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Abstract

Metal cations often play an important role in shaping the three-dimensional structure of

peptides. As an example, the model system AcPheAla5LysH+ is investigated in order to fully

understand the forces that stabilize its helical structure. In particular, the question of whether

the local fixation of the positive charge at the peptide’s C-terminus is a prerequisite for form-

ing helices is addressed by replacing the protonated lysine residue by alanine and a sodium

cation. The combination of gas-phase cold-ion vibrational spectroscopy with molecular simu-

lations based on density-functional theory (DFT) revealed that the charge localization at the

C-terminus is imperative for helix formation in the gas phase as this stabilizes the structure

through a cation-helix dipole interaction. For sodiated AcPheAla6, globular rather than heli-

cal structures were found caused by the strong cation-backbone and cation-π interactions.

Interestingly, the global minimum-energy structure from simulation is not present in the

experiment where the system remains kinetically trapped in a solution-state structure.

Thereby calculated energies and IR spectra that are sufficiently accurate relied on DFT with

computationally costly hybrid functionals, while for the structure search low-computational-

cost force field (FF) models are crucial. This inspired a study where the goodness of commonly

applied levels of theory, i.e. FFs, semi-empirical methods, density-functional approximations,

composite methods, and wavefunction-based methods are being evaluated with respect to

benchmark-grade coupled-cluster calculations. Acetylhistidine – either bare or in presence of a

zinc cation – thereby serves as a molecular benchmark system. Neither FFs nor semi-empirical

methods are reliable enough for a description of these systems within “chemical accuracy”

of 1kcal/mol. Accurate energetic description within chemical accuracy is achieved for all

systems using the meta-GGA SCAN or computationally more demanding hybrid functionals.

The double-hybrid functional B3LYP+XYG3 is best resembling the benchmark method DLPNO-

CCSD(T).

Despite poor energetic performances of conventional FFs for peptides in the gas phase, their

low computational costs still render them appealing tools for large-scale structure searches.

Consequently, a machine learning approach is presented where the torsional parameters and

(if desired) van der Waals parameters in the potential-energy function of a particular FF are

adjusted by fitting it against DFT energies using regularized regression models like LASSO

or Ridge regression. For the peptide AcAla2NMe, this resulted in a significant improvement

when comparing to standard OPLS-AA FF parameters. For more challenging peptide-cation

systems, e.g. AcAla2NMe+Na+, this approach does not give satisfying results, which is caused
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by the formulation of the potential energy of the FF itself: While derived empirical partial

charges using Hirshfeld partitioning or the electrostatic potential (ESP) decrease the accuracy,

part of the energetic discrepancy can be “compensated” due to the flexibility of the torsional

contributions in terms of the energetic description.

Keywords: peptide-cation systems, helical peptides, conformer-selective IR-UV spectroscopy,

benchmark calculations, DFT, coupled-cluster, force fields, machine learning, Ridge regression,

LASSO
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Zusammenfassung

Metallkationen spielen oft eine wichtige Rolle beim Formen dreidimensionaler Strukturen

von Peptiden. Als Beispiel dafür wird das System AcPheAla5LysH+ untersucht um die für die

Stabilisierung helikaler Strukturen ursächlichen Kräfte zu verstehen. Im Detail wird der Frage

nachgegangen, ob die Fixierung der lokalen positiven Ladung am C-Terminus des Peptids

eine Voraussetzung für die Bildung der Helix ist, indem das protonierte Lysin-Residuum

durch ein Alanin und ein Natrium-Kation ersetzt wird. Durch die Kombination von Kalte-

Ionen-Vibrationsspektroskopie im Vakuum und molekularen Simulationen basierend auf der

Dichtefunktionaltheorie (DFT) wurde gezeigt, dass die lokale Ladung am C-Terminus zwin-

gende Voraussetzung für die Helix-Bildung im Vakuum ist. Für das System AcPheAla6 +Na+

wurden hingegen globuläre Strukturen gefunden, welche durch starke Kation-Rückgrat- und

Kation-π-Wechselwirkungen verursacht werden. Die in der Simulation gefundene Struktur

globaler minimaler Energie wurde im Experiment nicht beobachtet, weil das System in einer

Lösungs-Struktur kinetisch gefangen bleibt.

Für ausreichend genau berechnete Energien und IR-Spektren benötigt man dabei rechenauf-

wändige DFT-Hybridfunktionale, während für die Struktursuche Kraftfeld-Modelle geringem

Rechenaufwands verwendet werden. Dieser Umstand motivierte eine Benchmark-Studie, in

der die Qualität gängiger theoretischer Methoden, d.h. Kraftfelder, semi-empirische Methoden,

Dichtefunktionalnäherungen, Mischmethoden und Methoden basierend auf Wellenfunktio-

nen, gegen Coupled-Cluster-Rechnungen getestet werden. Acetylhistidin, mit und ohne einem

angrenzenden Zink-Kation, dient dabei als molekulares Benchmark-System. Weder Kraftfelder

noch semi-empirische Methoden sind dabei verlässlich genug solche Systeme innerhalb der

„chemischen Genauigkeit“ von 1kcal/mol zu beschreiben. Eine Beschreibung der Energie

innerhalb der chemischen Genauigkeit wird für alle System bei Verwendung des meta-GGA

SCAN- oder der rechenaufwändigeren Hybridfunktionale gefunden. Das Doppelhybridfunk-

tional B3LYP+XYG3 beschreibt die Benchmark-Methode DLPNO-CCSD(T) am besten.

Trotz der ungenauen energetischen Beschreibung konventioneller Kraftfelder für Peptide

im Vakuum, kommen diese wegen ihres niedrigen Rechenaufwands oft bei großangelegten

Struktursuchen zum Einsatz. Diese Tatsache motivierte ein Machine-Learning-Verfahren,

in dem Torsionsparameter und (falls gewünscht) van-der-Waals-Parameter in der Funktion

der potenziellen Energie eines bestimmten Kraftfelds gegen DFT-Energien durch Einsatz

regularisierter Regressionsmodelle wie Ridge-Regression oder LASSO gefittet werden. Für

das Peptid AcAla2NMe resultierte dies in einer signifikanten Verbesserung verglichen mit
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den Standardwerten des OPLS-AA Kraftfeldes. Für kompliziertere Peptid-Kation-Systeme

wie AcAla2NMe+Na+ liefert das Verfahren keine zufriedenstellende Ergebnisse, wofür die

Formulierung der potenziellen Energie des Kraftfelds selbst ursächlich ist: Während empirisch

abgeleitete Partialladungen, entweder durch Anwendung der Hirshfeld-Partitionierung oder

des elektrostatischen Potentials (ESP), zu ungenaueren Ergebnissen führen, kann ein Teil

der energetischen Diskrepanz durch die Flexibilität der Torsionsterme in der energetischen

Beschreibung „kompensiert“ werden.

Sclagwörter: Peptid-Kation-Systeme, Helikale Peptide, Konformer-selektive IR-UV Spektro-

skopie, Benchmark-Rechnungen, DFT, Coupled-Cluster, Kraftfelder, Machine Learning, Ridge-

Regression, LASSO
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1 Motivation and Overview

This introductory chapter will give an overview on the three parts of research work this thesis

contains, while at the same time highlighting the motivation that lead to tackling the specific

topics. Hence, a more “traditional” introductory section will precede the respective research

Chapters 3, 4, and 5, including detailed context and specific objectives.

Metal cations are essential for life, as approximately one third of the proteins in the human

body require a metal cofactor for biological function [1, 2]. They often play an important

role in shaping the three-dimensional structure of proteins and peptides. Furthermore, their

presence may significantly influence important properties, e.g. binding sites, catalytic prop-

erties, and biological functions. As an example, it is hypothesized that protein misfolding

of Alzheimer’s Aβ-amyloid peptides into aggregated senile plaques inside the human brain

of Alzheimer patients is promoted by metal ions such as zinc (Zn2+) [3]. Figure 1.1(a) shows

the structure of the Aβ(1–16)-Zn2+ complex in aqueous solution at pH 6.5, determined from

nuclear magnetic resonance (NMR) data [4]. One glutamic acid (Glu) residue and three histi-

dine (His) residues act as ligands and tetrahedrally coordinate the zinc cation. Zinc ions are

furthermore required for the catalytic function of more than 200 enzymes [5], an example

being carbonic anhydrase [6]. Figure 1.1(b) shows the active site of human carbonic anhydrase

II, determined by X-ray crystallography at 2.0 Å resolution [7]. Again, three His residues act as

ligands to the central zinc ion of the active site.

These are but two examples where structures of protein-cation complexes have been de-

termined experimentally. Besides necessary excellent knowledge of the experiment, it goes

without saying that it is also very much desirable to have a very good fundamental and de-

tailed theoretical understanding of the cation-peptide interaction systems. If both apply, the

combination of experimental techniques with molecular simulations allows for structure

elucidation as it helps to interpret experimentally obtained spectra. On the other side, a rigor-

ous experiment-theory comparison allows for the assessment of the accuracy and predictive

power of simulation approaches. Moreover, there may exist cases where a correct interpreta-

tion of both experimental and theoretical findings will not be possible using one without the

other. After having introduced the experimental and theoretical background of the methods
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Chapter 1. Motivation and Overview

a) b)

Figure 1.1 – Two examples of peptide-cation interaction sites: (a) Structure of the Aβ(1–16)-
Zn2+ complex in aqueous solution at pH 6.5, determined from NMR data [4] (PDB ID: 1ZE9).
(b) Active site of human carbonic anhydrase II, determined by X-ray crystallography at 2.0 Å
resolution [7] (PDB ID: 1CA2). Images were created using VMD [8].

and techniques in Chapter 2 that are employed in this thesis, such an instant is presented in

Chapter 3: There, the peptide AcPheAla5LysH+ is investigated, a model system for studying

helix formation in the gas phase, in order to fully understand the forces that stabilize the

helical structure. In particular, the question of whether the local fixation of the positive charge

at the peptide’s C-terminus is a prerequisite for forming helices is addressed by replacing

the protonated C-terminal lysine (Lys) residue by alanine (Ala) and a sodium cation (Na+).

For sodiated AcPheAla6, globular rather than helical structures are found. Interestingly, the

global minimum structure from simulation is not present in the experiment. Only a rigorous

theory-experiment comparison will allow for the interpretation that this is due to high barriers

involved in re-arranging the peptide-cation interaction that ultimately result in kinetically

trapped structures being observed in the experiment.

The conclusions drawn in Chapter 3 rely on sufficiently accurate conformational energy hi-

erarchies and infrared (IR) spectra calculated using density-functional theory (DFT) [9, 10]

with computationally costly hybrid exchange-correlation (xc) functionals applied. On the

other hand, the sampling of the global conformational space of the system relies on force field

(FF) models that are low in computational costs. This in part inspired a study presented in

Chapter 4 where the goodness of commonly applied levels of theory, i.e. force fields (FFs),

semi-empirical quantum chemistry methods, density-functional approximations (DFAs) using

a variety of xc functionals, composite methods, and wavefunction-based methods are being

assessed and evaluated with respect to benchmark-grade coupled-cluster calculations. The

methods are tested for their energetic description of peptide-cation systems, with a strong

focus on benchmark systems in the gas phase consisting of either a bare acetylhistidine (AcH)

or in presence of a Zn2+ cation. While the choice of AcH+Zn2+ complexes as benchmark

systems has certainly been motivated by their biochemical relevance as shown by the exam-

ples of metalloproteomics given in the beginning of this introduction, they are furthermore
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computationally feasible due to their small size, even for high-level methods, yet provide a

challenging structure because of the tautomeric form of the neutral imidazole ring and the

additional cation in the system.

Conventional FF calculations are associated with low computational costs and are widely used

for molecular dynamics simulations or conformational searches [11]. However, in Chapter 4 it

is concluded that they are not reliable enough for an accurate energetic description of these

peptide-cation systems within “chemical accuracy” of 1kcal/mol. In general, there exists

a large discrepancy between the description of the potential energy surface from FFs and

higher-level methods, e.g. DFT, second-order Møller-Plesset perturbation theory (MP2), etc.

Two reasons are commonly attributed to this discrepancy: For one, FFs are optimized for

condensed-phase systems instead of gas-phase systems with the latter being the main focus of

this work due the offered possibility of studying the “undamped” intramolecular interactions

that shape peptides. Secondly, certain limitations in the FF description itself limit the accuracy

of the energetic description. For example, as there are commonly no explicit bonds defined

between cations and other atoms within the conventional empirical FF description, only non-

bonded terms treating electrostatic and van der Waals interactions contribute to the overall

empirical description of peptide-cation interactions. The work in Chapter 5 is described

having two goals in mind: First, a machine-learning framework will be presented that serves

as an interface between DFT and FF calculations. In essence, it serves to derive or “adjust”

existing FF parameters from DFT calculations for a specific system in question, e.g. a particular

peptide-cation system, using only a small number of structures for which single-point energy

calculations are calculated at the DFT level. In contrast to conventional FF parameterization,

this approach does not aim to yield general-purpose FF parameters but parameters adjusted

for a specific system by the end-users themselves. Most importantly, torsional parameters

or van der Waals parameters in the potential-energy function E FF
pot of a particular FF (here:

OPLS-AA [12–14]) are modified by fitting E FF
pot against DFT energies using certain regularized

linear regression models such as Ridge regression [15–17] or LASSO [18]. Secondly, because FF

parameters are obtained from regularized regression methods using only energies calculated

at the DFT level for a specific system in question, the set-up allows for immediate verification

of how well the FF formulation itself is able to describe the potential energy, a venture to be

undertaken quantitatively for the model systems AcAla2NMe and AcAla2NMe+Na+.
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ground, Methods, and Techniques

5



Chapter 2. Theoretical and Experimental Background, Methods, and Techniques

2.1 Amino Acids, Peptides, and Proteins

Peptides and proteins form one of four major classes of biomolecules, i.e. molecules present

in organisms, with nucleic acids, lipids, and carbohydrates being the other three classes [19].

They are organic compounds that virtually affect every property that characterizes a living

organism. To name but a few examples of their biological functions, the expression of genetic

information encoded by nucleic acids depends almost entirely on proteins, they store and

transport a variety of particles within organisms, they can act as hormones transmitting

information between cells, or can act as enzymes increasing rates of chemical reactions that

living organisms make us of [20]. Although being extremely diverse in structure and properties,

peptides and proteins in organisms are all the same type of linear oligomer, being made of

only 20 DNA encoded amino acids [21]. The various combinations of the same 20 amino acids,

their chemical diversity, and the resulting diversity of the three-dimensional structures are

the reasons for this large functional diversity of peptides and proteins. Amino acids are fairly

simple organic compounds containing an amino group (NH2 − ) and a carboxylic acid group

(−COOH) [22]. All 20 DNA encoded amino acids are α-amino acids, meaning that both the

amino group and the carboxylic acid group are attached to the same central carbon atom,

the α-carbon. Figure 2.1 shows the general form of the 20 DNA encoded amino acids. 19 of

the 20 natural amino acids have the general form given in Figure 2.1(a) where the R-group

denotes the side chain differentiating the different amino acids. The structural formula of the

one exception, proline, is given in Figure 2.1(b) where the side chain is bonded to the nitrogen

atom of the amino group. The 20 natural amino acids are summarized in Table 2.1 listing the

respective names, abbreviations, and side chains.

The orientation of the four connecting groups, i.e. the amino group, the carboxylic acid

group, the side chain, and the hydrogen atom, with respect to the α-carbon (Cα) that acts

as the chiral center defines two possibilities for optically active isomers, commonly named

L- and D-isomers, as exemplary shown in Figure 2.1(c). The mirror image of an isomer

is called an enantiomer and usually behaves identically in most chemical environments.

With the exception of glycine and proline, natural DNA encoded amino acids have the same

stereochemistry at the Cα as they are L-amino acids. The reason for that is not entirely

understood and a matter of ongoing research [23]. L-isomers will be used throughout in this

a) b) c)

mirrorL-amino acid D-amino acid

d)

Figure 2.1 – (a) Structural formula of the general form of 19 of the 20 DNA encoded amino
acids. The R-group denotes the side chain differentiating the different amino acids. The
central carbon atom is commonly named the α-carbon Cα. (b) Structural formula of proline.
(c) Depiction of the two theoretically possible optically active isomers of an amino acid with
Cα as the chiral center. (d) Zwitterion of the general form depicted in Figure (a).
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2.1. Amino Acids, Peptides, and Proteins

Table 2.1 – Summary of the 20 natural amino acids listing the respective names, three- and
one-letter abbreviations, and structural formulas of the side chain.

Name
Abbreviation Side chain

3-letter 1-letter (R-group)

Alanine Ala A

Arginine Arg R

Asparagine Asn N

Aspartic acid Asp D

Cysteine Cys C

Glutamic acid Glu E

Glutamine Gln Q

Glycine Gly G

Histidine His H

Isoleucine Ile I

Leucine Leu L

Lysine Lys K

Methionine Met M

Phenylalanine Phe F

Proline Pro P (drawn in full)

Serine Ser S

Threonine Thr T

Tryptophan Trp W

Tyrosine Tyr Y

Valine Val V
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work.

Because of the present amino group and carboxylic acid group that can be (de)protonated,

isolated amino acids or termini of peptides carry a basic and acidic component with them.

Obviously, the degree of (de)protonation influences the physical properties of the amino acids

and depends on the chemical environment. For example, in aqueous solution at neutral pH,

i.e. pH ≈ 7, the form that has both functional groups charged is the dominant species. A

depiction for that is provided in Figure 2.1(d) where the termini have become charged to form

a NH +
3 and a COO – group.

The 20 natural amino acids possess a variety of chemical properties depending on their form,

their combination of sequences in molecules, and the chemical environment. In the following,

general properties of side chains are very briefly summarized for four amino acid residues that

will appear numerous times throughout this work: Ala, Lys, Phe, and His. The Ala side chain

consists of a methyl group (−CH3) and is therefore aliphatic, i.e. nonpolar and hydrophobic,

meaning it is not interacting favorably with water but with other nonpolar atoms. The Lys side

chain consists of a hydrophobic chain of four methylene groups capped by an amino group

(−(CH2)4−NH2). The amino group of the side chain is able to participate in a multitude of

reactions, is protonated and therefore positively charged under most physiological conditions.

The Phe side chain consists of a benzyl group and therefore belongs to the aromatic side

chains that allow for ultraviolet (UV) absorbance and fluorescence [24]. It is nonpolar and not

chemically reactive under normal conditions applicable to proteins. The spectral properties

of the residue are very sensitive to its immediate environment, thus allowing it to be used as a

structural probe of protein structure [25]. Finally, the His side chain consists of an imidazole

side chain that has a pKa value of approximately 6 < pKa < 7 [26], meaning both acid and

base forms are present at neutral pH. The acid form with the imidazole ring protonated at

both nitrogen atoms with its two equivalent contributing forms is shown in Figure 2.2(a). The

positive charge is shared by both nitrogen atoms by resonance. The corresponding conjugate

form of the neutral imidazole ring is shown in Figure 2.2(b). It exists as two tautomeric forms

with the hydrogen atom on either the Nδ1 or the Nε2 atom. The position of the hydrogen atom

heavily depends on the local environment and both forms are present at neutral pH. The

reactive amine can act as an effective nucleophilic catalyst. The nitrogen atom without the

hydrogen is nucleophilic and an acceptor for hydrogen bonding, while the nitrogen atom with

the hydrogen is electrophilic and a donor for hydrogen bonding, making this side chain very

versatile [27].

Peptides and proteins are formally created when covalently linking amino acids together

by peptide bonds. This process is called condensation and is depicted in Figure 2.3 for an

example of two amino acids. The resulting dipeptide contains a terminus with an amino

group and a terminus with a carboxylic acid group, commonly named N- and C-terminus,

respectively. The biosynthesis of peptides and proteins always starts at the N-terminus, hence

the amino sequence is always given from N- to the C-terminus. Protein biosynthesis takes

place inside cells and denotes the last step in the process of gene expression where information
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2.1. Amino Acids, Peptides, and Proteins

a) b)

1 11 1

2222

Figure 2.2 – Ionic forms of the histidine side chain at physiologically relevant pH. (a) Resonance
hybrid forms of the ionized imidazole side chain. The two forms represent one structure as
the positive charge is shared by the Nδ1 and Nε2 atoms. (b) The two equivalent tautomeric
forms of the non-ionized imidazole side chain.

+

peptide bond

Figure 2.3 – Depiction of the condensation of two amino acids to form a peptide bond.

from a gene is used in the synthesis of proteins [28]. In short, DNA is transcribed into RNA

inside the cell nucleus. The translation of this information into formed proteins – one amino

acid after the other – then takes place in the cytoplasm of the cell and is undertaken by the

ribosome. The large variety of proteins inherits from the large number of possibilities of the

combination of amino acid sequences. Amino acids that are part of a peptide and proteins are

referred to as residues. Different peptides or proteins differ only in the number and sequence

of their amino acid residues. In other words, the sequence of amino acid residues identifies

a peptide or protein unambiguously. Although there is no strict definition, one commonly

refers to a short chain of amino acid residues with a defined sequence as peptide. Molecules

that contain more than approximately 50 amino acid residues and possess a well-defined

structure are denoted proteins. Medium-sized molecules with approximately 15 to 50 residues

are sometimes referred to as polypeptides.

Figure 2.4 shows the schematic representation of an exemplary zwitterionic peptide consisting

of five Ala residues, hence denoted Ala−Ala−Ala−Ala−Ala or shorter Ala5. The N-terminus, the

C-terminus, the four peptide bonds, the five α-carbons Cα, and the five amino acid residues

R1, R2,. . . R5 are denoted. The linear chain consisting of the repeating sequence of the amide

N, the Cα, and the carbonyl C is called the backbone. Rotations around bonds are described

as torsions or dihedral angles. A dihedral angle is defined as the angle between planes through

two sets of three connecting atoms, having two atoms in common, and is taken to lie in the

range −180° to 180°. For example, in Figure 2.4, three backbone dihedral angles φ, ψ, and ω

are explicitly denoted. The dihedral angle around the peptide bond C(O)−N(H) is denoted ω.

The torsional angle around the bond Cα−C(O) is denoted ψ and the torsional angle around

the bond N(H)−Cα is denoted φ. The peptide bond dihedral angle can have two approximate

values because of its partial double bond character resulting in a high rotational barrier [29]. If
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Figure 2.4 – Schematic representation of the exemplary zwitterionic peptide Ala5. The N-
terminus, the C-terminus, the four peptide bonds, the five α-carbons Cα, and the five amino
acid residues R1, R2,. . . R5 are denoted. Three specific examples of the backbone dihedral
angles φ, ψ, and ω are shown as well.

ω≈ 180° (≈−180°), meaning the chain is maximally extended (as in Figure 2.4), one commonly

denotes such a configuration trans. For the other extreme case of ω ≈ 0°, one commonly

speaks of a cis configuration. Possible values of φ and ψ are geometrically constrained by

steric clashes of non-neighboring atoms and additional packing constraints [30].
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2.2 The Structure and Energetics of Peptides in the Gas Phase

The ultimate goal of any research involving peptides or proteins is to understand their phys-

ical properties and biological functions. This requires to understand twofold: For one, the

characterization of the underlying chemistry depends on the structure of the molecule itself,

and secondly, the biological activity in addition depends on the interaction of the protein

with its environment, e.g. water, membranes, other proteins, etc. [20], which in itself depends

on environmental factors such as temperature, composition of the solvent, pH value, etc.

In this work however, the focus lies (for the most part) on the former of the two aspects as

the main goal is to study intramolecular interactions of peptides in the gas phase, i.e. in

isolation. This is because gas-phase systems offer the opportunity to study the “undamped”

intramolecular interactions that shape peptides, thereby shedding light on intrinsic structural

motif propensities and bonding interactions.

The fundamental physical nature behind these interactions are rather well understood on an

inter-atomic level. One thereby distinguishes between covalent and non-covalent interactions.

A covalent bond [31], sometimes also called a molecular bond, is formed when involved atoms

share electron pairs between them [32]. Covalent bonds are the strongest type of bonds in

proteins and usually do not break during the lifetime of a protein [33]. Without explicitly

highlighting it, proteins were discussed in Section 2.1 only in terms of their covalent structures.

For example, covalent interactions are sufficient to describe the order of a sequence of amino

acids inside a peptide because covalent bonds link the residues together. Obviously, the shapes

of the side chains of the amino acid residues in a peptide create steric hindrance constraints

influencing the forming and folding of the peptide. However, in order to accurately provide

quantitative predictions of the overall three-dimensional structure of peptides and proteins,

one also needs to accurately describe the physical nature of non-covalent interactions [34, 35],

i.e. short-range repulsions, electrostatic forces, van der Waals interactions, and hydrogen

bonds.

Short-range repulsions arise when two atoms approach each other and their electron orbitals

begin to overlap. Following Pauli’s exclusion principle [36] that two identical electrons cannot

occupy the same quantum state, this results in a strongly increasing repulsion. The corre-

sponding repulsive energy arises steeply and is often described to scale with ∼ r−12, where

r denotes the distance between the two atoms. The increase in energy is so steep that one

often considers atoms as having definite occupying volumes that other atoms are unable

to penetrate at normal temperatures. In fact, the schematic representation of the peptide

shown in Figure 2.4 using a ball-and-stick representation already made use of this model.

The radius of such a sphere of impenetrable volume around an atom is usually defined using

the van der Waals radius [37], i.e. the distance of closest approach for another atom without

forming a covalent bond. Different methods of determination exist [38], e.g. one of the more

popular ones by Bondi [39] whose approach is based on a variety of experimental data like

X-ray diffraction data and liquid state properties, among others. Van der Waals radii given in

literature may vary, not only because of the missing strict definition, but also because they
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depend on the way an atom is covalently bonded [38].

Electrostatic forces between charges are the most fundamental non-covalent inter-atomic

interactions. In vacuum, they are formally described by Coulomb’s law where the energy of

the electrostatic interaction E Coulomb is given by

E Coulomb = 1

4πε0

qi q j e2

ri j
, (2.1)

where ε0 denotes the electric constant, e denotes the elementary charge, i.e. the magnitude of

the electric charge carried by an electron, qi and q j denote the number of such charges on

atoms i and j , respectively, and ri j denotes the distance between the two atoms. Obviously,

the simple form of Equation (2.1) is only valid when approximating the charges of atoms as

point charges and neglecting finite sizes of ions. Furthermore, the localization of the electron

density in peptides resulting in non-uniform distributions of negative and positive partial

atomic charges results in electric dipoles, even if the peptide may have neutral net charge.

Dipoles are formally described by its dipole moment −→μ given by

−→μ = q
−→
d , (2.2)

where q denotes the magnitude of the separated excess charge and
−→
d denotes the distance

vector between the two, directing from the negative charge towards the positive charge. The

various electrostatic interactions between partial charges, permanent and induced dipoles

on a number of atoms depend on each other and may result in fairly complex phenomena.

Though in principle these kinds of interactions can always be described in terms of Coulomb’s

law given in Equation 2.1, it is often impractical to do so due to the complexity of a given system.

Electrostatic interactions give rise to charge-charge interactions, e.g. ionic bonding that always

includes some degree of covalent bonding [40], dipole-dipole interactions involving both

permanent or induced dipoles, or more complex phenomena like cation-π interaction, i.e.

the interaction between the face of a π electron system of an aromatic ring such as the phenyl

ring of the Phe side chain and an adjacent positively charged cation. The cation-π interaction

includes a substantial electrostatic component [41], as the π electrons in the aromatic ring

are localized below and above the face of the ring, resulting in a partial negative charge in

that region, opposed to a partial positive charge near the hydrogen atoms on its edge. The

positive charge of a cation then creates a natural attraction towards the center of the face of

the ring. However, other effects like polarization or charge-transfer may play a role as well for

the complete understanding of the phenomenon [42].

Induced polarization effects between atoms and molecules are always present due to non-

uniform distributions of partial atomic charges, as described in the last paragraph. This leads

to weak attractive forces known as van der Waals (vdW) interactions that arise from three types

of interactions [20]: Interactions between two permanent dipoles, those between a permanent

and an induced dipole, and those between two mutually induced dipoles. The latter ones are

known as London or dispersion interactions and are complex and quantum mechanical in
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nature [43,44]. In any case, all three components of van der Waals interactions scale with ∼ r−6,

where r denotes the distance between two atoms, which is why they are often represented by

an energy potential E vdW including the attractive ∼ r−6-dependence as well as a short-range

repulsion term discussed earlier with a steep ∼ r−n-dependence where n > 6:

E vdW = Cn

r n − C6

r 6 (n > 6). (2.3)

Cn and C6 denote empirical constants. This form is called the Lennard-Jones potential [45].

In case of the common choice of n = 12 the form is called the Lennard-Jones 12-6 (or 6-12)

potential. The form obviously includes the approximation of the van der Waals interaction

being independent of the orientation of interacting atoms or molecules. It furthermore

assumes the vdW interactions to be occurring only pairwise between two atoms, neglecting

many-body effects. The Lennard-Jones 12-6 potential is often expressed in its alternative form:

E vdW = 4ε

[(σ
r

)12
−
(σ

r

)6
]

, (2.4)

where σ and ε are again empirical constants that relate to C12 and C6 by

C12 = 4εσ12; C6 = 4εσ6. (2.5)

While weak in nature, the sum of all van der Waals interactions inside a molecule can add up

to provide a significant stabilization to the three-dimensional structure of proteins [46].

Finally, hydrogen bonds [47] are formed when two electronegative atoms compete for the

same hydrogen atom that is formally bonded to one of them, denoted the donor D, but also

interacts favorably with the other, denoted the acceptor A. Although there are exceptions

where the hydrogen atom is symmetrically centered between two electronegative atoms, it

is usually covalently attached to one while also electrostatically interacting with the other

(−D−H · · ·A− ). In peptides, hydrogen bonds frequently occur between the N−H and C−−O

groups of the peptide backbone, with the H · · ·O distance usually being ≈ 1.9 to 2.0Å. The

predominant contribution to the hydrogen bond energy is of electrostatic nature, though

an accurate quantum-chemical description requires to include exchange, polarization, and

charge transfer contributions as well [48, 49]. Depending on the electronegativities of the

donor and acceptor atoms, strengths and lengths of hydrogen bonds vary. Although hydrogen

bonds are much weaker than covalent bonds, they have great significance in the structural

properties of molecules [37]. This is also because of the important property of cooperativity of

hydrogen bonds displayed in all classes of biological molecules [50]. Cooperativity, or non-

additivity, thereby means the binding energy of a hydrogen bond structural system is greater

than that of the sum of the individual bonds. In other words, the strength of the hydrogen

bonds within a hydrogen bond chain is increased due to non-additive interactions between

them arising from polarization and induced polarization effects [51].

The fundamental physical natures behind covalent and non-covalent interactions are formally

sufficient to accurately describe the overall three-dimensional structure of peptides and
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proteins in the gas phase. As laid out in the beginning of this section, the sequential order of

amino acids of a peptide or protein is formally described by covalent interactions alone. On

the other hand, in order to be able to describe specific structural features within the molecule,

one needs to take into account non-covalent interactions as well and be able to describe them

accurately and, if possible, on the same footing [35]. To reflect these different structural aspects,

Linderstrøm-Lang classified the structures in the following way [52]: The primary structure

means the sequential order of amino acids residues. The secondary structure refers to specific

structural motifs or the geometric form of localized segments. The tertiary structure is the

overall three-dimensional shape of the peptide or protein, usually composed of connected

secondary structure elements. This structure classification is schematically represented in

Figure 2.5.

In order to understand and identify secondary structure motifs in peptides and proteins, one

needs to characterize peptide chain conformations. For one, this is done through means of

the backbone dihedral angles φ, ψ, and ω, as introduced in Section 2.1. As explained there,

the dihedral angle ω of the peptide bond only takes values around ω≈ 0° (cis configuration)

or ω ≈ 180° (trans configuration). On the other hand, possible values of φ and ψ are only

geometrically constrained by steric clashes of non-neighboring atoms and additional packing

constraints [30]. In the gas phase, the actual three-dimensional conformation of a peptide

chain is essentially determined by specific side-chain interactions and hydrogen bond patterns.

It is thereby common that multiple hydrogen bonds are formed, resulting in a considerable

stabilization of the secondary structure element due to the cooperativity effect explained

above. There are three main secondary structure elements, namely helices, β-sheets, and

turns, which are briefly described in the following. Helices and β-sheets are periodic secondary

structure elements, meaning the torsional angles φ and ψ of the associated consecutive amino

acid residues have the same values. In contrast to that, turns are non-periodic secondary

structure elements.

Helices are screw-like arrangements of the peptide backbone that are stabilized by intramolec-

ular hydrogen bonds between the N−H and C−−O groups of the peptide backbone. An example

of a helix has already been shown in Figure 2.5(b) for the example of the Alzheimer’s disease

amyloid β-peptide 1-16 region [4] where the helix is highlighted with a ribbon that is drawn

through the backbone atoms. Keeping in mind that a typical H · · ·O distance is usually ≈ 1.9 to

2.0Å, hydrogen bonds in Figure 2.5(b) have been depicted with a dashed blue line when the

H · · ·O distance is smaller than 3.0Å. There exist several helix types that can be characterized

based on the intramolecular hydrogen bond patterns of the backbone alone, as depicted in

Figure 2.6, namely α-helices, 310-helices, and π-helices. The α-helix is the most common

secondary structure element [54] and was originally proposed by Pauling et al. [55]. It com-

prises a right-handed spiral arrangement of the backbone with 3.6 amino acids residues per

turn and the torsion angles (φ,ψ) ≈ (−57°,−47°) [29]. Stabilizing hydrogen bonds are directed

backwards, i.e. from a C-terminal N−H group to a N-terminal C−−O group, involving amino

acid residues i +4 and i , hence the notation (N−H)i +4→(C−−O)i . Hydrogen bonds thereby

form a “ring” consisting of 13 atoms. Taking into consideration the 3.6 amino acids per turn,
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c) Tertiary structure

b) Secondary structure

a) Primary structure

Asp-Ala-Glu-Phe-Arg-His-Asp-Ser-Gly-Tyr-Glu-Val-His-His-Gln-Lys

Figure 2.5 – Examples of primary, secondary, and tertiary structure of peptides and proteins.
(a) Primary and (b) secondary structure of region 1-16 of the Alzheimer’s disease amyloid
β-peptide (PDB ID: 2BP4) [4]. (c) Tertiary structure of the N-terminal domain of the amyloid
precursor protein (PDB ID: 1MWP) [53].

this gives rise to the formal alternative nomenclature of the α-helix, the 3.613-helix. The less

common 310-helix often caps an α-helix in native peptides. As the nomenclature implies, it

comprises a right-handed spiral arrangement of the backbone with 3 amino acids per turn and

its involving hydrogen bonds consist of “rings” of 10 atoms. Similar to α-helices, stabilizing

hydrogen bonds in a 310-helix are also directed backwards, but involve amino acid residues

i +3 and i , hence the notation (N−H)i +3→(C−−O)i [56]. The recurring corresponding torsion

angles are (φ,ψ) ≈ (60°,−30°). The π-helix, or 4.416-helix ((φ,ψ) ≈ (−57°,−70°)), is rarely an-

notated despite occurring in 15% of known proteins [57]. Other helix types like polyproline

helices exist and may occur commonly in proteins, especially when involving repeating proline

residues [58]. More exotic helix types like 27-type helices are formally possible but occur rarely
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     -helix (3.613-helix)

                                                  310-helix

                                            -helix (4.416-helix)

Figure 2.6 – Schematic view of hydrogen bond patterns in different helix types.

a) b)

Figure 2.7 – Schematic view of hydrogen bond patterns in (a) parallel and (b) antiparallel
β-sheets.

in native proteins [59].

The β-sheets, the second main common secondary structure elements, are hydrogen-bonded

layer structures with hydrogen bonds being formed between two neighboring peptide chains

and were originally proposed by Pauling et al. [60]. Two major β-sheet variants can be dis-

tinguished and are schematically presented in Figure 2.7: Parallel β-sheets are formally char-

acterized by torsional angles (φ,ψ) ≈ (±180°,±180°) and two backbone chains being aligned

in a parallel manner. Antiparallel β-sheets are characterized by two backbone chains being

aligned in an antiparallel manner. Because present side chains distort the extended “zig-zag”

conformation, antiparallel β-sheets formally display torsion angles (φ,ψ) ≈ (−139°,135°) [29].

Several variants exist, e.g. twisted or backfolded forms, depending on the constitution of the

sequence of amino acids inside a peptide.

While helices and sheets are unidirectional, loops reverse the direction of a peptide chain. Such

loops are realized through turns that are often, but not necessarily, stabilized by a hydrogen

bond. Depending on the number of amino acid residues involved, one classifies α-, β-, γ-, and

π-turns with five, four, three, and six amino acid residues involved, respectively [29]. Several

different types of α-turns can be classified [61] depending on the torsion angles of the three

central amino acid residues. The most common class of turns are β-turns, or Venkatachalam-
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turns [62], where the distance of the Cα atoms between amino acid residues i and i +3 is

smaller than 7Å [63]. Again, several different types of β-turns can be classified depending on

the characteristic torsional angles of the two central amino acid residues [64].

After having given an overview of the main secondary structure elements as well as the

fundamental physical natures behind the interactions responsible for their formation, it is

obvious that a formal description of peptide structure and dynamics is required in order to be

able to explain and predict chemical and physical properties. In other words, one desires a

concise description, both experimental and theoretical, of how a peptide folds into its native

structure, a problem not yet solved and still a matter of ongoing research [65, 66]. More

precisely, the problem to be solved actually requires twofold [67]: On one hand, one needs to

predict the native three-dimensional structure of a given peptide system, and on the other

hand, one wishes to describe the actual kinetics of the folding process. Obviously, solving

the latter problem automatically includes solving the first one. In order to do so however,

one needs to rely on directly folding a peptide chain, being it in experiment or theory, while

the prediction of the native peptide structure can be based on the analysis of already known

structures. The inherent problem when doing the former was already described by Levinthal

in 1969 in what is called “Levinthal’s paradox” [68]: Assuming all peptide conformations were

equally probable except for the native structure, meaning the native state can only be reached

by an unbiased random search, this would lead to very large folding times. For example,

a peptide with 30 amino acids, each of which can adopt 3 stable configurations, could be

estimated to have 330 different configurations. Even if these configurations could be sampled

at fastest possible time scales corresponding to vibrational modes of 10−12 s, it would still take

≈ 6.5 ·106 years to do so [69]. The paradox then arises from the fact that proteins and peptides

in living organisms arrive to their native form within timescales of less than a second [67].

Levinthal stated a solution to the paradox in that there were well-defined pathways to the

native state [70], meaning the folding procedure was under “kinetic control” [71]. On the

other hand, the “thermodynamic principle” by Anfinsen [72], also known as “thermodynamic

hypothesis”, states that the native structure of a peptide is most favorable in thermodynamic

terms, meaning the native structure corresponds to a kinetically accessible conformer with an

overall reduction in free energy. This most importantly implies that native structure in a given

environment is determined by the amino acid sequence of the peptide alone. The debate

whether peptides reach their native structure following a specific pathway under kinetic

control or in a pathway-independent manner under thermodynamic control, is ongoing [73].

Several theoretical models exist supporting one side or the other [73–75]. An approach in

favor of the latter is described in the hypothesis of the existence of “folding funnels within

free energy landscapes” [71, 76, 77] that postulates the folding of the peptide into the native

state without the need for a definite pathway and is schematically depicted in Figure 2.8: In

short, an unfolded peptide is high in both entropy and free energy. The free energy landscape

means the free energy of each configuration as a function of the degrees of freedom of the

system, e.g. torsional angles or other generic variables of the system. High entropy means a

large number of possible configurations, and high free energy means the peptide is unstable

17



Chapter 2. Theoretical and Experimental Background, Methods, and Techniques

Conformational entropy

F
re

e 
E

n
er

gy

native state

~10 kBT

"kinetic trap"

~ kBT

unfolded region

partially folded
region

folded region

Figure 2.8 – Schematic depiction of a funnel-shaped free energy landscape. The “width of
the funnel” indicates the amount of conformational entropy of the system. Local non-stable
configurational states are surrounded by energy barriers of the order of ∼ kB T , while “kinetic
traps” or intermediate states are surrounded by energy barriers significantly larger than that
(∼ 10kB T ).

and thus being able to easily visit many different configurations. By following “down the

funnel” of the free energy landscape the peptide folds, decreasing its free energy in the process.

One appealing feature of this hypothesis is the inclusion of “kinetic traps” or intermediate

states in its description: When “going down the funnel” partially folded peptides may become

“trapped” in a local minimum of the free energy landscape higher in energy than that of the

native structure and with deep surrounding energy barriers impossible for it to overcome, i.e.

significantly larger than the order of ∼ kB T [78].

The work done within this thesis is primarily based on the assumption of correctness of the

“folding funnel hypothesis”. As explained in the beginning of this section, the main goal of this

thesis is to study intramolecular interactions of peptides in the gas phase. In order to do so and

following the above assumption, this requires an accurate description and sampling of the free

energy landscape, at least near the global minimum. Within the framework of this work, this

will be aimed to achieve through – hopefully accurate – computer simulations of the potential

energy surface (PES) [79] from which following quantities like free energies, vibrational modes,

etc. are derived. The PES of a system is given by the potential energy as a function of all relevant

atomic coordinates [69], and is thus a high-dimensional function even for small systems. A

local minimum on the PES refers to a point from which a small displacement in either direction
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increases the potential energy. The lowest minimum is called the global minimum and usually

refers to the native (folded) state of a peptide system. A detailed description on how to evaluate

and sample the PES using vastly different theoretical models and levels of theory is provided in

Section 2.3. In order to describe the thermodynamics of a real system, one needs to rely on the

free energy surface that is a function of standard thermodynamic variables, e.g. temperature T ,

entropy S, pressure p, volume V , etc., and is obtained from the PES by averaging over degrees of

freedom of the system, e.g. torsional angles or other generic variables. This averaging provides

an interpolation over the range for which the order parameters have physical meaning and

thus provides a description that governs the behavior of a system in experiment. The work

within this thesis relies on the Helmholtz free energy [80] for which free energy contributions

are accounted for from internal degrees of freedom, consisting of vibrations and rotations, in

addition to the potential energy on the PES. A detailed formulaic description is provided in

Section 2.5. The Helmholtz free energy F is a natural function of its independent variables

temperature T and volume V , and is formally defined by F =U −T S, with U and S denoting

the internal energy and the entropy of the system, respectively [81]. It is related to the Gibbs

free energy G [82] through G =U −T S+pV = F +pV , with pressure p and volume V denoting

its natural independent variables. In biophysical experiments, the Helmholtz free energy is

a useful quantity for experiments performed under conditions of constant temperature and

volume, while the Gibbs free energy is a useful quantity for experiments performed under

conditions of constant temperature and pressure [83]. As the goal of this work is to study

peptide systems in the gas phase, i.e. in isolation, both experiment and theoretical calculations

are essentially done at zero pressure, thus justifying the usage of the Helmholtz free energy

for free energy contributions. Furthermore, throughout this work we are exclusively treating

relative energies, i.e. comparing energy differences between different conformers (usually

with respect to the global minimum) of the same system. Hence, the term containing the

pressure, i.e. the pV term, cancels. In other words, ΔG =ΔF .
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2.3 Description of the Potential Energy Surface (PES)

This section provides an overview on how to evaluate and sample the PES in computer simula-

tions using vastly different theoretical models and levels of theory. This includes empirical

force fields (FF), semi-empirical methods, density-functional theory (DFT), wavefunction-

based methods like second-order Møller-Plesset perturbation theory (MP2), and coupled-

cluster methods. All these methods have the common goal of describing the molecular system

in place as accurate as possible while still being applicable from a computational point of

view. Therefore, they may vastly differ in accuracy and certainly in computational costs. As

a “rule of thumb”, ab initio (“first-principles”) methods, i.e. DFT methods and beyond, gen-

erally yield a higher predictive power in a wider range of problems, a consequence of them

being in principle based entirely on the laws of quantum mechanics and not not relying on

experimental data other the values of fundamental physical constants [84, 85]. This comes

with the downside of them usually being much more computationally expensive, forcing the

user to find a compromise between accuracy and computational costs for a specific task. After

having given an overview of the different theoretical methods that will be made use of in this

work, a subsection will be dedicated to the details of the applied computer simulations, see

Subsection 2.3.9. Finally, Section 2.4 gives a brief overview on the sampling of the PES with a

strong focus on the commonly applied method of basin-hopping in this work.

2.3.1 Force Fields

The empirical method of force fields (FFs) aims to provide an accurate description of structural

properties of specific classes of systems [84]. It is based on the principle that these properties

are primarily dictated by nearest-neighbor bonds. In essence, a bond between two atoms is to

some extent assumed to be independent of which molecule it is a part of. Energetic variations

are then ascribed to bond-angle contributions. Furthermore, higher-order contributions like

van der Waals (vdW) and Coulomb interactions between non-bonded atoms are present as

well and may be described similarly to their fundamental physical nature as laid out in the

previous Section 2.2, in particular refer to Equations (2.1) and (2.4). Hence, the description of a

FF is given by its potential energy E FF
pot(�R

N ) that is given as a function of positions �R1, . . . ,�RN of

the N nuclei of the system. In this classical approach, the potential energy E FF
pot(�R

N ) depends

only on the nuclei positions and the types of atoms involved. It can be written as a sum of

energy terms, each of them corresponding to qualitatively different interactions [84]:

E FF
pot(�R

N ) = Ebonds +Eangles +Etors +EvdW +ECoulomb, (2.6)

where

Ebonded = Ebonds +Eangles +Etors (2.7)

denotes the “bonded” contributions while

Enon-bonded = EvdW +ECoulomb (2.8)
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denotes the “non-bonded” contributions. For describing peptides, polypeptides, and proteins,

examples of commonly applied conventional force fields are AMBER-99 [86, 87] (Assisted

Model Building with Energy Refinement 99), CHARMM22 [88] (Chemistry at Harvard Macro-

molecular Mechanics 22), and OPLS-AA [12–14] (Optimized Potentials for Liquid Simulations -

All-Atom) which are of similar form.

For the example of the OPLS-AA FF, the “bonded” terms are of the following form:

Ebonds =
1-2 atoms∑

i< j
K r

i j (ri j − r 0
i j )2, (2.9)

Eangles =
1-3 atoms∑

i< j
K θ

i j (θi j −θ0
i j )2, (2.10)

Etors =
1-4 atoms∑

i< j

{
V i j

1

2
(1+cos(φi j ))+ V i j

2

2
(1−cos(2φi j ))+ V i j

3

2
(1+cos(3φi j ))

}
. (2.11)

The sum in Equation (2.9) is over all pairs of atoms bonded to each other, also denoted as 1-2

atoms. The potential energy of the bonds is approximated as a harmonic oscillator, i.e. as a

quadratic function of the displacement of the bond length ri j from its reference length r 0
i j .

The force constant K r
i j and the reference length r 0

i j are empirical parameters taken from the

AMBER FF that in turn were derived by fitting to structural and vibrational frequency data on

small molecular fragments that make up proteins and nucleic acids [86]. In a similar fashion,

the sum in Equation (2.10) is over all bond angles, i.e. atoms i and j that are separated by

two bonds, also denoted as 1-3 atoms. The bond angle defined by the three atoms involved is

denoted by θi j and the reference bond angle is denoted by θ0
i j . The empirical parameters K θ

i j

and θ0
i j are derived similarly as K r

i j and r 0
i j . The sum in Equation (2.11) is over all torsional

angles φi j , i.e. atoms i and j that are separated by three bonds, also denoted as 1-4 atoms. The

empirical parameters V i j
1 , V i j

2 , and V i j
3 again depend on the atom classes of the four atoms

defining the torsional angle. For the example of the OPLS-AA FF, they are derived from a

least-squares fitting method using ab initio calculations [14]. For completeness, the “torsional”

term of the potential energy Etors in the description of the AMBER-99 and CHARMM22 FFs

has a slightly different form:

Etors =
1-4 atoms∑

i< j

∑
n

{
V i j

n

2
[1+cos(nφi j −φ

i j
0 )]

}
. (2.12)

Here, n denotes the number of minima over 360° of the torsional potential while the φ
i j
0

denote their location. The fitting methods for determining the empirical parameters V i j
n and

φ
i j
0 are described in References [87] and [88] for AMBER-99 and CHARMM22, respectively.

The “non-bonded” terms are intended to describe the fundamental non-covalent inter-atomic

Coulomb and vdW interactions that have already been described in Section 2.2, compare to

21



Chapter 2. Theoretical and Experimental Background, Methods, and Techniques

Equations (2.1) and (2.4):

EvdW = ∑
i< j

4εi j

[(σi j

ri j

)12

−
(
σi j

ri j

)6 ]
fi j , (2.13)

ECoulomb = ∑
i< j

qi q j

ri j
fi j . (2.14)

The sum over all pairwise atomic Lennard-Jones and Coulomb contributions in Equa-

tions (2.13) and (2.14), respectively, runs over all pairs of atoms i and j . The corresponding

1-2 and 1-3 interactions are considered to be already implicitly included in their respective

“bonded” contributions (Equations (2.9) and (2.10)). Within the description of the OPLS-AA FF,

it was found to be necessary to scale the corresponding 1-4 interactions by a factor of 1
2 [13].

Hence, the scaling factor fi j is given by

fi j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, for 1-2 and 1-3 atoms,
1
2 , for 1-4 atoms,

1, otherwise.

(2.15)

The empirical parameters εi j , σi j , as well as the atomic partial charges qi were derived from

Monte Carlo simulations for pure liquids with the goal to reproduce the experimental heat of

vaporization and molecular volume [89].

The functional form of the Coulomb term shown in Equation (2.14) includes one major limiting

feature of conventional FFs, namely the inability to account for the influence of induced

polarization and charge transfer which is due to the fixed atomic empirical partial charges qi .

In other words, the fixed form of ECoulomb is incapable of describing the electric polarization,

i.e. the redistribution of charge in space due to an electric field, being it for example an

external macroscopic field or an induced electric field due to conformational changes of the

peptide itself. Polarizable FFs aim to describe electronic polarization by including explicit

models, e.g. the induced point dipole (IPD) model where point inducible dipoles�μi are added

to the N atomic sites of the molecule [90], the classical Drude oscillator model [91, 92], or

the fluctuating charge (FQ) [92, 93] model. One example of this new generation of FFs is the

AMOEBA [94–96] (Atomic Multipole Optimized Energetics for Biomolecular Applications) FF

that is based on a similar potential energy form as conventional FFs but includes multipole

representation of the fixed atomic partial charges and makes use of the IPD model. Its general

functional form is given by

E AMOEBA
pot = Ebonds +Eangles +Ebθ+Eoop +Etors +EvdW +E perm

elec +E ind
elec, (2.16)

where the functional form of the “bonded” terms, i.e. bond stretching (Ebonds), angle bending

(Eangles), and the coupling between the stretching and bending terms (Ebθ and Eoop) differs

slightly when compared to the previously shown conventional force fields as they resemble

the MM3 force field [97]. Similarly, the vdW term EvdW adopts the buffered 14-7 functional
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form [98] instead of the Lennard Jones 12-6 function in Equation (2.13). However, the major

difference comes with the permanent electrostatic (E perm
elec ) and induced electrostatic (E ind

elec)

contributions. Concerning the latter term, in essence, one needs to describe the term by the

scalar product of the induced dipole�μi on the atomic site i with the permanent electric field
�E 0(�ri ) due to the static charge distribution in the system, i.e.

E ind
elec =−1

2

N∑
i=1

�μi ·�E 0(�ri ), (2.17)

where the induced dipole vector�μi is expressed as

�μi =�αi

(∑
j �=i

T 1
i j
�M j +

∑
k �=i

T 11
i k

�Mk

)
. (2.18)

T 1
i j and T 11

i k hereby denote multipole-multipole and dipole-dipole interaction matrices, re-

spectively. The permanent atomic multipole (PAM) vector �Mi at each atomic site i includes

the corresponding charge, dipole, and quadrupole moments. The permanent electrostatic

interaction energy E perm
elec (ri j ) between atomic sites i and j is expressed as

E perm
elec (ri j ) = M T

i Ti j M j , (2.19)

where Ti J denotes the interaction matrix between the two atomic sites. A detailed description

of the terms is provided in Reference [96]. Within this work, two different parameterization

versions of the AMOEBA FF will be used, namely AMOEBA-BIO09 [96, 99] and AMOEBA-

PRO13 [100].

While the exact fitting procedure for obtaining empirical parameters varies between different

FFs, they all have the common goal to reproduce certain features and properties by applying a

fitting method using a certain selection of experimental or calculated ab initio data. Although

the selection of the benchmark data for the commonly applied FFs tries to cover a broad range

of features that allows for a rather general applicability, their performance will obviously be

best for systems and configurations they were trained on. On the other hand, their reliability

of quantitative predictions for systems different from those they were trained on is anything

but clear and, in fact, can be misleading [101–104]. It should furthermore be emphasized,

although obvious, that a FF treatment neglects any electronic effects. Nevertheless, FFs are

widely used due to their cheap computational costs in comparison with ab initio methods.

They are for example preferably applied for calculations of large systems or for sampling the

large conformational space of peptides. However, for reliable quantitative predictions one

commonly requires ab initio quantum-mechanical methods that will be discussed in the

following subsections.
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2.3.2 Schrödinger Equation and Born-Oppenheimer Approximation

From a quantum-mechanical point of view and within the scope of this work, a peptide system

consisting of nuclei and electrons can formally be described by solving the non-relativistic

time-independent Schrödinger equation [105]

ĤΨ= EΨ, (2.20)

where Ĥ denotes the non-relativistic time-independent Hamilton operator, E denotes the total

energy, and Ψ denotes the many-body wave function of the system. The Hamilton operator Ĥ

consists of five terms [106]:

Ĥ = T̂n + T̂e + V̂n-n + V̂e-e + V̂n-e. (2.21)

The nuclear kinetic-energy operator T̂n is given by

T̂n =−
M∑

k=1

�
2

2Mk
∇2
�Rk

, (2.22)

where the sum runs over all M nuclei that are assumed to be placed at the position �Rk and to

have the mass Mk . The electronic kinetic-energy operator T̂e is given by

T̂e =−
N∑

i=1

�
2

2me
∇2
�ri

, (2.23)

where the sum runs over all N electrons that are assumed to be placed at the position�ri . The

electron mass is denoted by me. The potential energy operators of the system are simply

described by the electrostatic energy due to charge interaction. Assuming the nuclear charges

Zk e, k = 1. . . M , the nucleus-nucleus potential-energy operator V̂n-n is then given by

V̂n-n = 1

2

M∑
k1 �=k2=1

1

4πε0

Zk1 Zk2 e2

|�Rk1 −�Rk2 |
. (2.24)

All electrons have the same charge −e. Hence, the electron-electron potential-energy operator

V̂e-e is given by

V̂e-e = 1

2

N∑
i1 �=i2=1

1

4πε0

e2

|�ri1 −�ri2 |
. (2.25)

Finally, the nucleus-electron potential-energy operator V̂n-e is given by

V̂n-e =−
M∑

k=1

N∑
i=1

1

4πε0

Zk e2

|�Rk −�ri |
. (2.26)

For simplicity’s sake, spin dependences have been neglected in the equations above: As

fermions, two electrons are allowed to occupy any orbital, one with a ↑-spin and one with a

↓-spin. The position of each nucleus and electron is determined by three spatial coordinates
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(x, y , and z). Hence, even without explicitly considering the spin dependence, solving the

Schrödinger equation means solving a problem of 3M +3N degrees of freedom for which the

solution is not separable in its variables. Obviously, an exact solution is generally not possible

and approximations must be made that are briefly discussed in the following.

The Schrödinger equation reads

[(
T̂n + V̂n-n

)+ (T̂e + V̂e-e + V̂n-e
)]
Ψ(�R1, . . . ,�RM ,�r1, . . . ,�rN ) = EΨ(�R1, . . . ,�RM ,�r1, . . . ,�rN ). (2.27)

The terms of the Hamilton operator have been re-grouped in a way that the first part depends

solely on the nuclear coordinates �R1, . . . ,�RM , whereas the latter part also depends on the

electronic coordinates�r1, . . . ,�rN . The Born-Oppenheimer approximation [107–109] relies on

the fact that the mass of an electron is several thousand times smaller than that of a nucleus,

i.e.
me

M
	 1. (2.28)

For example, even for the lightest nucleus, the proton, the ratio is [110]

me

Mp
≈ 1

1836
	 1. (2.29)

Hence, the electrons move much faster than the nuclei, meaning that for a given set of nuclear

positions the electrons adjust their positions “immediately” with respect to the movement of

the nuclei. The many-body wave function Ψ(�R1, . . . ,�RM ,�r1, . . . ,�rN ) in Equation (2.27) can then

be approximated as

Ψ(�R1, . . . ,�RM ,�r1, . . . ,�rN ) =Ψn(�R1, . . . ,�RM )Ψe(�R1, . . . ,�RM ,�r1, . . . ,�rN ). (2.30)

The separation of nuclear and electronic motions means in particular that the electronic

wavefunction Ψe depends only parametrically on the nuclear coordinates �R1, . . . ,�RM . Inserting

Equation (2.30) into Equation (2.27), assuming terms of the form

− �
2

2Mk
∇2
�Rk
Ψe(�R1, . . . ,�RM ,�r1, . . . ,�rN ) (2.31)

to be negligible, denoted the adiabatic approximation [111], and neglecting the kinetic energy

of the nuclei completely, yields for the total energy E of the system [106]:

E = V̂n-n +Ee(�R1, . . . ,�RM )

= 1

2

M∑
k1 �=k2=1

1

4πε0

Zk1 Zk2 e2

|�Rk1 −�Rk2 |
+Ee(�R1, . . . ,�RM ).

(2.32)

The nuclei are treated as classical particles that give rise to an electrostatic potential in which

the electrons move:

V (�r ) =
M∑

k=1

1

4πε0

Zk e2

|�Rk −�r | (2.33)
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but otherwise their effects are ignored. Without explicitly stating it, this approximation has

already been used within the description of FFs in Subsection 2.3.1 where the electronic energy

is described using the potential energy function given in Equation (2.6). Within the description

of quantum mechanics however, the electronic energy Ee(�R1, . . . ,�RM ) in Equation (2.32) is

then obtained by solving the electronic Schrödinger equation:

(
T̂e + V̂e-e + V̂n-e

)︸ ︷︷ ︸
= Ĥe

Ψe(�R1, . . . ,�RM ,�r1, . . . ,�rN ) = Ee(�R1, . . . ,�RM )Ψe(�R1, . . . ,�RM ,�r1, . . . ,�rN ), (2.34)

or explicitly written using Equations (2.23), (2.25), and (2.26):

= Ĥe︷ ︸︸ ︷(
−

N∑
i=1

�
2

2me
∇2
�ri
+ 1

2

N∑
i1 �=i2=1

1

4πε0

e2

|�ri1 −�ri2 |
−

M∑
k=1

N∑
i=1

1

4πε0

Zk e2

|�Rk −�ri |

)
Ψe(�R1, . . . ,�RM ,�r1, . . . ,�rN )

= Ee(�R1, . . . ,�RM )Ψe(�R1, . . . ,�RM ,�r1, . . . ,�rN ).

(2.35)

In order to simplify Equation (2.35) it is common practice to use natural units [112, 113], i.e.

�= 1,

me = 1,

|e| = 1,

4πε0 = 1.

(2.36)

When also omitting the explicit parametric dependence of Ψe on the nuclear coordinates
�R1, . . . ,�RM , Equation (2.35) then becomes:(

−1

2

N∑
i=1

∇2
�ri
+ 1

2

N∑
i1 �=i2=1

1

|�ri1 −�ri2 |
−

M∑
k=1

N∑
i=1

Zk

|�Rk −�ri |

)
︸ ︷︷ ︸

= Ĥe

Ψe(�r1, . . . ,�rN ) = EeΨe(�r1, . . . ,�rN ). (2.37)

In the following subsections, different approximate solutions to the electronic Schrödinger

equation will be laid out.

2.3.3 Variational Principle for the Ground State and Hartree-Fock Method

Considering the system in any state Ψ, the expectation value of the energy E of the system is

quantum-mechanically given by

E [Ψ] = <Ψ|Ĥ |Ψ>
<Ψ|Ψ> , (2.38)
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where

<Ψ|Ĥ |Ψ>=
∫

Ψ∗ĤΨd�r N (2.39)

and

<Ψ|Ψ>=
∫

Ψ∗Ψd�r N . (2.40)

The minimum-energy principle states that such an expectation value for any wave-function Ψ

is always greater or equal than the energy E0 of the ground state of the system, i.e.

E [Ψ] ≥ E0. (2.41)

The simple proof is e.g. provided in Reference [114]. An expectation value E [Ψ] calculated with

any guessed wave-function Ψ will therefore always provide an upper bound to the ground state

energy E0. In order to obtain the ground state Ψ0 with the corresponding energy E [Ψ0] = E0,

one would then vary the guessed wave-function Ψ until the functional E [Ψ] is minimized,

instead of solving the Schrödinger equation directly, i.e.

E0 = min
Ψ

E [Ψ]. (2.42)

In addition, by using the method of Lagrangian undetermined multipliers [115], it can always

be guaranteed that the final wave-function Ψ will be normalized, i.e.

<Ψ|Ψ>=
∫

Ψ∗Ψd�r N = 1. (2.43)

The Hartree method [112, 116–118], the oldest and simplest method to obtain an approximate

solution to the electronic Schrödinger equation in (2.37), makes use of the variational principle.

It approximates the wave-function Ψ as a product of individual non-interacting electron

orbitals ψi , i = 1, . . . , N , i.e.

ΨH
e (�r1, . . . ,�rN ) =ψ(�r1) ·ψ(�r2) · . . . ·ψ(�rN ). (2.44)

Applying the variational principle means considering variations in <ΨH
e |Ĥe|ΨH

e > under the

constraint that all single non-interacting electron orbitals ψi are orthonormal, i.e.

<ψi |ψ j >= δi j . (2.45)

However, the Hartree Ansatz in Equation (2.44) does not take the indistinguishability of

electrons into account, thereby violating the Pauli principle [36]. In other words, when in-

terchanging any two electrons the wavefunction Ψe ought to be anti-symmetric. Within the

Hartree-Fock approximation [117,119,120], Ψe is described by the so-called Slater determinant
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that fulfills this condition:

ΨHF
e (�r1, . . . ,�rN ) = 1�

N !

∣∣∣∣∣∣∣∣∣∣

ψ1(�r1) ψ2(�r1) . . . ψN (�r1)

ψ1(�r2) ψ2(�r2) . . . ψN (�r2)

. . . . . . . . . . . .

ψ1(�rN ) ψ2(�rN ) . . . ψN (�rN )

∣∣∣∣∣∣∣∣∣∣
. (2.46)

Although already mentioned, it should be pointed out that the spin dependences have been

neglected throughout, but their implementation in the above equations is straightforward.

The ground state energy E HF
e is then found to be given by [114, 121]

E HF
e =<ΨH

0 |Ĥe|ΨH
0 >=

N∑
i=1

Hi + 1

2

N∑
i , j=1

(Ji j −Ki j ), (2.47)

where

Hi =
∫

ψ∗
i (�r )

[
−1

2
∇2 −

M∑
k=1

Zk

|�Rk −�r |

]
ψi (�r )d�r . (2.48)

Ji j is denoted the Coulomb integral and is given by

Ji j =
∫∫

ψi (�r )ψ∗
i (�r )

1

|�r −�r ′|ψ j (�r ′)ψ∗
j (�r ′)d�r d�r ′. (2.49)

Ki j is denoted the exchange integral and is given by

Ki j =
∫∫

ψ∗
i (�r )ψ j (�r )

1

|�r −�r ′|ψi (�r ′)ψ∗
j (�r ′)d�r d�r ′. (2.50)

Note that Ji j ≥ Ki j ≥ 0 and Ji i = Ki i . One can similarly write Equation (2.47) as

E HF
e =<ΨH

0 |Ĥe|ΨH
0 >=

N∑
i=1

Hi +EHartree +Ex, (2.51)

where the Hartree energy EHartree is given by

EHartree =
N∑

i< j=1
Ji j , (2.52)

and the exchange energy Ex is given by

Ex =−
N∑

i< j=1
Ki j . (2.53)

Minimizing Equation (2.47) under the constraint that all single non-interacting electron

orbitals ψi are orthonormal (see Equation (2.45)) yields the Hartree-Fock differential equations

F̂ψi (�r ) =
N∑

j=1
εi jψ j (�r ), (2.54)
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where the Fock operator F̂ is given by

F̂ =−1

2
∇2 −

M∑
k=1

Zk

|�Rk −�r | + ĵ − k̂. (2.55)

The Coulomb operator ĵ and the exchange operator k̂ act on an arbitrary function f (�r ) in

such a way that

ĵ (�r ) f (�r ) =
N∑

i=1

∫
ψ∗

i (�r ′)ψi (�r )
1

|�r −�r ′| f (�r )d�r ′ (2.56)

and

k̂(�r ) f (�r ) =
N∑

i=1

∫
ψ∗

i (�r ′) f (�r )
1

|�r −�r ′|ψi (�r )d�r ′. (2.57)

The values εi j in Equation (2.54) are the Lagrange multipliers associated with the constraints

of Equation (2.45). Focusing on solutions where

εi j = δi j ε j , (2.58)

the Hartree-Fock equations become

F̂ψi (�r ) =
N∑

j=1
εiψi (�r ), (2.59)

where the εi are given by [114]

εi =<ψi |F̂ |ψi >= Hi +
N∑

j=1
(Ji j −Ki j ). (2.60)

In principle, the εi denote “orbital energies” of the single non-interacting electron orbitals

associated with them, although a physical meaning is of course questionable as the electrons

themselves are not independent single particles like the Hartree Ansatz implies. Under the

assumption of unchanged orbitals on ionization, i.e. removing one electron from the orbital

ψi , Koopmans’ theorem [122] states that

εi =−Ii , (2.61)

where Ii denotes the associated ionization energy.

Solving the Hartree-Fock equations in (2.59) is a traditional eigenvalue problem. However, a

solution for them has to be found self-consistently since the Fock operator F̂ depends on the

solution itself (through the operators ĵ and k̂ that in turn depend on the orbitals ψi ). Starting

with an initial guess of the orbitals ψi , one generates the Fock operator (Equation (2.55)

through Equations (2.56) and (2.57)) leading to new orbitals by solving the Hartree-Fock

equations in (2.59). The new orbitals are then used to generate the new Fock operator leading

again to new orbitals by solving the Hartree-Fock equations, etc. The procedure is repeated
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until input and output agree within a certain threshold.

It is obvious that an exact analytical solution of the complicated integro-differential Hartree-

Fock equations in (2.59) is commonly unfeasible. One would much rather rely on numerical

solutions carried out with computer programs. The scaling behavior of the associated com-

putational costs are formally of the order of O (N 4) [123, 124] which stems from the electron

repulsion integrals (Equations (2.56) and (2.57)) involved. In practice, a often used measure for

N is the size of the basis set, i.e. the set of basic functions that the wavefunctions are expanded

in. For accurate results, it must be ensured that a chosen finite basis set must be large enough

in order to reproduce a “complete” basis set, commonly denoted as the complete basis set

(CBS) limit [125]. Reducing computational costs by reducing the number of involved integrals

gave rise to another family of methods, the so-called semi-empirical methods, that will be

briefly discussed in the following subsection.

2.3.4 Semi-Empirical Quantum Chemistry Methods

Semi-empirical quantum chemistry methods are based on the Hartree-Fock method, but

follow a simplification strategy by making approximations for computationally demanding

terms [126, 127]. In order to account for caused errors, empirical parameters are incorporated

into the formalism and fitted against experimental data or high-level calculations [128]. All

semi-empirical methods reduce complexity by considering only valence electrons explicitly.

Core electrons are treated by scaling down the nuclear charge or by introducing functions

that treat the Coulomb effects of core electrons and nuclei simultaneously. The basis set of

the valence electrons, i.e. the number of functions the valence orbitals are represented in,

is purposefully reduced to a minimal set, meaning many semi-empirical methods use only

s- and p-type orbitals and the basis functions are commonly Slater type orbitals [129]. The

most important approximation in semi-empirical methods is the Zero Differential Overlap

(ZDO) [126] approximation that assumes all products of basis functions located on different

atoms to be neglected. Assuming a molecular system with atoms A,B , . . . and denoting the

orthonormal s- and p-type orbitals associated with atoms K ,L = A,B , . . . as ψi ,K ,ψ j ,L , . . ., the

ZDO approximation then means

ψ∗
i ,K (�r )ψ j ,L(�r )d�r = 0 if K �= L. (2.62)

Consequently, electronic overlap integrals of the form (compare to Equation (2.45))∫
ψ∗

i ,A(�r )ψ j ,B (�r )d�r =<ψi ,A|ψ j ,B > (2.63)

are approximated as

<ψi ,A|ψ j ,B >= δi jδAB , (2.64)
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and electron repulsion integrals of the form (compare to Equations (2.49) and (2.50))∫∫
ψ∗

i ,A(�r )ψ j ,B (�r )
1

|�r −�r ′|ψ
∗
k,C (�r ′)ψl ,D (�r ′)d�r d�r ′ =<ψi ,Aψk,C |ψ j ,Bψl ,D > (2.65)

are approximated as

<ψi ,Aψk,C |ψ j ,Bψl ,D >= δA,BδC ,D <ψi ,Aψk,C |ψ j ,Aψl ,C > . (2.66)

Defining the one-electron operator ĥ as

ĥ =−1

2
∇2 −

Mnuclei∑
K

Z̃K

|�RK −�r |

= −1

2
∇2 −

Mnuclei∑
K

vK ,

(2.67)

where Z̃K denotes the reduced nuclear charge of atom K due to the core electrons, one-

electron integrals of the form (compare to Equation (2.48))∫
ψ∗

i ,A(�r )ĥ ψ j ,B (�r )d�r =<ψi ,A|ĥ|ψ j ,B > (2.68)

are approximated within the Neglect of Diatomic Differential Overlap (NDDO) [130] method

as [126]

<ψi ,A|ĥ|ψ j ,A >= δi j <ψi ,A|− 1

2
∇2 − v A|ψi ,A >−

Mnuclei∑
K (�=A)

<ψi ,A|vK |ψ j ,A >,

<ψi ,A|ĥ|ψ j ,B >=<ψi ,A|− 1

2
∇2 − va − vB |ψ j ,A >,

<ψi ,A|vC |ψ j ,B >= 0.

(2.69)

Other different semi-empirical approximation schemes exist that mainly differ in the treatment

of the electron repulsion integrals (Equation (2.65)). Examples are the Intermediate Neglect

of Differential Overlap (INDO) [131] approximation and the Complete Neglect of Differential

Overlap (CNDO) [130,132] approximation which reduce these integrals to just two parameters.

In order to account for such approximations, the remaining integrals can be (i) calculated

directly using the functional form of the basis functions, (ii) described using empirical parame-

ters that are based on experimental data, or (iii) described using empirical parameters that are

fitted against experimental data. A combination of methods (i) and (ii) is applied for the NDDO,

INDO, and CNDO approximations while a combination of methods (ii) and (iii) is applied for

so-called Dewar-type, or “modified”, methods [84]. Examples include different versions of

the INDO-based Modified Intermediate Neglect of Differential Overlap (MINDO) [133, 134]

approximation, as well as NDDO-based parameterizations like the Modified Neglect of Di-

atomic Overlap (MNDO) [135], the Austin Model 1 (AM1) [136], and the Parametric Method 3

(PM3) [137]. The latter three methods are similar but differ in the core-core repulsion treat-
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ment and the parameterization process itself. Within their description, Equations (2.69) are

furthermore approximated as

<ψi ,A|ĥ|ψ j ,A >= δi j <ψi ,A|− 1

2
∇2 − v A|ψi ,A >−

Mnuclei∑
K (�=A)

Z̃K <ψi ,Aψi ,A|ψ j ,Aψ j ,A >,

<ψi ,A|ĥ|ψ j ,B >= 1

2
<ψi ,A|ψ j ,B > (βψi +βψ j ),

(2.70)

where Z̃K again denotes the reduced nuclear charge of atom K , and βψi and βψ j denote two

atomic “resonance” parameters. Note that the overlap integral < ψi ,A|ψ j ,B > is calculated

explicitly which is inconsistent with the ZDO approximation (Equation (2.64)), hence the

“modified” labeling. Using only s- and p-type orbitals, only five one-center electron repulsion

integrals (Equation (2.66)) exist within the NDDO approximation, namely < ss|ss >, < sp|sp >,

< ss|pp >, < pp|pp >, and < pp ′|pp ′ > (where p �= p ′), each of which is described as an

empirical parameter that needs to be obtained from atomic spectra. When modeling the

remaining 22 two-center electron repulsion integrals (Equation (2.66)) as interactions between

multipoles, they can then be expressed in terms of the five one-center electron repulsion

integrals and the internuclear distances [138]. Within the MNDO approximation, the core-

core repulsion between atoms A and B is described by

V MNDO
nn (A,B) = Z̃A Z̃B < sA sA|sB sB > (1+e−αARAB +e−αB RAB ), (2.71)

where RAB denotes the internuclear distance between the atoms in units of Å, and αA and

αB are again empirical parameters that are fitted against experimental data. For interactions

involving the pairs of atoms O−H or N−H, Equation (2.71) is replaced by the following form:

V MNDO
nn (A, H) = Z̃A Z̃H < sA sA|sH sH > (1+RAH e−αA RAH +e−αH RAH ), (2.72)

where atom A represents either the O or the N atom. Within the AM1 approximation, the

core-core repulsion of Equation (2.71) has been modified by adding Gaussian functions, i.e.

V AM1
nn =V MNDO

nn (A,B)+ Z̃A Z̃B

RAB

∑
k

(
ak Ae−bk A(RAB−ck A)2 +akB e−bkB (RAB−ckB )2

)
, (2.73)

where k = 2,3,4 depending on the atoms involved. The empirical atomic parameters ak ,

bk , and ck are again obtained by fitting against experimental data. The PM3 approximation

is almost similar to the AM1 approximation except that Equation (2.73) contains only two

Gaussian terms per atom. In addition, a different parameterization scheme was used. In

particular, the one-center electron repulsion integral parameters were also fitted against

molecular data instead of being obtained from atomic spectral data. Other modifications

exist that introduce various modifications or additional approximations and use a more

complete parameter optimization process. For example, the main feature of the PM6 [139]

approximation consists of the introduction of core-core diatomic interaction parameters into

32



2.3. Description of the Potential Energy Surface (PES)

its formulation such that the core-core repulsion of Equation (2.71) has been modified to

V PM6
nn (A,B) = Z̃A Z̃B < sA sA|sB sB > (1+xAB e−αAB (RAB+0.0003R6

AB )), (2.74)

where xAB and αAB denote empirical diatomic interaction parameters. With respect to PM3,

the empirical core-core parameters thereby increase from approximately 70 atomic parameters

to approximately 5000 diatomic parameters. On the other hand, this additional flexibility

allows for reducing the number of Gaussian core-core terms in Equation (2.73) down to one

per atom. Finally, the PM6-based reparameterized PM7 [140] method employs treatment of

dispersion and hydrogen bonds by adding specific energy correction terms.

2.3.5 Density-Functional Theory

Subsections 2.3.3 and 2.3.4 described methods and approximations aimed at solving the

electronic Schrödinger equation (see Equation (2.37)) ĤeΨe = EeΨe. In any case, the solu-

tion Ψe is an N -electron wave-function that depends on 3N spatial coordinates and N spin

coordinates, making it a very complex object to describe. Assuming having obtained the

solution Ψe, it is formally possible to derive any experimental observable from it, although

in practice the complexity of Ψe generally increases the effort considerably or makes it often

plain impossible to derive an accurate enough solution in the first place. Density-functional

theory (DFT) is an electronic-structure calculation method that has the remarkable property

of allowing to replace the complicated N -electron wave-function Ψe(�r1, . . . ,�rN ) and the as-

sociated Schrödinger equation (see Equation (2.37)) with the electron density ρ(�r ) and its

associated calculation scheme [114]. In other words, the object Ψe(�r1, . . . ,�rN ) that depends on

3N spatial coordinates can formally be replaced by the object ρ(�r ) that depends only on 3 spa-

tial coordinates. Early methods that implied the idea of treating ρ(�r ) instead of Ψe(�r1, . . . ,�rN )

include the Thomas-Fermi model [141, 142] and the Xα model by Slater [143, 144]. They were

constructed as approximations to solving the electronic Schrödinger equation and were thus

not derived as an exact theory. In 1964 however, the theorems by Hohenberg and Kohn [145]

provided the theoretical footing of DFT and showed that it is formally possible to calculate

any ground-state property through the means of the electron density ρ(�r ) alone. This implies

in particular that one does not need to know the N -electron wave-function Ψe(�r1, . . . ,�rN ) if

instead the electron density ρ(�r ) can be obtained directly.

Assuming a total Hamilton operator of the form

Ĥe =−1

2

N∑
i=1

∇2
�ri
+

N∑
i=1

Vext(�ri )+ 1

2

N∑
i1 �=i2=1

1

|�ri1 −�ri2 |
, (2.75)

where Vext(�ri ) denotes the (unknown) external potential that electron i moves in, e.g. the
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electrostatic potential of the M nuclei of the system given by

Vext(�ri ) =−
M∑

k=1

Zk

|�Rk −�ri |
, (2.76)

and assuming a given ground state electron density ρ(�r ) that fulfills

N =
∫

ρ(�r )d�r , (2.77)

the first Hohenberg-Kohn theorem then states that Vext(�ri ) is uniquely specified, i.e. it is not

possible to have two different external potentials Vext(�ri ) for a given ground state electron

density ρ(�r ). This implies that ρ(�r ) uniquely specifies all terms in the Hamilton operator

Ĥe which of course formally determines Ψe(�r1, . . . ,�rN ) for the ground state which in turn

formally determines any ground-state property. Although the theorem does not yet provide

any practical use, it states that there formally exists a one-to-one mapping between the ground

state electron density ρ(�r ) and any ground-state property which can than formally be written

as a functional of ρ(�r ), an example being the electronic energy Ee:

Ee = Ee[ρ]. (2.78)

Assuming E0 being the ground-state energy and ρ0(�r ) being the associated ground-state

electron density such that

Ee[ρ0] = E0, (2.79)

the second Hohenberg-Kohn theorem then states that for any trial electron density ρ̃(�r ) that

fulfills

N =
∫

ρ̃(�r )d�r , (2.80)

a variational principle for the density functionals holds in such a way that

Ee[ρ̃] ≥ E0 = Ee[ρ0]. (2.81)

This variational principle for the density functionals is equivalent to the one for wave-functions

in Equation (2.41). Assuming the actual functional form of Ee[ρ] was known, one could insert

approximate electron densities ρ̃ and minimize Ee[ρ̃] in order to improve any calculation for

the ground state.

The proofs of the two Hohenberg-Kohn theorems are fairly simple and can be found e.g. in

References [106, 114, 146]. The Levy-Lieb [147–150] formulation extends the original proof

by Hohenberg and Kohn and eliminates the restriction to non-degenerate ground states.

Of course, the Hohenberg-Kohn theorems do not yet provide any practical use since the

functional for the electronic energy Ee[ρ] (or any other ground-state property) is commonly

not explicitly known. In 1965 however, Kohn and Sham [151] provided a practical scheme for

determining ground-state properties from the electronic density, which will be briefly laid out

in the following.
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Although the actual form of Ee[ρ] is not explicitly known, it can be expressed as

Ee[ρ(�r )] = T [ρ(�r )]+
∫

Vext(�r )ρ(�r )d�r + 1

2

∫∫
ρ(�r )ρ(�r ′)
|�r −�r ′| d�r d�r ′ + Ẽxc[ρ(�r )]

= T [ρ(�r )]+
∫

Vext(�r )ρ(�r )d�r︸ ︷︷ ︸
= Eext[ρ(�r )]

+
∫

VC(�r )ρ(�r )d�r︸ ︷︷ ︸
= EC[ρ(�r )]

+Ẽxc[ρ(�r )], (2.82)

using the Coulomb potential (or often called Hartree potential)

VC(�r ) =
∫

ρ(�r ′)
|�r −�r ′| d�r ′ (2.83)

and the external potential Vext(�r ) (see Equations (2.75) and (2.76)). All terms in Equation (2.82)

are written as functionals of the electronic density ρ(�r ). The first term denotes the kinetic

energy and is the equivalent to the first term in Equation (2.75). The second term denotes the

interaction energy due to the external potential Vext(�r ) and is the equivalent to the second

term in Equation (2.75). The third term denotes the Coulomb interaction energy and is the

equivalent to the third term in Equation (2.75). The fourth term includes all (unknown)

exchange and correlation effects. Applying the variational principle of Equation (2.81) means

minimizing Ee[ρ] under the constraint that any trial electron density ρ(�r ) does not change the

total number of electrons (see Equation (2.80)) which can always be guaranteed by making

use of the method of Lagrangian undetermined multipliers, as laid out in Subsection 2.3.3.

This yields [106]

μ= δT

δρ
+Vext(�r )+VC(�r )+ δẼxc

δρ
, (2.84)

where μ denotes the Lagrange multiplier associated with the constraint of Equation (2.80).

Kohn and Sham introduced a fictitious system of non-interacting electrons with the same

electron density ρ and the same electronic energy Ee as the real system. Hence, they are

assumed moving in some effective potential Veff(�r ). For this model system, the expression of

the electronic energy, equivalent to Equation (2.82), is much simpler and given by

Ee[ρ(�r )] = T̃ [ρ(�r )]+
∫

Veff(�r )ρ(�r )d�r . (2.85)

Note that T̃ [ρ(�r )] �= T [ρ(�r )]. Repeating the same procedure as before, this yields

μ= δT̃

δρ
+Veff(�r ). (2.86)

Comparing Equations (2.84) and (2.86) yields

Veff(�r ) = δT

δρ
− δT̃

δρ
+Vext(�r )+VC(�r )+ δẼxc

δρ

=Vext(�r )+VC(�r )+ δExc

δρ
,

(2.87)
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where

Exc[ρ(�r )] = T [ρ(�r )]− T̃ [ρ(�r )]+ Ẽxc[ρ(�r )] (2.88)

denotes the exchange-correlation (xc) energy functional. Because the fictitious model system

consists of non-interacting electrons, the Hamilton operator is of the simple form

Ĥ =
N∑

i=1

[
−1

2
∇2
�ri
+Veff(�ri )

]
︸ ︷︷ ︸

ĥeff

, (2.89)

where ĥeff is a single-particle operator. The solution to the associated Schrödinger equation is

yielded similarly as in Subsection 2.3.3 using a Slater determinant Ansatz (see Equation (2.46))

and is found self-consistently through the N single-particle equations, denoted the Kohn-

Sham equations, that determine the single-particle orbitals φi , denoted the Kohn-Sham

orbitals:

ĥeffφi = εiφi , (2.90)

where

ρ(�r ) =
N∑

i=1
|φi (�r )|2. (2.91)

While DFT in itself is an exact method, in practice approximations have to be made because

the exact form of the xc functional Exc[ρ(�r )] (see Equation (2.88)) is commonly unknown.

Although the actual form of Exc[ρ(�r )] should be very complex in general, it can often be

approximated in a more or less reasonably simple manner. Obviously, a large variety of such

density-functional approximations (DFAs) exist, commonly classified into different types

depending on the features and formal properties of the xc functionals in question [152]. Such

classifications are summarized in the following.

The local-density approximation (LDA) was already proposed by Kohn and Sham [151].

Within the LDA, the xc functional Exc[ρ(�r )] (see Equation (2.88)) is given by

E LDA
xc [ρ] =

∫
ρ(�r )εxc(ρ)d�r , (2.92)

where the xc energy density εxc(ρ) per particle is that of a uniform electron gas and thus not a

local functional of ρ. Dividing εxc(ρ) into exchange and correlation contributions such that

εxc(ρ) = εx(ρ)+εc(ρ), (2.93)

or equivalently

Exc(ρ) = Ex(ρ)+Ec(ρ), (2.94)
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the exchange part can then be deduced analytically and is given by [114, 153]

εx(ρ) =−3

4

(
3

π

)1/3

ρ1/3,

where ρ = 3

4π

1

r 3
s

,
(2.95)

and rs denotes the radius of a sphere that contains one electron on average. The correlation

energy density εc(ρ) is not known analytically but accurate approximations exist, e.g. the PZ-

LDA approximation by Perdew and Zunger [154], the PW-LDA approximation by Perdew and

Wang [155], both based on quantum Monte Carlo results by Ceperley and Alder [156], and the

VWN-LDA approximation by Vosko, Wilk, and Nusair [157]. The LDA is a good approximation

for systems where the electron density is fairly uniform, e.g. bulk metals. It fails however for

systems where the electron density has large variations, e.g. molecular systems with many

hydrogen bonds, or weakly bound systems dominated by van der Waals interactions [158].

Within the description of the generalized gradient approximation (GGA) that generally re-

duces the typical error in LDA by a factor of 5 or more [159], gradients of the electron density

are included in the xc functional as a variable, i.e. the xc functional is generally expressed in

the form

E GGA
xc [ρ] =

∫
ρ(�r )εxc[ρ(�r ),∇ρ(�r )]d�r . (2.96)

Widely used examples include the Perdew-Burke-Ernzerhof (PBE) [160] and the Becke-Lee-

Yang-Parr (BLYP) [161, 162] xc functionals. For PBE, the xc functional is expressed as

E PBE
xc [ρ] = E PBE

x [ρ]+E PBE
c [ρ], (2.97)

where the exchange functional E PBE
x [ρ] is given by

E PBE
x [ρ] =

∫
ρ(�r )εLDA

x [ρ(�r )]Fx(s)d�r , (2.98)

where εLDA
x [ρ] is the exchange energy density in the uniform electron gas (see Equation (2.95))

and Fx(s) denotes the GGA enhancement factor depending on a dimensionless density gradi-

ent s which is defined as s = |∇ρ|/(2kFρ), where kF = (3π2ρ)1/3. The enhancement factor Fx(s)

is asked to satisfy a number of formal conditions and is expressed as

Fx(s) = 1+κ− κ

1+μs2/κ
, (2.99)

with μ = β(π2/3), β = 0.066725, and κ = 0.804. The PBE correlation functional E PBE
c [ρ] is

expressed as

E PBE
c [ρ] =

∫
ρ(�r )

[
εLDA

c (ρ,ξ)H(ρ,ξ, t )
]

d�r , (2.100)

where εLDA
c is the correlation energy density in PW-LDA approximation by Perdew and

Wang [155], ξ= (ρ↑ −ρ↓)/ρ denotes the relative spin polarization, and the function H (ρ,ξ, t ) is
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given by

H(ρ,ξ, t ) = (e2/a0)γφ3 ln

{
1+ β

γ
t 2
[

1+ At 2

1+ At 2 + A2t 4

]}
,

with A = β

γ

[
e−ε

LDA
c (ρ,ξ)/(γφ3e2/a0) −1

]−1
,

(2.101)

where t = |∇ρ|/(2φksρ) is a dimensionless density gradient, φ(ξ) = [(1+ξ)2/3+ (1−ξ)2/3]/2 is a

spin-scaling factor, ks = (4kF /πa0)1/2, a0 = �
2/me2, and γ= (1− ln2)/π2. The PBE functional

retains the correct features of LDA and includes inhomogeneity features that are supposed

to be energetically important [158]. From a theoretical point of view, it does not contain

empirical parameters obtained through fitting. The Becke ’88 (B88) [161] exchange functional

E B88
x that makes up the exchange part of the BLYP xc functional E BLYP

xc such that

E BLYP
xc [ρ] = E B88

x [ρ]+E LYP
c [ρ], (2.102)

contains only one empirical parameter β(= 0.0042) that is determined by a least-squares fit to

exact atomic Hartree-Fock data obtained from six noble gas atoms. It is expressed as

E B88
x = E LDA

x −β
∫

ρ4/3 x2

1+6βx sinh−1(x)
d�r︸ ︷︷ ︸

=ΔE B88
x

, (2.103)

where E LDA
x denotes the LDA exchange functional and x = |∇ρ|/ρ4/3 is a dimensionless ratio.

Unlike the other functionals, The Lee-Yang-Parr (LYP) [162] correlation functional E LYP
c [ρ] is

not based on the LDA but is instead derived from a correlation-energy formula due to Colle

and Salvetti [163]. In its closed-shell form, it is given by

E LYP
c =−a

∫
1

1+dρ−1/3

{
ρ+bρ−2/3

[
CFρ

5/3 −2tw + 1

9

(
tw + 1

2
∇2ρ

)]
e−cρ−1/3

}
d�r ,

with tw = 1

8

( |∇ρ|2
ρ

−∇2ρ

)
,

(2.104)

where CF = 3
10 (3π2)2/3, a = 0.04918, b = 0.132, c = 0.2533, and d = 0.349. In general, GGAs

show improvements over LDAs in terms of binding energies, atomic energies, bond lengths,

and angles [158].

A natural development after the GGAs consists of the inclusion of the Laplacian, i.e. the second

derivative, of the electron density in the xc functional as a variable, beyond the electron density

itself and its gradient. Such approximations of the xc functionals are denoted meta-GGAs and

are thus generally expressed in the form

E meta-GGA
xc [ρ] =

∫
ρ(�r )εxc[ρ(�r ),∇ρ(�r ),Δρ(�r )]d�r . (2.105)

Instead of being expressed in terms of Δρ(�r ), many meta-GGAs are expressed in terms of the
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orbital kinetic energy density τ(�r ) given by

τ(�r ) = 1

2

N∑
i=1

|∇φi (�r )|2, (2.106)

where the φi (�r ) denote the Kohn-Sham orbitals (see Equations (2.90) and (2.91)). Equa-

tion (2.105) then becomes

E meta-GGA
xc [ρ] =

∫
ρ(�r )εxc[ρ(�r ),∇ρ(�r ),τ(�r )]d�r . (2.107)

The orbital kinetic energy density τ(�r ) and Δρ(�r ) are formally related:

τ(�r ) =−1

2

N∑
i=1

φ∗
i (�r )∇2φi (�r )+ 1

4
∇2ρ(�r ) (2.108)

and Perdew and Constantin [164] presented evidence that both quantities carry essentially

the same information beyond that is carried by ρ and ∇ρ. Solving the Kohn-Sham equations

(see Equations (2.90)) self-consistently, requires the evaluation of δExc/δρ. However, since

τ(�r ) is not an explicit functional of the electron density ρ, this would in principle require

some cumbersome methodological effort [165, 166]. In practice however, the derivative of

E meta-GGA
xc [ρ] is usually just evaluated with respect to the Kohn-Sham orbitals [167]. Examples

of meta-GGA xc functionals include the group of Minnesota functionals developed by Truhlar

and coworkers in Minnesota in 2005 and later, that are all parameterized against a broad range

of chemical data [168]. Examples include the M06-L [169] xc functional designed for main-

group thermochemistry, transition metal bonding, thermochemical kinetics, and non-covalent

interactions, and the M11-L [170] xc functional for transition metal thermochemistry, kinetics

and non-covalent interactions. The latter xc functional incorporates a dual-range exchange

strategy, meaning it makes use of two different meta-GGA functionals, one describing the

short-range and one describing the long-range inter-electronic Coulomb interaction. Finally,

the recently developed Strongly Constrained and Appropriately Normed (SCAN) [171] meta-

GGA xc functional by Perdew and coworkers has been constructed to satisfy all 17 known

possible exact constraints and further “appropriate norms” including the energies of rare-gas

atoms and non-bonded interactions.

All previously mentioned local and semi-local approximations for the xc functional Exc[ρ]

suffer from the fact that non-locality is not fully taken into account, meaning that there must

exist a formal accuracy limit that such calculations are able to reach. In particular, such ap-

proximations do not compensate entirely for the electronic self-interaction, i.e. the spurious

interaction of an electron with itself. In the 1990s, based on the adiabatic connection ap-

proach [172], this motivated an advanced approach by Becke [173, 174]: While the correlation

effects are still being treated within the DFT scheme, exchange effects are simultaneously

treated using DFT and Hartree-Fock. In other words, the exchange part of the DFA xc func-

tional is admixed with exact exchange from Hartree-Fock theory, resulting in so-called hybrid

exchange(-correlation) functionals. The exact exchange from Hartree-Fock theory is thus
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given by (compare to Equation (2.50))

E exact
x =−1

2

N∑
i , j=1

∫∫
φ∗

i (�r )φ j (�r )
1

|�r −�r ′|φi (�r ′)φ∗
j (�r ′)d�r d�r ′, (2.109)

where the φi (�r ) again denote the Kohn-Sham orbitals. This approach introduces at least one

empirical parameter, namely the so-called mixing parameters typically denoted α0,α1, . . . that

regulate the relative proportions of exact exchange and DFAs. Hence, the optimum values of

the mixing parameters depend on the physical parameters to which they are fitted [175]. For

example, the widely popular B3LYP functional contains three parameters α0,α1,α2 that were

determined in order to accurately reproduce atomization energies, ionization potentials, pro-

ton affinities, and atomic energies of a given set of smaller molecules [174]. The corresponding

xc functional is expressed as [176, 177]

E B3LYP
xc =α0E exact

x + (1−α0)E LDA
x +α1ΔE B88

x + (1−α2)E VWN
c +α2E LYP

c , (2.110)

where α0 = 0.20, α1 = 0.72, α2 = 0.81, E exact
x denotes the exact exchange term given in Equa-

tion (2.109), E LDA
x is the LDA exchange functional (see Equations (2.92) through (2.95)), ΔE B88

x

denotes Becke’s ’88 gradient correction for exchange (second term in Equation (2.103)), E VWN
c

is the LDA correlation functional in VWN-LDA approximation by Vosko, Wilk, and Nusair [157],

and E LYP
c is the GGA correlation functional by Lee, Yang, and Parr given in Equation (2.104).

Another example for a hybrid functional is given by the PBE0 [178, 179] model that contains

one parameter α0 = 0.25 which has been fixed a priori taking into account numerical results

for molecular systems from fourth-order perturbation theory [180]. The corresponding xc

functional is expressed as

E PBE0
xc =α0E exact

x + (1−α0)E PBE
x +E PBE

c , (2.111)

where E PBE
x and E PBE

c denote the exchange and correlation parts of the GGA PBE xc func-

tional given in Equations (2.97) through (2.101). The downside of this approach comes with

increased computational costs as single-point energy evaluations using hybrid functionals

are commonly at least one order of magnitude more expensive than their counterparts us-

ing (semi-)local functionals [181], although techniques to facilitate the treatment exist [182].

Other examples include hybrid meta-GGA xc functionals from the group of Minnesota func-

tionals, e.g. M06 and M06-2X [183], two functionals incorporated with 27% and 54% exact

exchange, respectively, M08-HX and M08-SO [184], two functionals incorporated with 52.23%

and 56.79% exact exchange, respectively, and M11 [185], a hybrid meta-GGA functional with

at least 42.8% exact exchange. While the M06 and M06-2X functionals are generally intended

for overall good performance for chemistry, the latter functional is generally not suited for

systems containing transition metals [168]. M08-HX is improved over M06-2X by making use

of a cleaner functional form for both the exchange and the correlation parts which in turn

became the base for the M11 functional. The M11 functional furthermore makes use of a

long-range correction scheme [186], meaning the portion of exact exchange varies from 42.8%
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at short-range to 100% at long-range. Finally, the meta-GGA hybrid xc functional SCAN0 [187]

is constructed similarly as the PBE0 model shown in Equation (2.111), i.e.

E SCAN0
xc =α0E exact

x + (1−α0)E SCAN
x +E SCAN

c , (2.112)

where again α0 = 0.25, and E SCAN
x and E SCAN

c denote the exchange and correlation parts of the

meta-GGA SCAN xc functional.

Within the scheme of hybrid models where a non-local character gets introduced in the

exchange part, properties governed by non-local correlation effects, e.g. non-covalent inter-

actions, are commonly not described properly, which is due to the fact that the correlation

part remains unchanged. The theoretical footing for improvement stems from the adiabatic

connection formalism [172, 188–190] where Exc[ρ] can be formally expressed as an integral of

the form

Exc[ρ] =
1∫

0

Uxc,λ[ρ]dλ, (2.113)

where the coupling-constant parameter λ regulates the assumed continuous adiabatic connec-

tion path between the fictitious non-interacting Kohn-Sham system (λ= 0) and the physical

system (λ= 1) while all partially interacting systems (0 ≤λ≤ 1) along the path maintain the

same electron density ρ(�r ) as that of the physical system. Applying Görling-Levy second-order

perturbation theory [191, 192] at the weakly interacting limit (λ→ 0), the integrand Uxc,λ[ρ]

can then be formally expressed as

Uxc,λ[ρ] ≈
λ→0

E exact
x +2λE GL2

c , (2.114)

where E exact
x denotes the exact exchange given in Equation (2.109), and the second-order

Görling-Levy correlation energy E GL2
c may generally be well approximated [193] by only taking

into account its double-excitation contributions E PT2
c given by

E PT2
c = 1

4

∑
i , j

∑
α,β

∣∣∣∫∫φ∗
i (�r )φ∗

j (�r ′) 1
|�r−�r ′|φα(�r )φβ(�r ′)d�r d�r ′

∣∣∣2
εi +ε j −εα−εβ

, (2.115)

where φi (�r ) and φ j (�r ) denote occupied Kohn-Sham orbitals, and φα(�r ) and φβ(�r ) denote

unoccupied Kohn-Sham orbitals. The associated orbital energies are denoted εi , ε j , εα, and εβ,

respectively. Hence, expanding the idea of hybrid functionals by Becke [173] explained above,

so-called double hybrid functionals were proposed [194–196] that not only included substi-

tution of some portion of DFA exchange E DFA
x by exact exchange E exact

x , but also substitution

of some portion of DFA correlation E DFA
c by second-order perturbative correlation E PT2

c , i.e.

E double-hybrid
xc = (1−αx)E DFA

x +αxE exact
x + (1−αc)E DFA

c +αcE PT2
c , (2.116)

where the scaling parameters αx and αc regulate the portions of substitution for exchange and

correlation, respectively. Examples of double hybrid xc functionals include the XYG3 [197]
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functional that aims for accurate descriptions of non-bonded interactions, thermochemistry,

and thermochemical kinetics. It is of the form similar to the B3LYP xc functional shown in

Equation (2.110), and expressed as

E XYG3
xc =α0E exact

x + (1−α0)E LDA
x +α1ΔE B88

x + (1−α2)E LYP
c +α2E PT2

c , (2.117)

where the three mixing parameters α0 = 0.8033, α1 = 0.2107, and α2 = 0.3211 were determined

empirically by fitting to thermochemical data [198]. All energy terms are thereby first evaluated

using the Kohn-Sham orbitals, orbital energies, and associated electron density obtained from

the B3LYP xc functional given in Equation (2.110).

Computational evaluation of the second-order perturbative correlation term in Equa-

tion (2.115) formally scales with O (N 5), where N denotes the size of the system, while regular

hybrid DFA evaluations scale with O (N 4) [123]. Obviously, this must imply certain computa-

tional limits for larger chemical systems. Recent so-called “low-cost” composite electronic

structure approaches aim to (partly) overcome such limitations with a computationally more

efficient methodology and without having to sacrifice accuracy. As an example, the PBEh-

3c [199] scheme is based on the GGA PBE xc functional that has been modified into a hybrid

functional with a relatively large amount of 42% of non-local exact exchange. The orbitals

are expanded in computationally light Ahlrichs-type split valence double-zeta atomic orbital

Gaussian basis sets [200]. In addition, Grimme’s empirical pairwise additive D3 correction

method [201] (see Subsection 2.3.6) is applied in order to account for long-range disper-

sion. Finally, the third methodological correction consists of a global counterpoise-correction

scheme [202] that accounts for the so-called basis set superposition error (BSSE) [203, 204],

see Subsection 2.3.9 for details.

2.3.6 A posteriori van der Waals Correction Schemes in Density-Functional The-
ory and Semi-Empirical Quantum Chemistry Methods

With the exception of the latter two approaches presented in the last subsection, the “con-

ventional” xc functionals in (semi-)local and hybrid approximation are not able to properly

describe long-range electron correlation effects by design. In particular, this includes their in-

ability to appropriately model long-range dispersion effects or van der Waals interactions [205].

The fundamental physical nature of dispersion effects have already been motivated in Sec-

tion 2.2, refer in particular to Equation (2.3). Indeed, many systems containing biomolecules

rely on van der Waals interaction treatments for an accurate energetic description [206, 207].

Following Equation (2.3), van der Waals interactions dominate in the long-range regime, i.e.

in the region of negligible overlap between electronic charge densities of atomic fragments,

and scale with ∼ r−6, where r denotes the distance between two atoms. In other words, its

asymptotic behavior is described as

E vdW ∼−C6

r 6 , (2.118)
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where C6 denotes the associated dispersion coefficient. One popular approach for dispersion-

corrected DFAs consists of additive corrections, either pairwise in nature or also including

many-body terms, which is for two reasons: Actual computational costs in evaluating these

corrections are very little in comparison to the self-consistent Kohn-Sham calculation, and

secondly, additive corrections may be combined with almost any (semi-)local DFA, as they are

generally evaluated a posteriori, i.e. after the self-consistent Kohn-Sham treatment in DFT,

and then simply added to the Kohn-Sham result [208], i.e.

E DFA+vdW = E DFA +E vdW, (2.119)

where E DFA denotes the total energy of the system obtained in DFA and E vdW denotes the dis-

persion correction commonly specific to the DFA. Following this approach, Equation (2.118)

can then be generalized considering the multipolar expansion of the interatomic interac-

tions [209]

E vdW = E vdW,(2) +E vdW,(3) + . . . , (2.120)

where E vdW,(2) contains pairwise contributions, E vdW,(3) contains three-body dispersion con-

tributions, etc. The leading term considers all interactions between any pairs of atoms A and

B , and is itself expressed in terms of not only the ∼ r−6 contribution but also contains terms

of order higher than the dipole-dipole interaction [210–212], i.e.

E vdW,(2) =− ∑
n=6,8,10,...

1

2

∑
A �=B

C AB
n

r n
AB

fn(r AB ). (2.121)

The damping functions fn thereby denote one-dimensional functions of the interatomic

distance r AB that fulfill
fn(r AB ) →

r AB→0
0

and fn(r AB ) →
r AB→∞ 1.

(2.122)

For one, they serve to shut down the dispersion contribution at short range in order to avoid

the singularity at r AB → 0, and secondly, they need to govern a seamless connection between

the asymptotic long-range region and the short-range region that is mostly described by the

underlying DFA. Furthermore, the flexible parameters of the damping functions may also be

able to describe certain intermolecular interaction energies the underlying DFA is not able

to reproduce [209]. Based on the above expressions, a variety of schemes and models exist

for deriving the Cn coefficients with varying degrees of accuracy and empiricism. Examples

of such dispersion correction schemes include the heavily parameterized and widely popu-

lar DFT-D3 model by Grimme and coworkers [201], as well as the parameter-free pairwise

Tkatchenko-Scheffler van der Waals scheme (vdWTS) [213].

Within the description of the DFT-D3 model, the specific expression of Equation (2.121) is

given by

E D3,(2) =−1

2

∑
A �=B

[
C AB

6

r 6
AB

f6(r AB )+ s8
C AB

8

r 8
AB

f8(r AB )

]
, (2.123)
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where s8 is an adjustable parameter specific to each DFA xc functional and obtained by

a fitting procedure using standard benchmark sets [201]. Higher-order contributions in

Equation (2.123) have been found to make the method more unstable and are thus omitted.

Different variations of the damping functions include the version by Becke and Johnson [214,

215], a “modified” version labeled D3M [216], and the so-called zero-damping function [217]

that is primarily used in this work and given by

fd ,n(r AB ) = 1

1+6(r AB /(sr,nr AB
0 ))−αn

, (with n = 6,8), (2.124)

where sr,n is the order-dependent scaling factor of the cutoff radii r AB
0 . In particular, sr,n=8 = 1,

and sr,n=6 is optimized using a least-squares fitting procedure. The cutoff radii r AB
0 were cal-

culated from DFT calculations for all possible pairs of atoms A−B , resulting in 4465 values for

94 elements. Finally, the empirical parameters αn have been set to α6 = 14 and α8 = 16. Based

on the Casimir-Polder formalism [218], the dispersion coefficients C AB
n in Equation (2.123)

have been calculated using ab initio time-dependent (TD)DFT and employing recurrence

formulas for the multipole terms in higher-order. The three-body dispersion contributions in

Equation (2.120) are based on the Axilrod-Teller-Muto [219, 220] model and given by

E D3,(3) =−1

6

∑
A �=B �=C

C ABC
9 (3cos(θa)cos(θb)cos(θc )+1)

(r AB rBC rC A)3 fd ,(3)(r ABC ), (2.125)

where θa , θb , and θc denote the internal angles of the triangle formed by r AB , rBC , and rC A . The

damping function fd ,(3) is similar to the one in Equation (2.124), r ABC is the geometric mean

of r AB , rBC , and rC A , and the C ABC
9 coefficient is approximated as C ABC

9 ≈−
√

C AB
6 C BC

6 CC A
6 .

Within the description of the parameter-free Tkatchenko-Scheffler vdWTS model, only pairwise

dispersion energy corrections and dipole-dipole contributions are considered, meaning the

specific expression of Equations (2.120) and (2.121) is given by

E vdWTS =−1

2

∑
A �=B

C AB
6

r 6
AB

fdamp(r AB ,r 0
A ,r 0

B ), (2.126)

where r AB again denotes the distance between atoms A and B , and r 0
A and r 0

B are the vdW

radii. The Fermi-type damping function fdamp is given by [221]

fdamp(r AB ,r 0
A ,r 0

B ) = 1

1+exp
[
−d

(
r AB

sR (r 0
A+r 0

B )
−1

)] , (2.127)

where the free parameter d has been set to d = 20 and the free empirical scaling coefficient

sR regulates the onset of the vdW correction for a specific DFA xc functional and is obtained

by fitting to the S22 database of Jurečka et al. [222]. The atomic vdW radius r 0
A of atom A in
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Equation (2.127) is expressed as

r 0
A =

(
VA

V free
A

)1/3

r 0,free
A , (2.128)

where r 0,free
A is defined for any atom A as the radius that corresponds to the electron density

contour value determined for the noble gas on the same period using its vdW radius by

Bondi [39]. VA

V free
A

thereby denotes the effective atomic volume referenced to the free atom in

vacuo, and is defined using the atomic Hirshfeld partitioning scheme [223–225]:

VA

V free
A

=
∫

r 3w A(�r )ρ(�r )d�r∫
r 3ρfree

A (�r )d�r
, (2.129)

where r 3 denotes the cube of the distance from the nucleus of atom A, ρ(�r ) denotes the total

electron density, and ρfree
A (�r ) is the electron density of the free atom A. The Hirshfeld atomic

partitioning weight w A(�r ) is given by

w A(�r ) = ρfree
A (�r )

all atoms∑
B

ρfree
B (�r )

. (2.130)

Based on the Casimir-Polder formalism [218], a rewriting of the London formula [226] yields

an expression for the heteroatomic dispersion coefficients C AB
6 in Equation (2.126) in terms of

the homoatomic dispersion coefficients C A A
6 and C BB

6 :

C AB
6 = 2C A A

6 C BB
6[

α0
B

α0
A

C A A
6 + α0

A

α0
B

C BB
6

] . (2.131)

α0
A and α0

B thereby denote the atomic static polarizabilities of atoms A and B . Following the

same approach as in Equations (2.128) and (2.129), the atomic static polarizability α0
A of any

atom A is scaled in reference to its free-atom reference value α0,free
A taken from the database

of Chu and Dalgarno [227]:

α0
A = VA

V free
A

α0,free
A , (2.132)

where VA

V free
A

is defined in Equation (2.129). The similar expression for the homoatomic disper-

sion coefficients C A A
6 is given by

C A A
6 =

(
VA

V free
A

)2

C A A,free
6 , (2.133)

where the free-atom reference values C A A,free
6 are again taken from the database of Chu and

Dalgarno [227].
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In contrast to the pairwise Tkatchenko-Scheffler vdWTS scheme that ignores the intrinsic

many-body nature of correlation effects, the many-body dispersion scheme labeled MBD [228]

(and sometimes also labeled MBD* or MBD@rsSCS) combines the TS scheme with the

self-consistent screening (SCS) equation of classical electrodynamics [229]. In addition, a

range-separation (rs) Coulomb interaction technique is applied, separating correlation into a

short-range and a long-range contribution. Short-range correlation is accounted for using a

(semi-)local or hybrid xc functional, while long-range contributions are accounted for using

a random-phase approximation model based on a system of localized quantum harmonic

oscillators coupled in the dipole approximation [230]. Only one empirical parameter is re-

quired for the range separation step that is obtained by fitting to accurate quantum chemistry

benchmark data. Computational costs are still very little in comparison to the self-consistent

Kohn-Sham calculation.

A posteriori van der Waals correction schemes are not exclusive to DFT but may also be applied

in a similar fashion for semi-empirical quantum chemistry methods in order to provide a more

accurate description. As an example, the PM6 approximation, described in Subsection 2.3.4,

can easily be enhanced using the unmodified D3 method by Grimme and coworkers, but

using PM6-specific empirical variables [231], resulting in a method labeled PM6-D3. Based on

that, Řezáč and Hobza added an additional hydrogen-bonding correction [231] that has been

parameterized on the S66 benchmark data set [232]. The resulting method that also includes a

correction for the underestimation of non-covalently bound atoms [233] is accordingly labeled

PM6-D3H4.

2.3.7 Electron Correlation and Møller-Plesset Perturbation Theory

Apart from empirical methods like force fields described in Subsection 2.3.1, semi-empirical

quantum chemistry methods described in Subsection 2.3.4, and the various density-functional

approximations described in Subsection 2.3.5, there exists another important group of quan-

tum chemistry methods that are wavefunction-based and developed to build on the Hartree-

Fock method described in Subsection 2.3.3. Such methods are accordingly labeled post-

Hartree-Fock methods [234, 235]. Their main purpose is to accurately describe the amount

of electron correlation that the Hartree-Fock theory fails to adequately represent, a direct

consequence of the mean-field approach in Hartree-Fock theory as the assumption that the

non-interacting electrons are moving in an average potential of the other electrons neglects

the tendency of “avoiding” each other more than the Hartree-Fock theory would suggest [236].

Without taking into account electronic correlation, the Hartree-Fock method fails to describe

– even qualitatively – the physics of strongly correlated electrons which are e.g. essential

in hydrogen-bonded and dispersive systems involving biomolecules [237]. The electronic

ground-state correlation energy E corr
e can formally be expressed as

E corr
e = Ee −E HF

e , (2.134)

46



2.3. Description of the Potential Energy Surface (PES)

where Ee denotes the formally exact electronic energy in Born-Oppenheimer approximation

(see Equation (2.37)) and E HF
e is the Hartree-Fock energy given in Equation (2.47). There

exist a variety of methods that aim to accurately determine E corr
e . One popular and straight-

forward approach consists of treating the electronic correlation as a “small” perturbation

to the Hartree-Fock wavefunction. This approach is fundamentally based on the many-

body perturbation theory, or also denoted Rayleigh-Schrödinger perturbation theory [238,

239], and was later specifically formulated for Hartree-Fock wavefunctions, resulting in the

Møller-Plesset perturbation theory [240]. Within the description of many-body perturbation

theory, the “true” electronic Hamiltonian Ĥe from Equation (2.37) is expressed as a sum of an

“unperturbed” Hamiltonian Ĥ0 and a “small” perturbation potential V̂ , i.e.

Ĥe = Ĥ0 + λV̂︸︷︷︸
= Ĥ ′

, (2.135)

where λ is a perturbation parameter with 0 ≤λ≤ 1. The solution to the electronic Schrödinger

equation of the “unperturbed” system

Ĥ0Ψ
(0)
i = E (0)

i Ψ(0)
i , (2.136)

is known, i.e. the Ψ(0)
i are the corresponding obtained eigenfunctions and the E (0)

i their

associated energies. In order to find a solution to the Schrödinger equation of the “perturbed”

system

Ĥ0Ψi = EiΨi , (2.137)

the eigenfunctions Ψi and their associated energies Ei are expressed in powers of λ, i.e.

Ψi =Ψ(0)
i +λΨ(1)

i +λ2Ψ(2)
i + . . . = ∑

n=0
λnΨ(n)

i ,

Ei = E (0)
i +λE (1)

i +λ2E (2)
i + . . .

∑
n=0

λnE (n)
i .

(2.138)

Assuming intermediate normalization that can always be constructed, i.e.∫
Ψ∗(0)

i Ψ(n)
i d�r N = δn0,∫

Ψ∗(0)
i Ψi d�r N = 1,

(2.139)
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one yields equations for the first-order energy correction E (1)
i , second-order energy correction

E (2)
i , etc. [236, 241]:

E (0)
i =

∫
Ψ(0)

i Ĥ0Ψ
(0)
i d�r N ,

E (1)
i =

∫
Ψ(0)

i V̂ Ψ(0)
i d�r N ,

E (2)
i =

∫
Ψ(0)

i V̂ Ψ(1)
i d�r N ,

E (3)
i =

∫
Ψ(0)

i V̂ Ψ(2)
i d�r N ,

...

E (n)
i =

∫
Ψ(0)

i V̂ Ψ(n−1)
i d�r N .

(2.140)

In other words, in order to find the n-th-order energy correction E (n)
i , the (n−1)-th-order wave-

function correction Ψ(n−1)
i is required. Within the description of Møller-Plesset perturbation

theory, the “unperturbed” Hamiltonian is given by

Ĥ0 =
N∑

k=1
F̂k , (2.141)

where the F̂k denote the one-electron Fock operators defined in Equation (2.55). The ground-

state Hartree-Fock wavefunction Ψ(0)
0 is a Slater determinant (see Equation (2.46)) and an

eigenfunction of Ĥ0. Its corresponding ground-state energy E (0)
0 is just the sum of orbital

energies εk (see Equation (2.60)) for the N occupied orbitals [30], i.e.

E (0)
0 =

occupied∑
k=1

εk . (2.142)

However, the ground-state Hartree-Fock wavefunction Ψ(0)
0 is just one of the eigenfunctions

Ψ(0)
i of Ĥ0. The system has not only N occupied spin-orbitals but also virtual ones. Since the

Fock operators F̂k (and thus Ĥ0) are hermitian, a complete set of eigenfunctions of Ĥ0 exists,

namely all possible spin-orbital functions that can be made up of all possible products of any

N of the occupied and virtual spin-orbitals. Obviously, these eigenfunctions need to expressed

as antisymmetric Slater determinants (see Equation (2.46)). The perturbation Ĥ ′ of the system

is given by
Ĥ ′ = Ĥe − Ĥ0

= Ĥe −
N∑

k=1
F̂k

= 1

2

N∑
k1 �=k2=1

1

|�rk1 −�rk2 |
+

N∑
l=1

[
ĵl − k̂l

]
,

(2.143)

where the one-electron Coulomb operator ĵl and the one-electron exchange operator k̂l are

given in Equations (2.56) and (2.57), respectively. Evaluating to first-order in Møller-Plesset
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perturbation theory then yields for the ground state [30]

E (0)
0 +E (1)

0 = E HF
e , (2.144)

where E HF
e denotes the Hartree-Fock energy given in Equation (2.47). In other words, ground-

state correlation corrections beyond Hartree-Fock theory as motivated in Equation (2.134)

require second-order Møller-Plesset perturbation theory, commonly abbreviated MP2. Denot-

ing occupied spin-orbitals obtained from Hartree-Fock theory with ψi , ψ j , etc., unoccupied

(virtual) spin-orbitals with ψα, ψβ, etc., and εi , ε j , εα, εβ, etc. are the corresponding orbital

energies, the second-order energy correction for the ground state is then given by

E (2)
0 = 1

4

occupied∑
i , j

virtual∑
a,b

∣∣∣∣∫∫ ψ∗
i (�r )ψ∗

j (�r ′)[ψα(�r )ψβ(�r ′)−ψβ(�r )ψα(�r ′)]
|�r−�r ′| d�r d�r ′

∣∣∣∣2
εi +ε j −εα−εβ

. (2.145)

MP2 calculations formally scale with O (N 5) [123]. One appealing feature of MP2 is the obvious

inclusion of many-body correlation effects which has also been made use of in Subsection 2.3.5

where an MP2-like contribution in Equation (2.115) has been included in the description of

double hybrid xc functionals. However, MP2 generally tends to overestimate the correlation

interaction energy in clusters [242] and fails to describe semiconductor or metallic systems due

to the small or vanishing band gaps resulting in a break down of the perturbation approach.

Increased computational costs for laying out higher-order Møller-Plesset perturbation theory

calculations, i.e. MP3, MP4, etc., are generally not justified due to the tendency to not improve,

or even diverge, the energetic description of the system [243].

2.3.8 Configuration Interaction and Coupled-Cluster Theory

Within the description of Møller-Plesset perturbation theory in the last subsection, the for-

mally complete set of eigenfunctions of the system has been introduced, meaning all possible

spin-orbital functions that can be made up of all possible products of any N of the occupied

and virtual spin-orbitals. The wavefunction ΨHF
e obtained from Hartree-Fock theory is a

Slater determinant (see Equation (2.46)) made up of a product of N occupied spin-orbitals

ψi , i = 1, . . . , N . By “replacing” occupied spin-orbitals with unoccupied (virtual) spin-orbitals

in the Slater determinant, a whole series of Slater determinants may be created. Such Slater

determinants that have one occupied spin-orbital replaced with a virtual one are denoted

“singly excited”, or just “Singles” Slater determinants. Such Slater determinants that have two

occupied spin-orbitals replaced with virtual ones are denoted “doubly excited”, or just “Dou-

bles” Slater determinants. Such Slater determinants that have three occupied spin-orbitals

replaced with virtual ones are denoted “triply excited”, or just “Triples” Slater determinants,

etc. Including all possibilities of creating “excited” Slater determinants as well as ensuring the

CBS limit as laid out in Subsection 2.3.3 means recovering the complete electronic correlation

and formally solving the Schrödinger equation. In other words, the more “excited” Slater deter-

minants are included and the more “complete” the basis set, the more accurate the results will
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be. The method of configuration interaction (CI) consists of following the same variational

principle as in Hartree-Fock theory (see Subsection 2.3.3) but using the wavefunction Ansatz

ΨCI
e = c0Ψ

HF
e +

occupied∑
i

virtual∑
α

cαi Ψ
α
i +

occupied∑
i , j

virtual∑
α,β

cα,β
i , j Ψ

α,β
i , j + . . . , (2.146)

where ΨHF
e denotes the Slater determinant wavefunction from Hartree-Fock theory, Ψα

i de-

notes the Singles Slater determinant where the occupied spin-orbital i has been replaced

by the virtual spin-orbital α, Ψα,β
i , j denotes the Doubles Slater determinant where the two

occupied spin-orbitals i and j have been replaced by the virtual spin-orbitals α and β, etc.

Applying the variational principle of Equation (2.41) means minimizing the energy

E [ΨCI
e ] = <ΨCI

e |Ĥe|ΨCI
e >

<ΨCI
e |ΨCI

e > (2.147)

by varying the linear coefficients c ······ in Equation (2.146) under the constraint that ΨCI
e is

normalized which can always be guaranteed by making use of the method of Lagrangian

undetermined multipliers, as laid out in Subsection 2.3.3. Following this straight-forward

approach then results in a general matrix eigenvalue problem that can formally be solved by

diagonalizing the so-called CI matrix [30, 241]. However, in practice the number of possible

Slater determinants becomes very large even for the most modest of systems. In the limit

of a complete basis set, the computational costs formally scale exponentially with system

size [236]. A second very important drawback consists of the method not being size-consistent:

When truncating the expansion in Equation (2.146), this results in the formal consequence

that the energy of N non-interacting atoms does not equal to N times the energy of a single

atom, thus making CI a progressively less accurate method with increasing system size [244].

A different approach with a similar Ansatz is given by the coupled-cluster (CC) method [245–

247] that is not based on the variational principle but guarantees size-consistency [126].

Defining the excitation operator T̂ as

T̂ = T̂1 + T̂2 + T̂3 + . . .+ T̂N , (2.148)

where N denotes the number of electrons, and the n-th excitation operator Tn acts on the

wavefunction Slater determinant ΨHF
e obtained from Hartree-Fock theory by creating all

possible n-times excited Slater determinants, i.e.

T̂1Ψ
HF
e =

occupied∑
i

virtual∑
α

tαi Ψ
α
i ,

T̂2Ψ
HF
e =

occupied∑
i< j

virtual∑
α<β

tα,β
i , j Ψ

α,β
i , j ,

...

(2.149)
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where the to-be-determined linear coefficients t ······ are commonly called “excitation” ampli-

tudes, Equation (2.146) can be expressed as

ΨCI
e = (1̂+ T̂ )ΨHF

e

= (1̂+ T̂1 ++T̂2 + . . .)ΨHF
e .

(2.150)

Within the description of the CC method however, the wavefunction Ansatz is given by

ΨCC
e = eT̂ ΨHF

e

=
(
1̂+ T̂ + 1

2
T̂ 2 + 1

3!
T̂ 3 + . . .

)
ΨHF

e

=
∞∑

k=0

1

k !
T̂ kΨHF

e .

(2.151)

Using this Ansatz and assuming orthonormality of ΨCC
e , the total energy of the system is then

estimated as [126]

E [ΨCC
e ] = E CC

e =<ΨCC
e |Ĥe|ΨCC

e >=<ΨHF
e |e−T̂ ĤeeT̂ |ΨHF

e >
!=<ΨHF

e |ĤeeT̂ |ΨHF
e > .

(2.152)

Denoting occupied spin-orbitals obtained from Hartree-Fock theory with ψi , ψ j , etc. and un-

occupied (virtual) spin-orbitals with ψα, ψβ, etc., expanding Equation (2.152) then yields [126]

E CC
e = E HF

e +
occupied∑

i< j

virtual∑
α<β

(
tα,β

i , j + tαi tβj − tβi tαj

)(∫∫ψ∗
i (�r )ψ∗

j (�r ′)ψα(�r )ψβ(�r ′)

|�r −�r ′| d�r d�r ′

−
∫∫ψ∗

i (�r )ψ∗
j (�r ′)ψβ(�r )ψα(�r ′)

|�r −�r ′| d�r d�r ′
)

,

(2.153)

meaning the CC correlation energy is completely determined by the Singles amplitudes tαi ,

Doubles amplitudes tα,β
i , j , and the two-electron integrals using spin-orbitals from Hartree-Fock

theory. The Singles and Doubles amplitudes are determined by expanding the entities

0 =<Ψα
i |e−T̂ ĤeeT̂ |ΨHF

e >,

0 =<Ψ
α,β
i , j |e−T̂ ĤeeT̂ |ΨHF

e >,

0 =<Ψ
α,β,γ
i , j ,k |e−T̂ ĤeeT̂ |ΨHF

e >,

...

(2.154)

leading to a set of coupled non-linear equations for the Singles and Doubles amplitudes that

are required to be solved iteratively [30]. While the approach is formally exact, in practice

the excitation operator T̂ needs to be truncated at some excitation level in order to make

the calculation even feasible. Using the Singles (S) and Doubles (D) excitation levels, i.e.
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T̂ = T̂1 + T̂2, results in the CCSD model [248] that formally scales with O (N 6) [123]. The

operator eT̂ in Equation (2.151) is then given by

eT̂ = eT̂1+T̂2 = 1̂+ T̂1 + (T̂2 + 1

2
T̂ 2

1 )+ (T̂1T̂2 + 1

6
T̂ 3

1 )+ (
1

2
T̂ 2

2 + 1

2
T̂ 2

1 T̂2 + 1

24
T̂ 4

1 )+ . . . . (2.155)

In contrast to Equation (2.150) for the CI Ansatz wavefunction, Equation (2.155) also contains

higher excitation terms beyond the truncation level that are made up of so-called “discon-

nected” excitations, thus effectively making the CC method size-consistent. For example,

although “connected” quadruple excitations (T̂4) are not present in Equation (2.155) due to

the truncation, quadruple excitations can still be made up of two “disconnected” double

excitations (T̂ 2
2 ), four “disconnected” single excitations (T̂ 4

1 ), or a mixture of “disconnected”

single and double excitations (T̂ 2
1 T̂2). Using the Singles (S), Doubles (D), and Triples (T) exci-

tation levels, i.e. T̂ = T̂1 + T̂2 + T̂3, results in the CCSDT model [249] that formally scales with

O (N 8), resulting in very demanding computational costs even for modest systems. When

treating Triples (T) excitation levels using Møller-Plesset perturbation theory, the resulting

CCSD(T) [250] approach then formally scales with O (N 7) and commonly provides excellent

accuracy for non-covalent complexes [251, 252]. Hence, CCSD(T) is sometimes referred to as

the “gold standard of quantum chemistry”.

Still, in recent years considerable effort has been made in order to reduce computational costs

of CCSD(T) calculations without having to sacrifice accuracy. The domain-based local pair

natural orbital (DLPNO-)CCSD(T) [253, 254] approximation aims to fully exploit locality of the

electron correlation and shows a near-linear scaling behavior with system size N . In short,

the correlation energy of the system is expressed as a sum over the correlation energies of

pairs (i j ) of electrons. In case the corresponding canonical orbitals (i ) and ( j ) in the Slater

determinant are localized, the associated pair correlation energy εi j falls off quickly and

essentially non-contributing separated electron pairs are being characterized using a fast-

to-compute multipole estimate screening mechanism. Furthermore, “weakly-contributing”

electron pairs that have not been screened out but lay beyond some cut-off value are removed

from being treated exactly. This cut-off is evaluated from estimating the pair correlation energy

from MP2 calculations. Since the conventional MP2 method formally scales with O (N 5) (see

Subsection 2.3.7), a “semi-local” approximation is applied based on the local MP2 method

with use of density fitting [255]. The virtual space is thereby expanded in so-called projected

atomic orbitals (PAOs) [256] that are locally associated with the “parent” atomic domain. The

“weakly-contributing” electron pairs beyond the cut-off are treated using the “semi-local”

MP2 approximation that formally scales linearly in computational costs, thereby effectively

making up a large amount of error introduced due to the truncation scheme. When laying out

the evaluations for the “strongly-contributing” electron pairs, one generally wishes to limit

excitation amplitudes to only those associated with occupied orbitals (i ) and ( j ) and the local

domain associated with the electron pair (i j ). This is achieved by making use of approximate

natural orbitals of a given electron pair, so-called pair natural orbitals (PNOs) [257–259], that

are created from an approximate pair density matrix evaluated using the previously mentioned
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“semi-local” MP2 approximation. PNOs with a low occupation number beyond a cut-off value

are neglected. While PNOs are locally associated with the occupied orbitals (i ) and ( j ), they are

also by construction “delocally expanded” into the virtual space according to the correlation

of the electron pair (i j ). The PNOs are then expanded in terms of the local PAOs which allows

for efficiently restricting the evaluation of the excitation amplitudes to newly defined local

domains associated with the electron pair (i j ), which is controlled by a third cut-off parameter.

Finally, within the description of treating the Triples (T) excitation levels in a perturbative

manner, so-called “triples-natural orbitals” (TNOs) are created for each considered electron

triple (i j k). By construction, the TNOs thereby span the significant PNO subspace of the

three electron pairs (i j ), ( j k), and (i k), for which at least one of these must correspond to a

“weakly-contributing” electron pair in order for the electron triple (i j k) to be considered [254].

2.3.9 Computer Simulations and Practical Considerations

Computer simulations are carried out using different software depending on the theoretical

method being applied. All FF calculations are done using the TINKER molecular modeling

package [260]. The applied version 7.1.2 contains out-of-the-box parameter files available

for all force fields described in Subsection 2.3.1. Single-point energy evaluations for the semi-

empirical quantum-chemistry methods mentioned in Subsection 2.3.4 are carried out using

the MOPAC2016 [261] semi-empirical quantum chemistry program. In contrast to the other

methods for which energy calculations refer to total energies on the potential-energy surface,

semi-empirical energy evaluations yield heats of formation as the respective semi-empirical

methods are parameterized on experimental heats of formation [262]. The heat of formation is

thereby defined as the sum of the electronic energy, the nuclear-nuclear repulsion energy, the

ionization energy for the valence electrons, the total heat of atomization of all the atoms in the

system, and – if available – the energy from hydrogen bonds and dispersion correction [263].

Evaluations that involve different DFAs (see Subsection 2.3.5) are almost entirely done using

the all-electron/full-potential electronic structure code package FHI-aims [264,182, 265]. The

algorithms for ab initio molecular simulations within FHI-aims are based on basis sets that

are numerically tabulated and centered at each atom composing the system being studied,

hence them being labeled as numerically tabulated atom-centered orbitals (NAOs). The basis

functions are thereby organized in so-called tiers, i.e. levels of basis function groups that

arose from a basis optimization procedure such that their ordering reflects the amount of

improvement on the element-dependent absolute convergence levels achieved. For example,

for light elements, e.g. carbon or oxygen, ���� � basis sets guarantee accurate geometry

(pre-)relaxations, and ���� � basis sets are required to guarantee meV-converged1 energy

differences, while for heavier elements such convergence levels are often already yielded

using ���� � basis sets. Becaus of this, a hierarchy of predefined settings called ���	�, ���	�,

and ��
�������	� is provided for all elements. While ���	� settings are generally used for

geometry (pre-)relaxations, ���	� settings are commonly used for production runs as they

11meV ≈ 0.023kcal/mol
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usually already guarantee meV-converged energy differences. Access to all elements from

light to heavy is ensured by making use of a scalar-relativistic treatment in applying the scaled

zeroth order regular approximation (ZORA) [264, 266] scheme. Finally, FHI-aims is open to

be used with different basis set families. For example, numerically tabulated atom-centered

orbital n-zeta basis sets with valence-correlation consistency, labeled NAO-VCC-nZ [267], have

been specifically constructed to be used for methods that invoke the continuum of unoccupied

orbitals explicitly, e.g. MP2 (see Subsection 2.3.7) or double hybrid DFAs (see Subsection 2.3.5).

Constructed analogous to Dunning’s correlation-consistent polarized valence-only basis sets

(cc-pVnZ) [268, 269], these basis sets utilize the more flexible shape of NAOs, hence both

the behavior near the nucleus as well as that for the tails of orbitals far away from atoms

is intended to be much more physical. In particular, Zhang et al. showed that the double

hybrid DFA XYG3 provides best results in combination with the triple-zeta NAO-VCC-3Z basis

set [270].

Calculations for wavefunction-based methods, i.e. coupled-cluster calculations (see Sub-

section 2.3.8) and MP2 (see Subsection 2.3.7), are carried out with the electronic structure

program package ORCA [271] using Ahlrichs’ ���� [200] basis set family. Because heavy ele-

ments like Zn2+ require a relativistic treatment, the ZORA scheme is implemented in ORCA

in an approximate way [272, 273]. As the scalar relativistic treatment requires flexible ba-

sis sets, this in turn means that ORCA automatically provides relativistically recontracted

versions [274] of Ahlrichs’ ���� basis set family, labeled ����	����. In practice however,

wavefunction-based methods come with a severe limiting feature concerning their accuracy,

namely their slow convergence of correlation energy calculations to the complete basis set

(CBS) limit [125, 275]. In order to account for that, extrapolation schemes for systematic con-

vergent basis set families, e.g. basis set families by Dunning et al. or Ahlrichs et al. (����), may

be applied. For example, Hartree-Fock energies may be extrapolated using a form proposed

by Karton and Martin [276]:

E HF
n = E HF

CBS + Ae−α
�

n , (2.156)

with A, α, and the CBS-extrapolated energy E HF
CBS being parameters to be determined from a

least-squares fitting algorithm. The cardinal number n thereby denotes the respective basis

set hierarchy, i.e. n = 2 for double-zeta basis sets, n = 3 for triple-zeta basis sets, etc. A similar

extrapolation scheme may also be laid out for the correlation energies following the form

proposed by Truhlar [275]:

E corr
n = E corr

CBS +Bn−β, (2.157)

again with B , β, and the CBS-extrapolated energy E corr
CBS being parameters to be determined

from a least-squares fitting algorithm as before. Assuming β= 3 yields an effective two-point

extrapolation scheme as originally proposed by Halkier et al. [277].

Another related issue for wavefunction-based methods that comes with slow-converging

correlation contributions due to the usage of finite basis sets is given by the basis set superpo-

sition error (BSSE) [203, 204]: When atoms are bonded together in a molecule, the usage of

finite basis sets then leads to artificially more stable energies because of their availability to
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overlapping basis functions belonging to other nearby components beyond their own basis

functions. When for example comparing relative energies between different conformers, this

may lead to large energetic descrepancies depending on the specific structures in place. To

account for that and prior to performing CBS extrapolation as described above, one may

subject the Hartree-Fock and correlation energies to a counterpoise correction as proposed

by Boys and Bernardi [278]: Assuming rigid conformers, the BSSE between two components

(labeled Comp1 and Comp2) is estimated as

EBSSE = EBSSE(Comp1)+EBSSE(Comp2),

with EBSSE(Comp1) = E Comp1+Comp2(Comp1)−E Comp1(Comp1),

and EBSSE(Comp2) = E Comp1+Comp2(Comp2)−E Comp2(Comp2),

(2.158)

where E Comp1+Comp2(Comp1) represents the energy of component 1 evaluated in the union of

the basis functions associated with component 1 and component 2, E Comp1(Comp1) repre-

sents the energy of component 1 evaluated in the basis functions associated with component

1, etc. The individual BSSEs are then to be subtracted from the Hartree-Fock and correlation

energy, respectively.

2.4 Conformational Sampling and Basin-Hopping

Subsections 2.3.1 through 2.3.8 provided an overview on how to evaluate single-point energies

on the PES using vastly different theoretical models and levels of theory. As motivated in

Section 2.2, the description of the free energy landscape also requires an accurate sampling

of the PES – at least near the global minimum – from which following quantities like free

energies, vibrational modes, etc. are derived. While the latter will be laid out in Section 2.5, this

subsection focusses on sampling approaches for systematically surveying the PES. Ultimately,

the interest lies in characterizing the global minimum region (and eventual regions of “kinetic

traps”) as this is the region where the peptide is assumed its native structure with minimal free

energy and entropy, following Anfinsen’s “thermodynamic hypothesis” as well as the “folding

funnel hypothesis” explained in Section 2.2. Within this scenario, being able to predict the

peptide’s three-dimensional structure of the native state given only the amino acid sequence

then would allow for a rigorous comparison with experiment, an important factor in peptide

structure elucidation that will be discussed in detail in Chapter 3 of this work. In any case,

finding the global minimum within the context of peptide structure prediction is a global opti-

mization problem for which a large variety of approaches have been suggested [69, 279, 280].

Examples include methods based on Monte Carlo simulations, e.g. simulated annealing [281],

multi-canonical Monte Carlo sampling [282], entropic sampling [283], replica exchange Monte

Carlo [284], or parallel hyperbolic sampling [285], methods based on molecular dynamics,

e.g. replica exchange molecular dynamics [286] or accelerated molecular dynamics [287],

methods following a genetic algorithm, e.g. implemented in FAFOOM (flexible algorithm for

optimization of molecules) [288], and conformational space annealing [289]. One approach

that is being extensively made use of in Chapter 3 of this work is called basin-hopping and
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Figure 2.9 – (a) Schematic illustration of the effect of transforming the PES to plateaux of
energies of local minima obtained by the basin-hopping approach. The solid and dashed lines
represent the “true” potential V and the transformed potential Ṽ , respectively. (b) Schematic
illustration of the basin-hopping approach within the “conformational scanning” algorithm.

was originally formulated as a Monte Carlo-based method [290, 291], although a simplified

version being labeled “conformational scanning” [292] is being used here. With �X denoting

all relevant atomic coordinates of the system, the basic idea of this approach then consists

in surveying the complete PES by transforming the “true” energy potential V (�X ) at any given

point �X into the transformed energy potential landscape Ṽ (�X ) that is just the set of nearest

local minima, so-called catchment basins. In other words, a local minimization is applied at

any given point �X , i.e.

Ṽ (�X ) = min
{
V (�X )

}
. (2.159)

The resulting transformed energy potential landscape Ṽ (�X ) then consists of plateaux at the

energies of the local minima, as schematically illustrated in Figure 2.9(a). The associated search

strategy is a simple iterative scheme of hopping between minima (basins) [292]: Starting from

a random conformation, a first local minimization within an energy convergence criterion is

laid out using a truncated Newton method with a preconditioned linear conjugate gradient

solution of Newton’s equations [293]. This first minimum then serves as a seed for an iterative

search procedure. For the corresponding conformer, the torsional space Hessian matrix is

calculated and diagonalized to obtain its eigenvectors �Xω. Along these eigenvectors, the

system is moved out of the local minimum in fixed trial steps k�Xω and −k�Xω (k = 1,2, . . . ,65).

At each point k, the conformational energy Ek is calculated. In case of overcoming an energy

barrier, a situation defined by the inequalities Ek−1 > Ek and Ek−1 > Ek+1, a local minimization

is performed, as schematically illustrated in Figure 2.9(b). If the newly obtained minimum is

within a predefined energy threshold and differs from previously obtained minima ensured

by a simple energy comparison, it is added to the list of minima. The procedure is then

repeated for every newly obtained minimum until no further minima are found, meaning
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the whole conformational space of energy minimum plateaux has been grasped. Obviously,

this approach is only feasible for rather small systems as the conformational space increases

exponentially with system size [294].

57



Chapter 2. Theoretical and Experimental Background, Methods, and Techniques

2.5 Description of the Free Energy Surface and Comparison to Ex-

periment

After having characterized various methods for evaluating energies on the PES in Section 2.3

using vastly different theoretical models and levels of theory, the description of the free energy

surface is tackled in this section. After all, the energy on the PES can formally be derived from

a fixed structure only, e.g. the global minimum on the PES, while deriving quantities like free

energies or vibrational modes requires the description of molecules in motion, e.g. vibration

in harmonic approximation or molecular dynamics. The general concept of free energies has

already been touched on in Section 2.2. As laid out there, the work within this thesis relies on

the Helmholtz free energy for which free energy contributions are accounted for from internal

degrees of freedom, consisting of vibration and rotation, in addition to the potential energy

on the PES. In particular, the usage of the Helmholtz free energy for free energy contributions

has been motivated as being beneficial for studies of peptide systems in the gas phase, i.e. in

isolation. Most importantly however, this quantity as well as the thereby derived vibrational

spectra of peptides are of fundamental interest for comparing with experimental data obtained

under certain conditions, i.e. for peptide ion systems in the gas phase at cold temperatures

(10K), as further explained in Subsection 2.5.2.

2.5.1 Infrared Spectra and Free Energy Calculations in Harmonic Approximation

Before deriving expressions for the free energy contributions, it is useful to first get familiar

with the description of molecular vibration in harmonic approximation as the theoretical

background thereof facilitates the understanding and derivation of said expressions within

the framework of quantum statistical mechanics. Within the quantum-mechanical treatment

of peptide systems in the gas phase, the Born-Oppenheimer approximation was introduced

in Subsection 2.3.2: Because electrons move “instantaneously” with respect to the move-

ment of the nuclei, the many-body wavefunction Ψ of the system was approximated as (see

Equation (2.30))

Ψ=ΨnΨe, (2.160)

where Ψe denotes the electronic wavefunction and Ψn denotes the nuclear wavefunction.

Following this approach of separating the movements of nuclei and electrons, it is immediately

clear that vibrations of molecules may be treated by taking into consideration only the move-

ments of the M nuclei on the PES, i.e. described by the potential (compare to Equation (2.32))

VBO(�R1, . . . ,�RM ) = 1

2

M∑
k1 �=k2=1

Zk1 Zk2 e2

|�Rk1 −�Rk2 |
+Ee(�R1, . . . ,�RM ). (2.161)

The first term describes the nucleus-nucleus interaction of the system and the second term de-

notes the electronic energy for a given set of atomic coordinates �R1, . . . ,�RM , that is obtained by

solving the electronic Schrödinger equation (Equation (2.37)) for which a variety of theoretical

models and levels of theory have been discussed in Subsections 2.3.1 through 2.3.8. Ultimately,
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the interest lies in the native structure of the system which is assumed in the (local) minimum

of the PES. For cold peptide systems in the gas phase, vibrations of the molecule may then be

proficiently described in terms of small atomic displacements from the equilibrium structure.

Denoting the atomic positions in equilibrium as �R0
1, . . . ,�R0

M , the Born-Oppenheimer potential

in Equation (2.161) may then be expanded in a Taylor series, i.e.

VBO(�R1, . . . ,�RM ) =VBO(�R0
1, . . . ,�R0

M )+
M∑

k=1

(
∂VBO

∂�Rk

)
�R0

1 ,...,�R0
M

(�Rk −�R0
k )

+1

2

M∑
k1,k2=1

(
∂2VBO

∂�Rk1∂
�Rk2

)
�R0

1 ,...,�R0
M

(�Rk1 −�R0
k1

)(�Rk2 −�R0
k2

)+ . . . .

(2.162)

The first term is just a constant offset of the potential and may always be set to zero for

convenience. The second term vanishes for stationary points on the PES. The harmonic

approximation consists of truncating the expansion at second order and may be justified for

small displacements �Rk −�R0
k (k = 1, . . . , M), i.e.

VBO(�R1, . . . ,�RM ) ≈ 1

2

M∑
k1,k2=1

(
∂2VBO

∂�Rk1∂
�Rk2

)
�R0

1 ,...,�R0
M

(�Rk1 −�R0
k1

)(�Rk2 −�R0
k2

). (2.163)

Within the treatment of molecular vibrations in harmonic approximation, the concept of

normal coordinates plays an important role [295]. It is advantageous to first treat the problem

using classical mechanics as the yielded vibrational frequencies of the harmonic motions

will give rise to quantized energy levels within the quantum mechanical description that –

surprisingly or not – depend on the classical vibrational frequencies [296], as laid out below. It

should be pointed out that within the description of classical mechanics, molecular vibrations

are treated in terms of the coordinates of a moving system of axes that “moves and rotates

with the molecule” just as if the molecule were not undergoing translation or rotating. This

most importantly implies two things: (i) The problem of vibration in molecules may be treated

in very good approximation independently of molecular translation and rotation, and (ii) out

of the 3M degrees of freedom of the system of M atoms only 3M − 6 are independent of

each other because six conditions are required to define such a moving system of axes. A

rigorous description thereof is provided in Reference [297]. Denoting the atomic masses as

Mk (k = 1, . . . , M), the mass-weighted displacement coordinates �qk can be defined as

�qk =
√

Mk (�Rk −�R0
k ), (k = 1, . . . , M). (2.164)

The kinetic energy TBO of the system

TBO = 1

2

M∑
k=1

Mk

(
d(�Rk −�R0

k )

dt

)2

(2.165)
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can then be re-written as

TBO = 1

2

3M∑
i=1

q̇2
i , (2.166)

where the indices i , j , . . . are now used to enumerate coordinates, and q̇i = dqi

dt . Similarly, the

potential energy VBO in Equation (2.163) can be re-written as

VBO = 1

2

3M∑
i , j=1

(
∂2V

∂qi∂q j

)
0

qi q j . (2.167)

Newton’s equations of motion

Mk �̈Rk =−∂VBO

∂�Rk
, k = 1, . . . , M , (2.168)

can be re-written as [297]

q̈i =−
3M∑
j=1

(
∂2VBO

∂qi∂q j

)
0

q j , i = 1, . . . ,3M . (2.169)

This set of 3M second-order linear differential equations may be solved using the Ansatz

qi = Ai cos(ωt +φ), (2.170)

where the amplitude Ai , the frequency ω, and the phase φ are parameters. Substituting

Equation (2.170) into Equation (2.169) yields a set of homogeneous linear algebraic equations,

namely
3M∑
i=1

[(
∂2VBO

∂qi∂q j

)
0

−δi jω
2

]
Ai = 0, j = 1, . . . ,3M . (2.171)

Only a special set of values of ω2 gives non-trivial solutions, namely the one that satisfies the

secular equation

|H−ω2I| = 0, (2.172)

where I denotes the identity matrix and H is the mass-weighted Hessian matrix given by

H =
(
∂2VBO

∂qi∂q j

)
0

=

⎛
⎜⎜⎜⎜⎜⎜⎝

(
∂2VBO
∂q1∂q1

)
0

(
∂2VBO
∂q1∂q2

)
0

. . .
(

∂2VBO
∂q1∂q3M

)
0(

∂2VBO
∂q2∂q1

)
0

(
∂2VBO
∂q2∂q2

)
0

. . .
(

∂2VBO
∂q2∂q3M

)
0

. . . . . . . . . . . .(
∂2VBO

∂q3M∂q1

)
0

(
∂2VBO

∂q3M∂q2

)
0

. . .
(

∂2VBO
∂q3M∂q3M

)
0

⎞
⎟⎟⎟⎟⎟⎟⎠ . (2.173)

Solving the eigenwert problem of Equation (2.172) implies finding the eigenvalues ω2
n and

the corresponding eigenvectors Ai ,n , where the index n = 1, . . . ,3M indicates the amplitudes’

(the Ai ,n ’s) correspondence to a particular eigenvalue ω2
n . The set of homogeneous linear

algebraic equations thereby does not determine the amplitudes Ai ,n uniquely as they depend

on the initial values of the system, i.e. the initial values of the coordinates qi and velocities q̇i .
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Therefore defining

li ,n = Ai ,n√
3M∑

i
(Ai ,n)2

(2.174)

for any amplitudes Ai ,n , allows for expressing

Ai ,n = Knli ,n (2.175)

where the Kn are constants determined by the initial values of the qi and q̇i . The general

solution then reads

qi =
3M∑
n=1

Knli ,n cos(ωn t +φn), i = 1, . . . ,3M . (2.176)

The amplitudes Kn and the phases φn are determined by the initial values of the system, i.e.

the initial values of the coordinates qi and velocities q̇i . Since the system has 3M −6 degrees

of freedom as laid out above, six of the eigenvalues ω2
n must be zero while the other 3M −6 of

the eigenvalues ω2
n must be non-zero and describing vibrational states of the system, meaning

the eigenvectors Ai ,n are the amplitudes of the different coordinates that oscillate with the

same frequency ωn and phase φn . The six independent modes of motion associated with

the six eigenvalues ω2
n that are zero are corresponding to the three translations and the three

rotations of the system. The corresponding sets of li ,n are determined as usual from the set of

homogeneous linear algebraic equations given in Equation (2.171) when setting ω= 0.

Before treating the problem using quantum mechanics, it is very convenient to introduce

normal coordinates Qk (k = 1, . . . ,3M) defined as

Qk =
3M∑
i=1

li ,k qi , k = 1, . . . ,3M , (2.177)

using the li ,k defined in Equation (2.174). Using this particular set of coordinates, the kinetic

energy TBO of the system from Equation (2.166) then reads

TBO = 1

2

3M∑
k=1

Q̇2
k , (2.178)

while the potential energy VBO from Equation (2.167) then reads

VBO = 1

2

3M∑
k=1

ω2
kQ2

k . (2.179)

While the kinetic energy retains its form, the form of the potential energy simplifies tremen-

dously as it no longer contains cross products of different coordinates. Employing the same

arguments as above, one may only consider the 3M −6 degrees of freedom corresponding to
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molecular vibration, i.e.

TBO = 1

2

3M−6∑
k=1

Q̇2
k , VBO = 1

2

3M−6∑
k=1

ω2
kQ2

k . (2.180)

The qualitative arguments of decoupling molecular vibration, rotation, and translation carry

over from classical mechanics to the quantum mechanical description, although a rigorous de-

scription is tedious [297]. The many-body wavefunctionΨ of the system in Born-Oppenheimer

approximation in Equation (2.160) may then further be approximated as

Ψ=ΨeΨn =ΨeΨvΨrΨt, (2.181)

where the nuclear wavefunction Ψn is approximated as being separable in a vibrational part

Ψv, a rotational part Ψr, and a translational part Ψt, all while the electronic wavefunction Ψe

does not contribute to the description as laid out in the beginning of this Subsection. Hence

within this approximation, the nuclear vibrational Schrödinger equation immediately follows

from Equation (2.180):

−1

2

3M−6∑
k=1

∂Ψv

∂Q2
k

+ 1

2

3M−6∑
k=1

ω2
kQ2

kΨv = EvΨv. (2.182)

Having used normal coordinates greatly simplifies the problem as the solution is separable in

its normal coordinates. In other words, using the Ansatz

Ψv =Ψv(Q1)Ψv(Q2) · · ·Ψv(Q3M ) (2.183)

yields 3M −6 total differential equations in one variable, the normal coordinate Qk , i.e.

−1

2

∂Ψv(Qk )

∂Q2
k

+ 1

2
ω2

kQ2
kΨv(Qk ) = Ev(k)Ψv(Qk ), k = 1, . . . ,3M −6, (2.184)

where the energy Ev is given by the sum

Ev = Ev(1)+Ev(2)+ . . .+Ev(3M −6). (2.185)

Equation (2.184) is the wave equation of the linear harmonic oscillator for which the solution

is well-known [298, 299]. The energy of a linear harmonic oscillator is given by2

Ev(k) = �ωk (nk +
1

2
), nk = 0,1,2, . . . , (2.186)

where the nk denote quantum numbers. Note that ωk is the classical frequency of the system

associated with the normal coordinate Qk . The energy Ev of the set of 3M−6 coupled quantum

2Here, � has been written explicitly.
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harmonic oscillators is thus given by

Ev =
3M−6∑

k=1
�ωk (nk +

1

2
). (2.187)

The ground level for which all quantum numbers are zero, i.e. n1 = n2 = . . . = n3M−6 = 0, gives

the zero-point energy (ZPE) of the system:

E ZPE
v = 1

2

3M−6∑
k=1

�ωk . (2.188)

The levels for which one quantum number equals one (nk̃ = 1) and all other quantum numbers

are zero (nk = 0 if k �= k̃) are called the fundamental levels. The levels for which one quantum

number is larger than one (nk̃ > 1) and all other quantum numbers are zero (nk = 0 if k �= k̃) are

called the overtone levels. The levels for which at least two quantum numbers have non-zero

values are called the combination levels. The vibrational energy levels may be excited or

de-excited by absorbing or emitting photons. Transition between levels takes only place if the

energy of the photon matches the energy difference between the levels. For molecules, the

absorption or emission spectrum arising from vibrational motion is mostly in the infrared

(IR) region, i.e. the region of wave numbers from about 200 . . . 4000cm−1. Thus, absorption

experiments that probe vibrational motion of molecules by passing light from a suitable source

through a chamber containing the molecules to be studied are simply called IR spectroscopy

experiments. The description of such an experiment that will be made use of in Chapter 3 of

this thesis is provided in Subsection 2.5.2. From Equation (2.187) it is evidently clear that a

transition from the ground level to a fundamental level will have the frequency ωk̃ that is just

the classical frequency of the k̃th normal mode. These so-called fundamental frequencies

are commonly the most important ones in IR spectra because the ground level is usually the

most populated one. The intensity of a spectral line is determined by the transition probability

between the two vibrational levels. For estimation purposes, it is often justified to treat the

interaction of the dipole moment of the molecule with the external electromagnetic field as a

small perturbation to the system. Using Fermi’s golden rule [300, 301], it is found that the IR

intensity IIR is governed by the absolute square of the transition dipole moment (�μ)n,n′ , i.e.

I IR ∼ ∣∣(�μ)n,ñ
∣∣2 . (2.189)

The two quantum numbers n and ñ thereby denote the two vibrational levels between which

the transition takes place. Using the quantum numbers nk , k = 1, . . . ,3M −6, associated with

the 3M −6 quantum harmonic oscillators in Equation (2.187), they are given by

n = n1 +n2 + . . .+n3M−6

and ñ = ñ1 + ñ2 + . . .+ ñ3M−6.
(2.190)
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The transition dipole moment in Equation (2.189) is given by

(�μ)n,ñ =
∫

(Ψ∗
v )n�μ (Ψv)ñ dΩv, (2.191)

where (Ψv)n and (Ψv)ñ denote the vibrational wavefunctions (see Equation (2.183)) corre-

sponding to the vibrational levels denoted by the quantum numbers n and ñ, respectively.

The integration is over the whole configuration space associated with the vibrations described

by the normal coordinates Qk , k = 1, . . . ,3M −6, for which dΩv denotes an infinitesimal vol-

ume element. Assuming the external electromagnetic field as a small perturbation to the

system, the dipole moment�μ may then be expanded in a Taylor series in terms of the normal

coordinates Qk , i.e.

�μ=�μ0 +
3M−6∑

k=1

(
∂�μ

∂Qk

)
0

Qk + . . . . (2.192)

The “electrical linear approximation” now consists in truncating the expansion at first order.

Together with the “mechanical harmonic approximation” in Equation (2.163), one commonly

denotes the approach as “double harmonic approximation” [302, 303]. The transition dipole

moment in Equation (2.191) is then given by

(�μ)n,ñ =�μ0

∫
(Ψ∗

v )n(Ψv)ñ dΩv +
3M−6∑

k=1

(
∂�μ

∂Qk

)
0

∫
(Ψ∗

v )n Qk (Ψv)ñ dΩv. (2.193)

The first term considers the permanent dipole moment �μ0 of the molecule and vanishes

unless n = ñ due to the orthonormality of the vibrational wavefunctions. In other words, it

does not effect the intensities of the vibrational spectrum. It can be shown that the second

term does not vanish only if n = ñ ±1 such that nk̃ = ñk̃ ±1 for a specific normal mode k̃ and

all other normal modes have nk = ñk (k �= k̃) [297]. This obviously concerns fundamental

frequencies ωk̃ for which a change in the electric dipole moment of the molecule along the

kth normal mode is caused, i.e. for which
(

∂�μ
∂Qk̃

)
0
�= 0. Only when going beyond the double

harmonic approximation, overtone and combination transitions may be expressed as well.

Using Equation (2.189) and Equation (2.193), the IR intensity I IR
k of the spectral line associated

with the fundamental frequency ωk in double harmonic approximation is thus governed by

the absolute square of the change in the electric dipole moment of the molecule along the kth

normal mode, i.e.

I IR
k ∼

∣∣∣∣
(
∂�μ

∂Qk

)
0

∣∣∣∣2 . (2.194)

In order to calculate the proportionality constant, one needs to rely on first-order time-

dependent perturbation theory [304]. One yields

I IR
k = NAπ

3c

∣∣∣∣
(
∂�μ

∂Qk

)
0

∣∣∣∣2 , (2.195)

where NA denotes the Avogadro constant and c is the speed of light in vacuum.
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After having laid out the theoretical background, evaluating IR spectra in double harmonic

approximation within the framework of DFT – here using the electronic structure code package

FHI-aims – provides no further difficulty when ensuring a good estimate of the mass-weighted

Hessian matrix ∂2VBO
∂qi∂q j

given in Equation (2.173). Within the framework of DFT, the Born-

Oppenheimer potential VBO in Equation (2.161) is expressed as (see Equations (2.32), (2.82),

and (2.88))

VBO = E DFT
total =

1

2

M∑
k1 �=k2=1

Zk1 Zk2 e2

|�Rk1 −�Rk2 |
+ T̃ [ρ]+Eext[ρ]+EC[ρ]+Exc[ρ], (2.196)

where the first term denotes the internuclear repulsion, EC[ρ] is the classical Coulomb energy

of the electron density ρ, T̃ [ρ] is the Kohn-Sham kinetic energy, Eext[ρ] is the external potential

energy, and Exc[ρ] is the xc energy functional. Calculation of mass-weighted atomic forces �Fk ,

k = 1, . . . , M , i.e.

�Fk =−∂E DFT
total

∂�qk
, (2.197)

is thus straightforward but tedious, refer to Section 4.7 of Reference [264] for detailed de-

scription within FHI-aims. Making use of a small finite displacements approach [305], the

mass-weighted Hessian matrix in Equation (2.173) is than estimated as

∂2VBO

∂qi∂q j
≈ Fi (q1, . . . , q j +Δ(k), . . . , q3M )−Fi (q1, . . . , q j −Δ(k), . . . , q3M )

2Δ(k)
, i , j = 1, . . . ,3M ,

(2.198)

where the indices i , j have been used again to enumerate atomic coordinates. In other

words, each atom k is displaced in three spatial directions by a small finite displacement

Δ(k) =√
Mkδ, the forces are calculated at each displacement, and the mass-weighted Hessian

matrix is estimated accordingly. Displacement values of δ= 10−3 Å . . . 10−2 Å have been shown

to give reliable results [306]. This approach requires 6M +1 single-point energy calculations

including force evaluations, meaning computational costs should be taken into consideration.

Similarly, the change in the electric dipole moment ∂�μ
∂qi

needed for evaluating the IR intensity

in Equation (2.195), is estimated as

∂�μ

∂qi
≈ �μ(q1, . . . , qi +Δ(k), . . . , q3M )−�μ(q1, . . . , qi −Δ(k), . . . , q3M )

2Δ(k)
, i = 1, . . . ,3M . (2.199)

For any given set of (mass-weighted) atomic coordinates, the dipole moment�μ of the molecule

is calculated as [307]

�μ=
M∑

k=1
Zk�Rk +

∫
ρ(�r )�r d�r , (2.200)

where the Zk denote the net nuclear charges and the �Rk are the atomic positions. The second

term is just the first moment of the electronic density. Although the dipole moment�μ of the

molecule depends on the choice of the origin of the coordinate system (except for neutral

molecules), the same does not hold true for the dipole moment derivatives that enter the IR
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intensity calculation in Equation (2.195).

Calculating free energy contributions using the concept of the Helmholtz free energy now

provides no further difficulty. Following the decoupling Ansatz in Equation (2.181), the energy

of the system is approximated as being separable into electronic, translational, vibrational,

and rotational contributions. In other words, the Helmholtz free energy F per molecule is

given by
F = Ee+Fint,

with Fint = Ftrans +Frot +Fvib,
(2.201)

where the electronic energy Ee is obtained by solving the electronic Schrödinger equation

(Equation (2.37)) for which a variety of theoretical models and levels of theory have been

discussed in Subsections 2.3.1 through 2.3.8. Fint denotes the free energy contribution due

to the internal degrees of freedom, consisting of translation, vibration, and rotation. The

translational part of the free energy Ftrans captures the impact of the pressure in a gas of

the molecule [308]. However, as the goal of this work is to study peptide systems in the gas

phase, i.e. in isolation, both the experiment described in Subsection 2.5.2 as well as the

theoretical simulations are essentially done at zero pressure, hence justifying the neglection

of the translational contribution to the Helmholtz free energy. Furthermore, throughout this

work we are exclusively treating relative energies, i.e. comparing energy differences between

different conformers (usually with respect to the global minimum) of the same system. Since

the translational contributions only depend on the total molecular mass [126, 309], they

will thus always cancel. Hence, the internal free energy Fint can be described in terms of

its vibrational and rotational contributions only. As already discussed above, one thereby

assumes neglection of any rotational-vibrational coupling. In other words, the rotation of

the molecule is assumed to occur at fixed geometry, giving rise to the so-called rigid-rotor

approximation. Within the framework of quantum statistical mechanics, the Helmholtz free

energy F is formally defined by [310, 311]

F =−kBT ln Z , (2.202)

where kB denotes the Boltzmann constant, T is the temperature, and Z denotes the canonical

partition function that is defined as

Z =∑
i

e−εi /kBT , (2.203)

where the sum is over all possible quantum energy states εi of the system. For a rigid rotor, i.e.

a rigid rotating polyatomic molecule, the corresponding canonical partition function Zrot is

given by [312]

Zrot =
�
π

(
2kBT

�2

)3/2√
I1I2I3, (2.204)

where I1, I2, and I3 denote the three different principal moments of inertia. The rotational
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Helmholtz free energy Frot is thus given by

Frot =−kBT ln

[
�
π

(
2kBT

�2

)3/2√
I1I2I3

]
. (2.205)

Treating the vibrational contributions in harmonic approximation is straightforward as the

possible vibrational quantum energy states of the system of a set of 3M −6 coupled quantum

harmonic oscillators are known from Equation (2.187). The corresponding canonical partition

function Zvib is thus given by

Zvib =
3M−6∏

k=1

∞∑
nk=0

e
− �ωk

kBT (nk+ 1
2 ) =

3M−6∏
k=1

e
− �ωk

2kBT

1−e
− �ωk

kBT

, (2.206)

where the ωk again denote the classical normal frequencies of the system. Inserting Equa-

tion (2.206) into Equation (2.202) yields

Fvib =
3M−6∑

k=1

[
�ωk

2
+kBT ln

(
1−e

− �ωk
kBT

)]
. (2.207)

For T = 0, the system exists in its ground state and the internal Helmholtz free energy Fint

gives the zero-point energy (ZPE) of the system, i.e. Fint = 1
2

∑3M−6
k=1 �ωk , as already derived in

Equation (2.188).

2.5.2 Experimental Setup

The comparison of calculated vibrational spectra derived from molecular simulations as

described in the previous subsection with experimentally observed IR spectra helps to char-

acterize structural motifs of peptides and allows for structure elucidation. One one hand,

theoretical predictions help to interpret experimentally obtained spectra. On the other hand,

a rigorous experiment-theory comparison allows for the assessment of the accuracy and

predictive power of simulation approaches. A detailed description of the experimental setup

that will be referred to extensively in Chapter 3 of this thesis is provided in Reference [313] and

will be briefly summarized in the following.

The machine used for performing spectroscopic studies of peptide systems in the gas phase is

a cold-ion spectroscopy instrument for which a schematic illustration is shown in Figure 2.10.

It combines a nano-electrospray ion source with a cryogenic octopole ion trap (T = 4K)

and allows for performing IR-UV double resonance spectroscopy [315] in order to obtain

conformer-selective vibrational spectra. In brief, positively charged gas-phase peptides are

produced in a continuous fashion by nano-electrospray ionization from a 0.1mM solution

in 50:50 methanol-water. After entering the instrument through a metal-coated borosilicate

capillary, the protonated peptides are focused by an ion funnel. The peptides are pre-trapped

in a hexapole in order to generate ion packets and to match the duty cycle of the experiment. A
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Figure 2.10 – Schematic illustration of the cold-ion spectroscopy instrument. Reproduced
with permission from Reference [314].

quadrupole mass filter selects the mass-to-charge ratio of the peptides of interest, after which

they are deflected 90° using a quadrupole bender. The charged molecules are guided through

an octopole and deflected 90° a second time before passing through a set of decelerating lenses.

Finally, they are injected into the cold octopole ion trap (T = 4K). Here, they are cooled down

to approximately 10K by collisions with cold helium gas of pressure 6 ·10−6 . . . 10−5 mbar that

is pulsed in before their arrival. Infrared (IR) and ultraviolet (UV) beams are focused inside the

trap and used to spectroscopically interrogate the cold molecules. Following UV absorption

of the parent ions, the produced charged fragments are extracted from the trap, deflected

by a third electrostatic bender, and passed through a quadrupole mass filter which selects a

particular mass-to-charge ratio before they are detected by a channeltron electron multiplier.

The electronic signature of the protonated peptides is recorded monitoring the number of

fragments for a particular photofragmentation channel as a function of the UV wavenumber.

Each conformer has a characteristic UV signature, meaning the recorded spectrum is a super-

imposition of lines coming from all conformations of the parent peptide that may be present in

the trap. Fixing the wavenumber of the UV laser and scanning the wavenumber of an infrared

laser pulse that arrives 200ns earlier allows for acquiring a vibrational spectrum of whatever

conformer is resonant with the UV laser. When the IR pulse is in resonance with a vibrational

transition of the ion, part of the population is removed from the ground state, thus leading

to a decrease in UV induced fragmentation. Hence, as the IR wavenumber is scanned, one

obtains a conformer-specific vibrational spectrum. Performing the same procedure on each

line of the electronic spectrum allows for assigning each UV spectral feature to a particular

conformer.
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Results and findings described in this chapter have been published in Reference [316] [Schnei-

der et al. J. Phys. Chem. A, 121, 6838-6844 (2017)] and are being reproduced here.

3.1 Motivation: Prerequisites of Helix Formation in the Gas Phase

Helices are common secondary structural motifs in peptides and proteins. As explained in

Section 2.2, there exist several helix types that can be characterized based on the intramolec-

ular hydrogen bond patterns of the backbone alone, with α-helices and 310-helices being

the most common types [54, 317]. In solution, helix propensity is determined both by in-

tramolecular interactions and protein-solvent interaction. In this work however, the focus lies

on peptide systems in the gas phase as the main goal is to study intramolecular interactions

of peptides in isolation. As laid out in Section 2.2, this is because gas-phase systems offer

the opportunity to study the “undamped” intramolecular interactions that shape peptides,

thereby shedding light on intrinsic structural motif propensities and bonding interactions.

Gas-phase helices have been investigated using ion mobility spectrometry [318–320] and

vibrational spectroscopy [321–328]. The combination of these experimental techniques with

molecular simulations based on DFT allows for structure elucidation, as it helps to interpret

experimentally obtained spectra. Moreover, a rigorous experiment-theory comparison allows

for the assessment of the accuracy and predictive power of simulation approaches [329].

Pioneering ion-mobility experiments in the group of Jarrold [318, 319] examined the role of N-

and C-terminal residues on gas-phase helix formation for the sequences AlanH+, AcLysAlanH+,

and AcAlanLysH+. They concluded that AlanH+ and AcLysAlanH+ adopt globular conforma-

tions in the gas phase independent of the length of the amino-acid chain while AcAlanLysH+

is helical for n > 8 [330]. The identities of these structures were confirmed by theoretical

and experimental vibrational spectroscopy in the work of Rossi et al. [326] and Schubert et

al. [328]. Similar studies focused on peptides of the form AcPheAlanLysH+ with n = 1–5,10,

where phenylalanine (Phe) provides a UV chromophore, which allows for conformer-specific

IR-UV double resonance spectroscopy [322–325], as described in Subsection 2.5.2. In these

experiments, the number of residues necessary to form a helix was found to be six [324, 330],

but much of the hydrogen bonding pattern responsible for the formation of this motif is

already present even with only three residues [325, 331]. In conjunction with computational

vibrational spectroscopy based on DFT [324–326, 332], such spectra allowed for determining

detailed molecular structures and critically examining evidence for helix formation of peptides

in isolation.

The helix-stabilizing factors in polyalanine peptides are illustrated in Figure 3.1 for the spe-

cific case of AcPheAla5LysH+. Work by the groups of Jarrold [318, 319], Rizzo [322–325], and

Blum [328] showed that intramolecular hydrogen bonds play an important role and that the

design concept can even be transferred to non-natural peptides [327]. Hoffmann et al. [333]

could show that deleting a single hydrogen bond had little impact on the overall helix stability.

In addition to their energetic stability, hydrogen bonds are aligned in helices, and the resulting
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Figure 3.1 – Illustration of helix-stabilizing factors for peptides in the gas phase for the specific
case of AcPheAla5LysH+.
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Figure 3.2 – Structural formulas of (a) AcPheAla5LysH+ and (b) AcPheAla6 +Na+.

macro-dipole favorably interacts with the positive charge of the protonated lysine (Lys) side-

chain at the C-terminus. Moreover, the capping of the “dangling” carbonyl groups near the

C-terminus by the Lys side-chain provides additional stability.

In order to obtain a more complete picture, the importance of the charge fixed at the C-

terminus is investigated. To that end, the focus lies on the well-studied system [324, 332]

of AcPheAla5LysH+ which is compared to AcPheAla6 +Na+. The structural formulas of both

systems are provided in Figure 3.2. In the latter, Lys is formally replaced by alanine (Ala) and a

sodium cation (Na+) in order to introduce a freely movable positive charge. The resulting rich

possibilities for electrostatic interaction can locally disrupt hydrogen-bonding networks and

induce unconventional backbone conformations [206, 334–336]. Consequently, the cation-
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binding site, and hence the conformation as a whole, is not a priori obvious. Ion mobility

studies on metallated peptides, e.g. sodiated species of Alan +M+ [337], suggest that the

cation plays the same role as the charged Lys side-chain in AcAlanLysH+ for peptides with

n > 12. For shorter peptides, calculated collisional cross sections (CCS) for globular and helical

structures are both in agreement with the experimental CCS, preventing a definitive structural

assignment. In this work, IR-UV double resonance spectroscopy and theory are coupled in

order to unravel the structure of the system of AcPheAla6 +Na+ with the aim of understanding

whether a freely movable cation is sufficient to stabilize helix formation or if the C-terminal

localization is a prerequisite for that.

3.2 Experimental Setup

The experimental setup has already been described in Subsection 2.5.2. In brief, a nano-

electrospray ion source is combined with a cooled ion trap for spectroscopic studies of gas-

phase ions. Conformer-selective IR spectra are recorded by applying IR-UV double resonance.

A measurement is performed by fixing the wavenumber of the UV laser to a line in the elec-

tronic spectrum and scanning the wavenumber of an infrared laser. When the IR pulse is in

resonance with a vibrational transition of the ion, part of the population is removed from the

ground state, leading to a decrease in UV-induced fragmentation. Scanning the IR wavenum-

ber, one obtains a conformer-specific vibrational spectrum. Performing the same experiment

on each line of the electronic spectrum allows for assignment of each UV spectral feature to a

particular conformer.

3.3 Computational Methods

The applied conformational search algorithm is similar to the one used by Rossi et al. [332].

First, a global conformational search is performed on the force field (FF) level (refer to Sub-

section 2.3.1 for details) using the two empirical fixed point charge models of CHARMM22

and OPLS-AA, separately. To that end, the basin-hopping approach described in Section 2.4

is applied using the ���� program of the TINKER molecular modeling package [260]. To be

detailed, all torsional modes are taken into consideration and default search parameters are

used, i.e. an energy threshold for local minima of 100kcal/mol and a convergence criterion

for local geometry optimizations of 0.0001kcal/mol ·Å. For the system of AcPheAla5LysH+,

603280 conformers are found using CHARMM22, and 643938 conformers are found using

OPLS-AA. For the system of AcPheAla6+Na+, 626829 conformers are found using CHARMM22,

and 635120 conformers are found using OPLS-AA. All subsequent DFT calculations are done

using the electronic structure code package FHI-aims for which computational details have

been described in Subsection 2.3.9. Single-point energy calculations on the PBE+vdWTS level

of DFA (refer to Subsections 2.3.5 and 2.3.6 for details) using ���� 	 basis sets and 
����

settings are performed for all these FF conformers. For the two FFs individually, the 500 con-

formers with the lowest FF energy and the 500 conformers with the lowest DFT energy, i.e. a
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grand total of 2000 conformers, are selected. The 2000 selected conformers are then geometry

optimized at the PBE+vdWTS level using ���� � basis sets and ����� settings. Relaxation is

accomplished using a trust radius method version of the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) optimization algorithm [338]. After convergence, a clustering scheme is applied in

order to rule out duplicates. To be precise, root-mean-square deviations (RMSD) of atomic

positions between any two conformers are calculated using OpenBabel [339]. Hierarchical

clustering is then achieved by applying the Unweighted Pair Group Method with Arithmetic

Mean (UPGMA) [340] method implemented in Python’s 	
��� [341] library. Following that,

further relaxation is accomplished at the PBE+vdWTS level using ���� 
 basis sets and �����

settings. After clustering, this results in 324 conformers for AcPheAla5LysH+ and 159 con-

formers for AcPheAla6 +Na+ in the low-energy region, i.e. within 6kcal/mol from the global

minimum. These conformers are then again locally refined on the PBE0+MBD level using

���� � basis sets and ����� settings. After clustering, further geometry relaxation on the

PBE0+MBD level using ���� 
 basis sets and ����� settings results in 52 conformers for

AcPheAla5LysH+ and 23 conformers for AcPheAla6 +Na+ in the low-energy region, i.e. within

3kcal/mol from the global minimum.

3.4 Results and Discussion

3.4.1 AcPheAla5LysH+

For the present comparative study, a firm assignment of measured conformer-selective IR

spectra to their calculated counterparts is of paramount importance. To that end, the peptide

AcPheAla5LysH+ is being re-assessed first, thereby demonstrating that the applied conforma-

tional search technique completely grasps the conformational space energetically close to the

global minimum, and that the applied level of theory is capable of reproducing the energetics

as well as the vibrational properties of the conformers. For this, the results are compared to

previous work on AcPheAla5LysH+ by Stearns et al. [324], where the 45 lowest-energy struc-

tures were selected out of a set of 1,000 force-field minima and subsequently optimized using

DFA with a hybrid xc functional. Even though four structures were successfully assigned to

the experimental spectra, the question whether the search was complete and the whether

these conformers are located in the global minimum region remained open. This did, in part,

motivate an exhaustive conformational search by Rossi et al. [332], in which 7 conformers were

found within 1kcal/mol of the global minimum on the PES. The authors were able to assign

the experimentally observed structures to the global minima populated at low temperature

by using the hybrid xc functional PBE0 augmented by the MBD correction and including

zero-point energy corrections. The latter were computed with the GGA functional PBE and

the pair-wise Tkatchenko-Scheffler van der Waals correction (vdWTS), which proved however

unsatisfying for the prediction of vibrational spectra. It was suggested that using a hybrid

xc functional was necessary, which was a natural assumption since this level of theory was

necessary for a correct conformational energy prediction in the first place. Furthermore, it

was assumed that an anharmonic treatment was needed to yield improved spectra.
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Figure 3.3 – Comparison of energy hierarchies of conformers of AcPheAla5LysH+ at the
PBE0+MBD level (���� � basis sets and ����� settings) between the conformational search
applied here and the search performed by Rossi et al. [332]. Two additional conformers are
found in the low-energy region, i.e. within 1kcal/mol from the global minimum. Conformers
with the same energy in both hierarchies correspond to virtually identical structures.

The conformational search strategy has already been laid out in detail in Section 3.3, including

numbers illustrating the exhaustiveness of the search. The fact that two additional conform-

ers are found within 1kcal/mol from the lowest-energy conformer gives confidence in the

conformational search. Figure 3.3 compares the two corresponding hierarchies of the relative

DFT energy ΔE on the PES, i.e. on the PBE0+MBD level using ���� � basis sets and �����

settings. Conformers with the same energy in both hierarchies correspond to virtually identical

structures. In total, nine conformers were found within 1kcal/mol from the global minimum.

Since the experimental measurement takes place on cold ions in the gas phase, the PES

merely allows for a rough estimate about the structures populated at low temperatures. To

confidently assign the experimentally observed structures one needs to rely on the Helmholtz

free energy F at 10K because this is approximately the temperature of the observed ions, as

explained in Subsection 2.5.2. Free energy contributions are accounted for from internal

degrees of freedom, consisting of vibrations and rotations, in addition to the DFT energy E on

the PES. A detailed formulaic description is provided in Subsection 2.5.1, see Equations (2.201)

through (2.207). For AcPheAla5LysH+, Figure 3.4 shows energy hierarchies of the PBE0+MBD

energy ΔE as well as the Helmholtz free energy ΔF at 10K and at 300K, always relative to

conformer A (see Figure 3.5(b)). At this stage, harmonic vibrational free energy contributions

have been calculated at the PBE+vdWTS level. While the ΔF (10K) surface should best resemble

experimental conditions of gas-phase measurements at 10K, the free energy hierarchy at 300K

represents an estimate of the conformers populated at the early stage of the experimental

process, where the molecules are electrosprayed into the instrument at room temperature.

Their low free energy at 10K and the relatively large gap to alternative structures at 300K
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Figure 3.4 – Energy hierarchies of conformers of AcPheAla5LysH+ at the PBE0+MBD energy
ΔE as well as the Helmholtz free energy ΔF at 10K and 300K with harmonic vibrational free
energy contributions calculated at the PBE+vdWTS level.

indicate why the species observed in experiment should be among the four conformers within

0.25kcal/mol from the global minimum. Of course, one needs to be aware of the limitation of

not taking into account anharmonicity and the possibility of solvation-memory effects (i.e.

kinetic trapping).

High computational costs prohibited the systematic use of hybrid xc functionals for the

calculation of harmonic vibrations in the previous study by Rossi et al. [332]. To complete the

picture, the harmonic vibrational free energy calculations at the PBE0+MBD level are repeated,

confirming the already obtained result. Figure 3.5(a) shows the energy hierarchies for ΔE ,

ΔF (10K), and ΔF (300K) for the four lowest-energy conformers illustrated in Figure 3.5(b).

Conformers A and B are virtually identical near the C-terminus, but differ near the N-terminus

by a tilted Phe side chain. The difference between conformers C and D is similar. All four

conformers show helical structure motifs: conformer C possesses one 310- and two α-helical

turns, conformer D features one 310- and one α-helical turn, and conformers A and B each

possess two 310- and one α-helical turn.

For this work, the original IR-UV double resonance experiment by Stearns et al. [324] has

been repeated to allow conformer-selective IR spectra to be compared to their theoretical

counterparts calculated at the PBE0+MBD level. The affiliated UV spectrum is provided in

Figure 3.6 where peaks have been assigned to their identified conformers shown in Figure 3.5.

The conformer-selective IR spectra that have been calculated in double harmonic approx-

imation as explained in Subsection 2.5.1 are shown in Figure 3.5(c). Conformers A and B

could be attributed to their corresponding observed IR spectra. While the agreement is very

good, the match between experimental and theoretical IR spectra is not perfect. Reasons

for this discrepancy have been touched in Subsection 2.5.1 concerning the limitations of
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Figure 3.5 – (a) Relative DFT energies ΔE as well as relative Helmholtz free energies ΔF at
10K and 300K for the lowest-energy conformers of AcPheAla5LysH+ at the PBE0+MBD level.
(b) The four lowest-energy conformers on the ΔF (10K) scale. Hydrogen bonds are indicated
with dashed lines. The labeling of the conformers follows Stearns et al. [324]. (c) Two mea-
sured conformer-selective IR spectra (traces) are compared to double harmonic vibrational
calculations (sticks). Calculated spectra were uniformly scaled by a factor of 0.948.
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Figure 3.6 – Measured UV spectrum for the system of AcPheAla5LysH+. Peaks have been
assigned to their identified conformers shown in Figure 3.5.

the double harmonic approximation approach. In summary, the discrepancy is commonly

attributed to two factors: (i) The effect of a possible incomplete characterization of electron

exchange and correlation, despite the use of the hybrid xc functional PBE0, and (ii) the treat-

ment of anharmonic vibrations and nuclear quantum effects [342]. Both of these effects are

corrected for solely by applying a scale factor to the vibrational frequencies. The assumption

of a uniform overestimation of the harmonic vibrational modes with respect to experiment

is debatable as they depend on the theoretical method, the used basis set, and the system

itself [343, 344]. In this work, the focus lies on the frequency region of 3200cm−1 to 3500cm−1

which is sensitive to N−H · · ·O hydrogen bonding, where a uniform scaling factor of 0.948

yields very good agreement.

The exhaustive conformational search presented here for AcPheAla5LysH+, and the rigorous

treatment of harmonic vibrations at the hybrid xc level allowed for (i) reproducing the known

energy hierarchy and finding additional conformers in the low-energy region and (ii) calcu-

lating well-fitting harmonic IR spectra for the conformers in the low-energy region. In this

way, the conformers predicted by Stearns et al. [324] and Rossi et al. [332] are confirmed, and

any other competing conformers can be ruled out. This also shows that calculating computa-

tionally costly anharmonic IR spectra is not required in this case. Now that the accuracy of

the simulation approach has been confirmed, AcPheAla6 +Na+ is tackled, a more challenging

system because of the additional conformational degrees of freedom due to the “unfixed”

cation.

3.4.2 AcPheAla6 + Na+

Figure 3.7 shows the energy hierarchies of the relative PBE0+MBD energies ΔE as well as

the relative Helmholtz free energies ΔF at 10K and 300K with harmonic vibrational free
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Figure 3.7 – Energy hierarchies of conformers of AcPheAla6 +Na+ at the PBE0+MBD energy
ΔE as well as the Helmholtz free energy ΔF at 10K and 300K with harmonic vibrational free
energy contributions calculated at the PBE+vdWTS level.

energy contributions at the PBE+vdWTS level that were obtained for AcPheAla6 +Na+. The

four presumably dominant conformers are presented in Figure 3.8(b). Of the four conformer-

selective IR spectra that were recorded, two of them correspond to conformers with particularly

high intensity in the UV spectrum, see Figure 3.9. The measured IR spectra of these two

conformers, IIa and IIb, show very good agreement with the IR spectra calculated at the

PBE0+MBD level, where again a scale factor of 0.948 has been applied. Both conformers are

nearly identical, differing only in the tilt of the Phe side chain near the N-terminus. They

are globular with the peptide being “wrapped around” the Na+ cation with four partially

negatively charged C−−O groups pointing towards the positively charged cation, restricting

them from forming the hydrogen bonds necessary for helix formation. Indeed, no similarities

are observed comparing these structures to the helical motifs of AcPheAla5LysH+. The C-

terminal fixation of the charge by the Lys side-chain seems to be a prerequisite to effectively

cap the helix. The “freely movable” charge prevents helix formation in this system and instead

induces a globular motif. All conformers found in the low-energy region (i.e. within 3kcal/mol

from the global minimum) show a globular conformation.

An obvious observation is the outstanding global minimum (conformer I in Figure 3.8(b)) that

is separated by a 1.6kcal/mol gap from the next minimum on the ΔF (10K) scale. The clear

assignment of conformers IIa and IIb to the two most intense bands in the measured spectra

suggests that both conformers may be kinetically trapped. Moreover, the most stable structure

I does not seem to be observed in the experiment – none of the conformer-selective spectra fit

the calculated vibrational signatures (see Figure 3.8(c)). The structure representing the global

minimum is globular and features a cation-π interaction between the Na+ and the Phe side

chain. If that conformer were present in experiment, one would expect broad features in the
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Figure 3.8 – (a) Relative DFT energies ΔE as well as relative Helmholtz free energies ΔF at
10K and 300K for the lowest-energy conformers of AcPheAla6 +Na+ at the PBE0+MBD level.
(b) The four lowest-energy conformers on the ΔF (10K) scale. Hydrogen bonds are indicated
with dashed lines. The labeling of the conformers follows Stearns et al. [324]. (c) Two mea-
sured conformer-selective IR spectra (traces) are compared to double harmonic vibrational
calculations (sticks). Calculated spectra were uniformly scaled by a factor of 0.948.
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Figure 3.9 – Measured UV spectrum for the system of AcPheAla6 +Na+. Peaks have been
assigned to their identified conformers shown in Figure 3.8.

UV spectrum due to charge-transfer between Na+ and the aromatic ring. However, no such

features have been observed. The reason behind the kinetic trapping of conformers IIa and

IIb has to be sought in the experimental procedure in which the molecules are electrosprayed

into the apparatus from a solution at room temperature while the actual measurements

are taken on isolated molecules at 10K. It is obvious from comparing the ΔF (10K) and

ΔF (300K) hierarchies (see Figure 3.8(a)) that the temperature difference does not contribute

to a possible kinetic trapping effect. In fact, the energy gap between the global and the

next minimum even increases from 1.6kcal/mol at 10K to 2.0kcal/mol at 300K. Therefore,

kinetic trapping must be caused by solvation effects. In order to estimate the magnitude of

such an effect, re-relaxation was applied for the four lowest-energy conformers presented in

Figure 3.8 On the PES at the PBE0+MBD level including implicit solvation effects by solving

the Modified Poisson-Boltzmann (MPB) equation [345, 346] implemented [347] in FHI-aims.

Default parameters have been chosen while explicitly setting ��������� � (no ions in the

electrolyte). Full relaxation has been achieved for all conformers. Corresponding minima

are still fairly similar as the root-mean-square deviation of atomic positions is smaller than

0.5Å in all cases. While in the gas phase conformer I is 1.6kcal/mol lower in DFT energy than

the next minima (conformers IIa and IIb), the situation is reversed when including implicit

aqueous solution; conformer I is now 0.9kcal/mol higher in energy. The situation is illustrated

in Figure 3.10. This suggests that they carry a structural bias from aqueous solution, i.e. the

barriers are sufficiently high to kinetically trap them during the electrospray process.

A similar scenario can be seen for conformer III, which is of comparable energy as conformers

IIa and IIb on the ΔF (10K) scale, but the calculated IR spectrum, presented in Figure 3.8(c),

does not match any experimentally observed one. Consulting the ΔF (300K) scale (see Fig-

ure 3.8(a)) shows that conformer III is 0.9kcal/mol higher in energy than conformer IIb at

room temperature. When re-relaxing the structures to the nearest minimum on the PES at the
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Figure 3.10 – Comparison of energy hierarchies on the PES at the PBE0+MBD level between
gas-phase calculations and calculations including implicit solvation effects by solving the
Modified Poisson-Boltzmann equation (MPB) implemented in FHI-aims. Full relaxation has
been achieved for all conformers. Conformers have been labeled as in Figure 3.8. On the
ΔE(solvation) scale conformer III lies 5.0kcal/mol higher in energy than conformer I.

PBE0+MBD level including implicit aqueous solvation effects as described above, conformer

III becomes further energetically penalized – it is then more than 5.0kcal/mol higher in energy

compared to the other conformers, as illustrated in Figure 3.10.

There remain two conformers, IV and V, for which the UV spectral signatures have lower

intensity (see Figure 3.9), suggesting that they have smaller populations. The corresponding

IR spectra, shown in Figure 3.11(a), could not be assigned to their calculated counterparts

for any structure within 6kcal/mol from the global minimum on the ΔF (10K) scale. Similarly,

as for IIa and IIb, it is assumed that these conformers are kinetically trapped, which also

renders their assignment difficult as these conformers might be higher in energy, and thus

no energy criterion can be applied for finding them. Instead an approach [348] is followed

where one makes use of information from the experiment in order to select from the overall

pool of structures for calculation of spectra. Candidates were picked if they feature a free

carboxylic acid OH stretch, since the experimental IR spectra show a peak at 3578cm−1 (see

Figure 3.11(a)). Due to the absence of broad features in the UV spectrum, only structures were

considered where the Na+ cation was not in close proximity to the phenyl ring. In total, vibra-

tional spectra for 126 conformers have been calculated. In addition to that, local refinement

at the PBE0+MBD level for all 52 found minima structures within 3kcal/mol from the global

minimum for the system of AcPheAla5LysH+ has been laid out after formally replacing Lys with

Ala+Na+, with the sodium cation being placed at the position of the amino group nitrogen.

Vibrational spectra for the resulting 28 conformers (after clustering) have been calculated

as well. As explained above, computationally-costly hybrid xc functionals are required in
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Figure 3.11 – (a) For the system of AcPheAla6 +Na+, the two measured conformer-selective IR
spectra (traces) with lowest intensity are compared to vibrational calculations (sticks) in double
harmonic approximation at the PBE0+MBD level for structure IV. Calculated spectra have
been scaled by applying a uniform scaling factor of 0.948. (b) Structural form of conformer
IV. Hydrogen bonds are indicated with dashed lines. The highlighted vibrational mode in
Figure (a) is indicated with a green arrow in Figure (b).

order to gain enough accuracy. Only conformer IV (see Figure 3.11(b)), lying 13.6kcal/mol

higher in energy than the global minimum on the ΔF (10K) scale, could be assigned to one of

the less populated conformers. However, one peak in the simulated vibrational spectrum is

blue shifted by 80cm−1 with respect to the nearest experimental peak, and the corresponding

vibrational mode is indicated in Figure 3.11(b) with a green arrow. Conformer IV is a candidate

for the kinetically trapped structure only because of the (partially) matching IR spectra. Taking

into account the large computational effort taken, a more appropriate and computationally

affordable technique for finding kinetically trapped conformers would be certainly desirable.

3.5 Conclusion

The data indicates that the fixed location of the charge at the C-terminus is imperative for

helix formation in peptides of this length in isolation, as this stabilizes the structure through a

cation-helix dipole interaction. In the case of the freely-movable sodium cation, the cation-

backbone and cation-π interactions seem to be stronger, leading to local distortions of peptide

structure, preventing helix stabilization. It is interesting to note the high barriers that seem to

be involved in interconverting one structure to another. Even though the cation-π interaction

is energetically favored for AcPheAla6 +Na+ in the gas phase, the system remains kinetically

trapped in a structural state that is characterized by cation-backbone interactions and that is

energetically preferred in polar solvent.

82



4 Energetics and Benchmark of
Across-the-scale Energy Methods of
Acetyl-Histidine Protomers with and
without Zn2+

83
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Results and findings described in this chapter have been collected in a manuscript and are

about to be submitted [349].

4.1 Motivation and Overview

Metal cations often play a crucial role in shaping the three-dimensional structure of proteins

and peptides. Examples of significant conformational changes of peptides in their presence

that may alter important properties were presented in Chapter 1, see e.g. Figure 1.1. It is obvi-

ously much desirable to have a very good fundamental and detailed theoretical understanding

of interactions of metal cations with peptides. As an example, the conformational search

approach applied for finding the global minima of the gas-phase systems AcPheAla5LysH+

and AcPheAla6 +Na+ in Chapter 3 relied on the usage of conventional force fields (FFs) and

different levels of DFA. In order to select a rather small number of conformers out of the large

pool of structures obtained after sampling the whole conformational space using conven-

tional FFs, a simple energy criterion was applied not only using the calculated FF energies

but also energies at the DFA level of GGA xc functionals. This was done because the reliability

of FFs for quantitative predictions for systems different from those they were trained on is

anything but clear and, in fact, can be misleading, as explained in Subsection 2.3.1. Further-

more, the confident assignment of calculated IR spectra to their measured counterparts on

top of an accurate energy hierarchy finding in the low-energy region required the usage of

computationally costly hybrid xc functionals. These are but two examples that motivated the

research presented here whose goal is to investigate the energetics of peptides in conjunction

with metal cations. That is to assess the goodness of commonly applied theoretical levels of

theory, i.e. FFs, semi-empirical quantum chemistry methods, DFAs, and wavefunction-based

methods by evaluating them with respect to high-level coupled-cluster calculations. The focus

thereby lies on benchmark systems in the gas phase consisting of either a bare acetylhistidine

(AcH) or microsolvated with a Zn2+ cation. Besides the examples of metalloproteomics given

in the beginning of Chapter 1, the choice for the system of AcH has been made because it is still

computationally feasible, even for high-level methods, yet provides a challenging structure

because of the tautomeric form of its neutral imidazole ring that has already been depicted in

Figure 2.2 in Section 2.1.

Figure 4.1 shows chemical structures of AcH with the different protonation states investigated

in this work: Negatively charged AcH (upper row in Figure 4.1) has two equivalent tautomeric

forms of the neutral imidazole side chain. The two forms are labeled AcH(Nδ1)−COO – and

AcH(Nε2)−COO – , meaning that either the Nδ1 or the Nε2 atom is protonated in the imidazole

ring. For bare neutral AcH (bottom row in Figure 4.1), three different protonation states are

theoretically possible: Besides the two equivalent tautomeric forms, labeled AcH(Nδ1)−COOH

and AcH(Nε2)−COOH, that have a neutral carboxyl group at the C-terminus (−COOH), a third

form exists, labeled AcH+−COO – , which has both the Nδ1 and Nε2 nitrogens of the imidazole

protonated but the carboxyl group at the C-terminus deprotonated (−COO – ). As already

pointed out, either system is studied bare as well as microsolvated with a Zn2+ cation, resulting
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Figure 4.1 – Chemical structures of negatively charged AcH (upper row) showing the two
equivalent tautomeric forms of the neutral imidazole side chain. For neutral AcH (bottom
row), three different protonation states are theoretically possible.

in ten different systems to be investigated.

Various benchmark calculations for small systems containing a zinc cation have been done

in the past. Amin and Truhlar set up a benchmark database of Zn coordination compounds

with O, S, NH3, H2O, OH, SCH3, and H ligands [350]. Using coupled cluster calculations with

augmented polarized triple-zeta basis sets as the reference, 39 density functionals and seven

more approximate molecular orbital theories were tested. They found that DFT overall signifi-

cantly outperformed semi-empirical methods. Best performance was generally found for xc

functionals containing a portion of Hartree-Fock exchange, i.e. hybrid functionals. Out of the

functionals that contained no Hartree-Fock exchange, M06-L (see Subsection 2.3.5) displayed

the best performance. Similarly, Rayón et al. tested the performance of five different func-

tionals against MP2 (see Subsection 2.3.7) and CCSD(T) (see Subsection 2.3.8) calculations,

with the B3LYP functional performing best [351]. Weaver et al. predicted nine ZnX complexes

(X= Zn, H, O, F2, S, Cl, Cl2, CH3, (CH3)2) using 14 density functionals, MP2 calculations and

the CCSD and CCSD(T) coupled-cluster methods applying correlation consistent triple-zeta

basis sets [352]. Comparing heats of formation against experimentally determined values,

they found that BLYP, B3LYP, MP2, CCSD and CCSD(T) showed poor performances based on

accuracy, which for the latter three wavefunction based methods might be caused by a miss-

85



Chapter 4. Energetics and Benchmark of Energy Methods of Acetyl-Histidine with Zn2+

ing complete basis set description (see Subsection 2.3.9) or the slow-converging correlation

contribution of the zinc electrons that may lead to large and conformation dependent basis

set superposition errors (BSSE). Gutten et al. evaluated the performance of the wavefunction-

based MP2 method as well as several DFA xc functionals with respect to CCSD(T) using

gas-phase complexation energies calculated for five model complexes and four metal ions

(Fe2+, Cu2+, Zn2+, Cd2+) [353]. Reasonable agreement was found for MP2 with values usually

within 1.5kcal/mol from the reference values, while DFT performed less satisfactory, although

the appropriateness of the models may be significantly altered when combining them with

advanced solvation models [354]. For certain complexes containing metal-ligand bonds, large

errors in the gas-phase complexation energies (with values up to 20kcal/mol) were reported.

Performance concerning geometry optimization was found to be satisfactory already using

the PBE xc functional on the GGA DFT level. In the benchmark studies by Navrátil et al. on

activation and reaction energies for four model systems of peptide bond hydrolysis in an

ion-free environment and in presence of one and two zinc ions, reasonably good performance

was found for several DFAs and MP2 when comparing to CCSD(T)-obtained results [355].

Best performance for calculating activation barriers was achieved when using the B3LYP or

the M06-2X xc functionals on the DFA level of theory. Finally, benchmark evaluations and

calibrations of theoretical calculations help in modeling metal-binding sites and studying

metal-ion selectivity in proteins [356–359].

The general approach followed here is briefly outlined in the following. First, a global search

for minima on the PES combining both FF and DFA is performed for either one of the ten

systems individually. The obtained global minima and energy hierarchies are then discussed

and compared for systems of equal overall charge q , i.e. q = 1 for the upper row in Figure 4.1

and q = 0 for the bottom row in Figure 4.1. For the benchmarking studies, a set of structures

is then selected based on simple energy criteria. While the focus does lie on local minima

structures, it is intended to select structures that vary in energy and structure in order to

intentionally provide a challenge for the theoretical methods to be benchmarked. On top of

that, all systems carrying the same overall charge q are benchmarked at once (except for FFs),

thus providing even more challenge for the methods in question. Finally, across-the-scale total

energy calculations for a wide variety of FFs, semi-empirical methods, DFAs, and wavefunction

based methods are tested and evaluated against high-level coupled cluster calculations using

mean absolute errors (MAEs) and maximum errors (MEs) as a quality measure, as explained

in Subsection 4.2.3.

4.2 Computational Details

4.2.1 Conformational Sampling

In order to yield minima structures that serve as a basis for selecting a set of conformers

for the benchmarking process, the conformational space needs to be sampled first. To that

end, an energy minimum search combining both FF and DFA very similar to the one used in
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Section 3.3 is laid out. First, a global energy minimum search is performed using the basin-

hopping approach within the TINKER molecular modeling package, as explained in detail

in Section 2.4. Here, the 2009 AMOEBA biopolymer force field, labeled AMOEBA-BIO09 (see

Subsection 2.3.1), is applied, which is for two reasons: First, this polarizable force field provides

a much “rougher” potential energy surface than widely used conventional force fields, such

as AMBER-99, CHARMM22, or OPLS-AA, because it uses atomic charge multipole expansion

instead of fixed point charges. The “rougher” the potential energy surface the more minima

are found, hence the conformational space is sampled in more detail. For example, depending

on the actual studied system, i.e. whether the Zn2+ cation is present or the protonation state

of the imidazole side chain and the carboxyl group, the number of minima found can be up to

a factor of six higher when using the AMOEBA-BIO09 force field in comparison to the OPLS-

AA, AMBER-99, and CHARMM22 force fields. Secondly, the AMOEBA-BIO09 FF is the only

FF available providing out-of-the-box parameters for the neutral carboxyl group (−COOH).

Concerning the technical aspect of the basin-hopping search, the ���� subprogram within

TINKER has been applied using all automatically found torsional angles, a relative energy

window of 100kcal/mol and an energy similarity criterion of 0.0001kcal/mol. After having

applied the FF driven basin-hopping approach, all found minima are locally refined using DFA

implemented within FHI-aims. Like described in Section 3.3, local refinement is done first on

the PBE+vdWTS level using FHI-aims specific ���� 	 basis sets and 
���� settings intended

to give reliable energies for screening purposes [264]. After clustering, further relaxation is

accomplished at the PBE+vdWTS level using ���� 
 basis sets and ����� settings that are

intended to provide meV-level accurate energy differences [264], i.e. within 0.02kcal/mol.

Finally, relaxation is accomplished at the PBE0+MBD level using the same two-step approach

as before, i.e. using first ���� 	 basis sets and 
���� settings, and ���� 
 basis sets and

����� settings afterwards.

4.2.2 Levels of Theory and Energy Calculation Methods

Applied energy calculation methods and levels of theory have been discussed in great detail

in Section 2.3 and are thus only briefly summarized in the following, including necessary

technical details for calculation.

The benchmark calculations are based on high-level coupled-cluster calculations (see Sub-

section 2.3.8). In particular, the coupled-cluster method including single, double, and pertur-

bative triple excitations, named CCSD(T), is commonly referred to as the “gold standard of

quantum chemistry” due to its high accuracy in the complete basis set limit (CBS) [251, 252].

However, due to the slow convergence of the electronic correlation energy with basis set size

N as well as the technique’s O (N 7)-scaling of the computational costs, accurate results that

require large enough basis sets are currently not affordable for system sizes treated in this work.

Instead, the domain-based local pair natural orbital (DLPNO-)CCSD(T) technique serves as

the reference method in this work. As laid out in Subsection 2.3.8, the DLPNO-CCSD(T)

approximation aims to fully exploit locality of the electron correlation and shows a near linear
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scaling behavior with basis set size N . Calculations are carried out with ORCA, while Ahlrichs’

���� basis set family (see Subsection 2.3.9) is used for all wavefunction-based methods. Be-

cause heavy elements like Zn2+ require a relativistic treatment of all-electron calculations, the

0th order regular approximation (ZORA) (see Subsection 2.3.9), implemented in ORCA in an

approximate way [272, 273], is used throughout. As the scalar relativistic treatment requires

flexible basis sets, this in turn means that ORCA automatically provides relativistically recon-

tracted versions [274] of Ahlrichs’ ���� basis set family, labeled ����	����. The accuracy

of the DLPNO-CCSD(T) method has been tested previously with a series of benchmark sets

covering a broad range of quantum chemical applications [360]. An accuracy of 1kcal/mol

commonly referred to as “chemical accuracy”, could be obtained using 
��
�� settings. Still,

before using the DLPNO-CCSD(T) method with 
��
�� settings as the reference method

in this work, validation has to be done against conventional CCSD(T) calculations for the

systems depicted in Figure 4.1 and using Ahlrichs’ relativistically recontracted split valence

basis set with added polarization functions, labeled ����	����	���.

The other post-Hartree-Fock ab initio method in this work to be benchmarked against DLPNO-

CCSD(T) is the widely used second-order Møller-Plesset perturbation theory (MP2) (see

Subsection 2.3.7). Calculations are carried out again with ORCA and applying a resolution of

identity (RI) approximation [361].

Energy calculations for both DLPNO-CCSD(T) and MP2 are performed using Ahlrichs’s

����	����	��� basis set as well as relativistically recontracted valence triple-zeta and quad-

ruple-zeta basis sets with two sets of polarization functions added, labeled ����	����	�����

and ����	����	�����, respectively. Extrapolation to the CBS limit is applied on calculated

Hartree-Fock (HF) energies and correlation energies individually, as laid out in detail in Sub-

section 2.3.9. HF energies are extrapolated using the form proposed by Karton and Martin

given in Equation (2.156), while the extrapolation scheme for the correlation energies fol-

lows the form proposed by Truhlar given in Equation (2.157). Extrapolation using all three

basis set families has been found to yield inconsistent results between the different systems

depicted in Figure 4.1. Hence, extrapolation is laid out using only ����	����	����� and

����	����	�����, resulting in an effective two-point extrapolation scheme using n = 3,4 and

assuming β= 3 in Equation (2.157), as originally proposed by Halkier et al. [277].

Finally, for systems microsolvated with a Zn2+ cation, the slow-converging correlation con-

tribution of the zinc electrons may lead to large and conformation dependent basis set su-

perposition errors (BSSE). To account for that and prior to performing CBS extrapolation,

the HF and correlation energies of each Zn2+ coordinated conformation are subjected to

the counterpoise correction as proposed by Boys and Bernardi assuming rigid conformers:

Following Equation (2.158), the BSSE is estimated as

EBSSE = EBSSE(AcH)+EBSSE(Zn2+),

with EBSSE(AcH) = E AcH+Zn2+
(AcH)−E AcH(AcH),

and EBSSE(Zn2+) = E AcH+Zn2+
(Zn2+)−E Zn2+

(Zn2+),

(4.1)
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where E AcH+Zn2+
(AcH) represents the energy of AcH evaluated in the union of the basis func-

tions associated with AcH and Zn2+, E AcH(AcH) represents the energy of AcH evaluated in the

basis functions associated with AcH, etc. The individual BSSEs are then subtracted from the

Hartree-Fock and correlation energy, respectively.

Single-point energy calculations using several out-of-the-box force fields (FFs) are carried out

using the TINKER molecular modeling package. Two classes of FFs are tackled: (i) conventional

FFs, in particular AMBER-99, CHARMM22, and OPLS-AA, as well as (ii) polarizable atomic

multipole-based FFs that use atomic charge multipole expansion instead of fixed point charges.

In particular, these are the 2009 AMOEBA biopolymer FF named AMOEBA-BIO09, and the

2013 AMOEBA protein FF named AMOEBA-PRO13. A detailed description of the different FFs

is provided in Subsection 2.3.1. Because of the intrinsic concept of FFs that requires a priori

definition of bonds, angles, torsions, etc. along with the corresponding parameters, different

protonation states are not comparable in energy. Hence, energies of conformers may only

be benchmarked if the structures correspond to the same protonation state. Note that only

for systems containing a deprotonated carboxyl group (−COO – ), parameters are available

for all force fields out-of-the-box. As AMOEBA-BIO09 is the only FF available providing also

parameters for the neutral carboxyl group (−COOH), FF calculations for systems containing

neutral AcH (lower row in Figure 4.1) are only laid out using this particular FF.

Semi-empirical quantum chemistry methods are based on the Hartree-Fock method, but

follow a simplification strategy by making approximations for computationally demanding

terms. In order to account for caused errors, empirical parameters are incorporated into the

formalism and fitted against experimental data or high-level calculations [128]. Details are

provided in Subsection 2.3.4. All semi-empirical methods tackled in this work are based on the

neglect of diatomic differential overlap (NDDO), a method for approximating computational

costly three-center and four-center two-electron integrals, as laid out in Subsection 2.3.4

In particular, the different applied models are the Austin Model 1 (AM1), the Parametric

Method 3 (PM3), the Parametric Method 6 (PM6), and the Parametric Method 7 (PM7). All

semi-empirical method calculations have been carried out using the MOPAC2016 [261] semi-

empirical quantum chemistry program. For the specific case of PM6, two additional long-

range dispersion correction schemes are tackled as well. In particular, these are Grimme’s D3

correction for dispersion plus a simple function for hydrogen bonds, as well as the corrections

to hydrogen bonding and dispersion by Řezáč and Hobza, labeled D3H4. The corresponding

conjunctive methods are then accordingly being labeled PM6-D3 and PM6-D3H4.

As explained in Subsection 2.3.4, semi-empirical energy evaluations yield heats of formation

as the respective semi-empirical methods are parameterized on experimental heats of for-

mation [262]. That is in contrast to the other methods tackled in this work for which energy

calculations refer to total energies on the PES. However, when comparing potential energies of

other computational methods with heats of formation obtained from semi-empirical calcula-

tions through the means of MAEs and MEs, the systematic shift between the two is accounted

for, as explained in Subsection 4.2.3.
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Concerning DFT in itself which is an exact method, in practice approximations have to be

made because the exact form of the xc functional is unknown, except for the free electron

gas. As laid out in detail in Subsection 2.3.5, a large variety of different DFAs exist, commonly

classified into different types depending on the features and formal properties of the xc

functionals in question. The ones selected in this work are summarized in the following:

• Generalized gradient approximations (GGAs) are characterized by the dependence of

the xc functional only on the electron density and its gradient. In this work, the accuracy

of the Perdew-Burke-Ernzerhof (PBE) and Becke-Lee-Yang-Parr (BLYP) xc functionals is

studied.

• In addition to GGAs, meta-GGAs also depend on the Laplacian of the electron density or

include the kinetic energy density. Here, the M06-L and M11-L xc functionals from the

group of Minnesota functionals are tested as well as the SCAN functional.

• For the computationally more costly class of hybrid functionals, the exchange parts of

the functional are admixed with exact exchange from Hartree-Fock theory. Here, the

PBE0, B3LYP, and SCAN0 functionals are tested. In addition, several hybrid functionals

from the group of Minnesota functionals are tackled as well, in particular the M06,

M06-2X, M08-SO, M08-HX, and M11 functionals.

Calculations for the PBE, BLYP, M11-L, SCAN, PBE0, B3LYP, M08-SO, M08-HX, and M11 xc

functionals are carried out with FHI-aims using ���� � basis sets and ������	��
�� settings,

and including a relativistic treatment by applying the atomic ZORA method. The SCAN and

SCAN0 functionals are implemented in FHI-aims via the �
���� program [362]. Calculations

for the M06-L, M06, and M06-2X xc functionals are carried out with ORCA, including ZORA

and the relativistically recontracted �������
������� basis set, as explained above.

Commonly applied semi-local DFAs and conventional hybrid functionals are unable to capture

the essence of long-range dispersion effects. As laid out in detail in Subsection 2.3.6, many

systems containing biomolecules rely on vdW interaction treatments for an accurate energetic

description. Three different a posteriori vdW correction schemes are tackled in this work:

• The general empirical additive D3 dispersion correction method by Grimme et al. pro-

vides a consistent description across the whole periodic table. Here, the zero-damping

function for short ranges is used, including three-body dispersion contributions. In

order to match the long- and midrange correlation of D3 with the semilocal correlation

computed by the xc functional, the parameterization of the damping function depends

on the xc functional itself. Hence, only xc functionals where an out-of-the-box D3

treatment is available are tested. In particular, M06-L+D3, M06+D3, and M06-2X+D3

are evaluated using ORCA and applying the same settings as described above. For the

methods of PBE+D3, BLYP+D3, PBE0+D3, and B3LYP+D3, long-range dispersion calcu-

lations are done on top of the FHI-aims calculated energies using Grimme’s stand-alone

program DFT-D3 [363].
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• The parameter-free pairwise Tkatchenko-Scheffler van der Waals scheme (vdWTS) re-

lies on summing interatomic pairwise, electron-density derived C6 coefficients, and

accurate reference data for the free atoms. As the method is implemented in FHI-aims,

calculations are carried out for the methods of PBE+vdWTS, BLYP+vdWTS, PBE0+vdWTS,

and B3LYP+vdWTS.

• In contrast to the previous pairwise Tkatchenko-Scheffler scheme that ignores the

intrinsic many-body nature of correlation effects, the many-body dispersion scheme

labeled MBD (and sometimes also labeled MBD* or MBD@rsSCS) combines the TS

scheme with the self-consistent screening (SCS) equation of classical electrodynamics.

In addition, a range-separation (rs) technique is applied, separating correlation into

a short-range and a long-range contribution. Details are provided in Subsection 2.3.6.

Calculations are carried out for the methods of PBE+MBD and PBE0+MBD using FHI-

aims.

In order to avoid high computational costs of hybrid xc functionals and still yield accurate

results, recent focus has been set on “low-cost” DFT based composite electronic structure

approaches. In particular, the PBEh-3c method by Grimme et al. aims to efficiently compute

structures and interaction energies, as laid out in detail in Subsection 2.3.5. Calculations are

carried out with ORCA.

Finally, double hybrid xc functionals extend hybrid xc functionals in a way that both the

exchange and the correlation part contain non-local orbital-dependent components, as ex-

plained in detail in Subsection 2.3.5. In particular, the B3LYP+XYG3 method is tested. Cal-

culations are carried out with FHI-aims using numerically tabulated atom-centered orbital

triple-zeta basis sets with valence-correlation consistency, labeled ���������� [267] (see

Subsection 2.3.9). Zhang et al. showed that XYG3 provides best results in combination with

the triple-zeta ��������	� basis set [270]. Because the ��������	� basis set is not available

out-of-the-box for the element of Zn, Dunning’s analogous 

����� [269] basis set is used

instead for this particular element.

4.2.3 Mean Absolute Error (MAE) and Maximum Error (ME)

In order to compare the energetic performance of different methods, single-point energy

calculations of a set of different conformers are compared by means of mean absolute errors

(MAEs) and maximum errors (MEs). MAEs of relative energies between the reference method

and the method to be benchmarked are calculated as follows:

MAE = 1

N

N∑
i=1

|ΔE reference
i −ΔE benchmarked

i +c|, (4.2)

where the index i runs over all N conformations of a given data set. ΔEi in principle denotes

the energy difference between conformer i and the lowest-energy conformer of the set. The

adjustable parameter c is used to systematically shift the reference and benchmark confor-
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Figure 4.2 – Example of a correlation plot of two different sets of conformers (red and blue).
The reference (A) and benchmark (B) conformational hierarchies have already been shifted
uniformly to minimize the MAE. If the energy description between the reference method and
the method to be evaluated agreed perfectly, all points would align on the dashed diagonal
line. The gray shading denotes a corridor of an absolute energy deviation of 1kcal/mol, i.e.
the region of “chemical accuracy”. For a specific conformer i , the absolute energy deviation
|ΔE reference

i −ΔE benchmarked
i | = |ΔEi (A)−ΔEi (B)| is illustrated.

mational hierarchies versus one another to obtain the lowest possible MAE, rendering the

reported MAE value independent of the choice of any reference structure. Similarly, MEs are

calculated as follows:

ME = max
i∈N

|ΔE reference
i −ΔE benchmarked

i +c|, (4.3)

using the same notation as above. Figure 4.2 shows an example of a correlation plot including

a graphical illustration of |ΔE reference
i −ΔE benchmarked

i |.

4.3 Results

4.3.1 Energy Hierarchies

Figure 4.3 shows the obtained energy hierarchies at the PBE0+MBD level after having com-

pleted the conformational search for each individual protonation state of bare negatively

charged AcH and bare neutral AcH, as well as both systems in presence of a Zn2+ cation. Fig-

ure 4.4 illustrates the structure of the lowest-energy conformer for each depicted protonation

state.
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Figure 4.3 – Obtained energy hierarchies at the PBE0+MBD level after having completed the
conformational search for (a) negatively charged AcH, bare and with an additional Zn2+, and
(b) neutral AcH, bare and with an additional Zn2+.
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Figure 4.4 – Illustration of the structure of the lowest-energy conformer for each depicted
protonation state.

Comparing the two possible protonation states for negatively charged AcH, i.e.

AcH(Nδ1)−COO – and AcH(Nε2)−COO – (see Figure 4.3(a)), it is immediately evident that

the protonation of the nitrogen atoms of the imidazole ring has a large impact concerning

energy and structure of the system. The lowest-energy conformer of AcH(Nδ1)−COO – lies

14.3kcal/mol lower in energy than the lowest-energy conformer of AcH(Nε2)−COO – , meaning

that the tautomeric state of having the Nδ1 nitrogen atom of the imodazole ring protonated is

energetically favored over having the proton residing at the Nε2 nitrogen atom. The reason

for that comes abundantly clear when comparing the two lowest-energy conformers that are

illustrated in Figure 4.4: In the case of AcH(Nδ1)−COO – , there exists the geometrical possi-

bility of forming a hydrogen bond between one oxygen of the anionic carboxylate group at

the C-terminus and the nitrogen-bound hydrogen. In case of having the Nε2 nitrogen atom

protonated, a hydrogen bond cannot be formed as the proton “points away” from the anionic

carboxylate group, explaining the much higher energy of this structure in comparison with its

tautomeric counterpart.
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The situation however changes drastically when introducing a Zn2+ cation to the system.

As seen in Figure 4.3(a), the lowest-energy conformer of AcH(Nδ1)−COO – + Zn2+ is now

18.2kcal/mol higher in energy than the lowest-energy conformer of AcH(Nε2)−COO – +Zn2+.

The corresponding structures illustrated in Figure 4.4 look fairly similar in part as the oxygen

atom of the carbonyl group at the acetylated N-terminus as well as one oxygen of the anionic

carboxylate group are coordinated towards the Zn2+. They differ however in the different

orientation of the imidazole ring towards the cation. In the case of AcH(Nε2)−COO – +Zn2+,

the deprotonated Nδ1 atom allows for a coordinate bonding interaction with the Zn2+ cation,

resulting in an energetically more favorable structure compared to AcH(Nδ1)−COO – +Zn2+

where the deprotonated Nε2 atom points away from the cation, resulting in an energetically

less favorable cation-π interaction between imidazole ring and cation. Adding a Zn2+ cation

to the system also results in an increased energetic gap between conformers. For example, the

two lowest-energy conformers of AcH(Nδ1)−COO – are separated by 1.6kcal/mol while the gap

increases to 3.8kcal/mol for AcH(Nδ1)−COO – +Zn2+. For AcH(Nε2)−COO – , the two lowest-

energy conformers are separated by 1.0kcal/mol, while the gap increases to 18.9kcal/mol for

AcH(Nδ1)−COO – +Zn2+.

The hierarchies of the three different protonation states of bare neutral AcH are shown

in Figure 4.3(b). The global-minimum conformers of the systems of AcH(Nδ1)−COOH

and AcH(Nε2)−COOH are very similar in energy, differing only by 0.04kcal/mol. For

AcH(Nε2)−COOH, a hydrogen bond is possible between the deprotonated Nδ1 atom and said

proton, resulting in a very similar structure compared to system AcH(Nδ1)−COO – , as shown

in Figure 4.4. For AcH(Nδ1)−COOH, due to the protonated Nδ1 atom, the proton at the car-

boxyl group points away from the imidazole ring and is coordinated towards the N-terminus,

forming a hydrogen bond with the carbonyl group. A protonated imidazole ring, as seen in the

protonation state of system AcH+−COO – , results in an energetically unfavorable structure,

being 23.2kcal/mol higher in energy than the global minimum of system AcH(Nε2)−COOH.

The situation changes again when introducing a Zn2+ cation to the system. The system of

AcH(Nε2)−COOH+Zn2+ is energetically most favorable as the structure of the global mini-

mum is very similar to the one of the system of AcH(Nε2)−COO – +Zn2+: The deprotonated

Nδ1 atom allows for a coordinate bonding interaction with the Zn2+ cation that in turn is also

coordinated towards the electronegative oxygen atoms at the carboxyl group at the C-terminus

and the carbonyl group at the N-terminus. The global minimum of AcH+−COO – +Zn2+ is

16.9kcal/mol higher in energy than the global minimum of AcH(Nε2)−COOH+Zn2+. The

positively charged cation and the protonated imidazole ring share no proximity, resulting

in a lowest-energy structure where the Zn2 – is coordinated between the oxygen of the car-

bonyl group at the N-terminus and one oxygen of the carboxyl group at the C-terminus. The

structure of the global minimum for AcH(Nδ1)−COO – +Zn2+ is very similar to the one for

AcH(Nε2)−COO – +Zn2+, safe the twisted imidazole ring due to the protonated Nδ1 atom. Sim-

ilarly to system AcH(Nδ1)−COO – +Zn2+, this results in an energetically less favorable cation-π

interaction between imidazole ring and cation as the global minimum is 29.5kcal/mol higher

in energy than the global minimum of AcH(Nε2)−COO – +Zn2+.
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Table 4.1 – Minima selection criteria across the tackled systems and protonation states.

system total system charge energy cut-off # minima
AcH(Nδ1)−COO –

−1 23.0kcal/mol
17*

AcH(Nε2)−COO – 10*
AcH(Nδ1)−COO – +Zn2+

+1 41.5kcal/mol
9

AcH(Nε2)−COO – +Zn2+ 9

AcH(Nδ1)−COOH
0

7.0kcal/mol
11

AcH(Nε2)−COOH 18
AcH+−COO – 50.0kcal/mol 8*

AcH(Nδ1)−COOH+Zn2+

+2 46.0kcal/mol
9

AcH(Nε2)−COOH+Zn2+ 18
AcH+−COO – +Zn2+ 22

The “energy cut-off” means the relative energy with respect to the global minimum for a given
total system charge (i.e. taking into account all possible protonation states, compare with
Figure 4.3), within which all found minima are taken into account. The last column denotes
the number of minima used for benchmarking. Numbers denoted with an asterisk (*) mean
all found minima for this particular protonation state are considered.

4.3.2 Selection of Minima Structures

For every protonation state, the lowest-energy structures from the previous global minimum

search are selected based on energy criteria. For one, this ensures an emphasis on the most

likely structures also seen in experiment as there will always be a bias towards structures with

low energy, ignoring individual set-ups or experimental conditions. However, benchmark cal-

culations are done including all possible protonation states for a given overall system charge,

except for the case of FFs as explained in Subsection 4.2.2. The large energetic differences

between global minima (and consequently other low-energy conformers) of individual proto-

nation states as seen in Figure 4.3 therefore provides a challenging benchmark testing situation

for the different methods. Table 4.1 summarizes the different energy selection criteria across

the systems and protonation states tackled in this work.

4.3.3 Validation of DLPNO-CCSD(T) as the Reference Method

As described in Subsection 4.2.2 and in order to validate DLPNO-CCSD(T) as the reference

method used in this work, one needs to check the consistency of the method against con-

ventional CCSD(T), commonly referred to as the “gold standard of quantum chemistry”.

Calculations are laid out using Ahlrichs’ relativistically recontracted ��������	�
�� basis

set for which CCSD(T) calculations are still affordable with respect to computational costs.

Consequently, no extrapolation or counterpoise correction is applied here, as the intent is

to compare the “pure” total energy performances of both methods, which – if similar – will

justify applying DLPNO-CCSD(T) “instead of” conventional CCSD(T), of course with using

larger basis sets, to benchmark the other computational methods. Figures 4.5(a)-(d) show
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the corresponding correlation plots for all systems tackled in this work. The alignment of

the points near the dashed diagonal line indicates a very similar energy description between

the two methods across all systems and protonation states. To quantify that, MAEs and MEs

are computed according to Equations (4.2) and (4.3), respectively. For the four different sys-

tems, MAEs and MEs are given in Figure 4.5(e). In all cases, MAEs are well within “chemical

accuracy”, i.e. smaller than 0.5kcal/mol. Furthermore, MEs are also smaller than 1kcal/mol

for all systems. Taking into consideration that different protonation states and minima that

differ in energy by up to more than 50kcal/mol have been used, one may safely conclude that

DLPNO-CCSD(T) serves as a valid reference method for the benchmarking process of other

computational methods.

In order to finally yield accurate total energies serving as benchmarks, counterpoise correction

needs to be applied following Equation (4.1) and extrapolation to the complete basis set limit

is done following Equations (2.156) and (2.157) using Ahlrichs’ relativistically recontracted

��������	�
��, ��������	�
����, and ��������	������ basis sets.

4.3.4 Benchmarking Force Fields and Semi-Empirical Methods

Figure 4.6 shows obtained MAEs and MEs calculated according to Equations (4.2) and (4.3) for

all systems tackled in this work. As explained in Subsection 4.2.2, FF performance evaluation

is treated individually for different protonation states.

Considering bare neutral AcH, see Figure 4.6(a), conventional FFs that make use of fixed

point charges are comparable in performance: For AcH(Nδ1)−COO – , MAEs for AMBER-99,

CHARMM22, and OPLS-AA have been found to be 2.1kcal/mol, 2.2kcal/mol, and 2.4kcal/mol,

respectively. Considering the fact that FF parameters have been derived from systems in solva-

tion instead of gas-phase calculations applied here, the result can be considered satisfactory.

However, large MEs with up to 6.9kcal/mol for OPLS-AA, indicate a possible large deviation

in the energetic description for individual conformers. Somehow surprisingly, polarizable

atomic multipole-based FFs AMOEBA-BIO09 and AMOEBA-PRO13 perform worse than their

FF counterparts using fixed point charges. Large MEs up to 10.9kcal/mol and 17.3kcal/mol

for AMOEBA-BIO09 and AMOEBA-PRO13, respectively, indicate severe discrepancies in the

energetic description for individual conformers. Consequently, the corresponding MAEs of

3.6kcal/mol and 5.3kcal/mol are larger than for conventional FFs. Qualitative similar results

are found for AcH(Nε2)−COO – . Best performance for FFs is found using CHARMM22 with a

MAE of 1.5kcal/mol and a ME of 3.3kcal/mol.

Semi-empirical methods show a comparable performance to FFs, but carry the advantage over

FFs to be able to describe both protonation states simultaneously. Best performance is found

for PM7 with a MAE of 1.7kcal/mol and a ME of 5.5kcal/mol. For PM6, adding a long-range

dispersion treatment method, i.e. D3 or D3H4, yields very similar results of approximately

1.9kcal/mol, as is expected for a system of such small size.
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Figure 4.5 – Correlation plots for benchmarking DLPNO-CCSD(T) against conventional
CCSD(T) using the basis set. The systems tackled refer to (a) negatively
charged AcH, (b) the same protonation states in presence of a Zn2+ cation, (c) bare neutral
AcH, and (d) the same protonation states in presence of a Zn2+ cation. The gray shading
denotes an absolute energy deviation of 1kcal/mol, i.e. the region of “chemical accuracy”.
(e) Obtained MAEs (dark-gray) and MEs (light-gray) for the four systems, following Equa-
tions (4.2) and (4.3), respectively.
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separately.

99



Chapter 4. Energetics and Benchmark of Energy Methods of Acetyl-Histidine with Zn2+

With a single Zn2+ cation present, both FFs and semi-empirical methods show very poor

performances. Out of the conventional FFs, OPLS-AA shows the best performance with

a still very large MAE of 23.8kcal/mol for AcH(Nδ1)−COO – + Zn2+ and 8.7kcal/mol for

AcH(Nε2)−COO – + Zn2+. Polarizable atomic multipole-based FFs perform slightly better

with a MAE of 11.7kcal/mol using AMOEBA-BIO09 for AcH(Nδ1)−COO – +Zn2+ and a MAE

of 6.2kcal/mol using AMOEBA-PRO13 for AcH(Nε2)−COO – +Zn2+. Semi-empirical meth-

ods show a further improvement, with PM7 yielding a MAE of 5.6kcal/mol and a ME of

13.1kcal/mol.

As AMOEBA-BIO09 is the only FF available providing parameters out-of-the-box for the neutral

carboxyl group (−COOH), FF calculations for systems containing neutral AcH are only laid out

using this particular FF, as seen in Figure 4.6(b). Protonation states with a neutral imidazole

ring yield a MAE of 4.0kcal/mol for AcH(Nδ1)−COOH and 2.9kcal/mol for AcH(Nε2)−COOH.

For AcH+−COO – , performance is again very poor yielding a MAE of 7.8kcal/mol and a ME of

18.4kcal/mol. With a single Zn2+ cation present, the MAE for AMOEBA-BIO09 is larger than

6kcal/mol for all three protonation states. Out of the semi-empirical methods, PM6 performs

best with a MAE of 6.6kcal/mol.

4.3.5 Benchmarking Standard DFAs and Methods Beyond

Similarly to the previous section, the benchmarking process is re-done for different kinds

of DFAs as well as the wavefunction-based MP2 method. Figure 4.7 shows obtained MAEs

and MEs calculated according to Equations (4.2) and (4.3) for all systems tackled in this work.

Considering bare neutral AcH, see Figure 4.7(a), it is interesting to note that all tested methods

already provide a very good accuracy as the MAE is less than 1kcal/mol in all cases. Out of the

applied GGA xc functionals, BLYP+D3 shows best performance with a MAE of 0.4kcal/mol and

a ME of 1.1kcal/mol. It is interesting to see that the applied long-range dispersion schemes

all show significant improvement over the methods excluding such treatment already for

systems of such a small size, compare e.g. the ME of 3.1kcal/mol for BLYP with the obtained

ME of 1.1kcal/mol for BLYP+D3. All three different van der Waals treatment methods show

a similar performance as the respective obtained MAEs differ by less than 0.1kcal/mol. Out

of the meta-GGA xc functionals, SCAN performs best with a MAE of 0.3kcal/mol and a ME

of 1.0kcal/mol. Performance of the composite method PBEh-3c is comparable to the bare

hybrid xc functional PBE0 with a MAE of 0.8kcal/mol and a ME of 2.2kcal/mol. Again, long-

range dispersion treatments applied a posteriori to the hybrid xc functional calculations

improve the performance significantly, compare e.g. the ME of 2.7kcal/mol for B3LYP with

the obtained ME of 0.8kcal/mol for B3LYP+D3. The double hybrid xc functional B3LYP+XYG3

and the wavefunction-based MP2 method perform equally well with a ME of 0.8kcal/mol and

0.9kcal/mol, respectively.

With a single Zn2+ cation present, GGA xc functionals are no longer able to describe the en-

ergies within “chemical accuracy”. Best performance is found for PBE+MBD with a MAE of
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Figure 4.7 – MAEs (dark-gray) and MEs (light-gray) following Equations (4.2) and (4.3) for
different standard DFAs, the composite method PBEh-3c, double hybrid DFA B3LYP+XYG3,
and the wavefunction-based MP2 method with respect to DLPNO-CCSD(T) for which coun-
terpoise correction has been done following Equation (4.1) and extrapolation to the complete
basis set limit has been done following Equations (2.156) and (2.157). The tackled systems
are (a) negatively charged AcH with and without a Zn2+ cation, and (b) neutral AcH with and
without a Zn2+.

1.6kcal/mol and a ME of 4.6kcal/mol. Meta-GGA xc functionals already yield a big improve-

ment as the M11-L xc functional yields a MAE of 0.9kcal/mol. The composite method PBEh-3c

is not sufficient to describe energies of such systems accurately enough as the MAE is found

to be 2.0kcal/mol and a rather large ME of 6.2kcal/mol is obtained. Hybrid xc functionals

provide a generally more accurate energetic description as PBE0+D3, PBE0+MBD, M06-2X,

M06-2X+D3, M08-SO, M11, and SCAN0 yield MAEs within 1.0kcal/mol. The wavefunction-

based MP2 method yields a MAE of 0.7kcal/mol. Out of all methods, the double hybrid xc

functional B3LYP+XYG3 performs best with a MAE of 0.5kcal/mol and a ME of 1.6kcal/mol.

For neutral AcH, see Figure 4.7(b), the benchmarking process is much more challenging as

three different protonation states are considered, as well as minima that differ in energy by

up to more than 50kcal/mol. Hence, GGA xc functionals are not able to yield MAEs within
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“chemical accuracy”. Best performance is seen for BLYP with a MAE of 1.2kcal/mol and a

ME of 5.2kcal/mol. Meta-GGA xc functionals already show a big improvement with M11-L

giving the best performance with a MAE of 0.6kcal/mol. The composite method PBEh-3c also

yields a small MAE of 0.8kcal/mol while the corresponding ME of 3.7kcal/mol indicates that

larger energetic deviations are possible for individual conformers. Hybrid xc functionals again

perform very well as all MAEs are within 1.0kcal/mol. Best performance is found for M06-2X

with a MAE of 0.3kcal/mol and a ME of 1.1kcal/mol. Out of all methods, best performance is

again found for B3LYP+XYG3 with a MAE of 0.2kcal/mol and a ME of 0.8kcal/mol.

With a single Zn2+ cation present, performance of the methods is comparable to

AcH+−COO – +Zn2+. GGA xc functionals all yield a MAE above 1kcal/mol. In order to reach

“chemical accuracy” one needs to rely on meta-GGA where the SCAN functional yields a MAE

of 0.9kcal/mol. Out of the hybrid xc functionals, PBE0+D3, PBE0+vdWTS, PBE+MBD, M06,

M06+D3, M06-2X, M06-2X+D3, M06-SO, and SCAN0 yield MAEs within 1.0kcal/mol. Out of

all methods, best performance is again found for B3LYP+XYG3 with a MAE of 0.7kcal/mol and

a ME of 1.8kcal/mol.

4.3.6 Considering Calculation Times

For applications, one not only needs to consider the accuracy of a particular method, but

also the required computational costs and times. All FF and semi-empirical calculations

in this work have been laid out on a single CPU core and took between 0.1 s and 0.3 s per

single-point energy evaluation. Timings of these methods are all similar due to the small size

of the benchmark systems. Because of the fast timings of energy evaluations, conventional

FFs are applied if an excessive amount of single-point energy evaluations is required, e.g. for

molecular dynamics simulations or conformational searches. However, problematic is the

lack of well-tested parameterizations for special cases like cations, as seen in this work where

this energy description model was found only acceptable for bare neutral AcH. One should

therefore generally cross-check with other more accurate methods.

Concerning DFT calculations, timings depend on the applied xc functional, used basis sets,

the system, applied convergence criteria and the implementation of the method itself. On

a machine with 32 CPU cores and for the system of AcH(Nδ1)−COOH+Zn2+, it took 40s on

average for a single-point energy calculation including force evaluations with FHI-aims apply-

ing the GGA xc functional PBE, using ���� � basis sets and ������	��
�� settings. Using the

SCAN xc functional and the M11-L meta-GGA xc functional with the same settings took 77s

(without force evaluations) and 107s (including force evaluations) on average, respectively.

Calculations for the two best performing hybrid xc functionals M08-SO and SCAN0 took 848s

(including force evaluations) and 602s (without force evaluations) on average using the same

settings.

However, for most DFT production purposes one would not rely on computationally costly,

yet very accurate, ������	��
�� settings, as done in this work. For standard cases, ��
��
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settings in combination with ���� � basis sets already provide meV-level accurate energy

differences [264], i.e. within 0.02kcal/mol. Indeed, repeating the procedure for the PBE, BLYP,

PBE0, and B3LYP xc functionals but using ����� settings yields virtually identical results. On

a machine with 32 CPU cores and for the system of AcH(Nδ1)−COOH+Zn2+, computational

time gets then reduced from 40s to 24s on average for a single-point energy calculation

including force evaluations applying the GGA xc functionals PBE. Similarly for the hybrid xc

functional PBE0, average calculation times of 738s with �����	
����� settings get reduced

to 726s with ����� settings.

The composite method PBEh-3c that gave MAEs within “chemical accuracy” for the systems

without a Zn2+ cation, took 213s on average for a single-point energy calculation on a single

CPU core using ORCA, which is very moderate in computational costs. The most accurate

method across all systems and protonation states, B3LYP+XYG3, took 792s on average for

a single-point energy evaluation on a machine with 32 CPU cores using FHI-aims. While

MAEs for MP2 are comparable with B3LYP+XYG3 and within “chemical accuracy”, energy

evaluation times are much larger due to the large basis sets required for accurate predictions.

On a machine with 32 CPU cores, it took 2276s on average for an MP2 energy calculation using

ORCA and the ��
������������ basis set.

4.4 Conclusions

The goodness of commonly applied levels of theory, i.e. force fields, semi-empirical methods,

density-functional approximations (DFAs), and wavefunction-based methods were examined

with respect to high-level coupled-cluster calculations. To that end, benchmark systems

consisting of either a bare acetylhistidine or microsolvated with a Zn2+ cation were (i) con-

formationally sampled by performing a global energy minimum search combining both FF

and DFA, and (ii) obtained conformational minima were used for benchmarking against

DLPNO-CCSD(T) single-point energy-calculations.

For bare negatively charged AcH, the obtained energy hierarchies on the hybrid DFA

level showed that the protonation state of AcH(Nδ1)−COO – is energetically favorable com-

pared to AcH(Nε2)−COO – as the respective global minima differ by 14.3kcal/mol in en-

ergy. The situation is reversed with a single Zn2+ cation present: the protonation state of

AcH(Nε2)−COO – +Zn2+ is energetically preferred as the respective global minima differ by

18.2kcal/mol. Considering bare neutral AcH, the two protonation states of AcH(Nδ1)−COOH

and AcH(Nε2)−COOH yield global minima that are similar in energy. With a single Zn2+

cation present, AcH(Nε2)−COO – +Zn2+ is energetically preferred to the other two protonation

states of AcH+−COO – +Zn2+ and AcH(Nδ1)−COO – +Zn2+, as the global minima differ by

16.9kcal/mol and 29.5kcal/mol in energy, respectively.

The benchmarking process, based on single-point energy calculations and assessed by means

of MAEs and MEs, revealed that force fields and semi-empirical methods are generally not

reliable enough for an energetic description of these systems within “chemical accuracy” of
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1kcal/mol. While GGA xc functionals like PBE and BLYP, as well as the composite method

PBEh-3c have problems in their energetic description for systems containing a Zn2+ cation, it

is possible to reach “chemical accuracy” for all systems already using the meta-GGA SCAN

xc functional. Hybrid xc functionals perform generally well with MAEs within 1kcal/mol

for most of them. Out of the hybrid xc functionals, best performance is shown for M06-

SO and SCAN0. Out of all tested methods, the double hybrid xc functional B3LYP+XYG3

resembles the benchmark method DLPNO-CCSD(T) best with a MAE of 0.7kcal/mol and a

ME of 1.8kcal/mol. While MP2 performs similarly as B3LYP+XYG3, computational costs, i.e.

timings, are increased by a factor of 4 in comparison due to the large basis sets required for

accurate results.
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5.1 Motivation

In Chapter 4, the energetics of cation-peptide interactions were investigated and the goodness

of commonly applied theoretical levels of theory were assessed. One major finding was de-

scribed in detail in Section 4.3.4: Conventional FFs showed generally very poor performances

therein. This is of particular interest since computational costs of such empirical potentials

are low, as e.g. described in Subsection 4.3.6, rendering them in principle desirable for tasks

like simulating large realistic biomolecular systems or for large-scale structure searches that re-

quire enormous amounts of single-point energy evaluations. However, the findings described

in Chapter 4 severely limit the applicability of FFs for reliable quantitative predictions. The

question furthermore remains if the discrepancy in the energetic description mainly stems

from the usage of standard FF parameters that have originally been derived using different

systems, or is it the FF formulation of the potential energy term itself that limits an accurate

energetic representation.

Many efforts have been made for deriving general-purpose FF parameters for describing sys-

tems including metal cations. As an example, parameters of the Lennard-Jones 12-6 potential

(see Equation 2.4 in Section 2.2 or Equation 2.13 in Subsection 2.3.1) for alkali and alkaline-

earth metals have already been derived by Åqvist in 1990 using experimental hydration free

energy values [364]. Similarly, Stote and Karplus derived parameters of the Lennard-Jones

12-6 potential for Zn2+ in 1995 [365]. A variety of different approaches for parameterization

for Lennard-Jones and electrostatic interactions with metal ions followed, as for example

summarized in detail in Reference [366]. Almost all these attempts have in common that the

parameterization and testing is done on systems in solution using either explicit or implicit

solvation models, while the focus in this work lies on gas-phase calculations, as laid out in

Section 2.2. Furthermore, the classical modeling of metal ions using bonded models has

been researched already since the 1960s [366], an approach which commonly requires an a

priori definition of bonds involving the metal cation in question. Obviously, such approaches

severely restrict global conformational search methods like the one described in Section 3.3,

independent of their energetic accuracy. In any case, a conventional parameterization ap-

proach is commonly a tedious and time-consuming process [367] and hence generally not

feasible to be undergone by the end-users themselves.

Taking these points and the findings in Chapters 3 and 4 into account, the idea to be able to

adjust parameters of a particular FF for a specific system in question, e.g. a certain peptide-

cation system in the gas phase, becomes appealing. The minimum initial demand shall thereby

be to be able to modify the FF parameters in such a way that the energy hierarchies obtained

using DFT (or any other high-level method) are to be reproduced within a certain threshold,

e.g. within “chemical accuracy” of 1kcal/mol using MAEs introduced in Subsection 4.2.3. One

further important aspect lies on the approach to be rather simplistic in order to be able to be

undergone by the end-users themselves. A framework for a machine learning approach that

aims to fulfill the described task is to be presented in detail in this chapter. In essence, torsional

parameters and (if desired) van der Waals parameters in the potential-energy function Epot of
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a particular FF, here OPLS-AA, are adjusted by simply fitting Epot against high-level energies,

e.g. from DFT calculations, using different regression methods for a rather small subset out

of a large pool of conformers. Because FF parameters are obtained from regression methods

using only the potential energy obtained from DFT for a specific system in question, the set-up

allows for immediate verification of how well the FF formulation itself is able to describe the

potential energy, a venture to be undertaken quantitatively for the system of AcAla2NMe+Na+.

The idea to use a machine-learning approach in order to derive FF parameters “more appro-

priate” for a specific system in question has been intended in the past. Huang and Roux set

up a general method for small molecules that aims to automatically generate parameters of a

FF which potential energy function Epot is similar to the ones of the AMBER and CHARMM

FFs (see Subsection 2.3.1) [368]. A “black box” web server thereof is available [369]. Initial

guesses of the parameters are taken from previously developed FFs, and a variety of ab initio

quantum mechanical calculations like AM1, HF, MP2, and hybrid DFAs is used as target data

when optimizing different objective functions in order to generate optimized FF parameters.

Dihedral parameters are optimized using 1-dimensional dihedral scans and energies of con-

formers calculated from quantum mechanical methods. Li, Roux, and coworkers applied

a machine learning technique based on a genetic algorithm in order to predict force field

parameters using ab initio data from quantum mechanics calculations [370]. The concept

showed promising results when applied for methanol clusters. Fracchia, Barone, and cowork-

ers developed a statistical procedure that aims to optimize parameters of non-bonded FFs of

metal ions in soft matter [371]. Basically, the optimization process is laid out by minimizing

the deviations from ab initio forces and energies by applying Ridge regression [15–17] and

cross-validation techniques. Instead of using a fixed classical FF term (e.g. the Lennard-Jones

12-6 potential), a variety of possible models are tested in a systematic comparative study, thus

effectively suggesting an “optimized form” of the potential energy function for a particular

system in question. For the test case of cations in water, results are promising. Finally, many

more machine learning approaches for describing energetics of molecular systems beyond

the force field description exist, e.g. a machine learning model to predict atomization ener-

gies of organic molecules [372], non-linear dimensionality reduction techniques to classify

molecular structures and map conformational free energies [373–375], as well as neural net-

works and Gaussian approximation potentials to represent multidimensional potential energy

surfaces [376–381], to name but a few.

After laying out in detail the theoretical background as well as the framework and concept

of the approach in Section 5.2, a proof of principle is intended in Section 5.3 using the toy

model of AcAla2NMe, and the more challenging peptide-cation system of AcAla2NMe+Na+ is

tackled.
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5.2 Computational Details and Framework

5.2.1 Functional Form and Parameters of Empirical Force Fields

The description of a conventional empirical FF has already been provided in detail for the

example of OPLS-AA [12–14] in Subsection 2.3.1. Thus, it is only briefly summarized here

in order to highlight the different classes and types of FF parameters that will either be

optimized using different regression models (see Subsection 5.2.2) or for which functions

thereof will serve as descriptors of the model, as laid out in Subsection 5.2.3. As explained in

Subsection 2.3.1, the potential energy E FF
pot(�R

N ) of a conventional empirical FF is given as a

function of positions �R1, . . . ,�RN of the N nuclei of the system. It is commonly written as a sum

of energy terms, each of them corresponding to qualitatively different interactions:

E FF
pot(�R

N ) = Ebonds +Eangles +Etors +EvdW +ECoulomb, (5.1)

where

Ebonded = Ebonds +Eangles +Etors (5.2)

denotes the “bonded” contributions while

Enon-bonded = EvdW +ECoulomb (5.3)

represents the “non-bonded” contributions. The “bonded” terms are of the following form:

Ebonds =
1-2 atoms∑

i< j
K r

i j (ri j − r 0
i j )2, (5.4)

Eangles =
1-3 atoms∑

i< j
K θ

i j (θi j −θ0
i j )2, (5.5)

Etors =
1-4 atoms∑

i< j

{
V i j

1

2
(1+cos(φi j ))+ V i j

2

2
(1−cos(2φi j ))+ V i j

3

2
(1+cos(3φi j ))

}
. (5.6)

The sum in Equation (5.4) is over all 1-2 atoms, i.e. pairs of atoms bonded to each other, while

the sum in Equation (5.5) is over all 1-3 atoms or bond angles, i.e. atoms i and j that are

separated by two bonds. The potential energy of the bonds and angles is approximated as a

harmonic oscillator, i.e. as a quadratic function of the displacement of the bond length ri j

from its reference length r 0
i j , or similarly the bond angle θi j from its reference bond angle

θ0
i j . K r

i j , r 0
i j , K θ

i j , and θ0
i j are empirical parameters that depend on the atom classes of the

participating pairs or triplets of atoms in question. It should be pointed out that the quadratic

form of those terms primarily serves to provide a “basic rigid” structural form, i.e. ensuring

that bonded atoms are always separated with a bond length ri j near its reference length r 0
i j ,

similarly for the bond angle θi j and its reference bond angle θ0
i j . The flexibility of a functional

form that is able to accurately describe energetic properties of different conformers of the

same peptide is mainly aimed to be provided by Equation (5.6), i.e. the “torsional” term
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of the potential energy Etors. The sum is thereby over all 1-4 atoms or torsional angles, i.e.

atoms i and j that are separated by three bonds, and the empirical parameters V i j
1 , V i j

2 , and

V i j
3 depend on the atom classes of the four atoms defining the torsional angle. Note that all

torsional parameters contribute linearly using this functional form, in contrast to e.g. the —

albeit equivalent — functional form used in the description of the AMBER-99 and CHARMM22

FFs, see Equation (2.12).

Non-covalent, i.e. “non-bonded”, inter-atomic Coulomb and vdW interactions are described

by Equations (2.14) and (2.13), respectively, i.e.

ECoulomb = ∑
i< j

qi q j

ri j
fi j , (5.7)

EvdW = ∑
i< j

4εi j

[(σi j

ri j

)12

−
(
σi j

ri j

)6 ]
fi j , (5.8)

where the sum runs over all pairs of atoms i and j . The empirical parameters qi , εi j , and

σi j depend on the atom types of the participating atoms or atom pairs in question. As

already described in Subsection 2.3.1, the 1-2 and 1-3 interactions are considered to be

already implicitly included in their respective “bonded” contributions, and it was found to be

necessary to scale the corresponding 1-4 interactions by a factor of 1
2 [13]. Hence, the scaling

factor fi j is written as

fi j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, for 1-2 and 1-3 atoms,
1
2 , for 1-4 atoms,

1, otherwise.

(5.9)

Since the work here focuses on peptide-cation systems in the gas phase, the “non-bonded”

terms commonly contribute significantly to the total potential energy, as the interactions

between atoms are “undamped” due to the lack of shielding due to solvation. Hence when

adjusting or optimizing parameters, it is a natural choice to first focus on those empirical

parameters included in these terms, namely the εi j and σi j of the vdW term as well as the

products of atomic partial charges qi q j in the Coulomb term. Furthermore, this might also

impact the covalent structure of the peptide, e.g. previous studies have shown that peptide-

cation interactions may enforce non-standard torsions [335, 382]. Finally, with additionally

adding an optimization process for the torsional parameters V i j
1 , V i j

2 , and V i j
3 , the goal is to

be able to yield an accurate yet computationally cheap energetic FF description for a particular

peptide-cation system in question. The concept for that is explained in Subsection 5.2.3 and

depends on the use of regularized linear regression models, hence they are laid out in the

following chapter.
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5.2.2 Regularized Linear Regression: Ridge Regression and LASSO

The work within this chapter relies on regularized linear regression models that in themselves

depend on the common multiple linear regression model. Assuming a data set of sample

size n that consists of collected matched pairs (xi ,Yi ), i = 1, . . . ,n, where xi denotes the input

vector, i.e. the vector xi containing p predictor variables (sometimes also named input or

feature variables) xi l , l = 1, . . . , p, such that

xi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

xi 1

xi 2
...

xi p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (5.10)

and Yi is the i -th output value or response variable, the multiple linear model then specifies a

linear relationship between xi and the expected value E [Yi ] that in turn equals the mean re-

sponse μ(xi ), i.e. E [Yi ] =μ(xi ) =μ(xi 0 = 1, xi 1, xi 2, . . . , xi p ). In other words, the mean response

μ(xi ) =μi is modeled as a linear predictor such that

μi =μ(xi ) = E [Yi ] =β0 +β1xi 1 +β2xi 2 + . . .+βp xi p , i = 1, . . . ,n, (5.11)

where the βk ,k = 0, . . . , p, denote the p +1 linear regression coefficients. Making use of matrix

notation by writing the response vector Y as

Y =

⎛
⎜⎜⎜⎜⎝

Y1

Y2
...

Yn

⎞
⎟⎟⎟⎟⎠ , (5.12)

the vector β containing the regression coefficients as

β=

⎛
⎜⎜⎜⎜⎝
β0

β1
...

βp

⎞
⎟⎟⎟⎟⎠ , (5.13)

and the design matrix X as

X =

⎛
⎜⎜⎜⎜⎝

xᵀ
1

xᵀ
2
...

xᵀ
n

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

1 x11 x12 · · · x1p

1 x21 x22 · · · x2p
...

...
...

. . .
...

1 xn1 xn2 · · · xnp

⎞
⎟⎟⎟⎟⎠ , (5.14)
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Equation (5.11) then translates to

E [Y ] = Xβ, (5.15)

with the individual entries of E [Y ] corresponding to

E [Yi ] =μi =μ(xi ) = xᵀ
i β, i = 1, . . . ,n. (5.16)

The regression coefficients are commonly estimated by employing the method of least

squares [383, 384], that is constructing and minimizing the objective function D, given by

D =
n∑

i=1

[
Yi −xᵀ

i β
]2

=
n∑

i=1

[
Yi −

(
β0 +

p∑
l=1

βl xi l

)]2

,

(5.17)

with respect to the regression coefficients βk ,k = 0, . . . , p. This produces a system of normal

equations [385]

X ᵀXβ= X ᵀY (5.18)

whose solution yields the unique least squares estimators β̂ [386]. Assuming the rank of the

design matrix X equal to p +1 such that (X ᵀX )−1 is well defined, the solution for the least

squares estimators β̂, i.e. the solution of Equation (5.18), is given by

β̂= (X ᵀX )−1X ᵀY . (5.19)

The vector Ŷ containing the fitted values Ŷi , i = 1, . . . ,n, is thus given by

Ŷ = X β̂

= X (X ᵀX )−1X ᵀY .
(5.20)

Finally, the residual sum of squares RSS is written as [385]

RRS =
n∑

i=1

(
Yi − Ŷi

)2

= Y ᵀ (I −X (X ᵀX )−1X ᵀ)Y ,

(5.21)

where I denotes the identity matrix.

In case of high correlations among predictor variables or just a large number of predictors,

say for p � n, the multiple linear regression model may be ill-posed, meaning the matrix

X ᵀX in Equation (5.19) may appear almost singular, often labeled ill-conditioned, hence

resulting in a numerically unstable inverse matrix (X ᵀX )−1 that in turn yields numerically

unstable least squares estimates β̂ [387]. One possibility to account for that is to make use of

regularization [388] or shrinkage regression [389]: By penalizing the regression parameters, i.e.

by artificially shrinking them towards the origin, one aims to stabilize them. Formally, this
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may be achieved by adding a penalty term to the objective function D in Equation (5.17), i.e.

D =
n∑

i=1

[
Yi −

(
β0 +

p∑
l=1

βl xi l

)]2

+F (βo , . . . , p), (5.22)

where F (βo , . . . , p) denotes the Tikhonov factor [390], a positive penalty function on the

regression coefficients βk ,k = 0, . . . , p. A common choice for F employs a quadratic form and

results in the Ridge regression model [15–17], i.e.

D =
n∑

i=1

[
Yi −

(
β0 +

p∑
l=1

βl xi l

)]2

+λ
p∑

l=1
β2

l , (5.23)

where λ denotes a regularization or tuning parameter, and λ ≥ 0. The tuning parameter λ

thereby acts as a Lagrange multiplier within this constrained optimization problem [391].

Thus, equivalently to Equation (5.23), one may re-formulate the problem [392]:

minimize
n∑

i=1

[
Yi −

(
β0 +

p∑
l=1

βl xi l

)]2

subject to
p∑

l=1
β2

l ≤ λ̃. (5.24)

For the sake of simplicity, one may center and scale the predictor variables xi k , i = 1, . . . ,n, k =
0, . . . , p, yielding the so-called z-scores zi k given by [385]

zi k = xi k − x̄k

sk
, with x̄k = 1

n

n∑
i=1

xi k , and sk =
√

1

n

n∑
i=1

(xi k − x̄k )2, (5.25)

with x̄k just denoting the arithmetic mean of the k-th predictor, with sk denoting the corre-

sponding standard deviation. Using this notation, the estimator of β0 is just the arithmetic

mean of the output variables Ȳ = 1
n

∑n
i=1 Yi . Using the centered response variables Ui = Yi − Ȳ ,

the corresponding centered response vector U given by

U =

⎛
⎜⎜⎜⎜⎝

U1

U2
...

Un

⎞
⎟⎟⎟⎟⎠ , (5.26)

the z-scores design matrix Z given by

Z =

⎛
⎜⎜⎜⎜⎝

z11 z12 · · · z1p

z21 z22 · · · z2p
...

...
. . .

...

zn1 zn2 · · · znp

⎞
⎟⎟⎟⎟⎠ , (5.27)
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and the vector β again containing the regression coefficients, i.e.

β=

⎛
⎜⎜⎜⎜⎝
β1

β2
...

βp

⎞
⎟⎟⎟⎟⎠ , (5.28)

the objective function D in Equation (5.23) is simply written in matrix notation as

D = (U −−−Zβ)ᵀ(U −Zβ)+λβᵀβ. (5.29)

Minimizing D yields the normal equations given by [385]

(Z ᵀZ +λI )β= Z ᵀU , (5.30)

whose solution yields the unique estimators β̂. Comparing with Equation (5.18) for the case of

conventional multiple linear regression, the form is the same except a diagonal “ridge” (λI )

has been added to the Z ᵀZ matrix, essentially stabilizing it so effectively to always ensure the

existence of an inverse. Hence, the solution for the estimators β̂ always exists:

β̂= (Z ᵀZ +λI )−1Z ᵀU . (5.31)

Finally, the vector Û containing the Ridge predicted values Ûi , i = 1, . . . ,n, is given by

Û = Z β̂

= Z (Z ᵀZ +λI )−1Z ᵀU .
(5.32)

Obviously, the Ridge estimator is biased. For λ→ 0, the bias vanishes. For λ→∞, the bias is so

large that the estimates shrink to zero. Hoerl and Kennard [17] showed that there always exists

some λ(> 0) such that the residual sum of squares RSS (see Equation (5.21)) is smaller than

for the ordinary least squares estimator. However, λ is commonly unknown a priori because it

depends on the regression coefficients β themselves. In practice, this usually means that one

needs to conduct λ in an exploratory manner. For example, one may simply “train” λ using a

set of training data, i.e. essentially minimizing the RSS with respect to λ without too much

shrinking the regression coefficients β towards the origin. For selecting λ from a single set of

data, different approaches exist, e.g. a standalone estimate [393], a ridge trace [17], or a form

of cross-validation [394].

Instead of the “L2” penalty term in Equation (5.23), one may instead use a “L1” penalty term

in the regularization objective function D, resulting in the LASSO (least absolute shrinkage

and selection operator) regression model [18], i.e.

D =
n∑

i=1

[
Yi −

(
β0 +

p∑
l=1

βl xi l

)]2

+λ
p∑

l=1

∣∣βl
∣∣ . (5.33)
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Similarly to Equation (5.24), one may re-formulate the problem to

minimize
n∑

i=1

[
Yi −

(
β0 +

p∑
l=1

βl xi l

)]2

subject to
p∑

l=1

∣∣βl
∣∣≤ λ̃. (5.34)

In contrast to Ridge regression, there exists no closed-form expression for the estimators β̂.

Instead, a numerical solution is required. The applied form of shrinkage generally yields so-

called sparse solutions, meaning some estimators β̂l , l = 1, . . . , p are explicitly set to zero, mean-

ing that in general only a subset of the original estimators β̂l is yielded from the “L1”penalized

fit. In other words, the LASSO regularization method not only serves as a form of shrinkage

regression, but also as a de facto variable selector, as it completely suppresses the low-impact

predictor variables [395]. Hence, the LASSO regression model is often applied in case of a

large number of predictor variables or overdetermination [385], although Ridge regression

usually yields more predictive capability in case of high multicollinearity among predictor

variables [18].

5.2.3 The “Framework For Adjusting Force Fields Using Regularized Regression”
(FFAFFURR)

A machine-learning approach is intended in order to adjust parameters from an already exist-

ing FF, here OPLS-AA which its functional form has been described in Subsection 5.2.1, such

that the energy hierarchies obtained using DFT (or any other high-level method) are to be re-

produced within a certain threshold, e.g. within “chemical accuracy” of 1kcal/mol using MAEs

introduced in Subsection 4.2.3. This minimum initial demand is just thought to be a “first

stepping stone” when keeping in mind that at some point in the future the approach should

be extended to work not only with conformational energies but also including forces. In fact,

the same argument applies when justifying the usage of the rather rigid functional form of a

conventional FF in the first place, instead of any other functional form probably more suitable

to accurately describe conformational energy hierarchies. Although the (in part) physical

motivation behind the rather simple scheme of conventional FFs might appear appealing, it is

anything but clear if the FF formulation itself is capable of accurately describing the energetics

of conformers. Instead, inaccuracies in the energetic description of a conventional FF for a

particular system are often alluded to insufficient parameterization [396]. An automatized

parameterization approach like the one presented here might help to immediately verify how

well the FF formulation itself is able to describe the conformational energy of conformers, as

FF parameters are obtained from regression methods using only the potential energy obtained

from DFT for a specific system in question.

When setting up the underlying framework, three practical points were taken into consid-

eration: (i) The framework should be sufficiently simple for an end-user to set-up. (ii) It

should be easy to extend for usage with other FF parameters or functional forms. (iii) It should

run without explicitly depending on third-party programs, although it is evident that the FF
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parameters and energies calculated at the DFT level must be read in as input. Similarly, the

output FF parameters should be provided in a way to immediately be usable by a molecular

modeling package. Because the TINKER program was already used extensively in Chapters 3

and 4 of this work, it is a natural choice to focus on this particular software. To be more precise,

in this work version 7.1.2 of the TINKER package is used. On the other hand, input from DFT

calculations are provided using FHI-aims. To summarize, the “Framework For Adjusting Force

Fields Using Regularized Regression” (FFAFFURR)1, written in ������, acts as a “wrapper”

between the molecular modeling package TINKER and the ab initio molecular simulations

package FHI-aims in a sense that output files produced by these programs serve as input in

order to read in all required informations (initial FF parameters, conformational energies, etc.)

for adjusting FF parameters that are then provided as output immediately capable of being

processed further by TINKER.

In the following three subsections, the framework and its underlying approach will be laid out

in detail, in particular input, concept, and output, respectively.

FFAFFURR: Input

Because the goal is to adjust existing parameters of the OPLS-AA FF, it is reasonable to provide

a standardized listing of parameters as input. This is achieved for any system already set-up

with TINKER, e.g. when using the standard OPLS-AA FF parameters that are distributed with

the package, by using the �����	
 tool, i.e. by issuing the following command:

Listing 5.1

1 ������� �� 	�
������� 	�
����
�� � ��� � �������������������������

The ���������	 file thereby denotes the keyword parameter file in TINKER that most impor-

tantly contains the location of the potential energy parameter file, e.g. ������
��� for the

standard OPLS-AA FF distributed with the TINKER package. The �������
	� file is the basic

TINKER coordinate file type. The standardized listing of parameters is redirected into the

�����
������
������������ file that needs to be provided as input to FFAFFURR by placing

it in the same directory as the ������ file ��������
��. In a similar fashion, a standardized

connectivity list for each of the atoms may be generated by issuing the following command:

Listing 5.2

1 ������� �� 	�
������� 	�
����
�� � ��� � ��������������������������	��

As before, the �����
������
���������������� file needs to be provided as input by placing

it in the same directory as the ������ file ��������
��.

Third, the input file �����
������
������������������� contains a list of FHI-aims-specific

1The code is available free of charge and can be downloaded from:
https://github.com/FHIBioGroup/ffaffurr-dev
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output files produced when calculating single-point DFT energies. Obviously, these files must

be produced for a set of conformers that serves as training data.

Finally, the input file �������������	 contains the “switches” that control the behavior of the

framework, e.g. what kind of parameters are to be adjusted or what regression model to use.

Details for the different kinds of FF parameters are provided in the following.

FFAFFURR: Concept of Adjusting the Force Field Parameters

The bonds and angles contributions to the potential energy in the OPLS-AA FF formulation are

given in Equations (5.4) and (5.5), respectively. As laid out in Subsection 5.2.1, their quadratic

form primarily serves to provide the peptide in question its “basic rigid” structural form, as

opposed to accurately describe energetic properties of the molecular system. This is why

the “spring” parameters K r
i j and K θ

i j are unaltered in this study, while the focus lies on the

torsional and non-bonded parameters. However, the equilibrium parameters r 0
i j and θ0

i j

between pairs or triplets of atoms may be adjusted by simply averaging over all corresponding

atomic pairwise distances of the same pair or triplet of atom classes over all FHI-aims-specific

input files. Obviously, this is only useful if the input structures were geometry optimized

beforehand, i.e. they must be situated in a local minimum on the PES calculated at the DFT

level of theory.

The Coulomb contribution to the potential energy is given in Equation (5.7). Within

FFAFFURR, it is possible to estimate the atomic partial charge parameters qi by assigning

them to either Hirshfeld charges or ESP charges calculated with FHI-aims. Hirshfeld atomic

charges are thereby derived based on the Hirshfeld partitioning scheme [223–225] introduced

in Subsection 2.3.6. The Hirshfeld atomic charge qi of atom i is simply given by

qi = Zi −
∫

ρi (�r )d�r , (5.35)

where Zi denotes the corresponding atomic number, and ρi (�r ) is the associated electron

density of atom i given by

ρi (�r ) = wi (�r )ρ(�r ), (5.36)

where ρ(�r ) denotes the total electron density and wi (�r ) is the Hirshfeld atomic partitioning

weight defined in Equation (2.130). ESP charges, on the other hand, are commonly derived

from ab initio or semi-empirical calculations by fitting the partial charges to reproduce the elec-

trostatic potential (ESP) [397–399]. Within FHI-aims, a simple method is implemented [400]:

The electrostatic potential VDFT is evaluated at a sufficiently high number of grid points within

a defined a spatial region, i.e. at a particular grid point�r , the electrostatic potential VDFT(�r ) is

calculated as

VDFT(�r ) =∑
i

Zi∣∣�r −�Ri
∣∣ −

∫
ρ(�r ′)
|�r −�r ′| d�r ′, (5.37)

where the sum in the first term is over all atoms i with their corresponding atomic numbers
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H H

O
vdw radius
esp_min x vdw radius
esp_max x vdw radius
selected volume

Figure 5.1 – Schematic illustration of the selected volume that confines the grid points at
which the electrostatic potential (ESP) is evaluated. Reproduced from Reference [400] with
permission from B. Bieniek.

Zi and positions �Ri . The second term is just the Hartree potential from Equation (2.83). The

spatial region is thereby defined in terms of multiples of the vdW radii of the atoms, i.e. all grid

points are situated inside spheres confined by minimal and maximal multiples of the vdW radii.

The situation is depicted in Figure 5.1. Values of the vdW radii were taken from previously

tabulated data [39, 401]. Within this work, the default minimal and maximal multiples of the

vdW radii of 5 and 8 are used throughout. When expressing the electrostatic potential (ESP)

VESP in terms of atomic partial charges, i.e. the ESP charges qi , located at the atomic positions
�Ri as

VESP(�r ) =∑
i

qi∣∣�r −�Ri
∣∣ , (5.38)

one may evaluate the ESP charges qi using a simple least-squares fit. The constraint of

constant total charge qtot =∑
i qi is thereby taken into account by applying the method of

Lagrange multipliers [115] to minimize the objective function

F =
grid points∑

k
(VDFT(�rk )−VESP(�rk ))2 −λq

(
qtot −

∑
i

qi

)2

. (5.39)

Independently of using the Hirshfeld partitioning scheme or the ESP method, the final atomic

partial charges are derived by averaging over all corresponding atoms of the same atom type

and over all input structures provided with the FHI-aims-specific input files.

The vdW contribution to the potential energy is given in Equation (5.8). Using FFAFFURR, it is

possible to estimate the interatomic pairwise σi j parameters by using the atomic Hirshfeld

partitioning scheme that has already been used in the Tkatchenko-Scheffler vdWTS model

explained in Subsection 2.3.6. Applying the concept of van der Waals radii, one may write an
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equivalent formulation of Equation (5.8), namely

EvdW = ∑
i< j

εi j

[(Rmin
i j

ri j

)12

−2

(
Rmin

i j

ri j

)6 ]
fi j , (5.40)

where the atomic distance Rmin
i j at which the vdW potential is at its minimum is just estimated

as the sum of the corresponding effective atomic van der Waals radii that in turn are expressed

in Equation (2.128). Comparing Equations (5.8) and (5.40) then immediately yields

σi j = 2−1/6Rmin
i j . (5.41)

In order to adjust the vdW parameters εi j such that the form of the FF potential more ac-

curately describes conformational energy hierarchies obtained from DFT calculations, it is

intended to make use of regression models laid out in Subsection 5.2.2. Assuming a training

set of conformers of sample size n, the idea is to use DFT calculations as target data. In

particular, the energetic dispersion correction E vdW,DFT that is evaluated a posteriori, i.e. after

the self-consistent Kohn-Sham treatment in DFT (see Equation (2.119)), may serve as an

appropriate response. As laid out in detail in Subsection 2.3.6, two a posteriori vdW schemes

are implemented in FHI-aims, namely the pairwise Tkatchenko-Scheffler vdWTS model and

the many-body dispersion scheme MBD. It is possible to adjust the vdW parameters εi j using

either one of the two schemes in FFAFFURR as target data. In other words, the response vector

in Equation (5.12) is just

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y1
...

Yĩ
...

Yn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

E vdW,DFT
1

...

E vdW,DFT
ĩ

...

E vdW,DFT
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.42)

where E vdW,DFT
ĩ

denotes the a posterirori evaluated energetic vdW contribution (using either

the vdWTS or MBD model) of conformer ĩ . The vector β containing the regression coefficients

given in Equation (5.13) is then written as

β=

⎛
⎜⎜⎜⎜⎝
β0

β1

β2
...

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

E offset

ε11

ε12
...

⎞
⎟⎟⎟⎟⎠ , (5.43)

i.e. the vector β contains all possible εi j parameters as regression coefficients attributed to

their individual pairs of types of atoms within the description of the OPLS-AA FF, and the

“intercept” β0 is just an arbitrary energetic potential offset E offset. Taking into account the

formulation of the vdW contribution to the potential energy in the OPLS-AA FF description

given in Equation (5.8), the vector xĩ containing the predictor variables (see Equation (5.10))
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is immediately written as

xĩ =

⎛
⎜⎜⎜⎜⎝

1

xĩ 1

xĩ 2
...

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1(∑
11

4
[(

σ11
r11

)12 −
(
σ11
r11

)6 ]
f11

)
ĩ(∑

12
4
[(

σ12
r12

)12 −
(
σ12
r12

)6 ]
f12

)
ĩ

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.44)

where the sums indicate summations over all pairs of atoms with the same pairs of atom types.

Using these definitions, the approach for estimating the vdW parameters εi j using different

regression models is then straightforward and has already been laid out in Subsection 5.2.2

where the objective functions to minimize for conventional multiple linear regression, Ridge

regression, and the LASSO have been given in Equations (5.17), (5.23), and (5.33), respectively.

Within the FFAFFURR framework, calculations using the different regression models are laid

out by making use of Python’s ���������	
� [402] library. Obviously, the choice of using a

posteriori calculated energetic vdW contributions E vdW,DFT as target data is kind of arbitrary,

although its availability as a separate term to the total energy is an appealing feature. However,

as explained in Subsection 2.3.6, the term does depend on the specific xc functional used in

the DFT calculation, as the short-range region is mostly described by the underlying DFA. For

example, in the vdWTS model this is intended to be accounted for by using the Fermi-type

damping function given in Equation (2.127). While the scaling factor fi j (see Equation (5.9))

within the description of the OPLS-AA FF might in part resemble a similar behavior, one should

always be aware of this discrepancy between the different formulations and applied DFAs. Of

course, in principle other calculated energies, instead of E vdW,DFT, may also be used as target

values, e.g. the total DFT energy E tot,DFT. In that case, the response entering the response

vector in Equation (5.42) would be a “hypothetical” vdW contribution Ẽ vdW,DFT derived from

the calculated total DFT energy E tot,DFT, i.e.

Ẽ vdW,DFT = E tot,DFT −E Coulomb,FF −E tors,FF −E angles,FF −E bonds,FF, (5.45)

where the individual FF contributions are given in Equations (5.7), (5.6), (5.5), and (5.4).

The torsions contribution to the potential energy is given in Equation (5.6). Using an equivalent

approach as before, one may estimate the parameters V i j
1 , V i j

2 , and V i j
3 by again making use

of the different regression models laid out in Subsection 5.2.2. To that end, the calculated total

DFT energy E tot,DFT may again serve as target data. The response vector in Equation (5.12) is

written as

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y1
...

Yĩ
...

Yn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ẽ torsions,DFT
1

...

Ẽ torsions,DFT
ĩ

...

Ẽ torsions,DFT
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.46)
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where Ẽ torsions,DFT
ĩ

denotes the “hypothetical” torsions contribution of conformer ĩ derived

from the calculated total DFT energy E tot,DFT, i.e.

Ẽ torsions,DFT = E tot,DFT −E Coulomb,FF −E vdW,FF −E angles,FF −E bonds,FF, (5.47)

where the individual FF contributions are given in Equations (5.7), (5.8), (5.5), and (5.4). The

vector β containing the regression coefficients given in Equation (5.13) is written as

β=

⎛
⎜⎜⎜⎜⎝
β0

β1

β2
...

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E offset

V 11
1

V 11
2

V 11
3

V 12
1

V 12
2

V 12
3
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.48)

i.e. the vector β contains all possible V i j
m ,m = 1,2,3, parameters as regression coefficients

attributed to their individual pairs of classes of atoms within the description of the OPLS-AA

FF, and the “intercept” β0 is just an arbitrary energetic potential offset E offset. Taking into

account the formulation of the torsional contribution to the potential energy in the OPLS-AA

FF description given in Equation (5.6), the vector xĩ containing the predictor variables (see

Equation (5.10)) is immediately written as

xĩ =

⎛
⎜⎜⎜⎜⎝

1

xĩ 1

xĩ 2
...

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1(∑
11

1
2 (1+cos(φ11))

)
ĩ(∑

11

1
2 (1−cos(2φ11))

)
ĩ(∑

11

1
2 (1+cos(3φ11))

)
ĩ(∑

12

1
2 (1+cos(φ12))

)
ĩ(∑

12

1
2 (1−cos(2φ12))

)
ĩ(∑

12

1
2 (1+cos(3φ12))

)
ĩ

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.49)

where the sums indicate summations over all pairs of 1-4 atoms with the same individual

atom classes for all four atoms involved in the torsion. As before, using these definitions the

approach for estimating the torsions parameters V i j
m ,m = 1,2,3, using different regression

models is straightforward and has already been laid out in Subsection 5.2.2 where the objective

functions to minimize for conventional multiple linear regression, Ridge regression, and the

LASSO have been given in Equations (5.17), (5.23), and (5.33), respectively.
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Figure 5.2 – (a) Structural formula of AcAla2NMe. (b) Energy hierarchy of conformers calcu-
lated at the PBE+vdWTS DFT level. (c) The conformer with lowest energy is illustrated.

FFAFFURR: Output

After having adjusted the FF parameters of choice using different methods described above, a

TINKER-specific potential energy parameter file named �������������		
�	� is written out

and may be immediately used for further calculations.

5.3 Results

A proof of principle of the method is intended using the toy model of AcAla2NMe in the gas

phase. The structural formula of the peptide is provided in Figure 5.2(a).

In order to yield a set of conformers that may be used as training or test data, a conformational

search algorithm equivalent to the one laid out in Section 3.3 is undergone. First, a global con-

formational search explained in Subsection 2.3.1 is performed at the FF level using the original

OPLS-AA FF formulation and parameters. To that end, the basin-hopping approach described

in Section 2.4 is applied using the ���
 program of the TINKER program. All torsional modes

are thereby taken into consideration and default search parameters are used, i.e. an energy

threshold for local minima of 100kcal/mol and a convergence criterion for local geometry

optimizations of 0.0001kcal/mol ·Å. In total 311 conformers were found. All conformers are

then geometry optimized at the DFT level using FHI-aims, more precisely at the PBE+vdWTS

level using ���	 � basis sets and ����� settings. Relaxation is accomplished using a trust

radius method version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization algo-

rithm [338]. After convergence, a clustering scheme is applied using simple root-mean-square

deviations (RMSD) of atomic positions in order to rule out duplicates. Hierarchical clustering

is thereby achieved by applying the Unweighted Pair Group Method with Arithmetic Mean

(UPGMA) [340] method implemented in Python’s ����� [341] library. Following that, further

relaxation is accomplished at the PBE+vdWTS level using ���	 � basis sets and ����� settings.

After clustering, this results in 231 conformers. The corresponding energy hierarchy and a

depiction of the lowest-energy conformer are shown in Figures 5.2(b) and (c), respectively.
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Chapter 5. Force Field Parameterization Using Regularized Linear Regression

Table 5.1 – Summary of chemical symbols, TINKER-specific symbols, atom types, and atom
classes of the atoms of the system of AcAla2NMe using the standard notation of the OPLS-AA
FF file distributed with the TINKER package.

Atom number Chemical symbol TINKER-specific symbol Atom type Atom class
1 C CT 80 13
2 C C 177 3
3 O O 178 4
4 H HC 85 46
5 H HC 85 46
6 H HC 85 46
7 N N 180 24
8 C CT 166 13
9 C C 177 3

10 O O 178 4
11 H H 183 45
12 H HC 85 46
13 C CT 80 13
14 H HC 85 46
15 H HC 85 46
16 H HC 85 46
17 N N 180 24
18 C CT 166 13
19 C C 177 3
20 O O 178 4
21 H H 183 45
22 H HC 85 46
23 C CT 80 13
24 H HC 85 46
25 H HC 85 46
26 H HC 85 46
27 N N 180 24
28 C CT 184 13
29 H H 183 45
30 H HC 85 46
31 H HC 85 46
32 H HC 85 46

Out of the 231 conformers, half of them, i.e. 115, were selected at random for the set of

training data, leaving 116 conformers for the set of test data. In order to compare the energetic

performances between calculations at the FF level and the DFT level mean absolute errors

(MAEs) and maximum errors (MEs) are again used as a quality measure, as explained in

Subsection 4.2.3. Using the test set of conformers and the original parameters of the OPLS-AA

FF that are distributed with the TINKER package yields a MAE of 2.55kcal/mol and a ME of

10.45kcal/mol when compared to the PBE+vdWTS level, which is in accordance to what one

would expect when taking into considerations the findings in Chapter 4. Table 5.1 summarizes

chemical symbols, TINKER-specific symbols, atom types, and atom classes of the atoms of

AcAla2NMe using the standard notation of the OPLS-AA FF file distributed with the TINKER

package. The atom types are illustrated for their respective atoms in Figure 5.3.

Because all input structures of the training set (as well as the test set) were geometry opti-

mized beforehand at the PBE+vdWTS level as explained above, the equilibrium parameters r 0
i j
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Figure 5.3 – Illustration of the atom types according to the standard notation of the OPLS-AA
FF file distributed with the TINKER package for the system of the system of AcAla2NMe.

and θ0
i j between pairs or triplets of atoms are adjusted by averaging over all corresponding

atomic pairwise distances and angles of the same pair or triplet of atom classes over all input

files, as explained in Subsection 5.2.3. Hence, the energetic contributions from the bonds

and angles contributions in Equations (5.4) and (5.5) should diminish as the minima of the

terms of quadratic form are shifted towards the average of the “real” distances and angles.

Indeed, already this simple adjustment yields a decrease in the MAE by 0.75kcal/mol to just

1.81kcal/mol and a ME of 8.93kcal/mol for the test set. It is interesting to note that the actual

values of r 0
i j are not altered by more than 0.03Å, and the actual values of θ0

i j are not altered by

more than 5.3°. Adjusting only r 0
i j in the same manner yields a MAE of 2.25kcal/mol and a ME

of 10.00kcal/mol. Modifying only θ0
i j in the same manner yields a MAE of 1.88kcal/mol and

a ME of 9.26kcal/mol. This strongly indicates that the quadratic form of the corresponding

potential energy terms is generally not suitable to accurately describe energetics of conformers

that do not lie in a minimum on the PES, especially considering the “angles” contributions.

A summary of all values of empirical parameters r 0
i j and θ0

i j is provided in Table 5.2. The

adjusted values of r 0
i j and θ0

i j will be used going forward.

Estimating the empirical partial charge parameters qi from the training set as explained in

Subsection 5.2.3 using Hirshfeld charges and ESP charges yields a MAE of 2.62kcal/mol (ME of

10.02kcal/mol) and a MAE of 2.93kcal/mol (ME of 10.17kcal/mol), respectively. A summary

of all values of empirical parameters qi is provided in Table 5.3. The large error deviations

indicate that the new charge parameter estimates are clearly not suitable to accurately de-

scribe the conformational energy hierarchy of the test set. The reason for that is not clear, but

improvement could be achieved in some studies by simply applying scaling factors for the

electrostatic interactions [403]. Figure 5.4 shows obtained MAEs and MEs when multiplying

the obtained Hirshfeld and ESP partial charges with scaling factors from 0.50 to 2.00. Interest-

ingly, the “optimal” scaling factor for Hirshfeld charges is found to be 1.55 resulting in a MAE

of 2.00kcal/mol while the “optimal” scaling factor for ESP charges is found to be 0.75 resulting

in a MAE of 2.12kcal/mol. However, performance is still significantly worse in comparison

to using the partial charges of the original OPLS-AA FF. The distributions of Hirshfeld and
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Chapter 5. Force Field Parameterization Using Regularized Linear Regression

Table 5.2 – Original OPLS-AA FF parameters r 0
i j and θ0

i j and their adjusted counterparts for the
system of AcAla2NMe obtained by averaging over all corresponding atomic pairwise distances
and angles of the same pair or triplet of atom classes over all input files.

Atom class pair
r 0

i j [Å] r 0
i j [Å]

Atom class triplet
θ0

i j [°] θ0
i j [°]

(original FF) (adjusted FF) (original FF) (adjusted FF)
(3, 4) 1.2290 1.2298 (4, 3, 13) 120.4000 120.8596

(3, 13) 1.5220 1.5374 (4, 3, 24) 122.9000 121.8180
(3, 24) 1.3350 1.3681 (13, 3, 24) 116.6000 117.2861

(13, 13) 1.5290 1.5329 (3, 13, 13) 111.1000 111.8153
(13, 24) 1.4490 1.4590 (3, 13, 24) 110.1000 111.2413
(13, 46) 1.0900 1.0975 (13, 13, 24) 109.7000 112.3284
(24, 45) 1.0100 1.0167 (3, 13, 46) 109.5000 108.5675

(13, 13, 46) 110.7000 109.9970
(24, 13, 46) 109.5000 108.9251
(46, 13, 46) 107.8000 108.4278
(3, 24, 13) 121.9000 127.2405
(3, 24, 45) 119.8000 114.6307

(13, 24, 45) 118.4000 116.7539

Table 5.3 – Original OPLS-AA FF parameters qi and their adjusted counterparts for the system
of AcAla2NMe obtained by averaging over all Hirshfeld or ESP charges of the same atom type
over all input files.

Atom type
qi qi (Hirshfeld) qi (ESP)

(original FF) (adjusted FF) (adjusted FF)
80 −0.1800 −0.1143 −0.5650
85 0.0600 0.0461 0.1257

166 0.1400 0.0156 0.4510
177 0.5000 0.1487 0.4447
178 −0.5000 −0.2701 −0.5127
180 −0.5000 −0.0928 −0.4344
183 0.3000 0.1218 0.2734
184 0.0200 −0.0559 −0.2803

ESP charges over the training set of conformers are presented in Figure 5.5. While Hirshfeld

charges are rather well-defined over all atom types of the system, the same statement does not

hold true concerning ESP charges of “buried” atoms, i.e. saturated carbons (atom types 80,

166, 177, 184) and nitrogens (atom type 180), which indicates a drawback of the method that

has already been discussed elsewhere [404–406]. Going forward, the empirical partial charge

parameters of the original OPLS-AA FF will be used.

Estimating the empirical vdW parameters σi j by using the atomic Hirshfeld partitioning

scheme as explained in Subsection 5.2.3 yields a decrease in the MAE by 0.04kcal/mol to

1.77kcal/mol and a ME of 5.91kcal/mol for the test set. A summary of all values of empirical
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a) Scaling of Hirshfeld charges

b) Scaling of ESP charges
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Figure 5.4 – Obtained MAEs (dark-gray) and MEs (light-gray) for the test set of AcAla2NMe
when multiplying the obtained Hirshfeld and ESP partial charges with scaling factors.

parameters σi j is provided in Table 5.4.

Because the energetic dispersion corrections are quantitatively small when compared to the

total DFT energy of a system of small size like AcAla2NMe, one must expect only small im-

provements in the energetic description of the FF when estimating empirical vdW parameters

εi j by using regression models with a posteriori calculated vdW contributions as target data,

as explained in Subsection 5.2.3. Applying conventional multiple linear regression with the

pairwise Tkatchenko-Scheffler vdWTS energy E vdWTS,DFT taken as response data, one further

decreases the MAE by 0.05kcal/mol to 1.72kcal/mol and yields a ME of 5.54kcal/mol for the

test set. A summary of all values of empirical parameters εi j is provided in Table 5.5. Because

no restrictions have been made for the empirical parameters εi j , a few estimated parameters

become negative (e.g. for atom type pair (166,166) or (180,184)) which obviously contradicts

the physical nature of the Lennard-Jones 12-6 potential that requires positive values of εi j .

In addition, some values become rather large when compared to their counterparts of the

original OPLS-AA, see e.g. for atom type pair (80,80). Because one might suspect overdeter-

mination due to the large number of predictor variables (the εi j ’s) LASSO regression instead

of conventional multiple linear regression is laid out with E vdWTS,DFT again taken as response

data. To that end, 50 logarithmically equidistantly distributed values in the range of 0.0001
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Chapter 5. Force Field Parameterization Using Regularized Linear Regression

Atom type 80 (carbon CT)

Atom type 85 (hydrogen HC)

Atom type 166 (carbon CT)

Atom type 177 (carbon C)

Atom type 178 (oxygen O)

Atom type 180 (nitrogen N)

Atom type 183 (hydrogen H)

Atom type 184 (carbon CT)
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Figure 5.5 – Distributions of Hirshfeld (red) and ESP (gray) charges over the training set of
conformers for the system of AcAla2NMe. For visibility purposes, the frequencies of the ESP
charges have been scaled by a factor of 3. Vertical blue lines denote partial charge parameters
of the original OPLS-AA FF while vertical black lines denote the average of the ESP values
(compare with Table 5.3).

to 4 have been applied for the regularization parameter λ. Figure 5.6 shows the respectively

obtained regression coefficients εi j , the residual sum of squares RSS (see Equation (5.21)),

and calculated MAEs and MEs for the test set. As expected, the MAE for the test set is rather

unperturbed due to the small influence that the dispersion correction contributes to the total

energy of a system of such small size. For large λ, the bias is so large that the estimates shrink

to zero. For λ→ 0, the bias vanishes and the limit of conventional multiple linear regression

is yielded with results described above. An “optimal” value of λ could be considered to lie

in the range 0.01 � λ� 0.1. Indeed, for λ= 0.018 and restricting the regression coefficients

εi j to non-negative values, the ME for the test set decreases by 0.37kcal/mol to 5.17kcal/mol,
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and a MAE of 1.69kcal/mol is yielded. A summary of all corresponding values of empirical

parameters εi j is provided in Table 5.6.

Estimating the torsions empirical parameters V i j
1 , V i j

2 , and V i j
3 from the training set using

conventional multiple linear regression with the total DFT energy of the PBE+vdWTS model

taken as response data, as explained in Subsection 5.2.3, yields a MAE of 0.88kcal/mol and

a ME of 3.20kcal/mol. A summary of values of empirical parameters V i j
1 , V i j

2 , and V i j
3 is

provided in Table 5.7. Note that only those parameters have been taken into account that

were already non-zero in the original OPLS-AA FF description. Some estimated values are

rather large (e.g. for atom class quadruplet (13,3,24,13) or (4,3,24,13)), thus hinting at a

ill-conditioned solution. Hence, Ridge regression instead of conventional multiple linear

regression is laid out with the total DFT energy again taken as response data. To that end,

50 logarithmically equidistantly distributed values in the range of 0.0001 to 4 have been

again applied for the regularization parameter λ. Figure 5.7 shows the respectively obtained

regression coefficients V i j
1 , V i j

2 , and V i j
3 , the residual sum of squares RSS (see Equation (5.21)),

and calculated MAEs and MEs for the test set. Observing the smooth behavior of the regression

coefficients with respect to varying the regularization parameter λ, it is clear that the solution

is not ill-conditioned. Applying a regularization here just means to “artificially” shrink the

torsional parameter estimates towards the origin, thus resulting in no further improvement

of the energetic FF description, as seen by the nearly constant MAEs and MEs for the test

set over the whole λ range. Taking into consideration the rather arbitrary restriction that

until now only those parameters have been taken into account that were already non-zero

in the original OPLS-AA FF description, one may repeat the procedure but estimating all

possible parameters V i j
1 , V i j

2 , and V i j
3 using conventional multiple linear regression with the

total DFT energy taken as response data. Doing so yields a MAE of 0.75kcal/mol and a ME

of 2.87kcal/mol. A summary of values of empirical parameters V i j
1 , V i j

2 , and V i j
3 is provided

in Table 5.8. While the MAE for the test set is well within “chemical accuracy” of 1kcal/mol,

many estimated parameters become very large, e.g. for the atom class quadruplet (4,3,24,45)

or (13,3,24,45). Due to the large number of predictor variables and the possible likelihood of

overdetermination, the LASSO regression model appears to be appealing for the problem in

question. Indeed, already for regularization parameters λ� 0.001 the solution is significantly

stabilized without sacrificing energetic performance as seen by the nearly unfazed MAE for

the test set presented in Figure 5.8, where again obtained regression coefficients V i j
1 , V i j

2 , and

V i j
3 , the residual sum of squares RSS, and calculated MAEs and MEs for the test set are shown.

E.g. for λ= 0.0017, a MAE of 0.76kcal/mol and a ME of 2.81kcal/mol is yielded. A summary of

the corresponding empirical parameters V i j
1 , V i j

2 , and V i j
3 is provided in Table 5.9.

In summary, by estimating different empirical FF parameters using different adjustment

models, it is possible to reach a mean energetic description of the test set of hierarchical

minima on the PES for the simple system of AcAla2NMe well within “chemical accuracy” of

1kcal/mol. The prime reason for this approach to find success for this simple system is found

in the “flexibility” of the torsional contributions to the energetic FF description in terms of

their predictive ability to describe energetic changes in the molecule, hence why the approach
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Table 5.4 – Original OPLS-AA FF parameters σi j and their adjusted counterparts for the
system of AcAla2NMe obtained by the atomic Hirshfeld partitioning scheme as explained in
Subsection 5.2.3.

Atom type pair
σi j [Å] σi j [Å]

Atom type pair
σi j [Å] σi j [Å]

(original FF) (adjusted FF) (original FF) (adjusted FF)
(80, 80) 3.5000 2.9424 (166, 177) 3.6228 3.0162
(80, 85) 2.9580 2.6568 (166, 178) 3.2187 2.9086

(80, 166) 3.5000 2.9758 (166, 180) 3.3727 2.9126
(80, 177) 3.6228 2.9828 (166, 184) 3.5000 2.9632
(80, 178) 3.2187 2.8752 (177, 177) 3.7500 3.0233
(80, 180) 3.3727 2.8792 (177, 178) 3.3317 2.9157
(80, 184) 3.5000 2.9297 (177, 180) 3.4911 2.9196
(85, 85) 2.5000 2.3712 (177, 184) 3.6228 2.9702

(85, 166) 2.9580 2.6902 (178, 178) 2.9600 2.8081
(85, 177) 3.0619 2.6972 (178, 180) 3.1016 2.8120
(85, 178) 2.7203 2.5896 (178, 184) 3.2187 2.8626
(85, 180) 2.8504 2.5936 (180, 180) 3.2500 2.8159
(85, 184) 2.9580 2.6441 (180, 184) 3.3727 2.8665

(166, 166) 3.5000 3.0092

Table 5.5 – Original OPLS-AA FF parameters εi j and their adjusted counterparts for the system
of AcAla2NMe obtained by using conventional multiple linear regression with the pairwise

Tkatchenko-Scheffler vdWTS energy E vdWTS,DFT taken as response data, as explained in Sub-
section 5.2.3.

Atom type pair
εi j [kcal/mol] εi j [kcal/mol]

Atom type pair
εi j [kcal/mol] εi j [kcal/mol]

(original FF) (adjusted FF) (original FF) (adjusted FF)
(80, 80) 0.0660 1.0356 (166, 177) 0.0832 0.4336
(80, 85) 0.0445 −0.0083 (166, 178) 0.1177 0.0556

(80, 166) 0.0660 0.0626 (166, 180) 0.1059 0.2985
(80, 177) 0.0832 0.4963 (166, 184) 0.0660 0.0384
(80, 178) 0.1177 0.1748 (177, 177) 0.1050 0.2167
(80, 180) 0.1059 0.3425 (177, 178) 0.1485 0.0160
(80, 184) 0.0660 0.5769 (177, 180) 0.1336 0.1229
(85, 85) 0.0300 0.0005 (177, 184) 0.0832 0.8924

(85, 166) 0.0445 0.0161 (178, 178) 0.2100 0.2931
(85, 177) 0.0561 0.0072 (178, 180) 0.1889 0.1011
(85, 178) 0.0794 0.0085 (178, 184) 0.1177 0.1389
(85, 180) 0.0714 −0.0009 (180, 180) 0.1700 0.1517
(85, 184) 0.0445 0.1027 (180, 184) 0.1059 −0.0683

(166, 166) 0.0660 −0.2122
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Figure 5.6 – Estimated regression coefficients εi j (bottom), the residual sum of squares RSS
(middle), and calculated MAEs and MEs (top) for the test set of AcAla2NMe obtained by using

LASSO regression with the pairwise Tkatchenko-Scheffler vdWTS energy E vdWTS,DFT taken as
response data.

Table 5.6 – Original OPLS-AA FF parameters εi j and their adjusted counterparts for the system
of AcAla2NMe obtained by using LASSO regression (λ= 0.018) with the pairwise Tkatchenko-

Scheffler vdWTS energy E vdWTS,DFT taken as response data, as explained in Subsection 5.2.3.

Atom type pair
εi j [kcal/mol] εi j [kcal/mol]

Atom type pair
εi j [kcal/mol] εi j [kcal/mol]

(original FF) (adjusted FF) (original FF) (adjusted FF)
(80, 80) 0.0660 0.2618 (166, 177) 0.0832 0.3289
(80, 85) 0.0445 0.0912 (166, 178) 0.1177 0.1094

(80, 166) 0.0660 0.1253 (166, 180) 0.1059 0.1687
(80, 177) 0.0832 0.4133 (166, 184) 0.0660 0.0000
(80, 178) 0.1177 0.0000 (177, 177) 0.1050 0.1012
(80, 180) 0.1059 0.1424 (177, 178) 0.1485 0.0382
(80, 184) 0.0660 0.0697 (177, 180) 0.1336 0.2685
(85, 85) 0.0300 0.0000 (177, 184) 0.0832 0.4638

(85, 166) 0.0445 0.1223 (178, 178) 0.2100 0.0000
(85, 177) 0.0561 0.0206 (178, 180) 0.1889 0.1103
(85, 178) 0.0794 0.0000 (178, 184) 0.1177 0.0000
(85, 180) 0.0714 0.0420 (180, 180) 0.1700 0.2140
(85, 184) 0.0445 0.1912 (180, 184) 0.1059 0.0000

(166, 166) 0.0660 0.0000
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Table 5.7 – Original OPLS-AA FF parameters V i j
1 , V i j

2 , and V i j
3 as well as their adjusted counter-

parts for the system of AcAla2NMe obtained by using conventional multiple linear regression
with the total DFT energy of the PBE+vdWTS model taken as response data, as explained in
Subsection 5.2.3. Here, only those parameters have been taken into account that were already
non-zero in the original OPLS-AA FF description.

Atom class V i j
1 [kcal/mol] V i j

1 [kcal/mol] V i j
2 [kcal/mol] V i j

2 [kcal/mol] V i j
3 [kcal/mol] V i j

3 [kcal/mol]
quadruplet (original FF) (adjusted FF) (original FF) (adjusted FF) (original FF) (adjusted FF)
(24,3,13,13) 1.173 2.378 0.189 0.001 −2.200 −1.463
(24,3,13,24) 1.816 1.673 1.222 2.681 1.581 0.721
(13,3,24,13) 2.300 2.964 6.089 −12.728 — —
(3,13,24,3) −2.365 1.146 0.912 −0.771 −0.850 0.026
(4,3,24,13) — — 6.089 15.589 — —
(4,3,24,45) — — 4.900 −3.565 — —

(13,3,24,45) — — 4.900 −2.884 — —
(13,13,24,3) — — 0.462 0.573 — —
(3,13,13,46) — — — — −0.100 3.542

(24,13,13,46) — — — — 0.464 8.580
(46,13,13,46) — — — — 0.300 −9.084
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Figure 5.7 – Estimated regression coefficients V i j
1 , V i j

2 , and V i j
3 (bottom), the residual sum

of squares RSS (middle), and calculated MAEs and MEs (top) for the test set of AcAla2NMe
obtained by using Ridge regression with the total DFT energy taken as response data. Here,
only those parameters have been taken into account that were already non-zero in the original
OPLS-AA FF description.
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5.3. Results

Table 5.8 – Original OPLS-AA FF parameters V i j
1 , V i j

2 , and V i j
3 as well as their adjusted counter-

parts for the system of AcAla2NMe obtained by using conventional multiple linear regression
with the total DFT energy of the PBE+vdWTS model taken as response data, as explained in
Subsection 5.2.3.

Atom class V i j
1 [kcal/mol] V i j

1 [kcal/mol] V i j
2 [kcal/mol] V i j

2 [kcal/mol] V i j
3 [kcal/mol] V i j

3 [kcal/mol]
quadruplet (original FF) (adjusted FF) (original FF) (adjusted FF) (original FF) (adjusted FF)
(24,3,13,13) 1.173 1.648 0.189 −0.269 −1.200 −1.476
(24,3,13,24) 1.816 1.529 1.222 1.739 1.581 0.883
(4,3,24,13) 0.000 148.170 6.089 17.607 0.000 −19.083
(4,3,24,45) 0.000 −1942.069 4.900 11.371 0.000 229.955

(13,3,24,13) 2.300 −24.370 6.089 −10.570 0.000 3.955
(13,3,24,45) 0.000 −2120.841 4.900 −11.824 0.000 256.181
(3,13,13,46) 0.000 781.300 0.000 −220.433 −0.100 3.770

(24,13,13,46) 0.000 847.011 0.000 −162.283 0.464 5.135
(46,13,13,46) 0.000 758.724 0.000 −245.675 0.300 −9.523

(3,13,24,3) −2.365 1.596 0.912 −1.145 −0.850 1.321
(13,13,24,3) 0.000 1.241 0.462 0.380 0.000 −1.059

of using multiple linear regression or LASSO regression for estimating empirical torsions

parameters works rather well. However, the main drawback of the overall approach consists in

the poor energetic hierarchies obtained when estimating empirical partial charges from the

Hirshfeld partitioning scheme or by fitting the partial charges to reproduce the electrostatic

potential (ESP). This flaw is especially concerning for systems for which the energetic FF

description is dominated by Coulomb interaction contributions like systems involving a metal

cation.

In order to quantify such differences in the energetic description of peptide-cation systems,

the same study that has been presented here is repeated for the system of AcAla2NMe+Na+.

The conformational search algorithm equivalent to the one laid out above results in a total

of 327 conformers at the PBE+vdWTS DFT level. Selecting half of them, i.e. 163, at random

for the set of training data leaves 164 conformers for the set of test data. Using the test set

of conformers and the original parameters of the OPLS-AA FF that are distributed with the

TINKER package yields a MAE of 4.08kcal/mol and a ME of 19.82kcal/mol when compared to

the PBE+vdWTS level, which is a significantly worse performance when compared to the values

of 2.55kcal/mol and 10.45kcal/mol for the bare system of AcAla2NMe, as one would expect

when taking into considerations the findings in Chapter 4. One thereby needs to keep in mind

that the only difference consists in an additional Na+ cation (atom type 349 and atom class

69 within the nomenclature of TINKER) of empirical partial charge qNa+ =+1 that interacts

with other atoms within the OPLS-AA FF description exclusively by means of Coulomb and

vdW interaction, see Equations (5.7) and (5.8), respectively. And yet, this simple change alone

results in a much worse energetic performance of the FF, as the MAE for the test set increases

by 1.53kcal/mol and the corresponding ME increases by 9.37kcal/mol with respect to the

bare peptide system. Hence, the current procedure cannot be expected to fully “compensate”

this discrepancy in energetic performance, which is because it mainly relies on adjusting the

torsional contributions that do not include the added Na+ in any form within the OPLS-AA FF
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Figure 5.8 – Estimated regression coefficients V i j
1 , V i j

2 , and V i j
3 (bottom), the residual sum

of squares RSS (middle), and calculated MAEs and MEs (top) for the test set of AcAla2NMe
obtained by using LASSO regression with the total DFT energy of the PBE+vdWTS model taken
as response data.

Table 5.9 – Original OPLS-AA FF parameters V i j
1 , V i j

2 , and V i j
3 as well as their adjusted coun-

terparts for the system of AcAla2NMe obtained by using LASSO regression (λ= 0.0017) with
the total DFT energy of the PBE+vdWTS model taken as response data, as explained in Subsec-
tion 5.2.3.

Atom class V i j
1 [kcal/mol] V i j

1 [kcal/mol] V i j
2 [kcal/mol] V i j

2 [kcal/mol] V i j
3 [kcal/mol] V i j

3 [kcal/mol]
quadruplet (original FF) (adjusted FF) (original FF) (adjusted FF) (original FF) (adjusted FF)
(24,3,13,13) 1.173 1.682 0.189 0.070 −1.200 −0.478
(24,3,13,24) 1.816 1.520 1.222 2.394 1.581 −0.028
(4,3,24,13) 0.000 −3.608 6.089 1.091 0.000 −0.988
(4,3,24,45) 0.000 0.118 4.900 0.000 0.000 0.759

(13,3,24,13) 2.300 0.000 6.089 0.000 0.000 0.808
(13,3,24,45) 0.000 0.000 4.900 0.000 0.000 3.204
(3,13,13,46) 0.000 0.000 0.000 0.000 −0.100 2.940

(24,13,13,46) 0.000 0.000 0.000 0.000 0.464 4.870
(46,13,13,46) 0.000 0.000 0.000 −2.843 0.300 −4.347

(3,13,24,3) −2.365 1.511 0.912 −0.920 −0.850 0.179
(13,13,24,3) 0.000 1.731 0.462 0.092 0.000 0.000
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5.3. Results

description. Nevertheless, an attempt is undergone and key results are briefly summarized in

the following. A detailed listing of all values of adjusted empirical parameters as well as plotted

regression coefficients, the RSS, and calculated MAEs and MEs for the test set obtained by

using different regression models is provided in Appendix A.

Adjusting the equilibrium parameters r 0
i j and θ0

i j between pairs or triplets of atoms by av-

eraging over all corresponding atomic pairwise distances and angles of the same pair or

triplet of atom classes over all input files yields a decrease in the MAE by 0.88kcal/mol to

3.20kcal/mol and a ME of 17.31kcal/mol. Estimating furthermore the empirical partial charge

parameters qi using Hirshfeld charges and ESP charges yields a MAE of 7.75kcal/mol (ME of

17.89kcal/mol) and a MAE of 4.52kcal/mol (ME of 23.07kcal/mol), respectively. Again, these

energetic performances that are significantly worse must be considered unsatisfactory.

One interesting observation thereby concerns the calculated partial charges of the Na+ cation

using the Hirshfeld partitioning scheme, as depicted in Figure 5.9: In contrast to the other

atom types of the system that show a rather well-defined distribution of Hirshfeld charges, it

appears that the Hirshfeld charge of the Na+ cation strongly depends on the number of oxygen

atom ligands that are coordinated towards the cation, as illustrated in Figure 5.9(e). It is found

that the calculated Hirshfeld charge qNa+ of the sodium cation is in the range between 0.50

to 0.54 if three oxygen atoms are coordinated towards the metal cation. If two oxygen atoms

are coordinated towards the Na+ cation, qNa+ lies in the range between 0.58 to 0.63. If one

oxygen atom and one or more additional hydrogen atoms are situated in the proximity of the

Na+ cation roximity, qNa+ lies in the range between 0.67 to 0.73. If only one oxygen atom is

coordinated towards the Na+ cation and no hydrogen atoms are found in its proximity, qNa+

lies in the range between 0.75 to 0.77. Interestingly, all estimated ESP partial charge values

are found to be larger than these values, see Figure A.1 in Appendix A. These findings strongly

indicate a varying atomic partial charge fluctuation depending on the number of oxygen atom

ligands that is not taken into account using a fixed charge model as applied here. A similar

effect is found concerning the oxygen atoms of the molecule, see Figure A.1 in Appendix A.

In addition, possible changes in the covalent structure caused by the Na+ cation should be

considered as well. An example of such an effect is illustrated in Figure 5.9(f): It is found that

the distance between the oxygen and carbon atoms of the system varyies depending on the

number of oxygen atom ligands that are coordinated towards the sodium cation. If the oxygen

atom is not coordinated towards the cation, the distribution is rather well-defined with an

equilirium distance around 1.23Å. On the other hand, in case the oxygen atom is a ligand

coordinated towards the Na+ cation, a small displacement is caused which results in C−O

distances up to 1.26Å. The simple bonds FF terms (see Equation (5.4)) that are of quadratic

form are not able to take such effects into account. A refinement of the FF formulation itself

in order to include such effects would be required. For such a task, the framework presented

here might serve as a helpful tool in the future.

Using furthermore the empirical partial charge parameters of the original OPLS-AA FF and

estimating the empirical vdW parameters σi j by applying the atomic Hirshfeld partitioning
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Figure 5.9 – Exemplary illustration of conformers of AcAla2NMe+Na+ for which the sodium
cation is surrounded by (a) one oxygen atom ligand (labeled conformer group 1OL), (b) one
oxygen atom ligand as well as one or more hydrogen atoms in its proximity (labeled group
1OL+H), (c) two oxygen atom ligands (labeled group 2OL), and (d) three oxygen atom ligands
(labeled group 3OL). (e) Distribution of the partial charges of the Na+ cation calculated using
the Hirshfeld partitioning scheme for the four different conformer groups. (f) Distribution of
calculated distances between bonded oxygen and carbon atoms for the bare peptide and the
four different conformer groups. The corresponding training set of conformers has been used
for all cases.
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Table 5.10 – Overview on the calculated MAEs and MEs in this section for both the systems
AcAla2NMe and AcAla2NMe+Na+ applying varying adjustment procedures and tackled FF
parameters.

Tackled FF parameters and adjustment
AcAla2NMe AcAla2NMe+Na+

MAE [kcal/mol] ME [kcal/mol] MAE [kcal/mol] ME [kcal/mol]

• Standard OPLS-AA parameters 2.55 10.45 4.08 19.82

• r 0
i j and θ0

i j by averaging 1.81 8.93 3.20 17.31

• r 0
i j and θ0

i j by averaging
2.62 10.02 7.75 17.89• qi using Hirshfeld partitioning

• r 0
i j and θ0

i j by averaging
2.93 10.17 4.52 23.07• qi using ESP

• r 0
i j and θ0

i j by averaging
1.69 5.17 2.80 16.52• σi j using atomic Hirshfeld partitioning

• εi j using LASSO against E vdWTS,DFT

• r 0
i j and θ0

i j by averaging

0.76 2.81 1.87 15.14• σi j using atomic Hirshfeld partitioning

• εi j using LASSO against E vdWTS

DFT

• V i j
1 , V i j

2 , V i j
3 using LASSO against E tot

DFT

scheme as well as estimating the εi j parameters by using LASSO regression with a regular-

ization parameter λ= 0.082 and the pairwise Tkatchenko-Scheffler vdWTS energy E vdWTS,DFT

taken as response data yields a MAE of 2.80kcal/mol and a ME of 16.52kcal/mol. Finally,

all torsions empirical parameters V i j
1 , V i j

2 , and V i j
3 are estimated from the training set us-

ing LASSO regression with a regularization parameter λ = 0.018 and the total DFT energy

of the PBE+vdWTS model taken as response data, which yields a MAE of 1.87kcal/mol and

a ME of 15.14kcal/mol. As expected, the poor energetic performance of the FF due to the

Coulomb interaction terms cannot be fully “recovered” by the adjustment of the torsional

parameters alone, which results in an energetic description well above “chemical accuracy”

when compared to the PBE+vdWTS DFT level.

Table 5.10 summarizes the MAEs and MEs calculated in this section for both the systems

AcAla2NMe and AcAla2NMe+Na+ applying the varying adjustment procedures and tackled

FF parameters.

5.4 Conclusion and Outlook

A machine learning approach for modifying parameters of the standard OPLS-AA FF was pro-

posed and laid out in detail. Besides using empirical partial charge parameters derived from

the Hirshfeld partitioning scheme or reproduced from the electrostatic potential (ESP), the

main focus of the procedure lies on deriving torsions or van der Waals parameters by simply fit-
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ting the FF potential energy Epot against high-level energies, e.g. from DFT calculations, using

different regularized regression models. In particular, the LASSO regularization method shows

promising results because it does not only serve as a form of shrinkage regression required to

“detain” the FF parameters that serve as regression coefficients, but it also acts as a de facto

variable selector by suppressing low-impact predictor variables. Applying the “Framework For

Adjusting Force Fields Using Regularized Regression” (FFAFFURR)2 and intending a proof of

principle for the rather simple system of AcAla2NMe results in a MAE of 0.76kcal/mol and the

ME of 2.81kcal/mol for the test set of minima conformers when compared to the PBE+vdWTS

DFT level, which is a significant improvement when comparing to the MAE of 2.55kcal/mol

and the ME of 10.45kcal/mol using the standard set of OPLS-AA FF parameters. Compared

with the formulation of bonds and angles, torsions are the dominant degrees of freedom in

the molecule. Hence, the main reason for the regression approach to be able to reproduce

hierarchical energies of minima conformers within “chemical accuracy” must be found in the

torsions terms of the potential energy formulation of the FF, as they provide sufficient flexibil-

ity in terms of the energetic description. Because parameters are derived using only energies

at the DFT level as target data, the procedure allows for a fair assessment of how well the FF

formulation itself is able to describe the potential energy. While for the rather simple system

of AcAla2NMe it is possible to provide an energetic description within “chemical accuracy”,

it appears that the general form of the conventional OPLS-AA FF used here is not suitable to

provide a general energetic description for more challenging cases like peptide-cation systems.

The reason for that is twofold: For one, the bonds and angles contributions only work rather

well for minima on the PES. Describing arbitrary conformers that are not minima on the PES

results in large discrepancies in the energetic description of the FF due to the quadratic form

of the bonds and angles terms. For a more general description, one would need to adapt

the procedure to include a more general form of the potential energy terms, e.g. the Morse

potential form [407] being a candidate or additional terms of quartic or sextic form besides

the standard quadratic form. Secondly, the Coulomb contributions must be considered prob-

lematic in terms of reproducing accurate conformational hierarchies, despite their physical

nature. The reason for that is unclear although it has been found that standard DFT leads to

errors in the electron density distribution in comparison to MP2 calculations for zwitterionic

peptides [408]. Neither Hirshfeld estimates nor ESP derived parameters provide a reliable

adjustment of the partial charge estimates, which is especially concerning when describing a

more challenging system like AcAla2NMe+Na+. Adding a sodium cation to the system results

in large energetic discrepancies with respect to energies calculated at the DFT level which

cannot be “compensated” by the torsions terms that also do not contain parameters that

are directly related to the added cation. The obtained MAE of 4.08kcal/mol and the ME of

19.82kcal/mol for the test set using standard OPLS-AA FF parameters when compared to the

PBE+vdWTS level could only be reduced to 1.87kcal/mol and 15.14kcal/mol for the MAE and

ME, respectively, when using adjusted FF parameters, meaning the energetic performance is

still well above “chemical accuracy”. Suggestions for improvement include a cohesive study

2The code is available free of charge and can be downloaded from:
https://github.com/FHIBioGroup/ffaffurr-dev
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of how well different partial charge models, e.g. Hirshfeld, ESP, restricted (R)ESP [404], Mul-

liken [409], etc., are able to reproduce conformational energy hierarchies for a wider range

of systems if used as template charges in FFs. Of course, more sophisticated partial charge

models like the Drude oscillator model [91, 92] or fluctuating charge models [92, 93, 410] might

be tackled in the future although the associated higher computational costs in comparison to

simple fixed charge FF models need to be kept in mind.
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Chapter 6. Summary

The goal of this thesis was to study gas-phase systems of bare peptides or in presence of

metal cations. In the initial parts of this work, the focus was put on better understanding

the “undamped” intramolecular interactions that shape peptides, thus shedding light on

intrinsic structural motif propensities and bonding interactions. To that end, the peptide

AcPheAla5LysH+ was investigated in Chapter 3, a model system for studying helix formation

in the gas phase, in order to fully understand the forces that stabilize the helical structure.

In particular, the question was addressed of whether the local fixation of the positive charge

at the peptide’s C-terminus is a prerequisite for forming helices by replacing the protonated

C-terminal Lys residue by Ala and a sodium cation. The combination of gas-phase vibrational

spectroscopy of cryogenically cooled ions with molecular simulations based on DFT allowed

for detailed structure elucidation. It was found that the fixed location of the charge at the

C-terminus is imperative for helix formation in peptides of this length in isolation, as this

stabilizes the structure through a cation-helix dipole interaction. Interestingly, for sodiated

AcPheAla6 +Na+ globular rather than helical structures were found caused by the strong

cation-backbone and cation-π interactions, leading to local distortions of peptide structure,

preventing helix stabilization. A thorough comparison of experiment and theory revealed that

even though the cation-π interaction is energetically favored for AcPheAla6 +Na+ in the gas

phase, the system remains kinetically trapped in a structural state that is characterized by

cation-backbone interactions and that is energetically preferred in polar solvent.

The findings in Chapter 3 relied in part on the conformational search approach for finding

the global minima of the gas-phase systems AcPheAla5LysH+ and AcPheAla6 +Na+ that in

turn relied on the usage of conventional force fields and different levels of DFA. Furthermore,

the correct assignment of calculated IR spectra to their experimental counterparts was only

possible when relying on computationally costly hybrid exchange-correlation functionals at

the DFT level. This inspired a study presented in Chapter 4 where the goodness of commonly

applied levels of theory, i.e. force fields (FFs), semi-empirical quantum chemistry methods,

density-functional approximations (DFAs), composite methods, and wavefunction-based

methods was being assessed and evaluated with respect to benchmark-grade coupled-cluster

calculations. For the benchmark systems consisting of either a bare acetylhistidine or micro-

solvated with a Zn2+ cation it was found that force fields and semi-empirical methods are

generally not reliable enough for an energetic description of these systems within “chemical

accuracy” of 1kcal/mol. While the energetic performance of GGA xc functionals like PBE and

BLYP, as well as the composite method PBEh-3c, was above “chemical accuracy” for systems

containing a Zn2+ cation, it was found that hybrid xc functionals performed generally well with

small energetic deviations within 1kcal/mol. Out of all tested methods, the double hybrid xc

functional B3LYP+XYG3 and the wavefunction-based MP2 method resembled the benchmark

method DLPNO-CCSD(T) best.

Taking the findings of Chapter 4 into account, in particular the poor energetic performance

of FFs, a necessity to be able to adjust parameters of a particular FF for a specific system in

question using minimal effort was realized. A framework for a machine learning approach

was introduced in Chapter 5 that aims to modify the FF parameters in such a way that energy
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hierarchies obtained using DFT (or any other high-level method) are to be reproduced within

“chemical accuracy” as well as being rather simplistic in order to be able to be undergone

by the end-users themselves. The “Framework For Adjusting Force Fields Using Regularized

Regression” (FFAFFURR) is able to modify van der Waals parameters and torsional parameters

in the potential-energy function Epot of a particular FF, here OPLS-AA, by fitting Epot against

high-level energies, e.g. from DFT calculations, using different regularized regression models

for a rather small subset out of a large pool of conformers. In particular, the LASSO regular-

ization method showed promising results because it not only serves as a form of shrinkage

regression required to “detain” the FF parameters that serve as regression coefficients, but it

also acts as a de facto variable selector by suppressing low-impact predictor variables. Fur-

thermore, partial charge parameters can be derived from the Hirshfeld partitioning scheme

or reproduced from the electrostatic potential (ESP). A proof of principle for the system of

AcAla2NMe resulted in an energetic description that yields mean deviations within “chemical

accuracy” when compared to the PBE+vdWTS DFT level, which is a significant improvement

when comparing to the rather poor energetic description provided when using the standard

set of OPLS-AA FF parameters. Because parameters were derived using only energies at the

DFT level as target data, the procedure allows for a fair assessment of how well the FF formula-

tion itself is able to describe the potential energy. For the rather simple system of AcAla2NMe,

the torsions terms of the FF formulation are able to provide sufficient “flexibility” in terms

of the energetic description of the molecule in order to “compensate” shortcomings in the

energetic description caused by the other terms of the potential energy function. In general

however, it appears that the form of the conventional OPLS-AA FF is not suitable to provide

am accurate enough energetic description for a more challenging system. For one, bonds and

angles contributions of quadratic form are only suited to energetically describe minima on

the PES. Secondly, the Coulomb contributions must be considered problematic in terms of

reproducing accurate conformational hierarchies, despite their physical nature. The reason

for that is unclear and requires further investigation. Neither Hirshfeld estimates nor ESP

derived parameters provide a reliable adjustment of the partial charge estimates, which is

especially concerning when describing a peptide-cation system like AcAla2NMe+Na+ for

which Coulomb contributions play an even more important role. With the procedure in itself

working as shown with the proof of principle for AcAla2NMe, it may serve as a stepping stone

for further improving the formulation of FF potential energy functions in order to yield a more

accurate energetic description for such systems.
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A Appendix: Listing of Force Field Pa-
rameters for AcAla2NMe + Na+

In Chapter 5.3, the study of “adjusting” empirical parameters of the OPLS-AA FF for the system

of AcAla2NMe has been repeated for the system of AcAla2NMe+Na+. In the following, a

detailed listing of all values of “adjusted” empirical parameters as well as plotted regression

coefficients, the RSS, and calculated MAEs and MEs for the test set obtained by using different

regression models is provided.

Table A.1 – Original OPLS-AA FF parameters r 0
i j and θ0

i j and their “adjusted” counterparts for
the system of AcAla2NMe+Na+ obtained by averaging over all corresponding atomic pairwise
distances and angles of the same pair or triplet of atom classes over all input files.

Atom class pair
r 0

i j [Å] r 0
i j [Å]

Atom class triplet
θ0

i j [°] θ0
i j [°]

(original FF) (“adjusted” FF) (original FF) (“adjusted” FF)

(3, 4) 1.2290 1.2403 (4, 3, 13) 120.4000 120.5641

(3, 13) 1.5220 1.5353 (4, 3, 24) 122.9000 121.2738

(3, 24) 1.3350 1.3578 (13, 3, 24) 116.6000 118.1161

(13, 13) 1.5290 1.5320 (3, 13, 13) 111.1000 112.4653

(13, 24) 1.4490 1.4619 (3, 13, 24) 110.1000 110.1438

(13, 46) 1.0900 1.0970 (13, 13, 24) 109.7000 112.3959

(24, 45) 1.0100 1.0187 (3, 13, 46) 109.5000 108.7366

(13, 13, 46) 110.7000 110.1281

(24, 13, 46) 109.5000 108.8104

(46, 13, 46) 107.8000 108.3819

(3, 24, 13) 121.9000 127.1322

(3, 24, 45) 119.8000 114.6338

(13, 24, 45) 118.4000 116.0534
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Appendix A. Appendix: Listing of Force Field Parameters for AcAla2NMe + Na+

Table A.2 – Original OPLS-AA FF parameters qi and their “adjusted” counterparts for the
system of AcAla2NMe+Na+ obtained by averaging over all Hirshfeld or ESP charges of the
same atom type over all input files.

Atom type
qi qi (Hirshfeld) qi (ESP)

(original FF) (“adjusted” FF) (“adjusted” FF)
80 −0.1800 −0.1048 −0.5285
85 0.0600 0.0561 0.1458

166 0.1400 0.0223 0.3267
177 0.5000 0.1635 0.4622
178 −0.5000 −0.2596 −0.5634
180 −0.5000 −0.0785 −0.3893
183 0.3000 0.1324 0.2838
184 0.0200 −0.0438 −0.4038
349 1.0000 0.6551 0.9149

Table A.3 – Original OPLS-AA FF parameters σi j and their “adjusted” counterparts for the
system of AcAla2NMe+Na+ obtained by the atomic Hirshfeld partitioning scheme as explained
in Subsection 5.2.3.

Atom type pair
σi j [Å] σi j [Å]

Atom type pair
σi j [Å] σi j [Å]

(original FF) (“adjusted” FF) (original FF) (“adjusted” FF)
(80, 80) 3.5000 2.9249 (166, 178) 3.2187 2.8847
(80, 85) 2.9580 2.6317 (166, 180) 3.3727 2.9013

(80, 166) 3.5000 2.9615 (166, 184) 3.5000 2.9462
(80, 177) 3.6228 2.9647 (166, 349) 3.7743 2.6765
(80, 178) 3.2187 2.8481 (177, 177) 3.7500 3.0045
(80, 180) 3.3727 2.8647 (177, 178) 3.3317 2.8879
(80, 184) 3.5000 2.9096 (177, 180) 3.4911 2.9044
(80, 349) 3.7743 2.6399 (177, 184) 3.6228 2.9493
(85, 85) 2.5000 2.3385 (177, 349) 3.9067 2.6797

(85, 166) 2.9580 2.6683 (178, 178) 2.9600 2.7713
(85, 177) 3.0619 2.6715 (178, 180) 3.1016 2.7879
(85, 178) 2.7203 2.5549 (178, 184) 3.2187 2.8328
(85, 180) 2.8504 2.5715 (178, 349) 3.4709 2.5631
(85, 184) 2.9580 2.6163 (180, 180) 3.2500 2.8044
(85, 349) 3.1898 2.3467 (180, 184) 3.3727 2.8493

(166, 166) 3.5000 2.9982 (180, 349) 3.6370 2.5797
(166, 177) 3.6228 3.0013 (184, 349) 3.7743 2.6245
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Figure A.1 – Distributions of Hirshfeld (red) and ESP (gray) charges over the training set of
conformers for the system of AcAla2NMe+Na+. For visibility purposes, the frequencies of
the ESP charges have been scaled by a factor of 3. Vertical blue lines denote partial charge
parameters of the original OPLS-AA FF while vertical black lines denote the average of the ESP
values.
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Appendix A. Appendix: Listing of Force Field Parameters for AcAla2NMe + Na+
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Figure A.2 – Estimated regression coefficients εi j (bottom), the residual sum of squares RSS
(middle), and calculated MAEs and MEs (top) for the test set of AcAla2NMe+Na+ obtained

by using LASSO regression with the pairwise Tkatchenko-Scheffler vdWTS energy E vdWTS,DFT

taken as response data.

Table A.4 – Original OPLS-AA FF parameters εi j and their “adjusted” counterparts for the
system of AcAla2NMe+Na+ obtained by using LASSO regression (λ= 0.082) with the pairwise

Tkatchenko-Scheffler vdWTS energy E vdWTS,DFT taken as response data.

Atom type pair
εi j [kcal/mol] εi j [kcal/mol]

Atom type pair
εi j [kcal/mol] εi j [kcal/mol]

(original FF) (“adjusted” FF) (original FF) (“adjusted” FF)
(80, 80) 0.0660 0.0000 (166, 178) 0.1177 0.2473
(80, 85) 0.0445 0.1769 (166, 180) 0.1059 0.0000

(80, 166) 0.0660 0.0000 (166, 184) 0.0660 0.0000
(80, 177) 0.0832 0.0000 (166, 349) 0.0057 0.0000
(80, 178) 0.1177 0.0000 (177, 177) 0.1050 0.0000
(80, 180) 0.1059 0.0000 (177, 178) 0.1485 0.0745
(80, 184) 0.0660 0.0000 (177, 180) 0.1336 0.2140
(80, 349) 0.0057 0.0000 (177, 184) 0.0832 0.0000
(85, 85) 0.0300 0.0000 (177, 349) 0.0072 0.6587

(85, 166) 0.0445 0.1920 (178, 178) 0.2100 0.1515
(85, 177) 0.0561 0.0240 (178, 180) 0.1889 0.3012
(85, 178) 0.0794 0.0138 (178, 184) 0.1177 0.0000
(85, 180) 0.0714 0.0420 (178, 349) 0.0102 0.0656
(85, 184) 0.0445 0.0629 (180, 180) 0.1700 0.0000
(85, 349) 0.0039 0.6262 (180, 184) 0.1059 0.0000

(166, 166) 0.0660 0.0000 (180, 349) 0.0092 0.0000
(166, 177) 0.0832 0.2485 (184, 349) 0.0057 0.0000
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Figure A.3 – Estimated regression coefficients V i j
1 , V i j

2 , and V i j
3 (bottom), the residual sum of

squares RSS (middle), and calculated MAEs and MEs (top) for the test set of AcAla2NMe+Na+

obtained by using LASSO regression with the total DFT energy of the PBE+vdWTS model taken
as response data.

Table A.5 – Original OPLS-AA FF parameters V i j
1 , V i j

2 , and V i j
3 as well as their “adjusted”

counterparts for the system of AcAla2NMe+Na+ obtained by using LASSO regression (λ =
0.018) with the total DFT energy of the PBE+vdWTS model taken as response data.

Atom class quadruplett
V i j

1 [kcal/mol] V i j
1 [kcal/mol] V i j

2 [kcal/mol] V i j
2 [kcal/mol] V i j

3 [kcal/mol] V i j
3 [kcal/mol]

(original FF) (“adjusted” FF) (original FF) (“adjusted” FF) (original FF) (“adjusted” FF)
(24,3,13,13) 1.173 0.884 0.189 0.000 −1.200 −0.285
(24,3,13,24) 1.816 −1.838 1.222 2.018 1.581 0.000
(4,3,24,13) 0.000 0.000 6.089 0.000 0.000 0.000
(4,3,24,45) 0.000 3.485 4.900 0.000 0.000 0.000

(13,3,24,13) 2.300 0.000 6.089 3.867 0.000 0.375
(13,3,24,45) 0.000 0.000 4.900 0.000 0.000 2.083
(3,13,13,46) 0.000 0.000 0.000 0.000 −0.100 0.261

(24,13,13,46) 0.000 0.000 0.000 0.000 0.464 0.000
(46,13,13,46) 0.000 0.000 0.000 0.000 0.300 0.000

(3,13,24,3) −2.365 4.787 0.912 −0.533 −0.850 1.579
(13,13,24,3) 0.000 2.102 0.462 0.000 0.000 0.000
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