
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. V. Kuncak, président du jury
Prof. P. Ienne, directeur de thèse

Prof. Ph. Brisk, rapporteur
Prof. W. Hu, rapporteur

Dr B. Jobstmann, rapporteuse

Satisfiability-Based Methods
for Digital Circuit Design, Debug, and Optimization

THÈSE NO 8850 (2018)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 28 SEPTEMBRE 2018

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE D'ARCHITECTURE DES PROCESSEURS

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2018

PAR

Andrew James BECKER

To my family, whose guidance, support, and encouragement

are the earth from which all my achievements grow.

Résumé
Il est notoirement difficile de bien concevoir des circuits numériques. Cette difficulté dé-

coule en partie des nombreux degrés de liberté inhérents à la conception de circuits, et est

généralement associée à la nécessité de satisfaire diverses contraintes.

Dans cette thèse, nous démontrons comment les formulations de problèmes de satisfaction

peuvent être utilisées pour compléter une conception, ou pour trouver une architecture

spécifique qui satisfait à certaines contraintes ; comment celles-ci peuvent être utilisées pour

créer, déboguer et optimiser des conceptions ; et introduire un langage spécifique au domaine,

bien adapté à la conception, au débogage et à l’optimisation assistées par la satisfaction.

Dans la première application, nous montrons comment des incertitudes explicites appelées

“holes” peuvent à la fois être utilisées naturellement et favoriser la création de problèmes

de satisfaction formels utiles à la conception de circuits. Nous développons également un

langage DSL approprié pour rendre la conception avec des holes facile et efficace.

Nous montrons ensuite comment, en utilisant le même type de formulation de satisfaction,

nous pouvons automatiquement instrumenter une conception buggy donnée pour remplacer

les fragments de syntaxe suspects par des alternatives potentiellement correctes. Le solveur

de satisfaction détermine alors s’il existe un ensemble possible de fragments alternatifs qui

corrigent le bogue. Nous démontrons également que cette approche est raisonnablement

évolutive, en partie parce qu’il y a moins besoin d’une spécification entièrement précise dans

la formulation du problème de satisfaction.

Nous avançons ensuite au-delà du “hole-filling” et montrons comment une intégration étroite

de l’élaboration du design avec des solveurs de satisfaction permet des approches totalement

nouvelles. Nous utilisons cette intégration étroite pour créer les premières méthodes connues

d’optimisation des circuits du modèle GLIFT (Gate-Level Information Flow Tracking) et pour

faire des compromis de principe dans leur précision.

Enfin, en intégrant tous les travaux précédents, nous proposons un DSL plus puissant, spécifi-

quement conçu pour combler les lacunes du premier langage de “hole-filling”. Ce langage,

que nous appelons Nasadiya, permet des intégrations de satisfaction plus générales dans

la conception et l’optimisation des circuits, et fournit une fonctionnalité de modélisation

intégrée utile pour optimiser les propriétés extra-fonctionnelles comme le retard de che-

min critique. Nous démontrons l’utilité de ces fonctions en implémentant un optimiseur

automatique de puissance pour un type populaire d’additionneurs de préfixes parallèles.

Mots clefs : Satisfiabilité, SAT, QBF, débogage, optimisation, propriétés extra-fonctionnelles.

i

Abstract
Designing digital circuits well is notoriously difficult. This difficulty stems in part from the very

many degrees of freedom inherent in circuit design, typically coupled with the need to satisfy

various constraints. In this thesis, we demonstrate how formulations of satisfiability problems

can be used automatically to complete a design, or to find a specific design architecture that

satisfies certain constraints; how these can be used to create, debug, and optimize designs;

and introduce a domain-specific language particularly well-suited for satisfiability-assisted

design, debug, and optimization.

In the first application, we show how explicit uncertainties called “holes” can both be natural

to use and conducive to the creation of formal satisfiability problems useful for designing

circuits. We further develop a Scala-hosted Domain Specific Language (DSL) with appropriate

syntactic sugar to make design with holes easy and effective.

We then show how, utilizing the same kind of satisfiability formulation, we can automatically

instrument a given buggy design to replace suspicious syntax fragments with potentially-

correct alternatives. The satisfiability solver then determines if there is any possible set of

alternative fragments which fix the bug. We also demonstrate that this approach is reasonably

scalable, in part because there is less need for a fully-precise specification in the formulation

of the satisfiability problem.

We then advance beyond mere hole-filling and show how a tight integration of design elab-

oration with satisfiability solvers allows totally new approaches. To point, we use this tight

integration to create the first known methods to optimize Gate-Level Information Flow Track-

ing (GLIFT) model circuits and to make principled trade-offs in their precision.

Finally, integrating all the previous work, we propose a more powerful DSL specifically de-

signed to address the shortcomings of the first “hole-filling” language. This language, which

we call Nasadiya, affords more general integrations of satisfiability into circuit design and opti-

mization, and provides built-in modeling functionality useful for optimizing extra-functional

properties like critical path delay and circuit area. We demonstrate the utility of these features

by implementing an automatic power optimizer for a popular type of parallel prefix adders.

Key words: Satisfiability, SAT, QBF, Debug, Optimization, Extra-Functional Properties.

iii

Contents
Abstract (Français) i

Abstract (English) iii

Table of Contents v

List of Figures vii

List of Tables xi

1 Introduction 1

1.1 Boolean Logic . 3

1.2 Boolean Satisfiability . 4

1.3 2QBF-SAT . 7

1.4 Overview . 8

2 Satisfiability for Circuit Design Assistance 11

2.1 Motivational Example . 12

2.2 Related Work . 12

2.3 Implementation . 14

2.3.1 SKETCHILOG . 16

2.3.2 The Rules of the Code . 18

2.3.3 Hardware Sketching vs. Software Sketching 19

2.3.4 The Limitations of SKETCHILOG . 19

2.4 Experiments . 20

2.4.1 Prefix Adders . 20

2.4.2 Sketching to Enable Design Re-Use . 21

2.4.3 Strength Reduction of a Constant Divider 21

2.5 Experimental Results . 22

2.6 Conclusions . 23

3 A Satisfiability-Based Approach to Localizing and Correcting RTL Errors 25

3.1 Introduction . 26

3.2 Related Work . 28

3.3 “Fudging” Buggy RTL Circuits . 30

v

Contents

3.3.1 Common Error Library . 31

3.3.2 Error Modeling . 32

3.3.3 Instrumentation of the Buggy Circuit . 34

3.3.4 Miter Construction . 34

3.4 Selecting Areas for “Fudging” . 37

3.4.1 SAT-Based Debugger . 37

3.5 Experimental Methodology . 38

3.6 Experimental Results . 40

3.7 Conclusions . 42

4 Using Satisfiability to Optimize GLIFT Model Circuits 43

4.1 Introduction . 44

4.1.1 GLIFT . 44

4.1.2 Practical GLIFT . 47

4.2 Precise GLIFT Model Simplification . 48

4.2.1 Instrumented Model Construction . 48

4.3 Imprecise GLIFT Model Simplification . 51

4.3.1 Explicit Acceptance by Bit Vectors . 51

4.3.2 Acceptance by Patterns . 54

4.4 Experimental Results . 56

4.4.1 Precise Simplification . 57

4.4.2 Imprecise Simplification . 59

4.5 Related Work . 63

4.6 Conclusions . 64

5 Solver-Aided Circuit Design and Optimization with Nasadiya 65

5.1 Nasadiya . 67

5.1.1 Integrated Modeling Library . 68

5.1.2 Arbitrary Constraint Specification . 78

5.1.3 Virtualized Solver Access . 80

5.2 Related Work . 82

5.3 Case Study: Power-Efficient Parallel Prefix Adders 83

5.3.1 Design . 84

5.3.2 Constraints . 87

5.3.3 Evaluation . 91

5.4 Conclusion . 93

6 Conclusion 97

Bibliography 101

vi

List of Figures
1.1 Truth table for the universal Boolean function ����. 3

1.2 Common Boolean logic gates. 3

1.3 An example schematic of Boolean logic gates. 4

1.4 An example miter circuit. 6

1.5 A chart showing solver performance in a recent QBF-SAT solver competition. . 7

1.6 An example of a 2QBF-SAT miter circuit. 8

2.1 Visualizations of a sketch of a ADD/SUB unit and its solution. 13

2.2 A visualization of part of the Chisel type hierarchy. 14

2.3 A simple example Chisel module. 15

2.4 A visualization of the Chisel representation of a multiplexer. 16

2.5 The Chisel flow. 16

2.6 The SKETCHILOG tool flow. 17

2.7 A visualization of a partial sketch of an adder generator. 20

2.8 Visualization of a sketch of an IP interface adapter. 21

2.9 Visualization of a sketch of a strength-reduced constant divider. 22

3.1 The FUDGEFACTOR tool flow. 27

3.2 A visualization of an error rule. 32

3.3 A more complex rule matching condition. 33

3.4 A visualization of a miter constructed with test vectors. 35

3.5 A visualization of the 2QBF-SAT miter that helps to minimize source code inter-

ventions. 36

3.6 A simplified miter for a combinational syntax-guided synthesis problem. 36

4.1 An overview of GLIFT cells, models, and queries. 45

4.2 Precise and imprecise GLIFT cells and truth tables. 47

4.3 A visualization of GLIFT model construction and instrumentation. 49

4.4 A visualization of the 2QBF-SAT miter for precise GLIFT model simplification. . 50

4.5 A visualization of the acceptance criteria for the explicit imprecise simplification

method. 52

4.6 A visualization of the 2QBF-SAT miter for the explicit imprecise simplification

method. 52

4.7 A chart showing the solver time and effectiveness of the explicit method. 54

vii

List of Figures

4.8 A visualization of the acceptance criteria for the patterns imprecise simplifica-

tion method. 55

4.9 A visualization of the 2QBF-SAT miter circuit for imprecise GLIFT model simpli-

fication using the patterns method. 56

4.10 Pseudo-code for the solution space exploration algorithm used to find the best

solution. 57

4.11 A visualization of the solver progression for precise simplification of the ���������

benchmark. 58

4.12 A visualization of the solver progression for precise simplification of the 	
���

benchmark. 59

4.13 A visualization of solver performance and effectiveness of the patterns imprecise

simplification method. 60

4.14 Benchmark results for the patterns imprecise simplification method. 61

4.15 A scatter plot showing area reduction vs. added false positive rate for the patterns

imprecise simplification method. 62

4.16 A scatter plot showing measured added false positive rate vs. the
���� parameter. 62

5.1 An example 2QBF-SAT miter that can be easily built and solved in Nasadiya. . . 66

5.2 Part of the Nasadiya object and class hierarchy. 67

5.3 A visualization of the high-level difference between the regular Chisel flow and

the Nasadiya flow. 69

5.4 A simple toy example of a module and two possible implementations for which

solver-aided design might be useful. 70

5.5 An example “meta mux” construction. 70

5.6 A visualization of the trade-off space for hole-based circuit delay modeling. . . 71

5.7 Example code for extending delay modeling functionality. 72

5.8 Pseudo-code for the depth-first traversal function used to build delay models. . 74

5.9 An overlay of an example gate complexity model on the original circuit. 77

5.10 A visualization of an example gate complexity model. 78

5.11 Another visualization of an example gate complexity model. 79

5.12 Pseudo-code for the depth-first traversal function used to build gate complexity

models. 80

5.13 An example showing an arbitrary constraint over a circuit and its models. . . . 81

5.14 Another example constraint specification in Nasadiya. 81

5.15 Example driver code for Nasadiya. 82

5.16 Generator code for a Ling adder amenable to solver-aided design and optimization. 85

5.17 Generator code to build a sparse sum block for a Ling adder. 86

5.18 The constraint used to minimize modeled circuit power. 87

5.19 Driver code used to optimize the Ling adder. 88

5.20 A chart showing power vs. delay for all intermediate 8-bit adders. 89

5.21 A chart showing power vs. delay for all intermediate 16-bit adders. 89

5.22 A chart showing power vs. delay for all intermediate 32-bit adders. 90

viii

List of Figures

5.23 A chart showing area vs. modeled gate complexity for all intermediate 8-bit adders. 91

5.24 A chart showing area vs. modeled gate complexity for all intermediate 16-bit

adders. 92

5.25 A chart showing area vs. modeled gate complexity for all intermediate 32-bit

adders. 92

5.26 A chart showing power vs. total modeled complexity for all intermediate 8-bit

adders. 94

5.27 A chart showing power vs. total modeled complexity for all intermediate 16-bit

adders. 94

5.28 A chart showing power vs. total modeled complexity for all intermediate 32-bit

adders. 95

5.29 A plot of solver time vs. iteration for the 32-bit adder experiment. 95

ix

List of Tables
2.1 Experimental results for SKETCHILOG. 23

3.1 The common error library rules currently implemented in FUDGEFACTOR. . . . 31

3.2 Experimental results for FUDGEFACTOR. 40

3.3 Additional experimental data for FUDGEFACTOR. 41

4.1 Complexity of GLIFT models before and after simplification. 57

5.1 The public, designer-facing interface for the �������� object. 68

5.2 A list of delay calculation nodes used to build abstract delay models. 75

xi

1 Introduction

In the span of only a few decades, computers and digital communications have exploded

in both utility and complexity, and are now ubiquitous in nearly every aspect of the mod-

ern world. All these computers and digital communications systems are made possible by

automated processes to etch transistors, wires, and other physical electronic components

onto small pieces of silicon called “chips”. As demand for these chips has grown, engineers

have succeeded in making progressively smaller and more efficient features on those chips,

driving further demand growth. Gordon Moore famously observed [Moore, 1965] that the

apparent result is an approximate doubling of integrated circuit complexity approximately

every eighteen months.

Although this “law” has been losing steam and appears to be nearing its end [Mack, 2011], it

has held true for decades, and the results are truly fantastic: For a few hundred US dollars (or

less), nearly any person can buy a smart phone—a hand-held computer—able to do far more

computation far more quickly than is needed to control a lunar spacecraft. [Hall, 1996] This

power has been unlocked by extreme miniaturization: Modern chips often boast billions of

transistors.

Billions of transistors are great for software designers. Those transistors are used to make more

cunning, faster implementations of the devices that execute software programs. Software

programmers effectively have been getting a free lunch: Their programs have been getting

faster without any need to modify their program code.

Unfortunately, those billions of transistors are a practical nightmare for hardware designers.

In contrast to software design, where convenient abstractions of the executing machine make

software cost-free to expand, update, and run faster on better computers, the relative paucity

of convenient and scalable abstractions for hardware design makes every modification a major

event. In the end, hardware design is entirely concerned with the placement, layout, routing,

and timing of and between billions of actual physical components. Further, fabrication of a

silicon chip is a time-consuming and expensive process [Maly, 1994], although the marginal

cost of additional chip production is generally minimal. Combined, these factors mean that

1

Chapter 1. Introduction

increasing design complexity presents a serious financial and computational challenge to

physical implementation. Making bigger circuits is not as simple as making bigger programs,

and if a silicon chip has an error and needs to be updated, it can spell doom for the company’s

product.

Traditional approaches to managing this complexity revolve around raising the design’s level

of abstraction from the Register Transfer Level (RTL), where every logical component, memory

element, and their connections is specified manually. So-called High Level Synthesis (HLS)

approaches allow designers to write limited software programs and have them automatically

transformed into RTL. While this has achieved some success, the best results are almost always

obtained by hand; RTL design is here to stay.

In the face of multi-million dollar costs for design errors, increasing design complexity also

makes debugging, or the process of reasoning about circuits to find and correct their errors,

increasingly difficult and critical to project success [Foster, 2015]. Hardware designers are

also becoming increasingly aware that their design errors can manifest in fiendishly subtle

features of even functionally-correct implementations, and that so-called “side channels” can

undermine the security of their designs [Lipp et al., 2018, Kocher et al., 2018, Becker et al.,

2013]. For example, designs that require protection of a secret cryptographic key must be

painstakingly designed and analyzed to ensure that non-functional properties of the design

that may be visible to potential attackers (e.g., the power consumed by the chip during cryp-

tographic operations, or the time spent computing those cryptographic operations) cannot

reveal information that could be used to reconstruct that key material—even if the crypto-

graphic operations are functionally correct and do not directly leak information about the key.

Millions of dollars of corporate revenue relies on such side channel resistance [Markantonakis

et al., 2009].

Further, because of the immutable and physically-constrained nature of fabricated circuit

designs, hardware designers always want to find better, faster, smaller circuits that meet their

requirements: Not only could better performance or lower power consumption differentiate

their product from competitors’, but a clever idea to reduce a circuit’s area can directly increase

profit margins by allowing more chips to be fabricated on a single wafer.

Satisfiability is a technique that can be used to automatically reason about surprisingly com-

plex logical formulae—for example, formulae that define the behavior of some digital circuit.

This thesis presents novel techniques based on satisfiability to help designers deal with each

of these problems posed by increasing design complexity by enabling new forms of automated

reasoning about those designs and their components. As many of these problems manifest in

the level of the language used to design the circuits, we believe that applications and integra-

tions of satisfiability into the language level is the right place to provide automated reasoning.

However, before describing in detail how new integrations of satisfiability fit neatly into solving

these problems, it is essential for the reader to understand some background knowledge.

2

1.1. Boolean Logic

a b z

0 0 1

0 1 1

1 0 1

1 1 0

Figure 1.1 – Truth table for the universal Boolean function .

(a) An gate. (b) An gate. (c) An gate. (d) A gate.

Figure 1.2 – Common Boolean logic gates. All gates except have two inputs and one output;
has only one input.

1.1 Boolean Logic

While ubiquitous computing is only decades old, the foundations of electronic computation

were laid nearly a century before the first stored-program electronic computer [Copeland,

2017]. George Boole first formalized the system of logic that bears his name in the early 19th

century in his book "The Mathematical Analysis of Logic" and continued its development over

the course of the following few years [Boole, 1847, 1854]. The logic system Boole developed,

known as Boolean logic, underlies the implementation of every silicon chip of every computer

that might be found in everything from so-called supercomputers to toaster ovens.

In Boolean algebra, values are either 1 or 0, also sometimes called and . Boolean

functions, just like functions in conventional continuous real-valued algebra taught in grade

school, compute a value by some operations on some input value(s). Unlike conventional

algebra, those values are either or , and these functions can be completely specified

in a truth table listing the truth value of the function for every possible input value.

For example, Fig. 1.1 shows the truth table for the so-called universal Boolean function ,

which gets its name from the possibility of implementing any Boolean function using only the

function [Sheffer, 1913].

Boolean logic is not only the underpinning for the formalization of digital computation [Shan-

non, 1938], but also is very much at the core of the implementation of the digital circuits that

power all modern computers. All silicon computer chips use etched transistors to implement

so-called Boolean logic gates, or simple fixed-size Boolean logic functions, to realize the logical

3

Chapter 1. Introduction

x1 x2 x3

f

Figure 1.3 – An example schematic of Boolean logic gates for the function f (x1, x2, x3) =
(x1 +¬x2) · (¬x1 +x3) · x2.

functionality the designers desire.

Fig. 1.2 shows some of the most common logic gates: from left to right, , , , and

, which implement logical conjunction, disjunction, exclusive disjunction, and inversion,

respectively. In plain terms, an gate computes 1 when both of its inputs are 1; an gate

computes 1 when either or both of its inputs are 1; an gate computes 1 when exactly one

of its inputs is 1; and a gate computes 1 when its single input is 0.

While logic gates are extensively used in this thesis in circuit schematics and design, Boolean

logic functions are sometimes more naturally written with a more mathematical notation,

where a ·b represents the conjunction of a and b (), a +b represents the disjunction of

a and b (), a ⊕b represents the exclusive disjunction of a and b (), and ¬a, represents

inversion ().

For example, the logic function f (x1, x2, x3) = (x1 +¬x2) · (¬x1 + x3) · x2 describes the same

function as the logic gate diagram in Fig. 1.3.

Unfortunately, the logic functions that fully describe most modern circuit designs are vastly

more complicated than the one in Fig. 1.3. Modern circuit designs often have thousands

of input variables and tens or hundreds of millions of logic gates. In the face of this kind of

complexity, designers need help to reason about the behavior of their designs.

1.2 Boolean Satisfiability

The Boolean satisfiability (SAT) problem is a well-known problem in computer science famous

for being the first problem proven [Cook, 1971] to lie in a class of problems that are (widely

believed to be) inherently difficult to solve, called NP-complete problems. It has also emerged

in the past two decades as the premier encoding for many problems requiring reasoning about

4

1.2. Boolean Satisfiability

Boolean logic.

Formally stated, Boolean SAT solvers determine if it is possible for a propositional formula P

to be true, as in the formula:

∃�x : P (�x). (1.1)

In other words, given a logic function P described as a set of clauses of Boolean logic state-

ments, the problem is to determine if there is some input value that satisfies the function (i.e.,

when provided this input, the function P computed 1). Typically, once a formula has been

determined to be satisfiable, the witness, or the specific input value that satisfies P , is trivial

to report in addition to the confirmation of satisfiability.

For example, consider the formula for P below.

P =
∏

i
Pi (1.2)

If each Pi contains only literals, inversions, and disjunctions of the same, this kind of formula

is said to be in Conjunctive Normal Form (CNF), because it is the conjunction (Boolean ���)

of a set of clauses Pi . The formula is true if all of its clauses Pi are simultaneously true under

some assignment to the variables in those clauses. This form of problem is notable because

any logic function can be transformed into CNF by the Tseitin transformation [Tseitin, 1983],

and because Boolean SAT solves problems provided in CNF.

For a concrete example, consider the set of clauses below.

P1 = (x1 +¬x2)

P2 = (¬x1 +x3)

P3 = x2

(1.3)

These clauses together represent following function.

P = P1 ·P2 ·P3

P = (x1 +¬x2) · (¬x1 +x3) · x2
(1.4)

This formula—which happens to be the same formula described in the previous section—is

satisfiable under the assignment (x1, x2, x3) = 111, so a Boolean SAT solver given this problem

would return an answer of ��� (i.e., satisfiable) and the witness 111.

Despite the inherent difficulty of solving NP-complete problems, certain algorithms for solving

the Boolean SAT problem have been developed [Marques-Silva and Sakallah, 1999, Moskewicz

et al., 2001] that often work quite well on modern hardware to find solutions even on large

problem instances with millions of clauses. Thanks to techniques like conflict analysis and

5

Chapter 1. Introduction

x

Figure 1.4 – An example of a miter circuit used to check the functional equivalence of a circuit
F and a “golden reference” circuit G . Once this circuit is translated to CNF, a SAT solver can
determine if F and G are equivalent under all input conditions.

conflict-driven clause learning and backtracking, modern SAT solvers like MiniSAT [Eén and

Sörensson, 2003] have made Boolean SAT an attractive encoding for problems that arise in a

number of domains, and the premier tool for reasoning about Boolean logic circuits.

Most relevant to this thesis, computer-aided design tools that help designers create digital

circuits mostly moved from Binary Decision Diagram (BDD) based algorithms [Y., 1959, Akers,

1978, Lai et al., 1992] to Boolean SAT based algorithms [Goldberg et al., 2001, Sapra et al., 2003]

soon after the turn of the century in order to cope with increasing design complexity.

This is a prime indicator that Boolean SAT is an effective and scalable way to reason about

circuits. For example, SAT-based combinational equivalence checking is a prime application

of SAT widely used in CAD. This is done by constructing a special circuit, called a miter, that

represents the SAT problem (this circuit will be transformed into CNF like in P above). A

miter is a circuit designed to produce exactly one output value. This value represents the

satisfiability of the logical formula described by the miter function.

For combinational equivalence checking, the structure of this miter is shown in Fig. 1.4: it is

composed of the circuit under test and a functional reference circuit, and computes 1 when

an input assignment induces the circuit under test to compute a value that is not equal to that

computed by the functional reference circuit. In other words, a buggy circuit (i.e., one that

is not logically equivalent to the functional reference circuit) will result in a satisfiable SAT

problem instance and any witness returned by the SAT solver is a counterexample, or error

trace, that shows the input conditions for which equivalence fails.

The widespread application of Boolean SAT to many problems in CAD and its success has

renewed interest in other applications of Boolean SAT to other problems in digital circuit

design and also in other forms of satisfiability problems and their potential applications.

6

1.3. 2QBF-SAT

Figure 1.5 – A chart from the 2014 QBFEVAL gallery shows the sorted performance (i.e., solver
time, on the vertical axis) of various QBF-SAT solvers for hundreds of instances (horizontal
axis). The existence of so many solvers and the ingenuity that results from possible glory in a
regular competition symbolizes the innovation in QBF-SAT solver heuristics over the past two
decades.

1.3 2QBF-SAT

One of these other satisfiability problems is known as a QBF-SAT problem: A quantified

Boolean formula satisfiability problem. Similar to Boolean SAT, these problems ask to find the

truth of the following propositional formula Q, with the use of additional quantifiers allowed,

as represented by the formula below.

∃�h ∀�x : Q(�h,�x). (1.5)

In other words, the problem is to find a concrete value for�h such that Q is satisfied for any

value of �x. In fact, this is a special sub-type of QBF-SAT problem, known as an exists-forall

2QBF-SAT problem, so named due to the sequence and number of quantifiers in its logical

statement.

Just as with Boolean SAT, QBF-SAT solvers have seen dramatic practical performance improve-

7

Chapter 1. Introduction

x

h

Figure 1.6 – An example of a 2QBF-SAT miter circuit. It is similar to the Boolean SAT miter
used in equivalence checking. Here, some sketch S, which functionally depends on some
existentially-quantified “hole” values h, is constrained to be equivalent to the “golden refer-
ence” circuit G .

ments in the span of only a few years [Lonsing et al., 2016]. Figure 1.5 shows a chart borrowed

from the QBFEVAL’14 QBF Gallery [Janota et al., 2014 (published 2016, Jordan and Seidl, 2014].

This chart, which shows the performance of various solvers on all the instances they were

able to solve in a 900-second timeout for various benchmarks, symbolizes the innovation

in QBF-SAT solver heuristics over the past two decades. Although this chart only provides a

snapshot of the contemporary state of the art, the annual competitions (continuing to this day)

trace their roots back to the beginning of the century, and continue to promote innovation in

QBF-SAT solver technology.

These kinds of satisfiability problems can also be represented as miters, like in Fig. 1.6. Note

that this figure shows two distinct input vectors,�h and�x; these represent the same existentially-

and universally-quantified variables in Eqn. 1.5 above. The miter circuit shown in Fig. 1.6

visualizes a simple 2QBF-SAT miter. Here we again have two circuits S and G , but now the

functionality of S also depends on the existentially-quantified value �h. We call this kind

of meta-circuit, where the exact functionality of the circuit is determined by some solver-

determined variables in�h, a “sketch”. Once the 2QB-SAT solver finds a solution, the witness (or

assignment to the�h variable) describes a circuit: the combinational logic circuit that results

from the specialization of the problem instance Q under a specific value for�h.

In this thesis, the existentially-quantified variable�h is frequently referred to as a “hole”. This

terminology is not unique [Solar-Lezama et al., 2006], though it may seem odd upon first

consideration. When a designer explicitly creates a circuit whose functionality depends on the

value of a solver-determined variable, that “magic” variable is like a hole in the circuit: some

vital but missing piece of information that is provided by the solver.

1.4 Overview

This thesis explores how increased integration of satisfiability, particularly 2QBF-SAT, into the

circuit design, debug, and optimization process can be useful to help designers better design,

8

1.4. Overview

analyze, and optimize complex circuits. After demonstrating a number of novel, useful, and

reasonably scalable applications, we introduce a domain specific language well-suited not

only to implementing those applications, but also to facilitating nearly arbitrary applications

of 2QBF-SAT to circuit design or analysis.

Chapter 2 describes SKETCHILOG a language for circuit design with an integrated and transpar-

ent satisfiability solver. In SKETCHILOG designers provide two implementations of a desired

circuit: a simple, but known-correct circuit (called the “golden reference” circuit), and a circuit

with certain parts (e.g., values, logical functions) unspecified. These latter circuits, called

“sketches”, might be more complex but potentially better implementations of the same func-

tion in the golden reference circuit. To help the designer make a correct design, he or she is

allowed to leave certain values or functions explicitly unspecified, and the satisfiability solver

determines if there is a way to complete the sketch so that it is functionally identical to the

golden reference circuit under all input conditions.

Chapter 3 describes FUDGEFACTOR a circuit debugging aid that uses a syntax-guided synthesis

(SyGuS) approach and a satisfiability solver to localize trivial circuit design errors and provide

semantically meaningful corrections. In FUDGEFACTOR the user provides a known-buggy

design, at least one failing input vector that exposes the buggy functionality, and the correct

response, along with some number of other correct responses to other input vectors. With

this information, FUDGEFACTOR first finds suspect error locations using an existing error

localization tool, then attempts to permute the design source code around those suspect

locations, in order to provide potential alternative source code that might represent what the

user actually wants and correct the error. A satisfiability problem is then constructed and

solved to determine if the substitution of some or any of those alternatives corrects the bug in

the known failing vector, and maintains correct functionality for other vectors. In this way,

designers can automatically determine if a circuit bug is due to certain kinds of simple errors,

without wasting time with a manual root-cause analysis. Further, a provided solution isn’t just

an opaque jumble of logic gates, but a meaningful, simple alteration directly to the source

code.

Chapter 4 describes two satisfiability-based techniques to optimize GLIFT (gate-level informa-

tion flow tracking) models of digital circuits. Circuits that need to keep certain information

secret at all costs, like HSMs (Hardware Security Modules), or circuits that need to guarantee

separation of data domains, like in HA (High Assurance) systems, are unfortunately very com-

plex. Interactions between various components or sequences of actions can allow information

to flow in undesirable ways need to be detected and avoided. Information flow tracking is a

class of techniques that are used to analyze how information propagates throughout a system.

Gate-level information flow tracking is especially relevant to the security of digital circuits, as it

provides a precise way to model the flow of information through an actual implementation of

a digital circuit. Unfortunately, these GLIFT models are very complex, and are often composed

of many more gates than are contained in the circuit being modeled. By recognizing that the

traditional mapping procedure used to produce GLIFT models ignores internal don’t-care con-

9

Chapter 1. Introduction

ditions and there is often an opportunity for simplification, we first describe a 2QBF-SAT miter

formulation and a solving procedure that can be used to find as many such simplifications as

are possible without reducing the GLIFT model precision. We then describe another 2QBF-SAT

miter formulation that can be used to go even further and make disciplined trade-offs in the

precision and complexity of GLIFT models, allowing some imprecision at the expense of false

positives under certain input conditions.

Finally, Chapter 5 introduces Nasadiya, a language for solver-aided hardware design and

optimization. Nasadiya, like SKETCHILOG is based on Chisel, and embeds a 2QBF-SAT solver.

However, Nasadiya provides much more flexible constraint specification, allowing design-

based specification of constraints, and explicit solver access, which means the user specifies

exactly how to apply the satisfiability solver to achieve his or her specific aims. The explicit

solver access makes user-defined iterative solving procedures possible. Nasadiya also provides

two simple but powerful and extensible modeling facilities, allowing models of extra-functional

circuit properties like delay and area to be used inside constraints. Combined, these features

make Nasadiya a powerful tool for automated reasoning about and design and generation of

digital circuits. We finish with a case study, showing how Nasadiya can replicate automatically

the kind of analysis and reasoning about adder circuits that would otherwise take man-months

of engineer time.

10

2 Satisfiability for Circuit
Design Assistance

For decades, digital circuit design has been done at the Register Transfer Level (RTL), and

this has been one of the key bottlenecks to productivity. One of the most glaring problems is

that RTL design requires the designer to suffer through a tedium of minutae. Thus a number

of researchers have repeatedly attempted to raise the design abstraction level [Camposano,

1990]. Progress in the area of High-Level Synthesis (HLS) has been less steady than originally

anticipated, with various generations of tools reaching the market [Martin and Smith, 2009,

Cong et al., 2011, Wang et al., 2014] and perhaps only in the last decade achieving some

concrete commercial successes. Yet, RTL still offers a designer the most control, and skilled

designers’ analytical intuitions about structural circuit optimizations and trade-offs are usually

superior to those achieved by high-level compilers.

We have extended a modern RTL design language, Chisel [Bachrach et al., 2012], and found

inspiration from the software world [Solar-Lezama et al., 2006], to take a new approach: instead

of abstracting away fundamental features of the architecture—as in High Level Synthesis—

abstract only those details for which the designer has uncertainty, and let a satisfiability solver

reason about the circuit to figure them out. We propose to allow designers construct their

circuits in RTL as usual but leave holes, or explicit indeterminacies, in their designs, and accept

the help of a satisfiability solver to complete their designs.

SKETCHILOG, the tool implemented by this author and introduced in the paper, "SketchiLog:

Sketching Combinational Circuits" [Becker et al., 2014] by Andrew Becker, David Novo, and

Paolo Ienne, reads a regular RTL “golden reference” specification of a desired functionality

(typically a trivial un-optimized implementation) and an incomplete optimized implementa-

tion of the same functionality (a sketch). SKETCHILOG determines whether the holes can be

filled (i.e., assigned specific, concrete values) so that the functionality of the sketch matches

that of the specification under all inputs. If such a substitution exists, SKETCHILOG outputs

fully functional Verilog of the completed and fully-verified solved sketch.

Although the domain of applicability is limited by a restriction to combinational circuits, this

effectively relieves designers from responsibility for some of the most annoying details of

11

Chapter 2. Satisfiability for Circuit Design Assistance

an architecture and entirely avoids a common source of maddening and time-consuming

bugs. This represents a novel step forward toward using automation to increase designer

productivity: rather than trying to hide details from the user and automatically implement the

best guess at the user’s desired architecture, leave the designer to control all the details of the

architecture, but allow a satisfiability solver to reason about the circuit to fill in whatever the

designer did not specify.

2.1 Motivational Example

Any digital designer knows how to make an efficient two’s-complement ADD/SUB unit. How-

ever, suppose for the sake of example that a designer does not remember how exactly to

build the unit, but remembers that some voodoo with an adder’s operands can implement

a subtracter. Our designer might describe Fig. 2.1b as a reference and sketch Fig. 2.1c from

fuzzy intuition—an adder, with inputs somehow permuted, can also implement a subtracter.

The core of this sketch can be expressed in SKETCHILOG as shown in Fig. 2.1a: a simple

ripple-carry adder whose inputs are some undetermined function (a black box implemented

with a look-up table of holes) of � and of the corresponding bits of the operands � and �.

These holes correspond to the existentially-bound � bit vector in the QBF-SAT formula in

Eqn. 1.5. SKETCHILOG solves the sketch and finds that the values shown in Fig. 2.1d for the

holes in the look-up tables force the circuit to match to the reference design. Figure 2.1e

shows what the solved sketch in Fig. 2.1d might look like after simple logic synthesis. Note

that this logic synthesis is a very small and simple problem, where it can be sure the result will

be high-quality; unlike large global logic restructuring, this is an area where traditional logic

synthesis tools excel.

When a solution exists, correct hole values are always found and the resulting design is

guaranteed to be functionally correct. If holes are not abused to give excessive architectural

freedom, a given solution will usually be very nearly as small and fast as if the designer had no

uncertainty at all. Our goal with SKETCHILOG is to provide useful and intuitive RTL language

constructs which help designers focus on architectural intuition instead of nitty-gritty details,

and yet can be encoded as a vector of unknown Boolean variables (holes).

2.2 Related Work

The idea of leaving the specific implementation of a program to a computer and, given a

specification of the desired behavior, synthesizing an executable program has a long history

[Manna and Waldinger, 1971, Pnueli and Rosner, 1989]. Full synthesis systems, like NuPRL

[Constable et al., 1986] are based on deductive synthesis, where a designer specifies theorems

about his or her desired application and guides an interactive process to create an executable

proof.

12

2.2. Related Work

1

2

3

4

5

6

7

8

9

10

11

12

(a) SKETCHILOG code for a naïve sketch of an optimized ADD/SUB unit.

(b) A simple reference
ADD/SUB unit.

(c) A visualization of the sketch in (a).

(d) A visualization of the solved sketch from
(a).

(e) A more understandable representation of
(d) that results from logic synthesis.

Figure 2.1 – A naïve sketch of an ADD/SUB unit. The solution (e) immediately reminds
an inexperienced designer that the adder should be fed with signal unmodified and with
carry-in and signals conditionally inverted upon the value of .

13

Chapter 2. Satisfiability for Circuit Design Assistance

Figure 2.2 – A visualization of part of the Chisel type hierarchy.

More frequently, though, such general pure synthesis techniques are not used for a variety of

reasons. Instead, domain-specific tools use accessible high-level specifications to synthesize

programs [George et al., 2013]. Recent work has also improved the utility of high-level synthesis

tools, which use software-like input specifications to synthesize increasingly decent hardware

implementations [Gupta et al., 2003, Nane et al., 2015]. However, these tools often produce sub-

par implementations, and are not capable of discovering any fundamentally new architecture.

The mechanics behind SKETCHILOG lie along the same vein, and are very similar to those be-

hind Sketch [Solar-Lezama et al., 2006]. Sketch is a software compiler that allows programmers

to embed holes in software programs and with the aid of an additional functional reference

program, constructs a 2QBF-SAT problem to find concrete values for those holes such that

the solved program is functionally identical to the provided reference program. This allows

the programmer to focus on the more general aspects of the architecture, while automating

away most of the tedious task of handling corner cases or specifying exact constant values.

All this is accomplished by constructing exactly the kind of 2QBF-SAT miter demonstrated in

Fig. 1.6, and is conceptually broadly similar to the SKETCHILOG system we describe here, but

developed specifically for software, and is unsuitable for circuit design.

2.3 Implementation

Conceptually, SKETCHILOG translates both the sketch and the specification to pure Boolean

functions S and R, respectively. Both functions take the same -bit input vector , but the

sketched function also takes an additional -bits parameter , representing the hole bits in

the sketch. The problem reduces to a 2QBF-SAT satisfiability problem that can be solved by

building the appropriate miter, as described in Sec. 1.3.

14

2.3. Implementation

1 ����� �����	�
�
�
��

�� �����
 �
2 ��� �� �

� ��
��
 �
3 ��� �
� � ���������� � ��
4 ��� �
� � ���������� � ��
5 ��� �
� � ���������� � ��
6 ��� � � ����������� � ��
7
8

9 ��!� "� �#��!�
� $ ��!�
�� % ���!�
� $ ��!�
��
10
11

12 && !!! ���
� �
���
����
�"
13 ��� ' �

� �����	�
�
�(

Figure 2.3 – A simple example Chisel module.

In this case, the 2QBF-SAT problem instance is constructed to solve the following problem:

∃c ∈ {0,1}m ,∀x ∈ {0,1}k : R(x) ⇔S (x,c).

In other words, the object is to find an assignment for �c such that R(x) and S (x,c) are

equivalent for all possible assignments to�x.

We chose the Scala-hosted Domain Specific Language (DSL) Chisel [Bachrach et al., 2012] as

the base language upon which to implement our language features. Its use of Scala [Odersky

et al., 2010] lends it easy extension and customization, and its scripting-like functionality

makes sketching more intuitive and a better fit for circuit generators, which are very commonly

used to describe the combinational components SKETCHILOG targets.

Chisel generates regular Verilog code and (solved) sketched designs can be used in standard

EDA design flows. The language features added to Chisel could also be added directly to

a VHDL or Verilog compiler, though this would likely require a much less intuitive syntax

and deny the designer the very useful facilities that Chisel provides. For example, a designer

uncertain about a logic function can but likely would prefer not to manually describe a look-up

table filled with holes to be used in place of that function. Using Chisel allows us to provide

the designer with simple syntactic constructs that takes care of the implementation and leaves

the designer free to focus on the bigger picture.

In Chisel, designs are represented as instances of the ������ super-type, with a member ��

that points to all circuit primary inputs and outputs. Figure 2.2 shows part of the Chisel class

hierarchy.

These I/O signals are objects of the ���� class sub-types, and are linked with objects of the 	

class type. In Chisel, all designs are design generators: Chisel designs are Scala programs that

instantiate ������ objects with ���� objects linked together by various 	
 objects.

Figure 2.4 shows a visualization of the example Chisel module in Figure 2.3. After the object

graph is constructed in this elaborate phase, the Chisel library provides facilities to emit Verilog

RTL from it. Figure 2.5 shows this two-phase process for compiling a Chisel design to Verilog.

15

Chapter 2. Satisfiability for Circuit Design Assistance

Figure 2.4 – A visualization of an example Chisel object graph created with the instantiation of
the module in Fig. 2.3.

Figure 2.5 – The complete tool flow required to turn a Chisel design into a Verilog design ready
to be used by any standard EDA tool.

2.3.1 SKETCHILOG

SKETCHILOG uses the same basic Chisel tool flow, but also adds a few new steps. The entire

SKETCHILOG flow is described in Fig. 2.6. First, the designer creates his or her sketch in

SKETCHILOG and names it , and creates a golden reference module whose

functionality the sketch is designed to replicate exactly. Scala is invoked on the sketch, and a

resulting “sketched Verilog” file is produced. This “sketched Verilog” file is identical

to a regular Verilog file produced by Chisel, but crucially has special language support for

specifying hole signals. All SKETCHILOG language constructs described below are compiled to

Boolean logic referencing these special hole signals.

Next, optionally, the resulting and the designer-supplied golden reference module

16

2.3. Implementation

Figure 2.6 – The complete tool flow required to turn a sketch () and a golden
reference module () into a complete, solved result ready to be used by any
standard EDA tool.

are provided to the ABC [Brayton and Mishchenko, 2010] logic synthesis tool for

simplification.

Once any desired simplifications are performed, both the sketched Verilog and the golden

reference are provided to a custom-modified version of Odin II [Jamieson et al., 2010], which

reads both the sketch and the golden reference, combines them into a miter, and writes the

resulting circuit as , in a format understandable to the CEGIS 2QBF satisfiability

solver [Solar Lezama, 2008].

The CEGIS solver is then invoked on this problem file. If a solution is found, it is written to

; if not, an error is produced and reported to the designer: there is no assignment

to the holes that induces functional equivalence between the sketch and the golden reference.

If a solution is successfully found, Odin II is again invoked, this time in a special mode that

replaces hole signals in the sketched Verilog with the corresponding concrete values the solver

found and wrote to and writes the final resulting Verilog file to .

17

Chapter 2. Satisfiability for Circuit Design Assistance

2.3.2 The Rules of the Code

On top of the standard Chisel features, we provide four intuitive constructs to support un-

certainty in designs. Each construct can only be used to provide a value to Chisel data types

(representing circuit elements) and never any regular Scala ��� type (which are only useful to

aid the construction of Chisel data types): the left-hand side of each expression below must be

a Chisel data type.

� �� ����	

This first construct, an uncertain constant (or raw hole) generator, serves as a substitute for a

concrete signal value, and represents an �-bit constant signal whose value is undetermined.

The value returned is a subclass of the Chisel ���
 class, so it integrates seamlessly with regular

Chisel code. This construct is the simplest both to understand and implement: SKETCHILOG

infers an additional �-bits in the constructed satisfiability problem’s existentially-quantified

vector and will leave it to the satisfiability solver to find a concrete �-bit value that leads to a

functionally correct design (if such a value exists).

All following constructs build upon this fundamental part of SKETCHILOG.

� �� ������ ����
� ������� ��

������� �� ������	

This second construct, a selection operator, allows a designer to express an uncertain choice

of signals in a design. SKETCHILOG automatically creates raw holes which represent constant

values for the select inputs for newly-created multiplexers that choose one of the specified

signals.

� �� ���������� � ����	 � �	

This third construct, an undetermined index operator, allows a designer to express a partially-

constrained index or bit in any indexed sequence data structure or Chisel signal type, respec-

tively. It is more or less a further specialization of the second construct, selecting among the

signals identified through every feasible index into �������� (e.g., 1, 3, 5, etc.). Any out-of-

bounds index is silently dropped from consideration—helping designers not to worry about

edge cases. A feasible set associated with each hole is computed by static analysis of the index

expression similar to classic bit-width analysis [Mahlke et al., 2001].

� � ���������
� �	

This powerful construct, an arbitrary logic function generator, constrains a signal �’s value

very loosely: only its dependencies and width are provided. Determination of exactly what

18

2.3. Implementation

logic function to implement is left to SKETCHILOG. This adds 2depend s.wi d th ∗n bits to the

existentially-quantified vector in the satisfiability problem. It must be used cautiously, however,

as the number of hole bits grows exponentially with �����������	
. Its misapplication with

unreasonably large widths or number of dependencies dramatically affects scalability.

2.3.3 Hardware Sketching vs. Software Sketching

Solar-Lezama et al. pioneered the sketching concept in a software context with a language

called SKETCH [Solar-Lezama et al., 2006]. The same group toyed with the idea of sketching

hardware [Raabe and Bodík, 2009], but to the best of this author’s knowledge never moved

beyond the drawing board. We build our hardware flow upon the CEGIS 2QBF-SAT satisfiability

solver originally designed for software sketching. All other parts of our system are carefully

tailored to the hardware design process and are either built from scratch, borrowed from other

work with minor modifications (ABC), embraced and extended from other work (Chisel), or

heavily modified from their original form (Odin II [Jamieson et al., 2010]).

The main difference (other than the domain of application) between software sketching as

presented by Solar-Lezama et al. [Solar-Lezama et al., 2006] and our SKETCHILOG hardware

design framework lays in the generation of the satisfiability problem. First, the software

SKETCH framework needs to build the Boolean circuit models used to solve the satisfiability

problem from an imperative C-like language by a sort of high-level synthesis. This inherits

many difficulties from HLS; the generated models are often more complex than required,

leading to increased solution times. In contrast, in our framework the Boolean circuit model is

the actual sketch, which is directly constructed by the designer. As part of the model itself, our

hole bit-widths are always known precisely while, in SKETCH, assumptions must be made to

constrain the size of potential hole assignments. Second, software SKETCH allows the end user

to reference a raw hole nearly anywhere in the code. Instead, we provide the set of constructs

detailed in Section 2.3.2 to encapsulate holes and thus prevent the user from misusing them

in ways that are possible in SKETCH. For example, software SKETCH code can contain a hole in

place of a loop bound, resulting in potentially enormous models as the loop is unrolled. Such

uncertainties in circuit structure cannot happen with SKETCHILOG.

2.3.4 The Limitations of SKETCHILOG

SKETCHILOG is limited in scope, however, in two key regards. First, only combinational circuits

are supported. This considerably restricts the domain of applicability, mostly to arithmetic or

simple control structures (e.g., arbiters). Second, the empirical difficulty of solving 2QBF-SAT

problems limits the feasible problem size, and solver performance is highly instance-specific.

Minor changes in a designer’s sketch might have a dramatic effect on solution time.

We believe these limitations do not fatally detract from the value of SKETCHILOG. While a

limitation to combinational circuits seems severe, it still covers many use cases (especially for

19

Chapter 2. Satisfiability for Circuit Design Assistance

(a) The adder structure.

1 ��� �� �� � 	
��

���
�� �
2 ��� �� �� � �� ������ �
3 ��
 �� �
�� ��������
4 ������
 � ��������
5 ������� � ������ ������ ����������!���� �� ""�!��
6 ���#$���� � �������	��
7 %
8 %

(b) The simple code to build it in SKETCHILOG.

Figure 2.7 – The core of a generator for a Kogge-Stone Adder. With SKETCHILOG, the de-
signer focuses on the intuition of creating a binary tree of ������� cells for each output and
essentially ignores trivial but annoying boundary conditions.

datapath components), and simple pipelined circuits are functionally isomorphic to combi-

national models. This makes SKETCHILOG applicable to many arithmetic circuit generators,

which are often some of the most tricky circuits to do well and get right.

Further, QBF-SAT solvers are an established and active area of research [Lonsing et al., 2016,

Giunchiglia et al., 2001] and significant performance improvements are likely to follow in the

near future. While many real-world sketches can already be solved, solver scalability will only

improve.

2.4 Experiments

This section demonstrates our tool through simple but conceptually representative use-cases.

For clarity, we have selected simple architectures which are described in any basic course in

computer arithmetic, even if they are readily available in synthesis libraries—the purpose is

to illustrate the simplicity of the approach and how SKETCHILOG could even benefit library

writers themselves.

2.4.1 Prefix Adders

The problem of adding two binary numbers as quickly as possible reduces to the problem of

computing the carry signals Ci (represented in the form of a generate and propagate signal

pair) for all bit positions � [Ercegovac and Lang, 2004, Parhami, 2010]. The computation of

the carry signals can be posed in the form of a series of associative but non-commutative

operations:

Ci =GPi �GPi−1 � . . .�GP1 �C0 (2.1)

The ripple-carry implementation is an easy reference for SKETCHILOG but it is faster to com-

pute all carry signals independently: they can be computed fully in parallel as binary trees

of � operators, resulting in a Kogge-Stone Adder represented in Fig. 2.7. Even such a simple

20

2.4. Experiments

Figure 2.8 – Complex adaptation of an IP component. The intuition is that the shifters and
leading zero counter (LZC) will help to scale the input into the component’s domain and to
correctly re-scale the output. The exact control logic is left to our tool.

structure requires careful attention to detail in the code: instantiating a complete binary tree is

not possible for many � and if ����� is not a power of two, the largest tree is itself incomplete.

Fig. 2.7b shows the actual code needed in SKETCHILOG to generate the correct hardware, using

two of our SKETCHILOG-specific Chisel syntax extensions. Note the design is not obfuscated

by clumsy boundary tests: the designer simply says “connect regularly if you can, or else find a

suitable constant”.

2.4.2 Sketching to Enable Design Re-Use

Suppose a designer would like to use a library component like a Synopsys DesignWare [Synop-

sys, 2018b] inverse square-root unit. Unfortunately, that IP component requires the input to

be in the range
[1

4 ,1
)
, a restriction not adapted to the domain required by the designer. The

designer would rather create an adaptation interface than re-implement the unit from scratch.

Elementary algebra suggests a variable shift at the input and output of the unit. Intuitively,

there must be a correlation between the magnitude of the input and the scaling factors. Un-

fortunately, finding the exact relations is tricky and error prone. Instead, the designer can

construct a general architecture with just his or her intuition (see Fig. 2.8) and these lines:

��� 	
��
�������� � �����
�������� ���

��� 	�
��
�������� � �����
�������� ���

These lines specify that the shift amounts depend somehow on the signal ��
������� and are

4 bits wide. When run with an extra sketched adjustment for the border cases against a trivial

infinite-precision look-up table reference, SKETCHILOG finds the correct implementation—

and automatically infers essential but trivial details, like that the input shift amount must be

even to re-scale the output without loss of precision.

2.4.3 Strength Reduction of a Constant Divider

Our final example shows the case, common in arithmetic circuits, of finite precision operations

implemented by simpler operators with so-called magic numbers. One well-known example

21

Chapter 2. Satisfiability for Circuit Design Assistance

Figure 2.9 – A sketch of a possible strength reduction for constant division with a near-power-
of-two divisor. By using a full-precision multiplier and discarding some bits of the result, in
many cases the solver can find assignments to the holes such that the imprecision of this
approximation is not visible on the outputs.

is the inverse square-root approximation found in, among other places, the Quake III video

game source code [Lomont, 2003].

In our example, a designer wants to devise an efficient implementation of a fixed-point

constant division unit with a near-power-of-two divisor (e.g., 65,535). Figure 2.9 shows how

this might be sketched. A simple right shift is a passable approximation, but is not exact. The

designer’s intuition is again simple: perhaps there are some integers �, �, and � (represented

in the figure as holes), such that (i · x + y) � z ≡
i

65535 . In other words, maybe some unknown

numbers define a simple affine approximation that, in the face of limited precision, is exact.

Such values do exist in this case, and SKETCHILOG finds a correct design significantly smaller

than a naïve DesignWare divider with a constant operand.

2.5 Experimental Results

We sketched the circuits described in Section 2.4. We also sketched a few other adders (a

Brent-Kung and hybrid prefix adders, which lie between the Kogge-Stone and the Brent-Kung).

������	
��� is a non-sketched ripple-carry adder. ���

�����
����� is the Section 2.4.2

example; �
���
����� is the IP used inside. ���	�
���������� is a DesignWare divider with

a constant divisor. We run SKETCHILOG both with and without a sketch pre-optimization pass,

where the sketch circuit model is first run through simplifying logic transformations in ABC.

Some statistics on these sketches and CEGIS solver runtimes for these problems are reported

in Table 2.1.

In our experience, this pass often tends to hurt solver performance as often as it helps, but

it’s possible improved heuristics and different transformations that are exclusively beneficial

to solver performance. In any case, the resultant “optimized” circuit’s AIG depth and size

are shown after ABC simplifies it with structural hashing and SAT sweeping. We did not re-

synthesize these circuits in, for example, Synopsys DesignCompiler [Synopsys, 2018a], because

we are not concerned with super accurate results accounting for cell libraries, etc. Instead, we

are more interested in the structural changes at the gate level, and ABC’s integrated AIG depth

reporting is more than adequate to give a sense of how the structural delay changes.

22

2.6. Conclusions

Hole Unopt. Opt. AIG AIG
Experiment Width Bits Time (s) Time (s) Depth Nodes

���������� 16 427 3.732 3.799 12 229
�	
��
����� 16 509 1.681 1.450 12 217
�	
��
����� 16 368 0.697 0.901 13 196
��������� 16 334 0.842 1.048 16 160
����������	 16 0 n/a n/a 32 131
���������� 23 713 22.414 24.383 12 379
�	
��
����� 23 902 6.544 8.374 13 345
�	
��
����� 23 570 3.434 3.112 15 296
��������� 23 522 2.884 3.339 18 237
����������	 23 0 n/a n/a 46 187
���������� 32 992 93.620 85.064 14 545
�	
��
����� 32 1754 27.984 40.008 14 529
�	
��
����� 32 1166 19.772 19.871 15 488
��������� 32 720 10.558 12.256 20 333
����������	 32 0 n/a n/a 64 259

�����
�
�������� 8/13 96 1.131 0.928 370 4093
����������� 8/12 0 n/a n/a 371 4002

����� ������� 32 40 26.867 7.960 84 1152
 !������� ���
�� 32 0 n/a n/a 255 2007
����� ������� 64 73 3373.790 333.083 164 4400
 !������� ���
�� 64 0 n/a n/a 529 6291

Table 2.1 – Experimental results detailing instance bit-width, CEGIS solver runtime both with
and without an optimization pass, total number of hole bits, and critical path delay (AIG
depth) and area (AIG size) for the resulting completed design.

Our data show that for most experiments, the solver runtime is low enough to enable SKETCHILOG’s

use as a real design aid. The adder experiments in particular show that our framework is scal-

able enough to be used as part of a standard design flow, at least for some important circuits.

The inverse square-root example demonstrates that the described sketching constructs require

very little overhead in the final solved circuit.

2.6 Conclusions

RTL design is here to stay—it may be complemented by higher level abstractions, but likely

will not be supplanted.

We demonstrate here some first attempts at a new way to improve RTL design by allowing

designers some explicit indeterminacy in designs. Despite the simplicity of our examples, the

potential benefits of sketching circuits are clear: SKETCHILOG removes the burden of those

small details which often cause errors, and are most annoying to get exactly right. It is this

kind of precise reasoning at which satisfiability solvers truly excel.

Since a golden reference circuit is assumed to be available (of any quality—hence naturally

simple to write and debug) and the 2QBF-SAT formulation ensures functional equivalence to

this reference design, SKETCHILOG not only takes the dirty work from the designer but also

23

Chapter 2. Satisfiability for Circuit Design Assistance

guarantees that the resulting design is correct. On the other hand, if filling in the holes and

obtain a working circuit is impossible, SKETCHILOG immediately reports so.

Although in some domains, like digital arithmetic, the tool is already able to produce practical

results, it remains ripe for further exploration, extension, and improvement. One example can

be found in Chapter 5 of this thesis. Other future work might switch to other, potentially more

powerful satisfiability solvers; increase the number of syntactic constructs to express design

uncertainty without resorting to raw holes; attempt to use a sort of bounded model checking

to handle sequential circuits, or more.

More broadly, designers might also be interested in other ways satisfiability solvers can be

used to make their lives easier. For example, designers might have an existing design they

wish to debug, or may not have any golden reference circuit with which to formally compare

behavior. Happily, the next chapter discusses just such an application and provides a novel,

practical solution to avoid the need for a golden reference circuit.

24

3 A Satisfiability-Based Approach to
Localizing and Correcting RTL Errors

Functional verification is often a difficult part of the digital circuit design process, and occupies

up to two thirds of the design cycle [Foster, 2015]. In general, there are at least two ways to

reduce the time spent on this part of the design process: Either make it easier to develop

functionally-correct circuits from the beginning, or improve circuit debug and verification

tools. The previous chapter took the former approach; this chapter describes a technique for

the latter approach.

To better understand why we take this approach, it helps to understand the broader context in

which these tools are used. Formal verification tools typically return a counterexample when

verification fails, and this counterexample is used in a subsequent debugging process (i.e.,

error localization and correction) to understand the bug and devise a fix. This is sometimes

laborious and often relies heavily on designers’ expertise and experience. Tools exist to help

automate error localization and correction, but most (though not all) work on the subject

has either suggested repairs at the netlist level [Chung and Hajj, 1992, Chung et al., 1994], or

tried to map netlist repairs back to RTL source code (e.g., [Jobstmann et al., 2005, Staber et al.,

2012]), which is not always possible and can lead to incomprehensible repair suggestions.

This as problematic, as designers rarely work directly with netlists: even if tools find errors

and suggest appropriate corrections in the netlist, designers must still spend an inordinate

amount of time finding the true root cause at the register transfer level to be able to implement

a correction they understand and can therefore have faith in. Other debugging aides that

attempt to map netlist error candidates back to the RTL source level often suffer from an

overabundance of false positives, meaning designer expertise is still essential. While other

authors have applied satisfiability-based techniques to aid circuit debugging [Smith et al.,

2004, Ali et al., 2004, Chen et al., 2010], these are mostly targeted at the gate level, which

is not nearly as useful to designers. Our contribution demonstrates successful techniques

to apply the automated reasoning capabilities of satisfiability solvers to locate and correct

errors directly at the register transfer level, where designers typically work, in a way that gives

designers confidence in the accuracy of the corrections.

25

Chapter 3. A Satisfiability-Based Approach to Localizing and Correcting RTL Errors

In this chapter, we describe FUDGEFACTOR, introduced in the recent work, "FUDGEFACTOR:

Syntax-Guided Synthesis for Accurate RTL Error Localization" by Andrew Becker, Djordje

Maksimovic, David Novo, Mohsen Ewaida, Andreas Veneris, Barbara Jobstmann and Paolo

Ienne and implemented by this author [Becker et al., 2015]. This is a 2QBF-SAT-based syntax-

guided synthesis debugging tool for source-level error localization and correction in digital

circuits. Ready availability of a tool like FUDGEFACTOR has the potential to noticeably reduce

the length of the functional verification design phase by dramatically reducing engineer time

wasted debugging simple errors.

3.1 Introduction

FUDGEFACTOR takes as input a buggy circuit design, at least one failing test vector, a few

correct test vectors, and a list of suspect error locations. This list is provided by a state-of-the-

art error localization tool that is remarkably efficient and can handle very large designs, yet

despite its cutting-edge nature lacks precision. This leads to tens—or more—of fairly vague

false-positive suspect locations. In our case, we use a commercial verification tool based on

the work of Smith et al. [Smith et al., 2005] to obtain the list of suspect locations.

With this list as a template for potential corrections and a library of typical source code errors

and associated corrections, we automatically instrument the buggy design. This instrumented

buggy design is modified to allow each potential bug either to be left unchanged, or to be

replaced with a set of possible corrections. FUDGEFACTOR then combines the instrumented

design with the test vector(s) and solves a series of satisfiability problems to discover a source-

level correction with the fewest changes that fixes the bug.

The key to this approach is to use correction rules in the instrumentation phase that describe

semantically meaningful transformations: To “fudge” a design’s RTL source code to correct an

error, rather than attempting to correct a gate- or transistor-level design. Minor source-level

changes that correct a bug in a few representative cases without causing failures in others

are highly likely to address the root cause and remove the error, so the Source Correction

Candidate set FUDGEFACTOR returns (when such possible corrections are found) is usually

correct.

Figure 3.1 shows the complete FUDGEFACTOR flow from a buggy RTL circuit to a (list of)

suggested source-code correction(s) which fix the error(s) in the circuit. The buggy circuit

must come with some test vectors and at least one of them must be failing and expose the

error(s).

Effectively, FUDGEFACTOR is represented in the right part of the diagram (from the box “In-

strument Buggy Circuit” to the final result) while the leftmost part can be any state-of-the-art

error localization tool providing some imprecise result (thus, giving even a fairly large number

of false-positive locations). We will discuss the left part of the diagram in Section 3.4 and

describe the key mechanisms we use in FUDGEFACTOR in this section.

26

3.1. Introduction

Figure 3.1 – The FUDGEFACTOR tool flow. The inputs are a buggy Verilog design and one or
more error traces and the output are candidates to correct the RTL source code.

However, not all design errors are typical, “standard” mistakes that might be found in our

library, and thus this approach can never be complete, regardless of the number of rules

contained in the library. Still, we describe an approach for a quick, high-confidence initial

debug pass that virtually eliminates a lengthy root cause analysis for a number of frequently

recurring design errors.

We have tested our tool with 13 different benchmarks from 3 real-world designs available

on OpenCores [OpenCores, 2015] and demonstrate here that FUDGEFACTOR suggests valid

corrections for a sizable portion of the bugs within a reasonable computational time.

FUDGEFACTOR significantly owes to the approach used by Singh et al. to give meaningful

automatic feedback to students of a programming course using Python [Singh et al., 2013]—in

fact, the ability to “teach” the designer in which respect the design fails is exactly what drives

27

Chapter 3. A Satisfiability-Based Approach to Localizing and Correcting RTL Errors

our efforts and distinguishes our goal. Yet, our approach in the context of digital design results

in at least a couple of significant advantages: (1) Our source-level correction-rules are not at

all problem-specific but empirically represent an extensible library of typical mistakes that

may occur in any design, such as using a wrong compatible signal in an expression, invoking

the incorrect Boolean operator, or instantiating a wrong constant. (2) The breadth of our

rules is key to be able to debug arbitrary circuits but, without careful application, would

naturally severely restrict our scalability. Thankfully, the existence of (often commercial) tools

to approximate error location information and happen to be scalable to industrial size designs

enables selective instrumentation. In other words, we only very selectively apply our generous

set of correction rules to those candidate locations already suspected, and, as our experiments

show, incur perfectly reasonable run times.

3.2 Related Work

Hardware debugging is a topic that has been studied extensively in the previous three decades.

This field typically focuses on two related but distinct facets of the problem: finding potential

error locations (at whatever level of the design), and proposing corrections which eliminate

the errors.

Error Localization. Early works on design error localization were targeted at gate-level repre-

sentations. Madre et al. [Madre et al., 1989] and Chung et al. [Chung and Hajj, 1992, Chung

et al., 1994] proposed error localization techniques that express the problem as a set of Boolean

equations. For each gate in the netlist, a Boolean equation is derived, and the existence of a

solution to the equations determines if the gate is a potential error source or not. This work

only located single-gate faults: faults that are the result of an erroneous gate (e.g., an ���

instead of an �� gate).

Huang [Huang et al., 1998] used a simulation-based approach to find candidate error locations

in combinational and sequential circuits. In this approach, a golden reference design is used

to detect which of a set of random input vectors exposes faulty behavior in the design. Then,

for each faulty vector, a simulation is performed with every signal in the design assumed to

be stuck-at 0 or 1. A topological analysis of the circuit helps to quickly eliminate candidate

signals as the suspected source of the fault if they are topologically dominated by (i.e., all

path from the signal to an output flow through the topological dominator) a signal that was

previously rejected as a candidate faulty signal. While this work can detect even multiple faults

with reasonable precision, it’s limited to detecting stuck-at faults, which are a limited class of

design errors not targeted by FUDGEFACTOR.

Smith et al. [Smith et al., 2005] improved on the scalability and quality of gate-level error

localization using Boolean satisfiability (SAT). Their approach represented the design as a

formula under constraint by a test vector and expected response—since the buggy design by

definition has an output different from the expected response, the formula is unsatisfiable. A

multiplexer was added to the output of potential erroneous locations (suspects) which allowed

28

3.2. Related Work

the solver to choose between the original fan-in or an unconstrained input. If the original

fan-in made the formula unsatisfiable, then the unconstrained input would be selected. The

suspects that were used to make the formula satisfiable are locations that can fix the observed

error.

However, fixing design errors at the gate level produces obscure corrections that are very hard

for the circuit designer to understand and therefore for the designer to trust. Our approach

tackles the problem of returning meaningful corrections for the designer. Given the popularity

of HDLs among hardware designers, source-level error localization has become increasingly

attractive. Works by Bloem et al. [Bloem and Wotawa, 2002] and Peischl et al. [Peischl and

Wotawa, 2006] discussed Model-Based Diagnosis (MBD) methods for error localization in

VHDL descriptions. In this work, a diagnosis model describes the behavior and structure

of a given RTL description. This model is then used to find conflicts between the modeled

behavior and the expected output.

Several works [Chang et al., 2007b, Smith et al., 2005] adapted the concept of gate-level fault

modeling to source-level error localization by mapping gates to the instantiating location in

the RTL description. Our approach adopts the same concept of inserting multiplexers, but

instead of having a single free signal, we insert proper error corrections based on an error

library model. In this way we restrict the number of possible solutions and improve solver

scalability.

Error Correction. Error localization techniques usually generate a design component set: either

RTL locations, gates in the netlist or combinational paths that can be modified to correct the

error. Chang et al. [Chang et al., 2007a] proposed an approach for correcting gate-level errors

using signatures of candidate faulty gates. A signature is a list of bits each corresponding

to the gate output for a given set of test vectors. Their approach corrects signatures and re-

synthesizes them to replace the gate with one represented by the corrected signature. The idea

has been applied to source-level error correction and extended to hierarchical and sequential

designs [Chang et al., 2007b]. Jobstmann et al. [Jobstmann et al., 2005] suggested an approach

to correct erroneous Verilog designs. Like our work, this approach assumes access to a list of

suspect error locations but uses a different error and reference model. It allows corrections

that can be represented by arbitrary functions in terms of the state and input variables. This

leads to a very general correction model at the expense of readability and reasonability of

correction suggestions. We believe that our correction rules lead to corrections that are more

meaningful and much easier to understand. In addition, their approach relies on a formal

specification (given in Linear Temporal Logic) that describes the desired behavior of the

design. Since formal specifications are often unavailable, we focus on simulation vectors, the

de facto standard technique in industry to verify digital designs. Staber et al. [Staber et al.,

2012] have extended the above-mentioned repair approach to error localization by assuming

that only a location that can be corrected can be an actual error location. This approach is

more precise but also more expensive than other error localization approaches. It is similar

to our approach as it also aims to increase the precision of error locations by searching for

29

Chapter 3. A Satisfiability-Based Approach to Localizing and Correcting RTL Errors

correction suggestions. However, there are significant differences in the setup and underlying

technique. Furthermore, our approach is a SAT-based technique, while their approach used

BDD-based methodologies, which are known to be less scalable for large designs.

The related works probably most relevant to this chapter are mutation-based approaches. Mu-

tations were introduced by Debroy and Wong in the software world [Debroy and Wong, 2010]

and closely resemble our “fudging” rules (Section 3.3.1), but their mutations are extremely

simple and limited.

More recently, Alizadeh et al. [Alizadeh et al., 2015] have used mutations to create potentially

working hardware designs from a failing one; their mutations, essentially targeting signal

processing designs, are a restricted and predetermined version of our rules, the latter being

much more articulated and constituting an expansible library. Also, successful mutations are

identified by enumeration, whereas our encoding of the problem in a Quantified Boolean

Formula is more efficient and also more general: it also corrects situations where multiple

rules or mutations are needed for a single bug.

A group outside the traditional hardware debugging community recently developed the idea of

Syntax-Guided Synthesis (SyGuS) [Alur et al., 2013], which often employs a 2QBF-SAT problem

encoding to synthesize unknown functions according to a specified grammar. The original

work focuses on Linear Integer Arithmetic (LIA) theory and pure synthesis of functions, has

a bespoke constraint specification system, and explores alternative problem encodings and

solution strategies. We borrow the idea of grammar-level synthesis of functions, and in this

work we adapt it to hardware debugging and combine it with more traditional hardware

debugging techniques like vector-based simulation.

3.3 “Fudging” Buggy RTL Circuits

The approach behind FUDGEFACTOR is syntax-guided synthesis [Alur et al., 2013]: we tweak (or

“fudge”) the original buggy RTL specification in many different ways to try to synthesize a new

RTL specification which is syntactically as close as possible to the buggy one yet which does

not exhibit the error, and is therefore a candidate correction. In the spirit of syntax-guided

synthesis, we follow the intuition that acting at the source-code level, respecting the syntactic

template provided by the human designer(s) who inadvertently introduced the error in the first

place, makes it possible to find good corrections much more easily. More specifically, in our

application, we note how some erroneous RTL designs may be extremely “close” to the correct

one in the syntactic space and yet fundamentally “far” in the netlist space. One particularly

insidious example is a missing condition of assignment in a case construct: an omission of

just a few characters in RTL can have such a dramatic effect as erroneously transforming a

combinational circuit into a sequential circuit. Our approach is perfectly capable of providing

meaningful corrections in such cases.

In this section, we explain how we instrument the buggy circuit specification given a set of

30

3.3. “Fudging” Buggy RTL Circuits

Rule Checker (if the subgraph looks like...) Transformer (insert these options...)

A Signal indexing operation Indices and ranges may be shifted to the left or right by one.

B Incomplete case without default Signals assigned in case get a default assignment of any
compatible signal, or a pure free variable.

C If ... If ... Else assigning the same signal Allow use of a parallel If ... Else If ... Else with the same conditions.

D Signal in any statement explicitly mentioned The signal may be replaced by any compatible signal.
in candidate set

E A bitwise comparison operator The operator may be some other bitwise comparison operator.

F A constant value on right-hand side; not an Allow using any constant value (a pure free variable).
index/range

G A ternary expression The selection condition may be inverted.

Table 3.1 – The common error library rules currently implemented in FUDGEFACTOR. Note
that this is by no means a list of all rules one may add, or even an attempt at capturing all of
the most common RTL errors. Also note that the transformer rules do not necessarily replace
the subgraph matched on: the transformer rules insert the possibility of using such a change,
for which it is often necessary to add multiplexers, signals, etc. to the AST.

error rules in an empirical library and how we construct a miter whose solution results in a

possible correction without needing a golden reference design.

3.3.1 Common Error Library

The key intuition of our approach is that many of the errors we make as programmers and

designers are relatively predictable in nature: we may mistake one signal for another one

which is electrically compatible (i.e., the same number of bits and doesn’t cause a logic loop),

and this may happen both on the right side of an expression (a wrong input being used in the

calculation) and on the left side (the wrong signal being assigned). We might use an incorrect

logic or arithmetic function by replacing, for instance, an �� with an ��� or substituting

a subtraction for an addition. Or, as already mentioned, we may forget some clauses in a

conditional statement, leading to a variety of errors at the netlist level including the potential

for circuits (or subcircuits) to become sequential when they should be purely combinational.

In different contexts, researchers have already noted that this is an effective way to capture

a large fraction of programming errors [Singh et al., 2013]. Self-evidently, this approach

cannot capture all possible errors. For example, errors of omission (missing conditions in an

expression, etc.) are unlikely to be corrected with our general rules. However, we think there is

great practical value in efficiently capturing and correcting common errors and thus freeing

precious designer time for concentrating on only a relatively few hard cases.

Our common error library has been developed by reflecting on our experience as RTL designers

and by manually inspecting a large number of buggy designs, including student assignments

and bug fixes in open-source RTL repositories. (We have excluded most of the circuits which

we use as benchmarks; more details about this aspect are given in Section 3.5.) The extensi-

31

Chapter 3. A Satisfiability-Based Approach to Localizing and Correcting RTL Errors

Figure 3.2 – A visualization of an error rule. The designer has written the expression e := x | y
and this rule suggests that what he or she might have meant was any other Boolean function
(e.g., , ,) instead of . The rule checker is represented in the left part of the figure
and, in this elementary case, essentially says that this rule applies potentially to any
operation. The right part of the figure is the rule transformer, which describes how the AST
can be rewritten to allow the choice of such an alternative Boolean operator. Note that this
figure shows, for convenience, the rule in the form of circuits, but rules are actually described
and implemented using AST nodes and some rule-specific ad-hoc code.

ble library contains only a few very general source-code transformation rules described in

Table 3.1. Although limited, it turns out that this is already very effective.

3.3.2 Error Modeling

Error rules model common designer errors as modifications to the abstract syntax tree (AST)

obtained by parsing the input RTL. Because we work directly on the AST, our rules are not

limited to identifying line-by-line modifications. Our rules can happily identify and propose

corrections for errors spanning multiple lines. Each rule is composed of two different parts:

The first part, the rule checker, determines whether the particular rule is applicable. The sec-

ond part, the rule transformer expresses the modifications to the AST necessary to include a set

of potential corrections. For example, the rule checker of the rule in Figure 3.2 checks whether

an AST node represents a bitwise operator. If the rule checker matches a particular node of

the AST, the corresponding rule transformer is executed and the AST is modified.Figure 3.2 is a

simplified example of a rule one might really want to implement; in practice, the rule checker

would probably match all bivariate Boolean operator nodes and allow the choice of any shows

the rule checker and rule transformer for a simplified version of such a rule matching only an

OR operator.

Rule checkers can perform both structural and property checks. Structural checks are based

on tree isomorphism (i.e., detecting if the structure of the AST subtree matches a reference

one): they detect subtrees of interest and discard cases where the rule transformer should

not be applied. We implement rule checkers programmatically (they are embedded in the

32

3.3. “Fudging” Buggy RTL Circuits

Figure 3.3 – A more complex rule matching condition. This rule checker is shown as an AST
subtree to match in the design AST. It approximately corresponds to rule C expressing the fact
that the designer might have forgotten an else clause in an if statement. This shows some
of the advanced quantifiers we use in our rules, such as the fact that two if statement must
exist in immediate succession within a block but the first one must not have already an else
clause. The example is slightly simplified compared to the actual AST of the parser to improve
readability.

FUDGEFACTOR source code), although we think that it could be possible (but not necessarily

truly advantageous) to define a formal language syntax to succinctly express the conditions

desired. In any case, adding to library is simple enough and only requires modifying one line

before recompiling the tool.

Property checks are used to gather relevant non-structural information which is also needed to

determine if the rule transformer should be applied, such as checking whether two identifiers

in the matched subtree refer to the same constant value. Figure 3.3 shows the rule checker for

rule C and shows an application of some of the matching features described above.

Rule transformers always instantiate the multiplexer structure illustrated in Figure 3.2, though

not necessarily in the same AST location on which the rule matched. These multiplexers select

an input depending on some free variables. The satisfiability solver will find the required

assignment to these free variables that is necessary to correct the design. Some transformers

include a second type of free variable—a pure free variable—which can be used to correct

constant values (see rule F). For example, the condition check < +3 can be corrected to

< +5 with this second type of free variable.

As multiple rules may be triggered on the same AST node, we propose applying the rules

following a predetermined ordering roughly going from rules that are more specific to those

that are more general. Although this case of conflicting rule matches does not happen with

the common error library described here, Table 3.1 is ordered by a proposed priority (the first

rule is checked/applied first).

33

Chapter 3. A Satisfiability-Based Approach to Localizing and Correcting RTL Errors

3.3.3 Instrumentation of the Buggy Circuit

To implement the error rule matching and transformations above, we have modified the

front-end of Yosys [Wolf and Glaser, 2013], an open source framework for RTL synthesis,

to automatically instrument the buggy input circuit. We perform a bottom-up, depth-first

traversal of the AST to trigger our code instrumentation. For each node in the traversal, we

run each rule checker’s structural and property checks around the AST location to identify

whether there exists a rule in the common error library which can be applied (i.e., if any rule

matches).

When a rule is triggered, the AST is modified to include the option of replacing or modifying

the original AST with multiple potential corrections. All modifications result in additional

primary inputs added to the faulty circuits: these free variables control whether the circuit

retains the original erroneous behavior or is modified by some combination of changes caused

by the rule transformers.

The word “combination” above is important: our technique works perfectly well to handle

multiple simultaneous bugs, so long as they are each correctable with the available rules.

To ensure the solver not only chooses free variables which give correct behavior, but also

employ the minimal necessary number of changes, we also add an extra primary output to

the instrumented design that is asserted when the number of non-zero free variables is less

than some specified threshold, which is used in the miter to reject solutions with too many

changes. This threshold is then swept, beginning with only one change allowed and and

ending with a user-specified maximum number of allowed changes. We arbitrarily chose a

maximum threshold of three changes for our experiments. In this way, FUDGEFACTOR finds

the most succinct way to potentially correct the circuit, which may be the most natural source

correction.

The next step is to construct a miter, as described in Sec. 1.3, that encodes a 2QBF-SAT prob-

lem describing the correctness constraint and the possibility of using alternative subcircuits

inserted by the rule transformers. The solution to this satisfiability problem provides a con-

crete value for all such free variables which together render the circuit correct over all tested

input vectors—if such a set of concrete values exists.

3.3.4 Miter Construction

Although the basic idea of the miter used in FUDGEFACTOR is fairly conventional for syntax-

guided problems (see Figure 3.6 for a simple example), there are two aspects which are peculiar

to our situation. First, in our case we assume that a reference design is not available and that

the error is exposed by an error vector or trace used for functional simulation. Second, we

want to control (and thus minimize) the number of individual corrections to the buggy code.

Figure 3.4 shows how to build the miter from the instrumented buggy circuit and a set of

simulation traces, some of which expose the error. The resulting substitution for a golden

34

3.3. “Fudging” Buggy RTL Circuits

Figure 3.4 – Constructing a miter with test vectors. Since we have no functional reference, we
build some golden outputs from a small subset of passing test vectors and all the failing test
vectors we are trying to correct. The existence of a particular golden output for a given set of
primary input is used to determine whether the output comparison is relevant or not.

reference circuit looks very similar to a Content-Addressable Memory (CAM). We add an extra

multiplexer at the output of the CAM to ensure that the miter is formulated so the solver only

tries to match the output to the CAM result when the input vector is in the CAM (i.e., when

the M signal from the CAM is). Thus, our miter is trivially satisfied for all input stimuli not

included in the subset of simulation traces we consider.

For those input stimuli which do match one of the simulation traces in the CAM, the primary

outputs of the template are ed with the correct output response. Accordingly, our miter is

satisfied by a given vector of free variables (i.e., by a specific set of error rules correcting the

error) when the functionality of the instrumented circuit matches the correct output response

for all input stimuli in our restricted domain.

One key advantage to using this construction as opposed to a golden reference, aside from the

typically-limited availability of such a golden reference, is that it enhances scalability.

Of course, there is a trade-off between scalability and the ability of our method to find a real

correction as opposed to simply turning the buggy circuit into another buggy circuit which

only works correctly for the formerly failing vector and for a handful of other vectors—a false

positive.

We discuss later our encouraging practical findings, largely dependent on the selective appli-

cation of the error rules which we will describe soon in Section 3.4. Yet, irrespective of our

positive results, there are two salient points: First, we aim to provide meaningful solutions

to the designer and we assume that false solutions, such as those potentially produced using

too few passing test vectors, would be immediately identified and discarded. Secondly, if this

were not the case, it would be easy for the designer to tentatively implement the correction

and verify with his or her standard verification flow if otherwise passing vectors now fail.

35

Chapter 3. A Satisfiability-Based Approach to Localizing and Correcting RTL Errors

Figure 3.5 – A visualization of the 2QBF-SAT miter that helps to minimize source code inter-
ventions. The implementation of each rule transformer stores the free variables used to select
a candidate change. Once all of a module’s AST has been checked and transformed, these free
variables are collected and their Boolean reduction is summed. The signal “isCorrected" above
represents the negated Boolean reduction we actually use. A non-zero Boolean reduction
(thus, a non-zero free variable) signifies that a multiplexer is configured to change the behavior
of some part of the circuit. The miter then counts the number of corrections applied to the
circuit and forces it to be below a fixed threshold.

Figure 3.6 – A simplified miter for a combinational syntax-guided synthesis problem. The
logic cone F represents a functional reference and cones G and H represent syntax-plausible
potential implementations of F . Real miters are much more articulated than this simple
example, but the basic idea remains the same.

Besides the functional equivalence constraint, we also encode a second type of constraint

to force a minimum number of corrections in the buggy RTL code. Figure 3.5 includes the

logic responsible for this second check, mostly in the shaded area annotated as “max rules

check”. We simply sweep the value of the constant threshold in successively formulated

2QBF-SAT satisfiability problems until we find the minimum number of changes that still

induce a passing equivalence constraint. We are thereby able to find the minimal source code

modification(s), which we intuit is/are closest to a natural human solution, and try our best to

rule out less general but still legal solutions.

One final type of constraint may be desirable. We do not consider multiple solutions, but they

can be easily handled. At each tested threshold value, multiple feasible solutions might exist

for a couple reasons: either there is one or more false solutions caused by eschewing an exact

golden reference design in favor of the test vector CAM, or there are simply multiple legitimate

36

3.4. Selecting Areas for “Fudging”

corrections which each require the same number of RTL changes. In either case, at each

solution, the previous choice for non-zero free variables can be ‘blocked’, thus excluding that

same combination of RTL changes, until no more solutions exist. If multiple solutions with

the same number of changes are found, the user can be presented with all of them, possibly

ordered by some heuristic priority.

3.4 Selecting Areas for “Fudging”

Applying the error models described in Section 3.3 to the complete AST of a circuit may

possibly identify the right correction of the buggy circuit. However, both the ability to generate

any possible correction and the likelihood that the correction is the intended one may be

jeopardized by this naïve implementation of our idea for a couple of reasons, of both practical

and fundamental natures.

First, we deliberately selected very general rules in our common error library (Section 3.3.1).

This is key in capturing sufficiently broad cases which are typical of erroneous implementa-

tions: We definitely meant to be generous with our rules. For instance, as already mentioned,

we imagine the library to be extended progressively with new rules as their usefulness be-

comes apparent. The consequence of this “generosity” is that, were we to apply every rule on

every possible AST node where it can be applied, the QBF-SAT problem would soon become

intractable even for extremely simple circuits.

A second, more fundamental problem, is that an indiscriminate application of our error rules

would arguably lead, in most practical cases, to multiple possible solutions, some potentially

quite far (both in terms of RTL and netlist location) from the “natural” correction. We solve this

issue by relying on prior work in circuit debugging and using approximate and netlist-based

solutions to guide our instrumentation of the buggy specification.

3.4.1 SAT-Based Debugger

Figure 3.1 shows how we feed the output of a state-of-the-art debugger into FUDGEFACTORṪhis

output (also called a solution) of a SAT-based debugger [Smith et al., 2005] is a set of design

components (RTL blocks, RTL code) that cause the propagation of a failure. This debugger

takes as input the RTL description of the design, the expected behavior of the design over a set

of test vectors, and returns an over-approximate—but not necessarily precise—set of solutions

(i.e., the design component where the actual error is located is within this set). We use this

tool to determine the locations on which our methodology should focus to try to correct the

failure.

The details of the particular SAT-based debugger we use are not directly relevant to this work

and the interested reader can refer to Smith et al. [Smith et al., 2005]. All we care for is that the

solution it returns is useful to the designer in most cases but contains enough ambiguity to

37

Chapter 3. A Satisfiability-Based Approach to Localizing and Correcting RTL Errors

require significant human analysis effort to lead to the actual error correction. Specifically, we

parse and load the output of the SAT-based debugger and use this information to mark the

corresponding AST nodes of the input circuit description as suspect. We then simply add one

additional check when we implement the instrumentation pass described in Section 3.3.3: we

only apply a rule checker if the node is marked as suspect.

3.5 Experimental Methodology

We evaluated the performance and scalability of our approach on a range of Verilog bench-

marks taken from OpenCores [OpenCores, 2015]. Each benchmark has one bug either injected

artificially or taken from the version control history (i.e., is organic). These buggy designs were

not used to develop our common error library; they were obtained from a third party, and

we do not know which bugs were injected and which are organic. We believe our results are

broadly representative of how our approach works for simple bugs in realistic circuits.

As mentioned previously, we rely on a commercial verification tool based on the work of

Smith et al. [Smith et al., 2005] to obtain an initial set of error candidate locations in the input

Verilog. This initial set is significantly over-approximate; it contains many false positives

(most of the usually dozens of candidates are not actually part of the error). We use this set in

the instrumentation process as discussed in Section 3.3.3 and unroll the resulting logic with

ABC [Brayton and Mishchenko, 2010] to handle sequential designs. This unrolled circuit is

then passed to the CEGIS 2QBF-SAT solver [Solar Lezama, 2008].

Importantly, as mentioned in Section 3.3.4, we do not rely on the availability of a golden

reference circuit: we build a miter from only three passing test vectors. The choice of three

vectors is arbitrary here, and is a trade-off between avoiding trivial, incorrect solutions, and

scalability. While the topic of determining which and how many vectors to include is certainly

interesting, we leave a thorough investigation to future work. The results described below

validate our assumption that a few test vectors are enough to properly correct most circuits

with our approach: each correction found is exactly what a reasonable human designer would

write, and fixes the bug most generally.

SPI Core

SPI (Serial Peripheral Interface) is a serial, synchronous, full-duplex communication protocol

very widely used as a board-level interface between different devices such as microcon-

trollers, DACs, ADCs, and others. This core is an SPI/Microwire compliant master serial-

communication controller with some additional functionality. There are four different buggy

versions:

• bug1. This buggy version includes an incorrect signal assignment. A control register (“we") in the SPI

controller FIFO is assigned the wrong signal.

38

3.5. Experimental Methodology

• bug2. The second buggy SPI design has a bug in the controller finite state machine. Two state transitions

are swapped: specifically, the transition for state �� is swapped with that for state ��.

• bug3. The third buggy version contains an erroneous data assignment in the controller FIFO. The guard bit

register is assigned the incorrect value � in some cases instead of the correct value �.

• bug4. The final bug is the use of an incorrect increment value. A signal in the controller FIFO is incremented

by two instead of one. The very next line in the source code has an identical right-hand side, typical of a

copy-paste error.

AES Core

AES (Advanced Encryption Standard) is a widely used block cipher with a block size of 128

bits and a selectable key size of 128 to 256 bits. This is a pipelined 128-bit AES design from

OpenCores. This core has two buggy versions:

• bug1. The bug in this circuit is a missing subexpression in an assignment. An XOR operation of three signals

is instead an XOR of only the first two.

• bug2. This buggy circuit contains an incorrect signal assignment. One XOR operation references the wrong

signal. This signal is the same as the one used in the operation immediately above it, again indicating a

probable copy-paste error.

Integer Divider Core

The Integer Divider Core is a parameterizable non-restoring signed-by-unsigned integer di-

vision core. In our experiments we used a 16-bit dividend and an 8-bit divisor. This design

comes with seven different buggy circuits:

• bug1. The bug erroneously clips a signal range by one, and concatenates a two-bit constant instead of a

one-bit constant. It is difficult to see how this error would be likely to occur, or how it could be corrected

with a general rule.

• bug2. The bug is an erroneously switched set of function parameters; their order should have been reversed.

Because both parameters can be changed to compatible signals, this can be corrected.

• bug3. In this version, the arguments of a function are both reversed, but consist of array-indexing ex-

pressions. Our rules do not capture the possibility of reversing the operands per se, although this could

conceivably be corrected with another fairly-general rule.

• bug4. The bug references the wrong array for computing the divisor. Instead of reading the array s_pipe,

the designer made the mistake of reading from array d_pipe—a typo off by one key on a keyboard.

• bug5. The index to the array s_pipe is off by one.

• bug6. In this circuit, the 4 least significant bits in a certain signal are moved to the 4 most significant

positions. In other words, the signal is right-rotated by 4 bits.

• bug7. In this buggy version, the designer used the wrong second signal in the concatenation of two signals.

39

Chapter 3. A Satisfiability-Based Approach to Localizing and Correcting RTL Errors

Buggy # RTL Oracle Fixing Applied Total AST # Matched
Design Changes Solved? Soln.? Rule(s) Rules Size AST Nodes SLOC

�������� 1 � � D ABDEF 2968 20 271
�������	 – × – – BD 2964 2 266
�������
 – × – – DEF 2968 10 266
�������� 1 � � F ABDF 2968 13 266
�
������ – × – – ADFG 5080 19 467
�
�����	 1 � � D ABDG 5251 33 467
�������� – × – – ADF 2486 13 163
�������	 2 � � DD AD 2478 8 165
�������
 – × – – ADF 2486 13 165
�������� 1 � � D ADF 2502 10 165
�������� – × – – ADF 2516 15 168
�������� – × – – ADF 2528 20 165
�������� 2 � � DD ADF 2510 12 165

�������� 1 � � B BDG 3842 4 530
�������	 1 � � C CDEF 3846 5 531

Table 3.2 – Those experiments listed above the break were provided by a third-party and not
used to develop rules; those below the break are contrived, but show meaningful results. Note
that we correct nearly half of the non-contrived experiments. Note also that all solutions are
indeed those which an oracle would provide: exactly what any reasonable human designer
would provide. “# Matched Nodes" lists how many AST nodes matched one (or more) of our
rules. Finally, “SLOC" represented the lines of RTL source code (excluding comments, etc.).

MIPS CPU

The MIPS CPU is available on GitHub [Mahler, 2015]. We used the CPU design to develop rules,

prototype our tool flow, and validate our ability to actually solve the problems we formulate.

We injected simple errors that designers commonly make and which we believe traditional

debugging tools would have difficulty with:

• bug1. In this buggy version, the designer left out a default case when assigning a forwarding source. This

causes the creation of an entirely different circuit: this logic is no longer combinational.

• bug2. Here, the designer wrote an if condition when he or she should have written an else if condition.

3.6 Experimental Results

Tables 3.2 and 3.3 summarize the experimental results. The “# Free Var. Bits" column gives the

total number of free variables used in the instrumented design (including both the control

signals of all multiplexers and all pure free variables representing constants). The “Solver Time"

column shows the cumulative solver time spent on each experiment. For example, those

experiments which failed include the solver time used sequentially for all three attempted

threshold values (1, 2, and 3). The “# RTL Changes" column describes the number of error

candidate locations in the Verilog which needed fixing (for the benchmarks where a correction

was found)—in other words, it is the minimum number of multiplexer free variables (“isCor-

rected” in Figure 3.5) which need to be non-zero in order to correct the bug. The “Solved?"

40

3.6. Experimental Results

Buggy # Free Var. Total Solver # Golden Unroll
Design Bits Time (s) Gates Frames Blowup

�������� 92 1.90 14468 20 2.94x
�������	 8 1.69 14468 20 1.20x
�������
 35 2.23 14468 20 1.90x
�������� 65 1.66 14468 20 2.14x
�
������ 373 18.71 86878 6 1.07x
�
�����	 62 517.40 86878 6 1.29x
�������� 33 32.28 96767 48 2.30x
�������	 20 71.47 96767 48 2.12x
�������
 30 21.82 96767 48 2.28x
�������� 26 78.90 96767 48 2.24x
�������� 37 49.05 96767 48 3.20x
�������� 32 17.75 96767 48 1.99x
�������� 30 101.46 96767 48 3.15x

�������� 12 87.53 34294 15 2.28x
�������	 46 60.05 34294 15 2.56x

Table 3.3 – More information on the experiments. We show the total number of free variable
bits inserted, the total solver time, the size (in And-Invert gates as reported by ABC) of the
associated golden reference design, the number of frames it was unrolled, and the total blowup
(i.e., how much larger the instrumented circuit is than the unrolled golden reference design.

column reports if the solver was actually able to find a solution with three or fewer changes.

Note that even with our relatively sparse common error library, FUDGEFACTOR was able to

correct nearly half the simple bugs in the third-party designs.

The “Fixing Rule(s)" column describes which rule(s) were essential to correct the bug. In this

column, we see that one rule appears with striking regularity: rule D (see Table 3.1). This

should come at no surprise, as this is one of the most general rules in our library. “Applied

Rules" lists all rules which were employed in the instrumentation phase for each experiment.

Finally, “Oracle Sol." indicates whether the correction returned matches that which an oracle

would give: if the changes were what any reasonable designer would do, we say, “yes" here.

Importantly, all of the solutions found were indeed “oracle solutions". Although we do not,

and will never, solve every bug, FUDGEFACTOR reports no false positives while maintaining a

reasonable true positive rate. We should also emphasize that the true positive rate is artificially

lowered by our decision to develop the rules with only a limited set of examples and mostly

based on our intuition as designers: as mentioned, we have treated all buggy designs above

the break as a clean test-set which has not been used to develop rules. On the other hand, in

practice, the extensibility of the common error library is a fundamental part of our approach

and many (but not all) of the unsolved designs could be fixed by developing additional general

rule.

These tables also include some information which can be useful in determining how prac-

tical our approach is and validating our use of the SAT-based debugger to compute an over-

approximate error set; our general rules would not scale if they matched many more nodes. As

rule D shows, our strength is in using fairly general rules, but this comes at a cost: Without

41

Chapter 3. A Satisfiability-Based Approach to Localizing and Correcting RTL Errors

hints of where to look, we would be forced to use less general rules and fundamentally limit

our ability to find bugs.

3.7 Conclusions

Since designers introduce bugs to designs in the language they use for the design, we formulate

the problem of error localization and correction in a buggy RTL circuit as an RTL syntax-guided

synthesis problem. This problem essentially reduces to reasoning about the circuit and many

potential syntactic cousins of that circuit, in order to find a correct circuit with minimal

syntactic distance from the buggy specification.

To “fudge” the buggy specification into a rich variety of possible alternate circuits, we use

an empirical library of error models and corresponding correction rules that tries to capture

common errors humans make. Although our rules are quite general and produce a very

generous set of alternate versions, we use them sparingly by leveraging other over-approximate,

better-scalable bug localization tools. We have shown, though a controlled test set that were

not used to develop the initial set of rules, that we can correct a reasonably large set of errors

and, most strikingly, in all cases we can correct, we obtain exactly the RTL correction a human

designer would have produced. As the library of common errors is extensible, we think that

the success rate could be improved significantly with acceptable impact on runtimes.

This technique is clearly not a complete solution—it will never find all possible bugs; yet,

we believe this novel application of satisfiability to localizing and correcting errors in digital

circuits shows promise. The relative speed of satisfiability solvers’ reasoning about these

problems can be invaluable to help automatically identify intuitive and immediately under-

standable solutions to simple design mistakes. This frees up designers’ time to focus on more

complicated design issues that require human creativity.

However, not all bugs are necessarily functional, and just as satisfiability solvers can effectively

reason about circuits to discover functional errors, they can also be used to reason about

certain security properties those circuits might have. The next chapter explores two techniques

that use 2QBF-SAT solvers to reason about possible circuit transformations that reduce the

size of certain models used to check security properties. Because these models are typically

too large to be useful, and their effective optimization is a global optimization problem with

many variables, satisfiability-based techniques to automatically analyze and optimize these

models might be essential to bringing this kind of security analysis into the mainstream.

42

4 Using Satisfiability to Optimize
GLIFT Model Circuits

As recent decades have seen an increased focus on software security and a concomitant

hardening of software, less-noticed hardware flaws have become an increasingly attractive

target for attackers. Unfortunately, circuit designers still largely lack tools that enable the

analysis of large designs for security flaws, even as design complexity continues to explode.

Further, such security analyses need to consider many more details than just the functional

behavior of a circuit, as information that must be protected can leak through so-called “side

channels”, or extra-functional properties of the actual implementation of the circuit (e.g.,

timing, power draw, etc.). Information flow tracking (IFT) models provide an approach to

verifying a hardware design’s adherence to security properties related to isolation (the absence

of functional and side channels for information flow) and reachability. These are especially

important because humans perform poorly at the task of reasoning about the global state of

every gate under any given input condition, which is exactly what is needed to verify these

security properties. Humans need help.

However, reasoning about circuits’ functional properties is difficult enough, and existing

precise IFT models are far more complex than the modeled design itself. Unfortunately, this

means that these models are usually too complex to actually use, even with reasoning aids like

Boolean SAT solvers; it is common for SAT solver queries to time out, even for IFT models of

relatively small designs and when verifying relatively simple properties. It is possible to create

less complex models, but these come at the cost of a severe loss of precision—they frequently

indicate that some property fails when in fact it holds. Consequently, verification using

these less-precise models requires extensive additional manual investigation and seriously

undermines the utility of IFT techniques.

This chapter describes work contained in two recent papers that develops 2QBF-SAT based

automated reasoning procedures to simplify Gate-Level Information Flow Tracking (GLIFT)

models, and therefore to make SAT queries incorporating them more tractable. The first

is, “Imprecise Security: Quality and Complexity Tradeoffs for Hardware Information Flow

Tracking” by Wei Hu, Andrew Becker, Armita Ardeshiricham, Yu Tai, Paolo Ienne, Dejun Mu,

and Ryan Kastner, and for which this author developed the first 2QBF-SAT-based optimization

43

Chapter 4. Using Satisfiability to Optimize GLIFT Model Circuits

method to reduce to GLIFT model complexity without sacrificing any precision [Hu et al.,

2016a]. The second is, “Arbitrary Precision and Complexity Tradeoffs for Gate-Level Informa-

tion Flow Tracking” by Andrew Becker, Wei Hu, Yu Tai, Philip Brisk, Ryan Kastner, and Paolo

Ienne, and for which this author devised and implemented a 2QBF-SAT-based algorithm to

accept some fine-grained, controlled, disciplined sacrifices in model precision to achieve even

greater GLIFT model complexity reductions [Becker et al., 2017]. This final method allows

using the most appropriate precision/complexity trade-off for the design size and available

computing resources, meaning it is now possible to create models that are not too complex to

be usable, and which offer more precision (fewer false positives) than was previously practical.

4.1 Introduction

The constant increase in semiconductor hardware design complexity and the many millions

of logic gates in modern designs practically ensures that digital circuits will contain security

flaws even with the most ardent efforts to avoid them. In addition, supply chains are typically

opaque [Bloom et al., 2012], and methods for sabotage can be so stealthy [Becker et al., 2013],

that malicious design modifications could remain undetected for years. It is thus not surprising

that attacks exploiting hardware design flaws are increasingly common, and the target scope

includes everything from personal mobile devices [Kocher et al., 2018, Lipp et al., 2018, Genkin

et al., 2013] to air defense radar systems [Adee, 2008].

Automated analysis methods that can verify a system adheres to high-level security specifica-

tions could eliminate the possibility of certain exploitable flaws. Information Flow Tracking

(IFT) models [Bidmeshki and Makris, 2015, Zhang et al., 2015], for example, can help to verify

non-interference [Goguen and Meseguer, 1982], or that if one attaches security labels (i.e.

‘high’ or ‘low’ security) to inputs and outputs, ‘low’-security outputs are unaffected by ‘high’-

security inputs. This means IFT models can be used to check properties like isolation and

reachability [Goguen and Meseguer, 1982], useful, for example, to detect hardware Trojans

[Bloom et al., 2012].

4.1.1 GLIFT

Of particular interest are gate level (GLIFT) models [Tiwari et al., 2009] which add a “taint”

label to each signal in the raw design netlist and model how tainted information can flow gate-

to-gate from inputs to outputs. GLIFT models are interesting for hardware designers because

they capture information which enables the verification of important properties of a specific

circuit implementation related to confidentiality, integrity, and logical side channels [Oberg

et al., 2011].

Designers usually want to check a number of these properties, and so once a GLIFT model

is constructed, the designer formulates a number of Boolean SAT queries incorporating that

model in order to check each property. This ability to query a GLIFT model and get proofs

44

4.1. Introduction

y

a bs

p q

(a) An example
original design
netlist.

GLIFT

AND

GLIFT

AND

GLIFT

INV

GLIFT

OR

aa ss bb

y y

pp qq

(b) The corresponding
GLIFT model for the
design in (a), as built
by the “constructive
method”

y

aa bb

y
GLIFT
OR

(c) A white-boxed
GLIFT cell.

GLIFT

AND

GLIFT

AND

GLIFT

INV

GLIFT

OR

y y

aa ss bb

pp qq

(d) An illustration of
a query on the GLIFT
model in (b).

GLIFT

AND

GLIFT

AND

GLIFT

INV

GLIFT
IMPR. OR

aa ss bb

y y

pp qq

(e) A precisely simplified
version of the GLIFT model.

y

aa bb

y

GLIFT
IMPR. OR

(f) A white-boxed imprecise
“all- " GLIFT cell.

GLIFT
IMPR. OR

GLIFT

AND

GLIFT

INV

aa ss bb

GLIFT
IMPR. AND

y y

pp qq

(g) An imprecisely simplified
version of the GLIFT model
and an associated false-positive
flow.

Figure 4.1 – An overview of GLIFT cells, models, and queries.

of invulnerability to classes of attacks is extremely tantalizing. In addition, the ability to

enumerate flows (i.e., one assignment to the inputs and input labels that causes one output

to be considered tainted) helps to diagnose and correct those security flaws when they are

detected.

To understand how these models are built and used in practice, consider Fig. 4.1. Figure 4.1(a)

shows a simple logic circuit (a) and Fig. 4.1(b) shows how the typical method for construct-

ing GLIFT models, the “constructive mapping” approach, replaces each gate in the netlist

with a GLIFT cell that implements the very same logic functionality but also includes extra

inputs (al , sl and bl) and outputs (yl) to label and track tainted flows. Figure 4.1(c) details

the GLIFT cell, which expresses that the output is tainted either if both inputs are tainted

or if one input is tainted and the other is at the logic value (that is, it exposes the state of

the tainted input to the output). A typical Boolean SAT query on this GLIFT model, albeit a

trivial one in this elementary example, is shown in Fig. 4.1(d): The user asks whether there is

any condition under which a tainted input may leak to the output given the knowledge of

some of the inputs and labels; the answer is clearly “no” in this case (and hence the query is

45

Chapter 4. Using Satisfiability to Optimize GLIFT Model Circuits

UNSAT) because s = 1 and the output is logically connected to � (remember that the circuit is

a ���). The notion of taint is entirely a construct of the user; for example, the user might mark

some input (say, a secret key to a cryptographic function) as tainted (by assigning � to the

corresponding label input) in order to ensure that this information cannot flow to an output

(say, a ‘done’ signal output of that cryptographic function).

Fig. 4.1(e) shows the result of our precise simplification approach [Hu et al., 2016a], where the

GLIFT �� cell at the circuit output is replaced with a lower-cost imprecise version shown in

Fig. 4.1(f). The simplification is possible because the internal signals p and q are mutually

exclusive (due to the circuit structure and signal �), so some of the input combinations (like

when p and q are both �) are not actually possible to observe. Thus, the original precise GLIFT

�� cell can be replaced with an imprecise version without any change in the functionality—

even though taken alone, this imprecise GLIFT cell over-approximates the taint propagation

of a GLIFT �� cell. Therefore, the resulting simplified model is smaller but the propagated

label value is still perfectly correct under all conditions.

Finally, notice that in Fig. 4.1(g) the same simplification in the taint propagation logic is

applied to one of the GLIFT 	
� cells. Again, the simpler imprecise cell over-approximates

the label (is � when it should be �), but in this case the label may propagate to one of the

model’s label outputs. This GLIFT model is now imprecise because that same SAT query is

now satisfiable: the GLIFT model now reports a false positive: a reported information flow that

does not actually exist. It is worth emphasizing that this does not compromise the security of

the model in any way. Instead, it burdens the designer to assess whether each reported flow is

indeed real.

To better understand the relation between GLIFT cell precision and false-positive reported

flows, consider a gate in a netlist, like the 	
� gate in Fig. 4.2(a), the corresponding precise

GLIFT 	
� cell in Fig. 4.2(b), and its truth table in Fig. 4.2(d). Note that the functional logic

(fan-in to the output y) in the precise GLIFT 	
� cell is identical to the functional logic in an

“all-��” GLIFT 	
� cell, shown in Fig. 4.2(c). However, also note the difference in the taint

propagation logic (fan-in to the output yl): the precise GLIFT 	
� cell has much more complex

logic than the imprecise “all-��” GLIFT 	
� cell, which only uses a single �� gate to propagate

labels—hence the description as an “all-��” GLIFT 	
� cell. The imprecision introduced

by this simplified taint propagation logic can be seen in the differences between the truth

tables for the two GLIFT cells, shown in Fig. 4.2(d) and Fig. 4.2(e): The latter, representing

the imprecise GLIFT 	
� cell, has identical functional behavior, but contains a number of

�-valued cells in the label column that are �-valued cells in the corresponding column of the

former truth table. Each such cell represents an introduced false-positive flow.

Unfortunately, a single SAT query on a GLIFT model can take days, or even longer, for

moderate- to large-sized designs. Designers are thus typically forced to use an “all ��" model,

where this simplification (replacing the correct taint propagation logic with a simple �� gate)

is applied everywhere. This makes it possible to query models of more complex designs, but

46

4.1. Introduction

a b

y

(a) Part of a cir-
cuit to be mod-
eled.

y

aa bb

y
GLIFT
AND

(b) A precise GLIFT cell.

y

aa bb

y

GLIFT
IMPR. AND

(c) An imprecise “all- ” GLIFT
cell.

a al b bl y yl

(d) Truth table for the precise
GLIFT cell.

a al b bl y yl

(e) Truth table for the impre-
cise “all- ” GLIFT cell.

Figure 4.2 – Precise and imprecise GLIFT cells and truth tables.

there is no control whatsoever on introduced false positive flows.

4.1.2 Practical GLIFT

The state of the art approach for handling bigger designs with GLIFT is to use simple Boolean

to propagate labels [Suh et al., 2004]. Because each GLIFT cell’s propagation function is

so simple, these models are much less complex. However, this comes at a cost: a Boolean

propagation function over-approximates information flows. Because in this approach the

entire GLIFT model is composed of these cells, the over-approximation is compounded. In

other words, while this approach yields solvable models, it sacrifices a great deal of precision

to achieve simplicity. This imprecision is a serious problem, because every ‘false positive’

information flow (the result of model imprecision) requires laborious manual investigation to

check the flow’s authenticity.

47

Chapter 4. Using Satisfiability to Optimize GLIFT Model Circuits

Unfortunately, although designers might want to pick some intermediate trade-off between

complexity and precision, designers wishing to use GLIFT models of their designs must

typically choose between either precise, but unusably complex models or unusably imprecise,

but practical models.

This chapter describes automation techniques for circuit designers to make principled trade-

offs between the precision and complexity of GLIFT models. Specifically, we propose three

new 2QBF-SAT problem formulations and describe algorithmically how to apply a solver

to iteratively generate a simplified GLIFT model either with no imprecision or with some

target level of imprecision. Our first formulation uses a 2QBF-SAT solver to determine if

some minimum number of the GLIFT cells can be replaced with less complex cells without

altering the model behavior under any conditions. A simple search procedure then repeatedly

attempts to increase that minimum number until the solver fails to find a solution, and in

this way finds the maximum number of simplifying GLIFT cell substitutions. Our second

formulation allows imprecision by forcing the solver to choose a set of bit vectors to exclude

from the precise equivalence constraint; this approach works in principle, but suffers from

severe scalability issues. Our third formulation addresses this shortcoming by instead forcing

the solver to choose a set of bit vector patterns, including don’t-cares, subject to additional

constraints on the allowed number of extra imprecise flows. We analyze the trade-off space for

an example set of designs and show how our approach can be used to create GLIFT models

that trade-off between precision and complexity in a reasonably controllable way.

4.2 Precise GLIFT Model Simplification

It is impractical to build perfectly precise GLIFT models for circuits larger than toy examples

[Hu et al., 2012]. The constructive mapping heuristic for building GLIFT models demonstrated,

for example, in Fig. 4.1, is similar to technology mapping [Hu et al., 2011, 2016b] and is a

popular and tractable approach, but comes at the expense of a small amount of introduced

false-positive flows. However, even these models are often still too complex to be useful.

In this section, we explore a 2QBF-SAT problem encoding that exploits the internal don’t-

care conditions inside these constructively-mapped GLIFT models to enable a 2QBF-SAT

solver to reason about which simplifying GLIFT cell substitutions can be introduced without

introducing any additional false-positive flows.

4.2.1 Instrumented Model Construction

Precisely simplifying the model requires first constructing a so-called “instrumented model",

incorporating it in a 2QBF-SAT problem formulation, and iteratively driving the solver to find

the solution with the most simplifying GLIFT cell substitutions. The instrumented model is

constructed in a slightly different constructive mapping process that replaces each GLIFT cell

with a GLIFT “supercell" (Fig. 4.3c), where a multiplexer selects a taint propagation function

48

4.2. Precise GLIFT Model Simplification

a b

y

(a) Part of a circuit
to be modeled.

GLIFT

AND

aal bbl

yyl

(b) The GLIFT cell that corres-
ponds to the logic gate in (a).

0 2 3

aal bbl

yyl*

hi

GLIFT

AND

IMPR.

#1

IMPR.

#2

IMPR.

#3

yl yl1 yl2 yl3

(c) A so-called GLIFT supercell. hi

tunes the (im)precision of the super-
cell.

Figure 4.3 – An overview of how to construct GLIFT models from circuit gates with the con-
structive mapping approach, and how to construct instrumented GLIFT models from GLIFT
models.

according to a select line whose value will eventually be determined by the solver. The

choice of propagation functions determines the generated model’s precision and complexity.

While so far we have only discussed single Boolean gates as imprecise taint propagation

functions, this is rather the extreme. Other alternative taint propagation functions are possible,

each with varying costs. For example, the precise taint propagation logic for an gate is

yl = a ·bl +b ·al +al ·bl , but yl = bl +b ·al and yl = al +a ·bl are also correct (i.e., do not cause

any false negatives in the flow analysis), albeit imprecise. However, both of these are more

precise than yl = al +bl .

By allowing a choice of alternative functions, the solver has potentially more freedom to choose

alternative functions elsewhere without changing overall model functionality; although the

choice of propagation function is a local substitution, it affects the global context. This kind of

circuit reasoning is extraordinarily difficult for humans to perform, and is very well suited to

the 2QBF-SAT problem encoding.

The eventual solution specifies a concrete value for each in the instrumented model, the

two-bit signal that selects the appropriate propagation function for a given supercell. Once the

selection has been made, the instrumented model is converted to RTL and each is replaced

with its constant value determined by the solver. Simple constant propagation eliminates the

unselected alternative GLIFT cells and the multiplexer, leaving only the one GLIFT cell with

the solver-chosen propagation function for each original gate.

Simplification as 2QBF-SAT

The 2QBF-SAT problem (see Sec. 1.3 for a brief introduction) is formulated so the acceptance

function φ(�h,�i)’s output is when both of the following conditions are satisfied:

49

Chapter 4. Using Satisfiability to Optimize GLIFT Model Circuits

Figure 4.4 – A visualization of the 2QBF-SAT miter circuit for precise GLIFT model simplifica-
tion. Note the two conditions: on the left, that�h (the concatenation of all h∗) corresponds to at
least τ replacements (i.e., non-zero choices for h∗); on the right, that with these replacements,
the GLIFT logic is functionally identical to the original. Note that the “Inst" logic in the dashed
box in the upper-right is not connected to the equivalence check: only GLIFT primary outputs
are checked for equivalence.

• when �h—the concatenation of all supercells’ select lines—configures at least some

minimum number τ of supercells to use a locally-imprecise propagation function,

• and when the instrumented model’s output label values are identical to those of the

original precise GLIFT model.

Fig. 4.4 visualizes the components of the 2QBF-SAT miter that is constructed from the instru-

mented and original GLIFT models. The shaded box in the upper-left represents cells in the

original GLIFT model. The shaded box with a dashed border in the upper-right represents

the GLIFT supercells in the instrumented model. The shaded box on the lower-left represents

logic that ensures some minimum number of supercells select simplifying substitutions. The

final shaded box on the lower-right represents the equivalence checking logic; this is the logic

that ensures that regardless of the simplifying GLIFT cell substitutions made, the resulting

simplified model is functionally identical to the original model under all input conditions.

By iteratively solving and adjusting τ at each iteration, the GLIFT model with the most possible

simplifying GLIFT cell replacements will be found.

50

4.3. Imprecise GLIFT Model Simplification

4.3 Imprecise GLIFT Model Simplification

Precise GLIFT simplification, as described in the preceding section, exploits internal redun-

dancy created by the constructive model construction method to simplify some GLIFT cells

without affecting global model precision. However, the strict equivalence constraint still yields

costly implementations. In this section, we relax the strict equivalence constraint, which

exposes more simplification opportunities at the expense of some ‘false-positive’ detected

flows in addition to those that are already present in the constructive GLIFT model. In other

words, an imprecise GLIFT model may report a flow (i.e., an output with label �) when the

original model reports that no such flow exists (i.e., the same output is labeled �). We describe

techniques to formulate the 2QBF-SAT constraints to allow false positives for only some sub-

set(s) of input combinations, where the solver automatically chooses the best such subsets

(it is also possible to restrict false positives to only a subset of output labels, or to partially

specify which subsets of input combinations are allowed to produce false positives). By simply

changing one parameter to these constraints, the user can explore trade-offs between GLIFT

model precision and complexity.

4.3.1 Explicit Acceptance by Bit Vectors

Let ��� denote a bit vector of length |�| whose bit string is given by �. A slot is a bit vector ���

containing an “input vector" and an “output mask", and describes a model input combination

that may trigger a false positive, along with which output label(s) which may report a false-

positive flow. When generating an imprecise GLIFT model, the designer specifies some

number � of slots to use, thereby providing a degree of control over the amount of imprecision

that may be added to the model. However, the contents of the slots are determined by the

solver; these slots are existentially quantified in the 2QBF-SAT formulation. Still, if the user

wishes to partially specify some content of the slots (i.e., assign some constant values instead

of letting the solver choose), that is also possible.

Imprecision Acceptance Criteria

Fig. 4.5 illustrates several relevant aspects of the imprecise acceptance criteria. In this example,

there are N = 2 slots, each of which has a corresponding output mask. For each bit in the

output mask, a value of � indicates that a false positive is allowed in the corresponding output

label, and a value of � indicates that a false positive is not allowed there.

Three errors occur in Fig. 4.5 that would not be accepted: First, a bit vector not matching any

slot yields a false positive. Second, a bit vector that does match a slot yields a false positive

in an output label whose corresponding bit in the output mask has a value of �. Third, the

model generates a false negative in an allowable bit position, rather than a false positive. Our

problem formulation ensures that these types of errors do not occur.

51

Chapter 4. Using Satisfiability to Optimize GLIFT Model Circuits

Figure 4.5 – The imprecision acceptance criteria for the explicit method. This is an example
of an invalid supercell configuration, showing how the slots determine which imprecision-
generating inputs are accepted. Here the instrumented model is not a valid approximation
due to three problems (indicated in negative, red): (1) The instrumented model’s outputs
change under three input vectors but there are only two slots. (2) When the first input vector
is applied, one false positive is not in a position allowed by the slot’s output mask. (3) With the
second input vector, one of the changes is not a false positive, but a false negative.

Precise

Model

Instrumented

Model

hislots

Replacement

Counter

Replacement Acceptance

Criteria Evaluator >

-1

Figure 4.6 – A visualization of the 2QBF-SAT miter for imprecise GLIFT model simplification
using the explicit method. The satisfiability solver tries to force the output of this circuit to for
all possible values of the primary inputs under the constraint that the configuration found
must use at least τ imprecise GLIFT cells. The solution, if one exists, provides an assignment
for�h (encoding the chosen configurations for the supercells) and , which limits global
model imprecision. That limit is effected by the Replacement Acceptance Criteria Evaluator,
whose operation is visualized in Fig. 4.5.

52

4.3. Imprecise GLIFT Model Simplification

This is demonstrated in the acceptance function depicted in Fig. 4.6, which is a visualization

of the φ function described earlier. The rules of this acceptance function can also be stated as:

"it must be precise, except if the input combination is explicitly excluded from the equivalence

constraint, that any imprecision is a false positive occurring in an allowable output label, and

at least τ locally-imprecise GLIFT cells are substituted." The Replacement Acceptance Criteria

Evaluation function ensures that the constraints encoded in the slots (whose contents are

themselves determined by the solver) are checked. For input bit vectors that don’t match a slot,

the imprecise and original GLIFT models must produce identical labels; in case of a match, the

labels may be identical or a false positive—but only if that false positive appears in an allowable

output label. The user also provides an integer parameter, τ, which is a lower bound on the

number of locally-imprecise GLIFT cell replacements to be made; the Replacement Counter

and comparator (>) ensure that this lower bound is achieved. The ��� gate at the bottom

ensures that both criteria are satisfied: (1) the imprecise GLIFT model properly accounts for

all 2|i | slot and non-slot bit vectors; and (2) at least τ locally-imprecise GLIFT cells are used

instead of precise GLIFT cells.

We encode GLIFT gate replacement configurations exactly as in the previous method, which

was shown in Fig. 4.3(c). The Replacement Counter and comparator (>) ensure that a sufficient

number of imprecise GLIFT supercells are chosen.

Our technique encodes the same GLIFT gate replacement configurations in�h as the previous

precise method, along with the contents of the slots, and the Replacement Counter and

comparator ensures that enough GLIFT supercells have been configured to be imprecise than

the required minimum threshold τ.

2QBF-SAT Formulation

The added elements of imprecision require an updated 2QBF-SAT problem formulation that

goes beyond the precise formulation introduced in Section 4.2. The formulation for the

function illustrated in Fig. 4.6 follows.

∃(h, sl ot s) ∈ {0,1}m .∀i ∈ {0,1}n : φ(h, sl ot s, i) (4.1)

Notice that the function φ in Equation 4.1 has no parameter τ, which is shown as an input in

Fig. 4.6. We fix the value of τ for each 2QBF-SAT problem instance; we iteratively adjust τ and

re-solve, using the by-now familiar binary search method to generate a sequence of models

with progressively more replacements, eventually converging on a model that maximizes the

number of replaced GLIFT cells while still adhering to the constraints described above.

53

Chapter 4. Using Satisfiability to Optimize GLIFT Model Circuits

Figure 4.7 – A chart showing with columns (axis on left) the maximum number of GLIFT cell
replacements and the 2QBF-SAT solver runtime to find those replacements for the
experiment with various values (i.e., numbers of slots), given a 1-hour solver timeout, using
the explicit method. The data at shows that the solver was not even able to find the
same seven replacements it could with fewer slots; it could only find five. Note how the solver
runtime increases rapidly, and yet we find no additional GLIFT cell replacements.

Solver Runtime

Fig. 4.7 reports the runtime of the 2QBF-SAT solver as a function of the number of slots ()

provided by the user, given a one-hour time limit. For N ≤ 56, the solver was able to replace

seven cells in 207 seconds or less; for N = 64, the solver could only find five replacements

within the allotted hour, so a dashed line is shown to the timeout. These results indicate that

acceptance by bit vectors scales poorly.

4.3.2 Acceptance by Patterns

Our solution is to calculate acceptance not by input bit vectors, but by patterns of bit vectors.

Acceptance by patterns allows each slot to encode allowable false positive flows for multiple

bit vectors. A pattern includes one or more don’t-care values encoded by an in place of

an individual bit, as shown in Fig. 4.8; a pattern with don’t-cares covers 2 j distinct input

combinations.

At a high level, the 2QBF-SAT problem formulation given below is identical to that of the

explicit method above.

∃(h, sl ot s) ∈ {0,1}m .∀i ∈ {0,1}n : φ(h, sl ot s, i). (4.2)

54

4.3. Imprecise GLIFT Model Simplification

Figure 4.8 – A visualization of the acceptance criteria for the pattern imprecise simplification
method. This figure shows how changes to the GLIFT model truth table (i.e., false positives)
are allowed in the pattern method and how the estimated upper bound on additional false
positives is computed. Individual input vectors are now replaced by patterns including don’t-
cares. Acceptable false positives (three in the example, indicated in negative, dark blue) must
match at least one of the input patterns’ covered rows and also in the output mask’s columns.

Again, the contents of the slots are determined by the solver.

The difference between the two approaches lies in the exact formulation of the function φ,

which is visualized below in Fig. 4.8. This figure, representing the new miter circuit represent-

ing a new acceptance function, is similar to the function shown in Fig. 4.6, but with a few

key differences. The slot encoding allows for don’t-care bits (not shown); the user specifies a

parameter ����� which provides an upper limit on the number of unique input combinations

that can be covered by patterns (note that multiple patterns may cover the same input com-

bination); and a “Bound Evaluator” component, which enforces the aforementioned upper

bound. This provides the user an extra degree of freedom in addition to the number of slots.

Specifically, ����� can be interpreted as an upper bound on the number of output label cells

in the truth table describing the model that may become a false positive (i.e., turn into �).

The truth table cell coverage for a given slot is computed as: 2��������	
��
� ·��	
��
��������

where �� is the Hamming weight function. The coverage value for each slot is then summed

and compared to the provided threshold �����.

The appropriate parameter value for ����� varies from design to design, and some sense of the

number of existing flows in the design can help to bound the desired number of false-positive

flows. Our approach is to simulate the original precise model with a relatively small number

55

Chapter 4. Using Satisfiability to Optimize GLIFT Model Circuits

Precise

Model

Instrumented

Model

hislots

Replacement

Counter

>

-1MaxFP

Bound

Evaluator

Replacement Acceptance

Criteria Evaluator

>

Figure 4.9 – A visualization of the 2QBF-SAT miter circuit for imprecise GLIFT model simpli-
fication using the patterns method. The satisfiability solver addresses essentially the same
problem as the explicit method with two important differences: (1) The semantics of the
slots are now changed to contain don’t-care patterns, and the acceptance function is changed
accordingly. (2) The upper bound on how imprecise the can validly make the model is now
limited by the constant parameter . The criteria used in this circuit are illustrated in
Fig. 4.8.

(220) of uniformly random input and input label values. We then scale the resulting number of

observed -valued output labels over all input combinations to the full size of the model input

space 2|I |, where |I | is the number of inputs and input labels. This provides a rough estimate

of the number of original flows, allowing for quick calibration of the parameter. As an

example, the benchmark circuit has 28 model inputs, so its parameter is 256 times

the number of flows sampled in the precise model. This is not a hard upper bound, and could

easily overestimate the number of precise flows when scaled to the size of the full model input

space.

4.4 Experimental Results

To demonstrate the potential of these approaches, we gathered a number of GLIFT benchmark

circuits mostly derived from the IWLS benchmark suite [IWLS, 2005] and tested a script that

automatically replaced GLIFT cells with supercells, iteratively constructed an appropriate

2QBF-SAT miter, invoked a 2QBF-SAT solver, generated the resulting simplified circuit, and

continued searching for a more optimized circuit, if possible. This search procedure is sketched

in pseudo-code in Fig. 4.10.

Due to the complexity of some benchmarks, the voluminous number of different configura-

tions, and limited computing resources, some benchmarks were tested only with the precise

simplification method.

56

4.4. Experimental Results

1 ����� �� �	
�	���
2 ��� ��
�	�
3
 �� ����� �
�� ��� ��������� ������� �	���
4 ����� �� ����� �
�� ��� ��������� ������� �	���
5 �������	 � ��������� �
� ������ ��� ������� ��
� ������
6 ��	!
��� �� "
7

8 �
 	�� �������	�
9 ����

10 ���� ����� # $�
11 ����� �� ���	!
��� % ���!�����
12 ��� �� ���!���� & ������ � '�
13 �������	 �� ��������� �
� ������ ����� ��
� ������
14 �
 �������	�
15 ���!���� �� ��(��)��!���������	����������	��
16 �����
17 ��	!
��� �� ���

Figure 4.10 – Pseudo-code for the solution space exploration algorithm used to find the best
solution. This algorithm finds the GLIFT supercell configuration that results in the maximum
number of replacements possible given the values for � false-positive explicit/pattern slots
and a ����� bound on the percent of false-positives in the generated model.

4.4.1 Precise Simplification

Each of the benchmarks in Table 4.1 was simplified with the precise simplification method.

The Area columns shows the original and resulting circuit area (as reported by ABC after

mapping to the ��	� generic standard cell library) before and after precise simplification of

the GLIFT model. Note that this library is purely synthetic; these numbers should only be

compared in relation to each other, and not in absolute terms. The Cells/Updated columns

show the number of GLIFT cells in the original model and the number that are simplified in

the final resulting model. Finally, the Total Solver Time column shows the aggregate amount

of 2QBF-SAT solver time spent during the entire simplification procedure, including failed

Table 4.1 – Complexity of GLIFT models before and after simplification.

Benchmark
Area Cells/Updated Total Solver

orig simpl orig simpl Time (s)

alu2 2480 2211 337 113 121

alu4 4706 4081 701 291 845

C3540 17014 14876 2477 851 134604

C5315 24019 21160 3706 1422 84778

C7552 20783 18260 3693 1716 67856

des 32295 26665 4672 2120 91381

i10 19912 18082 3119 951 63090

pair 13860 13613 2175 446 8283

t481 231 129 47 17 9

too_large 2118 2067 281 7 41

ttt2 1108 1073 168 29 10

x1 2132 2071 300 4 30

57

Chapter 4. Using Satisfiability to Optimize GLIFT Model Circuits

Figure 4.11 – The solver progression visualized for the precise simplification of the
benchmark. Each column represents a 2QBF-SAT instance for one iteration of the optimization
procedure. The attempted constraint on the minimum number of replacements is shown in
the height of each column; the associated solver time is shown by the dashed line.

instances (i.e., those with a that is too high). These results show a modest but significant

reduction in model complexity. Notably, while solver time grows with model complexity, the

structure of the circuit can have a large effect on the solver performance. Simply put, some

models are more difficult to optimize than others. All experiments ran on Xeon E5-2680 v3

processors with at least 64GiB of available RAM, with no 2QBF-SAT instance timeout, using

Yices 2.4.2 [Dutertre, 2014] in “exists-forall" mode.

Fig. 4.11 shows how the solving procedure illustrated in Fig. 4.10 works on the

benchmark. Columns, and the left vertical axis, describe the attempted , or minimum

number of replacements, encoded in that iteration’s 2QBF-SAT miter. The dashed line shows

the time spent by the 2QBF-SAT solver for each iteration. In some iterations, the 2QBF-SAT

solver fails to find a solution. In this case, the parameter was too high; the next iteration

will attempt a lower minimum number of replacements.

This benchmark is quickly solved in all iterations. Figure 4.12 shows how the solving procedure

progresses for a much more complex GLIFT model: the benchmark. Again, columns

and the left vertical axis describe the iteration’s attempted value, and the dashed line

describes the associated 2QBF-SAT solver time.

While this more complex model requires much more solver time to simplify, these figures show

that this approach is reasonably scalable, and that solver times tend to be fairly consistent

from iteration to iteration.

58

4.4. Experimental Results

Figure 4.12 – The solver progression visualized for the precise simplification of the much more
complex benchmark.

4.4.2 Imprecise Simplification

To empirically verify our claim that we can generate circuits with arbitrary trade-offs between

added false positives and complexity, we must have a method to measure at least an estimate of

the actual number of additional false-positive flows produced by a given imprecisely simplified

model. To estimate, we use a set of designs from the standard IWLS benchmark set, and for

each we use the same pseudo-randomly generated 220 model input vectors used for estimating

, which were generated using Linear Feedback Shift Registers (LFSRs) with periods longer

than 220. Then we simply count the number of flows detected and subtract the number of

flows detected for the same sample with the precise model.

Due to the time and expense of an exhaustive exploration of the possible configuration space

for each experiment, we employed a binary search method to find the maximum possible

number of replacements given (the number of slots) and , described by the pseudo-

code in Fig. 4.10, and ran multiple experiments varying to estimate 80%, 60%, 40%, 20%,

10%, 5%, 2%, and 1% false positive rates. All experiments ran on Xeon E5-2680 v3 processors

with at least 64GiB of available RAM, with a 2QBF-SAT instance timeout of 1 hour, using Yices

2.5.1 [Dutertre, 2014] in “exists-forall" mode.

The tables in Fig. 4.14 show the results of optimizing GLIFT models of various IWLS bench-

marks. Each iteration of the optimization procedure ran with a timeout of one hour. While

some of the reported runtimes are large, in the vast majority of cases the solver runtime is

dominated by a few timed-out instances. A number of the instances failed to solve

within the timeout on the first iteration; therefore, no optimized model was found. These data

show clearly that varying the parameter is effective at reducing area and increasing the

number of replacements. Some instances, however—for example, the instances with

59

Chapter 4. Using Satisfiability to Optimize GLIFT Model Circuits

Figure 4.13 – A visualization of solver performance and effectiveness of the patterns imprecise
simplification method. Similar to Fig. 4.7, but with on the horizontal axis as the user-
controlled variable, with two pattern slots, for . Note how many more replacements
(columns, left axis) are found than with the ‘explicit’ method, and the runtime (line, right axis)
stability.

40% and 20% parameters—show an interesting artifact: despite having the same (or in

other instances, even fewer) number of GLIFT cell replacements, the area is reduced with a

lower bound. This is due to the fact that the procedure optimizes for number of GLIFT

cell replacements, and not for area reduction. Future work might try to weight GLIFT supercell

choices, in order to optimize more directly for area reduction; however, this may increase the

2QBF-SAT instance complexity and thus increase solver runtime.

Discussion

Fig. 4.13 serves as a counterpoint to Fig. 4.7. With the ‘patterns’ technique, we can find many

times the number of replacements as ‘explicit’, and with more reasonable runtime, too. Some

experiment instances used almost the entire allotted hour of solver time while others finished

within minutes.

In Fig. 4.15 we show the actual area reduction achieved versus the measured false positive rate.

The results reported here are only for the results of the search algorithm in Fig. 4.10 with two

pattern slots, not intermediate steps. While this is still a busy chart, one can see how generally

a higher measured false positive rate corresponds with a bigger area reduction. One can also

see that the region between the “all- " data points is not quite covered. This is likely due to

our approach maximizing the number of imprecise GLIFT cells, not the simplicity of imprecise

GLIFT cells. We also suspect the visible “noise" in the data is due to the same cause.

Future work will explore, for example, weighting each supercell option; this weight could be

the number of gates in the chosen propagation function to potentially make a better proxy for

60

4.4. Experimental Results

Benchmark
Area Cells/Updated Total Solver

orig simpl orig simpl Time (s)

alu2 2480 1495 337 313 22
alu4 4706 3113 701 616 313
C880 2116 1566 361 280 16970

C7552 20783 12962 3693 3167 19271
t481 231 116 47 24 26

too_large 2118 1789 281 105 15251
ttt2 1108 855 168 103 10050
x1 2132 1639 300 181 17145

(a) 80% �����, N = 2

Benchmark
Area Cells/Updated Total Solver

orig simpl orig simpl Time (s)

alu2 2480 1617 337 310 49
alu4 4706 3006 701 609 1184
C880 2116 1637 361 243 17646

C7552 20783 18303 3693 1298 27113
t481 231 118 47 24 40

too_large 2118 1730 281 92 18757
ttt2 1108 917 168 81 12726
x1 2132 1641 300 157 12466

(b) 60% �����, N = 2

Benchmark
Area Cells/Updated Total Solver

orig simpl orig simpl Time (s)

alu2 2480 1723 337 298 356
alu4 4706 3332 701 536 25228
C880 2116 1910 361 178 18670

C7552 20783 N/A 3693 N/A 3600
t481 231 136 47 22 51

too_large 2118 1854 281 73 19272
ttt2 1108 994 168 69 18194
x1 2132 1789 300 117 18857

(c) 40% �����, N = 2

Benchmark
Area Cells/Updated Total Solver

orig simpl orig simpl Time (s)

alu2 2480 1830 337 253 15820
alu4 4706 3711 701 429 26018
C880 2116 2034 361 129 9938

C7552 20783 N/A 3693 N/A 3600
t481 231 122 47 22 71

too_large 2118 1954 281 61 15899
ttt2 1108 1011 168 52 9872
x1 2132 1900 300 76 20380

(d) 20% �����, N = 2

Benchmark
Area Cells/Updated Total Solver

orig simpl orig simpl Time (s)

alu2 2480 1902 337 201 21543
alu4 4706 3836 701 376 35219
C880 2116 2065 361 119 16722

C7552 20783 N/A 3693 N/A 3600
t481 231 187 47 19 69

too_large 2118 1851 281 55 17363
ttt2 1108 1011 168 47 14452
x1 2132 2049 300 37 9803

(e) 10% �����, N = 2

Benchmark
Area Cells/Updated Total Solver

orig simpl orig simpl Time (s)

alu2 2480 2066 337 171 23878
alu4 4706 4039 701 341 27765
C880 2116 2075 361 112 13116

C7552 20783 N/A 3693 N/A 3600
t481 231 206 47 19 197

too_large 2118 1940 281 49 13285
ttt2 1108 1024 168 44 18137
x1 2132 2030 300 25 11900

(f) 5% �����, N = 2

Benchmark
Area Cells/Updated Total Solver

orig simpl orig simpl Time (s)

alu2 2480 2068 337 149 15726
alu4 4706 3941 701 319 30687
C880 2116 2038 361 106 17967

C7552 20783 N/A 3693 N/A 3600
t481 231 160 47 19 201

too_large 2118 1887 281 41 17211
ttt2 1108 1049 168 42 16803
x1 2132 2044 300 21 14743

(g) 2% �����, N = 2

Benchmark
Area Cells/Updated Total Solver

orig simpl orig simpl Time (s)

alu2 2480 2142 337 138 19091
alu4 4706 4056 701 309 24002
C880 2116 2053 361 99 21151

C7552 20783 19181 3693 1010 59537
t481 231 129 47 19 304

too_large 2118 1930 281 34 14392
ttt2 1108 1031 168 40 17372
x1 2132 2043 300 15 9966

(h) 1% �����, N = 2

Figure 4.14 – Results for GLIFT models of various benchmarks optimized with the imprecise
‘patterns’ method, for varying ����� parameters and with two slots.

simplicity. Still, overall, these data show that we do effectively trade off complexity (by proxy

of area) and the false positive rate for the generated GLIFT models.

In Fig. 4.16, we show the measured additional false positive rates for the same experiments

versus the ����� parameter used. Here one can clearly make out that increasing the bounded

false positive rate generally induces more aggressive imprecision.

Together, Fig. 4.15 and Fig. 4.16 show that not only can we trade off complexity and imprecision,

but we have a controllable and flexible method to do so, as well.

61

Chapter 4. Using Satisfiability to Optimize GLIFT Model Circuits

OR

Figure 4.15 – A comparison of area reduction to the measured additional false positive rate
(as a percentage of the original number of flows) among the sampled 220 input vectors, given
two pattern slots. Allowing extra false positives reduces the model’s area, and we can generate
models with arbitrary imprecision. The corresponding “all-��" models are highlighted.

OR

Figure 4.16 – The measured additional false positive rate (on a log axis) among the sampled
220 input vectors versus the ����� parameter. The ����� bound is loose, but clearly effective
at controlling the actual false positive rate. The corresponding “all-��" models are again
highlighted.

62

4.5. Related Work

4.5 Related Work

Denning was one of the first researchers to take an information-theoretic approach to reason-

ing about security [Robling Denning, 1982]. McLean [McLean, 1990] and Gray [Gray III, 1992]

pioneered the formalization of security properties using an information flow model. More

recent research has applied information flow analysis across different layers of the computer

system stack [Sabelfeld and Myers, 2003, Krohn et al., 2007, Suh et al., 2004, Tiwari et al.,

2009, Zhang et al., 2012, 2015]. A number of these use information flow analysis to build

secure hardware. For example, Tiwari et al. proposed a fine granularity information flow

tracking method that enforces non-interference at the Boolean gate level [Tiwari et al., 2009].

Chiricescu et al. incorporated hardware assisted fine-grained flow tracking into a secure com-

puter architecture in order to dynamically check security properties specified at the software

level [Chiricescu et al., 2013].

Using the correct abstraction is an important factor in reducing the complexity of the security

analysis [Li et al., 2010]. For instance, we could model the system at the register transfer level

(RTL), and use RTL information flow analysis tools such as [Li et al., 2013, Zhang et al., 2012,

2015]. This would allow a designer to assign a one bit label to an entire multi-bit variable. That

would speed up analysis, but the results would not present any bit-level flows. However, there

are many scenarios that require a lower level (gate level) IFT model, like detecting some hard-

ware Trojans [Hu et al., 2016b]. Again, picking the correct level of abstraction is an important

decision for system security modeling, and one that provides a complementary approach that

could be used to further inform the trade-off between the precision and complexity in GLIFT

models.

Precision and complexity in GLIFT models are known to be contradictory modeling goals [Hu

et al., 2012]. In practice, formally verifying properties of GLIFT models is intractable without

accepting very low precision. Although the internal redundancy common in constructively-

generated GLIFT logic has previously been noted [Hu et al., 2011, 2012], before the work in

this chapter, designers not wishing simply to abandon GLIFT in favor of a higher-level model

had few options, and most often used very imprecise models with “all ��" taint propagation

[Bidmeshki and Makris, 2015].

There is some relevant work in the logic optimization domain. Mishchenko et al. use the com-

plete don’t-care set for logic optimization [Mishchenko and Brayton, 2005]. Their technique

uses a Boolean SAT solver to compute a complete don’t-care set in local reconvergent fanout

regions and leverages these don’t-care conditions to optimize the design. This does not achieve

the global optimization possible with the work presented in this chapter. Further, general

logic synthesis tools significantly and uncontrollably change the structure of the design. As a

result, the security labels of internal signals may be synthesized away, and information may

flow in different ways. Our techniques preserve the security labels while optimizing the design

and only introducing controlled amounts of imprecision when desired.

63

Chapter 4. Using Satisfiability to Optimize GLIFT Model Circuits

4.6 Conclusions

Gate-level information flow tracking offers the promise of verifying important security prop-

erties at the Boolean gate level. Unfortunately, precise GLIFT models are often too complex

to practicably use for verifying security properties. Previous work mostly involved extreme

simplifications like reducing all GLIFT taint propagation to ��; more recent work introduced

some limited means of trading a small amount of precision for a reduction in complexity, but

without any controllability. We present three methods to simplify GLIFT models: One precise

simplification method that introduces no additional false positive flows, and two imprecise

methods that allow a limited and controlled amount of imprecision in exchange for the ability

to simplify the model further. These latter methods are the first methods known to the author

to systematically generate imprecise GLIFT models with a controllable trade-off between

precision and complexity, potentially allowing the use of more precise models than previously

was possible and reducing the manual verification burden. While imprecision does not reduce

security, it adds the burden of manually verifying all reported flows. Excessively imprecise

models are of limited use because the false positive rate is very high, so the signal-to-noise

ratio of the model queries is very low. In future work we hope to reduce the complexity of

the false positive rate calculation logic while sacrificing as little controllability as possible,

to assign weights to alternative propagation functions, and to demonstrate empirically how

imprecise GLIFT models can help speed up verification in the real world.

The kind of bit-precise global optimization problem that this simplification represents is both

extremely difficult for humans to reason about effectively and perfectly suited to automated

reasoning by a 2QBF-SAT solver. This application shows definitively that the kind of automated

circuit reasoning that 2QBF-SAT solvers can provide can be extremely useful for circuit analysis

and optimization tasks and that designers and hardware security engineers should have easy

access to them.

At this point, both the utility of 2QBF-SAT solvers in a variety of circuit design tasks and the

overarching similarity between this and the previous applications contained in this thesis

should be clear. Each of these applications shares common themes, including the need to

formulate a 2QBF-SAT miter, the need to solve that miter, and the need to integrate the solver’s

results into some user-defined process that eventually generates a circuit. The applications

in each of the preceding chapters were implemented in a diverse array of programming

languages and with bespoke scripting systems. However, a significant amount of the labor

involved in implementing these applications could have been avoided if there were some

language available that was flexible enough to read, construct, and manipulate circuits and

easily construct and solve 2QBF-SAT miters. Happily, the next chapter presents just such a

language.

64

5 Solver-Aided Circuit Design and
Optimization with Nasadiya

Then even nothingness was not, nor existence. . .

— Rigveda (10.129.1)

Wings are a constraint that makes it possible to fly.

— Robert Bringhurst

In Chapter 2, we explored how SKETCHILOG can be useful to create designs in the presence of

explicit design uncertainties like missing constant values and small logic fragments. While

this functionality is indeed useful, it only begins to scratch the surface of what is possible

with a tight integration of circuit design and satisfiability solvers. The preceding chapters give

some ideas of what is possible; these are somehow all independent applications that apply

the same underlying satisfiability solver technology. What these applications all share are a

few common requirements: the need to formulate a 2QBF-SAT miter circuit appropriate to

the application, the need to transparently transform the internal circuit representation into a

format comprehensible by a 2QBF-SAT solver, and the need to use the solver results to further

some circuit analysis or generation problem.

In this chapter, we develop Nasadiya, a more powerful extension of the Scala-hosted Chisel

domain-specific language [Bachrach et al., 2012] designed to address key limitations inherent

in SKETCHILOG and provide a comprehensive framework for manipulation, analysis, and

generation of circuits with the effortless assistance of 2QBF-SAT solvers. SKETCHILOG enables

only one inflexible and implicit application of satisfiability to circuit design: finding “hole”

values that induce functional equivalence between a circuit being designed and a “golden”

reference circuit. In contrast, Nasadiya offers much more flexibility, and, thanks to the experi-

ence gained in the implementation of the preceding chapters, enables a novel approach to

combinational circuit design that we refer to as Solver-Aided Design, which uses satisfiability

solvers to help drive the design space exploration and generation of a design.

The purpose of solver-aided design is to help bridge the gap between designers’ need to satisfy

65

Chapter 5. Solver-Aided Circuit Design and Optimization with Nasadiya

Golden

Reference

Meta

Circuit

hx

=

Gate

Complexity

Model

<=

max_comp

Delay

Model

=

max_del

Figure 5.1 – An example 2QBF-SAT miter that can be easily built and solved in Nasadiya.

design constraints—whether those constraints are functional (e.g., equivalence checking)

or extra-functional (circuit delay, area, side-channel resistance, etc.)—and the promise of

satisfiability solvers to analyze circuit designs and determine how (if possible) to satisfy those

constraints. Because the specific constraints designers must satisfy vary widely with design

domain and goals, and also with how those constraints relate to decisions to be made in the

design, Nasadiya aims primarily to facilitate the integration of satisfiability solvers into the

design source code itself and leaves the designer the responsibility to direct how it is used.

Essentially, Nasadiya is a language with two goals in mind: generating Verilog descriptions of

digital circuits, and constructing and solving 2QBF-SAT miters including those circuits and

potential extra-functional models. Figure 5.1 visualizes such a miter; this miter includes not

only a constraint on functional equivalence of the “Meta Circuit” (or sketch) and the “Golden

Reference”, but also rejects certain solver assignments to if they cause the “Gate Complexity

Model” or the “Delay Model” extra-functional models automatically built by Nasadiya to

exceed specified fixed bounds.

Nasadiya provides a library and supporting syntax features which together make it easier

for the designer to the specify how to construct these 2QBF-SAT miters (including building

and referencing extra-functional models), to transparently translate those miters to a format

comprehensible to a satisfiability solver, and to solve those miters and interpret the results

appropriately in order eventually to emit the desired Verilog design.

Nasadiya is a fairly simple language extension to Chisel, and represents the synthesis of what

the author learned from the implementation of applications in the previous chapters about

obstacles in formulating applying 2QBF-SAT problems and solutions in various circuit design,

debugging, and optimization contexts. It is both easy to use and expressive enough to describe

every application in the preceding chapters of thesis.

66

5.1. Nasadiya

Figure 5.2 – Part of the Nasadiya object and class hierarchy, with red dashed boxes for those
elements not included in standard Chisel.

5.1 Nasadiya

Nasadiya extends SKETCHILOG by introducing new objects, subclasses, and library functions.

Fig. 5.2 shows part of the object and class hierarchy in Nasadiya, with those parts not in-

cluded in Chisel highlighted with a dashed red border. The primary additions are the

subclasses (along with its subclasses) and . However, Nasadiya

also includes the standard hole support found in SKETCHILOG, including the “raw hole”

construct and the “meta mux” constructions to assist the designer

to express architectural freedom. Nasadiya also provides the object, which contains

the primary interface to the satisfiability solver backend; the complete interface is listed in

Table 5.1. These additions represent key features that are treated more extensively below.

Fig. 5.3(b) shows the typical design flow for solver-aided design, where the elaborate phase

from the standard Chisel flow in Fig. 5.3(a) is replaced with an elaborate, translate, solve

loop. Unlike a more traditional design flow, where the elaborated design may be subjected

to subsequent characterization and validation phases whose results then inform the next

iteration of design, solver-aided design puts these phases inside design elaboration itself. This

tight integration of modeling/characterization, constraint/miter formulation, translation to

a format accepted by the satisfiability solver, solving, and further elaboration is the heart of

solver-aided design.

To better conceptualize how these modules come together in solver-aided design, consider

the toy example in Fig. 5.4. This figure shows a hypothetical 3-input multiplexer, a realis-

tic logic gate representation of its implementation, and a more optimal architecture valid

only under certain conditions. In Nasadiya, with the aid of a satisfiability solver and simple

constraints, it’s possible to utilize the more optimal architecture represented in Fig. 5.4(c)

67

Chapter 5. Solver-Aided Circuit Design and Optimization with Nasadiya

Nasadiya Interface Function Functionality

������� ���� Set up (or reset) the Nasadiya context to begin
elaborating modules and instantiate and solve
problems.

�	
��

����� ����	�� �� ��
��� � ��		�� ���� Instantiate the module �, using the provided hole
assignments in the solution bit vector � (if provided),
and, if � is a �����

��� instance, generate the
appropriate input/output interface signals.

��	����� �� �����

���� �� ����� ���������
���� Instantiate the � �����

���module, translate it to a
representation accepted by the satisfiability solver,
and invoke the satisfiability solver with the provided
timeout � (in seconds, if provided). If a solution (i.e., a
concrete value for each hole) is found within �

seconds that satisfies the constraint expressed by � for
all inputs, it is returned.

Table 5.1 – The public, designer-facing interface for the �������� object.

automatically wherever possible, without the need for a designer to determine explicitly when

such a substitution is permissible. Such a solver-aided design will formulate constraints over

the design containing these modules, solve the constraints, and automatically determine

which implementation to emit for each module instance, all without any need for manual

designer specification or intervention.

This could be achieved with the use of the construction demonstrated in Fig. 5.5 in place of the

original 3-input multiplexer in Fig. 5.4(a). In this construction, the potential implementations

of the multiplexer shown in Fig. 5.4(a) and Fig. 5.4(b) are selected by a special multiplexer

selected directly by holes. We refer to this kind of hole-selected as a “meta mux”, because in

the final design elaborated with concrete hole assignments, such multiplexers do not exist:

These meta muxes exist only to express the possibility of selecting each of the sub-circuits

appearing on the corresponding input. In this way, a designer can express local options for

circuit architecture. Ensuring the validity of those options—or maximizing the global utility of

chosen options—is left to the designer and the solver to ensure with the appropriate constraint

formulation.

5.1.1 Integrated Modeling Library

The first key to solver-aided design is an easy-to-use and extensible hole-sensitive modeling

facility. In order to make meaningful choices between design options, the impacts these

options have on the resulting circuit must be modeled in a way that quantifies the utility

of an option to the underlying solver. This allows designers to formulate constraints over

extra-functional properties like pre-synthesis estimates of critical path length and circuit

area. While there is little inherent novelty in the construction of these models, integrating

modeling into the design language itself saves designers from the tedium, complexity, and

engineering overhead of ad-hoc scripts with all their mundane details (e.g., parsing). In

68

5.1. Nasadiya

(a) The standard Chisel flow is a straightfor-
ward design elaboration process. The top-level
design module defined in ���������	
	 is in-
stantiated in the elaborate phase, and is writ-
ten in Verilog to �������� by the Verilog back-
end.

(b) The Nasadiya flow allows an intermediate
elaborate-translate-solve loop, where design
modules are instantiated, a satisfiability prob-
lem is formulated using them, and the prob-
lem is translated to a format suitable for the
satisfiability solver. The result of the satisfiabil-
ity solver is then used to drive further decisions
in construction of the design. The resulting
fully-specified module is then written by the
Verilog backend to ��������.

Figure 5.3 – A diagram showing a high-level overview of the difference in the flow for a regular
Chisel design (Figure (a)) and for solver-aided design with Nasadiya (Figure (b)).

contrast, integrating modeling into the language gives direct first-class access to the object

hierarchy describing the circuit to be modeled, greatly simplifying model construction and

enabling extensibility for end users to customize provided modeling functions to suit their

needs.

Because these models are logic circuits that take holes as inputs and produce one number

(as a bit vector) as output, these model construction facilities are well-suited to design-space

exploration with satisfiability solvers. In addition to saving the tedium typical of ad-hoc scripts,

their instant availability alongside a satisfiability solver may provide an alternative to the kind

of tedious manual architecture analysis typical [Aktan et al., 2015] for designers looking to

optimize circuits for various extra-functional properties. Rather than manually formulating an

algebraic description of gate depth in terms of explicit global parameters, designers might rely

on ready-made models sensitive to locally-embedded architectural choices encoded by holes.

For example, consider the potentially optimized multiplexer contained in Fig. 5.4. Note that

the architecture in Fig. 5.4(b) is always correct, while the architecture in Fig. 5.4(c) is better,

but only correct under certain conditions. With only a standard equivalence check, as in

SKETCHILOG, there is no way to ensure the more optimal architecture in Fig. 5.4(c) is ever

chosen; even if the conditions for its equivalence to Fig. 5.4(b) are satisfied, both Fig. 5.4(b) and

69

Chapter 5. Solver-Aided Circuit Design and Optimization with Nasadiya

(a) The module, a multiplexer
with 3 inputs (assume that � can
never be �) whose architecture
might be optimized with the help
of a satisfiability solver.

(b) A reasonable example of how
this module might naturally be
implemented, with (excluding in-
verters) 8 gates and 4 gate delays
from s1 to the output.

(c) A possible optimized im-
plementation, which is valid if
s1 =⇒ c =¬b. Excluding invert-
ers, this architecture has only 5
gates and 3 gate delays from s1 to
the output.

Figure 5.4 – A simple toy example of a module and two possible implementations for which
solver-aided design might be useful.

Figure 5.5 – A “meta mux” construction that could be used in the place of the three input
multiplexer in Fig. 5.4(a), selecting between the always-valid implementation from Fig. 5.4(b)
on input � and the conditionally-valid implementation from Fig. 5.4(c) on input �. This is
called a “meta mux” because the final multiplexer and one of the implementations will be
eliminated once the satisfiability solver assigns a concrete value to the hole h on the select line.
In other words, this “meta mux” is used only to express design options, and will not actually
be present in the final design.

70

5.1. Nasadiya

Figure 5.6 – A visualization of the trade-off space for hole-based circuit delay modeling.
Nasadiya’s approach is detailed as "Proposed".

Fig. 5.4(c) are equivalent. By providing integrated modeling that can in turn be constrained,

it’s relatively easy to ensure that the more optimal architecture of Fig. 5.4(c) is chosen where

possible, because its models will be superior to the architecture in Fig. 5.4(b).

Integrated modeling makes it possible to apply satisfiability solvers to discriminate between

equally correct choices with different extra-functional utilities, and the modeling function-

ality provided by Nasadiya means designers can immediately make use of them rather than

spending time to develop bespoke models. The overall effect is to expand the applicability of

satisfiability to different design constraints, to reduce mental burden, and to enable a greater

focus on improving or developing the design.

Delay Modeling

Perhaps the most obvious kind of model is a delay model. Nasadiya provides an extensible and

ready-to-use delay modeling functionality with the ���������� subclass of the ��������	��

class.

This ���������� class is constructed with respect to some desired component to be modeled.

In principle, it performs the rough equivalent to a run-of-the-mill pre-synthesis static delay

analysis—but with a twist. Because each different assignment for a hole value can induce

radically different resulting design architectures, this delay model needs to be sensitive to the

special nature of holes in modules—optimizing a function only makes sense if that function

actually varies over its inputs. In other words, hole values here are the ’knobs’ for a solver

to ’turn’ in order to try to satisfy a constraint imposed by some function of those hole values.

Clearly there is nothing to be accomplished by turning those knobs if they are completely

disconnected from that constraint.

However, there is a small complication: Model construction must trade off between precision

and model complexity. Further, this trade-off must be done along two distinct axes: hole-

based design delay model complexity vs. precision, and typical static delay model complexity

vs. precision.

The first trade-off axis is unique to solver-aided design with holes. Because holes are only

an intermediate part of the design—they do not exist in the final generated design—and yet

their values may effectively change the circuit structure, we have established that the delay

71

Chapter 5. Solver-Aided Circuit Design and Optimization with Nasadiya

1 ����� �������	
����
�
����
������ ������� ����	
����
�
���� �
2 �������� ��� ����������
�� ������������ ��� � �
3 � ������
4 ���� ��� � �! �
5 ��
"#$%&'"(��������
��(����������� �
6 ������)
7 *
8 ���� ��
��(��������� �� "��"��
9 ������ + ,,- . ��� ������ / ���� � . ����� 0���(

10 *
11 ���� ������ 1 ,,���� ����� � ���� / ��2� ���� ������������
12 *
13 ���� ��
�� �! �
14 ��
��
���
��
��� ������ 1 ,,� "���� ���"
15 ���� ������ 3 ,,� ��4���� +5����� �����������
16 *
17 ���� � �! ������ 1 ,,���� ����� 2��� �� ���� / ��2� � �	�� ����
18 *
19 *
20 *

Figure 5.7 – An example demonstrating how to extend the delay modeling functionality in
Nasadiya. While the provided ���������� function here is simple and, for exposition pur-
poses, neither accurate nor perfectly syntactically correct, it really is this simple to override
the node scoring functionality in order to customize Nasadiya’s model construction.

model of such a design should be sensitive to the values assigned to the holes. Ideally, the

delay model should model with perfect precision, given a set of hole values, the static critical

path delay in the circuit resulting from specializing the design with those hole assignments.

In practice, the trade-off space for this axis is visualized in Fig. 5.6. On the left, we see the

lowest-precision (but also lowest-complexity) approach, which is to simply treat holes as

circuit inputs in a traditional static timing analysis [Devadas et al., 1991]. This simplistic kind

of model may of course give very different results from those of a model of the final generated

circuit; it is not hole-sensitive and therefore unsuitable for solver-aided design.

On the right we see the highest-precision (but also highest-complexity) approach, which is

to perform fully precise static delay modeling of the design (e.g., [Bahar et al., 1994]) for each

possible value for the holes, and then to select among them with “brute force”, using a look-up

table or multiplexer tree. Clearly, for non-trivial designs with even a modest number of hole

bits, such a model is unfeasible either to create or to use.

Towards the left, labeled "Proposed", we see the point in the trade-off that Nasadiya targets.

This approach embeds hole-selected multiplexers directly into the delay model, reflecting

one key use of holes: to choose between different potential circuit structures, which may have

different delays. If the modeled design uses a multiplexer selected directly by a hole (a meta

mux), the different sub-circuits on each input will be modeled and those sub-circuit models

will be selected by that same hole with a multiplexer in the delay model.

Lower-level uses of holes, however, like bare 	
� gates with one hole input, will not be treated

specially: Such holes will be considered like any other circuit input and the value of that hole

will not affect the modeled delay at the 	
� gate. It’s worth explicitly emphasizing that this

72

5.1. Nasadiya

means that Nasadiya’s delay modeling is not fully precise for any arbitrary use of holes. If the

hole on the input of an ��� gate is assigned value 0, that ��� gate should have a modeled delay

of 0. However, in this case, because Nasadiya’s delay models are only sensitive to hole values

at meta muxes, Nasadiya would model the worst case delay regardless of that hole value, and

thus the modeled delay will be the sum of the delay for this gate and the modeled delay of

whatever signal appears on the ��� gate’s other input.

The second axis is familiar to any designer who ever built a delay model. For example, designers

could model delay by simply counting the gates along a path, by also distinguishing between

different gate types, by additionally considering estimated post-synthesis gate capacitance, or

any of a number of other precision-enhancing effects. Considering these effects increases the

complexity of the model, but also increases its precision.

In Nasadiya, the delay model uses a simple heuristic by default: one two-input gate has delay 1.

However, the designer may provide his or her own delay calculation function, like the example

shown in Fig. 5.7, where he or she can instead assign any arbitrary delay to each Chisel node

element in the Chisel object graph. For clarity, note that Fig. 5.7 is merely an example. The

default Chisel node scoring function built into Nasadiya handles more Chisel node types and

with greater accuracy, and while it is more verbose, it is similarly simple. In such a case of a

custom node scoring function, the rest of the delay model construction remains unchanged.

Even designers wishing to use different (likely more precise) delays can still transparently

take full advantage of the rest of the hole-sensitive delay modeling infrastructure, saving the

designer from having to develop the entire modeling algorithm and supporting code from

scratch.

We believe our approach represents an agreeable trade-off in the space described by Fig. 5.6:

such “meta mux” structures are the most natural primitives for expressing alternative (sub-

)circuit architectures, the complexity of resulting models is limited, and crucially, unlike

traditional static delay modeling, the estimated delay computed is sensitive to value changes

in the signals representing holes. This value sensitivity for certain signals is essential to

determine the conditions (i.e., concrete values assigned to hole signals) under which sub-

circuits would be effectively cut off from the rest of the design; this may radically alter the

design’s delay, so it is crucial for model accuracy.

On the other hand, while the model must be precise enough to account for potentially rad-

ical variation under different hole assignments, there is limited utility to increasing preci-

sion. These models are constructed based on the Chisel node hierarchy representing the

design—they are pre-elaboration models, not just pre-synthesis models. While delay esti-

mates produced by these models should still be strongly correlated with those of models

of the post-physical-layout design, there are diminishing returns to increasing precision of

inherently imprecise models.

A sketch of the algorithm Nasadiya uses to build delay models is shown in Fig. 5.8. This

function is used to perform a bottom-up (from outputs to inputs) depth-first traversal of

73

Chapter 5. Solver-Aided Circuit Design and Optimization with Nasadiya

1 ��� ��������	
� �
��������� � �
2 ��	���������	
���
3 �
���� �
��
�����������	
����������
��
4 ������
	�
 �� �
����� ��������	�
�
5 � ���� �
6 ������
	�
 ��
��
����� ��������	�
�
7 �
8

9
��������� � ������
���	
� ������ �����
�� �� �����
! ��
����

10 �������������� � "���	�
11

12 ��	�#��	
� �� $� �
� %&'()%� ��
���
�	
���������
���
13 ���	� �� * �
���
�+���
��
14 �
� ��������#� � ������
	�
 ��
��
����� ����#�
����	�
�	��
15 �������������� ,� -�����������	
16 	��
�����������	
����������.
17 ������������	�
� ��������#����
18 �
19 �
20 ���� ��	�#��	
� �� $� �
�
���������
 �� %��%��
21 �
� ��������#� � "���	�
22 ������
	�
 ��
��
����� �
� ��������#� ,� ����#�
����	�
�
23 �������������� ,� -�����������	
24 	��
�����������	
����������.
25 ������������	�
� ��������#����
26 �
27 ���� ��	�#��	
� �� �����
28 �������
��� �
��
���� 	*�
29 �
* �
��
���� 	/�
30 �
/ �
��
���� 	0�
31

32 ��	���������	
���
33 ���	� �� * �
���
�+���
��
34 �������������� ,� ������������	
35 "�!�����������	�������
����.
36 ����#�
����	�
*�	��.
37 ����#�
����	�
/�	���
38 �
39 �
40 �����
41 ������� � ������������	����#�
����	�������
�����
42 ���	� �� * �
���
�+���
��
43 �*���� � ����#�
����	�
*�	��
44 �/���� � ����#�
����	�
/�	��
45 �������������� ,� -�����������	
46 	��
�����������	
����������.
47 ������������ 		������� . �*���� . �/��������
48 �
49 �
50 �
51 ���� ��	�#��	
� �� $� �
�
���������
 �� %11%��
52 ������
	�
 ��
��
����� �������������� ,� ����#�
����	�
�
53 �
54 ���� ��	�#��	
� �� 2��������
55 �
 �
��
���� 	*�
56 ����
� �
��
���� 	/�
57 ������ �
��
���� 	0�
58 ������
	� �� ������ �� ����
�� �������������� ,� ����#�
����	�
�	��
59 �
60 �����
61 ��	
��
�������3� �� *��
62 ��
 �� �
 4$
���� ��� � �# * ����#
63 ������
	� �� * �
���
�+���
� �������������� ,� ��
�����������	
����������
64 �
65 �����
66 ���#��
���� . ���� -���5�
� ����#6 7��� ���� �
���!
 �
� ����# ���5 �
� �
���
67 �������������� � ����#�
����	
��
���� 	*��
68 �
69 �
70

71 ����#�
����	
� � ��������������
72 �

Figure 5.8 – Pseudo-code for the depth-first traversal function used to build delay models.

74

5.1. Nasadiya

Delay Calculation Node Value

���������	
������
��� d

�������	
����	� ���������	
�����
∑|l |−1

i=0 li

�������	
����	� ���������	
����� max0≤i≤|l | li

�������	
������ ���������	
���� �� ����	
���� �� ����	
����

{
a s = 0

b s = 1

���������	
������ �����	
���� n ∈ {0,1}

Table 5.2 – A list of delay calculation nodes used to build abstract delay models.
���������	
��� is a special case, which is used to embed a Boolean logic expression in-
side the delay model itself, and is used to express the select line of each �������	
���.

the Chisel object graph, and associates delay calculation nodes (see Table 5.2 below) with

each object in the Chisel object graph. After calling this function on each output of the Chisel

����	� to be modeled, a subsequent pass on the resulting delay calculation graph implements

each delay calculation node in Chisel, creating the actual Boolean logic for the
�	������	

����	����	�; this ����	����	� can then be treated like any other Chisel ����	�.

However, there are a few complicating points: First, so-called “meta mux” structures (i.e.,

multiplexers selected by holes) are treated specially; second, the delay analysis is bit-precise,

while each Chisel node may represent elements of varying bit-widths. Thus, each Chisel

object maps to a list of delay calculation nodes—one for each bit in the valid range of the

Chisel object—and meta muxes encountered map to delay calculation nodes that select

delays of their input sub-circuits according to the value of the hole(s) on the select line, rather

than mapping to delay calculation nodes that calculate the maximum delay of their input

sub-circuits, summed with the delay of the multiplexer itself.

A table of the available delay calculation nodes is shown in Table 5.2. These delay calculation

nodes are, for the most part, straightforward. The �������	
��� and ���������	
��� delay

calculation nodes would not normally be used in static delay modeling: these node types

exist solely to handle the “meta mux” structures that are treated specially by Nasadiya’s delay

modeling. For example, the “meta mux” in Fig. 5.5 would be modeled by implementing a

�������	
��� that selects the delay from the inputs of the “meta mux” according to the value

of a ���������	
��� that replicates the select line of the “meta mux”. Thus, under a concrete

hole configuration that selects input � of the “meta mux”—meaning only the sub-circuit on

input � actually exists in the resulting circuit—the delay calculation node for that “meta mux”

represents only the delay for the input � sub-circuit. The delay calculation nodes for the input

� sub-circuit are irrelevant when the select line of the “meta mux” does not select input �. Of

course, in the alternative case when the concrete hole value on the “meta mux” selects its

input �, the �������	
��� selects the delay calculation node for input � and ignores the delay

calculation nodes for input �.

75

Chapter 5. Solver-Aided Circuit Design and Optimization with Nasadiya

Gate Complexity Modeling

Nasadiya also provides another type of modeling as a part of its standard library: gate complex-

ity modeling. This type of model is used to determine the sum total, given a hole configuration,

of gate complexities in the design. In other words, this type of modeling first determines which

gates will actually exist in the final design (so, will not be eliminated by constant propagation

of concrete hole assignments through “meta muxes”), then sums the node score for those

nodes which are determined actually to exist in the final design.

By default, Nasadiya calculates gates’ scores by a simple heuristic: a gate’s score is equal to

its number of inputs. Thus, a two-input ��� gate has score 2; an inverter has score 1. As with

Nasadiya’s provided delay models, the designer may provide his or her own scoring function

to model gate complexity differently without needing to re-implement the entire model.

Here again we are forced to choose a point in the trade-off space between model complexity

and precision. Nasadiya uses the same approach for gate complexity modeling as for delay

modeling: special “meta mux” constructions are treated specially, while other uses of holes

are treated as regular circuit inputs.

The gate complexity modeling algorithm in Nasadiya can be separated into two phases. First,

each Chisel node in the design is mapped to �����	
����	
s, or concrete assignments to

holes for which that Chisel node would actually exist in the final design, along with the

range of bit indices of that Chisel node for which the �����	
����	
 applies. Second, all

�����	
����	
s are aggregated, Chisel nodes are sorted into classes of nodes that are exposed

under the same �����	
����	
s, and summing the node scores of all class members to

determine the weight of each class. The final model value is computed by summing the

weights of those classes whose �����	
����	
s are �
�� given concrete hole values.

The basic idea behind these �����	
����	
s is best demonstrated with the aid of Fig. 5.9.

Note that the circuit shown in this figure has only one output, �	�� on the far left. Immediately

preceding this output is a “meta mux” selected by the hole h. As explained earlier, this “meta

mux“ structure means that only one of the sub-circuits (inside either of the shaded boxes

labeled, “Weight 11” and “Weight 20”) on the “meta mux” inputs will actually exist in the final

circuit. In this example, the “Weight 11” sub-circuit has the �����	
����	
 h == 1 and valid

bit range ��� ��, while the “Weight 20” sub-circuit has the �����	
����	
 h == 0 and valid

bit range ��� ��. When a concrete assignment to the hole signal selecting the “meta mux”

selects a sub-circuit, it satisfies one of these �����	
����	
s, and we say that that sub-circuit

is exposed.

Figure 5.10 highlights how the sub-circuit on input � of the “meta mux” is exposed when the

hole selecting the “meta mux”, h, has a concrete value of �, thus satisfying the �����	
����	

h == 1. Under this hole assignment, the final circuit will have only this sub-circuit (labeled

“Weight 11”); the other unexposed sub-circuit and the “meta mux” itself will be eliminated by

constant propagation. Many designs, however, have more than one output, more than one

76

5.1. Nasadiya

Weight 20

Weight 11

Meta-Mux h io_b

&

1

^

1

io_a

&

1

&

1

h[0] 1

io_c

&

1

io_s

[0]
2

[1]

2

[1]
2

[0]
2

[1] 2

[0]
2

[0]

2

[1]

2

[0]

2

io_z

|

1

&
1

&

1

~

1

~ 1

&
1

~1

~
1

1

1

1

|

1
1

1

1

1

Mux

1

F

1

| 1

1

~1

&

1

1
T

1

|1
1 1

1
1(s)1

Figure 5.9 – A visualization of the Chisel node graph for the “meta mux” construction in
Fig. 5.5, overlaid with the classes comprising the gate complexity model. Nodes, representing
the Chisel nodes in the module for Fig. 5.5, that have the same color belong to the same class.
Edges are labeled with the width of the signal connecting the two elements. Note that it is
possible for different bit indices of the same node to belong to different classes, if different
hole values might expose some bit indices of a node but not others. Weights of classes exposed
under a given hole assignment are summed to produce the model value.

“meta mux”, and may only partially expose some Chisel nodes—only some bit indices of those

nodes will be exposed. This is why the first phase of the gate complexity modeling algorithm

maps each Chisel node to a set of ��������	�	��s, the satisfaction of any of which will expose

the node, and why ��������	�	��s are only valid for a specified range of bit indices.

While the analysis of the provided design is rather involved, the final model is simple. Fig-

ure 5.11 visualizes the final circuit structure of the gate complexity model for the same example

circuit. The model is implemented merely as a sum of the weights of all classes, where each

class weight is gated by a mux selected by the mutual disjunction of the associated set of

��������	�	��s. In this case, each class only had one ��������	�	�� in its set; if a class has

more, each ��������	�	�� is
�’ed to compute the final value of the select line for the class’s

associated mux.

Figure 5.12 sketches the first phase of the algorithm used to build gate complexity models:

mapping Chisel nodes to ��������	�	��s. This depth-first traversal of the Chisel node graph

begins at the outputs, with an initial ��������	�	�� of 1 (i.e., always exposed) and a bit range

including all bit indices for that output. For example, if there is an output 	��
 that is three

bits wide, the traversal begins with a ��������	�	�� of 1 (this output will exist in the final

design regardless of the hole values for which it is specialized) and a valid bit range of ��� ��

(all bit indices of this node will be visible).

As the traversal continues towards the inputs, the ��������	�	�� changes only when crossing

77

Chapter 5. Solver-Aided Circuit Design and Optimization with Nasadiya

Weight 11

Weight 20

Meta-Mux h

io_b

^

1

&

1

io_a

&

1

&

1

h = 1[0] 1

io_c

&

1

io_s

[0]

2

[0]

2

[1]

2

[0]
2

[1]

2

[1]
2

[0] 2

[1]
2

[0] 2

io_z

|
1

1

~1

&

1

|
Mux

1
T

1

1
1 1

1

|

1

&
1

&
1

&
1

~1

~ 1

~1

1 ~

1

1

1

|
1

1

1

1

1

1

F

1

1(s)1

Figure 5.10 – A visualization of the Chisel node graph and gate complexity model information
created for the “meta mux” construction in Fig. 5.5 when the hole h has a concrete value
of �, thus selecting the conditionally-valid implementation of Fig. 5.4(c). Note that only the
corresponding complexity class (with weight 11) is highlighted: this is the only part of the
circuit that actually survives to the final design.

a “meta mux”: The �������	
�
�� for the sub-circuit on its inputs becomes the conjunction

of the current �������	
�
��with the select line or its inverse, as appropriate. This is because

for the sub-circuit on one of the “meta mux” inputs to be exposed, the �������	
�
�� that

exposes the output of the “meta mux” must be true in addition to the select line selecting that

sub-circuit.

The valid bit range is updated more frequently during traversal. Wire concatenation and

extraction must be accounted for by shifting the current valid bit range as appropriate. The

select line of a regular multiplexer (not a “meta mux”, but a multiplexer that is an architectural

part of the final design) is treated specially: this one-bit signal always has the valid bit range

��
 ��, because it must be exposed to select any bit(s) of either of the inputs.

5.1.2 Arbitrary Constraint Specification

Integrated modeling facilities can be very useful, but without the ability to specify exactly

what he or she wishes to constrain, the designer cannot make much use of them. Thus the

second key feature provided by Nasadiya is support for construction of arbitrary constraints

in a simple and straightforward manner.

In the limited context of designing a circuit for which a golden reference circuit is available,

mere equivalence constraints are useful for finding a valid circuit design. However, in this

context, when a golden reference circuit is available, the overarching goal motivating the

design of the new circuit is usually not just to find a valid circuit, but to find a better circuit.

78

5.1. Nasadiya

Figure 5.11 – A visualization of the gate complexity model created for the “meta mux” construc-
tion in Fig. 5.5. Note the simple structure: the model is just a sum of all weights of selected
classes from Figs. 5.9 and 5.10.

While SKETCHILOG is well suited to the former, the latter is a kind of solver-aided design for

which no pre-existing tools are well suited.

The essential insight here is that what is most useful to a designer is not just to find concrete

values for uncertainties, but to allow meaningful choice between architectural options. Ex-

actly what meaning these choices have depends entirely on the designer’s goal. Allowing

the designer to specify arbitrary constraints—quite possibly formulated with the aid of the

aforementioned modeling facilities—enables discrimination between valid solutions and

more fully unlocks the potential of satisfiability solvers to aid reaching specific parts of the

design space.

To support this functionality, Nasadiya provides a ������ subclass called ���	
��
�
. This

���	
��
�
 subclass is to be extended by the designer to implement the desired constraints,

and represents the miter circuit that will be provided to the satisfiability solver. This special

component provides behind-the-scenes support to make the designer’s job easy.

Part of this support is the ����������� function, which takes a ������ as a parameter and

automatically re-connects that ������’s inputs to the miter inputs; when ����������� is

called multiple times with ������	 with identical input names, those inputs are connected

to the same miter inputs. In addition, ������s containing holes reference the same hole

signals by default, although this can be disabled. Combined with the transparent ability to

functionally constrain those ������s’ outputs with comparison operators (���, ��, �, etc.), it

is easy to compare the behavior of multiple circuits—or meta circuits containing holes and/or

“meta muxes”—under the same input conditions. Specifying the functionality of the miter

output (effectively, the actual constraint implemented) is achieved by assigning the desired

logic function to a special signal, called �		��
���.

These features are demonstrated in Fig. 5.13, which builds delay and gate complexity models

of a ��
��
���

 ������ with “meta muxes”, and constrains its functionality to equivalence

with a ����������������
���

 ������, and also constrains the modeled delay and gate

complexity to provided targets.

79

Chapter 5. Solver-Aided Circuit Design and Optimization with Nasadiya

1 ��� ��������	
� �
�������� � ����
�� ���
��
�����
� � �
2
�������	
� �� ����
�
3 �� � ����
�������
4 ��
�� � ����
������
�
5

6 ��	����	
� �� ��������� !����� ��
��� ������ "��� ���������

����
7 �
 �
��
�#�� 	$�
8 ����
� �
��
�#�� 	%�
9 ������ �
��
�#�� 	&�

10

11
�"��
� � ��
'��
 	(��
������ � ������ � ��
���)�� � ������*� (����
� � ������*�
12 ��������	�
 � 	�� �
�"��
���
13 +
14 ���� ��	����	
� �� ,� �
�
���������
 �� -..-�� /��� ��
����
����

15 ���� �
��
�#�� 	$�
16 ���0 � �����"���

17 ���
� �
��
�#�� 	%�
18 ���0 � ���
��"���

19

20 ������
� � ��
'��
 	(��
������ 1 ���0 � ��
���)�� 1 ���0*� (���0 1 %� $*�
21 ���
���
� � ��
'��
	��
�� � (���0 1 %� $*�
22

23 ��������	���� � 	�� � ������
���
24 ��������	���
� � 	�� � ���
���
���
25 +
26 ���� ��	����	
� �� 2#��� 2#���������
27 �������
��� �
��
�#�� 	$�
28 �
$ �
��
�#�� 	%�
29 �
% �
��
�#�� 	&�
30

31 ��	��2���2#�	
��� !����� ��
��� ������ 3��� 3#���
32
�"���$ � �� 4 5�������
���
33
�"���% � �� 4 �������
���
34
�"��
�$ � ��
'��
	��
�� � (�
$� "���
 1 %� $*�
35
�"��
�% � ��
'��
	��
�� � (�
%� "���
 1 %� $*�
36

37 ��������	�
$� 	
�"���$�
�"��
�$��
38 ��������	�
%� 	
�"���%�
�"��
�%��
39 +
40 ����� 6��#��� 3#��������� 11
�
��� ������ ��
� ���������
41 ��������	�������
��� � 	�� � ($� $*��
42 ��������	�
$� ����
��
43 ��������	�
%� ����
��
44 +
45 +
46 ����� 7�� ��
��
��� ������ '#�� ���� �
��#�
 �
� ���
 ��
�����
 �
� ��
��
47 ���	�
 81
��
�#��� ��������	�
 � ����
��
48 +
49 +

Figure 5.12 – Pseudo-code for the depth-first traversal function used to build gate complexity
models.

5.1.3 Virtualized Solver Access

Finally, the keystone of the solver-aided design approach enabled by Nasadiya is the explicit

facility for invoking a satisfiability solver during design elaboration itself, a feature we call

virtualized solver access. Embedding a satisfiability solver as a first-class participant in the

design process allows designers to formulate and solve multiple satisfiability problems to

inform architectural choices during design creation, and, crucially, eliminates the typical

overhead of shuffling circuit representations around (e.g., from structural Verilog to formats

comprehensible by the satisfiability solver).

Coupled with the ability to specify arbitrary constraints, this particularly enables iterative

design techniques, where constraints are progressively relaxed or tightened, allowing auto-

80

5.1. Nasadiya

1 ����� ������	
����
��������	�� ��������� ��� �
����	
����
��� ���� ������� �	�����
�� �
2 ��� ��� � ����	�������� �����
���
� ���
3 ��� ���� � ����	�������� 	����!�"�������
���
� ���
4

5 ��� ������
	��� � ����	�������� ������	��� ��������
6 ��� #�����	
����
���
	��� � ����	�������� ����	
����
���	��� ��������
7

8 ��� �	����� � ��� ��� ����
9 ��� ������	$ � ������
	��� ��� ����� %% &'�& ���	 ()

10 ��� �	
����
���	$ � #�����	
����
���
	��� '�
����	
����
��
11 �������	$ �� �	����� * ������	$ * �	
����
���	$
12 +

Figure 5.13 – An example showing an arbitrary constraint over a circuit and its models.

1 ����� ����	
����
��������	�� ���
����	
����
��� ���� ������� �	�����
�� �
2 ��� ��� � ����	�������� �����
���
� ���
3 ��� ���� � ����	�������� 	����!�"�������
���
� ���
4

5 ��� #�����	
����
���
	��� � ����	�������� ����	
����
���	��� ��������
6

7 ��� �	����� � ��� ��� ����
8 ��� �	
����
���	$ � #�����	
����
���
	��� '�
����	
����
��
9 �������	$ �� �	����� * �	
����
���	$

10 +

Figure 5.14 – An example constraint that might be used as part of a strategy to maximize the
number of conditionally-valid three-input multiplexers from Fig. 5.4(c) used in ��������	��.

matic design-space exploration. By handing control over solver invocation to the designer,

the designer is freed from the limited applicability of SKETCHILOG. This hands-off approach

turns Nasadiya into a fully general language suitable for nearly any application of satisfiability

solvers to combinational circuit design.

As an example, suppose that the ��������	�� �
�	�� above contains multiple instances of

the “meta mux” construction from Fig. 5.5, and the designer wishes to use the optimized

version (that appears on input
 of this “meta mux”, and is shown in Fig. 5.4(c)) of the three-

input multiplexer whenever possible, without affecting the circuit functionality. Also suppose

that the �
�����������������	�� �
�	�� above contains an identical implementation,

except it uses the always-valid three-input multiplexer implementation from Fig. 5.4(b) rather

than the “meta mux” construction from Fig. 5.5.

In this case, the designer might use a constraint like the one in Fig. 5.14, which is broadly

similar to 5.13. With this constraint, the designer can employ Nasadiya’s gate complexity

modeling functionality to help implement the most possible optimized three-input multiplex-

ers: Because the optimized (and only conditionally-valid) three-input multiplexers have a

lower modeled gate complexity than the always-valid original three-input multiplexers from

Fig. 5.4(b), it stands to reason that finding a concrete assignment to “meta mux” hole values

that minimizes �����
�������� will also find the assignment to hole values that maximizes

the number of optimized three-input multiplexers used.

However, a single solution to this constraint will not achieve the objective of minimizing

the gate complexity model value: The satisfiability solver only reports if the constraint is

81

Chapter 5. Solver-Aided Circuit Design and Optimization with Nasadiya

1 ��� �������	
���
�� ��� �
�� � �
2
�� ��
������� � �
3
�� ���������� � �
4
�� �����	�������� � �	� � !	����
"#�����$�����	��������%� & '
5 �%��� ����������� �� � ((��
������� & ����������) '� �
6 *�������$�
����
7 ���
��
 �+*	� ����
" �	��������� + , �����	���������
8

9
�� �
���
�� �
�� -���.	��������/%���%	�� ��������	���������
10 *�������$�	�
���
���
��� ����% �
11 ���� *	
� �) �
12 ���������� � �����	��������
13 ���
��
 �+ ������ �	 ��
� � �	����	
 0+�
14 1
15 ���� �	����	�� �) �
16 ��
������� � �����	��������
17 ���
��
 �+ �	�
� �	����	
 2++ , �	� , +2+ 	� �	�������� �� �	�� + , ��
��������
18 1
19 1
20 �����	�������� � ���������� , �3����
������� & ����������� 4
21 1
22 1

Figure 5.15 – An example driver that uses virtualized solver access to iteratively minimize the
��������	�
���
������	� constraint’s ��
�����	�
��� parameter with a binary search-
based approach.

satisfiable, given a single ���������	�
�� parameter. Thus, it is necessary to use an itera-

tive process, where the same constraint is solved multiple times with varying values for the

��
�����	�
��� parameter.

Figure 5.15 shows an example of the driver code to find the hole configuration for the

��������	�
���
������	� constraint’s ����������� module (see ��� in Fig. 5.14) that

minimizes the gate complexity estimated by the ��������	�
���
������	� constraint’s

��������	�
�������	 module (see ���������	�
��������	 in Fig. 5.14), while ensuring

the ��	������������������� and the resulting solved ����������� are equivalent.

5.2 Related Work

As SKETCHILOG was inspired by Sketch [Solar-Lezama et al., 2006], it’s natural that Nasadiya is

also closely related to it. The embedding of a 2QBF-SAT solver (although implicit in Sketch)

and transparent construction of miters to complete programs or designs at the programming

language level came, for this author, from Sketch.

Other recent work has explored more explicit and flexible ways to integrate satisfiability

solving into programming languages; for example, metaSMT [Riener et al., 2017] offers a

handy solver abstraction layer in a domain-specific language embedded in C++. Other authors

have integrated the Z3 satisfiability solver into Scala [Köksal et al., 2011]. The transparent

and natural availability of powerful automated reasoning systems directly in widely-used

programming languages reduces the effort required to integrate satisfiability solving into

applications. However, unlike the Nasadiya language introduced in Chapter 5, these are not

designed to reason about or produce hardware circuits, and only support quantifier-free logic:

82

5.3. Case Study: Power-Efficient Parallel Prefix Adders

2QBF-SAT problems are not natively expressible or solvable.

More typically, language-level integrations of satisfiability solvers focus on specifying con-

straints for or otherwise aiding debugging or formal verification of software. KLEE [Cadar

et al., 2008] is a symbolic execution engine that uses satisfiability solvers to reason about

execution paths in software programs. While KLEE is most often used for test case genera-

tion, debugging, and reverse engineering, it also offers an Application Programming Interface

(API) for software programmers to harness KLEE’s solver capabilities directly in their code:

the provided �����������	
 function allows programmers to specify arbitrary constraints

over values in the program, which the solver (invoked transparently by the execution engine)

proves are satisfied before continuing symbolic execution (or reporting an error and halting

execution otherwise). This limited solver integration allows programmers the use the power of

a satisfiability solver to prove invariants and find magic values that satisfy arbitrary conditions

in some limited cases. Automated reasoning aids like this can be very helpful in the software

development process. However, while specifying constraints is supported, user code cannot

change the manner in which the satisfiability solver is applied: user code does not support

first-class access to the solver, and there is no support for 2QBF-SAT, both of which limit the

tool’s utility.

Liquid Haskell [Vazou et al., 2014] integrates a programming language’s type system with

user-supplied invariants and employs a satisfiability solver to guarantee those invariants hold.

Many others provide facilities to specify program pre- and post-conditions, loop invariants,

constrained types, verifying compilers, etc. to help program verification [Brady, 2013, Pearce

and Groves, 2013]. Π-Ware is a language hosted in Agda [Flor et al., 2015] that enables one

specification to be both executable and synthesizable (i.e., to hardware); it also integrates

the type system with a satisfiability solver and allows the expression and implicit verification

of constraints over dependent types, helping to ease design of hardware that is “correct by

construction”.

5.3 Case Study: Power-Efficient Parallel Prefix Adders

To demonstrate concretely how all these facilities can be used to solve real-world problems,

in this section we develop a solver-aided design generator in Nasadiya for a power-efficient

parallel prefix adder. The architecture design space for binary adders is well-developed

[Zimmermann, 1998, Ercegovac and Lang, 2004]. For minimal delay, modern adders typically

use some sort of parallel prefix computation scheme [Ercegovac and Lang, 2004]; one of the

most common is the Ling Adder [Naffziger, 1996, Ling, 1966].

As described in Sec. 2.4.1, in a parallel prefix adder, each carry-in bit to a full adder that

computes a final sum bit is calculated by the prefix tree. This contrasts with a ripple-carry

adder, where each carry-in bit is computed by the full adder in the next least significant bit

position. While the critical path delay through a parallel prefix adder is significantly less than

the critical path delay through a ripple-carry adder, parallel prefix adders use considerably

83

Chapter 5. Solver-Aided Circuit Design and Optimization with Nasadiya

more power.

Recent research from Aktan et al. has explored the design space for so-called sparse parallel

prefix adders [Aktan et al., 2015]. A sparse parallel prefix adder is distinguished from a regular

parallel prefix adder by computing only some of the carry-in bits to the final full adders; those

bit positions not calculated by the prefix tree use as carry-in the carry-out signal from the next

least significant bit position, as in a ripple-carry adder. By reducing the number of carry-in

bits calculated by the prefix tree, power and area are reduced. However, too much sparsity can

increase the critical path delay if the ripple-carry chains in the final full adders are too long.

In order to determine the sparsity that minimizes the power consumed by the adder but that

does not increase critical path delay, the authors developed by hand analytic models of the

delay, gate complexity, and wire complexity of a Ling parallel prefix adder according to the

specified level of sparsity.

5.3.1 Design

We show how Nasadiya can help automatically find design architectures that optimize a given

objective function, and how Nasadiya’s provided modeling functionality can be used to avoid

potentially man-months of labor building analytically models. To this end, we re-implemented

the Ling adder design Aktan et al. studied in Nasadiya, sketching the sum block that depends

on adder sparsity, and used Nasadiya’s built-in modeling capabilities to automatically generate

models of the circuit delay and complexity. These automatically generated models obviate

the need for manual analysis: with solver-aided design these implicitly parameterized models

can be integrated directly into a constraint specification that is then solved during the design

elaboration.

In effect, we show how Nasadiya’s support for holes, constraint specification and solving, and

automatic hole-sensitive model generation can be used easily to achieve the same goal that

required months of manual human analysis.

The top-level module, called ����������	���
��, and whose generator code is listed in

Fig. 5.16, builds a mostly-standard complete (i.e., no sparsity) Ling adder. However, the

������ ������ construct is used to select between two possible implementations of the final

block of full adders: Either ripple-carry adders are used (as described above), or non-sparse

parallel prefix adders are used (as described by Aktan et al., and a better choice for large

sparsities). The effects of this design choice are fully captured in the automatically-created

models; thus, assuming the correct formulation of constraints around those models, the

solution will automatically choose the “best" implementation.

However, this design implements a complete prefix tree. The sparsity value is effectively

sketched, however, in 	
��
����������� and ����
�����������. The code for building

the ripple-carry implementation of the block of final full adders is listed in Fig. 5.17. It is

this component which is responsible for determining sparsity values and implementing the

84

5.3. Case Study: Power-Efficient Parallel Prefix Adders

1 ������ ��	
��

����	�
���
2 ��� �������� �	� � �� ���� � �� ���� � ��	� ������ ����� � ����� � � ���� ! � �� ��
3 "�� �#$��
� � 	�� %����� ����&%����� ����&
����' ((
4 �) 	��� ��
*+���� , -� !�� � $ �. �#$��
� ,� 	�� %����� ����&
����'(/
5

6 "�� �� �$��
� � 	�� %����� ����&����(
7 "��
 � 	�� %����� ����&����(
8 "�� � � 	�� %����� ����&����(
9

10 �� � ���
 �	� ��
11 ����� 01) 	��� � , -��
12 ���� .)��
13
 ,� ���1-� 2 ���1-�
14 � ,� ���1-� 3 ���1-�
15 / ���� �
16
 ,� ��	
17 � ,� �����4�-4� -�
18 /
19 /
20

21 �� � ��� ����� ��"�� �� ����� �����
22 ����� 01) 	��� � , -��
23 ���� ��)� �#$��
� �)� ,� �����'���)��
�)�� �� ����� �	
24 ���� ���� �� -� �#$��
� �)� ,� �����'����1-��
��� 3
��1-�� �� �#��� �#�!����
25 ���� �#$��
� �)� ,� �����'����1-� 2 ���1*��
��� 3
��1-�� ������5 �#�!����
26 /
27

28 �� ����# � � ���# ��"�� �	 �#� ������
29 ����� �$��"�� 01 - 	��� ��
*+���� , -��
30 �� ��		��� � �$��"�� 6� �����'���
31 ����� 01) 	��� ���*�� �$��"�����
32 "�� �# � �#$��
��� �$��"�� 1 -����
33 "�� �#$# �
��$7��#�
34 "�� �#$� �
��$���#�
35 �#$��
��� �$��"��� ,� �# �� �#��� ������� � � �����
36 /�� 	��#�	
 !��� �� �� ��� �#��� ����8 �#�� �	#���� �#�� ��� ������� ��!� ���
37

38 ����� 01 ���*�� �$��"��� �� ���
39 "�� ���� � �#$��
��� �$��"�� 1 -����
40 "�� ��
#� � �#$��
��� �$��"�� 1 -��� 1 ���*�� �$��"����
41 "�� �# � �����'����� � ��
#�� �� ����5 �������
42 "�� �#$# �
��$7��#�
43 "�� �#$� �
��$���#�
44 9:�;����<���$�	� �$����$������#$#� * = ���*�� �$��"��� , -�
45 9:�;����<���$�	� �$����$������#$�� * = ���*�� �$��"��� , -�
46 �#$��
��� �$��"��� ,� �#
47 /
48 /
49

50 ��
������ ����� ��
	��� ��� �#� � ! ����5�
51 ��� �� 01) 	��� � , -� �
52 �� �� ��)� �� �$��
� ,� ��	 ���� �� �� >� �� �
53 "�� �� � ����
54 "�� #� �
��$7��#$��
�<��������
55 �� �$��
� ,� �� 2 #�
56 /
57 /
58

59 �� ?��� ���� ����� 1� ��
60 "�� �� � � ���� 2
��$7��#$��
�<��������
61

62 ��;�5� �#� ��	�� �#���� ������	 ���# �����	 6� ��� �������	� �	� ���� ���� �#� � !
�����

63 "�� ��$� ! � @?������� !����5��� �� �� �� �$��
��
64 "�� ��$� ! �

������� !����5��� �� �� �� �$��
��
65 "�� � ! � ���#�� �#���� ��$� ! �� ��$� ! �� �5���#�	
� ��� �#� ���"�� �#����>
66 ��� �	 �� ! � �� ��
67 /
68 /

Figure 5.16 – The code for building a Ling adder suitable for solver-aided design and opti-
mization. ���������	
��
�� and ���������	
��
�� implement sketched modules which
select with “meta muxes” only some of the prefix tree results. Thus the exact architecture is
determined by the sketched design’s hole values.

85

Chapter 5. Solver-Aided Circuit Design and Optimization with Nasadiya

1 ��� ������	
 ��
 � �
 ��
� � �
 ��
� � ���
 �������������
���
 ��
� � �
2 ��� ���� � ��	 !""�������"���
��
3 ��� ����# � ��	 !""�������"���
��
4 ��� ����$�
 � ��	 !""�������"���
��
5 ��� ��""��$�
� � ��	 !""�������"���
��
6 ��� ��""��$�
�# � ��	 !""�������"���
��
7

8 %%&� 	��� �����
	$ �'���� $� ���� ����"� � ��(� �)�""� �����
 ����" � ��
 	�
' ���'
9 %%���� ��""� *�� �������� �$
 �� �$��
 + + $" �$��
 +#+� ��
 �� � ,-. �����
��/
'�

10 %% ���"$�"��
� �$��
��
 � $" #� 0$"0
'� �"���$�� ���� ����" 1� ��""� *$�
2
11

12 %% ����� �$
' ��""� �'����

13 �$" �� 3* ��
�� 	� �
14 ��� ���� � �� �� �� � ��
��+� +� #� ���� �
15 ��� �� � ��
��+� +� #�
16 ��� ��# � ��""��$�
 � 2 ���

17

18 ��
'�" �'$$�� �� $" ��# %% �(�
�'��/
 ��

'� �$���" �'$$��4
19 5
20

21 ��� ����# � �� �� �� � ��
��+�#+� #� ���� �
22 ��� �� � ��
��+�#+� #�
23 ��� ��# � ��""��$�
 �#2 ���

24

25 ��
'�" �'$$�� �� $" ��# %% �(�
�'��/
 ��

'� �$���" �'$$��4
26 5
27

28 ��� ���� � ��� �$�
 � ��� � 6���!���"������ ����� ��� � �
29 ��� ���� �#��� �$�
 �#��� � 6���!���"������ ����� ��� �#�
30 ���� 7� ��� � ��
31 ����# 7� ��� �#��
32 ��""��$�
� 7� �$�
 � ��
33 ��""��$�
�# 7� �$�
 �#��
34 5
35

36 %% �����
'� ����� ,-.��
$ �����

'� "��� ��� ��
�

37 �$"�� 3* ��
�� 	� �
38 %%8$	 �����
 ��$�/
'� �$������ ���"�� ��""� ��/���� �
$ ��
�"���� 	'��' ��/���
39 %%
$ ��� ��
'� �����
 ����
$
'� ����� +��""� �����
+ ,��

40 ��� ��� � 99� �$/:-�����2��;��� %% �(�
�'��/
 �"��
� �� �������
�� ����� '$��
41 ��� �����
����� � ��
'�" �'$$�� ��� ����/ ��� %% �(�
�'��/
 ��

'� �$���" �'$$��4
42 ����$�
 7� ,��������
����� � ��� �#���� ��� � ����
43 5
44

45 "�
�"�)�
�����$�
2"���"��2'��� � ����$�
2"���"��2
���
 �0�
46 5
47 5

Figure 5.17 – The code to build the ripple-carry implementation of the sparse sum block for the
����������	���
�� module of Fig. 5.16. This is the code that sketches the adder’s sparsity.

correct set of carry chains to compute the final sum. First, at each index, two full adders are

instantiated (one for the
 side and one for the � side of a carry-select adder). Each full adder’s

carry-in signal is the output of a “meta mux" that chooses between the appropriate constant

value (signifying a choice to start a new carry chain because the corresponding carry from

the prefix tree has been selected) or the carry-out signal of the full adder in the previous bit

position (signifying a choice to continue the carry chains, because this position is ’sparse’: the

corresponding carry from the prefix tree is not selected).

In this way, the effective sparsity of the circuit is sketched, so the sparsity of the resulting adder

design is implicitly encoded in the values the solver chooses for the holes selecting these “meta

muxes".

Finally, a row of multiplexers selects between the
 and � sides of the generated carry-select

86

5.3. Case Study: Power-Efficient Parallel Prefix Adders

1 ����� �����	
��
���	����� ��������	��
� ��� � ���� ���� 	
�	��� ���������� �
2 ��� ��� � ��������	��	� ��� !� 	"���	#�� ���� � �����	�� ��$���%���
3 ��� ��	� � ��������	��	� &����	����
'��	� ���� � �����	�� ��$���%���
4

5 ��� �	��
����	� � ��������	��	� (��
���	� ��������
6 ��� ��	������	
��
����	� � ��������	��	� �)����	� ��������
7 ��� ���	������	
��
����	� � ��������	��	� �*����	� ��������
8

9 ��� ����	�� � ��� ��� ��	�
10 ��� �����	
��
��+ � � ��	������	
��
����	� , ����	������	
��
����	� -- ./�
 �0��� 1� ./�
�

����
11 ��� �	��
��+ � �	��
����	� ��� ./�
������	��
� 22 31�3 ���� 4!
12 ���	����+ �� ����	�� 5 �����	
��
��+ 5 �	��
��+
13 6

Figure 5.18 – The ���������� used to minimize modeled circuit power: the constraint’s single
primary output is true when the circuit is equivalent to a simple ripple-carry adder, when its
modeled delay meets the minimum specified delay 	��
��
��, and when its modeled gate
and wire complexities meet the maximum specified ���.

structure, with the index of the selecting carry signal from the prefix tree determined by the

solver. In this way, when the solver chooses to connect the carry-in signals of bit position � to

the carry-out signals of bit position � � � (i.e., when bit position � is sparse), the solver will

also choose to select the final multiplexer with the same prefix tree-provided carry signal as

was used for the rest of the carry chain.

5.3.2 Constraints

The design is constrained by one of two constraints: a ��	�
������������
�, as described

in Fig. 5.18, and a ��
���������
� which is similar but does not include the gate or wire

complexity models and requires only correctness and a modeled delay value that meets the

specified threshold ���. Compare the constraint described by the code in Fig. 5.14 and the

constraint described by the code in Fig. 5.18. While the constraints differ in function, modules,

and models used, their descriptions are both immediately plain and very succinct: Neither

constraint description occupies more than a dozen lines of code.

The process by which these constraints are used iteratively to find the optimal value for ���

should by now be familiar. Figure 5.19 shows the driver code used to iteratively formulate and

solve these constraints, until the minimum possible modeled complexity is found given the

minimum possible modeled delay.

The solutions that result from this search will be treated below; those solutions near the

minimum complexity value should correspond to concrete Ling adder designs with sparsity

configurations that minimize circuit power, as the gate and wire complexity models are

designed to serve as a proxy to circuit power [Aktan et al., 2015].

87

Chapter 5. Solver-Aided Circuit Design and Optimization with Nasadiya

1 ������ ���		�
�
�
�
 �
2 	�� ����� ��� ���� � �
3 ����	����������
4

5
�
 ����������� �� � !
6
�
 ��"#����
�� �� � !
7
�
 ��
$	����$���� �� � ��%&� '�	����(��
������"$��	��$%�	�)� * +
8
�
 ��
$����$���� �� � ��%&� '�	����(��
������"$��	��$%�	�)� * +
9
�� �������$��� � ,! - ,! - + ..+) ���
�
 �������

10
�
 �� ��
��(� ����
11

12 ..�� � ����
� ���
�) �� ���	 �)� �������
���� ��
 �)� 	�����
13 %)��� ���"#����
� �� ! // ���������� * ��"#����
� 0 +� �
14 �
����� �1��% �
���(����� 1 2 ��
$	����$����
15
�� �������� � ��% �����3)
��)��	 �����
$	����$����
16 ����	�������
���������� 4 �������$���� ����) �
17 ���� ���� �0 ��"#����
� � ��
$	����$���5 �
����� �1 #����	 �� 1 2 ��"#����
��
18 ���� ��������� �0 �
19 � � ���
20
�� �		�
 � ��% 6��(7�((��������
 ���% � %�	�)�
21 ����	���������
�����		�
 4 ��
22
�� 	����$��	�� � ��% �����'�	�� ����		�
�
23 ���������� � 	����$��	����
���������
24

25 �
����� �1 �������� 1 2 ���������� 2 189�1 2 ��
26 �
��������
27 :
28 :
29

30 ��
$	����$��� � ��"#����
� 2 �������������� * ��"#����
�� . &
31 ����	����������
32 :
33
�� ���$	���� � ����������
34 �
����� �1 '������ 	���� ��)��
�	� 1 2 ���$	�����
35

36 ..���� ��
 �����
37 ���������� � !
38 ��"#����
� � !
39 %)��� ���"#����
� �� ! // ���������� * ��"#����
� 0 +� �
40 �
����� �1��% �
���(������"���� 1 2 ��
$����$����
41
�� �������� � ��% ;�����"���3)
��)��	 ������$	���� 4 ��
$����$����
42 ����	�������
���������� 4 �������$���� ����) �
43 ���� ���� �0 ��"#����
� � ��
$����$���5 �
����� �1 #����	 �� 1 2 ��"#����
��
44 ���� ��������� �0 �
45 � � ���
46

47
�� �		�
 � ��% 6��(7�((��������
 ���% � %�	�)�
48 ����	���������
�����		�
 4 ��
49
�� (���$������"���$��	�� � ��% 3<;'�	�� ����		�
�
50
�� (���$���� � (���$������"���$��	����
���������
51
�� %�
�$������"���$��	�� � ��% 3=6'�	�� ����		�
�
52
�� %�
�$���� � �%�
�$������"���$��	����
���������� . &
53 ���������� � (���$���� 2 %�
�$����
54

55 �
����� �1 �������� 1 2 ���������� 2 14<�1 2 (���$���� 2 14=�1 2 %�
�$�����
56 �
��������
57 :
58 :
59

60 ��
$����$��� � ��"#����
� 2 �������������� * ��"#����
�� . &
61 ����	����������
62 :
63
�� ���$���� � ����������
64 ����
��� 8� ���� 4 1�� �������� ����	 �1�
65

66 �
����� �1 '������ ���� ��)��
�	� 1 2 ���$�����
67 �
����� �1>��� �������� �9�1 2 ��
68 :
69 :

Figure 5.19 – The driver code used to discover solutions that optimize the
��������	
��
������ constraint, to find the lowest-delay Ling adder with sparsity
choices that minimize modeled circuit power.

88

5.3. Case Study: Power-Efficient Parallel Prefix Adders

Figure 5.20 – Power (μW) vs. delay (ns) for all intermediate 8-bit adders listed by the value of the
��� parameter to the �����	
���
��	����� the adder satisfies. Curves are also included for
statically-generated adders with four different sparsities for comparison. Note that successive
iterations find usually-Pareto-dominant architectures.

Figure 5.21 – Power (μW) vs. delay (ns) for all intermediate 16-bit adders listed by the value of
the ��� parameter to the �����	
���
��	����� the adder satisfies. Curves are also included
for statically-generated adders with four different sparsities for comparison. Again note that
successive iterations find usually-Pareto-dominant architectures.

89

Chapter 5. Solver-Aided Circuit Design and Optimization with Nasadiya

Figure 5.22 – Power (μW) vs. delay (ns) for all intermediate 32-bit adders listed by the value of
the ��� parameter to the �����	
���
��	����� the adder satisfies. Curves are also included
for statically-generated adders with four different sparsities for comparison. Note that not
only do successive iterations find usually-Pareto-dominant architectures, but in some cases
and at some points in the design space, the discovered architectures are superior to manually-
optimized architectures.

90

5.3. Case Study: Power-Efficient Parallel Prefix Adders

5.3.3 Evaluation

To evaluate the effectiveness of solver-aided design for generating resulting adders that do

indeed minimize power, as the models are intended to represent, we run the driver in Fig. 5.19

three times on an Intel Xeon™ E5-2698 v4 with 128GiB of memory, each time with a per-

iteration solver timeout of 3600 seconds (one hour). The solver was Yices 2.5.1 [Dutertre,

2014].

We then collected the intermediary and final resulting circuits (each corresponding to a

solution found in the driver), synthesized them with Synopsys DesignCompiler, placed and

routed them in Cadence Innovus 16.1 using the general-purpose TSMC 40nm technology.

Power, area, and delay were estimated with the aid of switching activity simulation in Synopsys

VCS [Synopsys, 2018c], either with exhaustive simulation (8-bit and 16-bit), or simulation with

216 random input vectors (32-bit).

Figures 5.20, 5.21, and 5.22 show the final post-place-and-route power estimations for adders

generated by the driver in Fig. 5.19 for instance sizes of 8-, 16-, and 32-bits, respectively. These

figures show that as the driver progresses, the resulting adders generally become better: the

adders typically use less power for a given delay target. Further, the best adder generated by

the solver-aided driver is generally about as good as the best statically-generated adder with

some sparsity (sparsity 1 means no sparsity).

Figure 5.23 – Area (μm2) vs. modeled gate complexity for all intermediate 8-bit adders, listed by
the value of the ��� parameter to the �����	
���
��	����� the adder satisfies. Because the
design is only 8 bits and there is relatively limited architectural freedom, only two intermediate
solutions were found. However, these two points comport with the theory that our modeling
is somewhat accurate; estimated area increases with model complexity.

91

Chapter 5. Solver-Aided Circuit Design and Optimization with Nasadiya

Figure 5.24 – Area (μm2) vs. modeled gate complexity for all intermediate 16-bit adders, listed
by the value of the ��� parameter to the �����	
���
��	����� the adder satisfies. This chart
shows the inherent limitations of such a simplistic model; there is substantial “noise”.

Figure 5.25 – Area (μm2) vs. modeled gate complexity for all intermediate 32-bit adders, listed
by the value of the ��� parameter to the �����	
���
��	����� the adder satisfies. This chart
shows that despite some “noise”, the simplistic model still roughly comports with expected
behavior.

92

5.4. Conclusion

Note in particular that in Fig. 5.22, the final solution generated is very close, and almost always

superior, to the static sparsity-4 adder. This static sparsity-4 adder is the architecture Aktan et

al. determined to be optimal with their analytic model. The way the final sum block sketches

the sparsity actually exposes even more design freedom to the solver than exists in that analytic

model: an adder can use multiple sparsities for different parts of the adder. The results here

show that Nasadiya sometimes not only can replicate the results of manually-derived analytic

models, it can even do better.

Figures 5.23, 5.24, and 5.25 show the geometric mean of the area estimated by Innovus for

the adders at the ��������	
��
������ 	�� values on the horizontal axis for 8-, 16-, and

32-bit instance sizes. Figure 5.24 shows a lot of noise around the minimum complexity

value. It’s likely that wiring effects on the small 16-bit instance make fine gradations between

gate complexity essentially useless. For the 32-bit instance, however, Fig. 5.25 shows that

post-place-and-route area estimated by Innovus rises with the modeled pre-synthesis gate

complexity. This validates the use of a pre-synthesis gate complexity model as a reasonable

representative of the post-place-and-route circuit area, at least for moderately-sized designs.

Figures 5.26, 5.27, and 5.28 show the geometric mean of the power estimated by Innovus for

the adders at the ��������	
��
������ 	�� values on the horizontal axis for 8-, 16-, and

32-bit instance sizes. Again, Fig. 5.27, the chart for the 16-bit instances, shows considerable

noise around the minimum model complexity value. However, Fig. 5.28, the chart for the

32-bit instances, shows that the complexity model has great correlation with the estimated

post-place-and-route circuit power.

Figure 5.29 shows the time it takes the satisfiability solver to solve each successive constraint.

Failed constraints (whether proven unsatisfiable or simply timed out at one hour) are discarded

here. These data are merely intended to show the scalability of this approach: Even complex

problems like extra-functional architecture optimization of this 32 bit adder can yield high-

quality solutions in reasonable time. A user-defined timeout means the maximum effort spent

is adjustable, and, once a known-satisfiable complexity threshold 	�� value is discovered,

there are a bounded number of remaining solver iterations. That means the algorithm will

complete eventually, and it’s possible to make reasonable worst-case estimates of the total

time required to find the more optimal solution.

5.4 Conclusion

In this chapter, we describe Nasadiya, a more powerful extension of the Scala-hosted Chisel

domain-specific language [Bachrach et al., 2012] designed to address key limitations inherent

in SKETCHILOG and enable a more flexible integration of satisfiability into the digital circuit

design and optimization process. We show how an integrated modeling library, a flexible

constraint specification facility, and virtualized solver access—giving designers the ability to

formulate and solve arbitrary constraint satisfaction problems inside the design generator

itself—can together make Nasadiya a powerful and general tool for solver-aided design and

93

Chapter 5. Solver-Aided Circuit Design and Optimization with Nasadiya

Figure 5.26 – Power (μW) vs. modeled total complexity for all intermediate 8-bit adders, listed
by the value of the ��� parameter to the �����	
���
��	����� the adder satisfies. Because
power is so closely linked to gate area, it’s no surprise that these results look similar to the area
results.

Figure 5.27 – Power (μW) vs. modeled total complexity for all intermediate 16-bit adders, listed
by the value of the ��� parameter to the �����	
���
��	����� the adder satisfies. Again,
this chart has a striking similarity to its corresponding area chart.

94

5.4. Conclusion

Figure 5.28 – Power (μW) vs. modeled total complexity for all intermediate 32-bit adders, listed
by the value of the ��� parameter to the �����	
���
��	����� the adder satisfies. Again,
this chart has a striking similarity to its corresponding area chart.

Figure 5.29 – A plot showing solver time (s) vs. iteration for the 32-bit adder experiment. Only
successfully solved iterations are included on the horizontal axis.

other advanced reasoning about circuits.

We also demonstrate Nasadiya on a case study: specifying an implicitly parameterized (i.e.,

sketched) adder architecture and using these key features to automatically build delay and

95

Chapter 5. Solver-Aided Circuit Design and Optimization with Nasadiya

complexity models, formulating constraints over the adder and these extra-functional models,

and driving iterated application of a satisfiability solver to quickly discover adder architectures

that minimize an objective function for circuit power. The resulting adder is shown to be

roughly equally good as the adder other researchers constructed after many hours of manual

analysis, without requiring any manual analysis itself. Satisfiability solvers and the fewer

than 2000 lines of delay and gate complexity model construction code completely described

in pseudo-code in this section together make it feasible to apply raw computational brute

force to meaningfully optimize an arbitrary sketched combinational design and provides an

automated alternative to arduous manual analysis of even reasonably-complex designs.

In short, Nasadiya is a relatively straightforward extension to the Chisel design language that

is both general and powerful, and allows arbitrary applications of 2QBF-SAT to circuit design,

debugging, and optimization.

Future work might more thoroughly explore the trade-off space described in Fig. 5.6, present-

ing designers with configurable model precision. Future work could also explore applications

to sequential designs, determining the right way to enable designers to express what sequential

equivalence means in the context of a specific design. More sophisticated iterated constraint

satisfaction algorithms than that in, e.g., Fig. 5.19 are also an obvious area for potential im-

provement. One possible approach to even faster results might be to begin iterations with

a reduced timeout, find the most optimal solution possible with that solver timeout, then

exponentially increase the solver timeout in subsequent solver loops bisecting a smaller search

space. Another possible approach might parallelize the iterated constraint satisfaction process

by speculating N ��� parameters, invoke solvers in parallel on N remote computers to test

these values, then using a dynamic job scheduler to interpret results and manage remote

jobs to continue to search N points simultaneously in the remaining search space. Such

improvements and additions to Nasadiya could be very useful and make it an even more

attractive platform for solver-aided design.

96

6 Conclusion

Exploding design complexity has made it increasingly difficult for digital circuit designers to

develop and maintain complete and accurate mental models of their designs. This has negative

implications for virtually the entire hardware ecosystem: it is more difficult to create correct

circuits, to find and fix errors, and to optimize circuits for specific design constraints. Most

attempts to fix these problems revolve around raising the level of abstraction and generating

circuits from higher-level descriptions. Unfortunately, there is a good reason most designers

work directly at the RTL level: it offers an unparalleled level of control, and designers can

usually achieve much better implementations than high-level synthesis systems.

Satisfiability is a broad class of decision procedures that determine whether some input as-

signments can make some propositional logic formula to be true (“satisfiable”). Traditional

Boolean SAT has been widely used in CAD for over a decade to aid automatic physical im-

plementation of RTL designs. Because of the very close relation between propositional logic

and digital circuits, satisfiability solvers are well-suited to difficult reasoning problems around

digital circuits. Recent advances in other, more powerful, forms of satisfiability show promise

to enable even more powerful kinds of reasoning about digital circuits.

In this thesis, we describe a number of novel applications of 2QBF-SAT to various problems in

the digital circuit design process, and introduce a domain-specific language well-suited to

these and other applications. In Chapter 2, we describe SKETCHILOG a language for devel-

oping RTL generators that supports “sketching” combinational circuits, or allowing certain

features of the design implementation to be left unspecified. With the aid of a satisfiability

solver and a golden reference circuit, SKETCHILOG determines how to complete the unspeci-

fied parts of the design in such a way that the sketch is proven to be functionally equivalent

to the golden reference under any input condition. Since most arithmetic or other datapath

components are typically combinational and have simple and obviously-correct albeit ineffi-

cient implementations, SKETCHILOG is particularly useful for developing guaranteed-correct

hand-optimized components. The support for filling holes make corner cases easy to handle,

while the expressive language still allows designers to control the lowest-level details in their

designs.

97

Chapter 6. Conclusion

Chapter 3 expands this idea of sketching to circuit debugging, with two key innovations. First,

the responsibility to insert holes to express alternative functionality is moved from the designer

to the debugging tool, which uses a known erroneous input and response along with a list of

suspected error locations and a library of common syntax-level errors in order automatically to

permute the buggy design to potentially fix one of those common errors in the design. Second,

unlike datapath components, full designs typically do not have a readily-available golden

reference circuit. Thus, we developed an approach to use only a few input vectors and known-

correct responses in order to loosely constrain the functionality of the design being debugged.

Finally, we show that this technique can be used to find a significant number of simple errors

in a sample set of various designs, and that despite the lack of a complete golden reference, all

discovered errors are localized and corrected with the canonical, semantically-correct source

code changes in all tested cases.

In addition to reasoning about circuits being designed and debugged, we show how the same

kind of satisfiability problem can be used to optimize circuits in Chapter 4. Here, we focus on

two methods to optimize GLIFT models—which are themselves circuits—in order to reduce

their complexity and help make GLIFT analysis feasible for real-world sized circuits. The

first method is an exact method: at least a certain number of GLIFT cells are replaced while

satisfying the constraint that the transformed GLIFT model be functionally identical to the

original GLIFT model. We also introduce a bisection-based iterative solving procedure to

progressively narrow the search for the maximum possible number of replacements. The

second method is an inexact method: it allows the optimized GLIFT model not to match

exactly the original GLIFT model’s functionality, but only under controlled conditions (e.g.,

only under certain patterns of inputs) and with some maximum amount of induced false-

positive detected flows. This kind of intricate reasoning about circuits is extraordinarily

difficult for a human: not only does potential modified functionality need to be evaluated

for all possible input values, but local changes in one part of the model can affect other local

changes. In other words, this is a global optimization problem with hundreds to thousands

of free variables. This is the first known method to allow arbitrary trade-offs between GLIFT

model precision and complexity and shows how powerful 2QBF-SAT can be for automated

reasoning about circuits.

Finally, all these ideas are synthesized in Chapter 5, which describes a language for solver-aided

RTL design generation and optimization that is general and flexible enough to implement any

of the applications developed in this thesis. As the previous chapters demonstrate, satisfiability

can be integrated into the design process in a number of different ways and to achieve different

goals. Nasadiya provides full, transparent integration of the satisfiability solver directly into the

design itself: arbitrary constraints are simple to write, can easily reference design components,

and are transparently translated into miters. Solving is a simple matter of one function

call, rather than a tedious and involved process of wrangling textual formats acceptable to

the solver and parsing solver output and exit codes. Further, Nasadiya provides simple but

extensible hole-sensitive model creation facilities. In this way, designers can automatically

build a component that models the pre-synthesis delay or area of some sketched component.

98

All combined, this amounts to a powerful and flexible language well suited for virtually any

integration of 2QBF-SAT and circuit design, debug, or optimization. As a demonstration,

we examine a case study using Nasadiya to automatically optimize the energy of a sketched

parallel prefix adder design. We demonstrate that the integrated extra-functional modeling

capabilities and integrated satisfiability solver can generate parallel prefix adder architectures

nearly as good (and sometimes better) as those resulting from a laborious and time-consuming

manual analysis and optimization effort. In contrast, Nasadiya only requires a sketched design

and a few lines of code to drive the solver to find the best implementations.

Circuit design, debug, and optimization are all perennial challenges that are only compounded

by ever-increasing design sizes and complexities. We formulate a number of novel satisfiability-

based approaches to tackling certain problems in this space, show that 2QBF-SAT solver

integration can enable new, time-saving ways to reason about well-constrained circuit analysis

problems, and develop a language particularly designed to facilitate this integration. Hopefully,

the scalability of our applications, continuing progress in satisfiability solver algorithms, and

the availability of this language will convince others of the potential advantages to embracing

this emerging technology and enable many more designers to take advantage of the powerful

assistance satisfiability solvers can provide to many aspects of the digital circuit design, debug,

and optimization processes.

99

Bibliography

Sally Adee. The hunt for the kill switch. Spectrum, IEEE, 45(5):34–39, May 2008. ISSN 0018-9235.

doi: 10.1109/MSPEC.2008.4505310.

Sheldon B. Akers. Binary decision diagrams. IEEE Trans. Comput., 27(6):509–516, 6 1978. ISSN

0018-9340. doi: 10.1109/TC.1978.1675141.

Mustafa Aktan, Dursun Baran, and Vojin G. Oklobdzija. Minimizing energy by achieving

optimal sparseness in parallel adders. In 22nd IEEE Symposium on Computer Arithmetic,

ARITH 2015, Lyon, France, June 22-24, 2015, pages 10–17, 2015. doi: 10.1109/ARITH.2015.13.

Moayad F. Ali, Andreas Veneris, Sean Safarpour, and Ralf Drechsler. Debugging sequential

circuits using boolean satisfiability. In Proceedings of the International Conference on

Computer-Aided Design, pages 204–209, San Jose, CA, USA, November 2004.

B. Alizadeh, P. Behnam, and S. Sadeghi-Kohan. A scalable formal debugging approach with

auto-correction capability based on static slicing and dynamic ranking for RTL datapath

designs. IEEE Transactions on Computers, 64(6):1564–78, June 2015.

Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A.

Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-

guided synthesis. In Formal Methods in Computer-Aided Design, FMCAD 2013, Portland,

OR, USA, October 20-23, 2013, pages 1–8, 2013.

Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avizienis,

John Wawrzynek, and Krste Asanovic. Chisel: Constructing hardware in a scala embedded

language. In Patrick Groeneveld, Donatella Sciuto, and Soha Hassoun, editors, DAC, pages

1216–1225. ACM, 2012. ISBN 978-1-4503-1199-1.

R. I. Bahar, H. Cho, G. D. Hachtel, E. Macii, and F. Somenzi. Timing analysis of combinational

circuits using adds. In Proceedings of European Design and Test Conference EDAC-ETC-

EUROASIC, pages 625–629, Feb 1994. doi: 10.1109/EDTC.1994.326813.

Andrew Becker, David Novo, and Paolo Ienne. SketchiLog: Sketching combinational circuits.

In 2014 Design, Automation Test in Europe Conference Exhibition (DATE), pages 1–4, March

2014. doi: 10.7873/DATE.2014.165.

101

Bibliography

Andrew Becker, Djordje Maksimovic, David Novo, Mohsen Ewaida, Andreas G. Veneris, Barbara

Jobstmann, and Paolo Ienne. Fudgefactor: Syntax-guided synthesis for accurate RTL error

localization and correction. In 11th International Haifa Verification Conference, HVC’15,

pages 259–275, Nov. 2015. doi: 10.1007/978-3-319-26287-1_16.

Andrew Becker, Wei Hu, Yu Tai, Philip Brisk, Ryan Kastner, and Paolo Ienne. Arbitrary

precision and complexity tradeoffs for gate-level information flow tracking. In 2017

54th ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, June 2017. doi:

10.1145/3061639.3062203.

Georg T. Becker, Francesco Regazzoni, Christof Paar, and Wayne P. Burleson. Stealthy dopant-

level hardware trojans. In the 15th International Conference on Cryptographic Hardware

and Embedded Systems, CHES’13, pages 197–214. Springer-Verlag, 2013. ISBN 978-3-642-

40348-4. doi: 10.1007/978-3-642-40349-1_12.

Mohammad-Mahdi Bidmeshki and Yiorgos Makris. VeriCoq: A Verilog-to-Coq converter for

proof-carrying hardware automation. In 2015 IEEE International Symposium on Circuits

and Systems, ISCAS 2015, Lisbon, PT, May 24-27, 2015, pages 29–32, 2015. doi: 10.1109/

ISCAS.2015.7168562.

Roderick Bloem and Franz Wotawa. Verification and fault localization in VHDL programs.

Journal of the Telematics Engineering Society, 2:30–33, 2002.

Gedare Bloom, Eugen Leontie, Bhagirath Narahari, and Rahul Simha. Hardware and security:

Vulnerabilities and solutions, 2012.

George Boole. The Mathematical Analysis of Logic: Being an Essay Towards a Calculus of

Deductive Reasoning. Cambridge University Press, 1847. doi: 10.1017/CBO9780511701337.

010.

George Boole. An Investigation of the Laws of Thought: On Which Are Founded the Math-

ematical Theories of Logic and Probabilities. Cambridge University Press, 1854. doi:

10.1017/CBO9780511693090.014.

Edwin Brady. Idris, a general-purpose dependently typed programming language: Design and

implementation. Journal of Functional Programming, 23, 09 2013.

Robert K. Brayton and Alan Mishchenko. ABC: An academic industrial-strength verification

tool. In CAV, volume 6174, pages 24–40. Springer, July 2010.

Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted and automatic genera-

tion of high-coverage tests for complex systems programs. In Proceedings of the 8th USENIX

Conference on Operating Systems Design and Implementation, OSDI’08, pages 209–224,

Berkeley, CA, USA, 2008. USENIX Association.

Raul Camposano. From behavior to structure: High-Level Synthesis. IEEE Design and Test of

Computers, 7(5):8–19, October 1990.

102

Bibliography

Kai Hui Chang, Igor Markov, and Valeria Bertacco. Fixing design errors with counterexamples

and resynthesis. In Proceedings of the Asia and South Pacific Design Automation Conference,

pages 944–949, Yokohama, JP, January 2007a.

Kai Hui Chang, Ilya Wagner, Valeria Bertacco, and Igor Markov. Automatic error diagnosis

and correction for RTL designs. In Proceedings of the High Level Design Validation and Test

Workshop, pages 65–72, Irvine, CA, USA, November 2007b.

Yibin Chen, Sean Safarpour, João Marques-Silva, and Andreas Veneris. Automated design

debugging with maximum satisfiability. In IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, November 2010.

S. Chiricescu, A. DeHon, D. Demange, S. Iyer, A. Kliger, G. Morrisett, B. C. Pierce, H. Reuben-

stein, J. M. Smith, G. T. Sullivan, A. Thomas, J. Tov, C. M. White, and D. Wittenberg.

Safe: A clean-slate architecture for secure systems. In Technologies for Homeland Se-

curity (HST), 2013 IEEE International Conference on, pages 570–576, Nov 2013. doi:

10.1109/THS.2013.6699066.

Pi Yu Chung and Ibrahim N. Hajj. ACCORD: Automatic catching and correction of logic design

errors in combinational circuits. In Proceedings of the International Test Conference, pages

742–751, Baltimore, MD, USA, September 1992.

Pi Yu Chung, Yi Min Wang, and Ibrahim N. Hajj. Logic design error diagnosis and correction.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2(3):320–332, September

1994.

Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and Zhiru Zhang.

High-level synthesis for FPGAs: From prototyping to deployment. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 30(4):473–491, April 2011. ISSN

0278-0070. doi: 10.1109/TCAD.2011.2110592.

R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W. Harper, D. J.

Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith. Imple-

menting Mathematics with the Nuprl Proof Development System. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1986. ISBN 0-13-451832-2.

Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third

Annual ACM Symposium on Theory of Computing, STOC ’71, pages 151–158, New York, NY,

USA, 1971. ACM. doi: 10.1145/800157.805047.

B. Jack Copeland. The modern history of computing. In Edward N. Zalta, editor, The Stanford

Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, winter 2017

edition, 2017.

Vidroha Debroy and W. Eric Wong. Using mutation to automatically suggest fixes for faulty pro-

grams. In Proceedings of the Third International Conference on Software Testing, Verification

and Validation, pages 65–74, April 2010.

103

Bibliography

Srini Devadas, Kurt Keutzer, and Sharad Malik. Delay computation in combinational logic

circuits: theory and algorithms. In 1991 IEEE International Conference on Computer-Aided

Design Digest of Technical Papers, pages 176–179, Nov 1991. doi: 10.1109/ICCAD.1991.

185224.

Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors, Computer-Aided

Verification (CAV’2014), volume 8559 of Lecture Notes in Computer Science, pages 737–744.

Springer, July 2014.

Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Enrico Giunchiglia and Armando

Tacchella, editors, SAT, volume 2919 of Lecture Notes in Computer Science, pages 502–518.

Springer, 2003.

Milos D. Ercegovac and Tomas Lang. Digital Arithmetic. Morgan Kaufmann, San Francisco,

CA, USA, 2004.

João Paulo Pizani Flor, Wouter Swierstra, and Yorick Sijsling. Pi-Ware: Hardware Description

and Verification in Agda. In Tarmo Uustalu, editor, 21st International Conference on Types

for Proofs and Programs (TYPES 2015), volume 69 of Leibniz International Proceedings in

Informatics (LIPIcs), pages 9:1–9:27, Dagstuhl, DE, 2015. Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik. ISBN 978-3-95977-030-9. doi: 10.4230/LIPIcs.TYPES.2015.9. URL http:

//drops.dagstuhl.de/opus/volltexte/2018/8479.

H.D. Foster. Trends in functional verification: A 2014 industry study. In Design Automation

Conference (DAC), 2015 52nd ACM/EDAC/IEEE, pages 1–6, June 2015.

Daniel Genkin, Adi Shamir, and Eran Tromer. Rsa key extraction via low-bandwidth acoustic

cryptanalysis. Cryptology ePrint Archive, Report 2013/857, 2013. https://eprint.iacr.org/

2013/857.

N. George, D. Novo, T. Rompf, M. Odersky, and P. Ienne. Making domain-specific hardware

synthesis tools cost-efficient. In 2013 International Conference on Field-Programmable

Technology (FPT), pages 120–127, Dec 2013. doi: 10.1109/FPT.2013.6718341.

E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantified Boolean Formulas satisfiability

library (QBFLIB), 2001. URL www.qbflib.org.

Joseph A. Goguen and José Meseguer. Security policies and security models. In 1982 IEEE

Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982, pages 11–20, 1982.

doi: 10.1109/SP.1982.10014.

Evgueni Goldberg, Mukul Prasad, and Robert Brayton. Using sat for combinational equivalence

checking. In Proceedings of the Conference on Design, Automation and Test in Europe, DATE

’01, pages 114–121, Piscataway, NJ, USA, 2001. IEEE Press. ISBN 0-7695-0993-2.

James W Gray III. Toward a mathematical foundation for information flow security. Journal of

Computer Security, 1(3):255–294, 1992.

104

Bibliography

Sumit Gupta, Nikil Dutt, Rajesh Gupta, and Alexandru Nicolau. SPARK: a high-level syn-

thesis framework for applying parallelizing compiler transformations. In VLSI Design,

2003. Proceedings. 16th International Conference on, pages 461 – 466, jan. 2003. doi:

10.1109/ICVD.2003.1183177.

Eldon C. Hall. Journey to the Moon: The History of the Apollo Guidance Computer. American

Institute of Aeronautics & Astronautics, 1996. ISBN 156347185X.

Wei Hu, Jason Oberg, Ali Irturk, Mohit Tiwari, Timothy Sherwood, Dejun Mu, and Ryan Kastner.

Theoretical fundamentals of gate level information flow tracking. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 30(8):1128–1140, Aug 2011. ISSN

0278-0070. doi: 10.1109/TCAD.2011.2120970.

Wei Hu, Jason Oberg, Ali Irturk, Mohit Tiwari, Timothy Sherwood, Dejun Mu, and Ryan Kastner.

On the complexity of generating gate level information flow tracking logic. IEEE Transactions

on Information Forensics and Security, 7(3):1067–1080, June 2012. ISSN 1556-6013. doi:

10.1109/TIFS.2012.2189105.

Wei Hu, Andrew Becker, Armita Ardeshiricham, Yu Tai, Paolo Ienne, Dejun Mu, and Ryan

Kastner. Imprecise security: Quality and complexity tradeoffs for hardware information flow

tracking. In Proceedings of the 35th International Conference on Computer-Aided Design,

ICCAD ’16, pages 95:1–95:8, New York, NY, USA, 2016a. ACM. ISBN 978-1-4503-4466-1. doi:

10.1145/2966986.2967046.

Wei Hu, Baolei Mao, Jason Oberg, and Ryan Kastner. Detecting hardware trojans with gate-level

information-flow tracking. Computer, 49(8):32–40, August 2016b. ISSN 0018-9162.

Shi Yu Huang, Kwang Ting Cheng, Kuang Chien Chen, and Juin Yen J. Lu. Fault-simulation

based design error diagnosis for sequential circuits. In Proceedings of the 35th Design

Automation Conference, pages 632–637, San Francisco, CA, USA, June 1998.

IWLS. IWLS benchmarks ver. 3.0, 2005. http://iwls.org/iwls2005/benchmarks.html.

Peter Jamieson, Kenneth B. Kent, Farnaz Gharibian, and Lesley Shannon. Odin II - An Open-

source Verilog HDL Synthesis tool for CAD Research. In Proceedings of the IEEE Symposium

on Field-Programmable Custom Computing Machines, pages 149–156, 2010.

Mikolas Janota, Charles Jordan, Will Klieber, Florian Lonsing, Martina Seidl, and Allen

Van Gelder. The QBF gallery 2014: The qbf competition at the FLoC Olympic games.

Journal on Satisfiability, Boolean Modeling and Computation, 9:187–206, 2014 (published

2016).

Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem. Program repair as a game.

In Proceedings of the 17th International Conference on Computer Aided Verification, pages

226–238, Edinburgh, Scotland, UK, July 2005.

105

Bibliography

Charles Jordan and Martina Seidl. The QBF gallery 2014, a competitive evaluation of QBF

tools, 2014. URL http://qbf.satisfiability.org/gallery/qbf-gallery-2014-talk-long.pdf.

Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan

Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploiting

speculative execution. CoRR, abs/1801.01203, 2018.

Ali Sinan Köksal, Viktor Kuncak, and Philippe Suter. Scala to the power of Z3: Integrating

SMT and programming. In Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors,

Automated Deduction – CADE-23, pages 400–406, Heidelberg, DE, 2011. Springer Berlin

Heidelberg. ISBN 978-3-642-22438-6.

Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek, Eddie Kohler,

and Robert Morris. Information flow control for standard os abstractions. In 21st ACM

SIGOPS Symposium on Operating Systems Principles, SOSP ’07, pages 321–334, New York,

NY, USA, 2007. ISBN 978-1-59593-591-5. doi: 10.1145/1294261.1294293.

Yung-Te Lai, Sarma Sastry, and Massoud Pedram. Boolean matching using binary decision

diagrams with applications to logic synthesis and verification. In Proceedings 1992 IEEE

International Conference on Computer Design: VLSI in Computers Processors, pages 452–458,

Oct 1992. doi: 10.1109/ICCD.1992.276313.

Xun Li, Mohit Tiwari, Ben Hardekopf, Timothy Sherwood, and Frederic T. Chong. Secure

information flow analysis for hardware design: Using the right abstraction for the job. In the

5th ACM SIGPLAN Workshop on Programming Languages and Analysis for Security, PLAS

’10, pages 8:1–8:7, New York, NY, USA, 2010. ISBN 978-1-60558-827-8. doi: 10.1145/1814217.

1814225.

Xun Li, Vineeth Kashyap, Jason K. Oberg, Mohit Tiwari, Vasanth Ram Rajarathinam, Ryan

Kastner, Timothy Sherwood, Ben Hardekopf, and Frederic T. Chong. Position paper: Sapper

– a language for provable hardware policy enforcement. In Proceedings of the Eighth ACM

SIGPLAN Workshop on Programming Languages and Analysis for Security, PLAS ’13, pages

39–44, New York, NY, USA, 2013. ISBN 978-1-4503-2144-0. doi: 10.1145/2465106.2465214.

H. Ling. High speed binary parallel adder. IEEE Transactions on Electronic Computers, EC-15

(5):799–802, Oct 1966. ISSN 0367-7508. doi: 10.1109/PGEC.1966.264571.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Stefan Man-

gard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown. CoRR,

abs/1801.01207, 2018.

Chris Lomont. Fast inverse square root, 2003. URL http://www.lomont.org/Math/Papers/

2003/InvSqrt.pdf.

Florian Lonsing, Martina Seidl, and Allen Van Gelder. The QBF Gallery: Behind the scenes.

Artif. Intell., 237:92–114, 2016.

106

Bibliography

Chris A. Mack. Fifty years of moore’s law. IEEE Transactions on Semiconductor Manufacturing,

24(2):202–207, May 2011. ISSN 0894-6507. doi: 10.1109/TSM.2010.2096437.

Jean C. Madre, Olivier Coudert, and Jean P. Billon. Automating the diagnosis and the recti-

fication of digital errors with PRIAM. In Proceedings of the International Conference on

Computer-Aided Design, pages 30–33, Santa Clara, CA, USA, November 1989.

Jeremiah Mahler. A MIPS CPU written in Verilog. https://github.com/jmahler/mips-cpu,

2015. [Accessed: 24-April-2015].

Scott Mahlke, Rajiv Ravindran, Michael Schlansker, Robert Schreiber, and Timothy Sherwood.

Bitwidth cognizant architecture synthesis of custom hardware accelerators. IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, CAD-20(11):1355–71,

November 2001.

Wojciech Maly. Cost of silicon viewed from vlsi design perspective. In 31st Design Automation

Conference, pages 135–142, June 1994. doi: 10.1145/196244.196311.

Zohar Manna and Richard J. Waldinger. Toward automatic program synthesis. Commun. ACM,

14(3):151–165, March 1971. ISSN 0001-0782. doi: 10.1145/362566.362568.

Konstantinos Markantonakis, Michael Tunstall, Gerhard Hancke, Ioannis Askoxylakis, and

Keith Mayes. Attacking smart card systems: Theory and practice. Information Security

Technical Report, 14(2):46 – 56, 2009. ISSN 1363-4127. doi: https://doi.org/10.1016/j.istr.

2009.06.001. URL http://www.sciencedirect.com/science/article/pii/S136341270900017X.

Smart Card Applications and Security.

João P. Marques-Silva and Karem A. Sakallah. Grasp: a search algorithm for propositional

satisfiability. IEEE Transactions on Computers, 48(5):506–521, May 1999. ISSN 0018-9340.

doi: 10.1109/12.769433.

Grant Martin and Gary Smith. High-Level Synthesis: Past, present, and future. IEEE Design

and Test of Computers, 26(4):18–24, July–August 2009.

John McLean. Security models and information flow. In 1990 IEEE Computer Society Sympo-

sium on Research in Security and Privacy, pages 180–187, 1990.

Alan Mishchenko and Robert K. Brayton. Sat-based complete don’t-care computation for

network optimization. In Design, Automation and Test in Europe, pages 412–417, March

2005. doi: 10.1109/DATE.2005.264.

Gordon E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8),

April 1965.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:

engineering an efficient sat solver. In Proceedings of the 38th Design Automation Conference

(IEEE Cat. No.01CH37232), pages 530–535, June 2001. doi: 10.1145/378239.379017.

107

Bibliography

S. Naffziger. A sub-nanosecond 0.5 /spl mu/m 64 b adder design. In 1996 IEEE International

Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC, pages 362–363, Feb 1996.

doi: 10.1109/ISSCC.1996.488718.

Razvan Nane, Vlad Sima, Christian Pilato, Jongsok Choi, Blair Fort, Andrew Canis, Yu Ting Chen,

Hsuan Hsiao, Stephen Brown, Fabrizio Ferrandi, Jason Anderson, and Koen Bertels. A survey

and evaluation of fpga high-level synthesis tools. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 35:1–1, 12 2015.

Jason Oberg, Wei Hu, Ali Irturk, Mohit Tiwari, Timothy Sherwood, and Ryan Kastner. Informa-

tion flow isolation in I2C and USB. In Design Automation Conference (DAC), pages 254 –259,

June 2011.

Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: A Comprehensive Step-

by-step Guide. Artima, Walnut Creek, CA, USA, second edition, 2010.

OpenCores. OpenCores database. http://www.opencores.org, 2015. [Accessed: 24-April-2015].

Behrooz Parhami. Computer Arithmetic: Algorithms and Hardware Design. Oxford University

Press, New York, NY, USA, second edition, 2010.

David J. Pearce and Lindsay Groves. Whiley: A platform for research in software verification.

In Martin Erwig, Richard F. Paige, and Eric Van Wyk, editors, Software Language Engineering,

pages 238–248, Cham, 2013. Springer International Publishing. ISBN 978-3-319-02654-1.

Bernhard Peischl and Franz Wotawa. Automated source level error localization in hardware

designs. Journal of IEEE Design & Test in Computers, 23(1):8–19, January 2006.

A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings of the 16th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’89, pages

179–190, New York, NY, USA, 1989. ACM. ISBN 0-89791-294-2. doi: 10.1145/75277.75293.

Andreas Raabe and Rastislav Bodík. Synthesizing hardware from sketches. In DAC, pages

623–624. ACM, 2009. ISBN 978-1-60558-497-3.

Heinz Riener, Finn Haedicke, Stefan Frehse, Mathias Soeken, Daniel Grosse, Rolf Drechsler,

and Goerschwin Fey. metasmt: focus on your application and not on solver integration.

International Journal on Software Tools For Technology Transfer, 19(5):17. 605–621, 2017.

Dorothy Elizabeth Robling Denning. Cryptography and data security. Addison-Wesley Long-

man Publishing Co., Inc., 1982.

Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security. IEEE

Journal on Selected Areas in Communications, 21(1):5–19, Jan 2003. ISSN 0733-8716. doi:

10.1109/JSAC.2002.806121.

108

Bibliography

Samir Sapra, Michael Theobald, and Edmund Clarke. Sat-based algorithms for logic minimiza-

tion. In Proceedings 21st International Conference on Computer Design, pages 510–517, Oct

2003. doi: 10.1109/ICCD.2003.1240948.

Claude E. Shannon. A symbolic analysis of relay and switching circuits. Transactions of the

American Institute of Electrical Engineers, 57(12):713–723, Dec 1938. ISSN 0096-3860. doi:

10.1109/T-AIEE.1938.5057767.

Henry Maurice Sheffer. A set of five independent postulates for boolean algebras, with ap-

plication to logical constants. Transactions of the American Mathematical Society, 14(4):

481–488, 1913. ISSN 00029947. URL http://www.jstor.org/stable/1988701.

Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated feedback generation

for introductory programming assignments. In Proceedings of the 34th ACM SIGPLAN

Conference on Programming Language Design and Implementation, pages 15–26, Seattle,

WA, USA, June 2013.

Alexander Smith, Andreas Veneris, and Anastasios Viglas. Design diagnosis using Boolean

satisfiability. In Proceedings of the Asia and South Pacific Design Automation Conference,

pages 218–23, Yokohama, JP, January 2004.

Alexander Smith, Andreas Veneris, Moayad Fahim Ali, and Anastasios Viglas. Fault diagnosis

and logic debugging using Boolean satisfiability. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, CAD-24(10):1606–21, October 2005.

Armando Solar Lezama. Program Synthesis By Sketching. PhD thesis, UC Berkeley, Dec 2008.

URL http://eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-177.html.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia, and Vijay A. Saraswat.

Combinatorial sketching for finite programs. In John Paul Shen and Margaret Martonosi,

editors, ASPLOS, pages 404–415. ACM, 2006. ISBN 1-59593-451-0.

Stefan Staber, Barbara Jobstmann, and Roderick Bloem. Finding and fixing faults. Journal of

Computer and System Sciences, 78(2):441–460, March 2012.

G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure program execution

via dynamic information flow tracking. SIGOPS Oper. Syst. Rev., 38(5):85–96, October 2004.

ISSN 0163-5980. doi: 10.1145/1037949.1024404.

Synopsys. DesignCompiler, 2018a. URL https://www.synopsys.com/

implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html.

Synopsys. DesignWare, 2018b. URL https://www.synopsys.com/designware-ip.html.

Synopsys. VCS, 2018c. URL https://www.synopsys.com/verification/simulation/vcs.html.

109

Bibliography

Mohit Tiwari, Hassan M.G. Wassel, Bita Mazloom, Shashidhar Mysore, Frederic T. Chong, and

Timothy Sherwood. Complete information flow tracking from the gates up. In international

conference on Architectural support for programming languages and operating systems,

ASPLOS’09, pages 109–120, New York, NY, USA, 2009. ISBN 978-1-60558-406-5.

Grigori S. Tseitin. On the Complexity of Derivation in Propositional Calculus, pages 466–

483. Springer Berlin Heidelberg, Berlin, Heidelberg, 1983. ISBN 978-3-642-81955-1. doi:

10.1007/978-3-642-81955-1_28.

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones. Refine-

ment types for haskell. In Proceedings of the 19th ACM SIGPLAN International Conference

on Functional Programming, ICFP ’14, pages 269–282, New York, NY, USA, 2014. ACM. ISBN

978-1-4503-2873-9. doi: 10.1145/2628136.2628161.

Yuxin Wang, Peng Li, and Jason Cong. Theory and algorithm for generalized memory par-

titioning in high-level synthesis. In Proceedings of the 2014 ACM/SIGDA International

Symposium on Field-programmable Gate Arrays, FPGA ’14, pages 199–208, New York,

NY, USA, 2014. ACM. ISBN 978-1-4503-2671-1. doi: 10.1145/2554688.2554780. URL

http://doi.acm.org/10.1145/2554688.2554780.

Clifford Wolf and Johann Glaser. Yosys - A free Verilog synthesis suite. In Proceedings of 21st

Austrian Workshop on Microelectronics, Linz, AT, October 2013.

Lee C. Y. Representation of switching circuits by binary-decision programs. Bell System

Technical Journal, 38(4):985–999, 1959. doi: 10.1002/j.1538-7305.1959.tb01585.x.

Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Language-based control and mitigation

of timing channels. In the 33rd ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’12, pages 99–110, New York, NY, USA, 2012. ISBN 978-1-4503-

1205-9. doi: 10.1145/2254064.2254078.

Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. A hardware design language

for timing-sensitive information-flow security. In the Twentieth International Conference

on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’15,

pages 503–516, New York, NY, USA, 2015. ISBN 978-1-4503-2835-7. doi: 10.1145/2694344.

2694372.

Reto Zimmermann. Binary adder architectures for cell-based VLSI and their synthesis. PhD

thesis, ETHZ, Zürich, CH, 1998.

110

