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ABSTRACT
A power and area e�cient hardware encoding system tai-
lored for wireless implantable applications is presented. Con-
stant medical monitoring allowed by implantable devices is
the most relevant alternative to current bulky monitoring
systems, which, in case of severe mental diseases, require
heavy surgery and long term hospitalization periods. In
this work, the circuit design and the signal processing al-
gorithm dovetail in order to allow real-time neuronal signal
monitoring. Two main features must be met on the circuit
level to facilitate the acceptance of the implant from the
human body: small area and low power consumption. The
presented work proposes a new compression scheme based
on the Learning-Based Compressive Subsampling approach,
which allows an area reduction with respect to recent pub-
lished works, while allowing high signal reconstruction qual-
ity within low power requirements. The proposed method
implements on-the-fly compression coe�cients generation,
which does not require large static memories. This new
fully digital architecture handles the data compression of
each individual neuronal acquisition channel with an area of
200 ⇥ 190µm in 0.18 µm CMOS technology, and a power
dissipation of only 1.15µW .

Keywords
Compressive Sensing, neuronal signals, learning-based digi-
tal signal processing, area-e�cient, low-power, signal recov-
ery.

1. INTRODUCTION
Recent advances on micro-sized electrical technology is

opening new possibilities to develop implantable systems
for health-care applications. In particular, in case of some
critical mental diseases treatment (such as drug resistant
epilepsy), wireless implantable devices allow more flexibil-
ity for monitoring the electrical activity associated with a
group of neurons. Implantable devices will allow to replace
current medical surgery that requires days of hospitaliza-
tion, passing through heavy and bulky medical monitoring
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Figure 1: Typical block diagram of a multiple-channel im-
plantable neuronal recording system.

equipment. Many e↵orts have been recently devoted to re-
duce the gap between the standard medical option and the
future implantable solution. However, it is still necessary
to address several challenges to make them more practical
in terms of area and power dissipation. Considering multi-
ple site recordings, the payload of data telemetry from the
implant to the receiver station grows enormously.
Figure 1 shows a typical wireless implantable system with

multiple channel sensors. In such device, the power delivered
to the data telemetry block (the RF transmitter) is usually
one order of magnitude higher than any other block of the
implant, [1, 2]. In order to reduce such power bottleneck,
the digital signal processing unit (DSP) is crucial to perform
signal compression, drastically reducing the amount of data
that is transmitted from the implant, while avoiding the loss
of critical signal informations. In many recent approaches
(e.g. [1,3–5] and references therein), a compression technique
named compressive sensing (CS) has been implemented, to
reduce the amount of data sampled by the implanted device.
Indeed, CS allows to take less linear samples than standard
sampling processes based on the Shannon-Nyquist theorem.
Such simplified sampling process is possible since the infor-
mation content of a signal is often much lower than its raw
data content. However, in order to allow robust and high
quality signal reconstruction, complex non-linear optimiza-
tion problems have to be performed on the recovery node,
which is then paid by latency and power requirements.
In this work, we present a fully digital encoder for neu-

ronal signals that applies a Learning-based Compressive Sub-
sampling (LBCS) method [6], which is based on an on-the-
fly compressed Hadamard transformation technique. Such
method allows to drastically reduce the area requirements
compared to previously published Hadamard-based LBCS [7],
while still allowing the same signal reconstruction within a
low power system implementation.
The paper is organized as follows: we introduce the main

concepts of CS, LBCS and on-the-fly Hadamard generation
are Section 2, while in Section 3, we describe the system
implementation. The tailored circuit design for the dynamic
Hadamard LBCS, is discussed in Section 4. Conclusions are



drawn in Section 5.

2. COMPRESSION ALGORITHMS
In this section, we give a brief overview on the Com-

pressive Sensing approach, highlighting its main advantages
and disadvantages. Afterwards, we discuss the most re-
cent Learning-Based Compressive Sampling, discussing its
implementation within a tailored Hadamard transformation
scheme.

2.1 Compressive Sensing
Given an input signal x 2 RN which has K non-zero coef-

ficients, Compressive Sensing (CS) states that x can be ro-
bustly recovered from a signal y 2 RM containing fewer sam-
ples than dictated by the Shannon-Nyquist theorem, with
M = O(K log N

K

). The compressed version of the input sig-
nal x can be expressed as

y = Ax+w , (1)

where A is a linear operator that either satisfies the Re-
stricted Isometry Property (RIP) or is incoherent [8], and w
takes into account the measurement noise. If the input signal
x is not sparse in the given domain, an ortho-normal basis �
has to be used to get a sparser representation of the original
signal x. Natural signals are often characterized by sparse
and structured representations in time-frequency (or space-
frequency) domains, such as provided by wavelets [9]. On
the theoretical point of view, the A matrix can be generated
with random coe�cients, since i.i.d. sub-Gaussian matrices
are incoherent and also satisfy the RIP condition. More-
over, they are universal, i.e., the RIP or the incoherence of
A� is the same as of the original A [8], where matrix �
is used to move for a sparser representation of the signal
x. However, sub-Gaussian matrices are prohibitively expen-
sive to use in practice, since they require O(MN) space and
time. Being able to transmit only y allows to save on-chip
storage and telemetry power. However, the reconstruction
process needed to recover x from y requires to solve non-
linear optimization problems that increase both time and
power requirements on the recovery node.

Bernoulli (BERN) described in [1], Multi-Channel Sam-
pling (MCS) [4] and Structured Hadamard Sampling (SHS)
presented in [5] are randomized sampling approaches re-
cently proposed for the compression of neural signals. These
three architectures are very e�cient on the sampling side,
but require solving non-linear optimization problems to re-
construct the original signals.

As described in [10] and references therein, a reduced num-
ber of samples required for stable recovery can be achieved
considering additional structures in the signal x, such as
interdependencies between its non-zero coe�cients or con-
straints on its support, during the recovery process. As dis-
cussed in [5], the Hierarchical Group Lasso (HGL) approach
gives the best performances over three di↵erent structured-
sparsity recovery methods. Such approach has been used to
compare the reconstructed iEEG signals sampled through
BERN, MCS and SHS methods.

2.2 Learning-Based Compressive Subsampling
The compression method used in this work is based on

the LBCS approach [6], which requires both linear encod-
ing and decoding with respect to a given orthonormal basis.
Such method allows to simplify both the sampling and signal

restoring steps, compared to standard CS approaches. In a
nutshell, LBCS can be summarized considering the following
compression model

y = P⌦ x , (2)

where  2 RN⇥N is an orthonormal basis and P⌦ 2 RM⇥N

is a subsampling matrix, whose rows are canonical basis vec-
tors. The e↵ect of applying P⌦ to  x is to retain only the
coe�cients indexed by the set ⌦, also known as the subsam-
pling map. The vector y 2 RM is the compressed version of
x, with a nominal compression rate (CR) of N

M

. The signal
x is then approximately recovered via the fast linear decoder

x̂ =  ⇤PT

⌦y . (3)

The learning process is dictated by a training set D =
{x1, . . . ,xm

} of m fully sampled signals of unit norm. The
optimal subsampling map ⌦ is learnt by choosing the indices
that capture most of the average energy in the transform
domain:

⌦̂ = argmax
⌦,|⌦|=M

1
m

mX

j=1

X

i2⌦

|h 
i

,x
j

i|2, (4)

where  
i

is the i-th row of  . ⌦̂ can be exactly found by
selecting the M indices whose values of 1

m

P
m

j=1 |h i

,x
j

i|2
are the largest [6]. The learnt sampling scheme is then used
to directly sample only those transform coe�cients indexed
by ⌦̂ for all signals x.
Walsh-Hadamard based transformation has been used in

recent publications [7, 11] because of its hardware friendly
implementation, since each transformation coe�cient requires
one bit resolution, resulting in easy related computations. In
particular, in [11] authors propose a threshold-based Walsh-
Hadamard compression, to sample the Action Potentials
(AP) related to neuronal signals for brain machine inter-
faces. The authors apply a butterfly scheme to transform
the input signal samples into the Hadamard domain. How-
ever, such butterfly-based method can be performed on very
few number of consecutive samples (8 samples in [11]), lim-
iting any kind of learning approach because of the low sig-
nal statistic. For this reason, such work is used for AP
signal detection, with limited implementation in constant
medical monitoring for applications like epilepsy, where the
whole signal behaviour is required by clinicians. Authors
in [12] propose the generation of the full Hadamard ma-
trix  2 R16⇥16 for a parallel neural recording system.
However, such implementation does not apply any compres-
sion mechanism, requiring an important power budget. The
LBCS technique has been applied on circuit implementation
with DCT-based transform [13]. Even though its imple-
mentation shows great signal reconstruction performances,
the actual hardware implementation, which requires rela-
tively larger area and power consumption with respect to
its LBCS-Hadamard counterpart, makes it more suitable for
di↵erent application, such as image processing. In [7], LBCS
is exploited using the Hadamard transformation matrix. In
such work, the whole Hadamard transformation matrix is
stored in static memories which require more than 2/3 of
the actual encoding area implementation.
In this work, we propose an LBCS based compression al-

gorithm, which performs the transformation from temporal
to Hadamard domain, through on-the-fly generated Hada-
mard coe�cients. In this implementation, only the selected



rows of the Hadamard matrix (defined by ⌦̂) are generated
and used for the embedded compression, resulting in a dy-
namic generation of the coe�cients used to apply the LBCS
approach. Such technique drastically reduces the encoder
memory requirements needed by previous LBCS-Hadamard
implementation, while the signal reconstruction quality is
preserved within a low power chip implementation.

2.3 Walsh-Hadamard transformation
The Hadamard transform is particularly suited for hard-

ware implementation since each coe�cient can be computed
by performing only simple additions or subtractions.

The reduction of hardware area in the Had-based LBCS
described in [7] is possible by replacing the SRAM dedicated
to store the Hadamard coe�cients, with a direct computa-
tion of each matrix entry [12]. Such computation is feasi-
ble due to the intrinsic structure of the Hadamard matrix,
which is summarized as follows. The non-normalized Ha-
damard transformation matrix Ĥ

n

2 (�1, 1)N⇥N of size n,
with N = 2n is expressed as a recursive Kronecker product
of two matrices

Ĥ
n

= Ĥ1 ⌦ Ĥ
n�1, where Ĥ1 ,


1 1
1 �1

�
. (5)

Each matrix coe�cient indexes k and j, can be expressed in
binary representation

k =
n�1X

i=0

k
i

2i , j =
n�1X

i=0

j
i

2i with, k
i

, j
i

2 (0, 1) . (6)

Each Hadamard entry h
k,j

can then be expressed as

h
k,j

= (�1)
Pn�1

i=0 kiji ⌘ (�1)mod2(
Pn�1

i=0 liji) . (7)

In particular, mapping the (1, -1) to (0, 1), each Hadamard
entry can be derived by

h
k,j

= mod2(
n�1X

i=0

l
i

j
i

) . (8)

Such expression can be e�ciently implemented in hardware,
through logic AND gates to perform l

i

j
i

, while the module-
2 sum is derived by a logic XOR. Thus, the circuit imple-
mentation takes the row and column indexes k and j and
computes the Hadamard coe�cient in the binary map (0,
1).

3. SYSTEM IMPLEMENTATION
The Hadamard-based LBCS encoder block diagram is de-

picted in Fig. 2, where is shown the input data path from the
Analog to Digital Converter (ADC), through the LBCS Dig-
ital Signal Processor (DSP) to the encoded data transmitter.
The Finite State Machine (FSM) of the DSP drives the Had-
block and the main DSP core, where the encoding process
is executed. The Had-block generates the Hadamard bit
streams, and basically replace the SRAM used in previous
implementation [7], reducing the encoder area requirement.
The Had-block is mainly composed by the Row-Index Look
up Table (LuT), and the Hadamard bit generator. The Row-
Index LuT is meant to store the learnt indices of the sub-
sampling matrix P⌦, described in subsection 2.2. Assuming
that only M rows of the full Hadamard matrix H 2 RN⇥N

have to be used to apply the LBCS-based compression, then
we can define a mapping function w(k) =2 [0 N � 1], where
k 2 [0 M�1] is the index of the output value, and we define
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Figure 2: One channel block diagram showing the LBCS
encoder and the matrix sequence generation logic.

h
k,j

= h
w(k),j . Then, the LuT implements such mapping

function w(k).
The LuT coe�cients, driven by the FSM, are sent to the

Hadamard-bit generator, which produces the transformation
entries h

k,j

, following the description done in subsection 2.3.
During a calibration phase, the learnt Hadamard row in-
dices, defined by the RowIDX input (log(N) bit wide, to
code all the possible Hadamard matrix indexes) are loaded
in the LuT. As soon as the program enable (Pr en) is active,
the initialization starts and the FSM programs the M in-
dexes into the LuT, following the RowIDX and the k signals
used to address correctly the register. The FSM also gener-
ates and programs the enable and reset commands, sent to
the DSP, to synchronize the encoding procedure correctly,
and to reset at the end of each encoding window the accu-
mulator registers (Accum in Fig. 2).
The encoder input signal x

j

, digitized by the ADC with B
i

bit resolution, is summed or subtracted from the previous
accumulator register values, at each sampling instant j in
the sampling window of length N. The LBCS-DSP block
performs the embedded compression, defined as

y
k

=
NX

j=1

h
k,j

x
j

, k 2 {1, . . . ,M}, (9)

where h
k,j

is the (k, j)-entry of H⌦ = P⌦H; the Hadamard
matrix H (= described in subsection 2.2), requires a sin-
gle bit per entry, minimizing the computation costs in the
transformation process. The encoder processing frequency
is M times faster than the input signal frequency, in order to
update each of the accumulator registers, where the trans-
formation coe�cients are stored.

3.1 System level trade-off
The previous Hadamard based LBCS implementation shown

in [7], has been designed for sampling window of 256 samples
(N = 256), with a fixed CR of 16⇥. In this work, we propose
the hardware implementation with an on-the-fly Hadamard
generation, with sampling window length N=64 and com-
pression rate of CR=8. The same dataset as in [7] has been
taken into account, to validate the proposed hardware imple-
mentation. The N=64 and CR=8 combination allows to get
similar average reconstruction quality, while the LBCS en-
coder frequency f

s

is halved, resulting in a lower power con-
sumption. Indeed, since M is defined as N/CR, the larger
is the number of the Hadamard rows M, the higher is the
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Figure 3: One-channel Had-LBCS encoder layout for N =
64 and CR = 16.

core LBCS clock frequency, which might become a limiting
factor. On the other hand, a further reduction on the num-
ber of samples N, would degrade the signal statistics over
which the learning approach is based on.

4. CIRCUIT DESIGN AND VALIDATION
The Had-LBCS system discussed in Section 3 and shown

in Fig.2 has been designed in a 1P6M 0.18 µm CMOS tech-
nology. The layout of the fully digital implementation of
the LBCS encoder is in Fig.3, highlighting the device sizes
of 200 ⇥ 190 µm. It is worth noticing that such area con-
sumption is smaller than the previous Had-LBCS work, even
though the technology node is doubled (0.18 µm CMOS in-
stead of 0.09 µm used in [7]).

A post layout simulation has validated the circuital imple-
mentation, verifying that the digitized neuronal signals given
as input to the LBCS encoder are equal to simulations run
o↵-line, on MATLAB. A worst case scenario with slow-slow
process corner operating at 1.8 V has been used during the
simulation process. Such analysis gives an estimated power
consumption of the LBCS encoder of only 1.15 µW , which
can be even further reduced in standard scenarios.

In order to have a one-to-one comparison with the pre-
vious Hadamard LBCS implementation [7], the equivalent
of the presented work with N=256 and CR=16, has been
designed in 0.09 µm CMOS technology. Such design verifies
that the replacement of the SRAM with the on-the-fly Ha-
damard bit generator, reduces the layout area requirements
of 20%.

5. CONCLUSIONS
This work presents an on-the-fly data compression system

applying Hadamard-based LBCS approach. Such implemen-
tation allows to generate dynamically the matrix coe�cients
used for the compression algorithm, reducing drastically the
area requirements of the encoding system, still maintaining
the same reconstruction performances. Moreover, in a mul-
tichannel implementation, the Hadamard bit generation can
be shared among all the neural channels, further reducing
the overall implantable chip area requirements. For future
implementations, the dynamic generation of the transfor-
mation coe�cients might be used for variable CRs of each
sampling window, depending on the signal characteristics.
This will be further investigated in next developments of
this chip.
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