphical model of the observed
variable x and the model parameters {¹, ¤} .
Left: the inference of model parameters is
independent and relevant to the heuristics
of variable impedance design based on the
demonstration variability. Right: represent-
ing the impedance ellipse in the local ref-
erence frame yields a structured parameter
prior so the cost parameters cannot be inde-
pendently inferred.

The relation between the cost parameter ¤̂ and the impedance design provides a perspective

on a widely used heuristic, that the stiffness is designed to be inversely proportional to the

trajectory covariance. To see this, consider the stiffness matrix with the cost parameter

expanded:

K t Æ
1

2
dt 2(R Å

1

4
dt 4¤ t Å1 Å dt 2 �¤ t Å1)¡1 ¤ t Å1

Æ
1

2
dt 2[(R Å dt 2 �¤ t Å1)¤ ¡1

t Å1 Å
1

4
dt 4]¡1

(3.6)

where it can be seen that the stiffness co-varies with the inverse of the Gaussian covariance

¤ t Å1. In fact, a positive-de�nitive matrix parameterizes an ellipse (or an ellipsoid in the

high-dimensional case). The cost parameter thus controls the impedance pro�le via two

orthogonal dimensions: the magnitude of the ellipse axes which correlate to the reaction force;

the orientation of the ellipse which speci�es the control directions. From the point of view of a

cost function, the magnitude and direction de�ne which task dimensions are more sensitive to

the disturbances. The preference of reducing the control effort refrains the stiffness magnitude

along the less important dimensions. This is in accordance with the minimum intervention

principle, and yields a compliance controller which is not only systematically synthesized but

also optimal in terms of its impedance parameters.

For a uniform prior p(µ), the estimation of µ is ef�cient as �tting a Gaussian trajectory distri-

bution. In that case, the trajectory reference and variability are decoupled and the description

of the impedance ellipse is independent of the desired movement. When considering a de-

scription in the local reference frame (Section 3.2), the parameters are correlated and result

in a less tractable form. To see this, the connection between the ellipse orientation and the
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trajectory local reference frame is written as:

® Æarctan( �x2, �x1)

¤ Æ

"
cos® sin ®

¡ sin ® cos®

#"
¤ 1 0

0 ¤ 2

#"
cos® ¡ sin ®

sin ® cos®

#
(3.7)

where the principal compliance components [ ¤ 1,¤ 2] are decoupled from the original weight

matrix and ® denotes the angle of the local frame with respect to the world reference. One

way to express this prior is to write p(µ) in a factored form:

p(µ) Æp(µ¤ jµ ¹ )p(µ ¹ ) (3.8)

where p(µ¤ jµ ¹ ) conditions the weight matrix with the above constraint. The task prior even-

tually imposes a structure into the space of parameter µ. Synthesizing the target impedance

controller requires the IOC problem to learn with a structured cost-to-go function. Appar-

ently, in this case, p(µ¤ jµ ¹ ) is not of a standard form for an ef�cient learning like �tting a

Gaussian trajectory distribution. Moreover, the nonlinear parameter structure raises a few

challenges to the standard gradient-based IOC approaches. On one hand, these approaches

often learn a linearly parameterized cost function in order to guarantee a convex optimization.

The estimation might be poor under a nonconvex optimization with respect to the nonlinear

parameterization. On the other hand, it could be error-prone to derive the gradient from the

parameter constraint and an approach based on less customizations is desired for handling

other general task priors.

3.4 Cost Reparameterization

The thesis proposes a sampling-based probabilistic inference to address the dependency

between cost parameters, as identi�ed in Equations (3.7) and (3.8). Before its development,

this section discusses a reparameterization of the cost to facilitate the sampling procedure

and the practical implementation.

In order to achieve this, the reparameterization encodes the evolution of reference states,

eigen value and vectors of the weight matrices as parameter trajectories. The parameter

trajectories are proposed to be represented with linear function approximators. Sampling

from a featured trajectory space alleviates the issue of learning in a high dimension space.

The linearity of the approximator parameter allows for an ef�cient sampling from the null

space of the trajectories, hence handling constraints on the via-points. Moreover, a variety of

basis functions could be adopted to enforce a smooth prior to the parameter variation. This is

advantageous for a robust learning from noisy demonstrations. The smoothness prior could

also prevent a drastic and impulsive change to the variable impedance, ensuring a safe robot

implementation.

Concretely, a trajectory can be approximated with a linear combination of M normalized
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Figure 3.5: Representing a trajectory with a
function approximator combining nonlinear
and linear features. The parameters of the func-
tion approximator are the weight of each com-
ponent: magnitude of the Gaussian RBF and
slope of the linear feature.

Figure 3.6: Sampling constrained trajecto-
ries from the nullspace of the approxima-
tor parameter. Top: �xing the start point;
Down: �xing two end points.

Radial Basis Function (RBF) plus a linear feature, taking the reference state x r
t as an example:

x r
t (!) Æ! T ©( t ) Æ

MX

i Æ1
! i

exp(¡°( t ¡ t i )2)
P M

j Æ1exp(¡ °( t ¡ t i )2)
Å ! M Å1 t (3.9)

where t indicates the phase variable for a general representation. The extra linear feature

ensures a sparse representation to encode a straight line. For the nonlinear terms, when the

phase variable is de�ned within the interval of [0 .0,1.0], the basis center t i can be selected

to uniformly distribute the basis functions in the interval. ° shapes the width of the basis

function and then entries of ! weigh the contributions of each basis component, as shown in

Figure 3.5.

Sometimes one might expect the sampled trajectories to ful�ll some constraints, e.g., to pass

through a speci�c point. This is especially useful in trajectory optimization when all the

samples are supposed to start from an initial state x0 or to �x both their boundary points.

Such constraints can be imposed by sampling in the nullspace of the feature parameter space.

Concretely, let ! be constrained to generate trajectories passing through a set of points X r
const

! T [© 1, ...,©c] ÆX r
const Æ[x1

const, ...,x
c
const] (3.10)

A linear transformation matrix U can be found through the Singular Value Decomposition
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(SVD) to ensure

(! ÅU ±!) T [© 1, ...,©c] Æ[x1
const, ...,x

c
const] (3.11)

to hold for any ±! sampled in the subspace of the feature parameter space. In that sense, the

parameter trajectories are ef�ciently explored without needing to reject those that violate the

constraints. Figure 3.6 shows sampled trajectories with �xed end points. Also, when ±! is

sampled as Gaussian noise, the perturbed trajectory parameter ! ÅU ±! is still subject to a

normal distribution in that U is a linear transformation.

Like the reference trajectory x r
t , other variables that control the weight matrix entries are

encoded as:

tan ®t Æ
sin ®t

cos®t
Æ

�x2

�x1
Æ

! T
®2

©0(t )

! T
®1

©0(t )

¤ t Æ

"
cos®t sin ®t

¡ sin ®t cos®t

#"
! T

¤ 1
©( t ) 0

0 ! T
¤ 2

©( t )

#"
cos®t ¡ sin ®t

sin ®t cos®t

# (3.12)

where ©0(¢) denotes the derivative of the basis function with respect to the phase variable,

yielding another nonlinear basis for the function approximation. Comparing with Equation

(3.7), all the unknown parameters are now de�ned (up to a constant scale) in the form of tra-

jectory function approximators. Henceforth, the cost learning is reparameterized to estimate

µ Æ{!, ! ®, ! ¤ }.

3.5 Sampling-based Inference

The duality of optimal control and the probabilistic IOC like Equation (3.2) motivate to ad-

dress the cost parameter optimization as an inference problem. The inference consists of

two stages, each of which needs a sampler. The �rst sampling step takes samples from the

parameter prior p(µ) to evaluate the posterior demonstration likelihood. The second routine

samples x to estimate the likelihood denominator. Note that the latter in effect performs a

trajectory optimization thus can also be used to derive the optimal control on another agent to

execute the transferred task. Therefore the �rst stage of optimizing the cost parameter can be

considered as task encoding while the trajectory optimization in the second stage decodesthe

task under the cost representation. Here both the task encoding and decoding are uniquely

addressed through a cross-entropy-like method under the importance sampling scheme.

The importance sampling scheme suggests take samples from a proposal distribution when

the target distribution is not of an easy form to take samples from. For instance, the posterior

p(µj&¤ ) / p(&¤ jµ )p(µ) (3.13)

is intractable for its component of the general Boltzmann form. The cross-entropy method
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(a) (b) (c) (d)

Figure 3.7: Iterative sampling and importance evaluation in cross-entropy-like inference: (a)(c)
- samples are taken from the current estimated proposal distribution q (black curve); (b)(d) -
evaluating the importance of samples with respect to the target distribution p and �t a new
proposal q. The transparency of dots indicates the sample importance evaluated under the
target p (gray curve).

usually uses a multivariate Gaussian q(µj¹ µ ,§ µ ) as the proposal to approximate the intractable

distribution. The q(µj¹ µ ,§ µ ) is iteratively estimated based on the weighted samples { µ̂ i }:

¹ ¤
µ ,§ ¤

µ Æargmax
¹ µ ,§ µ

X

i
I(µ̂ i ) log q(µ̂ i j¹ µ ,§ µ ) (3.14)

where I(¢) denotes the sample importance. The importance function I(¢) is subject to the user

design. For example, in a standard cross-entropy method (de Boer et al., 2005), I(¢) is a binary

function screening out top performed samples, which construct a so-called elite set. In a

similar spirit of the path-integral approaches (Kappen and Wiegerinck, 2007; Theodorou et al.,

2010b), the method presented here de�nes the importance function as:

I(µ̂ i ) Æ
exp(¡´L (µ̂ i ))

P

j
exp(¡´L (µ̂ j ))

(3.15)

where L (¢) denotes the target cost function, e.g., the negative logarithm of the likelihood in

Equation (3.2). In contrast with the binary I(¢) in the standard form, this importance function

de�nes a soft elite-set membership, which is in�uenced by the Boltzmann temperature ´ . Such

an importance assignment strategy has been demonstrated to be effective in robotics-related

stochastic optimization (Stulp and Oudeyer, 2012).

Solving {¹ ¤
µ ,§ ¤

µ } in Equation (3.14) simply �ts a Gaussian distribution with weighted samples:

¹ ¤
µ Æ

X

i
I(µ̂ i )µ̂ i

§ ¤
µ Æ

X

i
I(µ̂ i )(µ̂ i ¡ ¹ ¤

µ )(µ̂ i ¡ ¹ ¤
µ )T

(3.16)

where the covariance estimation is a biased one and in practice the evolution of its eigen values

are often truncated to assure a stable search and the chance of exploration in all dimensions.

The general cross-entropy-like inference thus alternates between the score evaluation of the
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Algorithm 1 Encoding - An iteration step for learning the cost function based on cross-entropy
stochastic optimization

Require: &¤ ,µ Æ{x r
t ,¤ t },q(¹ µ! ,§ µ! ),r (&̂),K ,N - Number of parameter and trajectory sam-

ples, D - Demonstrations of T length
Ensure: µNew , q(¹ New

µ!
,§ New

µ!
)

for all i in 1:N do
µ̂

i
! Ã q(¹ µ ,§ µ ) . Sample parameters according to current distribution. Apply the

nullspace projection if necessary.

µ̂
i

Æ{x̂ r
t , ¤̂ t } Ã Equation (3.9) . Recover the reference trajectory and weight matrices

from the feature space.
for all k in 1:K do

&̂k Æ{xk
t , t Æ1,...,T } Ã r (&̂) . Sample locally perturbed trajectories for evaluating

partition function.
end for

L i Ã ¡
P D

j Æ1log
exp(¡J (&¤

j ,µ̂
i
))

P K
kÆ1

1
°( &̂k ) exp(¡J (&̂k ,µ̂

i
))

end for
{µ̂

i
! }el i te Ã EliteSet({µ̂

i
! ,L i }) . Construct the elite set.

µNew , ¹ New
µ!

Ã Mean({ µ̂
i
! }el i te )

§ New
µ Ã Covar({µ̂ i }el i te ) . Update parameters through Equation (3.16).

proposal samples and the estimation of the new distribution under weighted samples, as

illustrated in Figure 3.7.

3.5.1 Learning Cost Function for Task Encoding

The cross-entropy method and feature sampling presented above are employed to learn the

task cost by solving Equation (3.2). The partition function is evaluated with K locally sampled

trajectories from another proposal distribution r (e.g., a Gaussian centered at the optimal

solution). This is eventually solving the forward trajectory optimization and the sampling-

based algorithm is given in the next section 1. Assuming a uniform prior p(µ), Equation (3.2) is

rewritten as minimizing the negative log-likelihood

µ¤
! Æargmin

µ !

¡
DX

i Æ1
log

exp(¡J (&¤ ,µ ! ))
P K

kÆ1
1

r (&̂k ) exp(¡ J (&̂k ,µ ! ))
(3.17)

where &̂k Æ{x̂k
1:T } is the locally sampled trajectory. µ ! Æ{!, ! ®, ! ¤ } are the learning pa-

rameters in the feature space of the function approximator. D denotes the number of

demonstrations. The proposal sampler for the parameter distribution q(µ ! ) is factorized

as q(µ ! ) Æq(! ¤ )q(! ®j! )q(! ), with q(! ®j! ) de�ned as a deterministic mapping or a Dirich-

let distribution. The remained components follow the Gaussian assumption in the standard

1One can calculate a closed-form solution for a Gaussian distribution and quadratic function. However, a
sample-based evaluation is used here to be consistent with the decoding algorithm.
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Algorithm 2 Decoding - An iteration step for deriving trajectory based on cross-entropy
stochastic optimization

Require: ! y ,ª, r (¹ ! y
,§ ! y ),C(x t , t ),N - Number of samples

Ensure: {y t }, r (¹ New
! y

,§ New
! y

)
for all i in 1:N do

!̂ i
y Ã r (¹ ! y

,§ ! y ) . Sample trajectory parameters according to current distribution.
Apply the nullspace projection if necessary.

&i Æ{x t }i Ã (!̂ i
y )T ª( t ) . Take a rollout by following the trajectory for each DOF to

obtain task-featured states.

L i Ã J (&i ) Æ
TP

t Æ1
C(x t , t )

end for
{!̂ i

y }el i te Ã El i teSet({!̂ i
y ,L i }) . Construct the elite set.

{y t }, ¹
New
! y

Ã Mean({ !̂ i
y }el i te )

§ New
! y

Ã Covar({!̂ i
y }el i te ) . Update parameters through Equation (3.16).

cross-entropy method to assure ef�cient distribution sampling and �tting in the Algorithm 1.

3.5.2 Generating Motion Trajectory as Task Decoding

A state trajectory & Æ{x} can be derived to facilitate the partition function evaluation in

Algorithm 1. This also effectively solves the trajectory optimization given the learned cost

function, as such, decoding the task representation. Sample-based inference, such as the

cross-entropy method, can approach the problem as a model-free method. This property is

desired because the task relevant state x might depend on other actuated states. For instance,

the underlying motion is exercised in the joint space as {y t }, and can be converted to the

interested state space of the cost function through · (y t ). Note that the complexity of · depends

on the robot embodiment as well as the task de�nition. It can be a kinematic function for

characterizing the joint movement of a single manipulator in the Cartesian workspace, or other

nontrivial forms, e.g., consider a · (¢) that correlates the joint trajectory of a anthropomorphic

hand to the motion of a manipulated object.

Similar to the encoding algorithm, the iteration step of trajectory optimization is given as

Algorithm 2. It works as a cross-entropy method with function approximators y t Æ! T
y ª (t ) for

all of the actuated robot DOFs 2. The only extra requirement is the measurement of the task

state x t Æ·( y t ) though the feature mapping ·(¢) itself could be unknown.

2ª (¢) could be same as or different from the task trajectory feature ©(¢). A new symbol is used here to differentiate
the feature design of the cross-entropy optimization in the decoding stage.
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3.6 Implementation and Results

This section reports the implementation of the algorithms and obtained results on a robotic

handwriting task. The �rst part illustrates how the structured cost parameters are learned

under the proposed cross-entropy like inference. The robotic handwriting motion is then

developed on both simulated and real robots, including implementations on both a single ma-

nipulator and a mult-�ngered robotic hand. In the last experiment, the impedance controller

is examined in a contact-involved motion to validate the learned compliant behavior.

3.6.1 Encoding Task Cost for Letter Trajectories

In this experiment, Algorithm 1 is implemented to learn handwritten letter trajectories. The

purpose of this experiment is to extract from demonstrations an informative cost as the task

representation. The cost will be further exploited to reproduce the writing task on robot agents

with different embodiments.

The letter trajectories are from the dataset reported in (Khansari-Zadeh and Billard, 2011).

Only position coordinates are considered, thus the data consists of a series of 2D coordinates.

In this experiment, the trajectories are aligned to the same time horizon by curve �tting and

subsampling. All letter coordinates are within a comparable range and de�ned with respect to

the trajectory end points.

Figure 3.8 illustrates some particular iteration steps of the learning process for letters “G”,

“N” and “P”, where for each letter seven demonstrations are used as the training data. For

all these letter examples, the reference trajectory is naively initialized as a straight line, and

the initial sampling distribution is set with a variance of 0.05 to ensure that a large enough

parameter space is explored. We use 9 RBF basis functions to approximate the reference

trajectory and modulation of eigen values of the precision matrix. The function approximator

is set to represent trajectories with both the two end points �xed and such a constraint can be

observed from all of the samples throughout the iteration steps of importance sampling, for

which 15 parameter samples are used. As a result, the learned reference trajectory {x r
t } , which

is encoded by the mean parameter of sampling distribution, rapidly converges to capture the

pro�le of demonstrated trajectories. Only tens of steps are needed to achieve this even the

naive initial guess might be far from the demonstration data. On the other hand, it can be

seen that, the variance of the sampling trajectories also decreases as the iteration evolves. This

implies that the sampling distribution shrinks its entropy thus the estimation of the reference

trajectory tends to be certain.

The other cost parameter dimension is shown in Figure 3.9. Here, the varying weight matrix

¤ t is highlighted. The positive de�nite matrix is illustrated as a heating ellipse whose center

is located at the current reference point, and the axes represent principle directions and the

inverse of eigen values. Taking the letter “G” as an example, it is clear that the direction of the

principle axes varies with respect to the local reference frame along the tracking trajectory.
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(a) Iteration Step = 1 (b) Iteration Step = 10 (c) Iteration Step = 15 (d) Iteration Step = 30

(e) Iteration Step = 1 (f) Iteration Step = 5 (g) Iteration Step = 10 (h) Iteration Step = 50

(i) Iteration Step = 1 (j) Iteration Step = 5 (k) Iteration Step = 15 (l) Iteration Step = 70

Figure 3.8: Evolution of the reference trajectory as the learning algorithm iterates. The iter-
ations begin with a straight line as a tentative initial guess. The average trajectory evolves
towards demonstrated pro�le to increase the likelihood of demonstrations. The proposal
distribution converges as covariance of the sampled trajectories shrinks at the �nal stage.

Also, the length of principle axes, which indicates weight parameter in the corresponding

direction, captures the sensitivity of deviance from reference trajectory at each regulation

point. Similar to the heuristic of variable impedance design based on trajectory variance, the

IOC algorithm encapsulates this as the structured cost parameter. As an example, the ellipse

expands its length of axis along the radial direction of the curve in 3.9b. On the contrary, in 3.9d,

the ellipse shrinks its axis length along the radial direction as the demonstrated trajectories are

more consistent within these sections. Moreover, since the demonstrations are aligned with

respect to the termination point. The ellipse size is minimized corresponding to the truncated

covariance eigen values in the cross-entropy method. Indeed, the deviation along these

directions will incur a large cost penalty and the reference trajectory is expected to be well

tracked. Note that at certain positions, such as Figure 3.9b, the ellipsoid is almost circular so

the orientation of local reference frame is not very obvious. This is because the demonstrations

are widely distributed in this section so the motion is �exible along different directions. Also,

the RBF basis functions implicitly assume a smooth variation of cost parameters. This indeed

results in a biased estimation so that the parameters are not fully determined by the data

under the original Equation 3.2. However, during the execution, the noise of data might lead
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to a drastic impedance change, which can be harmful to the robot hardware. Embedding a

dynamical parameter in the space spanned by these basis functions suppresses such drastic

changes, establishing a smooth transition of the ellipsoid shape from Figure 3.9a to 3.9c.

Following the derivation of an optimal impedance controller in Section 3.3, it is thus natural

to transfer a varying stiffness pro�le to the robot agents. The concrete compliant behavior

subject to an external human interaction will be demonstrated in the robot experiments.

3.6.2 Decoding Task Cost: Robot Handwriting Motion

In this experiment, robot handwriting motion is derived as a decoding of the learned task cost.

Although the quadratic cost pertains to a trajectory-based representation, it is still �exible to

incorporate different task-relevant features and additional models such as inverse dynamics

control.

To see this, the Algorithm 2 is instantiated on an anthropomorphic robot hand, on which

the feature x is constructed with the · (¢) of a non-trivial form. The 16-DOFs Allegro (Figure

3.10) can be considered as a system consisting of multiple manipulators. The interested

feature x is the pose of the manipulated pen and has to be realized by coordinating the joint

motion of the involved �ngers. To simulate the mapping function · to get the task feature

from the �nger joint motion, a virtual object frame, which is commonly used in the grasping

and dexterous manipulation community, is adopted here. As shown in Figure 3.11, the virtual

frame is statically de�ned by the position vector of the tips. For the case of three �ngers, the

origin ( O in Figure 3.11) of the virtual frame is the average position of involved end-effectors,

and the orthogonal axes can be determined with the cross products of relative position vectors.

The pen tip ( O0 in Figure 3.11) is assumed to be �xed, with respect to this virtual frame via

a known transformation along the pen axle. Note that · is designed for evaluating the cost

and it is not known to the algorithm. More details about the principle and application of the

virtual frame is off the main thesis topic and interested readers can refer to (Li et al., 2014).

In the experiment of writing a letter “e”, N Æ15 samples are suf�cient for exploring an optimal

result. As per the parameterization of the function approximators, candidate trajectories are

initialized as straight lines in the joint space. 15 samples are used in the importance sampling

process. The evolution of cost values within 1000 iterations is shown in Figure 3.12. Indeed,

the proposed algorithm is effective for the trajectory optimization, as the cost monotonically

decreases to a relatively stable level within a few hundred iterations. Also, the variability

(gray area) of the costs of sampled trajectories decreases as the samples tend to be identical,

implying the exploration variance vanishes and as such, a convergence to a near optimal

solution is achieved.

As a more general example, cursive handwriting is implemented on a real 7-DOFs KUKA LWR

arm, hence applying the algorithm to a different kinematic structure and task feature. In this

experiment, the pen is held by the Allegro hand mounted on the robot arm, and the motion is
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(a) t = 0 (b) t = 0.286 (c) t = 0.428

(d) t = 0.571 (e) t = 0.857 (f) t = 1.0

(g) t = 0 (h) t = 0.286 (i) t = 0.428

(j) t = 0.571 (k) t = 0.857 (l) t = 1.0

Figure 3.9: Results of learning a variable weight matrix as the task proceeds. The inverse of
the matrix ¤ t is illustrated as a moving heating ellipse by evaluating cost value over the entire
state space. The task phase horizon is scaled between 0 and 1.0.
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Figure 3.10: 16-DOFs Allegro
robotic hand with 4 joints for
each �nger manipulator.

Figure 3.11: Approximating the object pose through
a virtual frame. The interested feature x, the tooltip
frame, is then de�ned in an object-level reference.

realized as writing a word “allegro” on a board grabbed by a human. Figure 3.14 demonstrates

the success of derived motion. Besides the motion itself, the learned compliance is also

approximately speci�ed through the object-level impedance controller on the Allegro hand.

As a result, the motion exhibits certain robustness to accommodate unmodeled uncertainties,

which include the surface texture and more importantly, a varying board orientation under

the human manipulation.

3.6.3 Decoding Task Cost: Handwriting Impedance Control

In this experiment the developed impedance is examined through a closer observation. Con-

cretely, the end-effector motion compliance in Cartesian space is implemented by the 7-DOFs

KUKA LWR robot. The encapsulated compliance is validated by subjecting the robot to distur-

bances during the writing execution. Figure 3.15 shows robot's compliant behavior with the

developed varying impedance parameter. As expected, the robot exhibits relatively compliant

behavior to perturbation in Figure 3.15b. This property can be understood by revisiting the

learned cost in Figure 3.9b. Note that in Figure 3.9b, the heating ellipse indicates the inverse of

weight matrix ¤ t thus a smaller axis length implies a larger desirability to keep the motion on

track. In contrast to this, the robot is comparatively stiff in the radial direction in Figure 3.15c

and one can observe even more resistance under perturbation in Figure 3.15d. Correspond-

ingly, this can be explained by a larger ¤ t in these sections, with an increased impedance

parameter developed.

Finally, the learned weight matrices are applied for writing other letters, with the aim of

showing the generality of the learned cost function. As is shown in Figure 3.16, letters “N”

and “W” are written with the impedance trajectory derived from the local structure of ¤ t of

"G". The eigen values of ¤ t is independent from the reference trajectory. These values hence

encapsulate the knowledge about how to shape the stiffness ellipse in the motion tangential

and radial directions. The robot is then enabled to still execute a modi�ed trajectory by
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Figure 3.12: Logarithm of the cost in the iterations
of running the decoding algorithm. 15 samples
(curves of different colors) are taken to evaluate the
rollouts and re-�t the proposal parameter distribu-
tion. The black bold curve indicates the averaged
performance.

(a) (b)

(c) (d)

Figure 3.13: Multi-�nger joint motion
for writing a letter “e” via the pen-tip.

overcoming the friction, which is the main disturbance along the motion velocity direction.

3.7 Discussion

The approach presented in this section addresses learning and decoding structured cost-to-go

functions. The special function structure incorporates the local reference frame representation,

a robotics-related prior, while also results in tractability issues for a standard IOC solution. The

presented algorithms take a probabilistic inference perspective to tackle the original problem,

(a) (b) (c) (d) (e)

Figure 3.14: Cursive handwriting motion implemented on a manipulator with the pen compli-
antly grasped by the Allegro hand.
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(a) Start writing (b) Large deviation under
perturbation

(c) Small deviation under
perturbation

(d) Finishing writing

Figure 3.15: Snapshots of writing “G” with the developed impedance parameters: (b) Low
stiffness along radial direction - large deviation and vibration incurred under the perturbation;
(c) and (d) High stiffness - small oscillation amplitude under perturbation; Reference trajectory
is illustrated as the dash line and the perturbed sections are shown in detail in (d). Note to
compare with the weight ellipse shape from Figure 3.9a to 3.9f

Figure 3.16: Generalizing the cost parameters to other letters: writing “N” and “W” with the
impedance by exploiting the local ¤ t extracted from “G”.

securing ef�cient computations for learning and reasoning about the task objective. As an

answer, the discussed approaches employ the structured cost to address the identi�ed domain

research questions:

• Robotics : the task constraints, e.g. the impedance variation with respect to the local

motion, can be incorporated as the dependencies within cost-to-go parameters, e.g., the

correlation between the reference and weight matrices. Shaping the control synthesis is

achieved by optimizing this structured cost-to-go function.

• Machine learning : the duality between optimal control and inference can be utilized to

solve the IOC as a probabilistic inference problem, as such incorporating the parameter

priors in the form of a structured distribution for the sampling-based inference.

The cross-entropy-based inference is a general stochastic optimization thus the cost-to-go

and trajectories are not limited to be quadratic or linearly parameterized. The adopted cost

form is advantageous for this speci�c task in two aspects: on one hand it explicitly draws
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a connection to existing heuristics about impedance design; on the other hand, it exploits

the structure (dependency between the reference trajectory and local frame) to improve the

sampling ef�ciency. The principle of inference-based IOC itself is applicable to a broader

range of cost parameterizations and applications, as long as the interested structure can

prompt an ef�cient sampling process.

The presented cost parameterization and trajectory approximation allow to learn a variable

impedance pro�le while assuming a single reference trajectory. The question arising from this

limitation is how one can learn multiple adaptable reference trajectories. This is interesting

from the robotics point of view in that the human motor control not only modulates the limb

impedance but also, in certain cases, systematically adapts the motion trajectory. From a

machine learning perspective, the presented IOC algorithms assume similar demonstrations

and only capture the data with a single dynamics or behavior mode. This assumption helps

to simplify the hypotheses space while faces dif�culties in modeling diversi�ed human data.

Some of these limitations will be discussed and addressed in the following chapters.
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4.1 Introduction

The learning from demonstration (LfD) approach presented in the last chapter models data

variabilities around a reference trajectory. Sometimes the variabilities should be interpreted

as the consequence of other task parameters, instead of the ignorable factors such as motor

noise. For instance, humans might perform an identical task in their own preferred ways,

exhibiting different behavior modes. The variety of demonstrations could be driven by the

personal intention, contextual cues or social factors. The behaviors can be less ambiguous

with these factors labeled. However, usually the labels are implicit due to the limitation of

robot perception capability. As a result, the robot might have to learn from demonstrations

that are not completely observable.

This chapter tackles the problem of learning from human data with latent behavior modes. An

LfD approach is developed for programming rich behaviors without the need of labeling each

demonstration. Reasoning about an incomplete task observation solicits the inference of what

is unknown from what is known. In light of this, the LfD model can be used in a pipeline that

complements the perception and then derives the control. As an example, in a collaboration

task, the intended behavior mode of a human operator might be implicit to the robot. A model

about these latent behavior modes can be leveraged for the robot to resolve the perceptual

uncertainty and act cooperatively, as such achieve an improved task performance.

Modeling diversi�ed behaviors entails an LfD algorithm that disambiguates local and global

distinctions. This requires estimating a multi-modal demonstration distribution. When the

distribution is parameterized with nonlinear cost functions, the estimation is feasible under

the standard probabilistic IOC framework. However, the generality of the standard formulation

trades-off a high computational cost and approximation arising from the partition function

evaluation. Also, the interpretability of the popular parameterization, which linearly combines

a set of nonlinear basis functions, is not explicit for understanding the mode of an observed

behavior. Noting these challenges, the research questions are set from both the robotics and

machine learning (ML) perspectives:
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• Robotics : how to facilitate the robot perception and adaptation by reasoning about

multi-mode task demonstrations.

• Machine learning : how to ef�ciently learn an IOC model from demonstrations with

unobservable modes.

The proposed approach exploits the problem structure about the behavior mode, which is cast

as a discrete latent variable. A divide-and-conquer strategy is adopted to break the problem

into ef�cient pieces that deal with similar demonstrations. The dif�culty of grouping similar

demonstrations is mitigated by bagging a collection of naive models. Therefore, the idea is

leveraging ensemble principle and aggregating simple cost-to-go representations to yield a

powerful model. The validity of learning simple models is ensured by focusing on locally

consistent data. The data grouped in the subset is labeled with a discrete latent state that can

be cast as the mode of these demonstrations. The posterior estimation of the latent variable is

ef�cient, leading to an online mode inference and supporting realtime motion adaptation. As

a summary, the main contributions are:

• An Ensemble IOC algorithm based on the linear-solvable system for learning cost-to-go

functions and tackling incomplete demonstrations.

• A new perspective on Gaussian Mixture models (GMM) in the context of IOC. The results

shed light on what GMMs actually learn (local MaxEnt models) and how can they be

used as a guaranteed approximation.

• Integration of the task dynamics with the latent state to handle the challenge from

incomplete state observation, for which a direct multi-mode policy encoding fails. The

augmented dynamics provide a strategy to exploit the task redundancy to accommodate

the disturbances or human intervention on-the-�y.

This chapter is based on the published work (Yin et al., 2016) and a submitted journal paper.

Most of the sections are based on journal submission, which encompasses and extends

the approach presented in (Yin et al., 2016). The contents of Section 4.5 and 4.7.2 only

appear in (Yin et al., 2016). These sections focus on unique kinematics features and results of

synthesizing human-like handwriting motion, pertaining to the main application of (Yin et al.,

2016).

4.2 Problem Statement

4.2.1 Learning and Synthesizing Multi-mode Behaviors

Let the expert demonstrations be a dataset D Æ{&i } with i as the data index. Taking the

handwriting task as an example, the demonstrated data could be a set of trajectories that form
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(a) Unimodal (b) Multi-modal

Figure 4.1: Unique and multiple modes of demonstration trajectories to execute a task, with
handwriting motion as an example. 4.1a is a poor model to encapsulate the diversity and re-
dundancy of styles in forming the letter " D". Actually, the unique mode, which approximately
represents the mean trajectory, is not legible, and should be assigned with low probability
(high cost value) instead. Also, the state itself (the point coordinate on the arc) is not suf�cient
to determine the next desired position.

different styles of written letters in the Cartesian space, with the planar position coordinate

the features x i
t 2 &i . Similar as the trajectory parametrization in Section 2.3.2 and Chapter

3, the subscript t refers to the phase index. The demonstrated trajectories can be aligned by

scaling the horizon to the same phase interval, e.g., from 0.0 to 1.0.

Unlike Chapter 3, the demonstrated trajectories are not necessarily with a distribution of one

mode. Indeed, the driving factor of forming a stereotyped trajectory is abstracted as a discrete

variable zi 2 N, which is, however, not explicitly observed in D. To put it into perspective, the

latent variable zi indicates a particular way of executing the task. Taking Figure 4.1b as an

example, the stroke direction of forming the circle in writing the two types of "D" depends on

the global style instead of the local geometry. Depending on the context, zi is interchangeably

interpreted as “style” or “mode” throughout this chapter.

The human and robotic agents are constrained by their corresponding dynamical models, as

the linearly-solvable dynamical system reviewed in Section 2.3.2 :

x t Å1 Æf (x t ) Å B(u t Å d w )

d w » N (0,§ 0)
(4.1)

where d w is the additive noise. The parameters of the dynamical system are assumed to be
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known or empirically determined.

The cost-to-go function that steers the desired behavior, is of a similar form in 2.3.2 but now

dependent on z:

J &(x0,z,µ, t0) Æ
TX

t Æt0

C(x t ,z,µ) Å
1

2
u T

t Ru t (4.2)

Learning multi-mode behaviors is thus estimating the parameter of the conditional distribu-

tion:

P(x t Å1 jx t ,z,µ) Æ
P0(x t Å1 jx t )e¡J &(x t Å1 ,z,µ)

R
x0

t Å1
P0(x0

t Å1 jx t )e¡J &(x0
t Å1 ,z,µ)d x0

t Å1
(4.3)

where P0 denotes the stochastic dynamics in Equation (4.1) without an active control. This

likelihood cannot be directly evaluated as z is not observable. Merging z and µ for estimating

a joint variable is viable for �tting the likelihood. However, this might result in a nontrivial

partition function evaluation because of the general form of J . On the other hand, it would

be bene�cial to disentangle z from the unknown parameters for the ef�ciency of recognizing

a given trajectory ( p(zj&)) and synthesizing motion of a speci�ed mode ( p(&jz)).

4.2.2 Our Approach

This chapter takes a divide-and-conquer strategy to approach the problem. It is based on

the results in Chapter 3, where one or a set of simple quadratic cost-to-go function can be

used to model locally consistent demonstrations. The problem then boils down to grouping

trajectories of the same mode. Clustering-based preprocessing is an option to achieve this,

for which the cost-to-go functions themselves serve as a natural metric: a pair of trajectories

are similar if both of them are locally optimal with respect to quadratic cost-to-go functions.

For sake of ef�ciency, the proposed approach develops an ensemble method. The key idea

is to randomly group trajectories in a suboptimal while quite ef�cient way. An improved

performance is then obtained by aggregating a set of such “naive” models.

The followings of this chapter �rst develop the IOC result under the weak quadratic cost-to-go

function. Random subspace embedding is then employed to realize the suggested trajectory

grouping. The chapter continues with the incorporation of human kinematics features and la-

tent dynamics. These extensions target practical applications about synthesizing handwriting

and inferring motion intention, both of which are correlated to modeling and reasoning about

the latent behavior modes.
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4.3 Quadratic Cost Learning under a Linearly-solvable System

Let the discrete z be considered as a known variable. In that sense, it can be seen that the

integral of the denominator in Equation 4.3 can be ef�ciently evaluated if J is of a quadratic

form. A quadratic cost-to-go implies that the demonstrations, which quantitatively expect a

low entropy Gaussian probabilistic model in (4.3), roughly follow a unique behavior mode. By

exploiting this fact, the demonstrations labeled with the same z, when factored as state pairs,

can be modeled by setting J &(x t ,µ) Æ1
2(x t ¡ ¹ t )

T ¤ t (x t ¡ ¹ t ) in (4.3), yielding

P(x t Å1 jx t ,z) Æ
1

p
(2¼)d j§j

e¡ 1
2 (x t Å1¡¹ 0)T § ¡1 (x t Å1¡¹ 0),

¹ 0Æ§[§ ¡1
0 f (x t ) Å ¤ t Å1¹ t Å1],

§ Æ(§ ¡1
0 Å ¤ t Å1)¡1 ,

(4.4)

where § 0 is covariance of the Gaussian noise of the passive dynamics. § is the covariance

matrix, which depends on ¤ t Å1, and d denotes the state dimension. Therefore, the likelihood

in (4.3) can be written in an explicit way, thanks to the closed-form evaluation of the integral

of the product of two Gaussian functions:

Z
1

p
(2¼)d j§ 0j

e¡ 1
2 [x t Å1¡ f (x t )]T § ¡1

0 [x t Å1¡ f (x t )]e¡ 1
2 (x t Å1¡¹ t Å1)T ¤ t Å1(x t Å1¡¹ t Å1)d x t Å1

Æ

q
j¤ ¡1

t Å1 j
q

j¤ ¡1
t Å1 Å § 0j

e¡ 1
2 [ f (x t )¡¹ t Å1 ]T (¤ ¡1

t Å1Å§ 0)¡1 [ f (x t )¡¹ t Å1 ]
(4.5)

Moreover, a maximum-entropy (MaxEnt) formulation implies a standard Gaussian distribution

x t Å1 » N (¹ t Å1,§ t Å1), with the stochastic dynamics tends to be uniform with k§ 0k ! 1 . It is

apparent the maximum likelihood estimation of this approximation is even more trivial. This

is because y is dependent on Z in Equation 4.4 thus estimating the original ¹ and § requires

an iterative optimization. Given these observations, the MaxEnt result appears as a reasonable

starting point to guess the model or decouple the parameters. In fact, such a surrogate has a

following guarantee:

Proposition 1 The optimal estimation of {¹ t ,¤ t } for a MaxEnt formalization ensures a lower

bound of the original likelihood (4.4) and the gap depends on § 0. In particular, the gap decreases

ask§ 0k ! 1.

See Appendix A.1 for the proof. The above conclusion means, if the assumption for learning

quadratic cost-to-go function holds, the estimation can be ef�ciently performed through a

MaxEnt approximation.

Note that the learning considers identifying cost-to-go functions as the local IOC problem

because it is arguably more ef�cient than learning a cost function (See discussions about OptQ
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Chapter 4. Modeling Latent Behavior Modes

in (Dvijotham and Todorov, 2010)). Another advantage of having a cost-to-go function is a

local controller can be immediately derived, as is shown in Section 2.3.2:

u ¤
t Æ ¡R¡1 B

@J&¤ (x t Å1)

@x t Å1
(4.6)

The quadratic cost-to-go functions can be either time-independent or time-dependent for

modeling time-invariant task and �nite-horizon trajectories. It is known that, for �rst-exit

problems, the cost-to-go function corresponds to the cost function in the Bellman equation:

C(x t ) ÆJ (x t ) Å log
Z

P0(x t Å1 jx t )e
¡J (x t Å1)d x t Å1 (4.7)

In (Dvijotham and Todorov, 2010), the relation is suggested to be used for the inference of

the cost function. This is, however, not exploited in the thesis and the focus is about the

development of learning cost-to-go functions.

4.4 Ensemble IOC with a Random Subspace Embedding

The ef�ciency for learning a quadratic cost function based on the linear-quadratic (LQ) as-

sumption is useful. Indeed, this fact motivates to address the original problem in two phases.

In the �rst stage, similar trajectories are grouped to ensure the applicability of the LQ assump-

tion. The following-up learning can then exploit the problem structure for a rapid estimation

over grouped demonstrations. The grouping subroutine is expected to be cheap so the overall

pipeline can save computational cost comparing with tackling the original problem.

There exist numerous clustering techniques for the preprocessing purpose. For example,

a simple and rapid method such as K -means could be a possible option. However, the

performance of a clustering algorithm usually relies on a proper metric characterizing the data

similarity. The popular Euclidean distance in the standard K -means might work when the task

is time-invariant and the latent variable z depends on the state x (p(zjx)). However, for certain

tasks, the style of a demonstration might depend on the global trajectory feature ( p(zj&)). As

discussed in Section 4.2.1, handwriting exempli�es such a kind of task. The challenge raised is

that the Euclidean distance might no longer be viable for state trajectories, which are often of a

high dimension. Section 4.7.3.2 will demonstrate a general trajectory task where the similarity

metric is nontrivial.

Here the thesis proposes an approach which is, on one hand �exible for the dependency

on both local and global features, and on the other hand, still simple and ef�cient for its

implementation. The approach works in an iterative manner by recursively dividing the

dataset. Take the trajectory grouping as the example, each iteration of the algorithm seeks to

maximize the information gain from introducing a partition on the current dataset:

¢ H (D ,Á(¢))ÆH (D ) ¡ [H (D Á(&)¸0 ) Å H (D Á(&)Ç0)], (4.8)
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4.4. Ensemble IOC with a Random Subspace Embedding

where H denotes the entropy of the data trajectories under a probabilistic model. D Á(&)¸0 and

D Á(&)Ç0 are the partitioned subset based the criterion Á(&) Æ0. The reduction of entropy im-

plies the partitioning reveals useful structure from the data space. Upon noting the simplicity

of a Gaussian entropy, a MaxEnt model with the quadratic parameterization can be used to

evaluate the entropy.. Á de�nes the function to decide the membership of each demonstration.

For an ef�cient searching, this function is often constrained with a simple form. Existing

research (Criminisi et al., 2012) provides popular options to obtain decision boundaries of

different levels of complexity. The optimization in searching Á can be further relaxed by ran-

domly selecting the effective features and the candidate solutions, as is suggested in (Geurts

et al., 2006). Among these options, the thesis employs a naive form, letting Á(&) Æ&t ,l ¡ ´

where &t ,l denotes the l -th dimension of the t -th state x t in trajectory &. ´ is the intercept

to be decided together with t and l in the random search. This in fact explores in a family of

axis-aligned decision boundaries in the temporal and spatial space of the trajectories.

The above process can be performed recursively to obtain K subsets, as is demonstrated in

Figure 4.2. The recursive process can be terminated when the dividing violates the constraints

of the minimum number of demonstrations N min
D in the subsets. By randomly searching

in a constrained parameter space, the formation of partitions is ef�cient and effective in

grouping demonstrations with a similar style (low entropy distribution). The pseudocode

for this recursive partitioning subroutine is given as Algorithm 3. The algorithm returns K

subsets DkÆ1:K taking as input the complete demonstration set D . Further explanation about

the other parameters will be given later.

Algorithm 3 RandomSubSpace - Partitioning dataset through feature bagging

Require: D , Nx , N min
D

Ensure: DkÆ1:K

DkÆ1:KÃ SPLIT(D ,Nx ,N min
D )

function SPLIT(D i n , Nx , N min
D )

{&i
t ,l }i Æ1:Nx Ã RandomSelect(&)

j ,´ ¤
j Ã argmax

i ,´ i

¢ H (D i n , {&i
t ,l }, ´ i )

if jD
&j

t ,l Ê´ ¤
j

i n j Ê N min
D and jD

&j
t ,l Ç´ ¤

j

i n j Ê N min
D then return Concatenate(SPLIT(D

&j
t ,l Ê´ ¤

j

i n ),

SPLIT(D
&j

t ,l Ç´ ¤
j

i n ))
else return D i n . Discard this split
end if

end function

Local cost-to-go functions can be estimated based on the each subset of the demonstrations

as shown in (4.4). However, the estimation is unstable as the local learning depends on the

results of data partitioning, which only considers the data correlation in a suboptimal way.

An idea to mitigate this undesired effect is to replicate the partitioning for multiple times to

build an ensemble of M models. This strategy is called bagging, which is widely accepted
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Chapter 4. Modeling Latent Behavior Modes

Figure 4.2: An ensemble of cost-to-go functions over partitioned datasets through random fea-
ture bagging. The demonstrations are grouped according to suboptimal yet ef�cient decisions,
resulting in trajectories with consistent styles so that a simple IOC model is plausible.

and applied as a scheme to reduce model variance (Breiman, 1996). For a bagged model

ensemble, there exist multiple mechanisms for generating the ultimate prediction: estimating

the unknown cost-to-go function. One standard option is to take a weighted log-sum over

local predictions with a similar form as (Todorov, 2009):

J ¤ (x) ¼ ¡ log
MX

mÆ1

KmX

kÆ1
w m

k e¡J m
k (x) (4.9)

where J ¤ is the target cost-to-go approximated by the ensemble of quadratic {J m
k }. The

state trajectory & was omitted and m indexes the models in the ensemble. {w m
k } denotes

the weight of each local model (4.4). The weights can be de�ned as {w m
k } Æ{

card (D m
k )

card (D )M }, with

card (¢) denoting the cardinality of dataset.

The above ensemble strategy resembles a mixture of multiple simple probabilistic IOC models.

The indices of {m ,k } can be understood as discrete latent variables, which loosely corresponds

to trajectory styles s. It can be seen that, the number of subsets is a partially controlled value

from the random partitioning. In some cases, one might like this value to be deterministic,

e.g., when the number of clusters is known. In fact, the above random partitioning result is

�exible to be used to enforce this model prior. To see this, one can consider the memberships

of all subsets as a one-hot encoding of the data. In that sense, the random partitioning embeds
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4.4. Ensemble IOC with a Random Subspace Embedding

the original data into a manifold, yielding a high dimensional but sparse representation. Thus,

the result of random partitioning can also be used as a random trees embedding (Geurts

et al., 2006), which hashes the input features and constructs a non-Euclidean af�nity matrix.

Applying the af�nity to standard techniques like K -means or spectral learning, the trajectories

can be assigned into a given number of clusters with a nonlinear feature embedding.

With the cost-to-go functions estimated, the control synthesis can be retrieved through stan-

dard backward passing or solving an invariant point problem. For instance, under a �nite

horizon LQR condition, the backward Ricatti iteration allows for ef�ciently deriving the refer-

ence trajectory together with the local feedback gain, in a similar way as Section 3.3.

For a further understanding of the above model, it is also worth remarking its relation to other

approaches:

• One way to explain the cost evaluation (4.9) is to see it as a soft version of pointwise

minimum of a collection of cost-to-go functions. With such an evaluation, (4.6) yields:

u ¤
t Æ ¡R¡1 B

@J&¤ (x t Å1)

@x t Å1
Æ

¡
X

m,k
[

w m
k e¡J m

k (x t Å1)

P

m 0,k0
w m 0

k 0 e¡J m0

k0 (x t Å1)
R¡1 B¤ m

k (x t Å1 ¡ ¹ m
k )]

(4.10)

The control can thus be explained as a combination of state dependent local impedance

controllers, which are analogous to the form proposed in (Khansari et al., 2014). The

thesis, however, will adopt another type of control based on the most probable cost-to-

go model.

• As another way, the local cost-to-go models depending on z encode different poten-

tial action modes that are applicable to the task. If the model weights {w m
k } can be

adaptively estimated, the most plausible mode z can be inferred with certain decision-

making mechanisms, such as z¤ Æmax
z

p(zj&). This observation offers the possibility of

trajectory adaptation in face of unmodeled disturbances. See Section 4.6.

• GMM can be cast as a special case of the ensemble with a MaxEnt assumption (4.4).

Hence this framework can interpret GMM from the inverse optimal control perspective.

Actually, the framework extends the standard GMM by enforcing the passive dynamics,

which is arguably important for physical plausibility (Dvijotham and Todorov, 2010).

Conversely, the connection to GMM implies a possible model parameter re�nement

through the expectation-maximization iteration though this is not formally explored

here.

The complete learning algorithm is presented as Algorithm 4. The algorithm receives demon-

strations and parameters for both global trajectory clustering and local state partitioning. The
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Chapter 4. Modeling Latent Behavior Modes

partitions are used to obtain an approximated MaxEnt estimation of parameters ¹̂ and ¤̂ , as

well as the partition weights w m
k . The parameterized model Equation (4.4) can then be used

to evaluate the data membership to each local model:

Imk (x t Å1,x t ) Æ
w m

k P(x t Å1 jx t , ¹̂ m
k , ¤̂

m
k )

KmP

k 0Æ1
w m

k 0P(x t Å1 jx t , ¹̂ m
k 0, ¤̂

m
k 0)

(4.11)

In turn, the new parameters for each local model are solved the MaxEnt relaxation of likelihood

(4.4), with I(¢) as the weight of data.

The algorithm relies on a few arguments to trade-off the modeling power and the computa-

tional overhead. M& and M x denote the number of aggregated models in the ensemble. Like

other randomized methods, the performance of model ensemble improves monotonically

as the ensemble size grows (Breiman, 1996). N& and Nx de�ne the number of features that

are involved to decide a split (Also see Algorithm 3). N min
D speci�es the minimum size of a

set for the next split. These arguments can be modulated to control the model complexity. A

practical way of choosing N& or Nx is to take the square of the feature dimension (Geurts et al.,

2006). Intuitively, a smaller N min
D leads to �ner partitioning, implying a reduced bias while an

increased variance and computational cost.

4.5 Cost Parameterization with Human Kinematics Features

The Algorithm 4 estimates a cost-to-go function over the original trajectory feature. Similar to

Section 3.4, the function can be reparameterized to incorporate priors about the trajectory

formation. Speci�cally, this section considers embedding character trajectories into a rep-

resentation inspired from the log-normal model, which is based on the research of natural

human movement (Plamondon and Guerfali, 1998; O'Reilly and Plamondon, 2009).

The log-normal model is based on the observation that the velocity magnitude of human

motion stroke is of a asymmetric bell shape. It is shown that the shape can be described by

a Gaussian function over the logarithmically transformed time index. A further assumption

is that the path curvature remains constant within one stroke. Speci�cally, for a planar

motion, the trajectory pro�le is reconstructed from velocity and angular position, which are

respectively calculated as:

&t Æ
NX

j Æ1
jv (t )j

"
cos(Á j (t ))

sin(Á j (t ))

#

(4.12)

jv(z)j Æ
NX

j Æ1

A j
p

2¼¾j (t ¡ t j
0 )

exp(¡
(ln( t ¡ t j

0 ) ¡ ¹ j )2

2¾2
j

) (4.13)
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Algorithm 4 Learning - Learning cost-to-go ensembles from demonstrations

Require: D Æ{&i }, M&, M x , N&, Nx , N min
D , M (optional)

Ensure: DmÆ1:M , µm
k , k Æ1,...,Km , m Æ1,...,M

DmÆ1:M Ã RandomSubSpace(D,N&,N min
D ) with M& model ensemble

for all m in 1:M do
D x Ã StatePairs(Dm )
D x

kÆ1:Km
Ã RandomSubSpace(Dx ,Nx ,N min

D ) with M x model ensemble
for all k in 1:K m do

¹̂ m
k , ¤̂ m

k Ã argmax
µ

jD x
k jP

i Æ1
log PMaxEnt (x i jµ )

w m
k Ã

jD m
k j

jD j
end for
for all {x t Å1,x t } in D x do

Îmk (x t Å1,x t ) Ã w m
k P(x t Å1 jx t , ¹ m

k ,¤ m
k ) . Membership of data to each partition under

the MaxEnt approximation
end for
Imk (x t Å1,x t ) Ã Normalize( Îmk (x t Å1), x t

for all k in 1:K m do

¹ m
k ,¤ m

k Ã argmax
µ

jD x jP

i Æ1
Imk (x i

t Å1,x i
t ) log PMaxEnt (x i jµ ) . Approximately solving (7) with

the data weight I(¢)
end for

end for
µm

k Ã {
w m

k
M , ¹ m

k ,¤ m
k }

Á j (z) Æ®j
s Å

®j
e ¡ ®j

s

2
(1Å erf(

ln( t ¡ t j
0 ) ¡ ¹ j

2¾j
)) (4.14)

where the time index is generalized as the phase variable t . The velocity pro�le is estimated

by combining N log-normal models, as show in (4.13). Similar to the radial basis function

approximators, t j
0 and ¹ de�ne the location of the impulse and ¾j de�nes the basis function

width. The angular positions can be revealed by interpolating between the start and end posi-

tions ®j
s and ®j

e.. According to the constant curvature assumption, the angular displacement

depends on the integral of the log-normal function, resulting in the Gaussian error function

erf(¢). Figure 4.3 depicts the velocity pro�le v(t ) for each log-normal stroke.

It is easy to see that certain model parameters shape the resulting motion in an interpretable

way. For instance, A affects the velocity magnitude; ®s and ®e impact the stroke alignment and

straightness. Thus the original local cost-to-go J k (&) can be re-parameterized with respect to

model parameters &̂Æ{Ak ,zk
0 , ¹ k ,¾k ,®k

s ,®k
e}.

Embedding a trajectory into the model parameter space is achieved through the RXZERO
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Figure 4.3: Modeling handwriting motion with curvature and lognormal velocity pro�le: the
trajectory section is parameterized with a bell-shaped velocity magnitude and a constant
curvature.

estimation (O'Reilly and Plamondon, 2009). This routine �rst roughly segments a trajectory at

in�ection points and �t a log-normal model for each segmentation. The initial log-normal

models are recursively re�ned through nonlinear optimizations to minimize the reconstruc-

tion error of the velocity and position pro�les. Extra log-normal models will be added or

subtracted to eliminate the residual errors. The challenge of directly estimating the statistics

of &̂ is the representation of different trajectories might not be of a same length because the

number of log-normal models depends on the trajectory. Here, an approach that directly con-

verts the parameters of J k (&,µ) to the ones of J k (&̂,µ̂) is considered. The ¹̂ in µ̂ is retrieved

from the reference trajectory {x t } Æ¹ t derived from µ. Because the trajectories are assumed

to be distributed around the reference, the variability of &̂can be locally captured by a linear

projection:

§ k
&̂

¡1
Æ(Gk

¹̂ )T § k
&

¡1
Gk

¹̂

§ k
&

¡1
Ædiag(¤ 0, ...,¤ T )

(4.15)

where § k
&

¡1
concatenates weight parameters {¤ t } as a block-wise diagonal matrix. Gk

¹̂ is the

Jacobian matrix evaluated at ¹̂ that locally embeds original state variability into the kinematics

parameter space.

The advantage of having an ensemble of J k (&̂,µ̂) instead of J k (&,µ) is that one can learn

handwriting motion with features that are both human-inspired and interpretable comparing

with the position coordinates. Randomly sampling handwriting motion is ef�cient by evaluat-

ing (4.12) and (4.14) with a perturbed &̂. The synthesis is also constrained by the incorporated

kinematics structure so the variations are expected to be human-like, as will be shown in

Section 4.7.2.
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Figure 4.4: Accommodating perturbation
through trajectory tracking or adjusting the
reference to another mode. Local feedback
control is inadequate while adapting the ref-
erence to a redundant style is desired to re-
tain the letter legibility.

Figure 4.5: Accommodating perturbation
considering the motion history. Looking at
the instantaneous state (tip position) might
not be suf�cient to decide the motion direc-
tion and an undesired adaption might fail
the writing task.

4.6 Mode Inference and Adaptation

This section discusses another extension to the proposed ensemble framework. Speci�cally,

the latent variable z is proposed to be explicitly inferred for realizing adaptive behaviors. This

is different from Equation (4.6), where a �xed and known mode variable z is assumed. If a

potential mode change is expected, e.g., the human operator might change his/her intention

during the execution, this variable should be dynamically inferred and conditioned. To see

this, consider a toy task, where the robot end-effector is perturbed when writing a letter with a

certain mode. The bene�t of online mode adaptation is exempli�ed in Figure 4.4. Speci�cally,

a spring-like local feedback control, which always rejects the perturbations, would undermine

the legibility of the letter. On the other hand, if the deviation can instead be considered as an

intention altering the task mode, the perturbation can be exploited to write the letter with

another plausible style.

The Equation (4.6) is also an adaptive one by integrating out the mixture of z. This is applicable

if z can be fully determined from the instantaneous state x t becauseJ (x t ,z) does not consider

the performance before x t . However, this is not usually the case. As exempli�ed in Figure 4.5,

the perturbed pen-tip is supposed to adopt a correct adaptation based on the plausible

motion modes. Unfortunately, the preferred mode is ambiguous if the inference is based on

the instantaneous position 1. In this case, the adaptation needs to consider the deposited

trajectory, which complements the cost-to-go function J (x t ,z).

To this end, in additional to the dynamical mode inference based on J (x t ,z), a prior is also

introduced: the latent task mode passively evolves as a Markovian process. The goal of the prior

1One can of course argue to extend the state variable with velocity information to resolve the ambiguity. This
effectively also considers the motion history, though a very short one. Section 4.7.3.2 demonstrates a task involving
a long-term dependency.
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Figure 4.6: Pipelines of mode estimation and control synthesis based on learned cost-to-go
functions ensemble.

is twofold. On one hand, it biases the estimation process to ensure a more robust inference,

because in practice the state measurement inevitably suffers from sensory noises. On the

other hand, the temporally propagated prior provides a compact way to accommodate global

trajectory information, which is necessary if the mode is not fully determined by instantaneous

state measurements.

The pipelines of mode estimation and control synthesis are schematically depicted in Fig-

ure 4.6. Here, the (unknown) state is denoted as z Æ[z1,z2, ...,zM ]. Hence z is an M -dimensional

vector representing the belief over all possible modes and the i -th entry is the likelihood of

mode i . The evolution of the belief is modeled with a transition matrix T , whose entry T i j

characterizes a prior possibility of switching from mode i to mode j . The learned cost-to-go

functions provide evidence, evaluating the expected cost of all possible modes at the current

state. Concretely, after observing x t Å1, the mode belief z t Å1, can be recursively inferred as:

z t Å1(z t ,x t Å1) / (T z t ) ¯

2

6
6
6
6
6
6
4

e¡J 1(x t Å1)

...

e¡J i (x t Å1)

...

e¡J M (x t Å1)

3

7
7
7
7
7
7
5

(4.16)

where ¯ denotes an element-wise product.

It is easy to �nd that such a recursive inference works as Kalman �ltering. From this perspective,

the likelihood of each feasible demonstration mode is tracked as the latent state. The learned
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cost-to-go functions can be viewed as observational models, measuring the performance of

each mode starting from the current state. Also, the latent dynamics T can be estimated by

counting the occurrences of mode transition given the observation model and data. This

shares similarities to learning an HMM-like model, though here the emission probability

is separately learned and the distribution is nontrivial comparing with a categorical or a

Gaussian one in HMM.

Note that here T is determined in an ad-hoc manner. The reason is that the latent state

is understood as the trajectory mode, which is ideally invariant throughout each expert

demonstration. This is conceptually different from most HMMs, whose latent state appears to

be the label of a trajectory section. More importantly, the �exibility of designing T offers an

intuitive way for users to shape the expected behavior, which requires a trade-off between the

robustness against disturbances and responsiveness of mode adaptation. In fact, the proposed

extension somehow blends Equation (4.6) and (4.10). Speci�cally, when T is selected as a

uniform transition, the responsiveness to mode adaptation is maximized, while robustness

might be compromised. The reason is that the system will immediately adopt the new mode

as long as its current state appears to be more likely with respect to the corresponding cost-

to-go function. Moreover, this special case follows a multi-mode policy similar to Equation

(4.10), which adapts by only considering the immediate state. On the other hand, a diagonally

dominant T tends to assume an invariant the mode, unless the cost-to-go functions provide

strong evidence that another mode is more plausible. In the extreme case where the diagonal

entries are Dirac functions, the system, behaving like Equation (4.6), will reject any attempt of

eliciting a mode adaptation, resulting in a maximized robustness.

4.7 Implementation and Results

This section demonstrates the implementation of the proposed approach and extensions, as

well as the obtained results. It starts with a simulated inverted pendulum task to analyze the

in�uence of algorithm parameters and the performance in comparison to other approaches.

The results of modeling latent behaviors are reported in the applications based on the two

extensions. The effectiveness of incorporating human kinematics features in Section 4.5 will

be demonstrated in synthesizing hardly distinguishable handwriting motions (Section 4.7.2),

while the proposed motion adaptation mechanism in Section 4.6 will be examined in two

robotic tasks involving human intervention (Section 4.7.3).

4.7.1 Inverted Pendulum: An Illustrative Example

This task focuses on controlling an inverted pendulum, with the goal of applying torque u

so as to let the pendulum stay upright (Figure 4.7a). The system has typical second-order

dynamics, with one degree-of-freedom (DOF) and nonlinear passive dynamics. Thus the

cost-to-go function is of a nontrivial form while simple enough for visualization.
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(a) Inverted Pendulum

(b) Target cost-to-go

Figure 4.7: An illustrative
example: inverted pendu-
lum regulation and the op-
timal cost-to-go function

(a) M=5 (b) M=10 (c) M=20

(d) M=30 (e) M=50 (f) M=75

Figure 4.8: Cost evaluation of the learned ensemble models over
the inverted pendulum state space: M Æ{5,10,20,30,50,75}

The system parameters for the test are: pendulum mass m Æ1.0kg; length l Æ0.5m; joint

damping b Æ0.1N¢m/(rad/s); gravity coef�cient g Æ9.81kg¢m/ s2. The state comprises the

angular position x and its derivative �x. A quadratic instantaneous cost function encoding the

goal of control could be

Cpend (x) Æ
1

2
(x ¡ ¼)2 (4.17)

where ¼denotes the target angular position in radians, indicating the upright con�guration

here. The optimal cost-to-go function can be derived through system discretization and

standard value iteration. The control input saturates with a range imposed: u 2 [-5.0, 5.0]. The

heat map of the underlying optimal cost-to-go is shown as Figure 4.7b.

A total of 200 motion trajectories of 100 steps each, steered by the optimal cost-to-go function,

are generated as demonstrations. Of these, 150 are used for sampling state-control pairs.

The training dataset is corrupted by an additive noise with a standard deviation of 0.02 to

simulate the sensory noise. The task for the proposed ensemble method is to determine the

time invariant cost-to-go function from the demonstrations, assuming the passive dynamics

p0(x0jx) are known. Also, the angular position is truncated to [0 ,2¼] to ensure the Euclidean

distance is properly de�ned, though such approximation does bias the outcome due to the

bound effect. It is worth noting that the inverse problem is addressed in continuous state and

control space without discretization, though the data is generated from the standard value

iteration of the discretized system.

The result begins with examining the necessity of a model ensemble, whose size is controlled
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by the number of aggregated models. The learning results are depicted throughout Figure

4.8a and 4.8f. Comparing with the target (Figure 4.7b), it can be observed that as more models

are incorporated, the learning performance improves in terms of visual consistency. The

observation demonstrates the anticipated advantage of model ensemble: each of the sub-

models is limited due to its high sensitivity and dependence on the data partitioning (Figure

4.8a and 4.8b), while a prediction from the aggregated models leads to a better estimation

than any individual model, with the overall variance signi�cantly reduced.

For a comparison, other approaches (MaxEnt+Laplacian (Levine and Koltun, 2012), GPIRL

(Levine et al., 2011) and OptV (Dvijotham and Todorov, 2010)) are also applied. Two dimen-

sions of performance, including the cost reconstruction error and training ef�ciency, are

considered on the benchmark problem. All approaches use 64 demonstration trajectories

and retrieve the estimated state value of 2,600 test state samples. The reconstruction error is

obtained as the sum of errors between the estimated value and the target cost-to-go. For algo-

rithms that estimate a cost function (MaxEnt+Laplacian and GPIRL), the cost-to-go functions

are computed based on the inferred cost function. The computation time for this additional

step is not included for a fair comparison of the ef�ciency of original learning algorithms.

(a) MaxEnt+RBF (b) MaxEnt+QF

(c) GPIRL (d) OptV

Figure 4.9: Estimated cost-to-go functions
from the MaxEnt (linear combination of RBF
or quadratic functions), GPIRL and OptV re-
sults. An additional value iteration is per-
formed for MaxEnt and GPIRL to visualize
the cost-to-go function over the state space.
OptV uses RBFs for the cost-to-go function
approximation. 25 basis functions are used
for all of the RBF-based approaches.

Figure 4.10: Cost-to-go function errors and
training time of different approaches for
the inverted pendulum problem. The pro-
posed approach is tested by integrating dif-
ferent number of models in the ensemble.
The MEIOC indicates the application of the
approach without considering the passive
dynamics (MaxEnt formulation). Note the
training time is transformed to its logarithm
for the visualization.

The estimated cost-to-go functions from these approaches are depicted in Figure 4.9a to

4.9d. Apparently, one of the MaxEnt setting (Figure 4.9b) shows the best qualitative results.

This is expected because it learns a quadratic cost function which is consistent to the real
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Figure 4.11: Prediction of the trajectory un-
der the learned cost-to-go ensemble: the
predicted trajectory is derived given the
test initial state. The learned cost-to-go,
which encodes the desirability of future
state, is illustrated as the contour lines.

Figure 4.12: Comparing different settings with
a SVR-based prediction. The regression of be-
havior cloning is fast for each iteration of the
prediction but suffers from error cascading
along the trajectory horizon.

goal. For more general cost parameterizations, such as RBFs (Figure 4.9a and 4.9d) and

Gaussian process (4.9c), the recovered cost-to-go functions show some similar local geometry

in certain regions but fail to capture the overall landscape comparing with Figure 4.9b and

Figure 4.8f. Quantitatively, in Figure 4.10, one can observe a trend similar to the qualitative

results: the reconstruction error of the ensemble method steadily decreases as more models

are included. Regarding the training time, it is notable that the ensemble method is superior

in terms of training speed thanks to the ef�ciency of learning naive local models. For the

sake of comparison, the result also includes a MaxEnt version of the proposed method, which

effectively works as a GMM over the demonstration state. It is not surprising to �nd a slight

decrease in performance (in terms of sum-of-errors) since the MEIOC is agnostic to the real

passive dynamics model. The results for other algorithms are mixed because the visually best

result (Figure 4.9b) does not lead to a smallest prediction error of the cost-to-go function

values. This implies that the learning performance cannot be fully described by one metric

and other dimensions need to be examined.

To have a more thorough conclusion, a policy perspective is taken in the following analysis,

which examines whether the learned cost-to-go function indeed leads to behaviors that

match the demonstrations. Two experiments are included with the �rst one focusing on the

difference between the derived and demonstration trajectories, and the second one evaluating

the trajectory performance under the real task cost function. Predicting the next state under

the optimal policy requires a maximum posterior estimation in Equation (4.3). This boils

down to a nonlinear optimization, for which the MaxEnt mean estimation is used as the

prior guess to ensure the optimization performance and ef�ciency. The initial states of 10

test trajectories are exposed to the algorithms, seeding a recursive prediction of states or a

trajectory optimization for the same number of steps to compare against the ground truth.
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Figure 4.13: The performance of the predicted trajectories under the true cost function:
comparing test trajectories and the results obtained from ensemble method, MaxEnt, GPIRL
and OptV.

For the �rst experiment, the derived trajectories are visualized in Figure 4.11, where the

stars denote the terminal states. It is clear that the predicted trajectories generally follow

the demonstrated behavior. A quantitative result is given in Figure 4.12, where a support

vector regressor (SVR) is trained as a baseline. The SVR-based prediction works as behavior

cloning by predicting the next state given the current one so it is very ef�cient for the synthesis.

Unfortunately, the accuracy of overall trajectory prediction is poor, due to the error cascading

effect. The IOC-based prediction is more reliable, thanks to the bias about the future from

the extracted cost-to-go. Again, the model aggregation improves the performance, while in

exchange, it takes longer time to conduct the optimization when more models are integrated.

The result of the second numerical experiment is shown as Figure 4.13. Speci�cally, the

accumulated trajectory costs are evaluated under the true cost function. The proposed

ensemble approach outperforms all the other algorithms on this metric, except the MaxEnt

approach with the true quadratic feature. Note that both of these two approaches achieve

better performance comparing with the test trajectories themselves. This is because the test

trajectories are obtained from a more limited action set due to the discretization, while the

IOC algorithms use continuous optimization to derive trajectories under the learned cost or

cost-to-go functions.
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(a) "A" (b) "D" (c) "e" (d) "S" (e) "y"

Figure 4.14: Illustration of the learned ensembles that encapsulate the patterns of character
pro�le. This is demonstrated in the Cartesian space but not the log-normal feature space for
the illustrative purpose. The statistics of the curvature-based features is captured by taking
samples and convert them to the original planar Cartesian space. The heat value of a point in
the Cartesian space is evaluated by folding the learned cost function along the time horizon
and counting the occurrences of the coordinates in the trajectory samples.

4.7.2 Synthesis of Multi-mode Handwriting Motion

The success of learning latent behavior modes can be demonstrated in a synthesis task. Indeed,

the quality and diversity of the generated samples depend on if the model ensemble correctly

identi�es and captures the demonstration modes. Here the synthesis is about dynamical

handwriting motion, for which the cost parametrization based on the log-normal model is

used.

4.7.2.1 Learning and Synthesizing Handwriting based on Human Data

The dataset used is the UJI Pen Characters repository (Llorens et al., 2008). This repository con-

tains online handwriting samples collected from 60 adult subjects, who could write in many

different styles. Alphabetical instances with either single or multiple strokes are considered.

Each stroke letter stroke is learned independently. Yet this is by no means true as the strokes

are correlated temporally and is possible to be captured by introducing extra conditional

models (Lake et al., 2015). The independence assumption is adopted here to focus on the

ensemble method itself, and such simpli�cation turned out to work well in practice to syn-

thesize reasonable motion trajectories. The results are depicted as Figure 4.14a to 4.14e. The

most obvious observation is that the learned models successfully capture the legible shapes

for either single or multiple-stroke characters. The variabilities of the heating magnitude can

be explained by the inconsistency of forming the speci�c letter sections. For some strokes,

human behavior tends to be comparatively consistent, such as the short straight strokes in

Figure 4.14a, and 4.14b or the overall shape of "S" in 4.14d. The variability of this consistency

implies multiple modes in writing a speci�c letter. The encodement of such diversity can

be best illustrated as Figure 4.14e, which explicitly resembles the superimposition of two

distinctive ways of forming a legible "y" in the Cartesian space. Note that the number of these

patterns is not explicitly enforced beforehand but emerged from the ensemble of models

which assign cost-to-go functions on random subsets of data.
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Figure 4.15: Synthesized motion samples from the learned cost ensemble models for different
characters. The diverse modes and styles illustrate the multi-modal motion patterns encoded
by the aggregation of simple cost functions

Figure 4.16: Synthesized motion of poor written samples by sampling from the learned model
with random perturbations. The deformities can be intuitively controlled by modulating the
local proportion, alignment and curvature of a speci�c component, as well as the continuity
between the components.

The diversity of encoded motion patterns can be further demonstrated by synthesizing letter

instances from the learned models. Shown here are a few typical sampling results, again for

either single or multiple strokes, as Figure 4.15. The synthesis samples illustrate rich writing

patterns that are diversi�ed in the aspects of size, orientation, and most importantly, the

style. For instance, the "d" that is constituted by a circle and a straight stroke, are successfully

detected and encoded. Interestingly, the incorporation of log-normal features supports gener-

ating poorly written characters. Intuitively, a sample of µ̂ that signi�cantly deviates from ¹̂

would result in symbols that are different from demonstrations, while with the deformation

constrained by the incorporated feature. This is realized by perturbing the distribution pa-

rameters with an increased noise. Figure 4.16 shows synthesized samples, which resembles

various types of deformities such as inappropriate component proportion, misalignment or

jerkiness in stroke transition. This demonstrates the potential of the framework to generate

various good or poor handwriting motion. These results are applied in implementing human-

robot interaction activities, where the children imitate and correct the letters generated by the

algorithm and written by a robot. Refer to (Chandra et al., 2017) for more details.

4.7.2.2 Evaluating the Human-likeness of the Synthesized Motion

One question remains to answer regarding the handwriting synthesis is that: how can one

assess the quality of synthesized samples and as such be convinced that the behaviors are

successfully modeled. This correlates to evaluating the similarity between samples from

an unsupervised learning model and the training data. Qualitative results like Figure 4.15

are usually used as evidences because a uni�ed metric is absent in general. In order to
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obtain a quantitative result, an online user study is run to examine how humans perceive

the synthesized motion. Due to the obscurity of "human-likeness", the presented study was

performed in a form of Turing-like test, where the participants were presented with a mixture

of human and arti�cial dynamic motion, without showing the physical body of both the robot

or of the human. The participants were instructed to choose among these motion samples

the one they believe was generated by the algorithm. Besides the rate of correct prediction,

another interesting dimension that could be measured is the con�dence of the humans on

their decisions, serving as a �delity measurement from the subjective perspective.

4.7.2.2.1 Study Hypothesis

H1. By observing the dynamic motion of the characters, the participants cannot distinguish

between the agent synthetic and human written character samples. The classi�cation per-

formance is close to a random guess. It is expected the samples from learned ensemble

models possess believable variabilities that are consistent with natural human handwrit-

ing. Thus most sampled motion parameters should result in characters which are hard

to be identi�ed from the mix up of synthesized and human samples. Quantitatively, this

hypothesis implies an equivalence which can be numerically expressed as

kĉ ¡ ck · ± (4.18)

where ĉ and c denote the classi�cation performance from the experiment estimation

and the random guess respectively. ± is a threshold quantifying the equivalence of the

two tested values. The selection of ± will be presented in the results and analysis section.

H2. Participants will not detain high con�dence levels towards their choice. This hypoth-

esis checks the indistinguishability from a subjective perspective of the humans. It

is expected to see the quanti�ed con�dence is lower than a certain level. It will also

be interesting to examine the relation between the human con�dence and concrete

performance.

4.7.2.2.2 Study Procedure

The Turing-like test was carried out in the form of an online questionnaire. Concretely, the

participants were instructed to evaluate 20 characters, containing both synthesized and hu-

man handwritten ones, by accessing web pages anonymously. They were explicitly instructed

that there was only one synthesized sample for each character question. They could neither

skip character pages nor browse back to the past ones to modify the previous responses. Their

evaluation was based on two questions for each character:

Q1. Which letter do you believe is written by a robot ?
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To answer to this question, participants were presented with �ve dynamic handwriting

motion for the character. The animation could be intuitively resumed or stopped by

moving the cursor on or off the images. The participants were allowed to replay the

motion as many times as they wanted before they made the decisions.

Q2. How con�dent are you about your choice ?

The second question could be answered in a �ve-point type-Likert scale ranging from 1

to 5: 1-very low; 2-low; 3-neutral; 4-high; 5-very high

The sequences of characters and answer options were randomized to counter balance ordering

effects. Moreover, demographic information was also collected. Participants were noti�ed

not to respond the questionnaire for multiple times at the beginning of the web page. Each

individual questionnaire took about 10 to 15 minutes to complete.

4.7.2.2.3 Study Analysis and Results

The participants were recruited through the mailing lists within a university. A total of 68

participants completed the online questionnaire. The sample ranges from 18 to 60 years old

(M = 28.7;SD= 8.7).

In order to test H1, the threshold c Æ0.2 is chosen as there were �ve options in each character

question. ± is de�ned according to the deviation of random classi�cation performance

± Æ¾¼ 0.089, if the number of correct classi�cation is subject to a Binomial distribution.

The analysis shows that on average the participants achieve ĉ Æ0.226§ 0.086 classi�cation

performance, which is close to the random guess c Æ0.2. A further analysis show that the null

hypotheses of H1, ĉ È c Å ± and ĉ Ç c ¡ ±, are both rejected by the corresponding one-sided

t-test ( t1(67) Æ6.04; t2(67) Æ11.03;p Ç 0.01). Therefore, the results show statistically signi�cant

equivalence between the performance from empirical data and a theoretical value from a

random guess, thus H1 is strongly supported which suggests that participants were not able to

distinguish between the character motion (synthesized versus human handwritten), wherein

their choices translate the same as the random guess.

For H2, the averaged con�dence level is 2 .71§ 0.70. One sided t-test concludes that this

value is signi�cantly below the neutral con�dence level [ t (67) Æ3.38; p Ç 0.01], which also

supports H2. Note that there is indeed a small fraction of participants who exhibit high

con�dence levels, however, analysis shows that such high con�dence is not necessarily related

to a good classi�cation performance. A selection of the performance and con�dence for the

most contrasting results regarding the selected characters are shown in Figure 4.17, where it

is obvious that the con�dence levels are relatively consistent across characters and are not

complying the performance trend. Also examined is the con�dence level associated to correct

answers. The level turned out to be 2 .71§ 0.98, which is not signi�cantly different from the

overall con�dence level (considering a threshold of 0.2; t1 Æ4.63;t2 Æ3.79;p Ç 0.01). A further
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Figure 4.17: Classi�cation performance and con�dence levels for the selected characters
on which the participants performed best and worst. The characters are sorted according
to the performance, while the con�dence levels are comparatively consistent. The overall
performance 0.226 § 0.086 is close to the random guess (p Ç 0.01).

analysis yields a rather weak Pearson's correlation ( ½Æ0.126) between the performance and

con�dence level. Therefore the participants are indeed uncertain about their answers, even

for the ones that happen to be correct.

To sum up, these results demonstrate the capability of the algorithm for generating hardly

distinguishable handwriting motions, which in turn implies the success of apprehending rich

data modes stemming from natural human handwriting with multiple styles.

4.7.3 Motion Adaptation based on Mode Inference

This section exploits the model to reason about the real-time sensory input, to estimate the

desired task mode so as to realize adaption under execution uncertainties.

4.7.3.1 Handwriting Motion Adaptation

The goal of this task is to extend the result of encoding multiple handwriting styles with the

adaption mechanism proposed in Section 4.6. The robot acquires redundant ways of writing

the target letter from the ensemble model. This knowledge is exploited to assess and modulate

the task execution. As a consequence, the synthesized handwriting motion is implemented

on a real robot and the writing style could be altered to accommodate disturbances, e.g., a

human intervention.

The framework is exempli�ed on an ensemble model which learns a set of 120 planar tra-
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(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 4.18: Adapting the motion of writing a “D” on a KUKA IIWA 7-DOFs manipulator. The
lightness of the reference trajectories indicates the associated mode weights and the star
marks the current regulating point. Under the human intervention, the task mode shifts to the
alternative modes that are plausible w.r.t. the deposited trajectory and future cost. The online
adapted writing motion yields a different letter pro�le comparing with the original intention.

jectories of the letter "D", with two replications for each of the 60 people. The ensemble

parameters were set to allow a maximum of 240 local models as we are not certain about how

many styles are there in the demonstrations. The robot, a 7-DOFs KUKA IIWA manipulator, is

used to follow the commanded trajectory, which is initially sampled from the learned model

ensemble.

Figure 4.18 showcases the expected behavior. Speci�cally, the robot follows the initial mode

that deposits a downward stroke at �rst, and plans to �nish writing on the top of the canvas

(Figure 4.18e). Then a human subject intervenes, making the compliant robot motion yield to

moving upwards instead of following the planned direction. As a result, the perturbation elicits

the alternation to other task modes, as depicted in the mixture of letter pro�les in Figure 4.18f.

These modes are regarded as more probable ones, which jointly consider the history (the

downward stroke) and the probable future motion styles. The mode estimation proceeds with

the shifted mode reinforced and �nally resembles an adapted written letter, which retains the

legibility under the perturbation (Figures 4.18c and 4.18d).

As a descriptive experiment, the above process shows the evolution of mode estimation serves

as a compact dynamical encoding of the latent letter style, which may change subject to the

human intervention. This is necessary as the position state itself is not suf�cient to determine

the motion, because the velocities might be con�icting at a same position for different writing
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Figure 4.19: Assisting in a mail delivery task. The robot needs to learn multi-mode behavior
that manipulates the mail to different target boxes. The validity of the targets depends on
which path was taken in the intermediate step.

styles. Here, the instantaneous position helps to decide which trajectory mode will cost less

if the subsequent writing departs from the current state. Therefore, the learned cost-to-go

representation enables the robot to evaluate, comply and, as such, exploit a perturbation

when there exist potential modes that turn out to be suitable with the future steps taken into

account.

4.7.3.2 Assisting Mail Delivery

This section envisions the application of the framework in a more general scenario: a mail

delivery task, where a robot assists in picking, transporting and delivering mail to different

target mailboxes (Figure 4.19). In this task, the mail messages are supposed to go via speci�c

locations in the workspace (marked by colored crosses in the �gure), for a hypothetical

intermediate processing—such as stamping or labeling mails with different priorities. The

delivery target depends on the spots by which the mail has passed. Moreover, during the

execution, humans may intervene through a physical interaction. The robot, on the other

hand, should decide if it will adapt its motion to collaborate the human intervention, or insist

on its current motion plan.

4.7.3.2.1 Experimental Setup

The task is carried out on a Baxter robot platform, with the setup illustrated in Figure 4.20.
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Figure 4.20: Setup for the mail delivery task: the candidate objects/frames (mailbox, cyan/or-
ange regions and mail location) are labeled by AR trackers, which can in turn be detected by a
mono-camera at the right wrist of Baxter. The left arm is used for manipulation.

The AR trackers are used to label the reference frames that might be relevant to speci�c task

modes. The poses of these frames are estimated through a camera. The locations of these in-

terested frames are de�ned as the task con�guration. 12 demonstrations are recorded through

kinesthetic teaching, with four replications for each mode. Three task modes correspond to

motion trajectories via different landmarks:

• {mail location, cyan area, mailbox-0};

• {mail location, orange area, mailbox-1};

• {mail location, orange area, mailbox-2}.

Note that the constraints of the sequence modes, e.g., which area should pass and then which

mailbox to deliver to, are unknown to the robot. Humans can only program them through

demonstrations. For each demonstration, the locations of the scene objects are rearranged, but

the aforementioned sequences are always followed. The recorded states have a dimensionality

of 18, with the position in each reference frame and the time index included. The trajectories

are clustered with a random embedding from 1 ,000 ensemble trees. For each extracted mode,

an ensemble of 10 models under a �nite horizon formulation are trained, and the resulting

models are used to infer the task mode and derive the command for the next step. Except the

baseline methods, a latent transition dynamics
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Figure 4.21: An illustration of the task-parameterized representation: the interested state,
e.g., the pose of the robot end-effector E, is projected into different reference frames in the
scene. The resulting state is an augmentation of all relative representations, yielding a high-
dimensional state variable.

is used throughout all the experiment sessions. Such a latent dynamics represents a prior

knowledge that the motion mode tends to keep constant, although there is a moderate possi-

bility to switch between mode 1 and mode 2.

4.7.3.2.2 Task Goal and Task-parameterized Feature

The learning goal of this task is to encode constraints regarding both the static environment

con�guration and the process dynamics. On one hand, the robot needs to extract important

task-relevant landmarks in order to adapt the synthesis for a general environment con�g-

uration (e.g., untrained locations of mailboxes and intermediate via-points). On the other

hand, constraints about the task dynamics also need to be conveyed in the form of cost-to-go

function learning. It is critical for the robot to exploit this knowledge to evaluate and react

to the deviations, which can source from the motor noise or human intervention. In a nut-

shell, the robot should resist the deviation when it is due to the motion noise or a human

intervention that violates the task constraints, while adapt to human intended motion when it

is compatible to the task constraints. Notably, here the constraints stem from the trajectory

history—namely, which via point has been passed through. This implies that the adaptation

cannot be exercised based on static or time invariant observations.

In order to generalize to different static con�gurations, the quadratic cost-to-go function is

generalized to incorporate a task-parameterized representation (Calinon et al., 2014). The

representation augments the interested state with representations in different reference frames

of the task scenario. For instance, as illustrated in Figure 4.21, the interested robot end-
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effector pose could be represented in different reference frames, such as A, B and C in the

scene. The �nal state is the augmentation of these local descriptions thus is of a higher

dimension than the original pose. A task-parameterized feature encapsulates the information

relative to landmarks that are potentially important to the task execution, as such supports

the generalization under an unseen arrangement of the landmark con�guration. (Calinon

et al., 2014) uses this representation to obtain a task-parameterized Gaussian Mixture Model

(TPGMM). Here the representation is used under the proposed IOC framework. Speci�cally,

the model learns a varying quadratic cost-to-go function over this representation:

J(x t ,µ t ) Æ
1

2
(x t ¡ ¹ t )

T ¤ t (x t ¡ ¹ t ) (4.19)

with x t denoting the concatenate state similar to Figure 4.21. Note here ¤ t is block diagonal

to factorize the cost with respect to landmark reference frames and impose a model sparsity

to �t �nite demonstrations.

The parameters vary because the importance of the via-points and destinations is not static.

The inference of model parameters is compatible to TPGMM because the local models are also

Gaussian. For the detailed Gaussian inference with a task-parameterized model, interested

readers might refer to (Calinon, 2015) and Section 2.3.3.

4.7.3.2.3 Challenges for Baseline Approaches

As discussed in Section 4.4 and 4.6, one might imagine that the task can be simply addressed

by �rst grouping the trajectories with a simple clustering, e.g., K-means, and then following

the closest reference trajectory given the current state. To illustrate the challenges involved in

this scenario, this section shows this is not applicable in terms of both learning and exercising

the task constraints.

First, for each demonstration sample, the locations of the starting point and the via-points are

different. The invariant constraint of reaching correct via-point and destination is implicit and

cannot be trivially revealed from an isotropic distance. Figure 4.22 shows that the K -means

result is poor for assigning demonstrations to the correct behavior mode. As a comparison,

the proposed approach obtains a better result because it assesses the similarity with an

aggregated nonlinear metric. Here the insight is that the importance of the state dimensions

is non-uniform and implicitly correlated to the critical reference frames which depends on

the task mode. The proposed approach identi�es discriminating feature dimensions through

a consideration over a group of naive selections, and as a result, a nontrivial metric emerges

and captures the implicit static task constraints.

Secondly, even though a perfect demonstration clustering is given, it is insuf�cient to decide

the mode straightforwardly based on the current observable state. To see this, a TPGMM

is trained over the perfectly clustered data. A reproduction instance is then exercised by

starting to follow mode 1: {mail location, orange area, mailbox-1} and adapted according to

the likelihood of the observed state with respect to each mode.
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(a) KMeans (b) Random Embeddings

Figure 4.22: Clustering demonstration trajectories (dot lines) into three modes: The trajectories
are transformed to the mailbox reference frame and projected into the XY surface for the clarity
of comparison. The KMeans method takes the best result from 500 random initializations
of the cluster centroids. An ideal clustering is supposed to group the demonstrations with a
similar behavior mode: trajectories of a same color should reach a same destination.

(a) (b) (c) (d)

Figure 4.23: Task reproduction with the baseline multi-mode behavior cloner. (a)(b): The
robot starts with the intention to follow mode 1 (mail location-orange area-mailbox-1) but
heads to the wrong intermediate area under its own motor noise. (c)(d): The location of
mailbox is perturbed hence the mailbox-1 is again the most probable target given the current
motion status. The robot delivers the mail to the mailbox-1 even the mail passed the cyan
area.
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Figure 4.24: History of mode activation for a multi-mode behavior cloner: the robot agent
always follows the most likely mode given its observation at each time step. This will result in
undesired adaptations in certain cases.

Figure 4.23 illustrates a typical reproduction instance. Ideally, the execution should follow the

initial mode in the absence of any perturbations. However, the robot actually deviates from

the intended intermediate target by heading to the cyan area. This is due to the intrinsic motor

noise and the mode ambiguity. Concretely, the robot motor noise will occasionally result in an

end-effector position that is more close to one other mode than the current one. Even worse,

this effect is aggravated in earlier stages of the execution, in which all modes are following

similar trajectories to reach and collect the mail. Due to this ambiguity, the likelihood of all

three modes is close and a change of mode will be triggered even under a small perturbation.

The �gures illustrate yet another type of failure, which results from extrinsic disturbances. The

robot, having passed via the cyan area, is moving towards mailbox-0. While it is approaching,

the mailbox is relocated by humans. Therefore, the motion trajectory is heading to mailbox-1

in that instant. Given the likelihood of the current state, the mode 1 is regarded as a more

likely one so an erroneous mode shift is triggered. The above analysis can be evidenced from

the evolution of the mode belief, which is depicted in Figure 4.24. In brief, due to lack of

robustness against both intrinsic and extrinsic disturbances, the baseline adaptation cannot

reliably reproduce the intended behavior and conform to the demonstration constraints.

4.7.3.2.4 Results

In contrast to the above results from the baseline methods, Figure 4.25 illustrates successful

reproductions, with the proposed latent dynamics enforced. In the �rst case (the snapshots in

the upper row), the robot successfully follows the task mode 1 in a constant way. In second

case (snapshots in the middle row), the robot correctly passes the cyan region and reaches

the mailbox-0, even if the mailbox is moved on-the-�y. The difference from the baseline

adaptation mechanism (Figure 4.24) is evidenced from the belief estimation (bottom row of

Figure 4.25). Although the belief about the initial mode still decreases because of the ambiguity

in the early parts of the trajectory, the prior biasing towards the current mode persists. As a

result, the task reproduction is robust to the uncertainty about the robot intrinsic dynamics or
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Table 4.1: Results of task reproduction under different targets and con�gurations: a repro-
duction is marked as a success if the robot follows the intended task mode and deliver the
mail to the correct target. For each target mode, �ve trials are taken with the via-point layout
randomly arranged.

Mode 0 Mode 1 Mode 2
Baseline 1/5 0/5 0/5
Proposed Approach 5/5 5/5 4/5

a step disturbance such as pulling the mailbox away.

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) Belief evolution under new con�guration (upper
reproduction)

(j) Belief evolution under perturbation on-the-�y
(lower reproduction)

Figure 4.25: Task reproduction with the proposed framework under a novel task con�guration.
The robot adapts the intended motion (mail location-cyan area-mailbox-0) against the external
perturbation of moving the mailbox away.

The baseline results are further compared by setting different con�gurations of the via-points.

Here the metric is the success rate of the multi-mode controllers for delivering mails to the

correct targets under randomly arranged task con�gurations. The results are given in Table 4.1.

The baseline multi-mode adaptation seldom succeeds. Especially when the intended targets

are mailbox-1 or mailbox-2, the robot tends to lose the target while collecting the mail, as

already exempli�ed in Figure 4.24. Thus it is quite frequent for the baseline method to fail in

this task, even the task-parameterization is also used. On the contrary, the proposed method

performs consistently better, reliably generalizing and executing the motion under various
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(a) (b)

(c) Estimated mode belief (d) Observation Likelihood

Figure 4.26: Reject to human intervention of guiding the delivery to an unlikely goal: the robot
holds a low belief about the mode of reaching mailbox-0 since it has passed the orange area.

task con�gurations.

The robustness to external disturbance can also be seen from the point of view of collaboration,

where the robot chooses to dominate the execution and reject the human guidance. This is

shown in Figure 4.26. In this situation, the human intervenes with a manual guidance, aiming

to redirect the delivery to mailbox-0. In light of the intervention, the “human preferred mode”

is temporarily more likely w.r.t. the cost values of the current state, as seen in Figure 4.26d.

However, since the robot has passed the orange intermediate area, a strong prior (that mode 0

is very unlikely) has been established. Thus the robot chooses to ignore the guidance so as to

not violate the constraint imposed by the already executed trajectory.

On the other hand, the robot may also adapt and yield to the human intervention, when such

intervention is in accordance with the learned constraints. Figure 4.27 demonstrates a similar

execution but where the human intervention pushes the delivery towards mailbox-2. This

example is different from one previously discussed, since the orange via-point is admissible

for both modes. Therefore, there is a moderate possibility of switching modes and it does

not require much effort from the human to enforce his/her intention and get the robot to

collaborate accordingly.

Table 4.2 gives more results about adaptation under different con�gurations. In this experi-

ment, a human supervisor has his/her own intended task mode in mind, and intervenes by

physically moving the robot motion if he/she thinks that the robot is not behaving correctly.
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(a) (b)

(c) Estimated mode belief (d) Evolution of observation likelihood

Figure 4.27: Yielding to the external perturbation: the robot collaborates by adjusting the
motion (mail location-orange area-mailbox 1) to an alternative target mailbox-2. The prior of
mode 1 is not completely dominant against mode 2.

All combinations of the robot initial mode (R Mode) and the human intention (H Mode) are

tested. The metric is the success rate of the collaboration. A collaboration is considered as a

success if: 1) the robot identi�es the human intention and follows the guidance when the task

constraint is ful�lled; 2) the robot follows its own intended motion when the human guidance

violates the task constraints. The results demonstrate that the proposed framework allows the

robot to understand the human intended target and adapt its motion accordingly throughout

almost all of the test cases.

Some additional insights regarding the emerging behavior can be elicited from Figure 4.28.

This �gure overlaps the layout of the workspace and the corresponding cost evaluation, with

the dimensions of mode z, time and vertical spatial axis collapsed. It is clear that the peaks

of the cost coincide with the key objects in the scene. Moreover, steep cost gradient is visible

due to the high consistency of the demonstration behaviors around these objects, especially

the two intermediate spots. They are automatically identi�ed as critical and discriminative

frames. Passing either of them will lead to very strong constraints, preventing the follow-up

motion to switch to the other modes, unless if such switching is compatible to the constraint

(for example, switching between modes 1 and 2).

In all, this experiment showcases a task in which the proposed ensemble model helps to infer

the intended task mode from the sensory feedback readings. With a prior upon the dynamical

mode transition combined, a mixed behavior emerges: the robot can automatically decide
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Table 4.2: Results of task adaptation un-
der human intervention for different con-
�gurations: an adaptation is marked as a
success if the robot (R) follows the human
(H) intended task mode under the inter-
vention and deliver the mail to the correct
target. For each target mode, �ve trials are
taken with the via-point layout randomly
arranged.

R Mode 0 1 2
H Mode 0 5/5 5/5 5/5
H Mode 1 5/5 5/5 4/5
H Mode 2 4/5 5/5 4/5

Figure 4.28: Contour of the learned cost-
to-go functions with the time and Z axes
collapsed. The areas with dense contours
indicate the demonstrations are locally
consistent hence some of the regions will
be discriminative for differentiating mo-
tion modes.

when and where to collaborate with/reject human interventions based upon constraints

extracted from the demonstrations.

4.8 Discussion

The ensemble technique discussed in this chapter overcomes the limitation in Chapter 3,

which assumes the skill is composed as a single trajectory. Even though representing more

sophisticated behaviors, the proposed model tackles the learning in an ef�cient way. Summa-

rizing an answer to the questions raised in the beginning of the chapter:

• Robotics : A generative model for trajectories and latent motion modes can be learned.

The model can be exploited in a mutual inference between the modes and trajectories,

e.g., estimating the task mode for a real-time trajectory adaptation.

• Machine learning : Ensemble methods can be utilized to infer a probabilistic encoding

of the trajectory modes. Ef�cient IOC models can be separately learned from demon-

strations labeled as similar modes.

The ef�ciency of the inference are assured by the local LQR control and the discrete constraint

on the mode variable (conjugate exponential family of probabilistic models). These formula-

tions, though demand latent variables of a speci�c form, have showcased to be useful for the

reported tasks which require real-time motion synthesis and adaptation.

The adopted ensemble principle is based on tree and bagging techniques. A bagging based

ensemble alleviates over�tting by smoothing over multiple predictions. Hence, the approach

is robust to noisy demonstrations. Moreoever, tree-based techniques generally scale well to

a large dataset. Thus the model capacity is potential to learn a large skill repertoire. While

on the other hand, one of the limitations is that it might face dif�culties in selecting model
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parameters to learn from a limited number of demonstrations. In that case, the boosting

scheme might be a better choice, since it focuses on predictive power while the goal of bagging

is variance reduction. Unlike the tree-based bagging, however, it is a bit vague that in what

form the weak models can relate to a simple and meaningful IOC problem. Also, the standard

boosting often aggregates the decisions through majority vote, which might be problematic

for obtaining a continuous cost.

The framework demonstrates its capability of generalizing to untrained task con�gurations.

This is enabled by the adopted task-parameterized feature. Generally, the generalization

capability depends on the feature design. The framework leaves some room for incorporating

the prior about the feature structure. For instance, the random subspace embedding is open

to various types of the decision boundary and feature selection, capturing data structures

beyond the axis-aligned grid used in this paper. The discussion about more general options

can be found in the seminal tutorial about random forest, referring (Criminisi et al., 2012) for

details.

As per locally grouped data, the adopted quadratic cost form demands a feature space in

which an Euclidean distance serves as an effective norm. This actually does not impose much

constrains on the original demonstration data, as long as one knows how to convert it to

the task-relevant feature x. For instance, forward kinematics can be used to project the raw

joint positions to a task-relevant feature space, e.g., the robot end-effector or manipulated

object pose. For the model synthesis, it is �exible to introduce features based on robot

dynamics for adding more complexities, such as inverse dynamics control. Indeed, choosing

a proper task-relevant feature entails a manual design. This is de�nitely one of the most

phenomenal problems, not only in IOC, but also in general AI and machine learning. To

put it in perspective, this framework is not straightforwardly applicable to extremely high-

dimensional demonstrations (e.g., visual pixels) since the statistics are nontrivial and hard to

be handcrafted. This problem will be discussed and addressed in the next chapter.

Another direction to explore is how the learned models can be used as priors to steer the

posterior trajectory optimization. Since the model has the potential to encode a large amount

of demonstration data, it would be interesting to explore how can it be applied to probabilistic

trajectory planning with non-trial dynamical constraints or in a model-free settings like (Cali-

non et al., 2012b; Kobilarov, 2012). In light of that, the consolidated skill knowledge can bene�t

the downstream control synthesis in terms of its exploration, re�nement, generalization and

ultimately, integration with learning from human demonstrations. The next chapter will also

touch this topic in the domain of handwriting motion synthesis.
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5 Linking Perception and Control

5.1 Introduction

Associating perception and control entails correlating variables of various sensory modalities,

which are subject to different feature representations. In inverse optimal control, features

determine the hypothesis space of a cost function. The previous chapters generally tackle

a quadratic cost function with a well de�ned feature, such as the pose of an end-effector or

kinematic model parameters. This chapter aims at automatically extracting the cost feature

and learning perception and control represented by unstructured demonstrations.

From the robotics point of view, this topic is important because handcrafting features for some

measurements, such as high-dimensional camera pixels, is impractical or requires substantial

domain knowledge. A learning from demonstration (LfD) paradigm that automates the feature

extraction is potential to reduce the feature engineering effort as well as free the restriction

of sensor selection, thus substantially improving its empirical value. Also, jointly reasoning

about multiple sensor modalities is interesting and feasible for nowadays robot systems. After

all, there is nothing preventing the task demonstrations being recorded through the lens

of different types of sensors. An inspiring fact is that human beings are quite pro�cient in

fusing the task knowledge or experience gathered from multiple sensing systems. For instance,

humans can estimate the shape of an object through both vision and tactile sensations. This

results in a redundant description since each channel provides a facet of the information of

interest. Establishing an association between the redundant modalities is bene�cial when

only partial observation is presented in the task reproduction: in darkness, humans can still

effortlessly perceive the object shape through a hand exploration. Therefore, by learning from

multi-modal demonstrations, the robots are endowed with a more complete task description,

a natural mechanism to estimate what is unknown from what is known, and as such, a capacity

of robustly executing the task in face of uncertainty.

Motivating from the machine learning perspective, learning features together with the task

further relaxes the common prerequisites about feature design in conventional IOC methods.

Extracting non-trivial features from data is one of the main strengths of representation learning,
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Figure 5.1: Learning representations for multiple sensory perceptions (vision and joint posi-
tion) and associating them in the latent space for linking perception and control. The desired
sensory/motor state, e.g., joint motion command, can be ef�ciently derived from incomplete
or novel input e.g., symbol images.

which is gaining momentums amongst roboticists after its remarkable successes in general

pattern recognition tasks. Hence it would be interesting to explore how the representation

learning can be incorporated into the IOC framework. Also, a feature extraction demands

constructing a mapping to project the raw data into a latent space. The manifold of the

latent variable is often structured and well-behaved for a more simple and ef�cient model

inference. From this perspective, this chapter also learns a latent variable in the same spirit of

Chapter 4. However, the latent variable in Chapter 4 is discrete in order to secure a tractable

posterior distribution. This assumption could be over restrictive for encoding unstructured

demonstrations. Here the extension considers learning with a continuous latent variable. This

will de�nitely enrich the model capacity with a more general assumption, while on the other

hand, additional challenges arise as the posterior is no longer tractable.

Summarizing above discussion, the research questions from the robotics and machine learning

perspectives can be identi�ed as:

• Robotics : how can a robot learn from and reason about high-dimensional data to

associate perception and control modalities?

• Machine Learning : how can an IOC approach learn the data feature together with the

cost function while assuming a general latent space?

To address the identi�ed problems, this chapter draws the connection between a general form
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of IOC and the variational auto-encoders, a popular representation learning framework for

generative models. The relation is discussed in Section 5.3 for the insights about incorporating

representation learning in IOC approaches. An adapted variational auto-encoders is then

developed in 5.4 as the main technical advancement for associating unstructured perception

and control modalities. Also presented is an application of the cross-entropy optimization

introduced in Chapter 3, which exploits the learned model to derive trajectories in more

challenging settings (Section 5.5). To this end, the results in Section 5.6 can demonstrate

succinct task manifolds and representations, which are then leveraged for an ef�cient motion

derivation from the raw sensory input (Figure 5.1). The main contributions of this chapter are:

• An approach which enables an agent to learn from high dimensional raw demonstration

data, with an adaptation from unsupervised representation learning.

• A KL-divergence-based metric that compactly associates the statistics of latent encod-

ings of different demonstration modalities, resulting in ef�cient stochastic gradient

descent training.

• An end-to-end system that enables the robot to generate arm joint writing motion from

observed symbol images, with a robustness against image occlusion.

The main algorithm and results have been presented in (Yin et al., 2017). The chapter contains

an extension about bootstrapping trajectory optimization with the learned model in Section

5.5. Additional results about the latent space and the extension are also included in Section

5.6.3 and 5.6.6.

5.2 Problem Statement

The central problem of this chapter is modeling multi-modal demonstrations with an IOC-

based probabilistic model. Without a loss of generality, two modalities of raw sensor readings,

such as vision pixels and joint positions, are considered here. The raw features are represented

by variables with subscripts indicating the data modality, e.g., x v for vision and xm for joint

motion. Under the MaxEnt assumption, the demonstration distribution can be parameterized

by the cost function:

p(x v ,xm ) Æ
e¡J (x v ,xm ,µ)

R
e¡J (x0

v ,x0
m ,µ)d x0

v d x0
m

(5.1)

in which the original feature or trajectory is now a concatenation of the involved modalities.

Hence the IOC model eventually describes the multi-modal demonstrations as a joint data

distribution.

Structures can be exploited for further induction of the general IOC formulation. Like the
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Chapter 4, a latent variable is assumed to factorize the joint distribution as:

p(x v ,xm ) Æ
Z

p(x v jz)p(xm jz)p(z)d z (5.2)

which means the raw readings are independent conditioned on the latent variable z. The

latent structure can be leveraged to obtain the factorization because using multiple modalities

to describe a task could be redundant and the raw features are simply different views of

perspective to the underlying task goal. However, unlike the Chapter 4, the latent variable

here is not restricted to be discrete because it relates to a quite general task-relevant feature,

which does not have a clear interpretation like the demonstration style in the discrete case.

Moreover, z in fact integrates the latent variables for both modalities with z Æ{zv ,zm }. The

prior probability of z can thus be further factorized if the coupling p(zv ,zm ) can assume more

structures.

The main learning problem is to estimate the parameters of the above distribution. This is

challenging because the latent variable is not of a simple discrete type so the marginal cannot

be ef�ciently evaluated. Also, for an inference problem, one may also be interested in the

posterior distributions p(zjx v ) and p(zjxm ). These in effect provide feature mappings to

project the raw data into a more compact feature space for describing the task. In the low

dimension space, one can seek a simpler cost-to-go function to describe the task manifold.

Hence unstructured demonstrations can be captured by a cost-to-go function with a simple

form and yet informative features. Lastly, the model should also allow for ef�cient and robust

inference of p(x v jxm ) or p(x v jxm ). This is important to establish a link between perception

and control modalities, for instance, inferring joint motion from a given visual cue.

5.3 Generative Representation Learning: PCA and Variational Auto-

encoders from IOC perspective

This section discusses feature learning of IOC problems and motivates to address it by resorting

to general generative representation learning techniques, such as PCA and Variational Auto-

encoders (VAE). Revisiting the MaxEnt IOC form used in previous chapters:

p(&)Æ
e¡J (&)

R
e¡J (&0)d&0

J (&)Æ
TX

t Æ0

1

2
[(x t ¡ ¹ t )

T Q t (x t ¡ ¹ t ) Å u T
t Ru t ] (5.3)

where trajectory states in & can be subject to a (locally) linear dynamics and one can also

tie the cost parameters by omitting the index t . The learning is comparatively easy because

the data is already represented with an informative representation, such as the pose in the

operational space. In fact, if the raw feature, e.g., the joint positions y, are used, the cost-to-go

function is de�ned as

J (&y) Æ
TX

t Æ0

1

2
[(Á( y t ) ¡ ¹ t )

T Q t (Á( y t ) ¡ ¹ t ) Å u T
t Ru t ] (5.4)
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with a kinematic mapping x t ÆÁ(y t ). The trajectory cost is no longer of an simple form

in y t because Á(¢) is a nonlinear feature. Another more general example is the popular

parameterization with linearly combined basis functions:

J (&y) Æ
TX

t Æ0

1

2
[µ T Á( y t ) Å u T

t Ru t ] (5.5)

where Á(y t ) de�nes a nonlinear feature x t Æ[Á1(y t ),Á2(y t ), ...,ÁK (y t )]
T , with Ák (¢) commonly

chosen as radial basis functions, e.g.,:

xk ÆÁk (y) Æe¡°k y¡¹ k k or xk ÆÁk (y) Æ
e¡°k y¡¹ k k

KP

k 0Æ1
e¡°k y¡¹ k0k

(5.6)

Again, if the feature parameters {°, ¹ k } are de�ned, the learning cost is effectively hypothesized

as a simple linear form in the feature space. When Á(¢) is unknown or hard to craft, e.g., as

the case of abstracting image pixels, the IOC approaches need to learn this feature mapping

alongside the cost parameter µ. The complexity of such IOC problems depends on the choice

of Á(¢) since it also parameterizes the distribution for generating the data. In below, the

notations are a bit abused to be consistent with general generative model, with x denoting the

raw representation of the entire trajectory and z representing its projection in the latent space.

Let the feature mapping be assumed as a linear projection z ÆLx , where the dimension of z is

assumed to be much smaller than the original x (dz ¿ dx ). If a quadratic parameterization

is used for the task feature z, similar to the previous chapters, the MaxEnt model in the raw

feature space p(x) is also a Gaussian:

p(x) Æ jLjpz(Lx ) Æ jLj
e¡ 1

2 (Lx ¡¹ )T § ¡1 (Lx ¡¹)

R
e¡ 1

2 (z0¡¹) T § ¡1 (z0¡¹) d z0

Æ
1

p
(2¼)dx jL †T §L †j

e¡ 1
2 (x¡L †¹ )T (L†T §L †)¡1 (x¡L †¹) ÆN (L†¹, L†T §L †)

(5.7)

where L† denotes the pseudo-inverse of the feature mapping L. Note the �exibility of L

makes the estimation of cost parameters ill-posed. One can �x the variance in the latent

space as identity and reparameterize L†¹ as ¹̄ ÆL†¹ . In that sense, the new mean can

be independently estimated and L†T L† is a low-rank approximation to the data covariance

becauseL is constrained by dz ¿ dx . A best approximation, e.g., subject to a Frobenius norm,

can be obtained through the singular value decomposition (SVD) (Eckart and Young, 1936).

To this end, one can identify that solving this IOC effectively conducts a principle component

analysis hence the PCA can be understood as learning a linear feature for a quadratic cost-to-go

function de�ned in a low dimension space.

A linear feature, though ef�cient for learning, cannot parameterize an expressive model with a

simple latent space. In order to express richer structures, the feature Á(¢) entails nonlinearity.
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(a) Linear feature (b) Nonlinear feature

Figure 5.2: Characterizing the data distribution with the cost de�ned in the latent feature space
(a) a linear mapping for projecting Gaussian distributed trajectories, yielding a quadratic cost
for a low dimension manifold; (b) a nonlinear feature mapping for projecting non-trivially
distributed trajectories, approximately �tting a quadratic cost from the latent structure prior.

Variational Auto-encoders (VAE) is such a kind of generative model. Recall the derivation in

the background chapter about using a parameterized distribution to approximate the true

posterior:

KL[qÁ (zjx)kp(zjx)] ÆEqÁ [log qÁ (zjx) ¡ log p(zjx)]

ÆEqÁ [log qÁ (zjx) ¡ log p(xjz) ¡ log p0(z) Å log p(x)]
(5.8)

and the relation between the training objective and full data likelihood:

L (µ,Á, x) ÆKL[qÁ (zjx)kp(zjx)] ¡ log p(x)

ÆKL[qÁ (zjx)kp0(z)] ¡ EqÁ [log p(xjz)]
(5.9)

Note that VAE assumes Gaussian probabilistic latent variable, prior and reconstructions:

qÁ (zjx) ÆN (¹ e(x),¾2
1(x)I ), p0(z) ÆN (0, I ) and p(xjz) ÆN (¹ d (z), I ). Apply the logarithm

to recover the cost-to-go function from the likelihood:

J (x) Æ ¡ log p(x) Å C ÆKL[qÁ (zjx)kp0(z)] ¡ EqÁ [log p(xjz)] ¡ KL[qÁ (zjx)kp(zjx)]

Æ
1

2
k¹ e(x)k¾2

1(x) Å
1

2
EqÁ [kx ¡ ¹ d (z)k2] ¡ KL[qÁ (zjx)kp(zjx)] Å C0

¼
1

2
k¹ e(x)k¾2

1(x) Å C0

(5.10)

where the approximation is accurate when 1) the reconstruction loss EqÁ [kx ¡ ¹ d (z)k2] is

small; 2) the latent mapping is approximated well so the divergence KL[qÁ (zjx)kp(zjx)] is

small. Both of the two can be realized with nonlinear encoder and decoder functions, which

are deep neural networks in VAE. Removing these terms, an estimation of the cost J up to a

constant term emerges. In contrast to the analysis of PCA, the function is a simple quadratic

one in a nonlinear feature space.
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It is worth noting that the quadratic form from the VAE derivation is so simple that there is no

need to learn the original cost parameter µ. This is because a general nonlinear feature qÁ (zjx)

is powerful enough to transform and match arbitrary raw features to a �xed low dimension

manifold. Informative features can shape the hypothesis space for an ef�cient model learning.

Here the feature itself is suf�ciently informative so no more model seeking is desired (Figure

5.2). One can of course further parameterize the prior p0 to allow for more �exible cost-to-go

functions in the feature space, such as parameterizing a dynamical system to cascade the

priors in the latent space. Incorporating structured priors other than an isotropic Gaussian

is an on-going research topic in general VAE and other types of generative models (Johnson

et al., 2016; Chen et al., 2016).

5.4 Associative Variational Auto-encoders

From the above discussion, variational auto-encoder can be interpreted in the IOC framework

as a way of learning compact cost-to-go features. This section presents the main contribution,

an associative variational auto-encoder, which adapts the original framework to link interested

modalities through the extracted latent space. It will show that the approach is also �exible for

the application of synthesizing motion from a perceptual input, hence accommodating the

needs of the ef�cient inference upon the model.

5.4.1 Associating Latent Representations

An associative variational auto-encoder consists of a collection of VAEs, each of which models

one modality of the demonstration. The factored probabilistic model is correlated as stated in

the Equation (5.2) if the raw feature x of each modality is considered a different perspective on

the underlying task. So far p(zv ,zm ) is a general joint distribution that captures this correlation.

Speci�cally, a deterministic assumption is adopted here, implying the latent encodings are

constrained by a metric, in the general form h(zv ,zm ) Æ0. The constraint h(¢) should not

be very complicated because the features are already structured and the inference across

modalities necessities a simple correlation. While there exist numerous assumptions about

the form of this relation, it is reasonable to adopt an identity constraint. The intuition about

the validity of this design is twofold:

• The latent variables actually correspond to features that are arbitrarily abstract for de-

scribing the task. A most direct description is to label the task behind the demonstration

instance with the latent variable itself. In that sense, the latent variables obtained from

multiple modalities should be identical because they are describing a same underlying

task.

• The expressiveness of the nonlinear encoding and decoding features could be suf�cient

to support an abstraction of this level, while without compromising the model �exibility

much.
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(a) Standard KL-divergence (b) Symmetrical KL-divergence

Figure 5.3: Standard and symmetrical KL-divergences between N (0,¾2
1) and N (0,¾2

2). The
standard KL-divergence fails to capture the discrepancy for certain cases, e.g., ¾1 Æe¡2 and
¾2 Æ1, while the symmetrical one is invariant w.r.t. the commutation.

Note that in VAE, the identity should be expressed as a match between the distributions of

probabilistic latent encodings, namely qÁ v (zjx i
v ) ÆqÁm (zjx i

m ), 8 z. The discrepancy between two

probabilistic distributions can be captured in many ways, e.g., KL-divergence. A standard

KL-divergence (Figure 5.3a), however, could be problematic here because it is not a metric

which allows the exchangeability. The learning might be misled to yield a encoding with an

in�nitely large variance for the �rst modality, making the difference between ¹ e(x) irrelevant 1.

In light of this, a symmetrical KL-based metric is composed to quantify this relation:

L assocÆKL(qÁ v
(zv jx i

v )kqÁm
(zm jx i

m )) Å KL(qÁm
(zm jx i

m )kqÁ v
(zv jx i

v ))

Æ
1

2
[log

j§ m (x i
m )j

j§ v (x i
v )j

Å log
j§ v (x i

v )j

j§ m (x i
m )j
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(5.11)

which is still of a closed-form and differentiable with respect to the feature parameters Á v and

Ám , because of the Gaussianity of latent encodings. It can be shown that, as illustrated in 5.3b,

this constraint implies an exchangeable modality sequence, as such, avoiding a directional

dependency in p(zv ,zm ). The �nal joint objective for the training can be obtained by putting

together the proposed constraint and the applications of Equation (5.9) over the involved

1The isotropic regularization in each modality might occasionally alleviate it but this is not guaranteed.
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Figure 5.4: Learning overlapped task manifolds (surfaces with solid color and textures) for
different demonstration modalities (vision and motion). Associative letter image and hand-
writing motion are retrieved by having an identical latent encoding go through corresponding
decoders.

modalities x v and xm , yielding:

L (µ v ,µm ,Á v ,Ám ,x i
v ,x i
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(zm jx i

m )kqÁ v
(zv jx i

v )]

(5.12)

with ¸ denoting the weight of the imposed constraint. It is worth noting that the introduced

loss term of association adds no extra complexity, comparing with a regular variational auto-

encoder training. Also the standard stochastic gradient descent still applies for optimizing this

adapted objective.

5.4.2 Ef�cient Inference on Perpetual Input

Learning and featuring associative demonstrations can be understood as extracting low di-

mensional task manifolds that are, in an ideal condition, fully overlapped (Figure 5.4) . The

projections of different observation modalities are co-located on the manifolds. Exploiting

this intuition, one can perform an inference for predicting one modality given the other one,

for instance, deriving arm joint motion from a target letter image:

p(xm jx v ) Æ
Z

p(xm jz)qÁ v
(zjx v )d z (5.13)
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Such an inference is viable because the latent variable identity is implicitly used as an in-

termediate step to link the conditioned modality to the target one. Also, the integral can be

ef�ciently evaluated by sampling from the shared low-dimensional manifold z.

Moreover, a full probabilistic model provides additional inference options besides linking

modalities in a basic manner. The low dimensional latent encodings can be leveraged to

evaluate the marginal probability thus alleviating the intractability of inference within each

modality space. This can be applied to a more practical and challenging scenario: while

the input features are incomplete or corrupted, the robot can still exploit what it learned to

evaluate the imperfect perception, recover a more accurate estimation, and as such, derive

the desired motion in a robust manner.

Concretely, the incomplete input feature, e.g., a letter image x̃ v with some parts occluded, is

projected into the feature space to obtain a rough estimation of the latent encoding. With

this as an initial guess, the manifold is explored to �nd a most likely latent variable whose

reconstructed feature matches the observable part of x̃ v well. Quantitatively, it is proposed to

solve:

z¤
v Æargmin

zv

¡ log p0(zv ) Å ´k x (obs)
v (zv ) ¡ x̃ (obs)

v k (5.14)

where ´ weights the difference between the observable parts of the reconstructed and the

target images. This objective literally seeks the latent encoding of an image which, on one

hand matches the observable part of the target one, and on the other hand, is more probable

w.r.t the learned cost function.

Note that the norm penalizing the difference of observable parts depends on the task modality 2.

Problems arise when the adopted norm is not differentiable. Thus, as a uni�ed solution, z¤
v is

proposed to be optimized through the cross entropy method used in previous chapters. The

cross entropy method optimizes the target objective by alternating between taking samples

from a proposal distribution and re-estimating it with the samples weighted under the target

objective, hence removing the requirement of a differentiable norm. Again, since the samples

are taken from the low dimension manifold, this method can secure an ef�cient inference.

5.5 Posterior Trajectory Optimization

It is a long-standing challenge for an agent to reuse the learned experience to bootstrap the

solution in novel tasks. As for the running example, it desires the agent to develop the motion

from the images of symbols that are different from the ones included in the training set. One of

the viable solutions to this out-of-sample test, which realizes a transfer learning to some extent,

2In case of a perfect feature learning, the similarity could be surrogated in the extracted latent space by a simple
norm, e.g., an Euclidean distance, and the optimization would be trivial. In practice, the distribution of corrupted
data might be different from the training set, while the projections might be close if suf�cient information is
already provided by the observable part.
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is to �ne-tune the result obtained from the source task model (Taylor and Stone, 2009). In light

of this, another application of the proposed approach is to seed the posterior policy search

with the prior guess from a task relevant input. The intuition is that, the projection of the novel

image encodes a similar learned letters, thus the associated initial motion approximation is

expected to be close to the optimal one and in turn boosts the performance or ef�ciency for

the posterior trajectory optimization.

5.6 Implementation and Results

This section presents the implementation and application of the proposed method in an

illustrative task: associating handwriting arm motion and the letter image. Details about

the experiment setup are given and the presented approach is also compared with other

alternatives.

5.6.1 Data Augmentation

The dataset used for the implementation is UJI Char Pen 2 dataset, from which, for simplicity,

only one-stroke-formed alphabetical letters and digits are considered. The data instances

feature 2D trajectories, which are spatially and temporally aligned trough scaling and interpo-

lation. The corresponding letter images are generated from the trajectories, yielding 28 £ 28

grayscale thumbnails and a x v of a length of 784. To emulate a less explicit motion represen-

tation, iterative LQR (Todorov and Li, 2005) is used to derive the optimal joint motion of a

7-DOFs Baxter robot arm. The arm joint motion is recovered to �t the 2D letter trajectories in

the operation space with the joint torque efforts minimized. The joint trajectories are further

parametrized by the function approximator x t Æw T ©(t ), which is used in Chapter 3. Thus

the effective output for the motion modality is the coef�cient of the function approximator.

The motivation of introducing this representation is to incorporate a smoothness prior and

reduce the complexity of the output dimension. For each DOF, 20 nonlinear basis functions

plus a linear term are used, yielding a 147-dimension vector for the modality of xm .

Unfortunately, the UJI Char Pen 2 dataset is sparse and unbalanced for different letters and

digits. The most number of samples for each type of character is 120. The dif�culty is that

representation learning methods are usually data-hungry and a primary test on the origi-

nal dataset shows the model tends to either over�t or fail in learning rare samples. This is

proposed to be addressed by a data augmentation. Speci�cally, the dataset is augmented by

exploiting the handwriting synthesis result in Chapter 4. The motion trajectories for each

character are �rst learned with the ensemble probabilistic model, with the lognormal kine-

matics feature enforced. Then the characters for each category are re-sampled through the

ef�cient multi-mode motion synthesis and obtain the corresponding images. Readers can

revisit Section 4.7.2.1 for details of this procedure. Note that this is different from augmenting

the size of dataset by simply adding white noise to the original coordinates and pixels. The

randomness is constrained in the space of kinematics feature, which is borrowed from the
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research characterizing natural human movement. Also the quality of the synthetic samples is

partly assured by the result of Turing-like test (Section 4.7.2.2. Eventually, more than 70000

pairs of images and arm motion are synthesized, with about 1000 samples per each character.

5.6.2 Model Implementation

Similar to the standard variational auto-encoder, neural network (NN) models are used as

the data encoder q(zjx) and decoder p(xjz). Each of the NNs is comprised of two layers of

recti�ed linear units (ReLU) as the nonlinear hidden features. Sigmoid functions are adopted

as the output features of the vision modality, in order to obtain valid gray-scale values. The

model architecture can be over-viewed as Figure 5.5. The training is carried out through the

stochastic gradient descent with an adaptive moment estimation (ADAM) (Kingma and Ba,

2015), a learning rate of 10 ¡4 and a batch size of 64. The other hyper parameters, such as the

length of the latent variable and the weight of association term, are selected according to the

cross-validation of the reconstruction performance.

Figure 5.5: Model architecture of learning latent representations and association on different
modalities of demonstrations. Latent layers of representation is annotated with feature type
(Recti�ed Linear Unit) and size. The association is captured by a symmetrical KL-divergence.

To illustrate the strength of the incorporated feature learning, Gaussian Mixture Models

(GMM) on raw features are also trained as competing baselines. Training these models with

104



5.6. Implementation and Results

(a) GMM (b) GMM-PCA

Figure 5.6: BIC scores for model selection of GMMs: (a) with the complete feature (b) with
the feature subject to a PCA dimension reduction. Selected number of components: full - 10;
diagonal - 350.

full covariance matrices suffers from severe over�tting issues and is quite slow for a moderate

number of components due to the high data dimensionality. To alleviate it, some variants

are also explored. These encompass a GMM model with diagonal covariance matrices, a

GMM model with a PCA dimension reduction and the combination of these two. For the PCA

preprocessing, the number of eigenvectors is selected to explain 99% data variance, yielding a

reduced dimension of 240 for the image modality and 37 for the motion modality. The number

of mixture components is determined based on the BIC criterion. We �t GMM models with a

K-Means initialization and 15 random restart to �nd the best estimation. In our experiment,

GMMs with 350 components and diagonal covariance matrices give the best BIC score (Figure

5.6a). Since a diagonal matrix cannot capture the correlation across feature dimensions, the

best full covariance models with 10 components are also included in subsequent comparisons.

5.6.3 Wandering in the Latent Space

Figure 5.7 demonstrates the learned association by comparing the images and the arm motion

decoded from identical latent variables. Here the two modalities are compressed in a 4-

dimensional latent space. The latent encodings are selected by walking along the �rst two

dimensions between the interval of [ ¡ 5,5]. The reconstructed images show plausible transition

of morphologies with varying size or curvature of the loops or strokes. The corresponding

motion, which is transformed as the end-effector trajectory in the operation space, resembles

consistent pro�le throughout the wandering over the manifold. Also it is notable that the

Cartesian trajectories always stay within the writing surface, with a deviation as small as

10¡4 m, even though the model is agnostic about the arm forward kinematics . Therefore these

observations conclude that the model indeed learns expressive representations and a global
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Figure 5.7: Decoded letter image (dark background) and arm motion in Cartesian space (light
background) by walking along the �rst two main axes of the latent space ( z(1), z(2) 2 [¡5,5]).

Figure 5.8: Deriving handwriting motion with different models and symbol images outside the
test dataset: the resulted trajectories are transformed to the Cartesian space and shown in 3D
plots. The input samples are generated by brushing with the mouse and are not cherry-picked.

association on the manifold of the target task.

5.6.4 Deriving Joint Motion from Image Perception

A natural application of the learned encodings and association is to infer one data modality

from the other one. In our handwriting context, this implies the model can be used to imme-

diately derive the handwriting motion when a symbol image is presented, as such linking a

feedforward control to a perceptual input.

Figure 5.8 depicts concrete samples of the predicted writing motion from symbol images. It is

worth noting that the images here are not from the dataset itself but generated by a person

with a different handwriting style. Speci�cally, the symbols are drawn by hand on a canvas
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or a user interface. The images are then retrieved and fed to the model to obtain the writing

motion. For the convenience of visualization, all of the joint motion is transformed into the

Cartesian space and rendered as 3D plots.

As is clear from the �gure, the proposed approach generates the most plausible arm joint

motion for the drawn image samples. Because of the rich mode patterns of data, the model

learned in the original feature space requires a large amount of local models to fully cover

the data modes. Henceforth, among the alternative methods, GMM with diagonal covariance

matrices, which admits a larger number of components, appears to have a comparatively

better performance. However, due to the high dimensionality, such a shallow model still fails

at times. Additionally, the PCA, aiming to reduce the data dimension, is not helpful in this

task. In fact, the methods with PCA preprocessing perform worse than the GMMs learned in

the original feature space. This can be partially explained by the fact that the PCA inherently

learns linear correlations as the features, which are not expressive in general cases. In our

experiment, we observe that sometimes the generated movement forms an incomplete loop,

like the cases of "g" and "8" in Figure 5.8. A possible cause is that, in the data augmentation,

the samples are perturbed without an explicit constraint of maintaining the closeness of a

loop thus the samples with a loop cut dominate the training data. Hence synthesized motion

samples with an open loop dominates the augmented dataset, though similar samples might

also emerge in cursive handwriting. One can expect an improvement by further constraining

this in the synthesis of data augmentation.

Figure 5.9: Error comparison of different models on predicting the arm joint motion from a
symbol image of the test dataset. The error is measured as the Euclidean distance in the space
of the coef�cient of the trajectory function approximators.
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The qualitative visual results are also in accordance with the numerical result. In this ex-

periment, motion trajectories are predicted for the test dataset and the Euclidean distance

between the prediction and ground-truth is measured in the function approximator basis

space. As is clear from Figure 5.9, the presented associative VAE outperforms the competing

methods by a signi�cant margin. These results demonstrate the advantage of the proposed

nonlinear feature learning in such a challenging task that involves high dimensional raw

sensory input.

5.6.5 Handling Imperfect Perception - Occluded Images

In this experiment, the letters are again written by a person whose handwriting is not included

in the dataset. However, the model only receives a corrupted symbol image, with a random

quartile covered. In order to guarantee the real-time performance, the number of iterations

and samples of the cross-entropy optimization are both limited to 20. Figure 5.10 presents

some instances of the experiment and clearly illustrates how the proposed inference proceeds.

Initially, the algorithm attempts to make up the missed pixels with a plausible component.

Then the recovered part is progressively re�ned and sharpened as the iteration continues. At

last, the resultant latent encoding appears to be a good representation of the full underlying

image, leading to correct writing motion (the last column). In practice, 20 iterations are

Figure 5.10: Inferring arm joint motion given occluded letter images: the latent encodings
are explored to search complete images to match the observed parts before deriving the
associated handwriting motion. The �rst column: input images; the second to the �fth
columns: evolution of the recovered full images in iteration steps of 3, 8, 13, 18; the last
column: Cartesian letter trajectories resulted from the inferred arm joint motion.

often more than enough to reconstruct the image, thanks to the ef�ciency from the learned

latent representation. With a projection from the observed pixels, the obtained initial guess
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is expected to be close to the ideal reconstruction on the manifold. In addition, the learned

low dimension parameter space only desires a limited number of samples to secure a stable

exploration.

The GMM-based models are not compared here as it could be notoriously expensive to

apply the cross-entropy method to sample pixels of hundreds of dimensions in the original

space. Also, this experiment showcases a unique bene�t of learning a generative model of

demonstrations. Indeed, it provides a principled way to handle sensor uncertainties in the

task execution. The robot systems can bene�t from this in terms of skill generalization and

robustness. Approaches in which sensory states are mapped directly to actions are unable to

achieve this.

5.6.6 Bootstrapping Posterior Control for Novel Samples

In this experiment, the learned model is tested to examine if it could provide an informative

prior for the posterior trajectory optimization. Ideally, the encapsulated knowledge should

suggest a trajectory which is close enough to the optimal one, thus the trajectory optimization

could potentially bene�t from a more ef�cient exploration and avoiding trapping in local

optima. From a broader point of view, this paradigm demonstrates how LfD can be utilized to

adapt and transfer learned skills to completely novel tasks.

For the novel test tasks, images are retrieved from a free drawing, including “d” with a script

font, symbol “square”, “ ¢ ”, “moon”, composed “7” and “6” and “ §”. This collection of symbols

are selected with a qualitative and intuitive control about the task novelty. For instance, one

can imagine that the motion for drawing a square can be relatively easy to search by adapting

a prior for writing “O” and composing “ §” is less straightforward due to its dissimilarity to

learned letters.

The above competing methods are used to generate initial trajectories for a comparison.

Besides GMM-based models, a naive initialization, the motion of drawing a straight line, is

also included. The posterior trajectory optimization is consistently performed with the cross

entropy method. Another motivation of using the cross entropy method is because an explicit

gradient for the process of generating images from motion is not available. The priors from the

associative VAE are used in two ways. The �rst way is to apply the cross entropy optimization

in the original (parameterized) trajectory space x t Æw T ©(t ) ("AssocVAE full"). The second

is de�ning the proposal distribution over the latent space, hence solving the task in a low

dimension and constrained space ("AssocVAE latent"). For all the optimization initial guesses,

the task performance is measured by the sum of pixel-wise quadratic errors realized in a �xed

number of iteration steps. Unless explicitly stated, the cross entropy method parameters are

set to be identical to assure a fair comparison.

As is shown as Figure 5.11a, the results of searching the trajectories with initial approximations

from the proposed associative variational-autoencoder are presented. Indeed, given the
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novel symbol images, the learned model proposes plausible initial writing motion, such as

generating the motion of writing a “G” for the "square" and “V" for the "moon". The script-

style “d” is �rst approximated with the motion close of “a”, which is not a perfect guess but

close enough for the posterior trajectory optimization. At the end, visually believable results

are obtained within 20 iteration steps. An interesting observation is the result of writing the

symbol “ §”, which is shown in the last row of Figure 5.11a and expected to be a challenging

one. The novel symbol is recognized to be close to the digit “8”. Such an approximation, whose

motion might not be that close to the target one, is nonetheless reasonable for the agent to

perceive the input image with respect to what it has learned. Departing from such a motion

prior, the trajectory optimization yields an “innovative” way of writing a “ §”, whose overall

pro�le is visually well formed.

(a) (b)

Figure 5.11: Model-free trajectory optimization and re�nement with the inferred arm motion
as the initial guess. The searching is conducted in the original motion trajectory space. 5.11a
The �rst column: the input image; the second to the �fth columns: symbol images resulted
from the evolving motion trajectories in iteration steps of 3, 8, 13, 18; the last column: Cartesian
trajectories. All testing cases except the �rst one are novel to the model. 5.11b The Cartesian
motion result of trajectory optimization with initial guesses from competing approaches. All
of the methods are using the same cross entropy method parameters and the �gures are from
the results after 20 iteration steps.

The performance of the proposed approach is compared with the naive and GMM-based

initializations, whose numerical and visual results are respectively depicted in Figure 5.12

and 5.11b. For some of the symbols, these competing predictions are �ne to yield reasonable

writing results (e.g., “square” for GMM-PCA-Diag and “ ¢ ” for "GMM-Full"). However, in

general, the performance of searching in the original trajectory space with the proposed

initial guess ("AssocVAE full") is more favorable. This is particularly phenomenal when an

approximately correct prior is crucial for the trajectory optimization to escape from a poor

local optima, such as the script-style “d” and symbol “moon”.
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Figure 5.12: The evolution of cost values through cross entropy trajectory optimization with
different initial approximations. Except the prior guesses, all methods and testing cases start
with same parameter settings. The AssocVAE with latent representation explores in a low
dimensional feature space and uses fewer samples (20) in iteration steps. Other methods use
50 trajectory samples. The curve and shaded area represent the mean and standard deviation
of the cost of samples.

In terms of the quantitative performance, the approaches based on associative variational-

autoencoder is either comparable or superior across all the tasks. Speci�cally, searching in

the latent space ("AssocVAE latent") is much more rapid and stable for both the mean and

covariance of trajectory costs, even when fewer sampling rollouts are used. This is similar

to what has been observed in Section 5.6.5, where the searching space is constrained by a

informative latent representation. While in this experiment, since the symbols are novel

and not necessarily aligned with the learned manifold, such a constraint tends to result an

approximation that is close to the projection of the target symbol on the manifold. Therefore,

when there is an informative approximation to shape the searching direction, exploring in the

full trajectory space ("AssocVAE full") offers more �exibility to yield a better performance in

terms of visual consistency (Figure 5.11a).

5.7 Discussion

This chapter approaches a challenge arising in the practical LfD: learning and reasoning about

high dimension data of multiple modalities. Perceptual and control modules can be linked by

correlating multiple data modalities. The proposed algorithm learns feature mappings that

are, on one hand effective for compressing and reconstructing the raw data, and on the other

hand, simple enough to afford an intuitive and ef�cient representation of the associativity.

The underlying IOC problem thus assumes a nonlinear featured cost-to-go function, which

much increases the model capacity to capture high dimension unstructured patterns. As a
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result, the answers of the raised problems in the beginning of the chapter can be summarized

as:

• Robotics : the IOC framework can be extended to compress the high-dimensional data

by extracting a succinct representation. Concurrently, the correspondence between

perception and control modalities can be correlated as the joint distribution over the

extracted representations.

• Machine Learning : representation learning can be adapted to parameterize a lower-

bound of the demonstration likelihood with a continuous latent variable prior. The

differentiability of the re-parameterized sampling allows to ef�ciently optimize this

surrogate together with exploring a nonlinear transformation to the latent space.

The proposed approach is largely following one of the main venues in general machine

learning: bridging expressive neural models and probabilistic inference. Placing the IOC

framework in this perspective, many variants beyond the vanilla VAE can be explored. It

is worth noting that the distribution of the synthesized motion conditioned on the input

image is still unimodal, even the VAE represents a sophisticated distribution over each sensory

modality. This might cause problem because the correspondence of the data modalities is

not necessarily a bijection. For instance, as the case in Chapter 4, a letter image could be

generated from different handwriting motion. As a result, the motion prediction based on a

unimodal latent distribution might miss the other viable modes. Intuitively, one can model

xm by adopting an advanced p(xjz), e.g., a GMM parametrized on z. However, it might be

risky to have an over-powered p(xjz). The VAE training might not learn a meaningful mapping

q(zjx) by simply setting it to be the prior p0z, because the generator itself is suf�ciently rich

to represent the data-likelihood with p(xjz) Æp(x) (See discussions about the optimization

challenge in (Bowman et al., 2016; Chen et al., 2017)). A promising solution is to assume a

multi-modal posterior q(zjx). In a vanilla VAE, the posterior is parameterized as a diagonal

Gaussian, which, from the variational point of view, resorts to a mean-�eld approximate

inference. Latest works have proposed discrete latent variable (Jang et al., 2017) and stick-

breaking-based probabilistic encoding whose length itself is stochastic (Nalisnick and Smyth,

2017). Also, noticing the posteriors entail ef�cient sampling and back-propagation of the

parameter gradient, complex posteriors in (Rezende and Mohamed, 2015; Kingma et al., 2016)

are constructed from �ows. Concretely, a �ow-based posterior distribution is formalized by

recursively applying an invertible transformation to an encoding z(x), which is initially with a

simple distribution. From the IOC perspective, the autoregressive process in (Kingma et al.,

2016) could be used to factorize the posterior distribution conditioned on the entire trajectory

x Æ{x t }, e.g., q(zjx) Æ
Q

t
q(z t jx1:t ). This effectively assumes and learns a dynamical system

in the latent space. A prior about the agent dynamics, e.g., based on general physics laws

(Stewart and Ermon, 2017), might be incorporated to model the sequence of high-dimension

observations.
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One of the most phenomenal challenges of applying representation learning in robotics,

admittedly, is the importance of possessing massive high quality data. Unfortunately, the

applicability of the introduced solution in this chapter is task dependent. Speci�cally, the data

augmentation relies on the domain knowledge about the kinematics feature characterizing

natural human movements. Apart from that, here the synthesis of the corresponding image

modality is affordable because it is cheap to simulate and convert trajectory coordinates to

canvas pixels. For other types of data, e.g., the tactile of �nger phalanges and the manipulated

object pose, one might face challenges in rapidly generating the target pattern with the noise

at a satisfying level. The robot might be exposed to substantial risks if it takes a large set of

rollouts to collect the data. Physical simulation with a high-�delity might alleviate this by safely

synthesizing a large amount of control and perception pairs. Also, it is worth investigating how

to reuse the knowledge from the experience of executing other related tasks, e.g., convolution

�lters from general image classi�cation, to incorporate features that abstract many tasks and

make the learning less demanding on the data volume. This might also help to learn new task

skills with a few shots when an accurate model is not available to simulate real-world physics.

This chapter takes some preliminary steps which seed the solution for a novel task with the

prediction from the model learning a relevant task. It would be interesting to explore how a

robot can incrementally aggregate the data collection from bootstrapped executions, and even

orchestrate a sequence of subtasks (e.g., from writing simple strokes to composing complex

calligraphies) to facilitate the mastery of motor skill.
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6 Summary and Conclusions

In this �nal chapter, the thesis concludes with a summary of the main contributions. Also

discussed are the important limitations. Detailed technical limitations have been covered at

the end of each chapter. Here, the chapter focuses on high-level issues with a look ahead on

future research directions.

6.1 A Recap of Contributions

One main contribution of this thesis is to offer an approach at using human demonstrations

for identifying parameter of impedance control. The thesis does so by taking an IOC ap-

proach, which is not as explicit as programming the desired path of the tool-tip. Deriving an

impedance controller from a learned cost function is not the only novel aspect of the work

offered in Chapter 3. Importantly, the approach in Chapter 3 introduces task-relevant priors

that shapes the general dynamics of the controller, while estimating the structured cost param-

eters according to the demonstration data. From the computing perspective, unlike the works

following a standard IOC formulation, the algorithm in Chapter 3 treats both cost learning

and control synthesis as probabilistic inference problems, so an importance-sampling-based

technique can be uniformly used. The model-free setting makes the algorithm less restrictive

about the task dynamics and feature construction, implying the possibility of incorporating

other type of priors.

In general, imitation learning approaches expect the demonstration data to cover all of the

interested task dimensions. Chapter 4 and 5 take a different view towards this and argue that

sometimes it could be advantageous to assume the data is incomplete. Explicitly considering

incomplete demonstrations is rarely explored in general IOC research, with a notable exception

of (Nikolaidis et al., 2015). At a �rst glance, introducing unobserved dimensions complicates

the learning problem. However, as shown in these chapters, this added complexity has many

advantages if the implicit variable is subject to an appropriate design. The general insight

is that, comparing with the original demonstration features, the introduced latent variable

could be cast as a more succinct description about the task. This could be greatly helpful for

115



Chapter 6. Summary and Conclusions

understanding the raw sensory data, and in turn bene�t both learning and reasoning about

the task. Speci�cally, Chapter 4 has shown that, once the estimation about a discrete latent

variable is established, a general IOC learning can be decomposed to a set of less challenging

problems. Each of sub problem resembles a form that has been somehow addressed in

Chapter 3 and the extra computational cost for this transformation is modest. Chapter 5

introduces the latent variable with a more practice-oriented consideration. In this chapter,

the latent variable is taken as a dimension-reduced equivalence to the original feature, which

can be high-dimensional and unstructured. This is useful because one can alleviate the curse-

of-dimensionality by reasoning about the sensory data in this low dimension space. Taking

a further step from Chapter 4, the latent variable is continuous. Therefore, it represents a

spectrum of variations and allows for an interpolation to capture a smooth transition among

demonstrations.

Chapter 4 and 5 also close the loop, in which the above latent variables are employed to

develop the control. Most LfD approaches cope with the link between perception and control

by learning a coupled system. Though less straightforward, these two chapters adopt an

architecture that decouples perception and control modules. The advantages of this choice

is twofold. On one hand, a modular approach is �exible for incorporating priors in the in-

termediate step to shape the task execution. In Section 4, it has been demonstrated that, for

human robot collaboration, the adaptability and robustness of the robot can be modulated by

enforcing different priors about the latent variable evolution. On the other hand, disentangled

representations support a natural �ltering and recovery of the perception from noisy measure-

ments, thereby realizing a robust control that is less demanding about the data volume. As an

example, Section 5.6.5 has shown synthesizing handwriting motion with an incomplete image

input. Plausible feed-forward trajectories are obtained without needing to train on a dataset

that includes corrupted character images.

To sum up, learning from demonstration is utilized and extended to obtain an internal model,

which exploits human expertise for an improved representation, inference and synthesis

of robot motion. The thesis considers a wide range of human expertise, which fuses task

demonstration and established priors about perception and control.

6.2 An Outlook of Future Works

This section discusses potential directions along different dimensions. As shown in Equation

(4.3), the representation of task skills comprises two parts: a goal-relevant cost function

and task-independent passive dynamics. The �rst two subsections discuss the possibility of

adopting dynamics and tasks of more general forms. The remained sections view in a larger

picture, envisioning extensions from temporal and high-level perspectives.
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6.2.1 Task Dynamics Beyond Discrete Motion

The cost-to-go function and linear-solvable system discussed in the thesis encode a stroke of

discrete motion. Parameterizing a periodic state reference in the cost-to-go can be potential

to learn rhythmic movements. More importantly, it would be interesting to learn with hybrid

dynamics. The hybrid dynamics comprise continuous differential equations and discrete

state transition to describe jumping events such as physical contacts. This is a more general

form that describes multi-staged motions. In many contact-rich tasks, such as object in

hand manipulation, the dynamics keeps switching among the modes of free and contact-

constrained stages. Synthesizing such kind of dexterous motion might entail an accurate

hybrid dynamics model or ef�cient learning method. Furthermore, hybrid dynamics explicitly

consider the contact force in the model. This could be useful when the contact contributes

to the task performance. For instance, humans can restore the balance by pushing against

the wall to exploit the environment reaction. As another example, impedance control might

be insuf�cient if the task goal is not just accommodating the contact but exerting the force

of a desired magnitude. In these cases, it would be more appropriate to regard the contact

force as a task state instead of a disturbance. However, synthesizing motion under hybrid

dynamics is hard due to the dif�culty from contacts. Possible venues include model-based

approaches which deal with limited types of contacts (Todorov, 2014; Kuindersma et al., 2015;

Feng et al., 2015) and learning-based methods which avoid an explicit model (Kumar et al.,

2016). Learning from demonstrations could be useful to provide informative initialization or

at least high-level plans such as ordered hybrid modes and dynamics switching surfaces.

6.2.2 Task-agnostic Learning

Learning from demonstrations generally targets solving a speci�c task. One of the substantial

challenges is how a robot can generalize in the real-world and master a range of task skills.

However, it would be rather tedious to require humans to exhaustively demonstrate all the

task variations. It can be helpful to use the data, which targets addressing speci�c tasks, for

learning other (related) tasks. The problem of lacking labeled data in target domains is also

faced in general machine learning, where massive datasets of related but unlabeled are usually

exploited (semi-supervised learning). In the robot learning practice, the question is that

how the “unlabeled” demonstrations or experiences, which are not generated for the target

task, can be leveraged for a domain adaptation. One of the viable ways could be collecting

task-agnostic data through an exploration driven by general criteria like motion smoothness

or curiosity. As a simple example, an off-line motor babbling could be used to estimate

robot dynamics for learning different tasks. This relaxes the assumption about knowing robot

passive dynamics in the thesis. Another extension could be capturing the variations of tasks

rather than of demonstrations. Namely, the robot learns a spectrum of tasks by extracting

some common features and builds a task-agnostic manifold. It could be sample ef�cient to

learn a relevant task by exploring on this manifold. As a result, the robot can rapidly adapt

to learning a new task, realizing the generalization at the task level. The work in Chapter 5
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touches this with learning to write a set of characters. It is worth exploring a similar idea in

more general robotic tasks.

6.2.3 Interactive and Incremental Learning

The thesis focuses on learn from demonstration in a batch mode. However, in a few cases,

learning in an interactive and incremental manner is desirable. For instance, it might be

more ef�cient and user friendly for the robot to actively request human demonstrations when

it is uncertain about how to act under the given task con�gurations. Also, as is shown in

(Kronander et al., 2015), the robot can replicate what it has learned and allow humans to

adjust the robot skill through online correction. However, an eventual incremental learning of

task variations or new skills requires consolidating the new data, instead of replacing what has

been learned. Research efforts are still necessary to achieve this, because many models “forget”

what they have learned after a training on the new task. This is identi�ed as catastrophic

forgetting problem (McCloskey and Cohen, 1989). In machine learning, exploiting an external

memory module is proposed as a potential to address this issue (Graves et al., 2016). In

robotics, it would be appealing to realize an incremental learning of multiple tasks so the

robot can progressively build up its skill repertoire, envisioning a life-time learning.

6.2.4 High-level Knowledge and Cues

Another observation about the data ef�ciency is that humans generally need much fewer

demonstrations or trials to learn a new task skill. The priors established in learning other tasks,

as discussed in Section 6.2.2, indeed play an important role. However, it is also worth noting

that humans are pro�cient in reasoning about high-level salient cues. To bring up a concrete

example, imagine a robot learning from a single demonstration of reaching an object on the

table. Without showing the variation, e.g., reaching the object placed at different locations, it

would be unclear if the robot should imitate the motion path or the reaching goal. In fact, the

presence of an object itself is a strong implication about the expected behavior. The similar

importance of such contextual cues in resolving the imitation ambiguity has been observed in

(Bekkering et al., 2000; Mizuguchi et al., 2009), where children imitate the motor gesture or

the goal of touching depending on the existence of target dots. In robot imitation tasks, such

high-level knowledge can be used to identify important scene objects and understanding their

properties, relations and potential functions, as such, biasing the model design for sparse

demonstrations. The thesis employs the task-parametrized representation in Section 4 to

extract the potential goals from a set of prede�ned objects. Moreover, the inference is based on

variance so the expressed relation is limited and the demonstration variation is still required.

Learning a general task in limited shots calls for a model prior beyond that. The capability of

inferring the graspable parts from the object geometry, for instance, could let the robot bias its

interpretation about the demonstration so as to imitate correctly in face of a novel object. To

this end, it would be promising to have a framework that incorporates high-level common

knowledge in certain forms, and thereby to yield an improved generalization performance.
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A Appendix

A.1 Proof for Proposition 1 in Chapter 4

Substituting the Gaussian passive dynamics and the quadratic cost-to-go function, we have:
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The corresponding log-likelihood can be written as
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where d denotes the state dimension. The exponential from the passive dynamics (the third

line of the equation) can be considered as a positive coef�cient that is always less than one.

Replacing the coef�cient with one results in a simple integral of Gaussian function (the

exponential of negative cost-to-go function, line 7), which is always larger than or equal to the

integral considering the passive dynamics.

ˆL (¹, ¤ ) is thus a lower bound of the original likelihood by instead subtracting this simpli�ed

integral. Taking the derivatives @ˆL
@¹ Æ0 and @ˆL

@¤ Æ0, one can obtain:
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which happens to be the same as the MaxEnt estimation which assumes uniform passive

dynamics:

PMaxEnt (x t Å1 jx t ) Æ
e¡ 1

2 kx t Å1¡¹k ¤

R
x0

t Å1
e¡ 1

2 kx0
t Å1¡¹k ¤ d x0
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Therefore the MaxEnt estimation is an approximate solution to the lower-bound of ˆL . And

the gap shrinks as noise magnitude k§ 0k ! 1 , with the original problem degenerating to the

MaxEnt formulation.
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