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Abstract—Wearable and implantable body sensor network
systems are one of the key technologies for continuous monitoring
of patient’s vital health status such as temperature and blood
pressure, and brain activity. Such devices are critical for early
detection of emergency conditions of people at risk and offer a
wide range of medical facilities and services. Despite continuous
advances in the field of wearable and implantable medical
devices, it still faces major challenges such as energy-efficient
and low-latency reconstruction of signals. This work presents
a power-efficient real-time system for recovering neural signals.
Such systems are of high interest for implantable medical devices,
where reconstruction of neural signals needs to be done in real-
time with low energy consumption. We combine a deep network
and DCT-learning based compressive sensing framework to
propose a novel and efficient compression-decompression system
for neural signals. We compare our approach with state-of-the-art
compressive sensing methods and show that it achieves superior
reconstruction performance with significantly less computing
time.

Index Terms—Neural signals, neural network, compressive
sensing, learning-based signal processing, low-power, signal re-
covery.

I. INTRODUCTION

Implantable health monitoring devices using mobile and
wireless technologies is an emerging field of research and
recently has been receiving increasing attention [1]. These
devices continuously monitor the patients and provide vital
information about their health status. In these devices, first, the
digitized neural signals are passed through a data compression
module. Then, the compressed signals are transmitted to a
receiver, where it reconstructs the neural signals [2].

In wearable health monitoring devices, transmitting signals
by wireless requires orders of magnitude more energy than
other functions of the device [2]. Therefore, it is vital to create
a framework which addresses basic concerns like efficient
energy consumption and low-latency reconstruction. This, in
turn, requires using Compressive Sensing (CS) methods [3, 4]
to reduce the cost of the wireless data transmission [2, 5].
Furthermore, low complexity of reconstruction methods in the
receiver is crucial for wireless health monitoring sensors using
batteries, where energy efficiency and battery life is essential.
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Although the compressive sensing methods have been very
successful in the past, they suffer from certain limitations.
First, since they are iterative methods, they are often not fast
enough to be applicable for real-time tasks. Especially, in
medical monitoring devices, the real-time reconstruction is of
paramount importance. For instance, when neurophysiology
experts want to observe the neural signals to predict possible
stroke, the reconstruction needs to be done in real-time.

Second, another challenge is limited available computational
power in wireless or mobile implantable devices for monitor-
ing activity of the brain. Solving demanding convex optimiza-
tion problems requires high computation power. Moreover, the
heat generated from solving these demanding problems can
reduce the device’s battery life.

Despite the continuous advances in implantable health mon-
itoring devices field, it is still a challenge to find the appropri-
ate combination of compression and reconstruction techniques
to fulfill latency and power consumption requirements of such
devices. We approach both of these challenges hands-on by
developing a real-time reconstruction and compression method
for neural signals. While our framework is suitable for general
biomedical signal recovery, we focus on neural signals recon-
struction, which has several applications in medical monitoring
devices.

Following the recent enormous success of deep neural
networks in various machine learning and computer vision
applications such as classification, object detection, semantic
segmentation, and natural language processing [6], we focus
on building a neural network decoder in this paper. On the
other hand, Baldassarre et al. [7] recently proposed a learning-
based compressive subsampling approach which selects the
mask indices that maximize the captured energy on average
over the training set. Their method improves the recovery
performance and reduces the data telemetry costs.

We leverage both of these ideas and present a DCT learning
based neural network decoder for efficient reconstruction and
compression of neural signals in a unified framework. By
jointly using a deep network decoder for reconstruction and
applying a DCT learning based compressive subsampling [7]
method for compression of the neural signals, our method
achieves real-time reconstruction; it substantially improves the
reconstruction performances in comparison with compressive
sensing methods and decreases the data transmission energy
and cost.



The experiments prove that our method outperforms the
solutions computed by state-of-the-art compressive sensing
algorithms, while it reconstructs the signals hundreds of time
faster than the conventional CS recovery methods. This real-
time reconstruction comes at the expense of once offline
training of the neural network, which is typical of any deep
learning method. We also demonstrate empirically that for
lower compression rates, our method performs as good as
adaptive compression method which sets an upper limit for
the achievable performance in linear decoders.

This paper is organized as follows. We provide the summary
of previous related studies in Section II. We overview the
main concepts of compressive sensing in Section III. In
Section IV, we review the learning based compressive sensing
framework, and overview the adaptive compression method.
In Section V, we introduce our proposed method for joint
compression and reconstruction of neural signals. We provide
experimental results and comparison with state-of-the-art CS
recovery methods in section VI. Finally, we conclude the paper
in section VII and provide summarizing remarks.

II. LITERATURE REVIEW

Baldassarre et al. [7] proposed to learn the sampling mask
based on the training data for linear decoders. Given a set
of training signals, they learned the sampling mask which
maximizes the captured energy on these signals on average. In
this work, we learn the sampling mask from training data as
proposed in [7]. However, in this work, we use a deep network,
which is a nonlinear decoder, for signal reconstruction.

Aprile et al. [8] proposed a DCT Learning-based compres-
sive subsampling method for neural signals. They compared
their method with several recent randomized sampling ap-
proaches, i.e., Bernoulli [2], Structured Hadamard sampling
[9], and Multi-Channel Sampling [5] developed for compres-
sion of neural signals. They used Hierarchical Group Lasso
in conjunction with these sampling patterns to reconstruct
the neural signals which were shown in [9] to result in
the best performance. Their proposed method improved the
reconstruction quality compared to the considered baseline
approaches. The authors in [8] used linear decoder in their
work. However, in this paper, by utilizing a nonlinear deep
learning decoder, our method outperforms their method and
obtains better reconstruction results.

Recently, Majumdar and Ward [10] proposed a neural net-
work model based on stacked autoencoder to reconstruct the
EEG signals. Their method performs slightly worse than the
CS methods. However, in this work, we focus on reconstruc-
tion of neural signals. The architecture we use in this work is
different from theirs. Additionally, by employing the learning-
based approach to efficiently compute the mask indices, our
model outperforms the CS recovery methods.

III. COMPRESSIVE SENSING FOR SIGNAL
RECONSTRUCTION

Compressive sensing [3] is the problem of reconstructing
a sparse vector x ∈ Rp using a small number (n < p)

of linear measurements. In the case of the neural signals,
these measurements take the specific form of subsampled DCT
measurements, described as follows:

b = PΩΨx, (1)

where Ψ is the DCT transform operator applied to the signal
and PΩ : Rp → Rn is a subsampling operator that retains
only the rows of Ψ indexed by the set Ω, with |Ω| = n. The
selected set of indices Ω is also known as the sampling pattern
or the mask. The vector b is the compressive measurement of
the signal x with the compression rate of n

p . Then, the goal
of the reconstruction algorithm (also known as the decoder) is
to obtain an estimate x̂ of x. The reconstruction method can
be thought as a general function g and is written as follows:

x̂ = g(Ω, b). (2)

The signal can be approximately recovered using the fast linear
decoder:

x̂ = Ψ∗P T
Ωb. (3)

A plethora of non-linear methods has also been proposed for
solving compressive sensing problems. These reconstruction
methods are mostly based on solving a convex optimization
problem and enjoy theoretical guarantees. Here, we briefly
review the most widely used CS recovery methods. One of
the most well-known reconstruction methods is Basis Pursuit
(BP) [3] which solves the following problem:

x̂ = argmin
z:b=PΩΨz

||Φz||1, (4)

where Φ is the sparsifying transform which converts the signal
to a domain in which the signal has a sparse representation.
As an example, speech signals have a sparse representation in
Short Time Fourier transform domain, and images are sparse
in the wavelet domain.

Total variation (TV) minimization formulation [11] is an-
other widely used convex optimization based method which
does not require sparsifying operators:

x̂ = argmin
z:b=PΩΨz

||z||TV, (5)

where ||z||TV is the total variation norm.

IV. LEARNING-BASED COMPRESSIVE SENSING
FRAMEWORK

In this section, we outline the learning based compressive
sensing framework [7]:
• Let x1,x2, . . . ,xm be a set of training signals, and x

be an unknown signal which has similar properties to the
training signals.

• The goal is to seek a sampling pattern with the maximum
empirical average performance on the training signals:

Ω̂ = argmax
Ω:|Ω|=n

1

m

m∑
j=1

ηΩ(xj), (6)

where ηΩ represents any reconstruction performance
measure (e.g., PSNR). The main idea is that since it is



assumed that the training signals are close to the unknown
signal x, by maximizing equation (6), one can expect the
obtained Ω performs also well on x.

By choosing average energy on the training signals as the
performance criterion ηΩ, the sampling pattern Ω is learned
by selecting the indices which preserve most of the energy on
average on the training signals:

Ω̂ = argmax
Ω,|Ω|=N

1

m

m∑
j=1

∑
i∈Ω

|〈Ψi,xj〉|2, (7)

where Ψi is the transpose of the i-th row of Ψ.
Solution to the equation (7) can be found efficiently via

sorting and selecting the N indices with largest values of
1
m

∑m
j=1 |〈Ψi,xj〉|2 [7]. The training signals are then com-

pressed using compression operator PΩΨ, where Ψ is the
DCT basis and Ω denotes the computed sampling indices. We
divide the training signals into intervals of a specific length,
then this method computes the indices which maximize the
retained energy over all the intervals on average.

However, there is a tradeoff between energy consumption
of the method and the reconstruction quality. There is another
approach which computes the best indices for each window
of the signal called adaptive compression method. In this
method, the optimal linear encoding of neural signals requires
computation of all DCT coefficients Ψx of the full-length
signals and then selecting the optimal mask indices specific to
each interval of the signals. It results in a higher reconstruction
quality compared to the learning-based compressive sensing
framework with the cost of large energy consumption, which
is critical in implantable medical devices with limited available
energy.

V. METHOD

In this section, we explain our proposed DCT-learning
based neural network method. We take a block-based recovery
approach. Such methods divide the training data into smaller
blocks and reconstruct each block separately [12, 13]. We
divide the signal x of length p into N = p

l blocks of length
l. Block-based compressive sensing recovery methods have
the following advantages: 1) Storing the measurement matrix
PΩΨ requires less memory since it needs storage of size
n× l instead of the full measurement matrix of size n× p. 2)
The decoder recovers each block separately and the encoder
does not need to transfer the entire samples of the signal to
have the signal reconstructed in the receiver. Therefore, the
reconstruction process can be done for each block separately, it
results in a considerable speed up in reconstruction and makes
the method more suitable for real-time applications.

We set the block length l = 256 and we divide the signals
into intervals of length 256. Next, we apply the learning-based
compressive sensing framework as explained in Section IV and
compute the indices Ω that maximize the preserved average
energy on the training signals. Each training signal is then
projected using the computed compression operator PΩΨ.
The compressive measurements b are then transmitted to the
receiver, where the signal needs to be reconstructed.

As described in Equation (2), we need to learn a function
which can map the compressive measurements b to the original
signal x. We first apply the transpose of the projection matrix
Ψ∗ = Ψ−1 on the measurements to compute the poor estimate
of the signal as follows:

x′ = Ψ∗P T
Ωb, (8)

where x′ represents the poor noisy estimate of the signal x.
We then train a deep network which cleans the noisy input
samples, and map x′ to the original signal x. We explain our
proposed network topology in the next section.

A. Neural Network Topology

Our network topology is shown in Figure 1. Our proposed
network consists of 1 convolutional, 1 deconvolutional, 3
dense, 2 flatten, 2 reshape and 4 Rectified Linear Unit (ReLU)
layers. The detailed network topology is described as follows:

• I0: The input layer with an input data size of [1× 256],
where 256 is the length of each sequence of the signal.

• R0: Reshape layer which transforms the input data of size
[1× 256] to the data of size [16× 16× 1].

• CV0: First hidden layer, composed of 4 convolutional
filters of size [5×5] with a ReLU layer, which introduces
non-linearity in decision function of the overall network.
This layer transforms the previous layer’s output to the
data of size [12× 12× 4].

• F0: This layer flattens the previous layer’s activation map
to the data of size [1× 576].

• D0: This layer is a fully connected layer, composed of
128 neurons, and a ReLU layer. This layer transforms the
previous layer’s output to the data of size [1× 128].

• D1: This layer is a fully connected layer. It is composed
of 64 neurons, and a ReLU layer. This layer transforms
the previous layer’s output to the data of size [12×12×4].

• R1: Flattening layer which transforms the previous layer’s
output to the data of size [1× 576].

• DV0: This hidden layer is composed of 4 deconvolutional
filters of size [5×5], and a ReLU layer. This layer changes
the input to the layer to the data of size [12× 12× 4].

• F1: Flattening layer which transforms the given input to
this layer to the data of size [1× 256].

• D2: Fully connected layer composed of 256 neurons and
transforms the input to this layer to the output of size
[1× 256].

Fig. 1: Our proposed deep learning architecture for reconstruc-
tion of the neural signals.



VI. EXPERIMENTAL RESULTS

In this section, we provide the numerical experiments
demonstrating the performance of our proposed DCT-learning
based neural network framework and compare it with the state-
of-the-art CS recovery methods. We consider the decoders
explained in Section III which we refer to as BP and TV,
and compare them with our proposed method.

A. Implementation Details
We implement both BP and TV minimization using NESTA

(a shorthand for Nesterov’s algorithm), which is a well im-
plemented toolbox including several fast and robust first-
order methods for solving basis-pursuit problems and their
extentions [14]. For BP, we consider DCT transform as the
sparsifying operator Φ.

We train our proposed deep network for a maximum of 4×
104 epochs, using RMSprop optimizer [15] with the learning
rate of 10−4 and the learning rate decay of 10−6 over each
update. We use mean squared error objective. The network
architecture is implemented in Python using Keras [16] and
Theano [17] backend. We train the network using one Tesla
K40c GPU.

B. Datasets
The experiments are carried out on the I001−P034−D01

dataset from iEEG.org portal. This portal contains several
EEG and iEEG datasets which are manually annotated by
expert clinicians. This data consists of approximately 1 day,
8 hours, and 10 minutes of recording at 5kHz, which is
approximately 6 × 108 samples. We used the first 4864000
samples, and we extracted signals for channel 1-31. Then,
we split the samples into 60% for training, 20% for test, and
20% for validation. The training data is used to learn both
the sampling patterns with learning-based compressive sensing
framework and learning the parameter of our proposed neural
network.

C. Comparison to the Baselines
We learn a fixed sampling pattern using learning-based

compressive sensing framework as described in Section IV.
We then employ the obtained sampling mask to compress all
the intervals of the test signals. The reconstruction is then
performed using the deep network described in Section V.
Furthermore, we also consider the linear decoder (3) with
the learned sampling mask as proposed in [8], we refer to
this method as DCT-LB Linear. In addition, we also consider
adaptive compression method explained in Section IV. In
this method, we compute the specific sampling pattern for
each window of the test signals. The reconstruction is then
performed using the linear decoder (3), we refer to this method
as DCT-adaptive.

D. Performance Evaluation
We measure the reconstruction performance in terms of

SNR. The SNR for each channel is computed as:

SNRj = 20 log10

(
||xj ||2

||xj − x̂j ||2

)
, (9)

where xj denotes the test signal for channel j, and x̂j

represents the reconstructed test signal for channel j. Then,
to obtain the final SNR, we compute the average SNR over
all the channels:

SNRavg =
1

D

D∑
i=1

SNRj , (10)

where D is the number of channels in total, and SNRavg
represents the average obtained SNR over all the channels.

E. Numerical Results

This section shows that our proposed method can recon-
struct the neural signals in real-time while obtaining better
reconstruction quality compared to the compressive sensing
methods. Table I shows the reconstruction results. The results
show that our proposed method outperforms the state-of-
the-art CS reconstruction techniques. Additionally, for low
compression rates, it even performs favorably compared to
the adaptive compression method which computes the optimal
mask indices for each block of the signal and sets the upper
limit for achievable performance with the linear decoder.

TABLE I: The obtained averaged reconstruction SNRs with
different methods.
hhhhhhhhhhhMethod

Compression rate 4 8 16 32

DCT-adaptive 41.75 40.08 37.42 32.45
Our method 41.81 40.12 36.81 30.80
DCT-LB Linear [8] 40.63 38.79 36.01 30.37
TV [11] 40.30 38.47 35.75 30.28
BP [3] 40.30 38.48 35.75 30.28

Next, we compare the reconstruction time of our proposed
method against the CS signal recovery techniques. We run
the experiments on an Intel Core i7 CPU (2.80 GHz) with
16 GB RAM running on Ubuntu 17.04. Table II shows
the reconstruction time for our method compared to the CS
recovery methods for a signal block of length 256. Our method
is more than 100 times faster and can be used in applications
with real-time reconstruction demand.

TABLE II: Required time in seconds for reconstruction of a
neural signal of length 256 with different recovery methods.

Method Time (seconds)
Our method 0.00005
TV [11] 0.00594
BP [3] 0.00739
DCT-adaptive 0.00021
DCT-LB Linear [8] 0.00067

For visual evaluation, we present sample results in Figure 2.
We observe that our method is able to reconstruct the signals
with different variations.

VII. CONCLUSION

In this paper, we have developed a DCT-learning based deep
learning method for recovering neural signals. We showed
that our framework efficiently approximates the signal while



decreasing the reconstruction time drastically. By leveraging
the DCT-learning based compressive sensing framework, our
real-time method can be run with limited computational power,
which makes it suitable for implantable monitoring medical
devices used in mobile and wireless devices. We provided
the comparison to the state-of-the-art compressive sensing
methods and showed that our method outperformed them with
substantially less running time.
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Fig. 2: The obtained sample results with our proposed method, DCT-LB linear approach, and their corresponding real signals.


